Sample records for problems design experiments

  1. Searching for Authentic Context in Designing PISA-like Mathematics Problem: From Indoor to Outdoor Field Experience

    NASA Astrophysics Data System (ADS)

    Siswono, T. Y. E.; Kohar, A. W.; Rosyidi, A. H.; Hartono, S.; Masriyah

    2018-01-01

    Designing problem like in PISA is known as a challenging activity for teachers particularly as the use of authentic context within that type of problem. This paper aims to describe the experiences of secondary mathematics teachers in designing PISA-like problems within an innovative training program focusing on building teachers’ understanding on the concept of mathematical literacy. The teachers were engaged in a set of problem-solving and problem-posing activities using PISA-based problem within indoor and outdoor field experiences. Within indoor field experience, the teachers worked collaboratively in groups on designing PISA-like problems with a given context through problem generation and reformulation techniques. Within outdoor field experience, they worked on designing PISA-like problems with self-chosen context from the place where the outdoor field experience took place. Our analysis indicates that there were improvements on the PISA-like problems designed by teachers based on its level use of context from indoor to outdoor experience. Also, the teachers were relatively successful with creating appropriate and motivating contexts by harnessing a variety of context consisting of personal, occupational, societal, and scientific contexts. However, they still experienced difficulties in turning these contexts into an appropriate problem satisfying PISA framework such as regarding authenticity of context use, language structure, and PISA task profile.

  2. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  3. How Instructional Design Experts Use Knowledge and Experience to Solve Ill-Structured Problems

    ERIC Educational Resources Information Center

    Ertmer, Peggy A.; Stepich, Donald A.; York, Cindy S.; Stickman, Ann; Wu, Xuemei (Lily); Zurek, Stacey; Goktas, Yuksel

    2008-01-01

    This study examined how instructional design (ID) experts used their prior knowledge and previous experiences to solve an ill-structured instructional design problem. Seven experienced designers used a think-aloud procedure to articulate their problem-solving processes while reading a case narrative. Results, presented in the form of four…

  4. Informing a Pedagogy for Design and Problem-Solving in Hard Materials by Theorising Technologists' Learning Experiences

    ERIC Educational Resources Information Center

    Potter, Patricia; France, Bev

    2018-01-01

    Design and problem solving are central to technology and have distinguished learning in technology from other curriculum areas. This research investigated how expert technologists learn design and problem solving through experience. Data was collected from four expert technologists and this information was analysed using learning theories that…

  5. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  6. Designing the future of healthcare.

    PubMed

    Fidsa, Gianfranco Zaccai

    2009-01-01

    This paper describes the application of a holistic design process to a variety of problems plaguing current healthcare systems. A design process for addressing complex, multifaceted problems is contrasted with the piecemeal application of technological solutions to specific medical or administrative problems. The goal of this design process is the ideal customer experience, specifically the ideal experience for patients, healthcare providers, and caregivers within a healthcare system. Holistic design is shown to be less expensive and wasteful in the long run because it avoids solving one problem within a complex system at the cost of creating other problems within that system. The article applies this approach to the maintenance of good health throughout life; to the creation of an ideal experience when a person does need medical care; to the maintenance of personal independence as one ages; and to the enjoyment of a comfortable and dignified death. Virginia Mason Medical Center is discussed as an example of a healthcare institution attempting to create ideal patient and caregiver experiences, in this case by applying the principles of the Toyota Production System ("lean manufacturing") to healthcare. The article concludes that healthcare is inherently dedicated to an ideal, that science and technology have brought it closer to that ideal, and that design can bring it closer still.

  7. Solving Real World Problems with Alternate Reality Gaming: Student Experiences in the Global Village Playground Capstone Course Design

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; McLeod, Julie K.

    2015-01-01

    The Global Village Playground (GVP) was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering complex problem solving, as well as critical and creative thinking. In the GVP, students work on simulated and real-world problems…

  8. Development of Metacognitive Skills: Designing Problem-Based Experiment with Prospective Science Teachers in Biology Laboratory

    ERIC Educational Resources Information Center

    Denis Çeliker, Huriye

    2015-01-01

    The purpose of this study is to investigate the effect of designing problem-based experiments (DPBE) on the level of metacognitive skills of prospective science teachers. For this purpose, pre test-post test design, without control group, was used in the research. The research group of the study comprised 113 second-grade prospective science…

  9. The Effects of Using Drawings in Developing Young Children's Mathematical Word Problem Solving: A Design Experiment with Third-Grade Hungarian Students

    ERIC Educational Resources Information Center

    Csikos, Csaba; Szitanyi, Judit; Kelemen, Rita

    2012-01-01

    The present study aims to investigate the effects of a design experiment developed for third-grade students in the field of mathematics word problems. The main focus of the program was developing students' knowledge about word problem solving strategies with an emphasis on the role of visual representations in mathematical modeling. The experiment…

  10. Reinventing the Wheel: Design and Problem Solving

    ERIC Educational Resources Information Center

    Blasetti, Sean M.

    2010-01-01

    This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…

  11. Inverse problems and optimal experiment design in unsteady heat transfer processes identification

    NASA Technical Reports Server (NTRS)

    Artyukhin, Eugene A.

    1991-01-01

    Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

  12. Universal Design Problem Solving

    ERIC Educational Resources Information Center

    Sterling, Mary C.

    2004-01-01

    Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

  13. Advanced tools for smartphone-based experiments: phyphox

    NASA Astrophysics Data System (ADS)

    Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C.

    2018-07-01

    The sensors in modern smartphones are a promising and cost-effective tool for experimentation in physics education, but many experiments face practical problems. Often the phone is inaccessible during the experiment and the data usually needs to be analyzed subsequently on a computer. We address both problems by introducing a new app, called ‘phyphox’, which is specifically designed for utilizing experiments in physics teaching. The app is free and designed to offer the same set of features on Android and iOS.

  14. The problem-solving approach in the teaching of number theory

    NASA Astrophysics Data System (ADS)

    Toh, Pee Choon; Hoong Leong, Yew; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Guan Tay, Eng; Him Ho, Foo

    2014-02-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to adopt a Pólya-style approach in learning mathematics. The Practical Worksheet is an instructional scaffold we adopted to help our pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. The Worksheet was initially used in a design experiment aimed at teaching problem solving in a secondary school. In this paper, we describe an application and adaptation of the MProSE (Mathematical Problem Solving for Everyone) design experiment to a university level number theory course for pre-service mathematics teachers. The goal of the enterprise was to help the pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. Our analysis of the pre-service mathematics teachers' work shows that the MProSE design holds promise for mathematics courses at the tertiary level.

  15. High School Student Information Access and Engineering Design Performance

    ERIC Educational Resources Information Center

    Mentzer, Nathan

    2014-01-01

    Developing solutions to engineering design problems requires access to information. Research has shown that appropriately accessing and using information in the design process improves solution quality. This quasi-experimental study provides two groups of high school students with a design problem in a three hour design experience. One group has…

  16. How Instructional Designers Solve Workplace Problems

    ERIC Educational Resources Information Center

    Fortney, Kathleen S.; Yamagata-Lynch, Lisa C.

    2013-01-01

    This naturalistic inquiry investigated how instructional designers engage in complex and ambiguous problem solving across organizational boundaries in two corporations. Participants represented a range of instructional design experience, from novices to experts. Research methods included a participant background survey, observations of…

  17. Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task

    ERIC Educational Resources Information Center

    Chrysikou, Evangelia G.; Weisberg, Robert W.

    2005-01-01

    Two experiments examined possible negative transfer in nonexperts from the use of pictorial examples in a laboratory design problem-solving situation. In Experiment 1, 89 participants were instructed to "think aloud" and were assigned to 1 of 3 conditions: (a) control (standard instructions), (b) fixation (inclusion of a problematic…

  18. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  19. Inverse problems in the design, modeling and testing of engineering systems

    NASA Technical Reports Server (NTRS)

    Alifanov, Oleg M.

    1991-01-01

    Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.

  20. Common problems and pitfalls in gear design

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1986-01-01

    There are several pitfalls and problems associated with the successful design of a new gear transmission. A new design will require the knowledge and experience of several technical areas of engineering. Most of the pitfalls and problems associated with a new design are related to an inadequate evaluation of several areas, such as, the lubrication and cooling requirements, complete static and dynamic load analysis, evaluation of materials and heat treatment and the latest manufacturing technology. Some of the common problems of the gear design process are discussed with recommendations made for avoiding these conditions.

  1. Retention and application of Skylab experiment experiences to future programs

    NASA Technical Reports Server (NTRS)

    Milly, N.; Gillespie, V. G.

    1974-01-01

    Problems encountered on Skylab Experiments are listed in order that these experiences and associated recommendations might help to prevent similar problems on future programs. The criteria for selection of the data to be utilized was to identify the problem areas within the Skylab Program which would be of major significance with respect to future programs. Also, the problem had to be unique in that it would help identify to a designer/manufacturer an unforeseen or unanticipated occurrence which could cause failures, delays, or additional cost. Only those unexpected problems that may occur due to the nature of aerospace experiment environmental and operational requirements are included.

  2. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    ERIC Educational Resources Information Center

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  3. Developing Legal Problem-Solving Skills.

    ERIC Educational Resources Information Center

    Nathanson, Stephen

    1994-01-01

    A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)

  4. Utilizing Problem-Based Learning in Qualitative Analysis Lab Experiments

    ERIC Educational Resources Information Center

    Hicks, Randall W.; Bevsek, Holly M.

    2012-01-01

    A series of qualitative analysis (QA) laboratory experiments utilizing a problem-based learning (PBL) module has been designed and implemented. The module guided students through the experiments under the guise of cleaning up a potentially contaminated water site as employees of an environmental chemistry laboratory. The main goal was the…

  5. Learning from patients: Identifying design features of medicines that cause medication use problems.

    PubMed

    Notenboom, Kim; Leufkens, Hubert Gm; Vromans, Herman; Bouvy, Marcel L

    2017-01-30

    Usability is a key factor in ensuring safe and efficacious use of medicines. However, several studies showed that people experience a variety of problems using their medicines. The purpose of this study was to identify design features of oral medicines that cause use problems among older patients in daily practice. A qualitative study with semi-structured interviews on the experiences of older people with the use of their medicines was performed (n=59). Information on practical problems, strategies to overcome these problems and the medicines' design features that caused these problems were collected. The practical problems and management strategies were categorised into 'use difficulties' and 'use errors'. A total of 158 use problems were identified, of which 45 were categorized as use difficulties and 113 as use error. Design features that contributed the most to the occurrence of use difficulties were the dimensions and surface texture of the dosage form (29.6% and 18.5%, respectively). Design features that contributed the most to the occurrence of use errors were the push-through force of blisters (22.1%) and tamper evident packaging (12.1%). These findings will help developers of medicinal products to proactively address potential usability issues with their medicines. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The problem of site variation within red pine provenance experiments

    Treesearch

    Mark J. Holst

    1966-01-01

    In spite of care taken in the selection of site and experimental design of provenance experiments, site heterogenity within the experimental area may be more complex than was anticipated when the experiment was established. The present paper describes a problem of this nature encountered in a red pine (Pinus resinosa Ait.) provenance experiment at...

  7. Does sadness impair color perception? Flawed evidence and faulty methods.

    PubMed

    Holcombe, Alex O; Brown, Nicholas J L; Goodbourn, Patrick T; Etz, Alexander; Geukes, Sebastian

    2016-01-01

    In their 2015 paper, Thorstenson, Pazda, and Elliot offered evidence from two experiments that perception of colors on the blue-yellow axis was impaired if the participants had watched a sad movie clip, compared to participants who watched clips designed to induce a happy or neutral mood. Subsequently, these authors retracted their article, citing a mistake in their statistical analyses and a problem with the data in one of their experiments. Here, we discuss a number of other methodological problems with Thorstenson et al.'s experimental design, and also demonstrate that the problems with the data go beyond what these authors reported. We conclude that repeating one of the two experiments, with the minor revisions proposed by Thorstenson et al., will not be sufficient to address the problems with this work.

  8. Tractable Experiment Design via Mathematical Surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    This presentation summarizes the development and implementation of quantitative design criteria motivated by targeted inference objectives for identifying new, potentially expensive computational or physical experiments. The first application is concerned with estimating features of quantities of interest arising from complex computational models, such as quantiles or failure probabilities. A sequential strategy is proposed for iterative refinement of the importance distributions used to efficiently sample the uncertain inputs to the computational model. In the second application, effective use of mathematical surrogates is investigated to help alleviate the analytical and numerical intractability often associated with Bayesian experiment design. This approach allows formore » the incorporation of prior information into the design process without the need for gross simplification of the design criterion. Illustrative examples of both design problems will be presented as an argument for the relevance of these research problems.« less

  9. An Architectural Experience for Interface Design

    ERIC Educational Resources Information Center

    Gong, Susan P.

    2016-01-01

    The problem of human-computer interface design was brought to the foreground with the emergence of the personal computer, the increasing complexity of electronic systems, and the need to accommodate the human operator in these systems. With each new technological generation discovering the interface design problems of its own technologies, initial…

  10. How Generalizable Is Your Experiment? An Index for Comparing Samples and Populations

    ERIC Educational Resources Information Center

    Tipton, Elizabeth

    2013-01-01

    Recent research on the design of social experiments has highlighted the effects of different design choices on research findings. Since experiments rarely collect their samples using random selection, in order to address these external validity problems and design choices, recent research has focused on two areas. The first area is on methods for…

  11. Mechanism problems

    NASA Technical Reports Server (NTRS)

    Riedel, J. K.

    1972-01-01

    It is pointed out that too frequently during the design and development of mechanisms, problems occur that could have been avoided if the right question had been asked before, rather than after, the fact. Several typical problems, drawn from actual experience, are discussed and analyzed. The lessons learned are used to generate various suggestions for minimizing mistakes in mechanism design.

  12. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  13. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. In this paper a general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  14. Microgravity isolation system design: A modern control synthesis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Manned orbiters will require active vibration isolation for acceleration-sensitive microgravity science experiments. Since umbilicals are highly desirable or even indispensable for many experiments, and since their presence greatly affects the complexity of the isolation problem, they should be considered in control synthesis. A general framework is presented for applying extended H2 synthesis methods to the three-dimensional microgravity isolation problem. The methodology integrates control and state frequency weighting and input and output disturbance accommodation techniques into the basic H2 synthesis approach. The various system models needed for design and analysis are also presented. The paper concludes with a discussion of a general design philosophy for the microgravity vibration isolation problem.

  15. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  16. Estimating parameters with pre-specified accuracies in distributed parameter systems using optimal experiment design

    NASA Astrophysics Data System (ADS)

    Potters, M. G.; Bombois, X.; Mansoori, M.; Hof, Paul M. J. Van den

    2016-08-01

    Estimation of physical parameters in dynamical systems driven by linear partial differential equations is an important problem. In this paper, we introduce the least costly experiment design framework for these systems. It enables parameter estimation with an accuracy that is specified by the experimenter prior to the identification experiment, while at the same time minimising the cost of the experiment. We show how to adapt the classical framework for these systems and take into account scaling and stability issues. We also introduce a progressive subdivision algorithm that further generalises the experiment design framework in the sense that it returns the lowest cost by finding the optimal input signal, and optimal sensor and actuator locations. Our methodology is then applied to a relevant problem in heat transfer studies: estimation of conductivity and diffusivity parameters in front-face experiments. We find good correspondence between numerical and theoretical results.

  17. User Experience Design of History Game: An Analysis Review and Evaluation Study for Malaysia Context

    ERIC Educational Resources Information Center

    Wong, Seng Yue; Ghavifekr, Simin

    2018-01-01

    User experience (UX) and user interface design of an educational game are important in enhancing and sustaining the utilisation of Game Based Learning (GBL) in learning history. Thus, this article provides a detailed literature review on history learning problems, as well as previous studies on user experience in game design. Future studies on…

  18. Quality Problem-Based Learning Experiences for Students: Design Deliberations among Teachers from Diverse Disciplines.

    ERIC Educational Resources Information Center

    Butler, Susan McAleenan

    This qualitative study, investigating the claims, concerns, and issues arising within the design stages of problem-based learning (PBL) curriculum units, was conducted during two masters-level classes during the summer of 1999. A hermeneutic dialectic discourse among veteran teachers (who were novice PBL curriculum designers) was facilitated by…

  19. Experiences of Design-and-Make Interventions with Indian Middle School Students

    ERIC Educational Resources Information Center

    Khunyakari, Ritesh P.

    2015-01-01

    Enabling learning through meaningful classroom experiences has always been a challenge for teachers. Bringing about a balance of the "conceptual" and the "hands-on", along with contextual embeddedness in problem-solving situations, broadly characterises the experience of development and trials of three Design and Technology…

  20. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  1. Numerical Optimization Using Computer Experiments

    NASA Technical Reports Server (NTRS)

    Trosset, Michael W.; Torczon, Virginia

    1997-01-01

    Engineering design optimization often gives rise to problems in which expensive objective functions are minimized by derivative-free methods. We propose a method for solving such problems that synthesizes ideas from the numerical optimization and computer experiment literatures. Our approach relies on kriging known function values to construct a sequence of surrogate models of the objective function that are used to guide a grid search for a minimizer. Results from numerical experiments on a standard test problem are presented.

  2. Reasoning, Problem Solving, and Intelligence.

    DTIC Science & Technology

    1980-04-01

    designed to test the validity of their model of response choice in analogical reason- ing. In the first experiment, they set out to demonstrate that...second experiment were somewhat consistent with the prediction. The third experiment used a concept-formation design in which subjects were required to... designed to show interrelationships between various forms of inductive reasoning. Their model fits were highly comparable to those of Rumelhart and

  3. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Architectural Design Education Program for Children: Adaptation into Turkish Culture and Analysis of Its Effectiveness

    ERIC Educational Resources Information Center

    Gözen, Göksu

    2015-01-01

    Problem Statement: Design, which is a process of creating, supports individuals' pursuit, experience and discovery, and contributes to the improvement of higher-order thinking skills. A systematic design education offered in the early years of life boosts especially creative thinking and problem solving skills as well as awareness of the…

  5. Application of evolutionary computation in ECAD problems

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hyun; Hwang, Seung H.

    1998-10-01

    Design of modern electronic system is a complicated task which demands the use of computer- aided design (CAD) tools. Since a lot of problems in ECAD are combinatorial optimization problems, evolutionary computations such as genetic algorithms and evolutionary programming have been widely employed to solve those problems. We have applied evolutionary computation techniques to solve ECAD problems such as technology mapping, microcode-bit optimization, data path ordering and peak power estimation, where their benefits are well observed. This paper presents experiences and discusses issues in those applications.

  6. Teaching fractional factorial experiments via course delegate designed experiments.

    PubMed

    Coleman, S; Antony, J

    1999-01-01

    Industrial experiments are fundamental in enhancing the understanding and knowledge of a process and product behavior. Designed industrial experiments assist people in understanding, investigating, and improving their processes. The purpose of a designed experiment is to understand which factors might influence the process output and then to determine those factor settings that optimize the process output. Teaching "design of experiments" using textbook examples does not fully shed light on how to identify and formulate the problem, identify factors, and determine the performance of the physical experiment. Presented here is an example of how to teach fractional factorial experiments in a course on designed experiments. Also presented is a practical, hands-on experiment that has been found to be extremely successful in instilling confidence and motivation in course delegates. The experiment provides a great stimulus to the delegates for the application of experimental design in their own work environment.

  7. The Associations of Naturalistic Classic Psychedelic Use, Mystical Experience, and Creative Problem Solving.

    PubMed

    Sweat, Noah W; Bates, Larry W; Hendricks, Peter S

    2016-01-01

    Developing methods for improving creativity is of broad interest. Classic psychedelics may enhance creativity; however, the underlying mechanisms of action are unknown. This study was designed to assess whether a relationship exists between naturalistic classic psychedelic use and heightened creative problem-solving ability and if so, whether this is mediated by lifetime mystical experience. Participants (N = 68) completed a survey battery assessing lifetime mystical experience and circumstances surrounding the most memorable experience. They were then administered a functional fixedness task in which faster completion times indicate greater creative problem-solving ability. Participants reporting classic psychedelic use concurrent with mystical experience (n = 11) exhibited significantly faster times on the functional fixedness task (Cohen's d = -.87; large effect) and significantly greater lifetime mystical experience (Cohen's d = .93; large effect) than participants not reporting classic psychedelic use concurrent with mystical experience. However, lifetime mystical experience was unrelated to completion times on the functional fixedness task (standardized β = -.06), and was therefore not a significant mediator. Classic psychedelic use may increase creativity independent of its effects on mystical experience. Maximizing the likelihood of mystical experience may need not be a goal of psychedelic interventions designed to boost creativity.

  8. Apollo experience report: Power generation system

    NASA Technical Reports Server (NTRS)

    Bell, D., III; Plauche, F. M.

    1973-01-01

    A comprehensive review of the design philosophy and experience of the Apollo electrical power generation system is presented. The review of the system covers a period of 8 years, from conception through the Apollo 12 lunar-landing mission. The program progressed from the definition phase to hardware design, system development and qualification, and, ultimately, to the flight phase. Several problems were encountered; however, a technology evolved that enabled resolution of the problems and resulted in a fully manrated power generation system. These problems are defined and examined, and the corrective action taken is discussed. Several recommendations are made to preclude similar occurrences and to provide a more reliable fuel-cell power system.

  9. Experiments and other methods for developing expertise with design of experiments in a classroom setting

    NASA Technical Reports Server (NTRS)

    Patterson, John W.

    1990-01-01

    The only way to gain genuine expertise in Statistical Process Control (SPC) and the design of experiments (DOX) is with repeated practice, but not on canned problems with dead data sets. Rather, one must negotiate a wide variety of problems each with its own peculiarities and its own constantly changing data. The problems should not be of the type for which there is a single, well-defined answer that can be looked up in a fraternity file or in some text. The problems should match as closely as possible the open-ended types for which there is always an abundance of uncertainty. These are the only kinds that arise in real research, whether that be basic research in academe or engineering research in industry. To gain this kind of experience, either as a professional consultant or as an industrial employee, takes years. Vast amounts of money, not to mention careers, must be put at risk. The purpose here is to outline some realistic simulation-type lab exercises that are so simple and inexpensive to run that the students can repeat them as often as desired at virtually no cost. Simulations also allow the instructor to design problems whose outcomes are as noisy as desired but still predictable within limits. Also the instructor and the students can learn a great deal more from the postmortum conducted after the exercise is completed. One never knows for sure what the true data should have been when dealing only with real life experiments. To add a bit more realism to the exercises, it is sometimes desirable to make the students pay for each experimental result from a make-believe budget allocation for the problem.

  10. Health care planning and education via gaming-simulation: a two-stage experiment.

    PubMed

    Gagnon, J H; Greenblat, C S

    1977-01-01

    A two-stage process of gaming-simulation design was conducted: the first stage of design concerned national planning for hemophilia care; the second stage of design was for gaming-simulation concerning the problems of hemophilia patients and health care providers. The planning design was intended to be adaptable to large-scale planning for a variety of health care problems. The educational game was designed using data developed in designing the planning game. A broad range of policy-makers participated in the planning game.

  11. Designing Digital Problem Based Learning Tasks that Motivate Students

    ERIC Educational Resources Information Center

    van Loon, Anne-Marieke; Ros, Anje; Martens, Rob

    2013-01-01

    This study examines whether teachers are able to apply the principles of autonomy support and structure support in designing digital problem based learning (PBL) tasks. We examine whether these tasks are more autonomy- and structure-supportive and whether primary and secondary school students experience greater autonomy, competence, and motivation…

  12. A Framework for Designing Scaffolds that Improve Motivation and Cognition

    ERIC Educational Resources Information Center

    Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.

    2013-01-01

    A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b)…

  13. Creating an Alternate Reality: Critical, Creative, and Empathic Thinking Generated in the "Global Village Playground" Capstone Experience

    ERIC Educational Resources Information Center

    Dondlinger, Mary Jo; Wilson, Douglas A.

    2012-01-01

    The "Global Village Playground" ("GVP") was a capstone learning experience designed to address institutional assessment needs while providing an integrated and authentic learning experience for students aimed at fostering critical and creative thinking. In the "GVP", students work on simulated and real-world problems as a design team tasked with…

  14. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  15. Promoting higher order thinking skills using inquiry-based learning

    NASA Astrophysics Data System (ADS)

    Madhuri, G. V.; S. S. N Kantamreddi, V.; Goteti, L. N. S. Prakash

    2012-05-01

    Active learning pedagogies play an important role in enhancing higher order cognitive skills among the student community. In this work, a laboratory course for first year engineering chemistry is designed and executed using an inquiry-based learning pedagogical approach. The goal of this module is to promote higher order thinking skills in chemistry. Laboratory exercises are designed based on Bloom's taxonomy and a just-in-time facilitation approach is used. A pre-laboratory discussion outlining the theory of the experiment and its relevance is carried out to enable the students to analyse real-life problems. The performance of the students is assessed based on their ability to perform the experiment, design new experiments and correlate practical utility of the course module with real life. The novelty of the present approach lies in the fact that the learning outcomes of the existing experiments are achieved through establishing a relationship with real-world problems.

  16. Teaching Design in the First Years of a Traditional Mechanical Engineering Degree: Methods, Issues and Future Perspectives

    ERIC Educational Resources Information Center

    Silva, Arlindo; Fontul, Mihail; Henriques, Elsa

    2015-01-01

    Engineering design is known as an answer to an ill-defined problem. As any answer to an ill-defined problem, it can never be completely right or absolutely wrong. The methods that universities use to teach engineering design, as a consequence of this, suffer from the same fate. However, the accumulated experience with the "chalk and…

  17. Handbook of experiences in the design and installation of solar heating and cooling systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  18. Experiment Design for Nonparametric Models Based On Minimizing Bayes Risk: Application to Voriconazole1

    PubMed Central

    Bayard, David S.; Neely, Michael

    2016-01-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a nonparametric model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher Information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the nonparametric model. Specifically, the problem of identifying an individual from a nonparametric prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient’s behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (Multiple-Model Optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications. PMID:27909942

  19. Experiment design for nonparametric models based on minimizing Bayes Risk: application to voriconazole¹.

    PubMed

    Bayard, David S; Neely, Michael

    2017-04-01

    An experimental design approach is presented for individualized therapy in the special case where the prior information is specified by a nonparametric (NP) population model. Here, a NP model refers to a discrete probability model characterized by a finite set of support points and their associated weights. An important question arises as to how to best design experiments for this type of model. Many experimental design methods are based on Fisher information or other approaches originally developed for parametric models. While such approaches have been used with some success across various applications, it is interesting to note that they largely fail to address the fundamentally discrete nature of the NP model. Specifically, the problem of identifying an individual from a NP prior is more naturally treated as a problem of classification, i.e., to find a support point that best matches the patient's behavior. This paper studies the discrete nature of the NP experiment design problem from a classification point of view. Several new insights are provided including the use of Bayes Risk as an information measure, and new alternative methods for experiment design. One particular method, denoted as MMopt (multiple-model optimal), will be examined in detail and shown to require minimal computation while having distinct advantages compared to existing approaches. Several simulated examples, including a case study involving oral voriconazole in children, are given to demonstrate the usefulness of MMopt in pharmacokinetics applications.

  20. Expert Systems Development Methodology

    DTIC Science & Technology

    1989-07-28

    application. Chapter 9, Design and Prototyping, discusses the problems of designing the user interface and other characteristics of the ES and the prototyping...severely in question as to whether they were computable. In order to work with this problem , Turing created what he called the universal machine. These...about the theory of computers and their relationship to problem solving. It was here at Princeton that he first began to experiment directly with

  1. Optimum Tolerance Design Using Component-Amount and Mixture-Amount Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepel, Gregory F.; Ozler, Cenk; Sehirlioglu, Ali Kemal

    2013-08-01

    One type of tolerance design problem involves optimizing component and assembly tolerances to minimize the total cost (sum of manufacturing cost and quality loss). Previous literature recommended using traditional response surface (RS) designs and models to solve this type of tolerance design problem. In this article, component-amount (CA) and mixture-amount (MA) approaches are proposed as more appropriate for solving this type of tolerance design problem. The advantages of the CA and MA approaches over the RS approach are discussed. Reasons for choosing between the CA and MA approaches are also discussed. The CA and MA approaches (experimental design, response modeling,more » and optimization) are illustrated using real examples.« less

  2. Steam generator feedwater nozzle transition piece replacement experience at Salem Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, D.B.; Perrin, J.S.; Roberts, A.T.

    Cracking of steam generator feedwater piping adjacent to the feedwater nozzles has been a recurring problem since 1979 at Salem Unit 1 owned and operated by Public Service Electric and Gas Company. In addition to the cracking problem, erosion-corrosion at the leading edge of the feedwater nozzle thermal sleeve was also observed in 1992. To provide a long-term solution for the pipe cracking and thermal sleeve erosion-corrosion problems, a unique transition piece forging was specially designed, fabricated, and installed for each of the four steam generators during the 1995 outage. This paper discusses the design, fabrication, and installation of themore » transition piece forgings at Salem Unit 1, and the experiences gained from this project. It is believed that these experiences may help other utilities when planning similar replacements in the future.« less

  3. Learner-Controlled Scaffolding Linked to Open-Ended Problems in a Digital Learning Environment

    ERIC Educational Resources Information Center

    Edson, Alden Jack

    2017-01-01

    This exploratory study reports on how students activated learner-controlled scaffolding and navigated through sequences of connected problems in a digital learning environment. A design experiment was completed to (re)design, iteratively develop, test, and evaluate a digital version of an instructional unit focusing on binomial distributions and…

  4. ASIT--A Problem Solving Strategy for Education and Eco-Friendly Sustainable Design

    ERIC Educational Resources Information Center

    Turner, Steve

    2009-01-01

    There is growing recognition of the role teaching and learning experiences in technology education can contribute to Education for Sustainable Development. It appears, however, that in the Technology Education classroom little or no change has been achieved to the practice of designing and problem solving strategies oriented towards sustainable…

  5. Best Bang for the Buck: Part 1 – The Size of Experiments Relative to Design Performance

    DOE PAGES

    Anderson-Cook, Christine Michaela; Lu, Lu

    2016-10-01

    There are many choices to make, when designing an experiment for a study, such as: what design factors to consider, which levels of the factors to use and which model to focus on. One aspect of design, however, is often left unquestioned: the size of the experiment. When learning about design of experiments, problems are often posed as "select a design for a particular objective with N runs." It’s tempting to consider the design size as a given constraint in the design-selection process. If you think of learning through designed experiments as a sequential process, however, strategically planning for themore » use of resources at different stages of data collection can be beneficial: Saving experimental runs for later is advantageous if you can efficiently learn with less in the early stages. Alternatively, if you’re too frugal in the early stages, you might not learn enough to proceed confidently with the next stages. Therefore, choosing the right-sized experiment is important—not too large or too small, but with a thoughtful balance to maximize the knowledge gained given the available resources. It can be a great advantage to think about the design size as flexible and include it as an aspect for comparisons. Sometimes you’re asked to provide a small design that is too ambitious for the goals of the study. Finally, if you can show quantitatively how the suggested design size might be inadequate or lead to problems during analysis—and also offer a formal comparison to some alternatives of different (likely larger) sizes—you may have a better chance to ask for additional resources to deliver statistically sound and satisfying results« less

  6. A Generalized Quantum-Inspired Decision Making Model for Intelligent Agent

    PubMed Central

    Loo, Chu Kiong

    2014-01-01

    A novel decision making for intelligent agent using quantum-inspired approach is proposed. A formal, generalized solution to the problem is given. Mathematically, the proposed model is capable of modeling higher dimensional decision problems than previous researches. Four experiments are conducted, and both empirical experiments results and proposed model's experiment results are given for each experiment. Experiments showed that the results of proposed model agree with empirical results perfectly. The proposed model provides a new direction for researcher to resolve cognitive basis in designing intelligent agent. PMID:24778580

  7. A Framework for Designing Scaffolds That Improve Motivation and Cognition

    PubMed Central

    Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.

    2013-01-01

    A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b) problem-based learning and scaffolding as one way to help, (c) how scaffolding has strayed from what was originally equal parts motivational and cognitive support, and (d) a conceptual framework for the design of scaffolds that can enhance motivation as well as cognitive outcomes. We propose guidelines for the design of computer-based scaffolds to promote motivation and engagement while students are solving authentic problems. Remaining questions and suggestions for future research are then discussed. PMID:24273351

  8. Apollo experience report: Guidance and control systems. Lunar module stabilization and control system

    NASA Technical Reports Server (NTRS)

    Shelton, D. H.

    1975-01-01

    A brief functional description of the Apollo lunar module stabilization and control subsystem is presented. Subsystem requirements definition, design, development, test results, and flight experiences are discussed. Detailed discussions are presented of problems encountered and the resulting corrective actions taken during the course of assembly-level testing, integrated vehicle checkout and test, and mission operations. Although the main experiences described are problem oriented, the subsystem has performed satisfactorily in flight.

  9. What Works with Worked Examples: Extending Self-Explanation and Analogical Comparison to Synthesis Problems

    ERIC Educational Resources Information Center

    Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.

    2017-01-01

    The ability to solve physics problems that require multiple concepts from across the physics curriculum--"synthesis" problems--is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these…

  10. Experimental design, power and sample size for animal reproduction experiments.

    PubMed

    Chapman, Phillip L; Seidel, George E

    2008-01-01

    The present paper concerns statistical issues in the design of animal reproduction experiments, with emphasis on the problems of sample size determination and power calculations. We include examples and non-technical discussions aimed at helping researchers avoid serious errors that may invalidate or seriously impair the validity of conclusions from experiments. Screen shots from interactive power calculation programs and basic SAS power calculation programs are presented to aid in understanding statistical power and computing power in some common experimental situations. Practical issues that are common to most statistical design problems are briefly discussed. These include one-sided hypothesis tests, power level criteria, equality of within-group variances, transformations of response variables to achieve variance equality, optimal specification of treatment group sizes, 'post hoc' power analysis and arguments for the increased use of confidence intervals in place of hypothesis tests.

  11. Adaptive Comparative Judgment as a Tool for Assessing Open-Ended Design Problems and Model Eliciting Activities

    ERIC Educational Resources Information Center

    Bartholomew, Scott R.; Nadelson, Louis S.; Goodridge, Wade H.; Reeve, Edward M.

    2018-01-01

    We investigated the use of adaptive comparative judgment to evaluate the middle school student learning, engagement, and experience with the design process in an open-ended problem assigned in a technology and engineering education course. Our results indicate that the adaptive comparative judgment tool effectively facilitated the grading of the…

  12. Common Problems with Pyrometry at Shock Physics Experiments and How to Avoid Them

    NASA Astrophysics Data System (ADS)

    Seifter, Achim; Obst, Andrew; Holtkamp, David

    2007-06-01

    Temperature is not only one of the most prominent parameters in shock physics experiments but also very hard to determine experimentally. Only a few techniques are available because of difficulties due to the short timescale and often very low temperatures. Pyrometry is the most portable of these techniques but has to deal with some problems which give rise to uncertainties. Only if the experiment is designed very carefully some of these difficulties like background radiation from high explosive burn products, muzzle flash or laser light can be avoided. Other problems like spatial temperature non-uniformities or thermal radiation from a transparent anvil are inherent to the experiment and cannot be avoided. By choosing the proper spectral range covered by the pyrometer and fitting the obtained spectral radiance traces with appropriate models meaningful results can be obtained. In this paper we will describe the most important points to be taken into account when designing the experiment, present considerations for choosing the wavelength range of the pyrometer and show data where spatial non uniformities or radiation from hot anvils occurred and temperature data could still be obtained.

  13. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  14. Adaptive design optimization: a mutual information-based approach to model discrimination in cognitive science.

    PubMed

    Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V

    2010-04-01

    Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.

  15. Readiness for Solving Story Problems.

    ERIC Educational Resources Information Center

    Dunlap, William F.

    1982-01-01

    Readiness activities are described which are designed to help learning disabled (LD) students learn to perform computations in story problems. Activities proceed from concrete objects to numbers and involve the students in devising story problems. The language experience approach is incorporated with the enactive, iconic, and symbolic levels of…

  16. Janice VanCleave's Electricity: Mind-Boggling Experiments You Can Turn into Science Fair Projects.

    ERIC Educational Resources Information Center

    VanCleave, Janice

    This book is designed to provide guidance and ideas for science projects to help students learn more about science as they search for answers to specific problems. The 20 topics on electricity in this book suggest many possible problems to solve. Each topic has one detailed experiment followed by a section that provides additional questions about…

  17. Design of heavy duty mixes.

    DOT National Transportation Integrated Search

    1991-01-01

    Permanent deformation of asphalt concrete, which is frequently manifested by excessive pavement rutting, has become a problem in much of the United States. Virginia began to experience rutting problems on highways with heavy traffic in the early 1980...

  18. Integrated Controls-Structures Design Methodology for Flexible Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Price, D. B.

    1995-01-01

    This paper proposes an approach for the design of flexible spacecraft, wherein the structural design and the control system design are performed simultaneously. The integrated design problem is posed as an optimization problem in which both the structural parameters and the control system parameters constitute the design variables, which are used to optimize a common objective function, thereby resulting in an optimal overall design. The approach is demonstrated by application to the integrated design of a geostationary platform, and to a ground-based flexible structure experiment. The numerical results obtained indicate that the integrated design approach generally yields spacecraft designs that are substantially superior to the conventional approach, wherein the structural design and control design are performed sequentially.

  19. Optimal design of piezoelectric transformers: a rational approach based on an analytical model and a deterministic global optimization.

    PubMed

    Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand

    2007-07-01

    This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.

  20. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  1. Effects of Prompting in Reflective Learning Tools: Findings from Experimental Field, Lab, and Online Studies.

    PubMed

    Renner, Bettina; Prilla, Michael; Cress, Ulrike; Kimmerle, Joachim

    2016-01-01

    Reflective learning is an important type of learning both in formal and informal situations-in school, higher education, at the workplace, and in everyday life. People may benefit from technical support for reflective learning, in particular when supporting each other by reflecting not only upon their own but also upon other people's problems. We refer to this collective approach where people come together to think about experiences and find solutions to problems as "collaborative reflection." We present three empirical studies about the effects of prompting in reflective learning tools in such situations where people reflect on others' issues. In Study 1 we applied a three-stage within-group design in a field experiment, where 39 participants from two organizations received different types of prompts while they used a reflection app. We found that prompts that invited employees to write down possible solutions led to more comprehensive comments on their colleagues' experiences. In Study 2 we used a three-stage between-group design in a laboratory experiment, where 78 university students were invited to take part in an experiment about the discussion of problems at work or academic studies in online forums. Here we found that short, abstract prompts showed no superiority to a situation without any prompts with respect to quantity or quality of contributions. Finally, Study 3 featured a two-stage between-group design in an online experiment, where 60 participants received either general reflection instructions or detailed instructions about how to reflect on other people's problems. We could show that detailed reflection instructions supported people in producing more comprehensive comments that included more general advice. The results demonstrate that to increase activity and to improve quality of comments with prompting tools require detailed instructions and specific wording of the prompts.

  2. Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)

    NASA Technical Reports Server (NTRS)

    Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.

    1971-01-01

    The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.

  3. Comparison of Example-Based Learning and Problem-Based Learning in Engineering Domain

    ERIC Educational Resources Information Center

    Sern, Lai Chee; Salleh, Kahirol Mohd; Sulaiman, Nor lisa; Mohamad, Mimi Mohaffyza; Yunos, Jailani Md

    2015-01-01

    The research was conducted to compare the impacts of problem-based learning (PBL) and example-based learning (EBL) on the learning performance in an engineering domain. The research was implemented by means of experimental design. Specifically, a two-group experiment with a pre- and post-test design was used in this research. A total of 37…

  4. Applying Web-Enabled Problem-Based Learning and Self-Regulated Learning to Add Value to Computing Education in Taiwan's Vocational Schools

    ERIC Educational Resources Information Center

    Lee, Tsang-Hsiung; Shen, Pei-Di; Tsai, Chia-Wen

    2008-01-01

    This article describes the design and delivery of a compulsory course in packaged software at vocational schools in Taiwan. A course website was devised and deployed to supplement learning activities in the traditional classroom. A series of quasi-experiments was conducted with innovative instructional designs, that is, web-enabled problem-based…

  5. Design considerations for a gas microcontroller

    NASA Technical Reports Server (NTRS)

    Ritter, D. A.

    1986-01-01

    Some of the design problems that are now being addressed in consideration of a microcontroller for the upcoming GAS payload are discussed. Microcontrollers will be used to run the experiments and to collect and store the data from those experiments. Some of the requirements for a microcontroller are to be small, lightweight, have low power consumption, and high reliability. Some of the solutions that were developed to meet these design requirements are discussed. At present, the experiment is still in the design stage and the final design may change from what is presented here. The search for new integrated circuits which will do all that is needed all in one package continues.

  6. Study on effects of E-glass fiber hybrid composites enhanced with multi-walled carbon nanotubes under tensile load using full factorial design of experiments

    NASA Astrophysics Data System (ADS)

    Musthak, Md.; Madhavi, M.; Ahsanullah, F. M.

    2017-08-01

    Carbon nanotubes (CNT's) are attracting scientific and industrial interest by virtue of their outstanding characteristics. The present research problem deals with the fabrication and characterization of E-glass fiber composites enhanced by carbon nanotubes. In the present study, three factors with two levels are considered. Hence, the design is called 23 full factorial design of experiment. The process parameters considered for the present problem are weight of multi-walled carbon nanotubes, process to disperse nano-particles in resin, and orientation of woven fabric. In addition, their levels considered for the experiment are higher level (+1) and lower level (-1). Fabrication of E-glass fiber composites was carried out according to design, and the specimens were prepared with respect to the ASTM standards D3039-76 and tensile testing was performed. The results show that the nano-particulated composite plate can be manufactured by considering lower level nano-particles stirred with probe sonicator and plied-up with hybrid orientation.

  7. A Simulated Research Problem for Undergraduate Metamorphic Petrology.

    ERIC Educational Resources Information Center

    Amenta, Roddy V.

    1984-01-01

    Presents a laboratory problem in metamorphic petrology designed to simulate a research experience. The problem deals with data on scales ranging from a geologic map to hand specimens to thin sections. Student analysis includes identifying metamorphic index minerals, locating their isograds on the map, and determining the folding sequence. (BC)

  8. Using Computer Simulations in Chemistry Problem Solving

    ERIC Educational Resources Information Center

    Avramiotis, Spyridon; Tsaparlis, Georgios

    2013-01-01

    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  9. THE EXPERIENCE IN THE UNITED STATES WITH REACTOR OPERATION AND REACTOR SAFEGUARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, C.R.

    1958-10-31

    Reactors are operating or planned at locations in the United States in cities, near cities, and at remote locations. There is a general pattern that the higher power reactors are not in, but fairly uear cities, and the testing reactors for more hazardous experiments are at remote locations. A great deal has been done on the theoretical and experimental study of importunt features of reactor design. The metal-water reaction is still a theoretical possibility but tests of fuel element burnout under conditions approaching reactor operation gave no reaction. It appears that nucleate boiling does not necessarily result in steam blanketingmore » and fuel melting. Much attention is being given to the calculation of core kinetics but it is being found that temperature, power, and void coefficients cannot be calculated with accuracy and experiments are required. Some surprises are found giving positive localized void coefficients. Possible oscillatory behavior of reactors is being given careful study. No dangerous oscillations have been found in operating reactors but osciliations hare appeared in experimeats. The design of control and safety systems varies wvith different constructors. The relation of control to the kinetic behavior of the reactor is being studied. The importance of sensing element locations in order to know actual local reactor power level is being recognized. The time constants of instrumentation as related to reactor kinetics are being studied. Pressure vessels for reactors are being designed and manufactured. Many of these are beyond any previous experience. The stress problem is being given careful study. The effect of radiation is being studied experimentally. The stress problems of piping and pressure vessels is a difficult design problem being met successfully in reactor plants. The proper organization and procedure for operation of reactors is being evolved for resourch, testing, and power reactors. The importance of written standards and instructions for both normal and abnormal operating conditions is recogmized. Corfinement of radioactive materials either by tight steel shells, tight buildings, or semi-tight structures vented through filters is considered necessary in the United States. A discussion will be given of specifications, construction, and testing of these structures. The need for emergency plans has been stressed by recent experiences in radioactive releases. The problems of such plans to cover all grades of accidents will be discussed. The theoretical consequences of releases of radioactive materials have been studied and these results will be compared with actual experience. The problem of exposures from normal and abnormal operetion of reactors is a problem of desiga and operation on one hand and the amount of damage to be expected on the other. The safeguard problem is closely related to the acceptable doses of radiouctivity which the ICRP recommend. The future of atomic energy depends upon adequate safeguards and economical design and operation. Accepted criteria are required to guide designers as to the proper balance of caution and boldness. (auth)« less

  10. Benchmarking optimization software with COPS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, E.D.; More, J.J.

    2001-01-08

    The COPS test set provides a modest selection of difficult nonlinearly constrained optimization problems from applications in optimal design, fluid dynamics, parameter estimation, and optimal control. In this report we describe version 2.0 of the COPS problems. The formulation and discretization of the original problems have been streamlined and improved. We have also added new problems. The presentation of COPS follows the original report, but the description of the problems has been streamlined. For each problem we discuss the formulation of the problem and the structural data in Table 0.1 on the formulation. The aim of presenting this data ismore » to provide an approximate idea of the size and sparsity of the problem. We also include the results of computational experiments with the LANCELOT, LOQO, MINOS, and SNOPT solvers. These computational experiments differ from the original results in that we have deleted problems that were considered to be too easy. Moreover, in the current version of the computational experiments, each problem is tested with four variations. An important difference between this report and the original report is that the tables that present the computational experiments are generated automatically from the testing script. This is explained in more detail in the report.« less

  11. RIPOSTE: a framework for improving the design and analysis of laboratory-based research.

    PubMed

    Masca, Nicholas Gd; Hensor, Elizabeth Ma; Cornelius, Victoria R; Buffa, Francesca M; Marriott, Helen M; Eales, James M; Messenger, Michael P; Anderson, Amy E; Boot, Chris; Bunce, Catey; Goldin, Robert D; Harris, Jessica; Hinchliffe, Rod F; Junaid, Hiba; Kingston, Shaun; Martin-Ruiz, Carmen; Nelson, Christopher P; Peacock, Janet; Seed, Paul T; Shinkins, Bethany; Staples, Karl J; Toombs, Jamie; Wright, Adam Ka; Teare, M Dawn

    2015-05-07

    Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences. Poor experimental design and a failure to engage with experienced statisticians at key stages in the design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE (Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early and regular discussions between scientists and statisticians in order to improve the design, conduct and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is intended for use during the early stages of a research project, when specific questions or hypotheses are proposed. The essential points within the framework are explained and illustrated using three examples (a medical equipment test, a macrophage study and a gene expression study). Sound study design minimises the possibility of bias being introduced into experiments and leads to higher quality research with more reproducible results.

  12. Design a Contract: A Simple Principal-Agent Problem as a Classroom Experiment

    ERIC Educational Resources Information Center

    Gachter, Simon; Konigstein, Manfred

    2009-01-01

    The authors present a simple classroom experiment that can be used as a teaching device to introduce important concepts of organizational economics and incentive contracting. First, students take the role of a principal and design a contract that consists of a fixed payment and an incentive component. Second, students take the role of agents and…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine Michaela; Lu, Lu

    There are many choices to make, when designing an experiment for a study, such as: what design factors to consider, which levels of the factors to use and which model to focus on. One aspect of design, however, is often left unquestioned: the size of the experiment. When learning about design of experiments, problems are often posed as "select a design for a particular objective with N runs." It’s tempting to consider the design size as a given constraint in the design-selection process. If you think of learning through designed experiments as a sequential process, however, strategically planning for themore » use of resources at different stages of data collection can be beneficial: Saving experimental runs for later is advantageous if you can efficiently learn with less in the early stages. Alternatively, if you’re too frugal in the early stages, you might not learn enough to proceed confidently with the next stages. Therefore, choosing the right-sized experiment is important—not too large or too small, but with a thoughtful balance to maximize the knowledge gained given the available resources. It can be a great advantage to think about the design size as flexible and include it as an aspect for comparisons. Sometimes you’re asked to provide a small design that is too ambitious for the goals of the study. Finally, if you can show quantitatively how the suggested design size might be inadequate or lead to problems during analysis—and also offer a formal comparison to some alternatives of different (likely larger) sizes—you may have a better chance to ask for additional resources to deliver statistically sound and satisfying results« less

  14. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    NASA Astrophysics Data System (ADS)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  15. Delinquency and Recidivism: A Multicohort, Matched-Control Study of the Role of Early Adverse Experiences, Mental Health Problems, and Disabilities

    ERIC Educational Resources Information Center

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    The authors examined the role of early adverse experiences, mental health problems, and disabilities in the prediction of juvenile delinquency and recidivism, using a matched-control group design. The delinquent group comprised 99,602 youth, born between 1981 and 1988, whose cases had been processed by the South Carolina Department of Juvenile…

  16. Results of the SDCS (Special Data Collection System) Attenuation Experiment

    DTIC Science & Technology

    1981-10-30

    stations one can infer the degree of anelastic attenuation under each station. The design of the experiment by DARPA is based on an implicit assumption of...complete listing of the events is shown in Appendix A. Since the SDCS experiment was designed to resolve problemR arising from a study of Ms-mb, it was... designated by different symbols as follows: Symbol A (At* - ) <-a B -0 < (At* -) < 0 C 0 < (At* P) < + D (At* -> + -52- 30 - N I 50 P 0,244 o" 0.231 cr

  17. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  18. Intelligent design of permanent magnet synchronous motor based on CBR

    NASA Astrophysics Data System (ADS)

    Li, Cong; Fan, Beibei

    2018-05-01

    Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.

  19. Automating the packing heuristic design process with genetic programming.

    PubMed

    Burke, Edmund K; Hyde, Matthew R; Kendall, Graham; Woodward, John

    2012-01-01

    The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains.

  20. [Problem-solving approach in the training of healthcare professionals].

    PubMed

    Batista, Nildo; Batista, Sylvia Helena; Goldenberg, Paulete; Seiffert, Otília; Sonzogno, Maria Cecília

    2005-04-01

    To discuss the problem-solving approach in the training of healthcare professionals who would be able to act both in academic life and in educational practices in services and communities. This is an analytical description of an experience of problem-based learning in specialization-level training that was developed within a university-level healthcare education institution. The analysis focuses on three perspectives: course design, student-centered learning and the teacher's role. The problem-solving approach provided impetus to the learning experience for these postgraduate students. There was increased motivation, leadership development and teamworking. This was translated through their written work, seminars and portfolio preparation. The evaluation process for these experiences presupposes well-founded practices that express the views of the subjects involved: self-assessment and observer assessment. The impact of this methodology on teaching practices is that there is a need for greater knowledge of the educational theories behind the principles of significant learning, teachers as intermediaries and research as an educational axiom. The problem-solving approach is an innovative response to the challenges of training healthcare professionals. Its potential is recognized, while it is noted that educational innovations are characterized by causing ruptures in consolidated methods and by establishing different ways of responding to demands presented at specific moments. The critical problems were identified, while highlighting the risk of considering this approach to be a technical tool that is unconnected with the design of the teaching policy. Experiences and analyses based on the problem-solving assumptions need to be shared, thus enabling the production of knowledge that strengthens the transformation of educational practices within healthcare.

  1. Design Ideas, Reflection, and Professional Identity: How Graduate Students Explore the Idea Generation Process

    ERIC Educational Resources Information Center

    Hutchinson, Alisa; Tracey, Monica W.

    2015-01-01

    Within design thinking, designers are responsible for generating, testing, and refining design ideas as a means to refine the design problem and arrive at an effective solution. Thus, understanding one's individual idea generation experiences and processes can be seen as a component of professional identity for designers, which involves the…

  2. Lessons Learned in Engineering

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations.

  3. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  4. Does Copper Metal React with Acetic Acid?

    ERIC Educational Resources Information Center

    DeMeo, Stephen

    1997-01-01

    Describes an activity that promotes analytical thinking and problem solving. Gives students experience with important scientific processes that can be generalized to other new laboratory experiences. Provides students with the opportunity to hypothesize answers, control variables by designing an experiment, and make logical deductions based on…

  5. Problem-Based Learning in Formal and Informal Learning Environments

    ERIC Educational Resources Information Center

    Shimic, Goran; Jevremovic, Aleksandar

    2012-01-01

    Problem-based learning (PBL) is a student-centered instructional strategy in which students solve problems and reflect on their experiences. Different domains need different approaches in the design of PBL systems. Therefore, we present one case study in this article: A Java Programming PBL. The application is developed as an additional module for…

  6. Student Task Force: An Experiment in Interdisciplinary Education.

    ERIC Educational Resources Information Center

    Weiner, Harry

    During the first semester of the 1971-72 academic year, students at 7 universities located in urban areas across the U.S. participated in an interdisciplinary program that was designed to help the students develop problem-solving techniques. The particular problem that the students attacked was that of drug addiction. This problem incorporated the…

  7. California's Water Problems.

    ERIC Educational Resources Information Center

    Wheatley, Judy; Sudman, Rita Schmidt, Ed.

    This packet of instructional materials is designed to give social science students in grades 6-9 a first-hand experience in working out solutions to real-life problems involving the management of California's water. Students work in groups on one of three problems presented in the packet: (1) the management of the Sacramento-San Joaquin Delta that…

  8. Why Inquiry Is Inherently Difficult...and Some Ways to Make It Easier

    ERIC Educational Resources Information Center

    Meyer, Daniel Z.; Avery, Leanne M.

    2010-01-01

    In this article, the authors offer a framework that identifies two critical problems in designing inquiry-based instruction and suggests three models for developing instruction that overcomes those problems. The Protocol Model overcomes the Getting on Board Problem by providing students an initial experience through clearly delineated steps with a…

  9. A Fundamental Study of Smoldering with Emphasis on Experimental Design for Zero-G

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, Carlos; Pagni, Patrick J.

    1995-01-01

    A research program to study smoldering combustion with emphasis on the design of an experiment to be conducted in the space shuttle was conducted at the Department of Mechanical Engineering, University of California, Berkeley. The motivation of the research is the interest in smoldering both as a fundamental combustion problem and as a serious fire risk. Research conducted included theoretical and experimental studies that have brought considerable new information about smolder combustion, the effect that buoyancy has on the process, and specific information for the design of a space experiment. Experiments were conducted at normal gravity, in opposed and forward mode of propagation and in the upward and downward direction to determine the effect and range of influence of gravity on smolder. Experiments were also conducted in microgravity, in a drop tower and in parabolic aircraft flights, where the brief microgravity periods were used to analyze transient aspects of the problem. Significant progress was made on the study of one-dimensional smolder, particularly in the opposed-flow configuration. These studies provided enough information to design a small-scale space-based experiment that was successfully conducted in the Spacelab Glovebox in the June 1992 USML-1/STS-50 mission of the Space Shuttle Columbia.

  10. The Role of Specific Alcohol-Related Problems in Predicting Depressive Experiences in a Cross-Sectional National Household Survey.

    PubMed

    McBride, Orla; Cheng, Hui G; Slade, Tim; Lynskey, Michael T

    2016-11-01

    This study examines the type of alcohol-related problems that commonly occur before the onset of depressive experiences to shed light on the mechanisms underlying the alcohol-depression comorbidity relationship. Data were from the 1992 USA National Longitudinal Alcohol Epidemiologic Survey. Analytical sample comprised of drinkers with a prior to past year (PPY) history of alcohol-related problems with or without any experiences of depressed mood in the past year (PY). The prevalence of PPY alcohol-related problems was examined, as well as the ability of specific alcohol problems to predict PY experiences of depressed mood. The type of depressed mood experienced by drinkers with PPY history of alcohol-related problems was compared to those without. All but one alcohol-related problem PPY was more frequently endorsed among drinkers with PY experiences of depressed mood. Controlling for confounders, five alcohol-related problems experienced PPY were significantly predictive of depressed mood PY: tolerance, drinking longer than intended, inability to perform important social and occupational roles/obligations, as well as drinking in physically hazardous situations. Drinkers with alcohol-related problems PPY more frequently experienced difficulties with concentration, energy, and thoughts of death, than those without. Alcohol-related problems are likely associated with depressive experiences through a complex network, whereby experiences of physical dependence and negative consequences increase the likelihood of negative affect. Novel study designs are necessary to fully understand the complex mechanisms underlying this comorbidity. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  11. Learning from the Implementers in a Design Experiment

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Dindyal, Jaguthsing; Tay, Eng Guan

    2013-01-01

    In a design experiment, the feedback from the teacher-implementer is crucial to the success of the innovation simply because the teacher is finally the one that brings the innovation to life in front of the students. We describe in this paper the feedback made by the teacher-implementer after teaching one cycle of the problem solving module in a…

  12. Kullback-Leibler information function and the sequential selection of experiments to discriminate among several linear models. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    A sequential adaptive experimental design procedure for a related problem is studied. It is assumed that a finite set of potential linear models relating certain controlled variables to an observed variable is postulated, and that exactly one of these models is correct. The problem is to sequentially design most informative experiments so that the correct model equation can be determined with as little experimentation as possible. Discussion includes: structure of the linear models; prerequisite distribution theory; entropy functions and the Kullback-Leibler information function; the sequential decision procedure; and computer simulation results. An example of application is given.

  13. How scientific experiments are designed: Problem solving in a knowledge-rich, error-rich environment

    NASA Astrophysics Data System (ADS)

    Baker, Lisa M.

    While theory formation and the relation between theory and data has been investigated in many studies of scientific reasoning, researchers have focused less attention on reasoning about experimental design, even though the experimental design process makes up a large part of real-world scientists' reasoning. The goal of this thesis was to provide a cognitive account of the scientific experimental design process by analyzing experimental design as problem-solving behavior (Newell & Simon, 1972). Three specific issues were addressed: the effect of potential error on experimental design strategies, the role of prior knowledge in experimental design, and the effect of characteristics of the space of alternate hypotheses on alternate hypothesis testing. A two-pronged in vivo/in vitro research methodology was employed, in which transcripts of real-world scientific laboratory meetings were analyzed as well as undergraduate science and non-science majors' design of biology experiments in the psychology laboratory. It was found that scientists use a specific strategy to deal with the possibility of error in experimental findings: they include "known" control conditions in their experimental designs both to determine whether error is occurring and to identify sources of error. The known controls strategy had not been reported in earlier studies with science-like tasks, in which participants' responses to error had consisted of replicating experiments and discounting results. With respect to prior knowledge: scientists and undergraduate students drew on several types of knowledge when designing experiments, including theoretical knowledge, domain-specific knowledge of experimental techniques, and domain-general knowledge of experimental design strategies. Finally, undergraduate science students generated and tested alternates to their favored hypotheses when the space of alternate hypotheses was constrained and searchable. This result may help explain findings of confirmation bias in earlier studies using science-like tasks, in which characteristics of the alternate hypothesis space may have made it unfeasible for participants to generate and test alternate hypotheses. In general, scientists and science undergraduates were found to engage in a systematic experimental design process that responded to salient features of the problem environment, including the constant potential for experimental error, availability of alternate hypotheses, and access to both theoretical knowledge and knowledge of experimental techniques.

  14. HOME for STEPS. Homemaking Opportunity Modules for Education for Use with Surviving Today's Experiences and Problems Successfully. Compiled from Competency Based Modules Based on V-TECS Catalogs.

    ERIC Educational Resources Information Center

    Marshall Univ., Huntington, WV. Dept. of Home Economics.

    Designed to accompany Surviving Today's Experiences and Problems Successfully (STEPS) for 9th and 10th grade home economics courses, this volume consists of individualized learning packages dealing with four areas: management/family economics, human development, housing, and foods/nutrition. The book is divided into four parts. First, the…

  15. Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

  16. JPL solar power experiments

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.

    1976-01-01

    Report describes evolution of photovoltaic power systems designed and built for terrestrial use. Discussion focuses on technological problems impeding further systems development. Experiments and test data on seven types of solar panels and six material test specimens are described in detail.

  17. Experiences of discrimination and positive treatment in people with mental health problems: Findings from an Australian national survey.

    PubMed

    Reavley, Nicola J; Jorm, Anthony F

    2015-10-01

    Stigma and discrimination are central concerns for people with mental health problems. The aim of the study was to carry out a national survey in order to assess experiences of avoidance, discrimination and positive treatment in people with mental health problems. In 2014, telephone interviews were carried out with 5220 Australians aged 18+, 1381 of whom reported a mental health problem or scored highly on a symptom screening questionnaire. Questions covered experiences of avoidance, discrimination and positive treatment by friends, spouse, other family, workplace, educational institution and others in the community. In most domains, respondents reported more positive treatment experiences than avoidance or discrimination. Friends and family were more likely to avoid the person than to discriminate. The results can provide input into the design of anti-discrimination interventions and further empower people with mental health problems as they advocate for change in the area of discrimination. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  18. Use of Design Patterns According to Hand Dominance in a Mobile User Interface

    ERIC Educational Resources Information Center

    Al-Samarraie, Hosam; Ahmad, Yusof

    2016-01-01

    User interface (UI) design patterns for mobile applications provide a solution to design problems and can improve the usage experience for users. However, there is a lack of research categorizing the uses of design patterns according to users' hand dominance in a learning-based mobile UI. We classified the main design patterns for mobile…

  19. Verification of Algebra Step Problems: A Chronometric Study of Human Problem Solving. Technical Report No. 253. Psychology and Education Series.

    ERIC Educational Resources Information Center

    Matthews, Paul G.; Atkinson, Richard C.

    This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…

  20. A Systems Analysis and Design Case Study for a Business Modeling Learning Experience for a Capstone CIS/IS Systems Development Class

    ERIC Educational Resources Information Center

    Russell, Jack; Russell, Barbara

    2015-01-01

    The goal is to provide a robust and challenging problem statement for a capstone, advanced systems analysis and design course for CIS/MIS/CS majors. In addition to the problem narrative, a representative solution for much of the business modeling deliverables is presented using the UML paradigm. A structured analysis deliverable will be the topic…

  1. 14 CFR 33.201 - Design and test requirements for Early ETOPS eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maintenance errors that could result in an IFSD, loss of thrust control, or other power loss. (b) The design... power loss in the applicant's other relevant type designs approved within the past 10 years, to the... service data must show experience with and knowledge of problem mitigating design practices equivalent to...

  2. Exploring Teacher Design Team Endeavors While Creating an Elementary-Focused STEM-Integrated Curriculum

    ERIC Educational Resources Information Center

    McFadden, Justin R.; Roehrig, Gillian H.

    2017-01-01

    Background: This study presents two teacher design teams (TDTs) during a professional development experience centered on science, technology, engineering, and mathematics (STEM)-integrated curriculum development. The main activity of the study, curriculum design, was framed as a design problem in order to better understand how teachers engaged…

  3. Shape and Reinforcement Optimization of Underground Tunnels

    NASA Astrophysics Data System (ADS)

    Ghabraie, Kazem; Xie, Yi Min; Huang, Xiaodong; Ren, Gang

    Design of support system and selecting an optimum shape for the opening are two important steps in designing excavations in rock masses. Currently selecting the shape and support design are mainly based on designer's judgment and experience. Both of these problems can be viewed as material distribution problems where one needs to find the optimum distribution of a material in a domain. Topology optimization techniques have proved to be useful in solving these kinds of problems in structural design. Recently the application of topology optimization techniques in reinforcement design around underground excavations has been studied by some researchers. In this paper a three-phase material model will be introduced changing between normal rock, reinforced rock, and void. Using such a material model both problems of shape and reinforcement design can be solved together. A well-known topology optimization technique used in structural design is bi-directional evolutionary structural optimization (BESO). In this paper the BESO technique has been extended to simultaneously optimize the shape of the opening and the distribution of reinforcements. Validity and capability of the proposed approach have been investigated through some examples.

  4. Op weg naar een didactiek voor natuurkunde-experimenten op afstand : Ontwerp en evaluatie van een via internet uitvoerbaar experiment voor leerlingen uit het voortgezet onderwijs

    NASA Astrophysics Data System (ADS)

    Engelbarts, M. B. A.

    2009-02-01

    The subject of this thesis is a developmental study on “remote experimenting” in education. It concerns the development of a remote experiment that enables pre-university students to carry out a physics experiment at a distance via the internet. Remote experiments can offer several (practical) benefits when compared to conventional experiments but the desire to exploit these benefits put special demands on the design of the experiment, since the students might be conducting the experiment without a teacher in the vicinity. As a consequence of these demands it was decided to focus on exploring the possibilities and problems of remote experiments conducted in the absence of a teacher. The research was carried out in two cycles and focused on the development of a remote experiment that could be conducted autonomously by pre-university students to measure the speed of light in several media. This should answer the global question: What should a technically, as well as didactically, well-functioning remote experiment look like? The first cycle had an explorative character. It showed that technically the experiment already functioned quite well. However, many problems were observed concerning the content, and the way the students were tackling it. This led to two categories of recommendations. Concerning the content, the material should aim at making the students more aware of what they are doing and why they are doing it and several content related problems needed to be avoided. The second category of recommendations concerned the format of the material: the design and the working method. Special attention should be paid to designing a clear structure for the website and adding interaction and control, (feedback- and reflection facilities) to activate the students and guide them through the material. In the second research cycle these recommendations were followed by designing the material within the theoretical framework of the problem posing theory. A didactical structure was designed before writing the actual lesson material for the website describing the inter-related conceptual and content-related motivational pathway of the intended teaching-learning process. The lesson material was set up in such a way that the students are repeatedly confronted with a practical problem to solve and they play an active role in developing the method of measurement. Secondly, in an attempt to compensate for the absence of the teacher and support the teaching-learning process some format elements were developed and deployed like an automated question-, and feedback system that supported the students, activated them and gave them insight into their learning process and a ‘Where-am-I’-window that showed their current position within the material. This all had led to a technically as well as didactically well functioning remote experiment in which, at a global level, the line of reasoning was made explicit and recognizable for the students, and ad a local level was build up out of well connected successive activities and required the students to adopt an active attitude.

  5. Fine-Scale Structure Design for 3D Printing

    NASA Astrophysics Data System (ADS)

    Panetta, Francis Julian

    Modern additive fabrication technologies can manufacture shapes whose geometric complexities far exceed what existing computational design tools can analyze or optimize. At the same time, falling costs have placed these fabrication technologies within the average consumer's reach. Especially for inexpert designers, new software tools are needed to take full advantage of 3D printing technology. This thesis develops such tools and demonstrates the exciting possibilities enabled by fine-tuning objects at the small scales achievable by 3D printing. The thesis applies two high-level ideas to invent these tools: two-scale design and worst-case analysis. The two-scale design approach addresses the problem that accurately simulating--let alone optimizing--the full-resolution geometry sent to the printer requires orders of magnitude more computational power than currently available. However, we can decompose the design problem into a small-scale problem (designing tileable structures achieving a particular deformation behavior) and a macro-scale problem (deciding where to place these structures in the larger object). This separation is particularly effective, since structures for every useful behavior can be designed once, stored in a database, then reused for many different macroscale problems. Worst-case analysis refers to determining how likely an object is to fracture by studying the worst possible scenario: the forces most efficiently breaking it. This analysis is needed when the designer has insufficient knowledge or experience to predict what forces an object will undergo, or when the design is intended for use in many different scenarios unknown a priori. The thesis begins by summarizing the physics and mathematics necessary to rigorously approach these design and analysis problems. Specifically, the second chapter introduces linear elasticity and periodic homogenization. The third chapter presents a pipeline to design microstructures achieving a wide range of effective isotropic elastic material properties on a single-material 3D printer. It also proposes a macroscale optimization algorithm placing these microstructures to achieve deformation goals under prescribed loads. The thesis then turns to worst-case analysis, first considering the macroscale problem: given a user's design, the fourth chapter aims to determine the distribution of pressures over the surface creating the highest stress at any point in the shape. Solving this problem exactly is difficult, so we introduce two heuristics: one to focus our efforts on only regions likely to concentrate stresses and another converting the pressure optimization into an efficient linear program. Finally, the fifth chapter introduces worst-case analysis at the microscopic scale, leveraging the insight that the structure of periodic homogenization enables us to solve the problem exactly and efficiently. Then we use this worst-case analysis to guide a shape optimization, designing structures with prescribed deformation behavior that experience minimal stresses in generic use.

  6. Statistical challenges in a regulatory review of cardiovascular and CNS clinical trials.

    PubMed

    Hung, H M James; Wang, Sue-Jane; Yang, Peiling; Jin, Kun; Lawrence, John; Kordzakhia, George; Massie, Tristan

    2016-01-01

    There are several challenging statistical problems identified in the regulatory review of large cardiovascular (CV) clinical outcome trials and central nervous system (CNS) trials. The problems can be common or distinct due to disease characteristics and the differences in trial design elements such as endpoints, trial duration, and trial size. In schizophrenia trials, heavy missing data is a big problem. In Alzheimer trials, the endpoints for assessing symptoms and the endpoints for assessing disease progression are essentially the same; it is difficult to construct a good trial design to evaluate a test drug for its ability to slow the disease progression. In CV trials, reliance on a composite endpoint with low event rate makes the trial size so large that it is infeasible to study multiple doses necessary to find the right dose for study patients. These are just a few typical problems. In the past decade, adaptive designs were increasingly used in these disease areas and some challenges occur with respect to that use. Based on our review experiences, group sequential designs (GSDs) have borne many successful stories in CV trials and are also increasingly used for developing treatments targeting CNS diseases. There is also a growing trend of using more advanced unblinded adaptive designs for producing efficacy evidence. Many statistical challenges with these kinds of adaptive designs have been identified through our experiences with the review of regulatory applications and are shared in this article.

  7. Conquering Space.

    ERIC Educational Resources Information Center

    Smith, Sylvia

    1990-01-01

    Designs a lesson to help secondary art students overcome the fear of a threatening blank page. Students learned proportional enlargement, how to evaluate objectively, and gained experience with visual balance. Displays three examples of student's artwork generated by geometric design problems. (DB)

  8. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  9. Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Haja, Shajahan

    2005-01-01

    This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…

  10. The Iterative Development and Use of an Online Problem-Based Learning Module for Preservice and Inservice Teachers

    ERIC Educational Resources Information Center

    Rillero, Peter; Camposeco, Laurie

    2018-01-01

    Teachers' problem-based learning knowledge, abilities, and attitudes are important factors in successful K--12 PBL implementations. This article describes the development and use of a free, online module entitled "Design a Problem-Based Learning Experience." The module production, aligned with theories of andragogy, was a partnership…

  11. Exploring the Opinions of Pre-Service Science Teachers in Their Experimental Designs Prepared Based on Various Approaches

    ERIC Educational Resources Information Center

    Benzer, Elif

    2015-01-01

    The students in working in laboratories in 21st century are preferred to take place as active participants in the experiments coming up with their own designs and projects by developing new ideas and problems rather than implementing the ones told and ordered by others during these experiments. The science teachers that would have the students…

  12. Integrating Innovation Skills in an Introductory Engineering Design-Build Course

    ERIC Educational Resources Information Center

    Liebenberg, Leon; Mathews, Edward Henry

    2012-01-01

    Modern engineering curricula have started to emphasize design, mostly in the form of design-build experiences. Apart from instilling important problem-solving skills, such pedagogical frameworks address the critical social skill aspects of engineering education due to their team-based, project-based nature. However, it is required of the…

  13. Designing a Children's Water Garden as an Outdoor Learning Lab for Environmental Education

    ERIC Educational Resources Information Center

    Byrd, Renee K.; Haque, Mary Taylor; Tai, Lolly; McLellan, Gina K.; Knight, Erin Jordan

    2007-01-01

    A Clemson University introductory landscape design class collaborated with South Carolina Botanical Gardens (SCBG) staff and coordinators of Sprouting Wings to design an exploratory Children's Garden within the SCBG. Service learning provides students with invaluable real-world experiences solving problems and interacting with clients while…

  14. Teachers' Self-Regulated Learning Lesson Design: Integrating Learning from Problems and Successes

    ERIC Educational Resources Information Center

    Michalsky, Tova; Schechter, Chen

    2018-01-01

    Teachers' design of a lesson is critical for helping their students develop academically effective forms of self-regulating learning (SRL) in classrooms. Using a quasi-experimental design, the researchers integrated systematic collaborative learning from problematic and successful experiences into teachers' preparatory programs and examined how…

  15. Teaching through Trade Books: Design Dilemmas

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2015-01-01

    This column includes activities inspired by children's literature. Through two different stories, students are introduced to the process--including the frustrations--of designing something to solve a problem. The experiences of the books' characters are brought into the classroom by having students engage in an engineering and design process. The…

  16. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    NASA Technical Reports Server (NTRS)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  17. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  18. Does chess instruction improve mathematical problem-solving ability? Two experimental studies with an active control group.

    PubMed

    Sala, Giovanni; Gobet, Fernand

    2017-12-01

    It has been proposed that playing chess enables children to improve their ability in mathematics. These claims have been recently evaluated in a meta-analysis (Sala & Gobet, 2016, Educational Research Review, 18, 46-57), which indicated a significant effect in favor of the groups playing chess. However, the meta-analysis also showed that most of the reviewed studies used a poor experimental design (in particular, they lacked an active control group). We ran two experiments that used a three-group design including both an active and a passive control group, with a focus on mathematical ability. In the first experiment (N = 233), a group of third and fourth graders was taught chess for 25 hours and tested on mathematical problem-solving tasks. Participants also filled in a questionnaire assessing their meta-cognitive ability for mathematics problems. The group playing chess was compared to an active control group (playing checkers) and a passive control group. The three groups showed no statistically significant difference in mathematical problem-solving or metacognitive abilities in the posttest. The second experiment (N = 52) broadly used the same design, but the Oriental game of Go replaced checkers in the active control group. While the chess-treated group and the passive control group slightly outperformed the active control group with mathematical problem solving, the differences were not statistically significant. No differences were found with respect to metacognitive ability. These results suggest that the effects (if any) of chess instruction, when rigorously tested, are modest and that such interventions should not replace the traditional curriculum in mathematics.

  19. From problem people to addictive products: a qualitative study on rethinking gambling policy from the perspective of lived experience.

    PubMed

    Miller, Helen E; Thomas, Samantha L; Robinson, Priscilla

    2018-04-06

    Previous research has shown that government and industry discussions of gambling may focus on personal responsibility for gambling harm. In Australia, these discussions have largely excluded people with lived experience of problem gambling, including those involved in peer support and advocacy. We conducted 26 in-depth interviews with people with current or previous problem gambling on electronic gaming machines (EGMs) involved in peer support and advocacy activities, using an approach informed by Interpretive Policy Analysis and Constructivist Grounded Theory. Participants perceived that government and industry discussed gambling as safe and entertaining with a focus on personal responsibility for problem gambling. This focus on personal responsibility was perceived to increase stigma associated with problem gambling. In contrast, they described gambling as risky, addictive and harmful, with problem gambling resulting from the design of EGMs. As a result of their different perspectives, participants proposed different interventions to reduce gambling harm, including reducing accessibility and making products safer. Challenging the discourses used by governments and industry to describe gambling, using the lived experience of people with experience of gambling harm, may result in reduced stigma associated with problem gambling, and more effective public policy approaches to reducing harm.

  20. RIPOSTE: a framework for improving the design and analysis of laboratory-based research

    PubMed Central

    Masca, Nicholas GD; Hensor, Elizabeth MA; Cornelius, Victoria R; Buffa, Francesca M; Marriott, Helen M; Eales, James M; Messenger, Michael P; Anderson, Amy E; Boot, Chris; Bunce, Catey; Goldin, Robert D; Harris, Jessica; Hinchliffe, Rod F; Junaid, Hiba; Kingston, Shaun; Martin-Ruiz, Carmen; Nelson, Christopher P; Peacock, Janet; Seed, Paul T; Shinkins, Bethany; Staples, Karl J; Toombs, Jamie; Wright, Adam KA; Teare, M Dawn

    2015-01-01

    Lack of reproducibility is an ongoing problem in some areas of the biomedical sciences. Poor experimental design and a failure to engage with experienced statisticians at key stages in the design and analysis of experiments are two factors that contribute to this problem. The RIPOSTE (Reducing IrreProducibility in labOratory STudiEs) framework has been developed to support early and regular discussions between scientists and statisticians in order to improve the design, conduct and analysis of laboratory studies and, therefore, to reduce irreproducibility. This framework is intended for use during the early stages of a research project, when specific questions or hypotheses are proposed. The essential points within the framework are explained and illustrated using three examples (a medical equipment test, a macrophage study and a gene expression study). Sound study design minimises the possibility of bias being introduced into experiments and leads to higher quality research with more reproducible results. DOI: http://dx.doi.org/10.7554/eLife.05519.001 PMID:25951517

  1. Higher-order thinking skill problem on data representation in primary school: A case study

    NASA Astrophysics Data System (ADS)

    Putri, R. I. I.; Zulkardi, Z.

    2018-01-01

    This article aimed at reporting research result on a case study of a lesson using a HOTS problem. The task was about data representation using baby growth context. The study used a design research method consisting of three stages: preparing for an experiment, experiment in the classroom (pilot and teaching), and retrospective analysis. Participants were sixth grade students who were learning data representations in a Primary School in Palembang Indonesia. A set of instructional activities were designed using Indonesian version of Realistic Mathematics Education (PMRI) approach. The result showed that students were able to solve the problem and present their solution in front of the classroom. The conclusion indicated that that HOTS problem using the growth of a child as the context could lead students to use their mathematical thinking. During the learning activities along with teacher orchestra’s guidance, and discussion, students were able to solve the problem using line graph although some of them used a bar graph. In the future, teachers are necessary to focus on the role of real-world figure in mathematics learning.

  2. Development of a Parachute System for Deceleration of Flying Vehicles in Supersonic Regimes

    NASA Astrophysics Data System (ADS)

    Pilyugin, N. N.; Khlebnikov, V. S.

    2010-09-01

    Aerodynamic problems arising during design and development of braking systems for re-entry vehicles are analyzed. Aerodynamic phenomena and laws valid in a supersonic flow around a pair of bodies having different shapes are studied. Results of this research can be used in solving application problems (arrangement and optimization of experiments; design and development of various braking systems for re-entry vehicles moving with supersonic speeds in the atmosphere).

  3. Fine-Tuning in a Design Experiment

    ERIC Educational Resources Information Center

    Ho, Foo Him; Toh, Pee Choon; Toh, Tin Lam

    2013-01-01

    Quek, Tay, Toh, Leong, and Dindyal (2011) proposed that a design-theory-practice troika should always be considered for a designed package to be acceptable to the research users who, in this case, are teachers and schools. This paper describes the fine-tuning to the MProSE problem-solving design made by the teachers in the school after first round…

  4. Learning and interactivity in solving a transformation problem.

    PubMed

    Guthrie, Lisa G; Vallée-Tourangeau, Frédéric; Vallée-Tourangeau, Gaëlle; Howard, Chelsea

    2015-07-01

    Outside the psychologist's laboratory, thinking proceeds on the basis of a great deal of interaction with artefacts that are recruited to augment problem-solving skills. The role of interactivity in problem solving was investigated using a river-crossing problem. In Experiment 1A, participants completed the same problem twice, once in a low interactivity condition, and once in a high interactivity condition (with order counterbalanced across participants). Learning, as gauged in terms of latency to completion, was much more pronounced when the high interactivity condition was experienced second. When participants first completed the task in the high interactivity condition, transfer to the low interactivity condition during the second attempt was limited; Experiment 1B replicated this pattern of results. Participants thus showed greater facility to transfer their experience of completing the problem from a low to a high interactivity condition. Experiment 2 was designed to determine the amount of learning in a low and high interactivity condition; in this experiment participants completed the problem twice, but level of interactivity was manipulated between subjects. Learning was evident in both the low and high interactivity groups, but latency per move was significantly faster in the high interactivity group, in both presentations. So-called problem isomorphs instantiated in different task ecologies draw upon different skills and abilities; a distributed cognition analysis may provide a fruitful perspective on learning and transfer.

  5. Monte Carlo Solution to Find Input Parameters in Systems Design Problems

    NASA Astrophysics Data System (ADS)

    Arsham, Hossein

    2013-06-01

    Most engineering system designs, such as product, process, and service design, involve a framework for arriving at a target value for a set of experiments. This paper considers a stochastic approximation algorithm for estimating the controllable input parameter within a desired accuracy, given a target value for the performance function. Two different problems, what-if and goal-seeking problems, are explained and defined in an auxiliary simulation model, which represents a local response surface model in terms of a polynomial. A method of constructing this polynomial by a single run simulation is explained. An algorithm is given to select the design parameter for the local response surface model. Finally, the mean time to failure (MTTF) of a reliability subsystem is computed and compared with its known analytical MTTF value for validation purposes.

  6. Lessons Learned in Engineering. Supplement

    NASA Technical Reports Server (NTRS)

    Blair, James C.; Ryan, Robert S.; Schultzenhofer, Luke A.

    2011-01-01

    This Contractor Report (CR) is a compilation of Lessons Learned in approximately 55 years of engineering experience by each James C. Blair, Robert S. Ryan, and Luke A. Schutzenhofer. The lessons are the basis of a course on Lessons Learned that has been taught at Marshall Space Flight Center. The lessons are drawn from NASA space projects and are characterized in terms of generic lessons learned from the project experience, which are further distilled into overarching principles that can be applied to future projects. Included are discussions of the overarching principles followed by a listing of the lessons associated with that principle. The lesson with sub-lessons are stated along with a listing of the project problems the lesson is drawn from, then each problem is illustrated and discussed, with conclusions drawn in terms of Lessons Learned. The purpose of this CR is to provide principles learned from past aerospace experience to help achieve greater success in future programs, and identify application of these principles to space systems design. The problems experienced provide insight into the engineering process and are examples of the subtleties one experiences performing engineering design, manufacturing, and operations. The supplemental CD contains accompanying PowerPoint presentations.

  7. Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem

    NASA Astrophysics Data System (ADS)

    Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III

    2018-04-01

    NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.

  8. Performance analysis of parallel branch and bound search with the hypercube architecture

    NASA Technical Reports Server (NTRS)

    Mraz, Richard T.

    1987-01-01

    With the availability of commercial parallel computers, researchers are examining new classes of problems which might benefit from parallel computing. This paper presents results of an investigation of the class of search intensive problems. The specific problem discussed is the Least-Cost Branch and Bound search method of deadline job scheduling. The object-oriented design methodology was used to map the problem into a parallel solution. While the initial design was good for a prototype, the best performance resulted from fine-tuning the algorithm for a specific computer. The experiments analyze the computation time, the speed up over a VAX 11/785, and the load balance of the problem when using loosely coupled multiprocessor system based on the hypercube architecture.

  9. The OBIS Trail Module. Trial Version.

    ERIC Educational Resources Information Center

    Fairwell, Kay, Ed.; And Others

    Designed to allow youngsters aged 10 to 15 to experience the challenges and problems environmental investigators might face making an environmental impact study, the trial version of the Outdoor Biology Instructional Strategies (OBIS) Trail Module focuses on aspects of construction-related environment problems. Four activities are included in the…

  10. Modeling and Improving Information Flows in the Development of Large Business Applications

    NASA Astrophysics Data System (ADS)

    Schneider, Kurt; Lübke, Daniel

    Designing a good architecture for an application is a wicked problem. Therefore, experience and knowledge are considered crucial for informing work in software architecture. However, many organizations do not pay sufficient attention to experience exploitation and architectural learning. Many users of information systems are not aware of the options and the needs to report problems and requirements. They often do not have time to describe a problem encountered in sufficient detail for developers to remove it. And there may be a lengthy process for providing feedback. Hence, the knowledge about problems and potential solutions is not shared effectively. Architectural knowledge needs to include evaluative feedback as well as decisions and their reasons (rationale).

  11. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  12. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  13. OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING

    PubMed Central

    Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.

    2017-01-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369

  14. Optimal experiment design for magnetic resonance fingerprinting.

    PubMed

    Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L

    2016-08-01

    Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.

  15. The impact of problem solving strategy with online feedback on students’ conceptual understanding

    NASA Astrophysics Data System (ADS)

    Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.

    2018-04-01

    The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.

  16. Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight.

    PubMed

    Aihara, Takatsugu; Ogawa, Takeshi; Shimokawa, Takeaki; Yamashita, Okito

    2017-01-01

    Humans often utilize past experience to solve difficult problems. However, if past experience is insufficient to solve a problem, solvers may reach an impasse. Insight can be valuable for breaking an impasse, enabling the reinterpretation or re-representation of a problem. Previous studies using between-subjects designs have revealed a causal relationship between the anterior temporal lobes (ATLs) and non-verbal insight, by enhancing the right ATL while inhibiting the left ATL using transcranial direct current stimulation (tDCS). In addition, neuroimaging studies have reported a correlation between right ATL activity and verbal insight. Based on these findings, we hypothesized that the right ATL is causally related to both non-verbal and verbal insight. To test this hypothesis, we conducted an experiment with 66 subjects using a within-subjects design, which typically has greater statistical power than a between-subjects design. Subjects participated in tDCS experiments across 2 days, in which they solved both non-verbal and verbal insight problems under active or sham stimulation conditions. To dissociate the effects of right ATL stimulation from those of left ATL stimulation, we used two montage types; anodal tDCS of the right ATL together with cathodal tDCS of the left ATL (stimulating both ATLs) and anodal tDCS of the right ATL with cathodal tDCS of the left cheek (stimulating only the right ATL). The montage used was counterbalanced across subjects. Statistical analyses revealed that, regardless of the montage type, there were no significant differences between the active and sham conditions for either verbal or non-verbal insight, although the finding for non-verbal insight was inconclusive because of a lack of statistical power. These results failed to support previous findings suggesting that the right ATL is the central locus of insight.

  17. Peer rejection in childhood, involvement with antisocial peers in early adolescence, and the development of externalizing behavior problems

    PubMed Central

    Laird, Robert D.; Jordan, Kristi Y.; Dodge, Kenneth A.; Pettit, Gregory S.; Bates, John E.

    2009-01-01

    A longitudinal, prospective design was used to examine the roles of peer rejection in middle childhood and antisocial peer involvement in early adolescence in the development of adolescent externalizing behavior problems. Both early starter and late starter pathways were considered. Classroom sociometric interviews from ages 6 through 9 years, adolescent reports of peers' behavior at age 13 years, and parent, teacher, and adolescent self-reports of externalizing behavior problems from age 5 through 14 years were available for 400 adolescents. Results indicate that experiencing peer rejection in elementary school and greater involvement with antisocial peers in early adolescence are correlated but that these peer relationship experiences may represent two different pathways to adolescent externalizing behavior problems. Peer rejection experiences, but not involvement with antisocial peers, predict later externalizing behavior problems when controlling for stability in externalizing behavior. Externalizing problems were most common when rejection was experienced repeatedly. Early externalizing problems did not appear to moderate the relation between peer rejection and later problem behavior. Discussion highlights multiple pathways connecting externalizing behavior problems from early childhood through adolescence with peer relationship experiences in middle childhood and early adolescence. PMID:11393650

  18. Engineering Antifragile Systems: A Change In Design Philosophy

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  19. An Individualized Problem-Solving Approach for Teaching Choral Phrase Shaping: An Experimental Study

    ERIC Educational Resources Information Center

    Broomhead, Paul

    2009-01-01

    This experiment tested a treatment designed to improve choral students' expressiveness regarding keyword emphasis and phrase shaping. The treatment was founded upon the constructivist belief that students actively construct conceptual knowledge through problem solving. Participants were 46 university students randomly selected from a nonauditioned…

  20. A Portfolio of Energy Ideas: Science.

    ERIC Educational Resources Information Center

    Clark, Richard C., Ed.

    Presented are 10 science energy education units designed to help students learn how to turn science questions and problems about energy into experiments. Each unit focuses on subject-matter knowledge and on the logic and strategy of scientific problem solving. These teacher-oriented materials include an overview of each unit, background…

  1. RunJumpCode: An Educational Game for Educating Programming

    ERIC Educational Resources Information Center

    Hinds, Matthew; Baghaei, Nilufar; Ragon, Pedrito; Lambert, Jonathon; Rajakaruna, Tharindu; Houghton, Travers; Dacey, Simon

    2017-01-01

    Programming promotes critical thinking, problem solving and analytic skills through creating solutions that can solve everyday problems. However, learning programming can be a daunting experience for a lot of students. "RunJumpCode" is an educational 2D platformer video game, designed and developed in Unity, to teach players the…

  2. Assessing the Employment-Related Interpersonal Competence of Mildly Mentally Retarded Workers.

    ERIC Educational Resources Information Center

    Bullis, Michael; Foss, Gilbert

    1986-01-01

    The Test of Interpersonal Competence for Employment (TICE) designed to assess a mildly retarded worker's knowledge of interpersonal skills in the employment setting, was developed based on analysis of problems that mildly retarded workers experience and identification of correct responses to those problems by competitive employers. Initial…

  3. On Learning Geometry for Teaching

    ERIC Educational Resources Information Center

    Kuchemann, Dietmar; Rodd, Melissa

    2012-01-01

    The title is that of a course with the same name, designed for teachers of mathematics. The rational for a course specifically on geometry was that "many of those currently teaching mathematics in school had little geometrical education". Teachers on the course experience geometry through problem solving, and learning to pose geometrical problems.…

  4. Reflections on Graduate Student PBL Experiences

    ERIC Educational Resources Information Center

    McDonald, Betty

    2008-01-01

    The study designed to contribute to existing research on Problem-Based Learning (PBL) chose a focus group comprising 16 MSc. Petroleum Engineering students (six females). Using PBL as the method of instruction, students examined a real-life petroleum engineering problem that highlighted numerous areas of their existing curriculum. They worked in…

  5. Classroom Management through the Eyes of Elementary Teachers in Turkey: A Phenomenological Study

    ERIC Educational Resources Information Center

    Akin, Sibel; Yildirim, Ali; Goodwin, A. Lin

    2016-01-01

    This study aims to explore Turkish elementary teachers' (1) perceptions of classroom management, (2) classroom management problems they experience, (3) factors causing these problems, and (4) their classroom management practices. The study employed phenomenological research design in the qualitative tradition. The participants included 15…

  6. Mathematical Modeling: Are Prior Experiences Important?

    ERIC Educational Resources Information Center

    Czocher, Jennifer A.; Moss, Diana L.

    2017-01-01

    Why are math modeling problems the source of such frustration for students and teachers? The conceptual understanding that students have when engaging with a math modeling problem varies greatly. They need opportunities to make their own assumptions and design the mathematics to fit these assumptions (CCSSI 2010). Making these assumptions is part…

  7. Sciencewise: Discovering Scientific Process through Problem Solving. Book 2.

    ERIC Educational Resources Information Center

    Holley, Dennis

    This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…

  8. Sciencewise: Discovering Scientific Process through Problem Solving. Book 1.

    ERIC Educational Resources Information Center

    Holley, Dennis

    This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…

  9. Product modular design incorporating preventive maintenance issues

    NASA Astrophysics Data System (ADS)

    Gao, Yicong; Feng, Yixiong; Tan, Jianrong

    2016-03-01

    Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.

  10. The Other Man's Argument

    ERIC Educational Resources Information Center

    Godsall, R. A.

    1974-01-01

    A management simulation course has been designed by Dunchurch Industrial Staff College (DISC) that is management oriented rather than marketing oriented. The computer assisted program has been successful in allowing managers to experience immediately the effects of their decisions and also to experience each other's jobs and problems. (DS)

  11. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  12. COPS: Large-scale nonlinearly constrained optimization problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A.S.; Bortz, D.M.; More, J.J.

    2000-02-10

    The authors have started the development of COPS, a collection of large-scale nonlinearly Constrained Optimization Problems. The primary purpose of this collection is to provide difficult test cases for optimization software. Problems in the current version of the collection come from fluid dynamics, population dynamics, optimal design, and optimal control. For each problem they provide a short description of the problem, notes on the formulation of the problem, and results of computational experiments with general optimization solvers. They currently have results for DONLP2, LANCELOT, MINOS, SNOPT, and LOQO.

  13. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320.

    PubMed

    Sarter, N B; Woods, D D

    1997-12-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  14. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320

    NASA Technical Reports Server (NTRS)

    Sarter, N. B.; Woods, D. D.

    1997-01-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  15. AV Instructional Materials Manual; A Sslf-Instructional Guide to AV Laboratory Experiences. Third Edition.

    ERIC Educational Resources Information Center

    Brown, James W., Ed.; Lewis, Richard B., Ed.

    This self-instructional guide to audiovisual laboratory experiences contains 50 exercises designed to give the user active experiences in the practical problems of choosing, using, and inventing instructional materials and in operating and audiovisual equipment. With the exception of the first four exercises (which introduce the user to the manual…

  16. Heuristics for Comparing the Lengths of Completed E-TSP Tours: Crossings and Areas

    ERIC Educational Resources Information Center

    MacGregor, James N.

    2017-01-01

    The article reports three experiments designed to explore heuristics used in comparing the lengths of completed Euclidean Traveling Salesman Problem (E-TSP) tours. The experiments used paired comparisons in which participants judged which of two completed tours of the same point set was shorter. The first experiment manipulated two factors, the…

  17. Synthetic resistivity calculations for the canonical depth-to-bedrock problem: A critical examination of the thin interbed problem and electrical equivalence theories

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Knight, R.

    2009-05-01

    One of the key factors in the sensible inference of subsurface geologic properties from both field and laboratory experiments is the ability to quantify the linkages between the inherently fine-scale structures, such as bedding planes and fracture sets, and their macroscopic expression through geophysical interrogation. Central to this idea is the concept of a "minimal sampling volume" over which a given geophysical method responds to an effective medium property whose value is dictated by the geometry and distribution of sub- volume heterogeneities as well as the experiment design. In this contribution we explore the concept of effective resistivity volumes for the canonical depth-to-bedrock problem subject to industry-standard DC resistivity survey designs. Four models representing a sedimentary overburden and flat bedrock interface were analyzed through numerical experiments of six different resistivity arrays. In each of the four models, the sedimentary overburden consists of a thinly interbedded resistive and conductive laminations, with equivalent volume-averaged resistivity but differing lamination thickness, geometry, and layering sequence. The numerical experiments show striking differences in the apparent resistivity pseudo-sections which belie the volume-averaged equivalence of the models. These models constitute the synthetic data set offered for inversion in this Back to Basics Resistivity Modeling session and offer the promise to further our understanding of how the sampling volume, as affected by survey design, can be constrained by joint-array inversion of resistivity data.

  18. Intelligent communication assistant for databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakobson, G.; Shaked, V.; Rowley, S.

    1983-01-01

    An intelligent communication assistant for databases, called FRED (front end for databases) is explored. FRED is designed to facilitate access to database systems by users of varying levels of experience. FRED is a second generation of natural language front-ends for databases and intends to solve two critical interface problems existing between end-users and databases: connectivity and communication problems. The authors report their experiences in developing software for natural language query processing, dialog control, and knowledge representation, as well as the direction of future work. 10 references.

  19. The new frontier of public health education.

    PubMed

    Birnbaum, David; Gretsinger, Kathryn; Ellis, Ursula

    2017-02-06

    Purpose The aim of this paper is to describe the experience and educational benefits of a course that has several unique educational design features. Design/methodology/approach This includes narrative description of faculty and student experience from participants in a flipped-instructional-design inter-professional education course. Findings "Improving Public Health - An Interprofessional Approach to Designing and Implementing Effective Interventions" is an undergraduate public health course open to students regardless of background. Its student activities mirror the real-life tasks and challenges of working in a public health agency, including team-building and leadership; problem and project definition and prioritization; evidence-finding and critical appraisal; written and oral presentation; and press interviews. Students successfully developed project proposals to address real problems in a wide range of communities and settings and refined those proposals through interaction with professionals from population and public health, journalism and library sciences. Practical implications Undergraduate public health education is a relatively new endeavor, and experience with this new approach may be of value to other educators. Originality/value Students in this course, journalism graduate students who conducted mock interviews with them and instructors who oversaw the course all describe unique aspects and related personal benefit from this novel approach.

  20. Control of Flexible Structures (COFS) Flight Experiment Background and Description

    NASA Technical Reports Server (NTRS)

    Hanks, B. R.

    1985-01-01

    A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.

  1. Design and operating experience on the US Department of Energy experimental Mod-0 100-kW wind turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.

  2. Optimization of permeability for quality improvement by using factorial design

    NASA Astrophysics Data System (ADS)

    Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad

    2017-05-01

    Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.

  3. Experimental and Quasi-Experimental Design.

    ERIC Educational Resources Information Center

    Cottrell, Edward B.

    With an emphasis on the problems of control of extraneous variables and threats to internal and external validity, the arrangement or design of experiments is discussed. The purpose of experimentation in an educational institution, and the principles governing true experimentation (randomization, replication, and control) are presented, as are…

  4. Designing Templates for Interactive Tasks in CALL Tutorials.

    ERIC Educational Resources Information Center

    Ruhlmann, Felicitas

    The development of templates for computer-assisted language learning (CALL) is discussed, based on experiences with primarily linear multimedia tutorial programs. Design of templates for multiple-choice questions and interactive tasks in a prototype module is described. Possibilities of enhancing interactivity by introducing problem-oriented…

  5. Care for the chronically ill: Nursing home incentive payment experiment

    PubMed Central

    Weissert, William G.; Scanlon, William J.; Wan, Thomas T. H.; Skinner, Douglas E.

    1983-01-01

    Nursing home reinbursement systems which do not adjust payment levels to patient care needs lead to access problems for heavy-care patients. Unnecessarily long and costly hospital stays may result. A patient-based nursing home incentive reimbursement system has been designed and is being evaluated in a controlled field experiment in 36 California skilled nursing facilities. Incentives are paid for admitting heavy-care patients, meeting outcome goals on some patients, and discharging and maintaining some patients in the community. This article describes a nursing home reimbursement system which is intended to simultaneously mitigate problems of restricted access, inefficient use of beds, and nonoptimal care. It also discusses the approach to evaluating this broad social intervention by application of a controlled experimental design. PMID:10310528

  6. Experiences of university students living with mental health problems: Interrelations between the self, the social, and the school.

    PubMed

    Kirsh, Bonnie; Friedland, Judith; Cho, Sunny; Gopalasuntharanathan, Nisha; Orfus, Shauna; Salkovitch, Marni; Snider, Katrina; Webber, Colleen

    2015-01-01

    A university education is becoming ever-more important in preparing for employment in the knowledge-driven economy. Yet, many university students are not able to complete their degrees because they experience mental health problems during the course of their higher education. Despite the growing numbers of students seeking help, there is limited knowledge about the issues that these students face. The purpose of this study was to understand the range of individual, interpersonal, and environmental factors that affect the lives of university students living with mental health problems. The study was based at a large public university in Canada. Semi-structured interviews were conducted with 19 students with self-identified mental health problems. Their narratives were analyzed using grounded theory methods and a model was developed which drew upon social-ecological theory. Findings depict student experiences as a function of the self (individual factors), the social (interpersonal factors) and the school (environmental factors) and their interrelations. Interventions must be designed to address all three of these areas and their interrelations. The model can be used to guide universities in designing interventions; however, a fourth level that incorporates a university policy that values and supports student mental health, should be included.

  7. Recent progress in econophysics: Chaos, leverage, and business cycles as revealed by agent-based modeling and human experiments

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Huang, Ji-Ping

    2017-12-01

    Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.

  8. Applying AN Object-Oriented Database Model to a Scientific Database Problem: Managing Experimental Data at Cebaf.

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bryon K.

    Current scientific experiments are often characterized by massive amounts of very complex data and the need for complex data analysis software. Object-oriented database (OODB) systems have the potential of improving the description of the structure and semantics of this data and of integrating the analysis software with the data. This dissertation results from research to enhance OODB functionality and methodology to support scientific databases (SDBs) and, more specifically, to support a nuclear physics experiments database for the Continuous Electron Beam Accelerator Facility (CEBAF). This research to date has identified a number of problems related to the practical application of OODB technology to the conceptual design of the CEBAF experiments database and other SDBs: the lack of a generally accepted OODB design methodology, the lack of a standard OODB model, the lack of a clear conceptual level in existing OODB models, and the limited support in existing OODB systems for many common object relationships inherent in SDBs. To address these problems, the dissertation describes an Object-Relationship Diagram (ORD) and an Object-oriented Database Definition Language (ODDL) that provide tools that allow SDB design and development to proceed systematically and independently of existing OODB systems. These tools define multi-level, conceptual data models for SDB design, which incorporate a simple notation for describing common types of relationships that occur in SDBs. ODDL allows these relationships and other desirable SDB capabilities to be supported by an extended OODB system. A conceptual model of the CEBAF experiments database is presented in terms of ORDs and the ODDL to demonstrate their functionality and use and provide a foundation for future development of experimental nuclear physics software using an OODB approach.

  9. Structural synthesis: Precursor and catalyst

    NASA Technical Reports Server (NTRS)

    Schmit, L. A.

    1984-01-01

    More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested.

  10. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.

  11. Lost in the crowd? Using eye-tracking to investigate the effect of complexity on attribute non-attendance in discrete choice experiments.

    PubMed

    Spinks, Jean; Mortimer, Duncan

    2016-02-03

    The provision of additional information is often assumed to improve consumption decisions, allowing consumers to more accurately weigh the costs and benefits of alternatives. However, increasing the complexity of decision problems may prompt changes in information processing. This is particularly relevant for experimental methods such as discrete choice experiments (DCEs) where the researcher can manipulate the complexity of the decision problem. The primary aims of this study are (i) to test whether consumers actually process additional information in an already complex decision problem, and (ii) consider the implications of any such 'complexity-driven' changes in information processing for design and analysis of DCEs. A discrete choice experiment (DCE) is used to simulate a complex decision problem; here, the choice between complementary and conventional medicine for different health conditions. Eye-tracking technology is used to capture the number of times and the duration that a participant looks at any part of a computer screen during completion of DCE choice sets. From this we can analyse what has become known in the DCE literature as 'attribute non-attendance' (ANA). Using data from 32 participants, we model the likelihood of ANA as a function of choice set complexity and respondent characteristics using fixed and random effects models to account for repeated choice set completion. We also model whether participants are consistent with regard to which characteristics (attributes) they consider across choice sets. We find that complexity is the strongest predictor of ANA when other possible influences, such as time pressure, ordering effects, survey specific effects and socio-demographic variables (including proxies for prior experience with the decision problem) are considered. We also find that most participants do not apply a consistent information processing strategy across choice sets. Eye-tracking technology shows promise as a way of obtaining additional information from consumer research, improving DCE design, and informing the design of policy measures. With regards to DCE design, results from the present study suggest that eye-tracking data can identify the point at which adding complexity (and realism) to DCE choice scenarios becomes self-defeating due to unacceptable increases in ANA. Eye-tracking data therefore has clear application in the construction of guidelines for DCE design and during piloting of DCE choice scenarios. With regards to design of policy measures such as labelling requirements for CAM and conventional medicines, the provision of additional information has the potential to make difficult decisions even harder and may not have the desired effect on decision-making.

  12. Model-Based Optimal Experimental Design for Complex Physical Systems

    DTIC Science & Technology

    2015-12-03

    for public release. magnitude reduction in estimator error required to make solving the exact optimal design problem tractable. Instead of using a naive...for designing a sequence of experiments uses suboptimal approaches: batch design that has no feedback, or greedy ( myopic ) design that optimally...approved for public release. Equation 1 is difficult to solve directly, but can be expressed in an equivalent form using the principle of dynamic programming

  13. A Grand Sale: $12 for a Dozen Experiments in CRE.

    ERIC Educational Resources Information Center

    Guo-Tai, Zhang; Shau-Drang, Hau

    1984-01-01

    Introduces a procedure for a whole class of experiments which require very simple and inexpensive equipment and which illustrate one of the basic problems of chemical reaction engineering. The reactions are designed to allow development of a kinetic rate equation from laboratory data. (JM)

  14. International Field Experiences Promote Professional Development for Sustainability Leaders

    ERIC Educational Resources Information Center

    Hull, R. Bruce; Kimmel, Courtney; Robertson, David P.; Mortimer, Michael

    2016-01-01

    Purpose: This paper aims to describe, explain and evaluate a graduate education program that provides international project experiences and builds competencies related to collaborative problem-solving, cultural capacity to work globally and sustainable development. Design/methodology/approach: Qualitative analysis of survey data from 28 students…

  15. Scaffolding a Complex Task of Experimental Design in Chemistry with a Computer Environment

    ERIC Educational Resources Information Center

    Girault, Isabelle; d'Ham, Cédric

    2014-01-01

    When solving a scientific problem through experimentation, students may have the responsibility to design the experiment. When students work in a conventional condition, with paper and pencil, the designed procedures stay at a very general level. There is a need for additional scaffolds to help the students perform this complex task. We propose a…

  16. Effect of Physics Problem Solving on Structures Schemes and Knowledge Associations

    NASA Astrophysics Data System (ADS)

    Setyowidodo, I.; Jatmiko, B.; Susantini, E.; Widodo, S.; Shofwan, A.

    2017-09-01

    This study aims to develop learners’ thinking structures through associations, case based, and schematic method so that different knowledge structures have a role in influencing the structure of creative thinking. The learners have low mastery of physics materials since they are not given sufficient opportunity to build their own knowledge. They should be directed to approach each new problem or task with their prior knowledge, assimilate new information, and construct their own understanding. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The learning process of problemsolving consists of: 1) identifying problems, 2) planning projects, 3) creating projects, 4) presenting projects, and 5) evaluating projects. From the results of this research, it can be concluded that problem-solving method can provide strong supports in developing the learners’ creative thinking skills as they can share their knowledge and interact with their friends and the environment. This learning activity also constitutes an appropriate technique to help the learners to develop problem solving knowledge and skills.

  17. The navigation toolkit

    NASA Technical Reports Server (NTRS)

    Rich, William F.; Strom, Stephen W.

    1994-01-01

    This report summarizes the experience of the authors in managing, designing, and implementing an object-oriented applications framework for orbital navigation analysis for the Flight Design and Dynamics Department of the Rockwell Space Operations Company in Houston, in support of the Mission Operations Directorate of NASA's Johnson Space Center. The 8 person year project spanned 1.5 years and produced 30,000 lines of C++ code, replacing 150,000 lines of Fortran/C. We believe that our experience is important because it represents a 'second project' experience and generated real production-quality code - it was not a pilot. The project successfully demonstrated the use of 'continuous development' or rapid prototyping techniques. Use of formal methods and executable models contributed to the quality of the code. Keys to the success of the project were a strong architectural vision and highly skilled workers. This report focuses on process and methodology, and not on a detailed design description of the product. But the true importance of the object-oriented paradigm is its liberation of the developer to focus on the problem rather than the means used to solve the problem.

  18. Transonic aerodynamic design experience

    NASA Technical Reports Server (NTRS)

    Bonner, E.

    1989-01-01

    Advancements have occurred in transonic numerical simulation that place aerodynamic performance design into a relatively well developed status. Efficient broad band operating characteristics can be reliably developed at the conceptual design level. Recent aeroelastic and separated flow simulation results indicate that systematic consideration of an increased range of design problems appears promising. This emerging capability addresses static and dynamic structural/aerodynamic coupling and nonlinearities associated with viscous dominated flows.

  19. Examining the design features of a communication-rich, problem-centred mathematics professional development

    NASA Astrophysics Data System (ADS)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-04-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.

  20. A User-Centered Framework for Deriving A Conceptual Design From User Experiences: Leveraging Personas and Patterns to Create Usable Designs

    NASA Astrophysics Data System (ADS)

    Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed

    Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.

  1. Apollo experience report: Command and service module sequential events control subsystem

    NASA Technical Reports Server (NTRS)

    Johnson, G. W.

    1975-01-01

    The Apollo command and service module sequential events control subsystem is described, with particular emphasis on the major systems and component problems and solutions. The subsystem requirements, design, and development and the test and flight history of the hardware are discussed. Recommendations to avoid similar problems on future programs are outlined.

  2. Integrating Effective Pedagogies in Science Education with a Design of Alternative Experiments on Electromagnetics

    ERIC Educational Resources Information Center

    Zhou, Shaona; Yeung, Yau-Yuen; Wang, Yanlin; Wang, Xiaojun; Xiao, Hua

    2014-01-01

    Learning electromagnetics often involves dealing with problems with strong mathematical skills or thinking about problems in abstract and multiple spaces. Moreover, many students are often unable to explain some related physical phenomena using the appropriate electromagnetic principles. In this paper, we report on integrating two effective…

  3. The Role of Majority Groups in Diversity Programs

    ERIC Educational Resources Information Center

    Rheingans, Penny; Brodsky, Anne; Scheibler, Jill; Spence, Anne

    2011-01-01

    The underrepresentation of women in technical fields is a widely acknowledged national problem, limiting both the raw size of the talent pool and the diversity of experiences and perspectives of those who will design solutions to key problems facing society. Empowering women to succeed in these fields is clearly one important component of any…

  4. Using the 4MAT Framework to Design a Problem-Based Learning Biostatistics Course

    ERIC Educational Resources Information Center

    Nowacki, Amy S.

    2011-01-01

    The study presents and applies the 4MAT theoretical framework to educational planning to transform a biostatistics course into a problem-based learning experience. Using a four-question approach, described are specific activities/materials utilized at both the class and course levels. Two web-based instruments collected data regarding student…

  5. Does What I Eat and Drink Affect My Teeth?

    ERIC Educational Resources Information Center

    Brown, Sherri Lynne

    2013-01-01

    "A Framework for K-12 Science Education" (NRC 2012) recommends that science teachers provide experiences for students to see "how science and engineering pertain to real-world problems and to explore opportunities to apply their scientific knowledge to engineering design problems once this linkage is made" (NRC 2012, p. 32). To…

  6. Deep Learning towards Expertise Development in a Visualization-Based Learning Environment

    ERIC Educational Resources Information Center

    Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun

    2017-01-01

    With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…

  7. Online Guidance, Advice, and Support for Problem Gamblers and Concerned Relatives and Friends: An Evaluation of the "GamAid" Pilot Service

    ERIC Educational Resources Information Center

    Wood, Richard T. A.; Griffiths, Mark D.

    2007-01-01

    The paper reports one of the first ever studies to evaluate the effectiveness of an online help and guidance service for problem gamblers. The evaluation utilised a mixed methods design in order to examine both primary and secondary data relating to the client experience. In addition, the researchers posed as problem gamblers in order to obtain…

  8. Integrated support structure for GASCAN 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program was the preliminary design of the Integrated Support Structure for GASCAN II, a Get Away Special canister donated by the MITRE Corporation. Two teams of three students each worked on the support structure. There was a structural design team and a thermal design team. The structure will carry three experiments also undergoing preliminary design this year, the mu-gravity Ignition Experiment, the Rotational Flow in Low Gravity Experiment, and the Ionospheric Properties and Propagation Experiment. The structural design team was responsible for the layout of the GASCAN and the preliminary design of the structure itself. They produced the physical interface specifications defining the baseline weights and volumes for the equipment and produced layout drawings of the system. The team produced static and modal finite element analysis of the structure using ANSYS. The thermal design team was responsible for the power and timing requirements of the payload and for the identification and preliminary analysis of potential thermal problems. The team produced the power, timing, and energy interface specifications and assisted in the development of the specification of the battery pack. The thermal parameters of each experiment were cataloged and the experiments were subjected to worst case heat transfer scenarios.

  9. Scientific activity program for 1989

    NASA Astrophysics Data System (ADS)

    1989-04-01

    The current research projects are summarized. The research is grouped into four main directions: infrared astronomy, interplanetary media, cosmic rays and gravitational fields. The projects include instruments for the Infrared Space Observatory (ISO) satellite, problems of star formation and star evolution, Tethered Satellite System (TSS) experiment, Opera experiment, propagation of cosmic rays in the ionosphere, design of a solar neutron detector, and gravitational wave antennas experiments.

  10. Conceptual design of a closed loop nutrient solution delivery system for CELSS implementation in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Oleson, Mel W.; Cullingford, Hatice S.

    1990-01-01

    Described here are the results of a study to develop a conceptual design for an experimental closed loop fluid handling system capable of monitoring, controlling, and supplying nutrient solution to higher plants. The Plant Feeder Experiment (PFE) is designed to be flight tested in a microgravity environment. When flown, the PFX will provide information on both the generic problems of microgravity fluid handling and the specific problems associated with the delivery of the nutrient solution in a microgravity environment. The experimental hardware is designed to fit into two middeck lockers on the Space Shuttle, and incorporates several components that have previously been flight tested.

  11. Instruction Using Experiments in a Computer. Final Report.

    ERIC Educational Resources Information Center

    Fulton, John P.; Hazeltine, Barrett

    Included are four computer programs which simulate experiments suitable for freshman engineering and physics courses. The subjects of the programs are ballistic trajectories, variable mass systems, trajectory of a particle under various forces, and design of an electronic emplifier. The report includes the problem statement, its objectives, the…

  12. Dimensions of a Planet.

    ERIC Educational Resources Information Center

    Hayward, O. T.; And Others

    This publication is one of a series of single-topic problem modules designed for use in undergraduate geology and earth science courses. The first section, "Ain't It Flat? A Series of Experiments in Geodesy," presents various experiments for determining the earth's circumference (historically) and describes the use of satellites in determining the…

  13. The Challenges of Creativity in Norwegian Early Childhood Teacher Education

    ERIC Educational Resources Information Center

    Meyer, Grete Skjeggestad; Eilifsen, Margareth

    2017-01-01

    Based on many years' work designing introductory, immersive, aesthetic experiences that lead to problem-based learning (PBL) tasks for student teachers (called "INTRO"), we problematize the concept of creativity and playfulness in Early Childhood Teacher Education (ECTE). The article reports on our analysis of students' experiences of…

  14. Building a Context of Experience: Communication Audits to Teach Communication Concepts.

    ERIC Educational Resources Information Center

    Husband, Robert L.; Helmer, James E.

    The research audit is an effective means for providing undergraduate students with relevant organizational experience through which they can integrate theory and practice. A course was designed to teach students to apply basic concepts in the field of organizational communication to "real life" communication problems in organizations.…

  15. Wind-turbine-performance assessment

    NASA Astrophysics Data System (ADS)

    Vachon, W. A.

    1982-06-01

    An updated summary of recent test data and experiences is reported from both federally and privately funded large wind turbine (WT) development and test programs, and from key WT programs in Europe. Progress and experiences on both the cluster of three MOD-2 2.5-MW WT's, the MOD-1 2-MW WT, and other WT installations are described. An examination of recent test experiences and plans from approximately five privately funded large WT programs in the United States indicates that, during machine checkout and startup, technical problems are identified, which require and startup, a number of technical problems are identified, which will require design changes and create program delays.

  16. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  17. Experimenting in a constructivist high school physics laboratory

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    Although laboratory activities have long been recognized for their potential to facilitate the learning of science concepts and skills, this potential has yet to be realized. To remediate this problem, researchers have called for constructivist learning environments in which students can pursue open inquiry and frame their own research problems. The present study was designed to describe and understand students' experimenting and problem solving in such an environment. An interpretive research methodology was adopted for the construction of meaning from the data. The data sources included videotapes, their transcripts, student laboratory reports and reflections, interviews with the students, and the teacher's course outline and reflective notes. Forty-six students from three sections of an introductory physics course taught at a private school for boys participated in the study. This article shows the students' remarkable ability and willingness to generate research questions and to design and develop apparatus for data collection. In their effort to frame research questions, students often used narrative explanations to explore and think about the phenomena to be studied. In some cases, blind alleys, students framed research questions and planned experiments that did not lead to the expected results. We observed a remarkable flexibility to deal with problems that arose during the implementation of their plans in the context of the inquiry. These problems, as well as their solutions and the necessary decision-making processes, were characterized by their situated nature. Finally, students pursued meaningful learning during the interpretation of data and graphs to arrive at reasonable answers of their research questions. We concluded that students should be provided with problem-rich learning environments in which they learn to investigate phenomena of their own interest and in which they can develop complex problem-solving skills.

  18. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem.

    PubMed

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation.

  19. Cognitive Architecture with Evolutionary Dynamics Solves Insight Problem

    PubMed Central

    Fedor, Anna; Zachar, István; Szilágyi, András; Öllinger, Michael; de Vladar, Harold P.; Szathmáry, Eörs

    2017-01-01

    In this paper, we show that a neurally implemented a cognitive architecture with evolutionary dynamics can solve the four-tree problem. Our model, called Darwinian Neurodynamics, assumes that the unconscious mechanism of problem solving during insight tasks is a Darwinian process. It is based on the evolution of patterns that represent candidate solutions to a problem, and are stored and reproduced by a population of attractor networks. In our first experiment, we used human data as a benchmark and showed that the model behaves comparably to humans: it shows an improvement in performance if it is pretrained and primed appropriately, just like human participants in Kershaw et al. (2013)'s experiment. In the second experiment, we further investigated the effects of pretraining and priming in a two-by-two design and found a beginner's luck type of effect: solution rate was highest in the condition that was primed, but not pretrained with patterns relevant for the task. In the third experiment, we showed that deficits in computational capacity and learning abilities decreased the performance of the model, as expected. We conclude that Darwinian Neurodynamics is a promising model of human problem solving that deserves further investigation. PMID:28405191

  20. Experiments in Natural and Synthetic Dental Materials: A Mouthful of Experiments

    NASA Technical Reports Server (NTRS)

    Masi, James V.

    1996-01-01

    The objectives of these experiments are to show that the area of biomaterials, especially dental materials (natural and synthetic), contain all of the elements of good and bad design, with the caveat that a person's health is directly involved. The students learn the process of designing materials for the complex interactions in the oral cavity, analyze those already used, and suggest possible solutions to the problems involved with present technology. The N.I.O.S.H. Handbook is used extensively by the students and judgement calls are made, even without extensive biology education.

  1. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  2. Targeted Modification of Neutron Energy Spectra for National Security Applications

    NASA Astrophysics Data System (ADS)

    Bevins, James Edward

    At its core, research represents an attempt to break from the "this is the way we have always done it" paradigm. This idea is evidenced from the start in this research effort by the problem formulation to develop a new way to generate synthetic debris that mimics the samples that would be collected for forensics purposes following a nuclear weapon attack on the U.S. or its allies. The philosophy is also demonstrated by the design methodology used to solve the synthetic debris problem, using methods not commonly applied to nuclear engineering problems. Through this research, the bounds of what is deemed possible in neutron spectral shaping are moved ever so slightly. A capability for the production of synthetic debris and fission products was developed for the National Ignition Facility (NIF). Synthetic debris has historically been made in a limited fashion using sample doping techniques since the cessation of nuclear weapons testing, but a more robust alternative approach using neutron spectral shaping was proposed and developed by the University of California-Berkeley and Lawrence Livermore National Laboratory (LLNL). Using NIF as a starting source spectrum, the energy tuning assembly (ETA) developed in this work can irradiate samples with a combined thermonuclear and prompt fission neutron spectrum (TN+PFNS). When used with fissile foils, this irradiation will produce a synthetic fission product distribution that is realistic across all mass chains. To design the ETA, traditional parametric point design approaches were discarded in favor of formal optimization techniques. Finding a lack of suitable algorithms in the literature, a metaheuristic-based optimization algorithm, Gnowee, was developed for rapid convergence to nearly globally optimum solutions for complex, constrained engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of continuous, mixed-integer, and combinatorial benchmarks. These results demonstrated Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces. The Gnowee algorithm was implemented in Coeus, a new piece of software, to perform optimization of design problems requiring radiation transport for the evaluation of their objective functions. Currently, Coeus solves ETA optimization problems using hybrid radiation transport (ADVANTG and MCNP) to assess design permutations developed by Gnowee. Future enhancements of Coeus will look to expand the geometries and objective functions considered to those beyond ETA design. Coeus was used to generate an ETA design for the TN+PFNS application on NIF. The design achieved a reasonable match with the objective TN+PFNS and associated fission product distributions within the size and weight constraints imposed by the NIF facility. The ETA design was built by American Elements, and initial validation tests were conducted at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. These experiments used foil activation and pulse height spectroscopy to measure the ETA-modified spectrum. Additionally, pulse height spectroscopy measurements were taken as the ETA was built-up component-by-component to measure the impact of nuclear data on the ability to model the ETA performance. Some initial analysis of these results is included here. Finally, an integral validation experiment on NIF was proposed using the Coeus generated ETA design. A scoping study conducted by LLNL determined the proposed experiment and ETA design are within NIF facility limitations and current radio-chemistry capabilities. The study found that the proposed ETA experiment was "low risk," has "no show stoppers," and has a "reasonable cost." All that is needed is a sponsor to close the last funding gap and bring the experiment to fruition. This research broke with the current sample doping approach and applied neutron spectral shaping to design an ETA that can create realistic synthetic fission and activation products and improve technical nuclear forensics outcomes. However, the ETA presented in this research represents more than a stand alone point design with a limited scope and application. It is proof of a concept and the product of a unique capability that has a wide range of potential applications. This research demonstrates that the concept of neutron spectral shaping can be used to engineer complex neutron spectra within the confines of physics. There are many possible applications that could benefit from the ability to generate custom energy neutron spectra that fall outside of current sources and methods. The ETA is the product of a general-purpose optimization algorithm, Gnowee, and design framework, Coeus, which enables the use of Gnowee for complex nuclear design problems. Through Gnowee and Coeus, new ETA neutronics designs can be generated in days, not months or years, with a drastic reduction in the research effort required to do so. (Abstract shortened by ProQuest.).

  3. Hidden Realities inside PBL Design Processes: Is Consensus Design an Impossible Clash of Interest between the Individual and the Collective, and Is Architecture Its First Victim?

    ERIC Educational Resources Information Center

    Pihl, Ole

    2015-01-01

    How do architecture students experience the contradictions between the individual and the group at the Department of Architecture and Design of Aalborg University? The Problem-Based Learning model has been extensively applied to the department's degree programs in coherence with the Integrated Design Process, but is a group-based architecture and…

  4. Dealing With Shallow-Water Flow in the Deepwater Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ostermeier, R.

    2006-05-01

    Some of the Shell experience in dealing with the shallow-water flow problem in the Deepwater Gulf of Mexico (GOM) will be presented. The nature of the problem, including areal extent and over-pressuring mechanisms, will be discussed. Methods for sand prediction and shallow sediment and flow characterization will be reviewed. These include seismic techniques, the use of geo-technical wells, regional trends, and various MWD methods. Some examples of flow incidents with pertinent drilling issues, including well failures and abandonment, will be described. To address the shallow-water flow problem, Shell created a multi-disciplinary team of specialists in geology, geophysics, petrophysics, drilling, and civil engineering. The team developed several methodologies to deal with various aspects of the problem. These include regional trends and data bases, shallow seismic interpretation and sand prediction, well site and casing point selection, geo-technical well design and data interpretation, logging program design and interpretation, cementing design and fluids formulation, methods for remediation and mitigation of lost circulation, and so on. Shell's extensive Deepwater GOM drilling experience has lead to new understanding of the problem. Examples include delineation of trends in shallow water flow occurrence and severity, trends and departures in PP/FG, rock properties pertaining to seismic identification of sands, and so on. New knowledge has also been acquired through the use of geo-technical wells. One example is the observed rapid onset and growth of over-pressures below the mudline. Total trouble costs due to shallow water flow for all GOM operators almost certainly runs into the several hundred million dollars. Though the problem remains a concern, advances in our knowledge and understanding make it a problem that is manageable and not the "show stopper" once feared.

  5. Network congestion control algorithm based on Actor-Critic reinforcement learning model

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2018-04-01

    Aiming at the network congestion control problem, a congestion control algorithm based on Actor-Critic reinforcement learning model is designed. Through the genetic algorithm in the congestion control strategy, the network congestion problems can be better found and prevented. According to Actor-Critic reinforcement learning, the simulation experiment of network congestion control algorithm is designed. The simulation experiments verify that the AQM controller can predict the dynamic characteristics of the network system. Moreover, the learning strategy is adopted to optimize the network performance, and the dropping probability of packets is adaptively adjusted so as to improve the network performance and avoid congestion. Based on the above finding, it is concluded that the network congestion control algorithm based on Actor-Critic reinforcement learning model can effectively avoid the occurrence of TCP network congestion.

  6. Designing a successful HMD-based experience

    NASA Technical Reports Server (NTRS)

    Pierce, J. S.; Pausch, R.; Sturgill, C. B.; Christiansen, K. D.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    For entertainment applications, a successful virtual experience based on a head-mounted display (HMD) needs to overcome some or all of the following problems: entering a virtual world is a jarring experience, people do not naturally turn their heads or talk to each other while wearing an HMD, putting on the equipment is hard, and people do not realize when the experience is over. In the Electric Garden at SIGGRAPH 97, we presented the Mad Hatter's Tea Party, a shared virtual environment experienced by more than 1,500 SIGGRAPH attendees. We addressed these HMD-related problems with a combination of back story, see-through HMDs, virtual characters, continuity of real and virtual objects, and the layout of the physical and virtual environments.

  7. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  8. Practical Problems with Medication Use that Older People Experience: A Qualitative Study

    PubMed Central

    Notenboom, Kim; Beers, Erna; van Riet-Nales, Diana A; Egberts, Toine C G; Leufkens, Hubert G M; Jansen, Paul A F; Bouvy, Marcel L

    2014-01-01

    Objectives To identify the practical problems that older people experience with the daily use of their medicines and their management strategies to address these problems and to determine the potential clinical relevance thereof. Design Qualitative study with semistructured face-to-face interviews. Setting A community pharmacy and a geriatric outpatient ward. Participants Community-dwelling people aged 70 and older (N = 59). Measurements Participants were interviewed at home. Two researchers coded the reported problems and management strategies independently according to a coding scheme. An expert panel classified the potential clinical relevance of every identified practical problem and associated management strategy using a 3-point scale. Results Two hundred eleven practical problems and 184 management strategies were identified. Ninety-five percent of the participants experienced one or more practical problems with the use of their medicines: problems reading and understanding the instructions for use, handling the outer packaging, handling the immediate packaging, completing preparation before use, and taking the medicine. For 10 participants, at least one of their problems, in combination with the applied management strategy, had potential clinical consequences and 11 cases (5% of the problems) had the potential to cause moderate or severe clinical deterioration. Conclusion Older people experience a number of practical problems using their medicines, and their strategies to manage these problems are sometimes suboptimal. These problems can lead to incorrect medication use with clinically relevant consequences. The findings pose a challenge for healthcare professionals, drug developers, and regulators to diminish these problems. PMID:25516030

  9. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies

    PubMed Central

    López, Julio

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections. PMID:29670667

  10. Mining EEG with SVM for Understanding Cognitive Underpinnings of Math Problem Solving Strategies.

    PubMed

    Bosch, Paul; Herrera, Mauricio; López, Julio; Maldonado, Sebastián

    2018-01-01

    We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke different specific strategies in the resolution of math problems. A binary classification problem was constructed using correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is based on using well-established procedures of feature selection, which were used to determine a suitable brain functional network size related to math problem solving strategies and also to discover the most relevant links in this network without including noisy connections or excluding significant connections.

  11. The Past as a Puzzle: How Essential Questions Can Piece Together a Meaningful Investigation of History

    ERIC Educational Resources Information Center

    Obenchain, Kathryn M.; Orr, Angela; Davis, Susan H.

    2011-01-01

    This article details a professional development program focused on the use of essential questions in reframing U.S. history learning experiences in elementary, middle, and high schools. Teachers identified four problems in designing and teaching engaging, relevant, and challenging U.S. history lessons. Each problem was addressed through the…

  12. The Effects of a Collaborative Problem-Based Learning Experience on Students' Motivation in Engineering Capstone Courses

    ERIC Educational Resources Information Center

    Jones, Brett D.; Epler, Cory M.; Mokri, Parastou; Bryant, Lauren H.; Paretti, Marie C.

    2013-01-01

    We identified and examined how the instructional elements of problem-based learning capstone engineering courses affected students' motivation to engage in the courses. We employed a two-phase, sequential, explanatory, mixed methods research design. For the quantitative phase, 47 undergraduate students at a large public university completed a…

  13. Challenging the Gifted through Problem Solving Experiences: Design and Evaluation of the COMET Program.

    ERIC Educational Resources Information Center

    Feldhusen, John F.; And Others

    1992-01-01

    The COMET summer residential program at Purdue University (Indiana) offers gifted and talented youth in grades 4-6 a week of intensive study in a single content area. Courses stress specific problem-solving skills and development of a rich knowledge base. Extensive program evaluation by students, teachers, counselors, and parents was highly…

  14. Using Problem-Based Case Studies to Learn about Knowledge Translation Interventions: An Inside Perspective

    ERIC Educational Resources Information Center

    Bhogal, Sanjit K.; Murray, Mary Ann; McLeod, Katherine M.; Bergen, Anne; Bath, Brenna; Menon, Anita; Kho, Michelle E.; Stacey, Dawn

    2011-01-01

    Knowledge translation (KT) interventions can facilitate the successful implementation of best practices by engaging and actively involving various stakeholders in the change process. However, for novices, the design of KT interventions can be overwhelming. In this article, we describe our experience as participants in a problem-based case study on…

  15. Authentic Education by Providing a Situation for Student-Selected Problem-Based Learning

    ERIC Educational Resources Information Center

    Strimel, Greg

    2014-01-01

    Students are seldom given an authentic experience within school that allows them the opportunity to solve real-life complex engineering design problems that have meaning to their lives and/ or the greater society. They are often confined to learning environments that are limited by the restrictions set by course content for assessment purposes and…

  16. Testing Boundary Conditions for the Conjunction Fallacy: Effects of Response Mode, Conceptual Focus, and Problem Type

    ERIC Educational Resources Information Center

    Wedell, Douglas H.; Moro, Rodrigo

    2008-01-01

    Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize…

  17. Can Waking Suggestion Be as Effective as Hypnosis in Increasing Reading Efficiency? A Consideration for Educational Application.

    ERIC Educational Resources Information Center

    Chappie, David Alexander

    The primary problem was concerned with the uses of hypnosis and waking suggestions as means of improving reading efficiency. A second problem concerned rectifying research design inadequacies related to hypnosis experiments. The procedure used pretest scores secured for rate, comprehension, and vocabulary. Subjects were placed in experimental and…

  18. Multi-objective engineering design using preferences

    NASA Astrophysics Data System (ADS)

    Sanchis, J.; Martinez, M.; Blasco, X.

    2008-03-01

    System design is a complex task when design parameters have to satisy a number of specifications and objectives which often conflict with those of others. This challenging problem is called multi-objective optimization (MOO). The most common approximation consists in optimizing a single cost index with a weighted sum of objectives. However, once weights are chosen the solution does not guarantee the best compromise among specifications, because there is an infinite number of solutions. A new approach can be stated, based on the designer's experience regarding the required specifications and the associated problems. This valuable information can be translated into preferences for design objectives, and will lead the search process to the best solution in terms of these preferences. This article presents a new method, which enumerates these a priori objective preferences. As a result, a single objective is built automatically and no weight selection need be performed. Problems occuring because of the multimodal nature of the generated single cost index are managed with genetic algorithms (GAs).

  19. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  20. A comparison of representations for discrete multi-criteria decision problems☆

    PubMed Central

    Gettinger, Johannes; Kiesling, Elmar; Stummer, Christian; Vetschera, Rudolf

    2013-01-01

    Discrete multi-criteria decision problems with numerous Pareto-efficient solution candidates place a significant cognitive burden on the decision maker. An interactive, aspiration-based search process that iteratively progresses toward the most preferred solution can alleviate this task. In this paper, we study three ways of representing such problems in a DSS, and compare them in a laboratory experiment using subjective and objective measures of the decision process as well as solution quality and problem understanding. In addition to an immediate user evaluation, we performed a re-evaluation several weeks later. Furthermore, we consider several levels of problem complexity and user characteristics. Results indicate that different problem representations have a considerable influence on search behavior, although long-term consistency appears to remain unaffected. We also found interesting discrepancies between subjective evaluations and objective measures. Conclusions from our experiments can help designers of DSS for large multi-criteria decision problems to fit problem representations to the goals of their system and the specific task at hand. PMID:24882912

  1. Examining Students' Proportional Reasoning Strategy Levels as Evidence of the Impact of an Integrated LEGO Robotics and Mathematics Learning Experience

    ERIC Educational Resources Information Center

    Martínez Ortiz, Araceli

    2015-01-01

    The presented study used a problem-solving experience in engineering design with LEGO robotics materials as the real-world mathematics-learning context. The goals of the study were (a) to determine if a short but intensive extracurricular learning experience would lead to significant student learning of a particular academic topic and (b) to…

  2. Experiments to Generate New Data about School Choice: Commentary on "Defining Continuous Improvement and Cost Minimization Possibilities through School Choice Experiments" and Merrifield's Reply

    ERIC Educational Resources Information Center

    Berg, Nathan; Merrifield, John

    2009-01-01

    Benefiting from new data provided by experimental economists, behavioral economics is now moving beyond empirical tests of standard behavioral assumptions to the problem of designing improved institutions that are tuned to fit real-world behavior. It is therefore worthwhile to consider the potential for new experiments to advance school choice…

  3. [Designs and thoughts of real world integrated data warehouse from HIS on re-evaluation of post-maketing traditional Chinese medicine].

    PubMed

    Zhuang, Yan; Xie, Bangtie; Weng, Shengxin; Xie, Yanming

    2011-10-01

    To discuss the feasibility and necessity of using HIS data integration to build large data warehouse system which is extensively used on re-evaluation of post-marketing traditional Chinese medicine, and to provide the thought and method of the overall design for it. With domestic and overseas' analysis and comparison on clinical experiments' design based on real world using electronic information system, and with characteristics of HIS in China, a general framework was designed and discussed which refers to design thought, design characteristics, existing problems and solutions and so on. A design scheme of HIS data warehouse on re-evaluation of post-marketing traditional Chinese medicine was presented. The design scheme was proved to be high coherence and low coupling, safe, Universal, efficient and easy to maintain, which can effectively solve the problems many hospitals have faced during the process of HIS data integration.

  4. Social Software: Participants' Experience Using Social Networking for Learning

    ERIC Educational Resources Information Center

    Batchelder, Cecil W.

    2010-01-01

    Social networking tools used in learning provides instructional design with tools for transformative change in education. This study focused on defining the meanings and essences of social networking through the lived common experiences of 7 college students. The problem of the study was a lack of learner voice in understanding the value of social…

  5. Rational Ignorance in Education: A Field Experiment in Student Plagiarism

    ERIC Educational Resources Information Center

    Dee, Thomas S.; Jacob, Brian A.

    2012-01-01

    Plagiarism appears to be a common problem among college students, yet there is little evidence on the effectiveness of interventions designed to minimize plagiarism. This study presents the results of a field experiment that evaluated the effects of a web-based educational tutorial in reducing plagiarism. We found that assignment to the treatment…

  6. Active Participation in the Literary Encounter.

    ERIC Educational Resources Information Center

    Twining, James E.

    A child's sense of involvement in story and desire to meaningfully experience literature must be sustained and promoted if the problem of "literacy" is to be resolved. Four activities, designed as a series of stages, can enhance the literary experience of children. The first activity is reading to children--exposing them to the language…

  7. Improving the Effectiveness of Professional Education: Learning Managerial Accounting via a Complex Case.

    ERIC Educational Resources Information Center

    Carter, Melissa; And Others

    To give students more experience with real situations, many professional schools use case studies in their courses. Creating complex cases, case experiences that immerse students in complex problems, rather than mere case studies that require armchair analysis should help students gain better and more integrated knowledge. Designing, implementing,…

  8. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are determined for the vehicle. A summary and evaluation of the various parametric MDO methods employed in the research are included. Recommendations for additional research are provided.

  9. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    PubMed

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  10. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed Central

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  11. Reform of experimental teaching based on quality cultivation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yan, Xingwei; Liu, Wei; Yao, Tianfu; Shi, Jianhua; Lei, Bing; Hu, Haojun

    2017-08-01

    Experimental teaching plays an import part in quality education which devotes to cultivating students with innovative spirit, strong technological talents and practical ability. However, in the traditional experimental teaching mode, the experiments are treated as a vassal or supplementary mean of theoretical teaching, and students prefer focus on theory to practice. Therefore, the traditional experimental teaching mode is difficult to meet the requirements of quality education. To address this issue, the reform of experimental teaching is introduced in this paper taking the photoelectric detector experiment as the example. The new experimental teaching mode is designed from such aspects as experimental content, teaching method and experimental evaluation. With the purpose of cultivating students' practical ability, two different-level experimental content is designed. Not only the basic experiments used to verify the theory are set to consolidate the students' learned theoretical knowledge, but also comprehensive experiments are designed to encourage the students to apply their learned knowledge to solve practical problems. In the teaching process, heuristic teaching thought is adopt and the traditional `teacher-centered' teaching form is replaced by `student-centered' form, which aims to encourage students to design the experimental systems by their own with the teacher's guidance. In addition to depending on stimulating the students' interest of science research, experimental evaluation is necessary to urge students to complete the experiments efficiently. Multifaceted evaluation method is proposed to test the students' mastery of theoretical knowledge, practice ability, troubleshooting and problem solving skills, and innovation capability comprehensively. Practices demonstrated the satisfying effect of our experimental teaching mode.

  12. A decentralized and onsite wastewater management course: bringing together global concerns and practical pedagogy.

    PubMed

    Gaulke, L S; Borgford-Parnell, J L; Stensel, H D

    2008-01-01

    This paper reports on the design, implementation, and results of a course focused on decentralized and onsite wastewater treatment in global contexts. Problem-based learning was the primary pedagogical method, with which students tackled real-world problems and designed systems to meet the needs of diverse populations. Both learning and course evaluations demonstrated that the course was successful in fulfilling learning objectives, increasing student design skills, and raising awareness of global applications. Based on this experience a list of recommendations was created for co-developing and team-teaching multidisciplinary design courses. These recommendations include ideas for aligning student and teacher goals, overcoming barriers to effective group-work, and imbedding continuous course assessments. Copyright IWA Publishing 2008.

  13. The Evolution of Computer Based Learning Software Design: Computer Assisted Teaching Unit Experience.

    ERIC Educational Resources Information Center

    Blandford, A. E.; Smith, P. R.

    1986-01-01

    Describes the style of design of computer simulations developed by Computer Assisted Teaching Unit at Queen Mary College with reference to user interface, input and initialization, input data vetting, effective display screen use, graphical results presentation, and need for hard copy. Procedures and problems relating to academic involvement are…

  14. Examining the Design Features of a Communication-Rich, Problem-Centred Mathematics Professional Development

    ERIC Educational Resources Information Center

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-01-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The…

  15. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 5. Experimental Design for Vehicle Equivalency and Capacity Including Effects of Commercial and Recreational Vehicles on Rural Non-Controlled Access

    DOT National Transportation Integrated Search

    1994-04-01

    The Advantage I-75 project was established as an international public/private partnership to provide a testbed for deploying advanced IVHS technologies designed to increase transport efficiency, improve safety, and enhance mobility along the 2,200-mi...

  16. Design and test of a prototype thermal bus evaporator reservoir aboard the KC-135 0-g aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Richard F.; Gustafson, Eric; Long, W. Russ

    1987-01-01

    The Thermal Bus Zero-G Reservoir Demonstration Experiment (RDE) has currently undergone two flights on the NASA-JSC KC-135 Reduced Gravity Aircraft. The objective of the experiment, which uses a smaller version of the evaporator reservoirs being designed for the Prototype Thermal Bus for Space Station, is to demonstrate proper 0-g operation of the reservoir in terms of fluid positioning, draining, and filling. The KC-135 was chosen to provide a cost-effective and timely evaluation of 0-g design issues that would be difficult to predict analytically. A total of fifty 0-g parabolas have been flown, each providing approximately 25-30 seconds of 0-g time. While problems have been encountered, the experiment has provided valuable design data on the 0-g operation of the reservoir. This paper documents the design of the experiment; the results of both flights, based on the high-speed movies taken during the flight and the visual observations of the experimenters; and the design modifications made as a result of the first flight and planned as a result of the second flight.

  17. Experiences of wives of Iranian war veterans with posttraumatic stress disorder regarding social relationships.

    PubMed

    Vagharseyyedin, Seyyed A

    2015-01-01

    The aim of this study was to describe the lived experiences of wives of Iranian veterans with PTSD concerning their social relationships. A qualitative design with a qualitative content analysis approach was used for data collection and analysis of wives' experiences. Fourteen wives of war veterans with PTSD participated in this study. Qualitative data were collected using in-depth semistructured interviews. Two themes emerged from the analysis: (1) Dynamic interaction between the limited social world and the spiritual world, and (2) Seeking a sensitive and assistive atmosphere. Disruption of social activities, necessity of the public's realistic perception of families' problems, and the need for additional social support were among the most emphasized points made by participants. Findings of the study can provide some direction for priority setting of problems and designing interventions to improve social lives of wives of Iranian patients diagnosed with PTSD. Further, the findings provide a base for comparing similar possible studies conducted in other societies with the Iranian society. © 2014 Wiley Periodicals, Inc.

  18. Anodal transcranial direct current stimulation of the right anterior temporal lobe did not significantly affect verbal insight

    PubMed Central

    Ogawa, Takeshi; Shimokawa, Takeaki; Yamashita, Okito

    2017-01-01

    Humans often utilize past experience to solve difficult problems. However, if past experience is insufficient to solve a problem, solvers may reach an impasse. Insight can be valuable for breaking an impasse, enabling the reinterpretation or re-representation of a problem. Previous studies using between-subjects designs have revealed a causal relationship between the anterior temporal lobes (ATLs) and non-verbal insight, by enhancing the right ATL while inhibiting the left ATL using transcranial direct current stimulation (tDCS). In addition, neuroimaging studies have reported a correlation between right ATL activity and verbal insight. Based on these findings, we hypothesized that the right ATL is causally related to both non-verbal and verbal insight. To test this hypothesis, we conducted an experiment with 66 subjects using a within-subjects design, which typically has greater statistical power than a between-subjects design. Subjects participated in tDCS experiments across 2 days, in which they solved both non-verbal and verbal insight problems under active or sham stimulation conditions. To dissociate the effects of right ATL stimulation from those of left ATL stimulation, we used two montage types; anodal tDCS of the right ATL together with cathodal tDCS of the left ATL (stimulating both ATLs) and anodal tDCS of the right ATL with cathodal tDCS of the left cheek (stimulating only the right ATL). The montage used was counterbalanced across subjects. Statistical analyses revealed that, regardless of the montage type, there were no significant differences between the active and sham conditions for either verbal or non-verbal insight, although the finding for non-verbal insight was inconclusive because of a lack of statistical power. These results failed to support previous findings suggesting that the right ATL is the central locus of insight. PMID:28902872

  19. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  20. GRIPs (Group Investigation Problems) for Introductory Physics

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.

    2006-12-01

    GRIPs lie somewhere between homework problems and simple labs: they are open-ended questions that require a mixture of problem-solving skills and hands-on experimentation to solve practical puzzles involving simple physical objects. In this talk, I will describe three GRIPs that I developed for a first-semester introductory calculus-based physics course based on the "Six Ideas That Shaped Physics" text. I will discuss the design of the three GRIPs we used this past fall, our experience in working with students on these problems, and students' response as reported on course evaluations.

  1. Distributed Control with Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Wheeler, Kevin R.; Tumer, Kagan

    1998-01-01

    We consider systems of interacting reinforcement learning (RL) algorithms that do not work at cross purposes , in that their collective behavior maximizes a global utility function. We call such systems COllective INtelligences (COINs). We present the theory of designing COINs. Then we present experiments validating that theory in the context of two distributed control problems: We show that COINs perform near-optimally in a difficult variant of Arthur's bar problem [Arthur] (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance in the master-slave problem.

  2. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    NASA Astrophysics Data System (ADS)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  3. Designing Fault-Injection Experiments for the Reliability of Embedded Systems

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2012-01-01

    This paper considers the long-standing problem of conducting fault-injections experiments to establish the ultra-reliability of embedded systems. There have been extensive efforts in fault injection, and this paper offers a partial summary of the efforts, but these previous efforts have focused on realism and efficiency. Fault injections have been used to examine diagnostics and to test algorithms, but the literature does not contain any framework that says how to conduct fault-injection experiments to establish ultra-reliability. A solution to this problem integrates field-data, arguments-from-design, and fault-injection into a seamless whole. The solution in this paper is to derive a model reduction theorem for a class of semi-Markov models suitable for describing ultra-reliable embedded systems. The derivation shows that a tight upper bound on the probability of system failure can be obtained using only the means of system-recovery times, thus reducing the experimental effort to estimating a reasonable number of easily-observed parameters. The paper includes an example of a system subject to both permanent and transient faults. There is a discussion of integrating fault-injection with field-data and arguments-from-design.

  4. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley is investigating frameworks for supporting multidisciplinary analysis and optimization research. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. This year, the MDO Branch has gained experience with the iSIGHT framework. This paper describes experiences with four aerospace applications, including: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. Brief overviews of each problem are provided, including the number and type of disciplinary codes and computation time estimates. In addition, the optimization methods, objective functions, design variables, and constraints are described for each problem. For each case, discussions on the advantages and disadvantages of using the iSIGHT framework are provided as well as notes on the ease of use of various advanced features and suggestions for areas of improvement.

  5. Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization

    DTIC Science & Technology

    2001-03-20

    design of experiments, results of the experiments, and qualitative and quantitative analysis . Conclusions and recommendations based on the qualitative and...characterize the algorithm. Such analysis and comparison between LK and a non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes... based on experiments 5 and 6. All other parameters are the same as the baseline (see 4.2.1.2). 4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global

  6. Investigating the linearity assumption between lumber grade mix and yield using design of experiments (DOE)

    Treesearch

    Xiaoqiu Zuo; Urs Buehlmann; R. Edward Thomas

    2004-01-01

    Solving the least-cost lumber grade mix problem allows dimension mills to minimize the cost of dimension part production. This problem, due to its economic importance, has attracted much attention from researchers and industry in the past. Most solutions used linear programming models and assumed that a simple linear relationship existed between lumber grade mix and...

  7. Developing Teacher Competencies for Problem-Based Learning Pedagogy and for Supporting Learning in Language-Minority Students

    ERIC Educational Resources Information Center

    Rillero, Peter; Koerner, Mari; Jimenez-Silva, Margarita; Merrit, Joi; Farr, Wendy J.

    2017-01-01

    Teachers need to be able to design and implement problem-based learning (PBL) experiences to help students master the content and the processes in new mathematics and science education standards. Due to the changed population of learners within schools, it is also critically important that teachers in the elementary grades have the abilities to…

  8. Countermeasures to Insider Cyber Threats for Turkish General Command of Gendarmerie

    DTIC Science & Technology

    2016-09-01

    problems 12 related to disorder (driving while intoxicated, arrests, debt). (Band et al., 2006, p. 76) Personality problems include “ self - esteem ...expectations of others, arrogance, personal conflicts, fearful of usually routine experiences, compensatory behaviors designed to enhance self - esteem ...rules There are fewer self -employed people Better at invention, worse at implementation Motivation by achievement and esteem or belonging

  9. Real Life Math Mysteries: A Kids' Answer to the Question, "What Will We Ever Use This For?"

    ERIC Educational Resources Information Center

    Washington, Mary Ford

    This book contains real-life mathematics problems and is designed to conform to the National Council of Teachers of Mathematics' (NCTM) goals as outlined in the NCTM Curriculum and Evaluation Standards for School Mathematics. The problems come from each person's day-to-day experiences in their careers. Persons from various careers represented are…

  10. Exploring Factors of a Web-Based Seminar that Influence Hispanic Preservice Teachers' Critical Thinking and Problem-Solving Skills

    ERIC Educational Resources Information Center

    Garcia, Criselda G.; Hooper, H. H., Jr.

    2011-01-01

    The purpose of the qualitative study using a phenomenological approach was to gain insight of preservice teachers' experiences with a WebCT seminar designed to develop critical thinking and problem-solving skills in a Hispanic-Serving Institution's teacher education program. By applying a "holistic approach" to analyze data, NVivo software was…

  11. Benefits and Challenges of Introducing a Blended Project-Based Approach in Higher Education: Experiences from a Kenyan University

    ERIC Educational Resources Information Center

    Munezero, Myriam D.; Bekuta, Balozi K.

    2016-01-01

    This article investigates a blended project-based approach that was introduced to forestry and ICT undergraduates as an extracurricular activity at the University of Eldoret, Kenya. The approach blends problem-based learning and participatory design to solve real-life forestry problems. Even though the use of the approach itself is not novel, in…

  12. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The continuing trend toward a unified view is supported with several developments in the design and manufacture of turbomachines with enhanced stability characteristics along with data and associated numerical/theoretical results. The intent is to provide a continuing impetus for an understanding and resolution of these problems. Topics addressed include: field experience, dampers, seals, impeller forces, bearings, and compressor and rotor modeling.

  13. Developing Long-Term Computing Skills among Low-Achieving Students via Web-Enabled Problem-Based Learning and Self-Regulated Learning

    ERIC Educational Resources Information Center

    Tsai, Chia-Wen; Lee, Tsang-Hsiung; Shen, Pei-Di

    2013-01-01

    Many private vocational schools in Taiwan have taken to enrolling students with lower levels of academic achievement. The authors re-designed a course and conducted a series of quasi-experiments to develop students' long-term computing skills, and examined the longitudinal effects of web-enabled, problem-based learning (PBL) and self-regulated…

  14. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  15. Exploring Problem-Based Learning in the Context of High School Science: Design and Implementation Issues

    ERIC Educational Resources Information Center

    Goodnough, Karen; Cashion, Marie

    2006-01-01

    This paper reports on the experiences of a small collaborative inquiry group consisting of a high school science teacher, Deidre, and two university researchers, the authors of this paper, as they explored an active, inquiry-based approach to teaching and learning referred to as Problem-Based Learning or PBL (Barrows, 1994; Barrows & Tamblyn,…

  16. Experiments in Inquiry.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2001-01-01

    Introduces an inquiry-based lab design in which students try to find evidence on a particular problem. Investigates the effects of decreases in the pH level on the environment. Includes students' hypotheses and research results. (YDS)

  17. The Experimental Design Assistant.

    PubMed

    Percie du Sert, Nathalie; Bamsey, Ian; Bate, Simon T; Berdoy, Manuel; Clark, Robin A; Cuthill, Innes; Fry, Derek; Karp, Natasha A; Macleod, Malcolm; Moon, Lawrence; Stanford, S Clare; Lings, Brian

    2017-09-01

    Addressing the common problems that researchers encounter when designing and analysing animal experiments will improve the reliability of in vivo research. In this article, the Experimental Design Assistant (EDA) is introduced. The EDA is a web-based tool that guides the in vivo researcher through the experimental design and analysis process, providing automated feedback on the proposed design and generating a graphical summary that aids communication with colleagues, funders, regulatory authorities, and the wider scientific community. It will have an important role in addressing causes of irreproducibility.

  18. The Experimental Design Assistant

    PubMed Central

    Bamsey, Ian; Bate, Simon T.; Berdoy, Manuel; Clark, Robin A.; Cuthill, Innes; Fry, Derek; Karp, Natasha A.; Macleod, Malcolm; Moon, Lawrence; Stanford, S. Clare; Lings, Brian

    2017-01-01

    Addressing the common problems that researchers encounter when designing and analysing animal experiments will improve the reliability of in vivo research. In this article, the Experimental Design Assistant (EDA) is introduced. The EDA is a web-based tool that guides the in vivo researcher through the experimental design and analysis process, providing automated feedback on the proposed design and generating a graphical summary that aids communication with colleagues, funders, regulatory authorities, and the wider scientific community. It will have an important role in addressing causes of irreproducibility. PMID:28957312

  19. System testing of a production Ada (trademark) project: The GRODY study

    NASA Technical Reports Server (NTRS)

    Seigle, Jeffrey; Esker, Linda; Shi, Ying-Liang

    1990-01-01

    The use of the Ada language and design methodologies that utilize its features has a strong impact on all phases of the software development project lifecycle. At the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC), the Software Engineering Laboratory (SEL) conducted an experiment in parallel development of two flight dynamics systems in FORTRAN and Ada. The teams found some qualitative differences between the system test phases of the two projects. Although planning for system testing and conducting of tests were not generally affected by the use of Ada, the solving of problems found in system testing was generally facilitated by Ada constructs and design methodology. Most problems found in system testing were not due to difficulty with the language or methodology but to lack of experience with the application.

  20. Comparative study on legislation of utilization of construction wastes as resources in china and abroad

    NASA Astrophysics Data System (ADS)

    Wenfeng, Liu; Zhaomeng, Wang; Hongmei, Hou

    2018-05-01

    The dilemma of the “Building wastes Besieged City” has gradually become a national problem. Historical experience in the world shows that establishing a systematic and complete legal system is an effective way and powerful weapon to ensure the comprehensive utilization of building wastes resources. Based on the domestic conditions, the state focuses on the problems and learns from the legislation experience of Chinese and foreign construction wastes recycling laws and regulations, to design the legal system form multiple fields, multiple angles, and multiple levels as much as possible to achieve maximum environmental, social, and economic benefits. This article mainly summarizes the characteristics and outstanding experience of the legislation of the comprehensive utilization of construction wastes as resources in foreign countries, as well as the existing problems of Chinese relevant legal regulations, and provides reference for future research and implementation of relevant legislation.

  1. Catalog of Apollo experiment operations

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1994-01-01

    This catalog reviews Apollo mission reports, preliminary science reports, technical crew debriefings, lunar surface operations plans, and various relevant lunar experiment documents, collecting engineering- and operation-specific information by experiment. It is organized by discrete experimental and equipment items emplaced or operated on the lunar surface or at zero gravity during the Apollo missions. It also attempts to summarize some of the general problems encountered on the surface and provides guidelines for the design of future lunar surface experiments with an eye toward operations. Many of the problems dealt with on the lunar surface originated from just a few novel conditions that manifested themselves in various nasty ways. Low gravity caused cables to stick up and get caught on feet, and also made it easy for instruments to tip over. Dust was a problem and caused abrasion, visibility, and thermal control difficulties. Operating in a pressure suit limited a person's activity, especially in the hands. I hope to capture with this document some of the lessons learned from the Apollo era to make the jobs of future astronauts, principle investigators, engineers, and operators of lunar experiments more productive.

  2. Group Project Work and Student-centered Active Learning: Two Different Experiences.

    ERIC Educational Resources Information Center

    Livingstone, David; Lynch, Kenneth

    2000-01-01

    Compared experiences with group-based student projects in a Geographical Information Systems degree taught by one faculty member and in geography degree modules taught by another. Concludes that care must be taken in the design and execution of these projects to avoid problems that might reinforce myths about negative effects of team-based…

  3. The Power of Numbers. A Teacher's Guide to Mathematics in a Social Studies Context. An Interdisciplinary Curriculum.

    ERIC Educational Resources Information Center

    Gross, Fred E.; And Others

    This document is the teacher's guide for a curriculum designed to teach mathematics in a social studies context. It provides mathematical experiences in real world contexts that help students interpret, experiment, communicate, and look for multiple solutions to complex problems. The curriculum uses mathematics in context to help students develop…

  4. To Tan or Not to Tan?: Students Learn About Sunscreens through an Inquiry Activity Based on the Learning Cycle

    ERIC Educational Resources Information Center

    Keen-Rocha, Linda

    2005-01-01

    Science instructors sometimes avoid inquiry-based activities due to limited classroom time. Inquiry takes time, as students choose problems, design experiments, obtain materials, conduct investigations, gather data, communicate results, and discuss their experiments. While there are no quick solutions to time concerns, the 5E learning cycle seeks…

  5. Apollo experience report: The cryogenic storage system

    NASA Technical Reports Server (NTRS)

    Chandler, W. A.; Rice, R. R.; Allgeier, R. K., Jr.

    1973-01-01

    A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions.

  6. Two-Stage Hands-On Technology Activity to Develop Preservice Teachers' Competency in Applying Science and Mathematics Concepts

    ERIC Educational Resources Information Center

    Lin, Kuen-Yi; Williams, P. John

    2017-01-01

    This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey's learning experience theory that is designed to enhance preservice teachers' primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions…

  7. Role-Playing and Problem-Based Learning: The Use of Cross-Functional Student Teams in Business Application Development

    ERIC Educational Resources Information Center

    Pike, Jacqueline C.; Spangler, William; Williams, Valerie; Kollar, Robert

    2017-01-01

    To create a learning experience which replicates the process by which consultants, systems developers and business end users collaborate to design and implement a business application, a cross-functional student team project was developed and is described. The overall learning experience was distinguished by specific components and characteristics…

  8. Teaching Statistical Inference for Causal Effects in Experiments and Observational Studies

    ERIC Educational Resources Information Center

    Rubin, Donald B.

    2004-01-01

    Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of statistics teach courses in causal inference to both…

  9. Four years of problem-based learning: a student's perspective.

    PubMed Central

    von Doebeln, G.

    1996-01-01

    After four years as a student in a medical school using problem-based learning I still find it an excellent way to learn. Group work has developed my personal skills and abilities. Learning how to obtain knowledge on my own has given me independence and confidence. Motivation to study has been encouraged by early clinical experience. Training in critical thinking has been further enhanced by in-depth studies. Medical education at the University of Linkoping has developed over the years and a contributing factor has been students' involvement in designing the medical training. There are benefits and disadvantages with problem-based learning, but on the whole it is an enjoyable and fruitful experience. Images p98-a PMID:8871459

  10. Engineering aspect of the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) with a sounding rocket

    NASA Astrophysics Data System (ADS)

    Nagatomo, M.; Kaya, N.; Matsumoto, H.

    1984-10-01

    One type of problem arising in connection with an evaluation of the feasibility of the Solar Power Satellite (SPS) and the definition of suitable SPS designs is related to environmental issues. Questions exist, for instance, regarding the interaction between microwave power and the upper atmosphere. The present investigation is concerned with the Microwave Ionosphere Nonlinear Interaction Experiment (MINIX), which is a space plasma experiment originally devoted to the research of space plasma physics. MINIX is eventually to observe possible effects of a strong microwave field in the ionospheric environment. The scientific requirements of the MINIX are discussed, taking into account functional and experimental conditions. Attention is also given to rocket characteristics, experimental design, the payload, the inflight experiment configuration, and details concerning the conduction of the experiment.

  11. ISE: An Integrated Search Environment. The manual

    NASA Technical Reports Server (NTRS)

    Chu, Lon-Chan

    1992-01-01

    Integrated Search Environment (ISE), a software package that implements hierarchical searches with meta-control, is described in this manual. ISE is a collection of problem-independent routines to support solving searches. Mainly, these routines are core routines for solving a search problem and they handle the control of searches and maintain the statistics related to searches. By separating the problem-dependent and problem-independent components in ISE, new search methods based on a combination of existing methods can be developed by coding a single master control program. Further, new applications solved by searches can be developed by coding the problem-dependent parts and reusing the problem-independent parts already developed. Potential users of ISE are designers of new application solvers and new search algorithms, and users of experimental application solvers and search algorithms. The ISE is designed to be user-friendly and information rich. In this manual, the organization of ISE is described and several experiments carried out on ISE are also described.

  12. Airfoil Shape Optimization based on Surrogate Model

    NASA Astrophysics Data System (ADS)

    Mukesh, R.; Lingadurai, K.; Selvakumar, U.

    2018-02-01

    Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.

  13. Workplace design contributions to mental health and well-being.

    PubMed

    Veitch, Jennifer A

    2011-01-01

    People spend much of their waking time in their workplaces (approximately 33% on a weekly basis), which raises the possibility that the conditions they experience at work influence their health and well-being. The workplace design literature has given scant attention to mental health outcomes, instead focusing on healthy populations. Conversely, the mental health literature gives scant attention to the potential contribution of workplace design in preventing mental health problems; nor does it provide much insight into facilitating return to work. Taken together, however, the literature does suggest both lines of research and possible interventions. Existing knowledge proposes that workplace design can influence mental health via the effects of light exposure on circadian regulation, social behaviour and affect; the effects of aesthetic judgement on at-work mood and physical well-being and at-home sleep quality; access to nature and recovery from stressful experiences; and privacy regulation and stimulus control. This paper includes a short review of the literature in this area, proposals for new research directions and consideration of the implications of this information on the design choices made by business owners, designers and facility managers. Providing suitable working conditions for all employees avoids stigmatizing employees who have mental health problems, while facilitating prevention and return to work among those who do. Copyright © 2011 Longwoods Publishing.

  14. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  15. Data on the configuration design of internet-connected home cooling systems by engineering students.

    PubMed

    McComb, Christopher; Cagan, Jonathan; Kotovsky, Kenneth

    2017-10-01

    This experiment was carried out to record the step-by-step actions that humans take in solving a configuration design problem, either in small teams or individually. Specifically, study participants were tasked with configuring an internet-connected system of products to maintain temperature within a home, subject to cost constraints. Every participant was given access to a computer-based design interface that allowed them to construct and assess solutions. The interface was also used to record the data that is presented here. In total, data was collected for 68 participants, and each participant was allowed to perform 50 design actions in solving the configuration design problem. Major results based on the data presented here have been reported separately, including initial behavioral analysis (McComb et al.) [1], [2] and design pattern assessments via Markovian modeling (McComb et al., 2017; McComb et al., 2017) [3], [4].

  16. Experiment design for pilot identification in compensatory tracking tasks

    NASA Technical Reports Server (NTRS)

    Wells, W. R.

    1976-01-01

    A design criterion for input functions in laboratory tracking tasks resulting in efficient parameter estimation is formulated. The criterion is that the statistical correlations between pairs of parameters be reduced in order to minimize the problem of nonuniqueness in the extraction process. The effectiveness of the method is demonstrated for a lower order dynamic system.

  17. Mentoring Graduate Students in Research and Teaching by Utilizing Research as a Template

    ERIC Educational Resources Information Center

    Knutson, Christopher C.; Jackson, Milton N., Jr.; Beekman, Matt; Carnes, Matthew E.; Johnson, Darren W.; Johnson, David C.; Keszler, Douglas A.

    2014-01-01

    We have designed a unique guided-inquiry-inspired course for entry-level graduate students using chemical research as a mechanism to teach research-oriented problem-solving skills. The course has been designed for flexibility around a shared research experience. The curriculum can be modified each year by incorporating a new research project into…

  18. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 6. Experimental Design for Comparative Evaluation of Warning-Advisory and Regulatory Traffic Control Devices

    DOT National Transportation Integrated Search

    2006-04-14

    This report presents the results of the national evaluation of the South Lake Tahoe coordinated Transit System (CTS) Project. The CTS Project involved combining transit services offered by private and public sector stakeholders in South Lake Tahoe in...

  19. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 2. Experimental Design to Develop and Evaluate Dynamic Aids for Narrow Bridges

    DOT National Transportation Integrated Search

    2000-01-24

    The Federal Highway Administration (FHWA) of the U.S. Department of Transportation (USDOT) has a responsibility to coordinate and promote projects that will bring the best information on weather to decision makers, in order to improve performance of ...

  20. Design of Inquiry-Oriented Science Labs: Impacts on Students' Attitudes

    ERIC Educational Resources Information Center

    Baseya, J. M.; Francis, C. D.

    2011-01-01

    Background: Changes in lab style can lead to differences in learning. Two inquiry-oriented lab styles are guided inquiry (GI) and problem-based (PB). Students' attitudes towards lab are important to consider when choosing between GI and PB styles during curriculum design. Purpose: We examined the degree to which lab experiences are explained by a…

  1. Mobile Voting Tools for Creating Collaboration Environment and a New Educational Design of the University Lecture

    ERIC Educational Resources Information Center

    Titova, Svetlana

    2014-01-01

    Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…

  2. Orthogonalizing EM: A design-based least squares algorithm.

    PubMed

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z G

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p . Supplementary materials for this article are available online.

  3. Reprint: Good laboratory practice: preventing introduction of bias at the bench

    PubMed Central

    Macleod, Malcolm R; Fisher, Marc; O’Collins, Victoria; Sena, Emily S; Dirnagl, Ulrich; Bath, Philip MW; Buchan, Alistair; van der Worp, H Bart; Traystman, Richard J; Minematsu, Kazuo; Donnan, Geoffrey A; Howells, David W

    2009-01-01

    As a research community, we have failed to show that drugs, which show substantial efficacy in animal models of cerebral ischemia, can also improve outcome in human stroke. Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct, and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke. PMID:18797473

  4. Research on a new wave energy absorption device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  5. Baking the first bread in space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This Getaway Special program is a joint venture between Spar, Monarch flour and Telesat, with Telesat being responsible for the design, manufacture and implementation of the equipment. The purpose of the experiment is to investigate the behavior of bread yeast in the absence of gravity and in the presence of normal atmospheric pressure. The proposed design mixes flour, water and yeast on-orbit, allows the mixture to prove and then bakes it. This paper outlines the development history of the experiment, the various test programs and some of the problems encountered, with their solutions.

  6. ACCESS: Design and Sub-System Performance

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Elizabeth; Morris, Matthew J.; McCandliss, Stephan R.; Rasucher, Bernard J.; Kimble, Randy A.; Kruk, Jeffrey W.; Pelton, Russell; Mott, D. Brent; Wen, Hiting; Foltz, Roger; hide

    2012-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 -1.7 micrometer bandpass.

  7. Structural Optimization of a Force Balance Using a Computational Experiment Design

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; DeLoach, R.

    2002-01-01

    This paper proposes a new approach to force balance structural optimization featuring a computational experiment design. Currently, this multi-dimensional design process requires the designer to perform a simplification by executing parameter studies on a small subset of design variables. This one-factor-at-a-time approach varies a single variable while holding all others at a constant level. Consequently, subtle interactions among the design variables, which can be exploited to achieve the design objectives, are undetected. The proposed method combines Modern Design of Experiments techniques to direct the exploration of the multi-dimensional design space, and a finite element analysis code to generate the experimental data. To efficiently search for an optimum combination of design variables and minimize the computational resources, a sequential design strategy was employed. Experimental results from the optimization of a non-traditional force balance measurement section are presented. An approach to overcome the unique problems associated with the simultaneous optimization of multiple response criteria is described. A quantitative single-point design procedure that reflects the designer's subjective impression of the relative importance of various design objectives, and a graphical multi-response optimization procedure that provides further insights into available tradeoffs among competing design objectives are illustrated. The proposed method enhances the intuition and experience of the designer by providing new perspectives on the relationships between the design variables and the competing design objectives providing a systematic foundation for advancements in structural design.

  8. Challenges in conducting qualitative research in health: A conceptual paper.

    PubMed

    Khankeh, Hamidreza; Ranjbar, Maryam; Khorasani-Zavareh, Davoud; Zargham-Boroujeni, Ali; Johansson, Eva

    2015-01-01

    Qualitative research focuses on social world and provides the tools to study health phenomena from the perspective of those experiencing them. Identifying the problem, forming the question, and selecting an appropriate methodology and design are some of the initial challenges that researchers encounter in the early stages of any research project. These problems are particularly common for novices. This article describes the practical challenges of using qualitative inquiry in the field of health and the challenges of performing an interpretive research based on professional experience as a qualitative researcher and on available literature. One of the main topics discussed is the nature of qualitative research, its inherent challenges, and how to overcome them. Some of those highlighted here include: identification of the research problem, formation of the research question/aim, and selecting an appropriate methodology and research design, which are the main concerns of qualitative researchers and need to be handled properly. Insights from real-life experiences in conducting qualitative research in health reveal these issues. The paper provides personal comments on the experiences of a researcher in conducting pure qualitative research in the field of health. It offers insights into the practical difficulties encountered when performing qualitative studies and offers solutions and alternatives applied by these authors, which may be of use to others.

  9. STS-41 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Camp, David W.; Germany, D. M.; Nicholson, Leonard S.

    1990-01-01

    The STS-41 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-sixth flight of the Space Shuttle and the eleventh flight of the Orbiter vehicle, Discovery (OV-103). In addition to the Discovery vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-39/LWT-32), three Space Shuttle main engines (SSME's) (serial numbers 2011, 2031, and 2107), and two Solid Rocket Boosters (SRB's), designated as BI-040. The primary objective of the STS-41 mission was to successfully deploy the Ulysses/inertial upper stage (IUS)/payload assist module (PAM-S) spacecraft. The secondary objectives were to perform all operations necessary to support the requirements of the Shuttle Backscatter Ultraviolet (SSBUV) Spectrometer, Solid Surface Combustion Experiment (SSCE), Space Life Sciences Training Program Chromosome and Plant Cell Division in Space (CHROMEX), Voice Command System (VCS), Physiological Systems Experiment (PSE), Radiation Monitoring Experiment - 3 (RME-3), Investigations into Polymer Membrane Processing (IPMP), Air Force Maui Optical Calibration Test (AMOS), and Intelsat Solar Array Coupon (ISAC) payloads. The sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter problem is cited in the subsystem discussion.

  10. Maximizing work integration in job placement of individuals facing mental health problems: Supervisor experiences.

    PubMed

    Skarpaas, Lisebet Skeie; Ramvi, Ellen; Løvereide, Lise; Aas, Randi Wågø

    2015-01-01

    Many people confronting mental health problems are excluded from participation in paid work. Supervisor engagement is essential for successful job placement. To elicit supervisor perspectives on the challenges involved in fostering integration to support individuals with mental health problems (trainees) in their job placement at ordinary companies. Explorative, qualitative designed study with a phenomenological approach, based on semi-structured interviews with 15 supervisors involved in job placements for a total of 105 trainees (mean 7, min-max. 1-30, SD 8). Data were analysed using qualitative content analysis. Superviors experience two interrelated dilemmas concerning knowledge of the trainee and degree of preferential treatment. Challenges to obtaining successful integration were; motivational: 1) Supervisors previous experience with trainees encourages future engagement, 2) Developing a realistic picture of the situation, and 3) Disclosure and knowledge of mental health problems, and continuity challenges: 4) Sustaining trainee cooperation throughout the placement process, 5) Building and maintaining a good relationship between supervisor and trainee, and 6) Ensuring continuous cooperation with the social security system and other stakeholders. Supervisors experience relational dilemmas regarding pre-judgment, privacy and equality. Job placement seem to be maximized when the stakeholders are motivated and recognize that cooperation must be a continuous process.

  11. Design of MSR primary circuit with minimum pressure losses

    NASA Astrophysics Data System (ADS)

    Noga, Tomáš; Žitek, Pavel; Valenta, Václav

    This article describes a design of a MSR primary circuit with minimum pressure losses. It includes a brief description of this type of a reactor and its integral layout, properties, purpose, etc. The objective of this paper is to define problems of pressure losses calculation and to design a proper device for a primary circuit of MSR reactor, including its basic dimensions. Thanks to this, it can become an initial project for a construction of a real piece of work. This is the main contribution of the carried out study. Of course, this article is not a detailed solution, but it points out facts and problems, which future designers may have to face. The further step of our work will be a reconstruction of the current experiment for a two-stage flowing.

  12. Apollo experience report: Voice communications techniques and performance

    NASA Technical Reports Server (NTRS)

    Dabbs, J. H.; Schmidt, O. L.

    1972-01-01

    The primary performance requirement of the spaceborne Apollo voice communications system is percent word intelligibility, which is related to other link/channel parameters. The effect of percent word intelligibility on voice channel design and a description of the verification procedures are included. Development and testing performance problems and the techniques used to solve the problems are also discussed. Voice communications performance requirements should be comprehensive and verified easily; the total system must be considered in component design, and the necessity of voice processing and the associated effect on noise, distortion, and cross talk should be examined carefully.

  13. A model of "integrated scientific method" and its application for the analysis of instruction

    NASA Astrophysics Data System (ADS)

    Rusbult, Craig Francis

    A model of 'integrated scientific method' (ISM) was constructed as a framework for describing the process of science in terms of activities (formulating a research problem, and inventing and evaluating actions--such as selecting and inventing theories, evaluating theories, designing experiments, and doing experiments--intended to solve the problem) and evaluation criteria (empirical, conceptual, and cultural-personal). Instead of trying to define the scientific method, ISM is intended to serve as a flexible framework that--by varying the characteristics of its components, their integrated relationships, and their relative importance can be used to describe a variety of scientific methods, and a variety of perspectives about what constitutes an accurate portrayal of scientific methods. This framework is outlined visually and verbally, followed by an elaboration of the framework and my own views about science, and an evaluation of whether ISM can serve as a relatively neutral framework for describing a wide range of science practices and science interpretations. ISM was used to analyze an innovative, guided inquiry classroom (taught by Susan Johnson, using Genetics Construction Kit software) in which students do simulated scientific research by solving classical genetics problems that require effect-to-cause reasoning and theory revision. The immediate goal of analysis was to examine the 'science experiences' of students, to determine how the 'structure of instruction' provides opportunities for these experiences. Another goal was to test and improve the descriptive and analytical utility of ISM. In developing ISM, a major objective was to make ISM educationally useful. A concluding discussion includes controversies about "the nature of science" and how to teach it, how instruction can expand opportunities for student experience, and how goal-oriented intentional learning (using ISM might improve the learning, retention, and transfer of thinking skills. Potential educational applications of ISM could involve its use for instructional analysis or design, or for teaching students in the classroom; or ISM and IDM (a closely related, generalized 'integrated design method') could play valuable roles in a 'wide spiral' curriculum designed for the coordinated teaching of thinking skills, including creativity and critical thinking, across a wide range of subjects.

  14. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  15. Experiments with a decision-theoretic scheduler

    NASA Technical Reports Server (NTRS)

    Hansson, Othar; Holt, Gerhard; Mayer, Andrew

    1992-01-01

    This paper describes DTS, a decision-theoretic scheduler designed to employ state-of-the-art probabilistic inference technology to speed the search for efficient solutions to constraint-satisfaction problems. Our approach involves assessing the performance of heuristic control strategies that are normally hard-coded into scheduling systems, and using probabilistic inference to aggregate this information in light of features of a given problem. BPS, the Bayesian Problem-Solver, introduced a similar approach to solving single-agent and adversarial graph search problems, yielding orders-of-magnitude improvement over traditional techniques. Initial efforts suggest that similar improvements will be realizable when applied to typical constraint-satisfaction scheduling problems.

  16. Comparison of student's learning achievement through realistic mathematics education (RME) approach and problem solving approach on grade VII

    NASA Astrophysics Data System (ADS)

    Ilyas, Muhammad; Salwah

    2017-02-01

    The type of this research was experiment. The purpose of this study was to determine the difference and the quality of student's learning achievement between students who obtained learning through Realistic Mathematics Education (RME) approach and students who obtained learning through problem solving approach. This study was a quasi-experimental research with non-equivalent experiment group design. The population of this study was all students of grade VII in one of junior high school in Palopo, in the second semester of academic year 2015/2016. Two classes were selected purposively as sample of research that was: year VII-5 as many as 28 students were selected as experiment group I and VII-6 as many as 23 students were selected as experiment group II. Treatment that used in the experiment group I was learning by RME Approach, whereas in the experiment group II by problem solving approach. Technique of data collection in this study gave pretest and posttest to students. The analysis used in this research was an analysis of descriptive statistics and analysis of inferential statistics using t-test. Based on the analysis of descriptive statistics, it can be concluded that the average score of students' mathematics learning after taught using problem solving approach was similar to the average results of students' mathematics learning after taught using realistic mathematics education (RME) approach, which are both at the high category. In addition, It can also be concluded that; (1) there was no difference in the results of students' mathematics learning taught using realistic mathematics education (RME) approach and students who taught using problem solving approach, (2) quality of learning achievement of students who received RME approach and problem solving approach learning was same, which was at the high category.

  17. A Teaching Guide and Experience Units K-12. Social Studies. Grade One.

    ERIC Educational Resources Information Center

    Arapahoe County School District 6, Littleton, CO.

    The unit experiences for the K-12 curriculum, including these for grade 1, were designed by the district staff to achieve a more comprehensive knowledge of the world in which we live; to develop the ability to think critically and creatively; to use inquiry and problem solving skills in human relations situations; to understand major social…

  18. The Interaction Effects of Working Memory Capacity, Gaming Expertise, and Scaffolding Design on Attention and Comprehension in Digital Game Based Learning

    ERIC Educational Resources Information Center

    Lee, Yu-Hao

    2013-01-01

    Educational digital games are often complex problem-solving experiences that can facilitate systematic comprehension. However, empirical studies of digital game based learning (DGBL) have found mixed results regarding DGBL's effect in improving comprehension. While learners generally enjoyed the DGBL learning experience, they often failed to…

  19. The Role of Play in the Development of Insightful Tool-Using Strategies.

    ERIC Educational Resources Information Center

    Vandenberg, Brian

    This experiment investigates the relation of a free play experience to subsequent performance on problem solving tasks among children aged 4 to 10. Ninety children were divided into 3 age groups and were assigned in pairs of free play and non-play treatment conditions. Children were paired by block design test scores to control for perceptual…

  20. Shovelling Smoke? The Experience of Being a Philosopher on an Educational Research Training Programme

    ERIC Educational Resources Information Center

    Suissa; Judith

    2006-01-01

    This paper is a reflective account of the experience of designing and teaching a philosophy module as part of a research training programme for students studying for research degrees in education. In the course of the discussion, I address various problems and questions to do with the relationship between philosophy and educational research, the…

  1. Development and Implementation of a Design Metric for Systems Containing Long-Term Fluid Loops

    NASA Technical Reports Server (NTRS)

    Steele, John W.

    2016-01-01

    John Steele, a chemist and technical fellow from United Technologies Corporation, provided a water quality module to assist engineers and scientists with a metric tool to evaluate risks associated with the design of space systems with fluid loops. This design metric is a methodical, quantitative, lessons-learned based means to evaluate the robustness of a long-term fluid loop system design. The tool was developed by a cross-section of engineering disciplines who had decades of experience and problem resolution.

  2. On the role of minicomputers in structural design

    NASA Technical Reports Server (NTRS)

    Storaasli, O. O.

    1977-01-01

    Results are presented of exploratory studies on the use of a minicomputer in conjunction with large-scale computers to perform structural design tasks, including data and program management, use of interactive graphics, and computations for structural analysis and design. An assessment is made of minicomputer use for the structural model definition and checking and for interpreting results. Included are results of computational experiments demonstrating the advantages of using both a minicomputer and a large computer to solve a large aircraft structural design problem.

  3. Apollo experience report: Guidance and control systems - Digital autopilot design development

    NASA Technical Reports Server (NTRS)

    Peters, W. H.; Cox, K. J.

    1973-01-01

    The development of the Apollo digital autopilots (the primary attitude control systems that were used for all phases of the lunar landing mission) is summarized. This report includes design requirements, design constraints, and design philosophy. The development-process functions and the essential information flow paths are identified. Specific problem areas that existed during the development are included. A discussion is also presented on the benefits inherent in mechanizing attitude-controller logic and dynamic compensation in a digital computer.

  4. Ethical Information Transparency and Sexually Transmitted Infections.

    PubMed

    Feltz, Adam

    2015-01-01

    Shared decision making is intended to help protect patient autonomy while satisfying the demands of beneficence. In shared decision making, information is shared between health care professional and patient. The sharing of information presents new and practical problems about how much information to share and how transparent that information should be. Sharing information also allows for subtle paternalistic strategies to be employed to "nudge" the patient in a desired direction. These problems are illustrated in two experiments. Experiment 1 (N = 146) suggested that positively framed messages increased the strength of judgments about whether a patient with HIV should designate a surrogate compared to a negatively framed message. A simple decision aid did not reliably reduce this effect. Experiment 2 (N = 492) replicated these effects. In addition, Experiment 2 suggested that providing some additional information (e.g., about surrogate decision making accuracy) can reduce tendencies to think that one with AIDS should designate a surrogate. These results indicate that in some circumstances, nudges (e.g., framing) influence judgments in ways that non-nudging interventions (e.g., simple graphs) do not. While non-nudging interventions are generally preferable, careful thought is required for determining the relative benefits and costs associated with information transparency and persuasion.

  5. Astronomy Village: Innovative Uses of Planetary Astronomy Images and Data

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pompea, S. M.

    2008-06-01

    Teaching and learning science is best done by hands-on experience with real scientific data and real scientific problems. Getting such experiences into public and home-schooling classrooms is a challenge. Here we describe two award-winning multimedia products that embody one successful solution to the problem: Astronomy Village: Investigating the Universe, and Astronomy Village: Investigating the Solar System. Each Village provides a virtual environment for inquiry-based scientific exploration of ten planetary and astronomical problems such as ``Mission to Pluto'' and ``Search for a Supernova.'' Both Villages are standards-based and classroom tested. Investigating the Solar System is designed for middle and early high school students, while Investigating the Universe is at the high school and introductory college level. The objective of both Villages is to engage students in scientific inquiry by having them acquire, explore, and analyze real scientific data and images drawn from real scientific problems.

  6. Vocational High School Students’ Creativity in Food Additives with Problem Based Learning Approach

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Supriyanti, T.; Rosbiono, M.

    2017-09-01

    The aim of this study is to verify the creativity of vocational students through Problem Based Learning approach in the food additives. The method which used quasi-experiment with one group posttest design. The research subjects were 32 students in grade XII of a vocational high school students courses chemical analysis in Bandung city. Instrument of creativity were essay, Student Worksheet, and observation sheets. Creativity measured include creative thinking skills and creative act skills. The results showed creative thinking skills and creative act skills are good. Research showed that the problem based learning approach can be applied to develop creativity of vocational students in the food additives well, because the students are given the opportunity to determine their own experiment procedure that will be used. It is recommended to often implement Problem Based Learning approach in other chemical concepts so that students’ creativity is sustainable.

  7. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  8. Monkey search algorithm for ECE components partitioning

    NASA Astrophysics Data System (ADS)

    Kuliev, Elmar; Kureichik, Vladimir; Kureichik, Vladimir, Jr.

    2018-05-01

    The paper considers one of the important design problems – a partitioning of electronic computer equipment (ECE) components (blocks). It belongs to the NP-hard class of problems and has a combinatorial and logic nature. In the paper, a partitioning problem formulation can be found as a partition of graph into parts. To solve the given problem, the authors suggest using a bioinspired approach based on a monkey search algorithm. Based on the developed software, computational experiments were carried out that show the algorithm efficiency, as well as its recommended settings for obtaining more effective solutions in comparison with a genetic algorithm.

  9. [Relationships between foot problems, fall experience and fear of falling among Japanese community-dwelling elderly].

    PubMed

    Harada, Kazuhiro; Oka, Koichiro; Shibata, Ai; Kaburagi, Hironobu; Nakamura, Yoshio

    2010-08-01

    Although a foot care program for long-term care prevention has been launched in Japan, few studies have examined its effectiveness. The purpose of the present investigation was to examine the association of foot problems with fall experience and fear of falling among Japanese community-dwelling elderly people. The participants were 10,581 community-dwelling elderly people (75.2 +/- 5.6 years) and the study design was cross-sectional using a questionnaire. Self-reported tinea pedis, skin problems (inflammation, swelling, or discoloration), nail problems (thickening or deformities), impairment (in function or blood flow), regular foot care, and wearing of appropriate shoes were selected as parameters of foot problems and their care. Logistic regression analysis was conducted to examine whether these were related to fall experience (in the past 1 year) and fear of falling adjusted for age, the Tokyo Metropolitan institute of gerontology index of competence, medical conditions, and lower limb functions. Forty-six percents of males and 39.0% of females reported at least one foot problem. After adjusting for covariates, tinea pedis (male: adjusted odds ratio = 1.37[95% confidence interval= 1.15-1.63], female: 1.29[1.08-1.53]), skin problems (male: 1.66[1.32-2.101, female: 1.37[1.13-1.66]), nail problems (male: 1.72[1.45-2.051, female: 1.48[1.26-1.74]), and functional impairment (male: 2.42[1.91-3.05], female: 1.66[1.36-2.04]) were significantly associated with fall experience. Also, each problem was negatively associated with fear of falling (tinea pedis[male: 1.37 [1.15-1.62], female: 1.25[1.07-1.47

  10. 3D Laser Scanning in Technology Education.

    ERIC Educational Resources Information Center

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  11. Problems in aerial application : I. - V.

    DOT National Transportation Integrated Search

    1966-06-01

    Airmen who apply insecticides from aircraft may suffer ill-defined effects from continued exposure to insecticide particles suspended in the air medium. The present series of experiments has been designed to study both lethal and sublethal effects re...

  12. Holographic Interferometry--A Laboratory Experiment.

    ERIC Educational Resources Information Center

    de Frutos, A. M.; de la Rosa, M. I.

    1988-01-01

    Explains the problem of analyzing a phase object, separating the contribution due to thickness variations and that due to refractive index variations. Discusses the design of an interferometer and some applications. Provides diagrams and pictures of holographic images. (YP)

  13. NATIONAL ALCOHOL SURVEY (NAS)

    EPA Science Inventory

    National Alcohol Survey (NAS) is designed to assess the trends in drinking practices and problems in the national population, including attitudes, norms, treatment and experiences and adverse consequences. It also studies the effects of public policy on drinking practices (i.e., ...

  14. Photovoltaic module reliability improvement through application testing and failure analysis

    NASA Technical Reports Server (NTRS)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  15. Design of the new couplers for C-ADS RFQ

    NASA Astrophysics Data System (ADS)

    Shi, Ai-Min; Sun, Lie-Peng; Zhang, Zhou-Li; Xu, Xian-Bo; Shi, Long-Bo; Li, Chen-Xing; Wang, Wen-Bin

    2015-04-01

    A new special coupler with a kind of bowl-shaped ceramic window for a proton linear accelerator named the Chinese Accelerator Driven System (C-ADS) at the Institute of Modern Physics (IMP) has been simulated and constructed and a continuous wave (CW) beam commissioning through a four-meter long radio frequency quadruple (RFQ) was completed by the end of July 2014. In the experiments of conditioning and beam, some problems were promoted gradually such as sparking and thermal issues. Finally, two new couplers were passed with almost 110 kW CW power and 120 kW pulsed mode, respectively. The 10 mA intensity beam experiments have now been completed, and the couplers during the operation had no thermal or electro-magnetic problems. The detailed design and results are presented in the paper. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA03020500)

  16. Design and deployment of an elastic network test-bed in IHEP data center based on SDN

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Qi, Fazhi; Chen, Gang

    2017-10-01

    High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.

  17. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  18. Design of a High Voltage Power Supply Providing a Force Field for a Fluid Experiment

    NASA Astrophysics Data System (ADS)

    Herty, Frank

    2005-05-01

    As part of the GeoFlow fluid experiment an ac high voltage power supply (HVPS) is used to establish high electrical fields on fluids based on silicon oil. The non- conductive fluid is encapsulated between two spherical electrodes. This experiment cell assembly acts essentially as a capacitive load.The GeoFlow HVPS is an integrated ac high voltage source capable to provide up to 10kVRMS on capacitive loads up to 100pF.This paper presents major design challenges and solutions regarding the high voltage transformer and its driver electronics. Particular high voltage problems like corona effects and dielectric losses are discussed and countermeasures are presented.

  19. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 7. Experimental Design to Develop and Evaluate Measures for Reducing the Effects of Roadside Friction on Traffic Flow

    DOT National Transportation Integrated Search

    1994-04-01

    This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, "IVHS Institutional Issues and Ca...

  20. Effect of Goal Setting on the Strategies Used to Solve a Block Design Task

    ERIC Educational Resources Information Center

    Rozencwajg, Paulette; Fenouillet, Fabien

    2012-01-01

    In this experiment we studied the effect of goal setting on the strategies used to perform a block design task called SAMUEL. SAMUEL can measure many indicators, which are then combined to determine the strategies used by participants when solving SAMUEL problems. Two experimental groups were created: one group was given an explicit, difficult…

  1. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 4. Experimental Design to Develop and Evaluate Remedial Aids to Urban Drivers of Slow Moving Vehicles on a Grade

    DOT National Transportation Integrated Search

    1994-04-01

    This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, IVHS Institutional Issues and ...

  2. Shuttle payload S-band communications system

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.

    1985-01-01

    The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.

  3. A Meta-heuristic Approach for Variants of VRP in Terms of Generalized Saving Method

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki

    Global logistic design is becoming a keen interest to provide an essential infrastructure associated with modern societal provision. For examples, we can designate green and/or robust logistics in transportation systems, smart grids in electricity utilization systems, and qualified service in delivery systems, and so on. As a key technology for such deployments, we engaged in practical vehicle routing problem on a basis of the conventional saving method. This paper extends such idea and gives a general framework available for various real-world applications. It can cover not only delivery problems but also two kind of pick-up problems, i.e., straight and drop-by routings. Moreover, multi-depot problem is considered by a hybrid approach with graph algorithm and its solution method is realized in a hierarchical manner. Numerical experiments have been taken place to validate effectiveness of the proposed method.

  4. Langley's CSI evolutionary model: Phase 2

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Elliott, Kenny B.; Belvin, W. Keith; Teter, John E.

    1995-01-01

    Phase 2 testbed is part of a sequence of laboratory models, developed at NASA Langley Research Center, to enhance our understanding on how to model, control, and design structures for space applications. A key problem with structures that must perform in space is the appearance of unwanted vibrations during operations. Instruments, design independently by different scientists, must share the same vehicle causing them to interact with each other. Once in space, these problems are difficult to correct and therefore, prediction via analysis design, and experiments is very important. Phase 2 laboratory model and its predecessors are designed to fill a gap between theory and practice and to aid in understanding important aspects in modeling, sensor and actuator technology, ground testing techniques, and control design issues. This document provides detailed information on the truss structure and its main components, control computer architecture, and structural models generated along with corresponding experimental results.

  5. Designing for emotion (among other things)

    PubMed Central

    Gaver, William

    2009-01-01

    Using computational approaches to emotion in design appears problematic for a range of technical, cultural and aesthetic reasons. After introducing some of the reasons as to why I am sceptical of such approaches, I describe a prototype we built that tried to address some of these problems, using sensor-based inferencing to comment upon domestic ‘well-being’ in ways that encouraged users to take authority over the emotional judgements offered by the system. Unfortunately, over two iterations we concluded that the prototype we built was a failure. I discuss the possible reasons for this and conclude that many of the problems we found are relevant more generally for designs based on computational approaches to emotion. As an alternative, I advocate a broader view of interaction design in which open-ended designs serve as resources for individual appropriation, and suggest that emotional experiences become one of several outcomes of engaging with them. PMID:19884154

  6. Evaluation for the design of experience in virtual environments: modeling breakdown of interaction and illusion.

    PubMed

    Marsh, T; Wright, P; Smith, S

    2001-04-01

    New and emerging media technologies have the potential to induce a variety of experiences in users. In this paper, it is argued that the inducement of experience presupposes that users are absorbed in the illusion created by these media. Looking to another successful visual medium, film, this paper borrows from the techniques used in "shaping experience" to hold spectators' attention in the illusion of film, and identifies what breaks the illusion/experience for spectators. This paper focuses on one medium, virtual reality (VR), and advocates a transparent or "invisible style" of interaction. We argue that transparency keeps users in the "flow" of their activities and consequently enhances experience in users. Breakdown in activities breaks the experience and subsequently provides opportunities to identify and analyze potential causes of usability problems. Adopting activity theory, we devise a model of interaction with VR--through consciousness and activity--and introduce the concept of breakdown in illusion. From this, a model of effective interaction with VR is devised and the occurrence of breakdown in interaction and illusion is identified along a continuum of engagement. Evaluation guidelines for the design of experience are proposed and applied to usability problems detected in an empirical study of a head-mounted display (HMD) VR system. This study shows that the guidelines are effective in the evaluation of VR. Finally, we look at the potential experiences that may be induced in users and propose a way to evaluate user experience in virtual environments (VEs) and other new and emerging media.

  7. Integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Ouzts, Peter J.

    1991-01-01

    Results are presented from an application of H-infinity control design methodology to a centralized integrated flight propulsion control (IFPC) system design for a supersonic Short Takeoff and Vertical Landing (STOVL) fighter aircraft in transition flight. The emphasis is on formulating the H-infinity control design problem such that the resulting controller provides robustness to modeling uncertainties and model parameter variations with flight condition. Experience gained from a preliminary H-infinity based IFPC design study performed earlier is used as the basis to formulate the robust H-infinity control design problem and improve upon the previous design. Detailed evaluation results are presented for a reduced order controller obtained from the improved H-infinity control design showing that the control design meets the specified nominal performance objectives as well as provides stability robustness for variations in plant system dynamics with changes in aircraft trim speed within the transition flight envelope. A controller scheduling technique which accounts for changes in plant control effectiveness with variation in trim conditions is developed and off design model performance results are presented.

  8. Flight Experience from Space Photovoltaic Concentrator Arrays and its Implication on Terrestrial Concentrator Systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    2003-01-01

    Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.

  9. Gas tungsten arc welding in a microgravity environment: Work done on GAS payload G-169

    NASA Technical Reports Server (NTRS)

    Welcher, Blake A.; Kolkailah, Faysal A.; Muir, Arthur H., Jr.

    1987-01-01

    GAS payload G-169 is discussed. G-169 contains a computer-controlled Gas Tungsten Arc Welder. The equipment design, problem analysis, and problem solutions are presented. Analysis of data gathered from other microgravity arc welding and terrestrial Gas Tungsten Arc Welding (GTAW) experiments are discussed in relation to the predicted results for the GTAW to be performed in microgravity with payload G-169.

  10. A Designer’s Guide to Human Performance Modelling (La Modelisation des Performances Humaines: Manuel du Concepteur).

    DTIC Science & Technology

    1998-12-01

    failure detection, monitoring, and decision making.) moderator function. Originally, the output from these One of the best known OCM implementations, the...imposed by the tasks themselves, the information and equipment provided, the task environment, operator skills and experience, operator strategies , the...problem-solving situation, including the toward failure.) knowledge necessary to generate the right problem- solving strategies , the attention that

  11. The Views of the Teachers Related to the Problems the Nursery Class Teachers Encounter in Personnel Services and General Services

    ERIC Educational Resources Information Center

    Ertör, Eren; Akan, Durdagi

    2016-01-01

    In this study, it was aimed to analyze the problems that the nursery school teachers, who worked in primary schools of Ministry of National Education in Agri city center in 2014-2015 academic years, experience in personnel services and general services according to the views of the teachers. In the direction of this purpose, phenomenology design,…

  12. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types.

    PubMed

    Webb, Margaret E; Little, Daniel R; Cropper, Simon J

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions.

  13. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types

    PubMed Central

    Webb, Margaret E.; Little, Daniel R.; Cropper, Simon J.

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions. PMID:27725805

  14. Students' Use of Mathematical Representations in Problem Solving.

    ERIC Educational Resources Information Center

    Santos-Trigo, Manuel

    2002-01-01

    Documents the experiences of 25 first-year university students with regard to the kinds of tasks calculus instructors should design in order to engage students in mathematical practices that often require the use of a graphing calculator. (MM)

  15. New theoretical framework for designing nonionic surfactant mixtures that exhibit a desired adsorption kinetics behavior.

    PubMed

    Moorkanikkara, Srinivas Nageswaran; Blankschtein, Daniel

    2010-12-21

    How does one design a surfactant mixture using a set of available surfactants such that it exhibits a desired adsorption kinetics behavior? The traditional approach used to address this design problem involves conducting trial-and-error experiments with specific surfactant mixtures. This approach is typically time-consuming and resource-intensive and becomes increasingly challenging when the number of surfactants that can be mixed increases. In this article, we propose a new theoretical framework to identify a surfactant mixture that most closely meets a desired adsorption kinetics behavior. Specifically, the new theoretical framework involves (a) formulating the surfactant mixture design problem as an optimization problem using an adsorption kinetics model and (b) solving the optimization problem using a commercial optimization package. The proposed framework aims to identify the surfactant mixture that most closely satisfies the desired adsorption kinetics behavior subject to the predictive capabilities of the chosen adsorption kinetics model. Experiments can then be conducted at the identified surfactant mixture condition to validate the predictions. We demonstrate the reliability and effectiveness of the proposed theoretical framework through a realistic case study by identifying a nonionic surfactant mixture consisting of up to four alkyl poly(ethylene oxide) surfactants (C(10)E(4), C(12)E(5), C(12)E(6), and C(10)E(8)) such that it most closely exhibits a desired dynamic surface tension (DST) profile. Specifically, we use the Mulqueen-Stebe-Blankschtein (MSB) adsorption kinetics model (Mulqueen, M.; Stebe, K. J.; Blankschtein, D. Langmuir 2001, 17, 5196-5207) to formulate the optimization problem as well as the SNOPT commercial optimization solver to identify a surfactant mixture consisting of these four surfactants that most closely exhibits the desired DST profile. Finally, we compare the experimental DST profile measured at the surfactant mixture condition identified by the new theoretical framework with the desired DST profile and find good agreement between the two profiles.

  16. Apollo experience report: Command and service module environmental control system

    NASA Technical Reports Server (NTRS)

    Samonski, F. H., Jr.; Tucker, E. M.

    1972-01-01

    A comprehensive review is presented of the design philosophy of the Apollo environmental control system together with the development history of the total system and of selected components within the system. In particular, discussions are presented relative to the development history and to the problems associated with the equipment cooling coldplates, the evaporator and its electronic control system, and the space radiator system used for rejection of the spacecraft thermal loads. Apollo flight experience and operational difficulties associated with the spacecraft water system and the waste management system are discussed in detail to provide definition of the problem and the corrective action taken when applicable.

  17. Description and status of NASA-LeRC/DOE photovoltaic applications systems experiments

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1978-01-01

    In its role of supporting the DOE Photovoltaic Program, the NASA-Lewis Research Center has designed, fabricated and installed 16 geographically dispersed photovoltaic systems. These systems are powering a refrigerator, highway warning sign, forest lookout towers, remote weather stations, a water chiller at a visitor center, and insect survey traps. Each of these systems is described in terms of load requirements, solar array and battery size, and instrumentation and controls. Operational experience is described and present status is given for each system. The P/V power systems have proven to be highly reliable with almost no problems with modules and very few problems overall

  18. Engineering and simulation of life science Spacelab experiments

    NASA Technical Reports Server (NTRS)

    Bush, B.; Rummel, J.; Johnston, R. S.

    1977-01-01

    Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.

  19. Improving Positive Experiences for Middle School Minority Students Entering a Suburban Community, through Intervention Programs Involving Staff, Parents, and Students.

    ERIC Educational Resources Information Center

    Piscitelli, Christine D.

    This practicum was designed to increase the positive experiences of middle school minority students entering a suburban community. The problem for racial and ethnic minorities is how to have full access to and participation in the educational life of the community without surrendering their language and cultural distinctiveness. The goals of this…

  20. Air Pollution Experiments for Junior and Senior High School Science Classes, Second Edition.

    ERIC Educational Resources Information Center

    Hunter, Donald C., Ed.; Wohlers, Henry C., Ed.

    This revised and expanded version of a similar manual first published in 1969 is designed to acquaint students at both junior and senior levels with some of the problems and effects of air pollution and the practical means of overcoming them. The 38 experiments comprise a group of exercises which can be selected according to the interests of the…

  1. The Dependence of Strength in Plastics upon Polymer Chain Length and Chain Orientation: An Experiment Emphasizing the Statistical Handling and Evaluation of Data.

    ERIC Educational Resources Information Center

    Spencer, R. Donald

    1984-01-01

    Describes an experiment (using plastic bags) designed to give students practical understanding on using statistics to evaluate data and how statistical treatment of experimental results can enhance their value in solving scientific problems. Students also gain insight into the orientation and structure of polymers by examining the plastic bags.…

  2. Designing and Using Virtual Field Environments to Enhance and Extend Field Experience in Professional Development Programs in Geology for K-12 Teachers

    ERIC Educational Resources Information Center

    Granshaw, Frank Douglas

    2011-01-01

    Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when…

  3. LARM PKM solutions for torso design in humanoid robots

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Marco

    2014-12-01

    Human-like torso features are essential in humanoid robots. In this paper problems for design and operation of solutions for a robotic torso are discussed by referring to experiences and designs that have been developed at Laboratory of Robotics and Mechatronics (LARM) in Cassino, Italy. A new solution is presented with conceptual views as waist-trunk structure that makes a proper partition of the performance for walking and arm operations as sustained by a torso.

  4. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  5. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  6. Simulation reduction using the Taguchi method

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Lautenschlager, Ume; Erikstad, Stein Owe; Allen, Janet K.

    1993-01-01

    A large amount of engineering effort is consumed in conducting experiments to obtain information needed for making design decisions. Efficiency in generating such information is the key to meeting market windows, keeping development and manufacturing costs low, and having high-quality products. The principal focus of this project is to develop and implement applications of Taguchi's quality engineering techniques. In particular, we show how these techniques are applied to reduce the number of experiments for trajectory simulation of the LifeSat space vehicle. Orthogonal arrays are used to study many parameters simultaneously with a minimum of time and resources. Taguchi's signal to noise ratio is being employed to measure quality. A compromise Decision Support Problem and Robust Design are applied to demonstrate how quality is designed into a product in the early stages of designing.

  7. Empowering biomedical engineering undergraduates to help teach design.

    PubMed

    Allen, Robert H; Tam, William; Shoukas, Artin A

    2004-01-01

    We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.

  8. Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com

    2010-11-11

    This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less

  9. A global parallel model based design of experiments method to minimize model output uncertainty.

    PubMed

    Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E

    2012-03-01

    Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

  10. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    NASA Technical Reports Server (NTRS)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of limited well defined rules. The findings indicated that the technique is most effective when used as a design aid and not as a tool to totally automate the composites design process. Other areas of application and implications for future research are discussed.

  11. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  12. Conspicuity for pedestrians and bicyclists : definition of the problem, development and test of countermeasures

    DOT National Transportation Integrated Search

    1984-04-01

    A field experiment was conducted to determine the extent of conspicuity enhancement provided pedestrians and bicyclists at night by various commercially available retroreflective materials and lights. The conspicuous materials were designed to be wor...

  13. National Strategies for Curriculum Development.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    Officials responsible for designing and introducing curriculum innovation in countries participating in the Asian Programme of Education Innovation for Development (APEID) met in Australia in September 1979 to exchange experiences and explore problems and issues of common interest. Conference participants, representing educational ministries or…

  14. Organizational Analysis With Results Using Transactional Analysis

    ERIC Educational Resources Information Center

    Clary, Thomas C.; Clary, Erica W.

    1976-01-01

    OARTA (Organization Analysis with Results Using Transactional Analysis) is a way of thinking designed to resolve problems and reach goals through action-oriented research and analysis--a learning experience in which members of an organization can develop themselves and their organization. (ABM)

  15. Role of man in flight experiment payloads, phase 1, appendices 1 and 2. [Spacelab project planning

    NASA Technical Reports Server (NTRS)

    Malone, T. B.; Kirkpatrick, M.

    1974-01-01

    The individual task durations are calculated in a series of time line realization problems, and a functional requirements data collection technique, designed to accommodate the data requirements for Spacelab payloads, is presented.

  16. Mothers with mental health problems: Contrasting experiences of support within maternity services in the Republic of Ireland.

    PubMed

    Higgins, Agnes; Tuohy, Teresa; Murphy, Rebecca; Begley, Cecily

    2016-05-01

    to explore the views and experiences of women with mental health difficulties, in the Republic of Ireland, accessing and receiving care from publicly-funded maternity care services during pregnancy, childbirth and immediate postnatal period in hospital. in total 20 women with a range of mental health problems were recruited. The women had given birth within maternity services with and without specialist perinatal mental health services. a qualitative descriptive design using in-depth face to face interviews was used to explore women׳s experience. Data were analysed using an inductive thematic process. the study offers valuable insights into the maternity care experiences of women with mental health problems, and highlights the deficits and fragmentation of care in maternity units that do not have a specialist mental health service. Even when the women voluntarily disclosed their difficulties, midwives appeared to lack the knowledge and skills to respond sensitively and responsively. there is a need to expand perinatal mental health services in the Republic of Ireland, so that quality service provision is not dependent on geography. In addition, there is a need for education to address the lack of knowledge and understanding of perinatal mental health problems amongst maternity care practitioners. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. GEE-WIS Anchored Problem Solving Using Real-Time Authentic Water Quality Data

    NASA Astrophysics Data System (ADS)

    Young, M.; Wlodarczyk, M. S.; Branco, B.; Torgersen, T.

    2002-05-01

    GEE-WIS scientific problem solving consists of observing, hypothesizing, synthesis, argument building and reasoning, in the context of analysis, representation, modeling and sense-making of real-time authentic water quality data. Geoscience Environmental Education - Web-accessible Instrumented Systems, or GEE-WIS, an NSF Geoscience Education grant, has established a set of companion websites that stream real-time data from two campus retention ponds for research and use in secondary and undergraduate water quality lessons. We have targeted scientific problem solving skills because of the nature of the GEE-WIS environment, but further because they are central to state and federal efforts to establish science education curriculum standards and are at the core of performance-based testing. We have used a design experiment process to create and test two Anchored Instruction scenario problems. Customization such as that done through a design process, is acknowledged to be a fundamental component of educational research from an ecological psychology perspective. Our efforts have shared core design elements with other NSF water quality projects. Our method involves the analysis of student written scenario responses for level of scientific problem solving using a qualitative scoring rubric designed from participation in a related NSF project, SCALE (Synergy Communities: Aggregating Learning about Education). Student solutions of GEE-WIS anchor problems from Fall 2001 and Spring 2002 will be summarized. Implications are drawn for those interested in making secondary and high education geoscience more realistic and more motivating for students through the use of real-time authentic data via Internet.

  18. Apollo experience report: Command module uprighting system

    NASA Technical Reports Server (NTRS)

    White, R. D.

    1973-01-01

    A water-landing requirement and two stable flotation attitudes required that a system be developed to ensure that the Apollo command module would always assume an upright flotation attitude. The resolution to the flotation problem and the uprighting concepts, design selection, design changes, development program, qualification, and mission performance are discussed for the uprighting system, which is composed of inflatable bags, compressors, valves, and associated tubing.

  19. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 3. Experimental Design to Evaluate MUTCD and Other Traffic Controls for Highway Construction and Maintenance Operations on Two-Lane Highways

    DOT National Transportation Integrated Search

    1996-11-01

    The purpose of Task A was to conduct a literature review of human factors-applicable articles associated with Advanced Traveler Information Systems (ATIS) and ATIS-related commercial vehicle operations (CVO) systems. Specifically, Task A was to asses...

  20. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 8. Experimental Design and Evaluate Remedial Aids for Intersections with Inadequate Sight Distance

    DOT National Transportation Integrated Search

    2007-01-01

    Americans lose 3.7 billion hours and 2.3 billion gallons of fuel every year sitting in traffic jams, and nearly 24 percent of non-recurring freeway delay, or about 482 million hours, is attributed to work zones. To combat the country's growing transp...

  1. A Course on Experimental Design for Different University Specialties: Experiences and Changes over a Decade

    ERIC Educational Resources Information Center

    Martinez Luaces, Victor; Velazquez, Blanca; Dee, Valerie

    2009-01-01

    We analyse the origin and development of an Experimental Design course which has been taught in several faculties of the Universidad de la Republica and other institutions in Uruguay, over a 10-year period. At the end of the course, students were assessed by carrying out individual work projects on real-life problems, which was innovative for…

  2. Directed Design of Experiments (DOE) for Determining Probability of Detection (POD) Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2007-01-01

    This viewgraph presentation reviews some of the problems that are encountered by designers of Non-Destructive Examination (NDE) have in determining the probability of detection. According to the author "[the] NDE community should not blindly accept statistical results due to lack of knowledge." This is an attempt to bridge the gap between people doing NDE, and statisticians.

  3. Apollo experience report: Lunar module electrical power subsystem

    NASA Technical Reports Server (NTRS)

    Campos, A. B.

    1972-01-01

    The design and development of the electrical power subsystem for the lunar module are discussed. The initial requirements, the concepts used to design the subsystem, and the testing program are explained. Specific problems and the modifications or compromises (or both) imposed for resolution are detailed. The flight performance of the subsystem is described, and recommendations pertaining to power specifications for future space applications are made.

  4. REVIEWS OF TOPICAL PROBLEMS: Prediction and discovery of new structures in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, Aleksei M.

    2007-02-01

    A review is given of the last 20 years of published research into the nature, origin mechanisms, and observed features of spiral-vortex structures found in galaxies. The so-called rotating shallow water experiments are briefly discussed, carried out with a facility designed by the present author and built at the Russian Scientific Center 'Kurchatov Institute' to model the origin of galactic spiral structures. The discovery of new vortex-anticyclone structures in these experiments stimulated searching for them astronomically using the RAS Special Astrophysical Observatory's 6-meter BTA optical telescope, formerly the world's and now Europe's largest. Seven years after the pioneering experiments, Afanasyev and the present author discovered the predicted giant anticyclones in the galaxy Mrk 1040 by using BTA. Somewhat later, the theoretical prediction of giant cyclones in spiral galaxies was made, also to be verified by BTA afterwards. To use the observed line-of-sight velocity field for reconstructing the 3D velocity vector distribution in a galactic disk, a method for solving a problem from the class of ill-posed astrophysical problems was developed by the present author and colleagues. In addition to the vortex structure, other new features were discovered — in particular, slow bars (another theoretical prediction), for whose discovery an observational test capable of distinguishing them from their earlier-studied normal (fast) counterparts was designed.

  5. Challenges in conducting qualitative research in health: A conceptual paper

    PubMed Central

    Khankeh, Hamidreza; Ranjbar, Maryam; Khorasani-Zavareh, Davoud; Zargham-Boroujeni, Ali; Johansson, Eva

    2015-01-01

    Background: Qualitative research focuses on social world and provides the tools to study health phenomena from the perspective of those experiencing them. Identifying the problem, forming the question, and selecting an appropriate methodology and design are some of the initial challenges that researchers encounter in the early stages of any research project. These problems are particularly common for novices. Materials and Methods: This article describes the practical challenges of using qualitative inquiry in the field of health and the challenges of performing an interpretive research based on professional experience as a qualitative researcher and on available literature. Results: One of the main topics discussed is the nature of qualitative research, its inherent challenges, and how to overcome them. Some of those highlighted here include: identification of the research problem, formation of the research question/aim, and selecting an appropriate methodology and research design, which are the main concerns of qualitative researchers and need to be handled properly. Insights from real-life experiences in conducting qualitative research in health reveal these issues. Conclusions: The paper provides personal comments on the experiences of a researcher in conducting pure qualitative research in the field of health. It offers insights into the practical difficulties encountered when performing qualitative studies and offers solutions and alternatives applied by these authors, which may be of use to others. PMID:26793245

  6. Reminder about potentially serious problems with a type of blocked ANOVA analysis

    Treesearch

    Steve Verrill; David E. Kretschmann

    2017-01-01

    A type of blocked experiment has the potential of being poorly designed and/or analyzed. Verrill (1993, 1999) and Verrill et al. (2004) referred to such an experiment as a “predictor sort” experiment. David and Gunnink (1997) described the procedure as “artificial pairing.” In textbooks it is sometimes referred to as a “matched pair” or a “matched...

  7. Parts, materials, and processes experience summary, volume 2. [design, engineering, and quality control

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This summary provides the general engineering community with the accumulated experience from ALERT reports issued by NASA and the Government-Industry. Data Exchange Program, and related experience gained by Government and industry. It provides expanded information on selected topics by relating the problem area (failure) to the cause, the investigation and findings, the suggestions for avoidance (inspections, screening tests, proper part applications, requirements for manufacturer's plant facilities, etc.), and failure analysis procedures. Diodes, integrated circuits, and transistors are covered in this volume.

  8. Logical Experimental Design and Execution in the Biomedical Sciences.

    PubMed

    Holder, Daniel J; Marino, Michael J

    2017-03-17

    Lack of reproducibility has been highlighted as a significant problem in biomedical research. The present unit is devoted to describing ways to help ensure that research findings can be replicated by others, with a focus on the design and execution of laboratory experiments. Essential components for this include clearly defining the question being asked, using available information or information from pilot studies to aid in the design the experiment, and choosing manipulations under a logical framework based on Mill's "methods of knowing" to build confidence in putative causal links. Final experimental design requires systematic attention to detail, including the choice of controls, sample selection, blinding to avoid bias, and the use of power analysis to determine the sample size. Execution of the experiment is done with care to ensure that the independent variables are controlled and the measurements of the dependent variables are accurate. While there are always differences among laboratories with respect to technical expertise, equipment, and suppliers, execution of the steps itemized in this unit will ensure well-designed and well-executed experiments to answer any question in biomedical research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Design and Practices for Use of Automated Drilling and Sample Handling in MARTE While Minimizing Terrestrial and Cross Contamination

    NASA Astrophysics Data System (ADS)

    Miller, David P.; Bonaccorsi, Rosalba; Davis, Kiel

    2008-10-01

    Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources -- whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination) -- to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.

  10. Design and practices for use of automated drilling and sample handling in MARTE while minimizing terrestrial and cross contamination.

    PubMed

    Miller, David P; Bonaccorsi, Rosalba; Davis, Kiel

    2008-10-01

    Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources--whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination)-to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.

  11. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method

    PubMed Central

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-01-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308

  12. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method.

    PubMed

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-05-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.

  13. Orthogonalizing EM: A design-based least squares algorithm

    PubMed Central

    Xiong, Shifeng; Dai, Bin; Huling, Jared; Qian, Peter Z. G.

    2016-01-01

    We introduce an efficient iterative algorithm, intended for various least squares problems, based on a design of experiments perspective. The algorithm, called orthogonalizing EM (OEM), works for ordinary least squares and can be easily extended to penalized least squares. The main idea of the procedure is to orthogonalize a design matrix by adding new rows and then solve the original problem by embedding the augmented design in a missing data framework. We establish several attractive theoretical properties concerning OEM. For the ordinary least squares with a singular regression matrix, an OEM sequence converges to the Moore-Penrose generalized inverse-based least squares estimator. For ordinary and penalized least squares with various penalties, it converges to a point having grouping coherence for fully aliased regression matrices. Convergence and the convergence rate of the algorithm are examined. Finally, we demonstrate that OEM is highly efficient for large-scale least squares and penalized least squares problems, and is considerably faster than competing methods when n is much larger than p. Supplementary materials for this article are available online. PMID:27499558

  14. A multiple-drawer medication layout problem in automated dispensing cabinets.

    PubMed

    Pazour, Jennifer A; Meller, Russell D

    2012-12-01

    In this paper we investigate the problem of locating medications in automated dispensing cabinets (ADCs) to minimize human selection errors. We formulate the multiple-drawer medication layout problem and show that the problem can be formulated as a quadratic assignment problem. As a way to evaluate various medication layouts, we develop a similarity rating for medication pairs. To solve industry-sized problem instances, we develop a heuristic approach. We use hospital ADC transaction data to conduct a computational experiment to test the performance of our developed heuristics, to demonstrate how our approach can aid in ADC design trade-offs, and to illustrate the potential improvements that can be made when applying an analytical process to the multiple-drawer medication layout problem. Finally, we present conclusions and future research directions.

  15. Building an information model (with the help of PSL/PSA). [Problem Statement Language/Problem Statement Analyzer

    NASA Technical Reports Server (NTRS)

    Callender, E. D.; Farny, A. M.

    1983-01-01

    Problem Statement Language/Problem Statement Analyzer (PSL/PSA) applications, which were once a one-step process in which product system information was immediately translated into PSL statements, have in light of experience been shown to result in inconsistent representations. These shortcomings have prompted the development of an intermediate step, designated the Product System Information Model (PSIM), which provides a basis for the mutual understanding of customer terminology and the formal, conceptual representation of that product system in a PSA data base. The PSIM is initially captured as a paper diagram, followed by formal capture in the PSL/PSA data base.

  16. Learning from external environments using Soar

    NASA Technical Reports Server (NTRS)

    Laird, John E.

    1989-01-01

    Soar, like the previous PRODIGY and Theo, is a problem-solving architecture that attempts to learn from experience; unlike them, it takes a more uniform approach, using a single forward-chaining architecture for planning and execution. Its single learning mechanism, designated 'chunking', is domain-independent. Two developmental approaches have been employed with Soar: the first of these allows the architecture to attempt a problem on its own, while the second involves a degree of external guidance. This learning through guidance is integrated with general problem-solving and autonomous learning, leading to an avoidance of human interaction for simple problems that Soar can solve on its own.

  17. The effects of online science instruction using geographic information systems to foster inquiry learning of teachers and middle school science students

    NASA Astrophysics Data System (ADS)

    Hagevik, Rita Anne

    This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the higher the score. Results indicated that 75% of the teachers' integrated GIS into classroom instruction two years after the GIS workshop. Even though teaching experience was negatively related to spatial reasoning test scores, implementation of GIS by teachers in the workshop was not influenced by years of teaching experience. The results indicate that GIS can be universally used for classroom instruction.

  18. Characterization of Settled Atmospheric Dust by the DART Experiment

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo

    1999-01-01

    The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.

  19. Assessing the Two-Plasmon Decay Threat Through Simulations and Experiments on the NIKE Laser System

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, J. L.; Oh, J.; Schmitt, A. J.; Obenschain, S.

    2010-11-01

    NIKE is a Krf laser system at the Naval Research Laboratory used to explore hydrodynamic stability, equation of state, and other physics problems arising in IFE research. The comparatively short KrF wavelength is expected to raise the threshold of most parametric instabilities. We report on simulations performed using the FAST3d radiation hydrocode to design TPD experiments that have have allowed us to explore the validity of simple threshold formulas and help establish the accuracy of our simulations. We have also studied proposed high-gain shock ignition designs and devised experiments that can approach the relevant scalelength-temperature regime, allowing us a potential experimental method to study the LPI threat to these designs by direct observation. Through FAST3d studies of shock-ignited and conventional direct-drive designs with KrF (248 nm) and 3rd harmonic (351nm) drivers, we examine the benefits of the shorter wavelength KrF light in reducing the LPI threat.

  20. Progress of the Dust Accumulation and Removal Technology Experiment (DART) for the Mars 2001 Lander

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Landis, Geoffrey A.; Wilt, David; Krasowski, Michael; Greer, Lawrence; Baraona, Cosmo; Scheiman, David

    2005-01-01

    Dust deposition could be a significant problem for photovoltaic array operation for long duration missions on the surface of Mars. Measurements made by Pathfinder showed 0.3 percent loss of solar array performance per day due to dust obscuration. We have designed an experiment package, "DART", which is part of the Mars ISPP Precursor (MIP) package, to fly on the Mars-2001 Surveyor Lander. This mission, to launch in April 2001, will arrive on Mars in January 2002. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on array performance, and test several methods of clearing dust from solar cells.

  1. Design of high pressure oxygen filter for extravehicular activity life support system, volume 1

    NASA Technical Reports Server (NTRS)

    Wilson, B. A.

    1977-01-01

    The experience of the National Aeronautics and Space Administration (NASA) with extravehicular activity life support emergency oxygen supply subsystems has shown a large number of problems associated with particulate contamination. These problems have resulted in failures of high pressure oxygen component sealing surfaces. A high pressure oxygen filter was designed which would (a) control the particulate contamination level in the oxygen system to a five-micron glass bead rating, ten-micron absolute condition (b) withstand the dynamic shock condition resulting from the sudden opening of 8000 psi oxygen system shutoff valve. Results of the following program tasks are reported: (1) contaminant source identification tests, (2) dynamic system tests, (3) high pressure oxygen filter concept evaluation, (4) design, (5) fabrication, (6) test, and (7) application demonstration.

  2. Flying qualities - A costly lapse in flight-control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1982-01-01

    Generic problems in advanced aircraft with advanced control systems which suffer from control sensitivity, sluggish response, and pilot-induced oscillation tendencies are examined, with a view to improving techniques for eliminating the problems in the design phase. Results of two NASA and NASA/AIAA workshops reached a consensus that flying qualities criteria do not match control system development, control system designers are not relying on past experience in their field, ground-based simulation is relied on too heavily, and communications between flying qualities and control systems engineers need improvement. A summation is offered in that hardware and software have outstripped the pilot's capacity to use the capabilities which new aircraft offer. The flying qualities data base is stressed to be dynamic, and continually redefining the man/machine relationships.

  3. Wrinkle-free design of thin membrane structures using stress-based topology optimization

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Xing, Jian; Niu, Yanzhuang; Li, Ming; Kang, Zhan

    2017-05-01

    Thin membrane structures would experience wrinkling due to local buckling deformation when compressive stresses are induced in some regions. Using the stress criterion for membranes in wrinkled and taut states, this paper proposed a new stress-based topology optimization methodology to seek the optimal wrinkle-free design of macro-scale thin membrane structures under stretching. Based on the continuum model and linearly elastic assumption in the taut state, the optimization problem is defined as to maximize the structural stiffness under membrane area and principal stress constraints. In order to make the problem computationally tractable, the stress constraints are reformulated into equivalent ones and relaxed by a cosine-type relaxation scheme. The reformulated optimization problem is solved by a standard gradient-based algorithm with the adjoint-variable sensitivity analysis. Several examples with post-bulking simulations and experimental tests are given to demonstrate the effectiveness of the proposed optimization model for eliminating stress-related wrinkles in the novel design of thin membrane structures.

  4. Autogenic-Feedback Training (AFT) as a preventive method for space motion sickness: Background and experimental design

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.

    1993-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. The background research is reviewed and the experimental design of a formal life sciences shuttle flight experiment designed to prevent space motion sickness in shuttle crew members is presented. This experiment utilizes a behavioral medicine approach to solving this problem. This method, Autogenic-Feedback Training (AFT), involves training subjects to voluntarily control several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during ground-based tests in over 200 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Proposed changes to this experiment for future manifests are included.

  5. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.

  6. Causative factors of cost overrun in highway projects of Sindh province of Pakistan

    NASA Astrophysics Data System (ADS)

    Sohu, S.; Halid, A.; Nagapan, S.; Fattah, A.; Latif, I.; Ullah, K.

    2017-11-01

    Cost overrun is an increase of cost of project from approved budget which was signed by parties at the time of tender. Cost overrun in construction of highway projects is a common problem worldwide and construction industry of Pakistan is also facing this crucial problem of cost overrun in highway projects of Pakistan. The main objective of this research is to identify the causative factors of cost overrun in highway projects of Sindh province of Pakistan. A well designed questionnaire was developed based on 64 common factors of cost overrun from literature review. Developed questionnaire was distributed among selected 30 experts from owner/client, designer/consultant and contractor who have experience more than 20 years’ experience in highway projects. The collected data was statistical analyzed. After analysis results showed that delay process in payment by client, inadequate planning, client interference, poor contract management, delay of decision making, change of scope of project and financial problems faced by client were most causative factors of cost overrun in highway projects. This research will provide alertness to stakeholders of highway projects of Sindh province to avoid cost overrun in projects.

  7. Disturbances and Contradictions in an Online Conference

    ERIC Educational Resources Information Center

    Carr, Tony; Ludvigsen, Sten Runar

    2017-01-01

    This article analyses participant experiences and statements about perceived problems in two online conferences to identify tensions and disturbances relating to external factors, conference technology, online discussions and design choices and then considers the underlying contradictions within the conference systems which generate both positive…

  8. Computations in Plasma Physics.

    ERIC Educational Resources Information Center

    Cohen, Bruce I.; Killeen, John

    1983-01-01

    Discusses contributions of computers to research in magnetic and inertial-confinement fusion, charged-particle-beam propogation, and space sciences. Considers use in design/control of laboratory and spacecraft experiments and in data acquisition; and reviews major plasma computational methods and some of the important physics problems they…

  9. Design and Analysis of Windmill Simulation and Pole by Solidwork Program

    NASA Astrophysics Data System (ADS)

    Mulyana, Tatang; Sebayang, Darwin; R, Akmal Muamar. D.; A, Jauharah H. D.; Yahya Shomit, M.

    2018-03-01

    The Indonesian state of archipelago has great wind energy potential. For micro-scale power generation, the energy obtained from the windmill can be connected directly to the electrical load and can be used without problems. However, for macro-scale power generation, problems will arise such as the design of vane shapes, there should be a simulation and an accurate experiment to produce blades with a special shape that can capture wind energy. In addition, daily and yearly wind and wind rate calculations are also required to ensure the best latitude and longitude positions for building windmills. This paper presents a solution to solve the problem of how to produce a windmill which in the builder is very practical and very mobile can be moved its location. Before a windmill prototype is built it should have obtained the best windmill design result. Therefore, the simulation of the designed windmill is of crucial importance. Solid simulation express is a tool that serves to generate simulation of a design. Some factors that can affect a design result include the power part and the rest part of the part, material selection, the load is given, the security of the design power made, and changes in shape due to treat the load given to the design made. In this paper, static and thermal simulations of windmills have been designed. Based on the simulation result on the designed windmill, it shows that the design has been made very satisfactory so that it can be done prototyping fabrication process.

  10. Increasing Engagement in Science through an Authentic Crop Protection Experiment for Year 9 School Students Working with Scientists

    ERIC Educational Resources Information Center

    Oliver, Richard; Rybak, Kasia; Gruber, Cornelia; Nicholls, Graeme; Roberts, Graeme; Mengler, Janet; Oliver, Mary

    2011-01-01

    Practical work is often considered to be a highlight of science classes for students. However, there are few opportunities for students to engage in an investigation which is situated in a real world problem and students are required to contribute their own ideas to the design and conduct of an experiment. This paper reports on a Scientists in…

  11. Developing optimal input design strategies in cancer systems biology with applications to microfluidic device engineering.

    PubMed

    Menolascina, Filippo; Bellomo, Domenico; Maiwald, Thomas; Bevilacqua, Vitoantonio; Ciminelli, Caterina; Paradiso, Angelo; Tommasi, Stefania

    2009-10-15

    Mechanistic models are becoming more and more popular in Systems Biology; identification and control of models underlying biochemical pathways of interest in oncology is a primary goal in this field. Unfortunately the scarce availability of data still limits our understanding of the intrinsic characteristics of complex pathologies like cancer: acquiring information for a system understanding of complex reaction networks is time consuming and expensive. Stimulus response experiments (SRE) have been used to gain a deeper insight into the details of biochemical mechanisms underlying cell life and functioning. Optimisation of the input time-profile, however, still remains a major area of research due to the complexity of the problem and its relevance for the task of information retrieval in systems biology-related experiments. We have addressed the problem of quantifying the information associated to an experiment using the Fisher Information Matrix and we have proposed an optimal experimental design strategy based on evolutionary algorithm to cope with the problem of information gathering in Systems Biology. On the basis of the theoretical results obtained in the field of control systems theory, we have studied the dynamical properties of the signals to be used in cell stimulation. The results of this study have been used to develop a microfluidic device for the automation of the process of cell stimulation for system identification. We have applied the proposed approach to the Epidermal Growth Factor Receptor pathway and we observed that it minimises the amount of parametric uncertainty associated to the identified model. A statistical framework based on Monte-Carlo estimations of the uncertainty ellipsoid confirmed the superiority of optimally designed experiments over canonical inputs. The proposed approach can be easily extended to multiobjective formulations that can also take advantage of identifiability analysis. Moreover, the availability of fully automated microfluidic platforms explicitly developed for the task of biochemical model identification will hopefully reduce the effects of the 'data rich--data poor' paradox in Systems Biology.

  12. Wireless device connection problems and design solutions

    NASA Astrophysics Data System (ADS)

    Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng

    2016-09-01

    Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.

  13. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  14. MSFC Skylab mission report: Saturn workshop

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Skylab's Saturn Workshop mission performance is presented. Experiments were conducted to determine man's ability to live and work in space for extended periods, to make sun and earth investigations, and to advance science and technology in several areas of space applications. Performance is compared with design parameters, and problem causes and solutions are treated. The Saturn Workshop successfully performed its role and advanced the technology of space systems design.

  15. Information measures in nonlinear experimental design

    NASA Technical Reports Server (NTRS)

    Niple, E.; Shaw, J. H.

    1980-01-01

    Some different approaches to the problem of designing experiments which estimate the parameters of nonlinear models are discussed. The assumption in these approaches that the information in a set of data can be represented by a scalar is criticized, and the nonscalar discrimination information is proposed as the proper measure to use. The two-step decay example in Box and Lucas (1959) is used to illustrate the main points of the discussion.

  16. HAWK MACH-III Intelligent Maintenance Tutor Design Development Report

    DTIC Science & Technology

    1986-12-01

    objective can best be achieved by designing the MACH-IIl to provide augmented hands-on experience in troubleshooting in a setting which will emphasize...artificial intelligence supporting the development activity will focus on development of a strategy for effective and efficient hierarchical simulation of...main components of such a system are the system simulation and problem-solving expertise, the student model, and the tutorial strategies . In the MACH

  17. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  18. Building Efficiency Technologies by Tomorrow’s Engineers and Researchers (BETTER) Capstone. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Shannon

    BETTER Capstone supported 29 student project teams consisting of 155 students over two years in developing transformative building energy efficiency technologies through a capstone design experience. Capstone is the culmination of an undergraduate student’s engineering education. Interdisciplinary teams of students spent a semester designing and prototyping a technological solution for a variety building energy efficiency problems. During this experience students utilized the full design process, including the manufacturing and testing of a prototype solution, as well as publically demonstrating the solution at the Capstone Design Expo. As part of this project, students explored modern manufacturing techniques and gained hands-on experiencemore » with these techniques to produce their prototype technologies. This research added to the understanding of the challenges within building technology education and engagement with industry. One goal of the project was to help break the chicken-and-egg problem with getting students to engage more deeply with the building technology industry. It was learned however that this industry is less interested in trying innovative new concept but rather interested in hiring graduates for existing conventional building efforts. While none of the projects yielded commercial success, much individual student growth and learning was accomplished, which is a long-term benefit to the public at large.« less

  19. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images

    PubMed Central

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-01-01

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665

  20. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    PubMed

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  1. Characterization of complex systems using the design of experiments approach: transient protein expression in tobacco as a case study.

    PubMed

    Buyel, Johannes Felix; Fischer, Rainer

    2014-01-31

    Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.

  2. CamOptimus: a tool for exploiting complex adaptive evolution to optimize experiments and processes in biotechnology.

    PubMed

    Cankorur-Cetinkaya, Ayca; Dias, Joao M L; Kludas, Jana; Slater, Nigel K H; Rousu, Juho; Oliver, Stephen G; Dikicioglu, Duygu

    2017-06-01

    Multiple interacting factors affect the performance of engineered biological systems in synthetic biology projects. The complexity of these biological systems means that experimental design should often be treated as a multiparametric optimization problem. However, the available methodologies are either impractical, due to a combinatorial explosion in the number of experiments to be performed, or are inaccessible to most experimentalists due to the lack of publicly available, user-friendly software. Although evolutionary algorithms may be employed as alternative approaches to optimize experimental design, the lack of simple-to-use software again restricts their use to specialist practitioners. In addition, the lack of subsidiary approaches to further investigate critical factors and their interactions prevents the full analysis and exploitation of the biotechnological system. We have addressed these problems and, here, provide a simple-to-use and freely available graphical user interface to empower a broad range of experimental biologists to employ complex evolutionary algorithms to optimize their experimental designs. Our approach exploits a Genetic Algorithm to discover the subspace containing the optimal combination of parameters, and Symbolic Regression to construct a model to evaluate the sensitivity of the experiment to each parameter under investigation. We demonstrate the utility of this method using an example in which the culture conditions for the microbial production of a bioactive human protein are optimized. CamOptimus is available through: (https://doi.org/10.17863/CAM.10257).

  3. Hybrid Metaheuristics for Solving a Fuzzy Single Batch-Processing Machine Scheduling Problem

    PubMed Central

    Molla-Alizadeh-Zavardehi, S.; Tavakkoli-Moghaddam, R.; Lotfi, F. Hosseinzadeh

    2014-01-01

    This paper deals with a problem of minimizing total weighted tardiness of jobs in a real-world single batch-processing machine (SBPM) scheduling in the presence of fuzzy due date. In this paper, first a fuzzy mixed integer linear programming model is developed. Then, due to the complexity of the problem, which is NP-hard, we design two hybrid metaheuristics called GA-VNS and VNS-SA applying the advantages of genetic algorithm (GA), variable neighborhood search (VNS), and simulated annealing (SA) frameworks. Besides, we propose three fuzzy earliest due date heuristics to solve the given problem. Through computational experiments with several random test problems, a robust calibration is applied on the parameters. Finally, computational results on different-scale test problems are presented to compare the proposed algorithms. PMID:24883359

  4. Utilizing geogebra in financial mathematics problems: didactic experiment in vocational college

    NASA Astrophysics Data System (ADS)

    Ghozi, Saiful; Yuniarti, Suci

    2017-12-01

    GeoGebra application offers users to solve real problems in geometry, statistics, and algebra fields. This studydeterminesthe effect of utilizing Geogebra on students understanding skill in the field of financial mathematics. This didactic experiment study used pre-test-post-test control group design. Population of this study were vocational college students in Banking and Finance Program of Balikpapan State Polytechnic. Two classes in the first semester were chosen using cluster random sampling technique, one class as experiment group and one class as control group. Data were analysed used independent sample t-test. The result of data analysis showed that students understanding skill with learning by utilizing GeoGeobra is better than students understanding skill with conventional learning. This result supported that utilizing GeoGebra in learning can assist the students to enhance their ability and depth understanding on mathematics subject.

  5. Sleep in Neurodevelopmental Disorders

    PubMed Central

    Esbensen, Anna J; Schwichtenberg, Amy J

    2017-01-01

    Individuals with intellectual and developmental disabilities (IDD) experience sleep problems at higher rates than the general population. Although individuals with IDD are a heterogeneous group, several sleep problems cluster within genetic syndromes or disorders. This review summarizes the prevalence of sleep problems experienced by individuals with Angelman syndrome, Cornelia de Lange syndrome, Cri du Chat syndrome, Down syndrome, fragile X syndrome, Prader-Willi syndrome, Smith-Magenis syndrome, Williams syndrome, autism spectrum disorder, and idiopathic IDD. Factors associated with sleep problems and the evidence for sleep treatments are reviewed for each neurodevelopmental disorder. Sleep research advancements in neurodevelopmental disorders are reviewed, including the need for consistency in defining and measuring sleep problems, considerations for research design and reporting of results, and considerations when evaluating sleep treatments. PMID:28503406

  6. How immigrant workers experience workplace problems: a qualitative study.

    PubMed

    de Castro, Arnold B; Fujishiro, Kaori; Sweitzer, Erica; Oliva, Jose

    2006-01-01

    In this qualitative study, the authors describe work organization factors, problems workers encounter on the job, consequences of these problems, and actions taken to deal with them. Study participants were immigrant workers seeking assistance at the Chicago Interfaith Workers' Rights Center. Using a grounded theory approach, the investigators coded narratives from 455 records describing workers' problems. Emerged sequences of events were then integrated into a model. Data show that workers' rights are systematically violated and problems are rooted in how jobs are designed and managed. Work organization factors are associated with occupational injury/illness, job loss, and worker actions. Employer responses included indifference and various forms of retaliation. This model provides insight into the work-related troubles immigrants face and informs hypothesis generation and action initiatives.

  7. The pseudo-Boolean optimization approach to form the N-version software structure

    NASA Astrophysics Data System (ADS)

    Kovalev, I. V.; Kovalev, D. I.; Zelenkov, P. V.; Voroshilova, A. A.

    2015-10-01

    The problem of developing an optimal structure of N-version software system presents a kind of very complex optimization problem. This causes the use of deterministic optimization methods inappropriate for solving the stated problem. In this view, exploiting heuristic strategies looks more rational. In the field of pseudo-Boolean optimization theory, the so called method of varied probabilities (MVP) has been developed to solve problems with a large dimensionality. Some additional modifications of MVP have been made to solve the problem of N-version systems design. Those algorithms take into account the discovered specific features of the objective function. The practical experiments have shown the advantage of using these algorithm modifications because of reducing a search space.

  8. A Three-Stage Counter Current Leaching Rig for the Senior Laboratory.

    ERIC Educational Resources Information Center

    Davies, Wayne A.

    1989-01-01

    Described is a reliable and predictable laboratory experiment which represents the result of an integrated approach to design with an emphasis on teaching. Notes the flat-celled rig has logged over 100 hours service in 2 years without any problems. (MVL)

  9. Understanding Our Environment: Life.

    ERIC Educational Resources Information Center

    Arndt, Laura M. Sanders

    This unit is part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience. Students begin by researching the migratory songbirds that live in their community. They determine the bird's roles in the ecosystems and their…

  10. The cart before the horse: Mariner spacecraft and launch vehicles

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Evolution of unmanned space exploration (Pioneer, Ranger, Surveyor, and Prospector) up to 1960, and the problems in the design and use of the Atlas Centaur launch vehicle were discussed. The Mariner Program was developed from the experience gained from the previous unmanned flights.

  11. Discovering the Business Studio

    ERIC Educational Resources Information Center

    Barry, Daved; Meisiek, Stefan

    2015-01-01

    Over the past decade, numerous business schools have begun experimenting with studio-based inquiry, often drawing inspiration from professional studios used within art and design schools and from business and governmental studios used for problem-solving and innovation. Business school studios vary considerably in form, ranging from temporary…

  12. The Educational Uses of Intermedia.

    ERIC Educational Resources Information Center

    Launhardt, Julie; Kahn, Paul

    1992-01-01

    Uses of Intermedia, computer software designed to help instructors express relationships between concepts in the sciences and humanities, are discussed. The kinds of educational problems Intermedia was intended to address are described, some materials created using it are surveyed, and experiences with Intermedia in various educational contexts…

  13. Space languages

    NASA Technical Reports Server (NTRS)

    Hays, Dan

    1987-01-01

    Applications of linguistic principles to potential problems of human and machine communication in space settings are discussed. Variations in language among speakers of different backgrounds and change in language forms resulting from new experiences or reduced contact with other groups need to be considered in the design of intelligent machine systems.

  14. Centrifugal pumps for rocket engines

    NASA Technical Reports Server (NTRS)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  15. Development and validation of a low-cost mobile robotics testbed

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Hayes, Martin J.

    2012-03-01

    This paper considers the design, construction and validation of a low-cost experimental robotic testbed, which allows for the localisation and tracking of multiple robotic agents in real time. The testbed system is suitable for research and education in a range of different mobile robotic applications, for validating theoretical as well as practical research work in the field of digital control, mobile robotics, graphical programming and video tracking systems. It provides a reconfigurable floor space for mobile robotic agents to operate within, while tracking the position of multiple agents in real-time using the overhead vision system. The overall system provides a highly cost-effective solution to the topical problem of providing students with practical robotics experience within severe budget constraints. Several problems encountered in the design and development of the mobile robotic testbed and associated tracking system, such as radial lens distortion and the selection of robot identifier templates are clearly addressed. The testbed performance is quantified and several experiments involving LEGO Mindstorm NXT and Merlin System MiaBot robots are discussed.

  16. A mathematical problem and a Spacecraft Control Laboratory Experiment (SCOLE) used to evaluate control laws for flexible spacecraft. NASA/IEEE design challenge

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Balakrishnan, A. V.

    1988-01-01

    The problen of controlling large, flexible space systems has been evaluated using computer simulation. In several cases, ground experiments have also been used to validate system performance under more realistic conditions. There remains a need, however, to test additional control laws for flexible spacecraft and to directly compare competing design techniques. A program is discussed which has been initiated to make direct comparisons of control laws for, first, a mathematical problem, then and experimental test article being assembled under the cognizance of the Spacecraft Control Branch at the NASA Langley Research Center with the advice and counsel of the IEEE Subcommittee on Large Space Structures. The physical apparatus will consist of a softly supported dynamic model of an antenna attached to the Shuttle by a flexible beam. The control objective will include the task of directing the line-of-sight of the Shuttle antenna configuration toward a fixed target, under conditions of noisy data, control authority and random disturbances.

  17. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  18. Parts, Materials, and Processes Experience Summary. Volume 1; [Catalog of ALERT and Other Information on Basic Design, Reliability, Quality and Applications Programs

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The ALERT program, a system for communicating common problems with parts, materials, and processes, is condensed and catalogued. Expanded information on selected topics is provided by relating the problem area (failure) to the cause, the investigations and findings, the suggestions for avoidance (inspections, screening tests, proper part applications), and failure analysis procedures. The basic objective of ALERT is the avoidance of the recurrence of parts, materials, and processed problems, thus improving the reliability of equipment produced for and used by the government.

  19. The influence of types of war experiences on conduct problems in war-affected youth in Northern Ugandan: Findings from the WAYS study.

    PubMed

    Amone-P Olak, Kennedy; Ovuga, Emilio

    2017-05-01

    Exposure to war is associated with poor psychosocial outcomes. Yet the effects of different types of war events on various psychosocial outcomes such as conduct problems remain unknown. This study aims to assess whether various war events differ in predicting conduct problems. Using data from an on-going longitudinal research project, the WAYS study, the current article examined the relationship between specific war events and conduct problems in war-affected youth in Northern Uganda (N=539, baseline age=22.39; SD=2.03, range 18-25). Regression analyses were conducted to relate each type of war experience to conduct problems. War categories of "witnessing violence", "deaths", "threat to loved ones" and "sexual abuse" were associated with reporting conduct problems. Multivariable models yielded independent effects of ''witnessing violence'' (β=0.09, 95% CI: 0.01, 0.18) and ''Sexual abuse'' (β=0.09, 95% CI: 0.02, 0.19) on conduct problems while "duration in captivity" independently and negatively predicted conduct problems (β=-0.14, 95% CI: -0.23, -0.06). Types of war events vary in predicting conduct problems and should be considered when designing interventions to alleviate negative consequences of exposure to war. Moreover, longer duration in captivity appear to protect war-affected youth from conduct problems. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. The influence of types of war experiences on conduct problems in war-affected youth in Northern Ugandan: Findings from the WAYS study

    PubMed Central

    Amone-P′Olak, Kennedy; Ovuga, Emilio

    2017-01-01

    Exposure to war is associated with poor psychosocial outcomes. Yet the effects of different types of war events on various psychosocial outcomes such as conduct problems remain unknown. This study aims to assess whether various war events differ in predicting conduct problems. Using data from an on-going longitudinal research project, the WAYS study, the current article examined the relationship between specific war events and conduct problems in war-affected youth in Northern Uganda (N=539, baseline age=22.39; SD=2.03, range 18– 25). Regression analyses were conducted to relate each type of war experience to conduct problems. War categories of “witnessing violence”, “deaths”, “threat to loved ones” and “sexual abuse” were associated with reporting conduct problems. Multivariable models yielded independent effects of “witnessing violence” (β=0.09, 95% CI: 0.01, 0.18) and “Sexual abuse” (β=0.09, 95% CI: 0.02, 0.19) on conduct problems while “duration in captivity” independently and negatively predicted conduct problems (β=−0.14, 95% CI: −0.23, −0.06). Types of war events vary in predicting conduct problems and should be considered when designing interventions to alleviate negative consequences of exposure to war. Moreover, longer duration in captivity appear to protect war-affected youth from conduct problems. PMID:28171768

  1. Active learning of introductory optics: real-time physics labs, interactive lecture demonstrations and magic

    NASA Astrophysics Data System (ADS)

    Sokoloff, David R.

    2005-10-01

    Widespread physics education research has shown that most introductory physics students have difficulty learning essential optics concepts - even in the best of traditional courses, and that well-designed active learning approaches can remedy this problem. This mini-workshop and the associated poster session will provide direct experience with methods for promoting students' active involvement in the learning process in lecture and laboratory. Participants will have hands-on experience with activities from RealTime Physics labs and Interactive Lecture Demonstrations - a learning strategy for large (and small) lectures, including specially designed Optics Magic Tricks. The poster will provide more details on these highly effective curricula.

  2. An alternative extragradient projection method for quasi-equilibrium problems.

    PubMed

    Chen, Haibin; Wang, Yiju; Xu, Yi

    2018-01-01

    For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.

  3. The Human Powered Submarine Team of Virginia Tech Propulsion System Design Final Report

    NASA Technical Reports Server (NTRS)

    An, Eric; Bennett, Matt; Callis, Ron; Chen, Chester; Lee, John; Milan-Williams, Kristy

    1999-01-01

    The Human Powered Submarine Team has been in existence at Virginia Tech since its conception in 1993. Since then, it has served as a way for engineering students from many different disciplines to implement design conception and realization. The first submarine built was Phantom 1, a two-man submarine made of fiberglass. After construction was complete, Phantom 1 was ready for racing, but, unfortunately, suffered fatal problems come race time. The submarine team slowed down a bit after experiencing racing problems, but was revived in 1995 when design efforts for a new two-man submarine, the Phantom 2 commence. The propulsion system consisted of a chain and gear drive system using an ultra-light helicopter tail rotor for a propeller. Although the team learned valuable lessons as a result of Phantom 1's problems, Phantom 2 still experiences problems at races. After various parts of Phantom 2 are redesigned, it is once again ready for racing and proves that the redesign was well worth the time and effort. In 1997, Phantom 2 not only finishes its first race, held in San Diego, California, but comes in third. This success sparks yet another revival of the submarine team and design for the team's current project, the Phantom 3, a one-man submarine, is started. In 1998, the plug for Phantom 3 is built and the hull is constructed. With so many past problems from which to learn, Phantom 3 promises to be the fastest and best-designed submarine the team has developed thus far. The current speed world-record is 7 knots.

  4. Design-Filter Selection for H2 Control of Microgravity Isolation Systems: A Single-Degree-of-Freedom Case Study

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Whorton, Mark S.

    2000-01-01

    Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.

  5. A visualization framework for design and evaluation

    NASA Astrophysics Data System (ADS)

    Blundell, Benjamin J.; Ng, Gary; Pettifer, Steve

    2006-01-01

    The creation of compelling visualisation paradigms is a craft often dominated by intuition and issues of aesthetics, with relatively few models to support good design. The majority of problem cases are approached by simply applying a previously evaluated visualisation technique. A large body of work exists covering the individual aspects of visualisation design such as the human cognition aspects visualisation methods for specific problem areas, psychology studies and so forth, yet most frameworks regarding visualisation are applied after-the-fact as an evaluation measure. We present an extensible framework for visualisation aimed at structuring the design process, increasing decision traceability and delineating the notions of function, aesthetics and usability. The framework can be used to derive a set of requirements for good visualisation design and evaluating existing visualisations, presenting possible improvements. Our framework achieves this by being both broad and general, built on top of existing works, with hooks for extensions and customizations. This paper shows how existing theories of information visualisation fit into the scheme, presents our experience in the application of this framework on several designs, and offers our evaluation of the framework and the designs studied.

  6. Experiences with general practitioners described by families of children with intellectual disabilities and challenging behaviour: a qualitative study

    PubMed Central

    Lien, Lars; Danbolt, Lars J; Kjønsberg, Kari; Haavet, Ole R

    2011-01-01

    Objective To investigate parents' experiences of follow-up by general practitioners (GPs) of children with intellectual disabilities (ID) and comorbid behavioural and/or psychological problems. Design Qualitative study based on in-depth interviews with parents of children with ID and a broad range of accompanying health problems. Setting County centred study in Norway involving primary and specialist care. Participants Nine parents of seven children with ID, all received services from an assigned GP and a specialist hospital department. Potential participants were identified by the specialist hospital department and purposefully selected by the authors to represent both genders and a range of diagnoses, locations and assigned GPs. Results Three clusters of experiences emerged from the analysis: expectations, relationships and actual use. The participants had low expectations of the GPs' competence and involvement with their child, and primarily used the GP for the treatment of simple somatic problems. Only one child regularly visited their GP for general and mental health check-ups. The participants' experience of their GPs was that they did not have time and were not interested in the behavioural and mental problems of these children. Conclusions Families with children with ID experience a complex healthcare system in situations where they are vulnerable to lack of information, involvement and competence. GPs are part of a stable service system and are in a position to provide security, help and support to these families. Parents' experiences could be improved by regular health checks for their children and GPs being patient, taking time and showing interest in challenging behaviour. PMID:22123921

  7. The effect of Think Pair Share (TPS) using scientific approach on students’ self-confidence and mathematical problem-solving

    NASA Astrophysics Data System (ADS)

    Rifa’i, A.; Lestari, H. P.

    2018-03-01

    This study was designed to know the effects of Think Pair Share using Scientific Approach on students' self-confidence and mathematical problem-solving. Quasi-experimental with pre-test post-test non-equivalent group method was used as a basis for design this study. Self-confidence questionnaire and problem-solving test have been used for measurement of the two variables. Two classes of the first grade in religious senior high school (MAN) in Indonesia were randomly selected for this study. Teaching sequence and series from mathematics book at control group in the traditional way and at experiment group has been in TPS using scientific approach learning method. For data analysis regarding students’ problem-solving skill and self-confidence, One-Sample t-Test, Independent Sample t-Test, and Multivariate of Variance (MANOVA) were used. The results showed that (1) TPS using a scientific approach and traditional learning had positive effects (2) TPS using scientific approach learning in comparative with traditional learning had a more significant effect on students’ self-confidence and problem-solving skill.

  8. Promoting Experimental Problem-solving Ability in Sixth-grade Students Through Problem-oriented Teaching of Ecology: Findings of an intervention study in a complex domain

    NASA Astrophysics Data System (ADS)

    Roesch, Frank; Nerb, Josef; Riess, Werner

    2015-03-01

    Our study investigated whether problem-oriented designed ecology lessons with phases of direct instruction and of open experimentation foster the development of cross-domain and domain-specific components of experimental problem-solving ability better than conventional lessons in science. We used a paper-and-pencil test to assess students' abilities in a quasi-experimental intervention study utilizing a pretest/posttest control-group design (N = 340; average performing sixth-grade students). The treatment group received lessons on forest ecosystems consistent with the principle of education for sustainable development. This learning environment was expected to help students enhance their ecological knowledge and their theoretical and methodological experimental competencies. Two control groups received either the teachers' usual lessons on forest ecosystems or non-specific lessons on other science topics. We found that the treatment promoted specific components of experimental problem-solving ability (generating epistemic questions, planning two-factorial experiments, and identifying correct experimental controls). However, the observed effects were small, and awareness for aspects of higher ecological experimental validity was not promoted by the treatment.

  9. Designing Undergraduate Research Experiences: A Multiplicity of Options

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2001-12-01

    Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in completing a successful research experience. Outstanding undergraduate research experiences can take place in a wide variety of settings and serve a wide variety of student and faculty needs if projects are designed with these goals in mind.

  10. Space-ecology set covering problem for modeling Daiyun Mountain Reserve, China

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Wei; Liu, Jinfu; Huang, Jiahang; Zhang, Huiguang; Lan, Siren; Hong, Wei; Li, Wenzhou

    2018-02-01

    Site selection is an important issue in designing the nature reserve that has been studied over the years. However, a well-balanced relationship between preservation of biodiversity and site selection is still challenging. Unlike the existing methods, we consider three critical components, the spatial continuity, spatial compactness and ecological information to address the problem of designing the reserve. In this paper, we propose a new mathematical model of set covering problem called Space-ecology Set Covering Problem (SeSCP) for designing a reserve network. First, we generate the ecological information by forest resource investigation. Then, we split the landscape into elementary cells and calculate the ecological score of each cell. Next, we associate the ecological information with the spatial properties to select a set of cells to form a nature reserve for improving the ability of protecting the biodiversity. Two spatial constraints, continuity and compactability, are given in SeSCP. The continuity is to ensure that any selected site has to be connected with adjacent sites and the compactability is to minimize the perimeter of the selected sites. In computational experiments, we take Daiyun Mountain as a study area to demonstrate the feasibility and effectiveness of the proposed model.

  11. Virtual manufacturing in reality

    NASA Astrophysics Data System (ADS)

    Papstel, Jyri; Saks, Alo

    2000-10-01

    SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.

  12. What works with worked examples: Extending self-explanation and analogical comparison to synthesis problems

    NASA Astrophysics Data System (ADS)

    Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.

    2017-12-01

    The ability to solve physics problems that require multiple concepts from across the physics curriculum—"synthesis" problems—is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. Across three experiments with students from introductory calculus-based physics courses, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time on task.

  13. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations

    PubMed Central

    Duarte, Belmiro P.M.; Wong, Weng Kee; Oliveira, Nuno M.C.

    2015-01-01

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D–, A– and E–optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D–optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice. PMID:26949279

  14. Model-based optimal design of experiments - semidefinite and nonlinear programming formulations.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee; Oliveira, Nuno M C

    2016-02-15

    We use mathematical programming tools, such as Semidefinite Programming (SDP) and Nonlinear Programming (NLP)-based formulations to find optimal designs for models used in chemistry and chemical engineering. In particular, we employ local design-based setups in linear models and a Bayesian setup in nonlinear models to find optimal designs. In the latter case, Gaussian Quadrature Formulas (GQFs) are used to evaluate the optimality criterion averaged over the prior distribution for the model parameters. Mathematical programming techniques are then applied to solve the optimization problems. Because such methods require the design space be discretized, we also evaluate the impact of the discretization scheme on the generated design. We demonstrate the techniques for finding D -, A - and E -optimal designs using design problems in biochemical engineering and show the method can also be directly applied to tackle additional issues, such as heteroscedasticity in the model. Our results show that the NLP formulation produces highly efficient D -optimal designs but is computationally less efficient than that required for the SDP formulation. The efficiencies of the generated designs from the two methods are generally very close and so we recommend the SDP formulation in practice.

  15. Transforming patient experience: health web science meets medicine 2.0.

    PubMed

    McHattie, Lynn-Sayers; Cumming, Grant; French, Tara

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London.

  16. Transforming Patient Experience: Health Web Science Meets Medicine 2.0

    PubMed Central

    2014-01-01

    Until recently, the Western biomedical paradigm has been effective in delivering health care, however this model is not positioned to tackle complex societal challenges or solve the current problems facing health care and delivery. The future of medicine requires a shift to a patient-centric model and in so doing the Internet has a significant role to play. The disciplines of Health Web Science and Medicine 2.0 are pivotal to this approach. This viewpoint paper argues that these disciplines, together with the field of design, can tackle these challenges. Drawing together ideas from design practice and research, complexity theory, and participatory action research we depict design as an approach that is fundamentally social and linked to concepts of person-centered care. We discuss the role of design, specifically co-design, in understanding the social, psychological, and behavioral dimensions of illness and the implications for the design of future care towards transforming the patient experience. This paper builds on the presentations and subsequent interdisciplinary dialogue that developed from the panel session "Transforming Patient Experience: Health Web Science Meets Web 2.0" at the 2013 Medicine 2.0 conference in London. PMID:25075246

  17. Design and implementation of a laboratory-based drug design and synthesis advanced pharmacy practice experience.

    PubMed

    Philip, Ashok; Stephens, Mark; Mitchell, Sheila L; Watkins, E Blake

    2015-04-25

    To provide students with an opportunity to participate in medicinal chemistry research within the doctor of pharmacy (PharmD) curriculum. We designed and implemented a 3-course sequence in drug design or drug synthesis for pharmacy students consisting of a 1-month advanced elective followed by two 1-month research advanced pharmacy practice experiences (APPEs). To maximize student involvement, this 3-course sequence was offered to third-year and fourth-year students twice per calendar year. Students were evaluated based on their commitment to the project's success, productivity, and professionalism. Students also evaluated the course sequence using a 14-item course evaluation rubric. Student feedback was overwhelmingly positive. Students found the experience to be a valuable component of their pharmacy curriculum. We successfully designed and implemented a 3-course research sequence that allows PharmD students in the traditional 4-year program to participate in drug design and synthesis research. Students report the sequence enhanced their critical-thinking and problem-solving skills and helped them develop as independent learners. Based on the success achieved with this sequence, efforts are underway to develop research APPEs in other areas of the pharmaceutical sciences.

  18. Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC

    PubMed Central

    Li, Miaomiao; Liang, Junsheng; Liu, Chong; Sun, Gongquan; Zhao, Gang

    2009-01-01

    Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance. PMID:22412313

  19. Engrained experience--a comparison of microclimate perception schemata and microclimate measurements in Dutch urban squares.

    PubMed

    Lenzholzer, Sanda

    2010-03-01

    Acceptance of public spaces is often guided by perceptual schemata. Such schemata also seem to play a role in thermal comfort and microclimate experience. For climate-responsive design with a focus on thermal comfort it is important to acquire knowledge about these schemata. For this purpose, perceived and "real" microclimate situations were compared for three Dutch urban squares. People were asked about their long-term microclimate perceptions, which resulted in "cognitive microclimate maps". These were compared with mapped microclimate data from measurements representing the common microclimate when people stay outdoors. The comparison revealed some unexpected low matches; people clearly overestimated the influence of the wind. Therefore, a second assumption was developed: that it is the more salient wind situations that become engrained in people's memory. A comparison using measurement data from windy days shows better matches. This suggests that these more salient situations play a role in the microclimate schemata that people develop about urban places. The consequences from this study for urban design are twofold. Firstly, urban design should address not only the "real" problems, but, more prominently, the "perceived" problems. Secondly, microclimate simulations addressing thermal comfort issues in urban spaces should focus on these perceived, salient situations.

  20. Mental Health Consumer Experiences and Strategies When Seeking Physical Health Care

    PubMed Central

    Ewart, Stephanie B.; Bocking, Julia; Happell, Brenda; Platania-Phung, Chris; Stanton, Robert

    2016-01-01

    People with mental illness have higher rates of physical health problems and consequently live significantly shorter lives. This issue is not yet viewed as a national health priority and research about mental health consumer views on accessing physical health care is lacking. The aim of this study is to explore the experience of mental health consumers in utilizing health services for physical health needs. Qualitative exploratory design was utilized. Semistructured focus groups were held with 31 consumer participants. Thematic analysis revealed that three main themes emerged: scarcity of physical health care, with problems accessing diagnosis, advice or treatment for physical health problems; disempowerment due to scarcity of physical health care; and tenuous empowerment describing survival resistance strategies utilized. Mental health consumers were concerned about physical health and the nonresponsive health system. A specialist physical health nurse consultant within mental health services should potentially redress this gap in health care provision. PMID:28462330

  1. Mass storage system experiences and future needs at the National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Olear, Bernard T.

    1992-01-01

    This presentation is designed to relate some of the experiences of the Scientific Computing Division at NCAR dealing with the 'data problem'. A brief history and a development of some basic Mass Storage System (MSS) principles are given. An attempt is made to show how these principles apply to the integration of various components into NCAR's MSS. There is discussion of future MSS needs for future computing environments.

  2. Experiences with lead/acid battery management in remote-area power-supply (RAPS) systems

    NASA Astrophysics Data System (ADS)

    Phillips, S. J.; Pryor, T. L.; Dymond, M. S.; Remmer, D. P.

    Battery management and general storage performance and cost remain major problems in remote-area power-supply (RAPS) systems utilizing renewable energy sources. A brief review of field experiences with lead/acid batteries is presented, together with results from battery tests carried out in the laboratory. It is recommended that further collaboration between battery manufacturers and system designers is established to develop improved storage systems for RAPS applications.

  3. The Role of Formal Experiment Design in Hypersonic Flight System Technology Development

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Ferlemann, Shelly M.; Rock, Ken E.; Ferlemann, Paul G.

    2002-01-01

    Hypersonic airbreathing engine (scramjet) powered vehicles are being considered to replace conventional rocket-powered launch systems. Effective utilization of scramjet engines requires careful integration with the air vehicle. This integration synergistically combines aerodynamic forces with propulsive cycle functions of the engine. Due to the highly integrated nature of the hypersonic vehicle design problem, the large flight envelope, and the large number of design variables, the use of a statistical design approach in design is effective. Modern Design-of-Experiments (MDOE) has been used throughout the Hyper-X program, for both systems analysis and experimental testing. Application of MDOE fall into four categories: (1) experimental testing; (2) studies of unit phenomena; (3) refining engine design; and (4) full vehicle system optimization. The MDOE process also provides analytical models, which are also used to document lessons learned, supplement low-level design tools, and accelerate future studies. This paper will discuss the design considerations for scramjet-powered vehicles, specifics of MDOE utilized for Hyper-X, and present highlights from the use of these MDOE methods within the Hyper-X Program.

  4. Fostering creativity in product and service development: validation in the domain of information technology.

    PubMed

    Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel

    2011-06-01

    This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.

  5. The Application of Problem-Based Learning in Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    Putra, Z. A.; Dewi, M.

    2018-02-01

    The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.

  6. Supporting flight data analysis for Space Shuttle Orbiter Experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The Space Shuttle Orbiter Experiments program in responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The Infrared Imagery of Shuttle (IRIS), Catalytic Surface Effects, and Tile Gap Heating experiments sponsored by Ames Research Center are part of this program. The paper describes the software required to process the flight data which support these experiments. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques have provided information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third Shuttle mission.

  7. Supporting flight data analysis for Space Shuttle Orbiter experiments at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Budnick, M. P.; Yang, L.; Chiasson, M. P.

    1983-01-01

    The space shuttle orbiter experiments program is responsible for collecting flight data to extend the research and technology base for future aerospace vehicle design. The infrared imagery of shuttle (IRIS), catalytic surface effects, and tile gap heating experiments sponsored by Ames Research Center are part of this program. The software required to process the flight data which support these experiments is described. In addition, data analysis techniques, developed in support of the IRIS experiment, are discussed. Using the flight data base, the techniques provide information useful in analyzing and correcting problems with the experiment, and in interpreting the IRIS image obtained during the entry of the third shuttle mission.

  8. The Marine Resources Experiment Program (MAREX)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.

  9. Design and testing of shape memory alloy actuation mechanism for flapping wing micro unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kamaruzaman, N. F.; Abdullah, E. J.

    2017-12-01

    Shape memory alloy (SMA) actuator offers great solution for aerospace applications with low weight being its most attractive feature. A SMA actuation mechanism for the flapping micro unmanned aerial vehicle (MAV) is proposed in this study, where SMA material is the primary system that provides the flapping motion to the wings. Based on several established design criteria, a design prototype has been fabricated to validate the design. As a proof of concept, an experiment is performed using an electrical circuit to power the SMA actuator to evaluate the flapping angle. During testing, several problems have been observed and their solutions for future development are proposed. Based on the experiment, the average recorded flapping wing angle is 14.33° for upward deflection and 12.12° for downward deflection. This meets the required design criteria and objective set forth for this design. The results prove the feasibility of employing SMA actuators in flapping wing MAV.

  10. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  11. Microgravity isolation system design: A modern control analysis framework

    NASA Technical Reports Server (NTRS)

    Hampton, R. D.; Knospe, C. R.; Allaire, P. E.; Grodsinsky, C. M.

    1994-01-01

    Many acceleration-sensitive, microgravity science experiments will require active vibration isolation from the manned orbiters on which they will be mounted. The isolation problem, especially in the case of a tethered payload, is a complex three-dimensional one that is best suited to modern-control design methods. These methods, although more powerful than their classical counterparts, can nonetheless go only so far in meeting the design requirements for practical systems. Once a tentative controller design is available, it must still be evaluated to determine whether or not it is fully acceptable, and to compare it with other possible design candidates. Realistically, such evaluation will be an inherent part of a necessary iterative design process. In this paper, an approach is presented for applying complex mu-analysis methods to a closed-loop vibration isolation system (experiment plus controller). An analysis framework is presented for evaluating nominal stability, nominal performance, robust stability, and robust performance of active microgravity isolation systems, with emphasis on the effective use of mu-analysis methods.

  12. Understanding Our Environment: People.

    ERIC Educational Resources Information Center

    Tweed, Ann

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, students work individually and in groups to plan a future community in order to gain an understanding of how greatly increased human populations impact resources,…

  13. Crime Control Strategies in School: Chicanas'/os' Perceptions and Criminalization

    ERIC Educational Resources Information Center

    Portillos, Edwardo L.; Gonzalez, Juan Carlos; Peguero, Anthony A.

    2012-01-01

    High schools throughout the United States experience problems with violence, drugs, and crime. School administrators have responded with policies and strategies designed to prevent school violence such as zero tolerance approaches, partnerships with law enforcement agencies, security camera installations, and hiring additional security personnel…

  14. Parenting a Child with a Learning Disability: A Qualitative Approach

    ERIC Educational Resources Information Center

    Fernández-Alcántara, Manuel; Correa-Delgado, Cayetana; Muñoz, Ángela; Salvatierra, María Teresa; Fuentes-Hélices, Tadeo; Laynez-Rubio, Carolina

    2017-01-01

    The present study describes experiences associated with parenting children diagnosed with learning disabilities. Parents whose children were diagnosed with Attention Deficit Hyperactivity Disorder, dyslexia/language problems, and Asperger syndrome, related to poor performance at school, took part in the study. A qualitative study design was…

  15. Understanding Our Environment: Land.

    ERIC Educational Resources Information Center

    Callister, Jeffrey C.; Crampton, Janet Wert

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit introduces students to the idea of natural resources and focuses on resources found on land: minerals such as hematite and gypsum; rocks such as granite…

  16. Designing a Children's Recreation Room

    ERIC Educational Resources Information Center

    Lee, Mi Yeon

    2015-01-01

    Project-based learning (PBL) is an effective approach to STEM education because it allows students to experience scientific inquiry by using their knowledge and skills in science, technology, engineering, and mathematics (STEM) to solve realistic problems. PBL consists of four components: (1) posing and comprehending a driving question; (2)…

  17. Alcohol Education: Curriculum Guide for Grades K-6.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Drug Education.

    This alcohol curriculum guide was designed to assist school personnel to more effectively combat the alcohol problem through education as a primary prevention vehicle. "Practice experiences" comprise the most important components of the elementary health education curriculum for decision making. There are units with separate sections at…

  18. The AMATYC Review. 1994-1995.

    ERIC Educational Resources Information Center

    Browne, Joseph, Ed.

    1995-01-01

    Designed as an avenue of communication for mathematics educators concerned with the views, ideas, and experiences of two-year college students and teachers, this journal contains articles on mathematics exposition and education, and regular features presenting book and software reviews and math problems. In addition to regular features such as…

  19. Understanding Our Environment: Air.

    ERIC Educational Resources Information Center

    DiSpezio, Michael

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit uses the contemporary dilemma of acid rain as a vehicle for teaching weather and the characteristics of air and atmosphere. The project involves a…

  20. Facilitating Service Learning in the Online Technical Communication Classroom

    ERIC Educational Resources Information Center

    Nielsen, Danielle

    2016-01-01

    Drawing from the author's experience teaching online technical communication courses with an embedded service-learning component, this essay opens the discussion to the potential problems involved in designing online service-learning courses and provides practical approaches to integrating service learning into online coursework. The essay…

  1. Fostering Team Creativity in Higher Education Settings

    ERIC Educational Resources Information Center

    de Villiers Scheepers, Margarietha J.; Maree, Lelani

    2015-01-01

    This paper examines how team creativity can be developed using the Synectics creative problem-solving approach by taking stickiness into account. Stickiness represents the difficulty learners experience in internalising knowledge and skills to perform a task productively. Using a quasi-experimental design learners' perceived change in team…

  2. Understanding Our Environment: Planet.

    ERIC Educational Resources Information Center

    Callister, Jeffrey C.; And Others

    Part of the Understanding Our Environment project that is designed to engage students in investigating specific environmental problems through concrete activities and direct experience, this unit places Earth in the context of its environment-the Universe-then focuses on Earth as seen from satellites. Students analyze patterns formed by the…

  3. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

  4. A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.

    PubMed

    Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan

    2015-06-01

    Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.

  5. Renewable Microgrid STEM Education & Colonias Outreach Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to encourage them to select science and engineering as a career by providing an engineering-based problem-solving experience involving renewable energy systems such as photovoltaic (PV) panels or wind turbines. All public and private schools, community colleges, and vocational training programs would be eligible for participation. The Power Microgrids High School Engineering Experience used renewable energy systems (PV and wind) to provide a design capstone experience to secondary students. The objective for each student team was to design a microgrid for the student’s school using renewable energymore » sources under cost, schedule, performance, and risk constraints. The students then implemented their designs in a laboratory environment to evaluate the completeness of the proposed design, which is a unique experience even for undergraduate college students. This application-based program was marketed to secondary schools in the 28th Congressional District through the Texas Education Agency’s (TEA) Regional Service Centers. Upon application, TEES identified regionally available engineers to act as mentors and supervisors for the projects. Existing curriculum was modified to include microgrid and additional renewable technologies and was made available to the schools.« less

  6. How to build institutionalization on students: a pilot experiment on a didactical design of addition and subtraction involving negative integers

    NASA Astrophysics Data System (ADS)

    Fuadiah, N. F.; Suryadi, D.; Turmudi

    2018-05-01

    This study focuses on the design of a didactical situation in addition and subtraction involving negative integers at the pilot experiment phase. As we know, negative numbers become an obstacle for students in solving problems related to them. This study aims to create a didactical design that can assist students in understanding the addition and subtraction. Another expected result in this way is that students are introduced to the characteristics of addition and subtraction of integers. The design was implemented on 32 seventh grade students in one of the classes in a junior secondary school as the pilot experiment. Learning activities were observed thoroughly including the students’ responses that emerged during the learning activities. The written documentation of the students was also used to support the analysis in the learning activities. The results of the analysis showed that this method could help the students perform a large number of integer operations that could not be done with a number line. The teacher’s support as a didactical potential contract was still needed to encourage institutionalization processes. The results of the design analysis used as the basis of the revision are expected to be implemented by the teacher in the teaching experiment.

  7. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    PubMed

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  8. Childhood Parasomnias and Psychotic Experiences at Age 12 Years in a United Kingdom Birth Cohort

    PubMed Central

    Fisher, Helen L.; Lereya, Suzet Tanya; Thompson, Andrew; Lewis, Glyn; Zammit, Stanley; Wolke, Dieter

    2014-01-01

    Study Objectives: To examine associations between specific parasomnias and psychotic experiences in childhood. Design: Birth cohort study. Information on the presence of frequent nightmares in children was obtained prospectively from mothers during multiple assessments conducted when children were aged between 2.5 and 9 y. Children were interviewed at age 12 y about nightmares, night terrors, sleepwalking, and psychotic experiences (delusions, hallucinations, and thought interference) occurring in the previous 6 mo. Setting: Assessments were completed in participants' homes or a University clinic within the UK. Patients or Participants: There were 6,796 children (3,462 girls, 50.9%) who completed the psychotic experiences interview. Measurements and Results: Children who were reported by their mothers as experiencing frequent nightmares between 2.5 and 9 y of age were more likely to report psychotic experiences at age 12 y, regardless of sex, family adversity, emotional or behavioral problems, IQ and potential neurological problems (odds ratio (OR) = 1.16, [95% confidence intervals (CI) = 1.00, 1.35], P = 0.049). Children reporting any of the parasomnias at age 12 y also had higher rates of concurrent psychotic experiences than those without such sleeping problems, when adjusting for all confounders (OR = 3.62 [95% CI = 2.57, 5.11], P < 0.001). Difficulty getting to sleep and night waking were not found to be associated with psychotic experiences at age 12 y when controlling for confounders. Conclusion: Nightmares and night terrors, but not other sleeping problems, in childhood were associated with psychotic experiences at age 12 years. These findings tentatively suggest that arousal and rapid eye movement forms of sleep disorder might be early indicators of susceptibility to psychotic experiences. Citation: Fisher HL; Lereya ST; Thompson A; Lewis G; Zammit S; Wolke D. Childhood parasomnias and psychotic experiences at age 12 years in a United Kingdom birth cohort. SLEEP 2014;37(3):475-482. PMID:24587569

  9. Design and operating experience on the U.S. Department of Energy Experimental Mod-O 100 kW Wind Turbine

    NASA Technical Reports Server (NTRS)

    Glasgow, J. C.; Birchenough, A. G.

    1978-01-01

    The Mod-O 100 kW Experimental Wind Turbine was designed and fabricated by NASA, as part of the Federal Wind Energy Program, to assess technology requirements and engineering problems of large wind turbines. The machine became operational in October 1975 and has demonstrated successful operation in all of its design modes. During the course of its operations the machine has generated a wealth of experimental data and has served as a prototype developmental test bed for the Mod-OA operational wind turbines which are currently used on utility networks. This paper describes the mechanical and control systems as they evolved in operational tests and describes some of the experience with various systems in the downwind rotor configuration.

  10. The dumbest experiment in space. [problems in laboratory apparatus adaption to space environment

    NASA Technical Reports Server (NTRS)

    Prouty, C. R.

    1981-01-01

    A simple conceptual experiment is used to illustrate (1) the fundamentals of performing an experiment, including the theoretical concept, the experiment design, the performance of the experiment, and the recording of observations; (2) the increasing challenges posed by performance of the same experiment in a location remote from the experimenter, such as additional planning and equipment and their associated cost increases; and (3) the significant growth of difficulties to be overcome when the simple experiment is performed in a highly restrictive environment, such as a spacecraft in orbit, with someone else remotely operating the experiment. It is shown that performing an experiment in the remote, hostile environment of space will pose difficulties equaling or exceeding those of the experiment itself, entailing mastery of a widening range of disciplines.

  11. Design and operation of a 1000 C lithium-cesium test system

    NASA Technical Reports Server (NTRS)

    Hays, L. G.; Haskins, G. M.; Oconnor, D. E.; Torola, J., Jr.

    1973-01-01

    A 100 kWt cesium-lithium test loop fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980 C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem.

  12. Problems in the design of multifunction meteor-radar networks

    NASA Astrophysics Data System (ADS)

    Nechitailenko, V. A.; Voloshchuk, Iu. I.

    The design of meteor-radar networks is examined in connection with the need to conduct experiments on a mass scale in meteor geophysics and astronomy. Attention is given to network architecture features and procedures of communication-path selection in the organization of information transfer, with allowance for the features of the meteor communication link. The meteor link is considered as the main means to ensure traffic in the meteor-radar network.

  13. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  14. Efficient Simulation Budget Allocation for Selecting an Optimal Subset

    NASA Technical Reports Server (NTRS)

    Chen, Chun-Hung; He, Donghai; Fu, Michael; Lee, Loo Hay

    2008-01-01

    We consider a class of the subset selection problem in ranking and selection. The objective is to identify the top m out of k designs based on simulated output. Traditional procedures are conservative and inefficient. Using the optimal computing budget allocation framework, we formulate the problem as that of maximizing the probability of correc tly selecting all of the top-m designs subject to a constraint on the total number of samples available. For an approximation of this corre ct selection probability, we derive an asymptotically optimal allocat ion and propose an easy-to-implement heuristic sequential allocation procedure. Numerical experiments indicate that the resulting allocatio ns are superior to other methods in the literature that we tested, and the relative efficiency increases for larger problems. In addition, preliminary numerical results indicate that the proposed new procedur e has the potential to enhance computational efficiency for simulation optimization.

  15. Modernisation of the intermediate physics laboratory

    NASA Astrophysics Data System (ADS)

    Kontro, Inkeri; Heino, Olga; Hendolin, Ilkka; Galambosi, Szabolcs

    2018-03-01

    The intermediate laboratory courses at the Department of Physics, University of Helsinki, were reformed using desired learning outcomes as the basis for design. The reformed laboratory courses consist of weekly workshops and small-group laboratory sessions. Many of the laboratory exercises are open-ended and have several possible ways of execution. They were designed around affordable devices, to allow for the purchase of multiple sets of laboratory equipment. This allowed students to work on the same problems simultaneously. Thus, it was possible to set learning goals which build on each other. Workshop sessions supported the course by letting the students solve problems related to conceptual and technical aspects of each laboratory exercise. The laboratory exercises progressed biweekly to allow for iterative problem solving. Students reached the learning goals well and the reform improved student experiences. Neither positive or negative changes in expert-like attitudes towards experimental physics (measured by E-CLASS questionnaire) were observed.

  16. A heuristic constraint programmed planner for deep space exploration problems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao; Xu, Rui; Cui, Pingyuan

    2017-10-01

    In recent years, the increasing numbers of scientific payloads and growing constraints on the probe have made constraint processing technology a hotspot in the deep space planning field. In the procedure of planning, the ordering of variables and values plays a vital role. This paper we present two heuristic ordering methods for variables and values. On this basis a graphplan-like constraint-programmed planner is proposed. In the planner we convert the traditional constraint satisfaction problem to a time-tagged form with different levels. Inspired by the most constrained first principle in constraint satisfaction problem (CSP), the variable heuristic is designed by the number of unassigned variables in the constraint and the value heuristic is designed by the completion degree of the support set. The simulation experiments show that the planner proposed is effective and its performance is competitive with other kind of planners.

  17. Mathematical modeling of swirled flows in industrial applications

    NASA Astrophysics Data System (ADS)

    Dekterev, A. A.; Gavrilov, A. A.; Sentyabov, A. V.

    2018-03-01

    Swirled flows are widely used in technological devices. Swirling flows are characterized by a wide range of flow regimes. 3D mathematical modeling of flows is widely used in research and design. For correct mathematical modeling of such a flow, it is necessary to use turbulence models, which take into account important features of the flow. Based on the experience of computational modeling of a wide class of problems with swirling flows, recommendations on the use of turbulence models for calculating the applied problems are proposed.

  18. Exact solution for spin precession in the radiationless relativistic Kepler problem

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2014-11-01

    There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.

  19. Extended H2 synthesis for multiple degree-of-freedom controllers

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Knospe, Carl R.

    1992-01-01

    H2 synthesis techniques are developed for a general multiple-input-multiple-output (MIMO) system subject to both stochastic and deterministic disturbances. The H2 synthesis is extended by incorporation of anticipated disturbances power-spectral-density information into the controller-design process, as well as by frequency weightings of generalized coordinates and control inputs. The methodology is applied to a simple single-input-multiple-output (SIMO) problem, analogous to the type of vibration isolation problem anticipated in microgravity research experiments.

  20. Research Methods in Healthcare Epidemiology and Antimicrobial Stewardship-Quasi-Experimental Designs.

    PubMed

    Schweizer, Marin L; Braun, Barbara I; Milstone, Aaron M

    2016-10-01

    Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt, nonrandomized interventions. Quasi-experimental studies can be categorized into 3 major types: interrupted time-series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship, including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. Infect Control Hosp Epidemiol 2016;1-6.

Top