Geophysical methods in Geology. Second edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, P.V.
This book presents an introduction to the methods of geophysics and their application to geological problems. The text emphasizes the broader aspects of geophysics, including the way in which geophysical methods help solve structural, correlational, and geochromological problems. Stress is laid on the principles and applications of methods rather than on instrumental techniques. This edition includes coverage of recent developments in geophysics and geology. New topics are introduced, including paleomagnetic methods, electromagnetic methods, microplate tectronics, and the use of multiple geophysical techniques.
Object-Oriented Programming When Developing Software in Geology and Geophysics
NASA Astrophysics Data System (ADS)
Ahmadulin, R. K.; Bakanovskaya, L. N.
2017-01-01
The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.
SIAM conference on inverse problems: Geophysical applications. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devotedmore » to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.« less
Geophysics: The Earth in Space. A Guide for High School Students.
ERIC Educational Resources Information Center
American Geophysical Union, Washington, DC.
Geophysics is the application of physics, chemistry, and mathematics to the problems and processes of the earth, from its innermost core to its outermost environs in space. Fields within geophysics include the atmospheric sciences; geodesy; geomagnetism and paleomagnetism; hydrology; oceanography; planetology; seismology; solar-planetary…
Some case studies of geophysical exploration of archaeological sites in Yugoslavia
NASA Astrophysics Data System (ADS)
Komatina, Snezana; Timotijevic, Zoran
1999-03-01
One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.
NASA Astrophysics Data System (ADS)
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Merging information in geophysics: the triumvirat of geology, geophysics, and petrophysics
NASA Astrophysics Data System (ADS)
Revil, A.
2016-12-01
We know that geophysical inversion is non-unique and that many classical regularization techniques are unphysical. Despite this, we like to use them because of their simplicity and because geophysicists are often afraid to bias the inverse problem by introducing too much prior information (in a broad sense). It is also clear that geophysics is done on geological objects that are not random structures. Spending some time with a geologist in the field, before organizing a field geophysical campaign, is always an instructive experience. Finally, the measured properties are connected to physicochemical and textural parameters of the porous media and the interfaces between the various phases of a porous body. .Some fundamental parameters may control the geophysical observtions or their time variations. If we want to improve our geophysical tomograms, we need to be risk-takers and acknowledge, or rather embrqce, the cross-fertilization arising by coupling geology, geophysics, and ptrophysics. In this presentation, I will discuss various techniques to do so. They will include non-stationary geostatistical descriptors, facies deformation, cross-coupled petrophysical properties using petrophysical clustering, and image-guided inversion. I will show various applications to a number of relevant cases in hydrogeophysics. From these applications, it may become clear that there are many ways to address inverse or time-lapse inverse problems and geophysicists have to be pragmatic regarding the methods used depending on the degree of available prior information.
Payload-Directed Control of Geophysical Magnetic Surveys
NASA Technical Reports Server (NTRS)
Lee, Ritchie; Yeh, Yoo-Hsiu; Ippolito, Corey; Spritzer, John; Phelps, Geoffrey
2010-01-01
Using non-navigational (e.g. imagers, scientific) sensor information in control loops is a difficult problem to which no general solution exists. Whether the task can be successfully achieved in a particular case depends highly on problem specifics, such as application domain and sensors of interest. In this study, we investigate the feasibility of using magnetometer data for control feedback in the context of geophysical magnetic surveys. An experimental system was created and deployed to (a) assess sensor integration with autonomous vehicles, (b) investigate how magnetometer data can be used for feedback control, and (c) evaluate the feasibility of using such a system for geophysical magnetic surveys. Finally, we report the results of our experiments and show that payload-directed control of geophysical magnetic surveys is indeed feasible.
On the optimization of electromagnetic geophysical data: Application of the PSO algorithm
NASA Astrophysics Data System (ADS)
Godio, A.; Santilano, A.
2018-01-01
Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the continuous use of AD tools for solving geophysical problems on modern computer architectures.
Application of borehole geophysics to water-resources investigations
Keys, W.S.; MacCary, L.M.
1971-01-01
This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.
Discrete Inverse and State Estimation Problems
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2006-06-01
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra. Provides a comprehensive introduction to discrete methods of inference from incomplete information Based upon 25 years of practical experience using real data and models Develops sequential and whole-domain analysis methods from simple least-squares Contains many examples and problems, and web-based support through MIT opencourseware
Sustainable urban development and geophysics
NASA Astrophysics Data System (ADS)
Liu, Lanbo; Chan, L. S.
2007-09-01
The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be investigated [2]. The first objective of urban geophysics is to study systematically the geophysical fields in cities, searching for principles and processes governing the intensity and patterns of variation of the geophysical properties, as well as the potential consequences on the biosphere. Secondly, geophysics has already been found to be a useful tool for subsurface detection and investigation, hazard mitigation, and assessment of environmental contamination. Geophysicists have documented numerous cases of successful applications of geophysical techniques to solve problems related to hazard mitigation, safeguarding of lifeline infrastructure and urban gateways (air- and sea-ports, railway and highway terminals), archaeological and heritage surveys, homeland security, urban noise control, water supplies, sanitation and solid waste management etc. In contrast to conventional geophysical exploration, the undertaking of geophysical surveys in an urban setting faces many new challenges and difficulties. First of all, the ambient cultural noise in cities caused by traffic, electromagnetic radiation and electrical currents often produce undesirably strong interference with geophysical measurements. Secondly, subsurface surveys in an urban area are often targeted at the uppermost several metres of the ground, which are the most heterogeneous layers with many man-made objects. Thirdly, unlike conventional geophysical exploration which requires resolution in the order of metres, many urban geophysical surveys demand a resolution and precision in the order of centimetres or even millimetres. Finally restricted site access and limited time for conducting geophysical surveys, regulatory constraints, requirements for traffic management and special logistical arrangements impose additional difficulties. All of these factors point to the need for developing innovative research methods and geophysical instruments suitable for use in urban settings. This special issue on 'Sustainable urban development and geophysics' in Journal of Geophysics and Engineering is a response to the call for the development of novel geophysical techniques especially applicable to city settings. It consists of 11 papers which are selected and expanded from a collection of papers presented to the special sessions on 'Sustainable Urban Development and Geophysics' (U14A, U15A, and U41B) in the Union section of the Western Pacific Geophysics Meeting held in Beijing, China, on 22-27 July 2006 [3]. This indicates that new and innovative geophysical applications in urban settings have emerged, and these innovations may be potentially useful for the planning, implementation, and maintenance of urban infrastructure systems. These 11 research papers can be divided into three groups: (1) geophysics and urban infrastructure; (2) geophysics and urban environment; and (3) geophysical investigations associated with geological hazards. The first group of papers focuses on urban infrastructure. Fred Stumm et al reported a geohydrologic assessment of fractured crystalline bedrock with borehole radar in Manhattan, New York in preparation for the construction of a new water tunnel. Using GPR, Xie et al conducted a quality control study of the walls of the river-crossing highway tunnel in Shanghai. For the same purpose, S Liu et al investigated the effect of concrete cracks on GPR signatures using a numerical simulation technique. Sun et al, using seismic surface waves, investigated road beds and the degree of weathering of the marble fence in the Forbidden City, Beijing. In the second group of papers, using a numerical simulation technique, L Liu et al studied the effect of a building coordinate error on sound wave propagation with the aim of locating sound sources in urban settings. Chan et al studied the abundance of radio elements in weathered igneous bedrock in Hong Kong for the purpose of the promotion of public health in the urban environment. The third group includes five papers on geo-hazards. The three papers by B Zhao et al and Z Zhao et al address the problem of earthquake strong ground motion in urban regions using case studies from Osaka, Japan and the city of Yinchuan, China. The other two papers study the geological hazard of surface subsidence using geophysical tools: G Leucci reported a comprehensive study in Nardo, Italy, while Kim et al reported a similar case study for a small city in South Korea. One striking feature of all the papers in this special issue is that multiple authors with at least 3 co-authors wrote the majority of the papers, which is an indication of strong team work and interdisciplinary collaboration. This is essential for the successful application of geophysical science and technology in tackling a variety of engineering and environmental problems for the urban setting. The only sole author, Dr Leucci, expressed deep gratitude in his acknowledgements to his team members who carried out substantial parts of the data acquisition. We are pleased to present this special issue to the engineering and environmental geophysics community and hope that it can serve as a snapshot of the current state-of-the-art studies in urban geophysics. References [1] United Nations 1990 World Demographic Estimates and Projections (1950-2025) (New York: Press of United Nations) [2] Chen Y, L-S Chan and S Yu 2003 J. Geodesy & Geodynamics 23 1-4 (in Chinese) [3] American Geophysics Union 2006 Eos Trans. AGU 87 (36)
NASA Astrophysics Data System (ADS)
Zhang, Junwei
I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica data and prior distributions. We pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case study, performing a joint inversion of gravity and galvanometric resistivity data with the stations all located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to deform the facies boundaries preserving prior topological properties of the facies throughout the inversion. With the additional help of prior facies petrophysical relationships, topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The result of the inversion technique is encouraging when applied to a second synthetic case study, showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries. A paper has been submitted to Geophysics on this topic and I am the first author of this paper. During this thesis, I also worked on the time lapse inversion problem of gravity data in collaboration with Marios Karaoulis and a paper was published in Geophysical Journal international on this topic. I also worked on the time-lapse inversion of cross-well geophysical data (seismic and resistivity) using both a structural approach named the cross-gradient approach and a petrophysical approach. A paper was published in Geophysics on this topic.
Application of Electrical Resistivity Method (ERM) in Groundwater Exploration
NASA Astrophysics Data System (ADS)
Izzaty Riwayat, Akhtar; Nazri, Mohd Ariff Ahmad; Hazreek Zainal Abidin, Mohd
2018-04-01
The geophysical method which dominant by geophysicists become one of most popular method applied by engineers in civil engineering fields. Electrical Resistivity Method (ERM) is one of geophysical tool that offer very attractive technique for subsurface profile characterization in larger area. Applicable alternative technique in groundwater exploration such as ERM which complement with existing conventional method may produce comprehensive and convincing output thus effective in terms of cost, time, data coverage and sustainable. ERM has been applied by various application in groundwater exploration. Over the years, conventional method such as excavation and test boring are the tools used to obtain information of earth layer especially during site investigation. There are several problems regarding the application of conventional technique as it only provides information at actual drilling point only. This review paper was carried out to expose the application of ERM in groundwater exploration. Results from ERM could be additional information to respective expert for their problem solving such as the information on groundwater pollution, leachate, underground and source of water supply.
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.
2005-01-01
In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical problems different types of nonuniqueness exist, and thus there are different ways to solve the problems. Nonuniqueness is usually regarded as due to data error, assuming the true geology is acceptably approximated by simple mathematical models. Compounding the nonlinear problems, geophysical applications routinely exhibit exact-data nonuniqueness even for models with very few parameters adding to the nonuniqueness due to data error. While nonuniqueness variations have been defined earlier, they have not been linked to specific use of a priori information necessary to resolve each case. Four types of nonuniqueness, typical for minimization problems are defined with the corresponding methods for inclusion of a priori information to find a realistic solution without resorting to a non-discriminative approach. The above-developed stand-alone classification is expected to be helpful when solving any geophysical inverse problems. ?? Birkha??user Verlag, Basel, 2005.
The purpose of this section is to provide the basic information necessary to apply the most useful geophysical well logs for the solution of problems in groundwater, the environmental field, and for engineering applications.
Geophysical abstracts 167, October-December 1956
Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,
1956-01-01
Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.
Geophysical abstracts 164, January-March 1956
Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,
1956-01-01
Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. A new table of contents, alphabetically arranged, has been adapted to show more clearly the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.
Geophysical abstracts 166, July-September 1956
Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,
1956-01-01
Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.
Geophysical abstracts 165, April-June 1956
Rabbitt, Mary C.; Vitaliano, Dorothy B.; Vesselowsky, S.T.; ,
1956-01-01
Geophysical Abstracts includes abstracts of technical papers and books on the physics of the solid earth, the application of physical methods and techniques to geologic problems, and geophysical exploration. The table of contents, which is alphabetically arranged, shows the material covered.Abstracts are prepared only of material that is believed to be generally available. Ordinarily abstracts are not published of material with limited circulation (such as dissertations, open-file reports, or memoranda) or of other papers presented orally at meetings unless summaries of substantial length are published. Abstracts of papers in Japanese and Chinese are based on abstracts or summaries in a western language accompanying the paper.
Learning and Information Approaches for Inference in Dynamic Data-Driven Geophysical Applications
NASA Astrophysics Data System (ADS)
Ravela, S.
2015-12-01
Many Geophysical inference problems are characterized by non-linear processes, high-dimensional models and complex uncertainties. A dynamic coupling between models, estimation, and sampling is typically sought to efficiently characterize and reduce uncertainty. This process is however fraught with several difficulties. Among them, the key difficulties are the ability to deal with model errors, efficacy of uncertainty quantification and data assimilation. In this presentation, we present three key ideas from learning and intelligent systems theory and apply them to two geophysical applications. The first idea is the use of Ensemble Learning to compensate for model error, the second is to develop tractable Information Theoretic Learning to deal with non-Gaussianity in inference, and the third is a Manifold Resampling technique for effective uncertainty quantification. We apply these methods, first to the development of a cooperative autonomous observing system using sUAS for studying coherent structures. We apply this to Second, we apply this to the problem of quantifying risk from hurricanes and storm surges in a changing climate. Results indicate that learning approaches can enable new effectiveness in cases where standard approaches to model reduction, uncertainty quantification and data assimilation fail.
NASA Technical Reports Server (NTRS)
Kent, James; Holdaway, Daniel
2015-01-01
A number of geophysical applications require the use of the linearized version of the full model. One such example is in numerical weather prediction, where the tangent linear and adjoint versions of the atmospheric model are required for the 4DVAR inverse problem. The part of the model that represents the resolved scale processes of the atmosphere is known as the dynamical core. Advection, or transport, is performed by the dynamical core. It is a central process in many geophysical applications and is a process that often has a quasi-linear underlying behavior. However, over the decades since the advent of numerical modelling, significant effort has gone into developing many flavors of high-order, shape preserving, nonoscillatory, positive definite advection schemes. These schemes are excellent in terms of transporting the quantities of interest in the dynamical core, but they introduce nonlinearity through the use of nonlinear limiters. The linearity of the transport schemes used in Goddard Earth Observing System version 5 (GEOS-5), as well as a number of other schemes, is analyzed using a simple 1D setup. The linearized version of GEOS-5 is then tested using a linear third order scheme in the tangent linear version.
Backus-Gilbert inversion of travel time data
NASA Technical Reports Server (NTRS)
Johnson, L. E.
1972-01-01
Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.
Real simulation tools in introductory courses: packaging and repurposing our research code.
NASA Astrophysics Data System (ADS)
Heagy, L. J.; Cockett, R.; Kang, S.; Oldenburg, D.
2015-12-01
Numerical simulations are an important tool for scientific research and applications in industry. They provide a means to experiment with physics in a tangible, visual way, often providing insights into the problem. Over the last two years, we have been developing course and laboratory materials for an undergraduate geophysics course primarily taken by non-geophysics majors, including engineers and geologists. Our aim is to provide the students with resources to build intuition about geophysical techniques, promote curiosity driven exploration, and help them develop the skills necessary to communicate across disciplines. Using open-source resources and our existing research code, we have built modules around simulations, with supporting content to give student interactive tools for exploration into the impacts of input parameters and visualization of the resulting fields, fluxes and data for a variety of problems in applied geophysics, including magnetics, seismic, electromagnetics, and direct current resistivity. The content provides context for the problems, along with exercises that are aimed at getting students to experiment and ask 'what if...?' questions. In this presentation, we will discuss our approach for designing the structure of the simulation-based modules, the resources we have used, challenges we have encountered, general feedback from students and instructors, as well as our goals and roadmap for future improvement. We hope that our experiences and approach will be beneficial to other instructors who aim to put simulation tools in the hands of students.
Fractals in geology and geophysics
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.
NASA Astrophysics Data System (ADS)
Alperovich, Leonid; Averbuch, Amir; Eppelbaum, Lev; Zheludev, Valery
2013-04-01
Karst areas occupy about 14% of the world land. Karst terranes of different origin have caused difficult conditions for building, industrial activity and tourism, and are the source of heightened danger for environment. Mapping of karst (sinkhole) hazards, obviously, will be one of the most significant problems of engineering geophysics in the XXI century. Taking into account the complexity of geological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient. Wavelet methodology as whole has a significant impact on cardinal problems of geophysical signal processing such as: denoising of signals, enhancement of signals and distinguishing of signals with closely related characteristics and integrated analysis of different geophysical fields (satellite, airborne, earth surface or underground observed data). We developed a three-phase approach to the integrated geophysical localization of subsurface karsts (the same approach could be used for following monitoring of karst dynamics). The first phase consists of modeling devoted to compute various geophysical effects characterizing karst phenomena. The second phase determines development of the signal processing approaches to analyzing of profile or areal geophysical observations. Finally, at the third phase provides integration of these methods in order to create a new method of the combined interpretation of different geophysical data. In the base of our combine geophysical analysis we put modern developments in the wavelet technique of the signal and image processing. The development of the integrated methodology of geophysical field examination will enable to recognizing the karst terranes even by a small ratio of "useful signal - noise" in complex geological environments. For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters. This set of parameters serves as a signature of the image and is to be utilized for discrimination of images containing karst cavity (K) from the images non-containing karst (N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions. As a result of the previous steps we obtain two sets K and N of the signatures vectors for images from sections containing karst cavity and non-karst subsurface, respectively.
NASA Astrophysics Data System (ADS)
Cosmic rays interact with the earth's atmosphere and surface to produce the “cosmogenic” nuclides. In many instances the radioactive ones are readily distinguished from the anthropogenic and meteoritic backgrounds. Measurements of these cosmogenic radionuclides (RCN) can contribute to the solution of a variety of geophysical problems [Lai and Peters, 1967]. Recent progress in this area was discussed at a symposium entitled Application of Cosmic-Ray-Produced Nuclides in Geophysics held May 30, 1983, at the AGU Spring Meeting in Baltimore (see Eos, May 3, 1983, pp. 282-284, for the abstracts). We summarize here the symposium presentations.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing
NASA Technical Reports Server (NTRS)
Blanchard, D. P. (Editor)
1980-01-01
The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2010-05-01
It is obvious that noninvasive geophysical methods are the main interpreting tools at the areas of world recognized religious and cultural artifacts. Usually in these areas any excavations, drilling and infrastructure activity are forbidden or very strongly limited. According to field experience and results of numerous modeling (Eppelbaum, 1999, 2000, 2009a, 2009b; Eppelbaum and Itkis, 2001, 2003; Eppelbaum et al., 2000, 2001a, 2001b, 2003a, 2006a, 2006b, 2007, 2010, Itkis et al., 2003; Neishtadt et al., 2006), a set of applied geophysical methods may include the following types of surveys: (1) magnetic, (3) GPR (ground penetration radar), (3) gravity, (4) electromagnetic VLF (very low frequency), (5) ER (electric resistivity), (6) SP (self-potential), (7) IP (induced polarization), (8) SE (seismoelectric), and (9) NST (near-surface temperature). As it was shown in (Eppelbaum, 2005), interpretation ambiguity may be sufficiently reduced not only by integrated analysis of several geophysical methods, but also by the way of multilevel observations of geophysical fields. Magnetic, gravity and VLF measurements may be performed at different levels over the earth's surface (0.1 - 3 m), ER, SP and SE observations may be obtained with different depth of electrodes grounding (0.1 - 1 m), and NST sensor may be located at a depth of 0.8 - 2.5 m. GPR method usually allows measuring electromagnetic fields at various frequencies (with corresponding changing of the investigation depth and other parameters). Influence of some typical noise factors to geophysical investigations at archaeological sites was investigated in (Eppelbaum and Khesin, 2001). In many cases various constructions and walls are in the nearest vicinity of the examined artifacts. These constructions can be also utilized for carrying out geophysical measurements (magnetic, gravity and VLF) at different levels. Application of the modern ROV (remote operated vehicles) with registration of magnetic and VLF fields at the low altitudes (3-5 meters) will help geophysical cover all the studied area with a regular observation step (Eppelbaum, 2008). At the final step all these measurements (including results of the previous works) could be compiled to 4D models of different geophysical parameters (Eppelbaum and Ben-Avraham, 2002; Eppelbaum et al., 2010). Analysis of temperature field in the boreholes drilled in the vicinity of the studied site will permit to estimate the temperature (e.g., Eppelbaum et al., 2006c) in the historical period when this artifact was constructed and, correspondingly, utilize this characteristic for investigation of mechanical and other properties of the ancient building material. Studying of temporal variations of magnetic (e.g., Finkelstein and Eppelbaum) and VLF fields can be also used for determination of nature of some buried ancient remains. The geophysical investigations must be combined with geochemical, paleostructural, paleobiogeographical, paleomorphological and other methods (Eppelbaum et al., 2010). Application of informational parameters (Khesin et al., 1996; Eppelbaum et al., 2003b) will permit to present all available data by the use of integral convolution units. REFERENCES Eppelbaum, L.V., 1999. Quantitative interpretation of resistivity anomalies using advanced methods developed in magnetic prospecting. Trans. of the XXIV General Assembly of the Europ. Geoph. Soc., Strasburg 1 (1), p.166. Eppelbaum, L.V., 2000. Applicability of geophysical methods for localization of archaeological targets: An introduction. Geoinformatics, 11, No.1, 19-28. Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 4 pp. Eppelbaum, L.V., 2008. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, USA, 938-963. Eppelbaum, L.V., 2009a. Near-surface temperature survey: An independent tool for buried archaeological targets delineation. Journal of Cultural Heritage, 12, Suppl.1, e93-e103. Eppelbaum, L.V., 2009b. Application of microgravity at archaeological sites in Israel: some estimation derived from 3D modeling and quantitative analysis of gravity field. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 22, No. 1, 434-446. Eppelbaum, L. and Ben-Avraham, Z., 2002. On the development of 4D geophysical Data Base of archaeological sites in Israel. Trans. of the Conf. of the Israel Geol. Soc. Ann. Meet., MaHagan - Lake Kinneret, Israel, p.21. Eppelbaum, L., Eppelbaum,V. and Ben-Avraham, Z., 2003. Formalization and estimation of integrated geological investigations: Informational Approach. Geoinformatics, 14, No.3, 233-240. Eppelbaum, L., Ben-Avraham, Z. and Itkis, S., 2003a. Ancient Roman Remains in Israel provide a challenge for physical-archaeological modeling techniques. First Break, 21 (2), 51-61. Eppelbaum, L., Ben-Avraham, Z., Itkis, S., and Kouznetsov, S., 2001a. First results of self-potential method application at archaeological sites in Israel. Trans. of the EUG XI Intern. Symp., Strasbourg, France, p. 657. Eppelbaum, L.V. and Itkis, S.E., 2001. Detailed magnetic investigations at the ancient Roman site Banias II (northern Israel). Proceed. of the 1st Intern Symp. on Soil and Archaeology, Szazhalombatta, Hungary, 13-16. Eppelbaum, L.V. and Itkis, S.E., 2003. Geophysical examination of the archaeological site Emmaus-Nicopolis (central Israel). Collection of Papers of the XIXth International UNESCO Symposium 'New Perspectives to Save the Cultural Heritage', Antalya, Turkey, 395-400. Eppelbaum, L.V., Itkis, S.E., Fleckenstein, K.-H., and Fleckenstein, L., 2007. Latest results of geophysical-archaeological investigations at the Christian archaeological site Emmaus-Nicopolis (central Israel). Proceed. of the 69th EAGE Conference, P118, London, Great Britain, 5 pp. Eppelbaum, L.V., Itkis, S.E., and Khesin, B.E., 2000. Optimization of magnetic investigations in the archaeological sites in Israel. In: Special Issue of Prospezioni Archeologiche 'Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects', 65-92. Eppelbaum, L., Itkis, S., and Khesin, B., 2006a. Detailed magnetic survey unmasks Prehistoric archaeological sites in Israel. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Calgary, Canada, 1366-1373. Eppelbaum, L.V. and Khesin, B.E., 2001. Disturbing factors in geophysical investigations at archaeological sites and ways of their elimination. Trans. of the IV Conf. on Archaeological Prospection, Vienna, Austria, 99-101. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2001b. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8 (3), 163-185. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2006b. Some peculiarities of geophysical investigations at archaeological sites in Israel. Russian Archaeology, No. 1, 59-70. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 5. Eppelbaum, L.V., Kutasov, I.M. and Barak, G., 2006c. Ground surface temperature histories inferred from 15 boreholes temperature profiles: Comparison of two approaches. Earth Sciences Research Journal, 10, No. 1, 25-34. Finkelstein, M.I. and Eppelbaum, L.V., 1997. Classification of the disturbing objects using interpretation of low-intensive temporary magnetic variations. Trans. of the Conference of Geological Society of America. Salt Lake City, 29, No.6, p. 326. Itkis, S., Khesin, B., Eppelbaum, L., and Khalaily, H., 2003. The Natufian site of Eynan (Hula valley, northern Israel): Magnetic prospecting reveals new features. Israel Journal of Earth Sciences, 52 (3-4), 209-219. Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers, Ser.: Modern Approaches in Geophysics, Boston - Dordrecht - London, 368 pp. Neishtadt, N., Eppelbaum, L. and Levitski, A., 2006. Application of seismo-electric phenomena in exploration geophysics: Review of Russian and Israeli experience. Geophysics, 71, No.2, B41-B53.
NASA Astrophysics Data System (ADS)
Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.
2013-12-01
Fractals and multifractals are very illustrative of the profound synergies between mathematics and geophysics. The book ';Fractal Geometry of Nature' (Mandelbrot, 1982) brilliantly demonstrated the genericity in geophysics of geometric forms like Cantor set, Peano curve and Koch snowflake, which were once considered as mathematical monsters. However, to tame the geophysical monsters (e.g. extreme weather, floods, earthquakes), it was required to go beyond geometry and a unique fractal dimension. The concept of multifractal was coined in the course of rather theoretical debates on intermittency in hydrodynamic turbulence, sometimes with direct links to atmospheric dynamics. The latter required a generalized notion of scale in order to deal both with scale symmetries and strong anisotropies (e.g. time vs. space, vertical vs. horizontal). It was thus possible to show that the consequences of intermittency are of first order, not just 'corrections' with respect to the classical non-intermittent modeling. This was in fact a radical paradigm shift for geophysics: the extreme variability of geophysical fields over wide ranges of scale, which had long been so often acknowledged and deplored, suddenly became handy. Recent illustrations are the possibility to track down in large date sets the Higgs boson of intermittence, i.e. a first order multifractal phase transition leading to self-organized criticality, and to simulate intermittent vector fields with the help of Lie cascades, based for instance on random Clifford algebra. It is rather significant that this revolution is no longer limited to fundamental and theoretical problems of geophysics, but now touches many applications including environmental management, in particular for urban management and resilience. These applications are particularly stimulating when taken in their full complexity.
Ames Research Center SR&T program and earth observations
NASA Technical Reports Server (NTRS)
Poppoff, I. G.
1972-01-01
An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.
NASA Astrophysics Data System (ADS)
Drahor, Mahmut G.; Berge, Meriç A.
2017-01-01
Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.
NASA Technical Reports Server (NTRS)
Morgan, Paul
1990-01-01
The following topics are addressed: (1) the frequency of encountering boulders that represent hazards to lunar operations; (2) the ease of lunar soil excavation; (3) the use of explosives in excavation operation; (4) the trafficability of the regolith; (5) problems encountered in mining (probably strip mining) of the regolith; (6) the stable angle(s) of repose in excavation of the regolith; (7) the layering to be encountered in the subsurface; (8) knowledge of the regolith site and the possibility of its general application to any site on the lunar surface; (9) the data needed to characterize a site for a lunar base; (10) the influence of regolith properties on the design of geophysical experiments from the lunar base; and (11) terrestrial analogues for the geophysical properties of the lunar regolith.
Current problems in applied mathematics and mathematical modeling
NASA Astrophysics Data System (ADS)
Alekseev, A. S.
Papers are presented on mathematical modeling noting applications to such fields as geophysics, chemistry, atmospheric optics, and immunology. Attention is also given to models of ocean current fluxes, atmospheric and marine interactions, and atmospheric pollution. The articles include studies of catalytic reactors, models of global climate phenomena, and computer-assisted atmospheric models.
Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins
NASA Technical Reports Server (NTRS)
Lang, H. R. (Editor)
1985-01-01
The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.
Current Results and Proposed Activities in Microgravity Fluid Dynamics
NASA Technical Reports Server (NTRS)
Polezhaev, V. I.
1996-01-01
The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.
Safety in GPR prospecting: a rarely-considered issue
NASA Astrophysics Data System (ADS)
Persico, Raffaele; Pajewski, Lara; Trela, Christiane; Carrick Utsi, Erica
2016-04-01
Safety issues (of people first of all, but also of the equipment and environment) are rarely considered in Ground-Penetrating Radar (GPR) prospecting and, more in general, in near-surface geophysical prospecting. As is right and fully understandable, the scientific community devotes greatest attention first of all to the theoretical and practical aspects of GPR technique, affecting the quality of attainable results, secondly to the efforts and costs needed to achieve them [1-2]. However, the (luckily) growing GPR market and range of applications make it worth giving serious consideration to safety issues, too. The existing manuals dealing with safety in geophysics are mainly concerned with applications requiring "deep" geophysical prospecting, for example the search for oilfields and other hydrocarbon resources [3]. Near-surface geophysics involves less dangers than deep geophysics, of course. Nevertheless, several accidents have already happened during GPR experimental campaigns. We have personally had critical experiences and collected reliable testimonies concerning occurred problems as mountain sicks, fractures of legs, stomach problems, allergic reactions, encounters with potentially-dangerous animals, and more. We have also noticed that much more attention is usually paid to safety issues during indoor experimental activities (in laboratory), rather than during outdoor fieldworks. For example, the Italian National research Council is conventioned with safety experts who hold periodical seminaries about safety aspects. Having taken part to some of them, to our experience we have never heard a "lecture" devoted to outdoor prospecting. Nowadays, any aspects associated to the use of the technologies should be considered. The increasing sensibility and sense of responsibility towards environmental matters impose GPR end-users to be careful not to damage the environment and also the cultural heritage. Near-surface prospecting should not compromise the flora and fauna (for example, the nesting of several species of birds should not be disturbed). No blaze should be caused or facilitated, no polluting substances should be improperly left in situ, no artworks should be damaged. Last but not least, the prospectors have to be protected (as far as possible) against injuries of their goods and work. For example, the safety of the equipment has to be ensured: in our experience things not always work as expected and instruments can get easily damaged. Advices related to the transportation of equipment are worth to be given. On the basis of these considerations, the COST (European COoperation in Science and Technology) Action TU1208 "Civil engineering applications of Ground Penetrating Radar" has undertaken the effort to prepare and issue a book on these topics [4], entitled "Recommendations for the Safety of People and Instruments in Ground-Penetrating Radar and Near-Surface Geophysical Prospecting." Several experts from all over the world contributed to the preparation of this volume, including Action's Members and other specialists. The book has been published by the European Association of Geophysicists and Engineers (EAGE) in 2015. The aim of this contribution is to present, disseminate and discuss, during the GI3.1 Session of the 2016 European Geosciences Union General Assembly, the most significant and interesting topics dealt within [4]. Acknowledgement This work has benefited from the networking activities of COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu). The Authors wish to thank COST for funding the Action TU1208. References [1] R. Pierri, G. Leone, F. Soldovieri, R. Persico, "Electromagnetic inversion for subsurface applications under the distorted Born approximation" Nuovo Cimento, vol. 24C, N. 2, pp 245-261, March-April 2001. [2] R. Persico, F. Soldovieri, R. Pierri, "Convergence Properties of a Quadratic Approach to the Inverse Scattering Problem", Journal of Optical Society of America Part A, vol. 19, n. 12, pp. 2424-2428, December 2002. [3] IAGC Land Geophysical Safety Manual, Int. Association of Geophysical Contractors, 2012. [4] Recommendations for the Safety of People and Instruments in Ground-Penetrating Radar and Near-Surface Geophysical Prospecting, R.Persico, A. Provenzano, C. Trela, M. Sato, K. Takahashi, S. Arcone, S. Koppenjan, L. Stolarczyk, E. C. Utsi, S. Ebihara, K. Wada, E. Pettinelli, L. Pajewski, EAGE, 2015.
Practices to enable the geophysical research spectrum: from fundamentals to applications
NASA Astrophysics Data System (ADS)
Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.
2016-12-01
In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.
The Environmental Geophysics website features geophysical methods, terms and references; forward and inverse geophysical models for download; and a decision support tool to guide geophysical method selection for a variety of environmental applications.
Day-Lewis, F. D.; Singha, K.; Binley, A.M.
2005-01-01
Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.
Paillet, Frederick L.; Crowder, R.E.
1996-01-01
Quantitative analysis of geophysical logs in ground-water studies often involves at least as broad a range of applications and variation in lithology as is typically encountered in petroleum exploration, making such logs difficult to calibrate and complicating inversion problem formulation. At the same time, data inversion and analysis depend on inversion model formulation and refinement, so that log interpretation cannot be deferred to a geophysical log specialist unless active involvement with interpretation can be maintained by such an expert over the lifetime of the project. We propose a generalized log-interpretation procedure designed to guide hydrogeologists in the interpretation of geophysical logs, and in the integration of log data into ground-water models that may be systematically refined and improved in an iterative way. The procedure is designed to maximize the effective use of three primary contributions from geophysical logs: (1) The continuous depth scale of the measurements along the well bore; (2) The in situ measurement of lithologic properties and the correlation with hydraulic properties of the formations over a finite sample volume; and (3) Multiple independent measurements that can potentially be inverted for multiple physical or hydraulic properties of interest. The approach is formulated in the context of geophysical inversion theory, and is designed to be interfaced with surface geophysical soundings and conventional hydraulic testing. The step-by-step procedures given in our generalized interpretation and inversion technique are based on both qualitative analysis designed to assist formulation of the interpretation model, and quantitative analysis used to assign numerical values to model parameters. The approach bases a decision as to whether quantitative inversion is statistically warranted by formulating an over-determined inversion. If no such inversion is consistent with the inversion model, quantitative inversion is judged not possible with the given data set. Additional statistical criteria such as the statistical significance of regressions are used to guide the subsequent calibration of geophysical data in terms of hydraulic variables in those situations where quantitative data inversion is considered appropriate.
NASA Technical Reports Server (NTRS)
Butler, James J.; Oudrari, Hassan; Xiong, Sanxiong; Che, Nianzeng; Xiong, Xiaoxiong
2007-01-01
The process of developing new sensors for space flight frequently builds upon the designs and experience of existing heritage space flight sensors. Frequently in the development and testing of new sensors, problems are encountered that pose the risk of serious impact on successful retrieval of geophysical products. This paper describes an approach to assess the importance of optical and electronic cross-talk on retrieval of geophysical products using new MODIS-like sensors through the use of MODIS data sets. These approaches may be extended to any sensor characteristic and any sensor where that characteristic may impact the Level 1 products so long as validated geophysical products are being developed from the heritage sensor. In this study, a set of electronic and/or optical cross-talk coefficients are postulated. These coefficients are sender-receiver influence coefficients and represent a sensor signal contamination on any detector on a focal plane when another band's detectors on that focal plane are stimulated with a monochromatic light. The approach involves using the postulated cross-talk coefficients on an actual set of MODIS data granules. The original MODIS data granules and the cross-talk impacted granules are used with validated geophysical algorithms to create the derived products. Comparison of the products produced with the original and cross-talk impacted granules indicates potential problems, if any, with the characteristics of the developmental sensor that are being studied.
NASA Technical Reports Server (NTRS)
Wells, R. A.
1979-01-01
A physical model of Mars is presented on the basis of light-scattering observations of the Martian atmosphere and surface and interior data obtained from observations of the geopotential field. A general description of the atmosphere is presented, with attention given to the circulation and the various cloud types, and data and questions on the blue haze-clearing effect and the seasonal darkening wave are summarized and the Mie scattering model developed to explain these observations is presented. The appearance of the planet from earth and spacecraft through Mariner 9 is considered, and attention is given to the preparation of topographical contour maps, the canal problem and large-scale lineaments observed from Mariner 9, the gravity field and shape of the planet and the application of Runcorn's geoid/convection theory to Mars. Finally, a summary of Viking results is presented and their application to the understanding of Martian geophysics is discussed.
Geophysics applications in critical zone science: emerging topics
USDA-ARS?s Scientific Manuscript database
Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and trans...
NASA Astrophysics Data System (ADS)
Hu, Yanpu; Egbert, Gary; Ji, Yanju; Fang, Guangyou
2017-01-01
In this study, we apply fictitious wave domain (FWD) methods, based on the correspondence principle for the wave and diffusion fields, to finite difference (FD) modeling of transient electromagnetic (TEM) diffusion problems for geophysical applications. A novel complex frequency shifted perfectly matched layer (PML) boundary condition is adapted to the FWD to truncate the computational domain, with the maximum electromagnetic wave propagation velocity in the FWD used to set the absorbing parameters for the boundary layers. Using domains of varying spatial extent we demonstrate that these boundary conditions offer significant improvements over simpler PML approaches, which can result in spurious reflections and large errors in the FWD solutions, especially for low frequencies and late times. In our development, resistive air layers are directly included in the FWD, allowing simulation of TEM responses in the presence of topography, as is commonly encountered in geophysical applications. We compare responses obtained by our new FD-FWD approach and with the spectral Lanczos decomposition method on 3-D resistivity models of varying complexity. The comparisons demonstrate that our absorbing boundary condition in FWD for the TEM diffusion problems works well even in complex high-contrast conductivity models.
Particle Swarm Optimization algorithms for geophysical inversion, practical hints
NASA Astrophysics Data System (ADS)
Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.
2008-12-01
PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.
Gerris Flow Solver: Implementation and Application
2013-05-12
2010), as well as tsunamis (Popinet 2011; 2012). The OMEGA model ( Bacon et al., 2000; Boybeyi et al., 2001) took a different approach to adaptivity...application of the model system to problems of interest. Cited References D. P. Bacon , N. N. Ahmad, et al. (2000), A dynamically adapting weather...Geophysical Union, Washington, DC, 1–16. Z. Boybeyi, N. N. Ahmad, D. P. Bacon , T. J. Dunn, M. S. Hall, P. C. S. Lee, R. A. Sarma, and T. R. Wait (2001
Application of geophysical methods to agriculture: An overview
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
NASA Astrophysics Data System (ADS)
Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy
2014-05-01
The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.
Seismic refraction analysis: the path forward
Haines, Seth S.; Zelt, Colin; Doll, William
2012-01-01
Seismic Refraction Methods: Unleashing the Potential and Understanding the Limitations; Tucson, Arizona, 29 March 2012 A workshop focused on seismic refraction methods took place on 29 May 2012, associated with the 2012 Symposium on the Application of Geophysics to Engineering and Environmental Problems. This workshop was convened to assess the current state of the science and discuss paths forward, with a primary focus on near-surface problems but with an eye on all applications. The agenda included talks on these topics from a number of experts interspersed with discussion and a dedicated discussion period to finish the day. Discussion proved lively at times, and workshop participants delved into many topics central to seismic refraction work.
Research perspectives in the field of ground penetrating radars in Armenia
NASA Astrophysics Data System (ADS)
Baghdasaryan, Hovik; Knyazyan, Tamara; Hovhannisyan, Tamara
2014-05-01
Armenia is a country located in a very complicated region from geophysical point of view. It is situated on a cross of several tectonic plates and a lot of dormant volcanoes. The main danger is earthquakes and the last big disaster was in 1988 in the northwest part of contemporary Armenia. As a consequence, the main direction of geophysical research is directed towards monitoring and data analysis of seismic activity. National Academy of Sciences of Armenia is conducting these activities in the Institute of Geological Sciences and in the Institute of Geophysics and Engineering Seismology. Research in the field of ground penetrating radars is considered in Armenia as an advanced and perspective complement to the already exploiting research tools. The previous achievements of Armenia in the fields of radiophysics, antenna measurements, laser physics and existing relevant research would permit to initiate new promising area of research in the direction of theory and experiments of ground penetrating radars. One of the key problems in the operation of ground penetrating radars is correct analysis of peculiarities of electromagnetic wave interaction with different layers of the earth. For this, the well-known methods of electromagnetic boundary problem solutions are applied. In addition to the existing methods our research group of Fiber Optics Communication Laboratory at the State Engineering University of Armenia declares its interest in exploring the possibilities of new non-traditional method of boundary problems solution for electromagnetic wave interaction with the ground. This new method for solving boundary problems of electrodynamics is called the method of single expression (MSE) [1-3]. The distinctive feature of this method is denial from the presentation of wave equation's solution in the form of counter-propagating waves, i.e. denial from the superposition principal application. This permits to solve linear and nonlinear (field intensity-dependent) problems with the same exactness, without any approximations. It is favourable also since in solution of boundary problems in the MSE there is no necessity in applying absorbing boundary conditions at the model edges by terminating the computational domain. In the MSE the computational process starts from the rear side of any multilayer structure that ensures the uniqueness of problem solution without application of any artificial absorbing boundary conditions. Previous success of the MSE application in optical domain gives us confidence in successful extension of this method's use for solution of different problems related to electromagnetic wave interaction with the layers of the earth and buried objects in the ground. This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." 1. H.V. Baghdasaryan, T.M. Knyazyan, 'Problem of Plane EM Wave Self-action in Multilayer Structure: an Exact Solution', Optical and Quantum Electronics, vol. 31, 1999, pp.1059-1072. 2. H.V. Baghdasaryan, T.M. Knyazyan, 'Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression', Optical and Quantum Electronics, vol. 32, 2000, pp. 869-883. 3. H.V. Baghdasaryan, 'Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics', Yerevan, Chartaraget, 2013.
An accurate, fast, and scalable solver for high-frequency wave propagation
NASA Astrophysics Data System (ADS)
Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.
2017-12-01
In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.
NASA Astrophysics Data System (ADS)
Soupios, P. M.; Loupasakis, C.; Vallianatos, F.
2008-06-01
Nowadays, geophysical prospecting is implemented in order to resolve a diversity of geological, hydrogeological, environmental and geotechnical problems. Although plenty of applications and a lot of research have been conducted in the countryside, only a few cases have been reported in the literature concerning urban areas, mainly due to high levels of noise present that aggravate most of the geophysical methods or due to spatial limitations that hinder normal method implementation. Among all geophysical methods, electrical resistivity tomography has proven to be a rapid technique and the most robust with regard to urban noise. This work presents a case study in the urban area of Chania (Crete Island, Greece), where electrical resistivity tomography (ERT) has been applied for the detection and identification of possible buried ancient ruins or other man-made structures, prior to the construction of a building. The results of the detailed geophysical survey indicated eight areas of interest providing resistivity anomalies. Those anomalies were analysed and interpreted combining the resistivity readings with the geotechnical borehole data and the historical bibliographic reports—referring to the 1940s (Xalkiadakis 1997 Industrial Archaeology in Chania Territory pp 51-62). The collected ERT-data were processed by applying advanced algorithms in order to obtain a 3D-model of the study area that depicts the interesting subsurface structures more clearly and accurately.
A fractured rock geophysical toolbox method selection tool
Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.
2016-01-01
Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.
ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.
Bisdorf, Robert J.
1985-01-01
Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.
NASA Technical Reports Server (NTRS)
Seidman, T. I.; Munteanu, M. J.
1979-01-01
The relationships of a variety of general computational methods (and variances) for treating illposed problems such as geophysical inverse problems are considered. Differences in approach and interpretation based on varying assumptions as to, e.g., the nature of measurement uncertainties are discussed along with the factors to be considered in selecting an approach. The reliability of the results of such computation is addressed.
pyGIMLi: An open-source library for modelling and inversion in geophysics
NASA Astrophysics Data System (ADS)
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
Broadband geophysical time series data from a stressed environment
NASA Astrophysics Data System (ADS)
Pun, W.; Saleh, R.; Zwaan, D.; Milkereit, B.; Valley, B.; Pilz, M.; Milkereit, C.; Milkereit, R.
2011-12-01
As classical exploration geophysical tools and techniques find new application in time lapse and monitoring studies, a fresh look at the performance and repeatability of various geophysical techniques is worth to take a closer look. We used an active, deep mine site close to Sudbury (Canada) for 3D deployment of broadband geophysical sensors for passive monitoring and detecting anomalous regions in the earth based on physical rock properties. In addition, we conducted controlled source experiments to evaluate repeatability of geophysical sources. To extend from detection to monitoring, continuous repeated measurements are necessary over a long period of time. If a controlled source is stable, the convolution problem is simplified such that any variation in the geophysical data is an effect of the earth's response. Repeated measurements are important for in-mine use to provide a better insight of stress and strain changes due to natural events and mining processes. The development, build-up and redistribution of stress lead to rock failures that can have disastrous consequences if they occur in an uncontrolled manner. In this project, different continuous and repeated in-situ geophysical measurements from a deep underground mine were analyzed to validate the feasibility of in-mine monitoring. Data acquisition tests covered both active and passive methods: gravity meter, fibre optic strain meters, fixed and portable three-component seismic arrays, EM induction coils and borehole based DC/IP resistivity sensors. The newly acquired data cover a wide range of frequencies which allow the study of short- and long-period events, ranging from 10-5 Hz to 10 kHz. Earth tides, global seismic events, tremors, acoustic emissions (microseismic events) and blasts were recorded within a 3D volume.
NASA Astrophysics Data System (ADS)
Chitea, F.; Anghelache, M. A.; Ioane, D.
2010-05-01
Identification of damages/changes that are affecting the underground water quality due to the effect of anthropogenic activities is often done after environmental problems have become evident, water potability being strongly affected. In this paper we will discuss the necessity of implementing non-invasive and non-destructive investigation tools in different parts of the management plan for urban areas affected or with high risk of being affected by man-made hazards. Geophysical investigations represent nowadays a useful tool in environmental problems that affect soil and underground water in urban areas, as useful information can be obtained regarding the following aspects: - detection of affected areas, especially when the effect or hazard sources are not visible at the surface - zonation of the area (severely affected zone or less affected) - investigation of the area (details on affected surface and affected soil depth) - location of "hidden" sources (illegal waste dump sites, petroleum transport or transfer pipes, etc) - estimation of soil and underground damages by monitoring petrophysical markers - risk evaluation (estimations on the direction and speed of environmental problems development, estimations of amplifying negative effects) - recovery from the man-made hazard of a certain area (monitoring information can give information about natural attenuation of the environmental problems or efficacy of resilience program) - preparedness for man-made hazards (prediction). Functionality of the above mentioned plans of geophysical applicability in identifying and characterizing the effect of anthropogenic hazards which affect soil and underground water quality has been tested in Ploiesti city, Romania. In this urban area, as well as in surrounding villages, water potability is severely affected because of the oil-products contamination caused by the refinery facilities developed in the area. Oil-contamination is a major problem environmental problem, due to the fact that affected area is continuously expanding as a consequence of contaminant transport by the underground water. Hydrogeologically the research area is located in the alluvium of one of the main hydrostructures of Romania, which holds important water resources. Preliminary investigations made in the Ploiesti city area, has shown the high vulnerability of the aquifer to pollution and it was detected a highly contaminated area. By detailed investigations made using geophysical investigations in the test-zone, it was possible the detection of the presence of the particular type of pollutants and a map with area zonation has been produced. Appliance of geophysical investigations in environmental strategies concerning underground water pollution should be added to the ones obtained by direct investigations for risk evaluation and remediation strategies in cases of man made hazards. Acknowledgements: The research was performed with financial support from MENER (project nr. 725/ 2006) and CNCSIS-UEFISCU (project nr. 244/2007)
Handbook of Agricultural Geophysics
USDA-ARS?s Scientific Manuscript database
Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...
NASA Astrophysics Data System (ADS)
Linde, N.; Vrugt, J. A.
2009-04-01
Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.
Pareto Joint Inversion of Love and Quasi Rayleigh's waves - synthetic study
NASA Astrophysics Data System (ADS)
Bogacz, Adrian; Dalton, David; Danek, Tomasz; Miernik, Katarzyna; Slawinski, Michael A.
2017-04-01
In this contribution the specific application of Pareto joint inversion in solving geophysical problem is presented. Pareto criterion combine with Particle Swarm Optimization were used to solve geophysical inverse problems for Love and Quasi Rayleigh's waves. Basic theory of forward problem calculation for chosen surface waves is described. To avoid computational problems some simplification were made. This operation allowed foster and more straightforward calculation without lost of solution generality. According to the solving scheme restrictions, considered model must have exact two layers, elastic isotropic surface layer and elastic isotropic half space with infinite thickness. The aim of the inversion is to obain elastic parameters and model geometry using dispersion data. In calculations different case were considered, such as different number of modes for different wave types and different frequencies. Created solutions are using OpenMP standard for parallel computing, which help in reduction of computational times. The results of experimental computations are presented and commented. This research was performed in the context of The Geomechanics Project supported by Husky Energy. Also, this research was partially supported by the Natural Sciences and Engineering Research Council of Canada, grant 238416-2013, and by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
Application of surface geophysics to ground-water investigations
Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.
1974-01-01
This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.
Agricultural geophysics: Past/present accomplishments and future advancements
USDA-ARS?s Scientific Manuscript database
Geophysical methods have become an increasingly valuable tool for application within a variety of agroecosystems. Agricultural geophysics measurements are obtained at a wide range of scales and often exhibit significant variability both temporally and spatially. The three geophysical methods predomi...
Application of TOPEX/Poseidon altimetry to ocean dynamics and geophysics
NASA Technical Reports Server (NTRS)
Douglas, Bruce; Cheney, R.; Miller, L.; Mcadoo, D.; Leetmaa, A.; Schopf, P.; Schwiderski, E. W.
1991-01-01
We will analyze the TOPEX/POSEIDON data using techniques developed for Geosat, although the more accurate TOPEX/POSEIDON data will enable a wider range of problems to be addressed. Our proposed investigations will have five distinct areas: (1) a description of global sea level variability; (2) tropical ocean dynamics; (3) coupled models for El Nino prediction; (4) structure of the lithosphere; and (5) global tide model improvement.
Case studies: Soil mapping using multiple methods
NASA Astrophysics Data System (ADS)
Petersen, Hauke; Wunderlich, Tina; Hagrey, Said A. Al; Rabbel, Wolfgang; Stümpel, Harald
2010-05-01
Soil is a non-renewable resource with fundamental functions like filtering (e.g. water), storing (e.g. carbon), transforming (e.g. nutrients) and buffering (e.g. contamination). Degradation of soils is meanwhile not only to scientists a well known fact, also decision makers in politics have accepted this as a serious problem for several environmental aspects. National and international authorities have already worked out preservation and restoration strategies for soil degradation, though it is still work of active research how to put these strategies into real practice. But common to all strategies the description of soil state and dynamics is required as a base step. This includes collecting information from soils with methods ranging from direct soil sampling to remote applications. In an intermediate scale mobile geophysical methods are applied with the advantage of fast working progress but disadvantage of site specific calibration and interpretation issues. In the framework of the iSOIL project we present here some case studies for soil mapping performed using multiple geophysical methods. We will present examples of combined field measurements with EMI-, GPR-, magnetic and gammaspectrometric techniques carried out with the mobile multi-sensor-system of Kiel University (GER). Depending on soil type and actual environmental conditions, different methods show a different quality of information. With application of diverse methods we want to figure out, which methods or combination of methods will give the most reliable information concerning soil state and properties. To investigate the influence of varying material we performed mapping campaigns on field sites with sandy, loamy and loessy soils. Classification of measured or derived attributes show not only the lateral variability but also gives hints to a variation in the vertical distribution of soil material. For all soils of course soil water content can be a critical factor concerning a succesful application of geophysical methods, e.g. GPR on wet loessy soils will result in a high attenuation of signals. Furthermore, with this knowledge we support the development of geophysical pedo-transfer-functions, i.e. the link between geophysical to soil parameters, which is active researched in another work package of the iSOIL project. Acknowledgement: iSOIL-Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.
Extreme learning machine for reduced order modeling of turbulent geophysical flows.
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
Extreme learning machine for reduced order modeling of turbulent geophysical flows
NASA Astrophysics Data System (ADS)
San, Omer; Maulik, Romit
2018-04-01
We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.
GPR survey, as one of the best geophysical methods for social and industrial needs
NASA Astrophysics Data System (ADS)
Chernov, Anatolii
2016-04-01
This paper is about ways and methods of applying non-invasive geophysical method - Ground penetrating radar (GPR) survey in different spheres of science, industry, social life and culture. Author would like to show that geological methods could be widely used for solving great variety of industrial, human safety and other problems. In that article, we take GPR survey as an example of such useful geophysical methods. It is a fact that investigation of near surface underground medium is important process, which influence on development of different spheres of science and social life: investigation of near surface geology (layering, spreading of rock types, identification of voids, etc.), hydrogeology (depth to water horizons, their thickness), preparation step for construction of roads and buildings (civil geology, engineering geology), investigation of cultural heritage (burial places, building remains,...), ecological investigations (land slides, variation in underground water level, etc.), glaciology. These tasks can be solved by geological methods, but as usual, geophysical survey takes a lot of time and energy (especially electric current and resistivity methods, seismic survey). Author claims that GPR survey can be performed faster than other geophysical surveys and results of GPR survey are informative enough to make proper conclusions. Some problems even cannot be solved without GPR. For example, identification of burial place (one of author's research objects): results of magnetic and electric resistivity tomography survey do not contain enough information to identify burial place, but according to anomalies on GPR survey radarograms, presence of burial place can be proven. Identification of voids and non-magnetic objects also hardly can be done by another non-invasive geophysics surveys and GPR is applicable for that purpose. GPR can be applied for monitoring of dangerous processes in geological medium under roads, buildings, parks and other places of human activity. Monitoring of such hazards as landslides, underground erosion, variation in ground water level can help prevent dangerous processes with destructive consequences, which can result in peoples' injuries and even death. Moreover, GPR can be used in other spheres of life, where investigation of hidden (under or behind conductive for electromagnetic wave material) objects is needed: rescue operations (finding of people after natural and human-made disasters under snow, under debris of building material); military purpose (security systems, identification of people presence through walls, doors, ground etc.). Author work on algorithms (first of all for VIY GPRs (http://viy.ua/)), which will help more precisely find objects of interest on radarograms and even solve inverse problem of geophysics. According to information in that article, geophysical methods can be widely used to solve great variety of tasks and help to investigate humans' past (researches of cultural heritage) and provide information to create safe and comfortable future (preventing of natural hazards and better planning of construction).
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.
2005-01-01
This paper is the second of a set of two papers in which we study the inverse refraction problem. The first paper, "Types of Geophysical Nonuniqueness through Minimization," studies and classifies the types of nonuniqueness that exist when solving inverse problems depending on the participation of a priori information required to obtain reliable solutions of inverse geophysical problems. In view of the classification developed, in this paper we study the type of nonuniqueness associated with the inverse refraction problem. An approach for obtaining a realistic solution to the inverse refraction problem is offered in a third paper that is in preparation. The nonuniqueness of the inverse refraction problem is examined by using a simple three-layer model. Like many other inverse geophysical problems, the inverse refraction problem does not have a unique solution. Conventionally, nonuniqueness is considered to be a result of insufficient data and/or error in the data, for any fixed number of model parameters. This study illustrates that even for overdetermined and error free data, nonlinear inverse refraction problems exhibit exact-data nonuniqueness, which further complicates the problem of nonuniqueness. By evaluating the nonuniqueness of the inverse refraction problem, this paper targets the improvement of refraction inversion algorithms, and as a result, the achievement of more realistic solutions. The nonuniqueness of the inverse refraction problem is examined initially by using a simple three-layer model. The observations and conclusions of the three-layer model nonuniqueness study are used to evaluate the nonuniqueness of more complicated n-layer models and multi-parameter cell models such as in refraction tomography. For any fixed number of model parameters, the inverse refraction problem exhibits continuous ranges of exact-data nonuniqueness. Such an unfavorable type of nonuniqueness can be uniquely solved only by providing abundant a priori information. Insufficient a priori information during the inversion is the reason why refraction methods often may not produce desired results or even fail. This work also demonstrates that the application of the smoothing constraints, typical when solving ill-posed inverse problems, has a dual and contradictory role when applied to the ill-posed inverse problem of refraction travel times. This observation indicates that smoothing constraints may play such a two-fold role when applied to other inverse problems. Other factors that contribute to inverse-refraction-problem nonuniqueness are also considered, including indeterminacy, statistical data-error distribution, numerical error and instability, finite data, and model parameters. ?? Birkha??user Verlag, Basel, 2005.
NASA Astrophysics Data System (ADS)
GonzáLez, Pablo J.; FernáNdez, José
2011-10-01
Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.
Applications of three-dimensional modeling in electromagnetic exploration
NASA Astrophysics Data System (ADS)
Pellerin, Louise Donna
Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.
SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics
NASA Astrophysics Data System (ADS)
Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.
2005-12-01
SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including geophysics, geology, engineering, physics, and mathematics. SAGE is sponsored by the Los Alamos National Laboratory Branch of the University of California's Institute of Geophysics and Planetary Physics. More information is available on the SAGE web site at http://www.sage.lanl.gov/.
An introduction to the global positioning system and some geological applications
NASA Technical Reports Server (NTRS)
Dixon, T. H.
1991-01-01
The fundamental principles of the global positioning system (GPS) are reviewed, with consideration given to geological and geophysical applications and related accuracy requirements. Recent improvements are emphasized which relate to areas such as equipment cost, limitations in the GPS satellite constellation, data analysis, uncertainties in satellite orbits and propagation delays, and problems in resolving carrier phase cycle ambiguities. Earthquake processes and near-fault crustal deformation monitoring have been facilitated by advances in GPS data acquisition and analysis. Horizontal positioning capability has been improved by new satellite constellation, better models, and global tracking networks. New classes of tectonic problems may now be studied through GPS, such as kinematic descriptions of crustal deformation and the measurement of relative plate motion at convergent boundaries. Continued improvements in the GPS are foreseen.
The physics of the earth's core: An introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, P.
1986-01-01
This book is a reference text providing information on physical topics of recent developments in internal geophysics. The text summarizes papers covering theoretical geophysics. Basic formulae, definitions and theorems are not explained in detail due to the limited space. The contents include applications to geodesy, geophysics, astronomy, astrophysics, geophysics and planetary physics. The formal contents include: The Earth's model; Thermodynamics; Hydrodynamics; Geomagnetism; Geophysical implications in the Earth's core.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1990-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
Borehole geophysics applied to ground-water investigations
Keys, W.S.
1988-01-01
The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary training with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, in addition to changes in the character of these factors with time. The response of well logs is caused by: petrophysical factors; the quality; temperature, and pressure of interstitial fluids; and ground-water flow. Qualitative and quantitative analysis of the analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs.The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids and wells, and the principles of measurement need to be understood to correctly interpret geophysical logs. Planning the logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology are needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and log analyst and requires both calibration and well-site standardization of equipment.Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include: spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization, volume of investigation, extraneous effects, and interpretation and applications.
IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system
NASA Technical Reports Server (NTRS)
Libert, J. M.
1982-01-01
The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.
NASA Technical Reports Server (NTRS)
Cannon, W. H.; Petrachenko, W. T.; Yen, J. L.; Galt, J. A.; Waltman, W. B.; Knoweles, S. H.; Popelar, J.
1980-01-01
A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented.
Application of a stochastic inverse to the geophysical inverse problem
NASA Technical Reports Server (NTRS)
Jordan, T. H.; Minster, J. B.
1972-01-01
The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.
NASA Astrophysics Data System (ADS)
Martirosyan, A. N.; Davtyan, A. V.; Dinunts, A. S.; Martirosyan, H. A.
2018-04-01
The purpose of this article is to investigate a problem of closing cracks by building up a layer of sediments on surfaces of a crack in an infinite thermoelastic medium in the presence of a flow of fluids with impurities. The statement of the problem of closing geophysical cracks in the presence of a fluid flow is presented with regard to the thermoelastic stress and the influence of the impurity deposition in the liquid on the crack surfaces due to thermal diffusion at the fracture closure. The Wiener–Hopf method yields an analytical solution in the special case without friction. Numerical calculations are performed in this case and the dependence of the crack closure time on the coordinate is plotted. A similar spatial problem is also solved. These results generalize the results of previous studies of geophysical cracks and debris in rocks, where the closure of a crack due to temperature effects is studied without taking the elastic stresses into account.
Instantaneous Frequency Attribute Comparison
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Ben Horin, Y.
2013-12-01
The instantaneous seismic data attribute provides a different means of seismic interpretation, for all types of seismic data. It first came to the fore in exploration seismology in the classic paper of Taner et al (1979), entitled " Complex seismic trace analysis". Subsequently a vast literature has been accumulated on the subject, which has been given an excellent review by Barnes (1992). In this research we will compare two different methods of computation of the instantaneous frequency. The first method is based on the original idea of Taner et al (1979) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method is based on the computation of the power centroid of the time-frequency spectrum, obtained using either the Gabor Transform as computed by Margrave et al (2011) or the Stockwell Transform as described by Stockwell et al (1996). We will apply both methods to exploration seismic data and the DPRK events recorded in 2006 and 2013. In applying the classical analytic signal technique, which is known to be unstable, due to the division of the square of the envelope, we will incorporate the stabilization and smoothing method proposed in the two paper of Fomel (2007). This method employs linear inverse theory regularization coupled with the application of an appropriate data smoother. The centroid method application is straightforward and is based on the very complete theoretical analysis provided in elegant fashion by Cohen (1995). While the results of the two methods are very similar, noticeable differences are seen at the data edges. This is most likely due to the edge effects of the smoothing operator in the Fomel method, which is more computationally intensive, when an optimal search of the regularization parameter is done. An advantage of the centroid method is the intrinsic smoothing of the data, which is inherent in the sliding window application used in all Short-Time Fourier Transform methods. The Fomel technique has a larger CPU run-time, resulting from the necessary matrix inversion. Barnes, Arthur E. "The calculation of instantaneous frequency and instantaneous bandwidth.", Geophysics, 57.11 (1992): 1520-1524. Fomel, Sergey. "Local seismic attributes.", Geophysics, 72.3 (2007): A29-A33. Fomel, Sergey. "Shaping regularization in geophysical-estimation problems." , Geophysics, 72.2 (2007): R29-R36. Stockwell, Robert Glenn, Lalu Mansinha, and R. P. Lowe. "Localization of the complex spectrum: the S transform."Signal Processing, IEEE Transactions on, 44.4 (1996): 998-1001. Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063. Cohen, Leon. "Time frequency analysis theory and applications."USA: Prentice Hall, (1995). Margrave, Gary F., Michael P. Lamoureux, and David C. Henley. "Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data." Geophysics, 76.3 (2011): W15-W30.
NASA Astrophysics Data System (ADS)
Horesh, L.; Haber, E.
2009-09-01
The ell1 minimization problem has been studied extensively in the past few years. Recently, there has been a growing interest in its application for inverse problems. Most studies have concentrated in devising ways for sparse representation of a solution using a given prototype dictionary. Very few studies have addressed the more challenging problem of optimal dictionary construction, and even these were primarily devoted to the simplistic sparse coding application. In this paper, sensitivity analysis of the inverse solution with respect to the dictionary is presented. This analysis reveals some of the salient features and intrinsic difficulties which are associated with the dictionary design problem. Equipped with these insights, we propose an optimization strategy that alleviates these hurdles while utilizing the derived sensitivity relations for the design of a locally optimal dictionary. Our optimality criterion is based on local minimization of the Bayesian risk, given a set of training models. We present a mathematical formulation and an algorithmic framework to achieve this goal. The proposed framework offers the design of dictionaries for inverse problems that incorporate non-trivial, non-injective observation operators, where the data and the recovered parameters may reside in different spaces. We test our algorithm and show that it yields improved dictionaries for a diverse set of inverse problems in geophysics and medical imaging.
NASA Astrophysics Data System (ADS)
Wollny, K. G.
2013-12-01
Geophysical departments of universities or major geophysical research institutes around the world hardly ever file for a patent, even if pioneering and marketable work is done - this is what research in patent databases shows. Patents for methods, apparatuses or scientific instruments developed during scientific projects are mostly filed by companies, i.e. more than 90% of approximately 185,000 patent documents added by May 2013 to the International Patent Classification (IPC) class G01V, which the United Nations' World Intellectual Property Organisation (WIPO) has set up mainly for inventions with key aspects in geophysics. Even inventions born of cooperations between research institutes or universities and well-known geophysical companies where both act as equal partners almost never make it to the G01V. University departments responsible for intellectual property management explain that geoscientists prefer to publish their results in journals rather than in the form of patent applications even if these departments support them and parallel publication is protected legally. This means geoscientists miss the opportunity to protect their intellectual work and to tap its economic potential. But even if scientists don't want to apply for patents, patent documents constitute a wealth of knowledge that should be used much more frequently in research e.g. to stay on top of developments in one's own scientific field. Most important databases are for free, search functionality is self-explanatory and the amount of information to be extracted is enormous. All in all, about 80 million multilingual patent documents are currently available online e.g. in DEPATIS database from the German Patent and Trade Mark Office (DPMA) or ESPACENET from the European Patent Office (EPO). From a researcher's perspective, they might also be interesting for detailed technical background information, interdisciplinary solutions for similar problems, to learn about inventions too advanced for their time, but maybe useful now, and to explore the historical background and/or timelines of inventions. Patent documents can help to avoid pitfalls and mistakes other experts might already have experienced and documented in describing the state of the art or the inspiration for their invention. It will be shown how to get access to these databases, how to use them to solve scientific problems and how to leverage search results to improve expertise, work experience or facilitate personal patent application. Patent documents resemble journal articles a lot - they contain an abstract, a description regarding the state of the art, the applicant's motivation to overcome a deficit, technical figures and claims to protect the invention. This structure is used globally for all patent documents. Besides the technical facts, they include the name of the inventor, the company applying for the patent, patent validity information and potential 'family members', which cover the same invention but often in other languages than the original patent document. To summarize, patent documents are a highly useful tool to strengthen one's knowledge in a practically orientated geophysical field and to widen the horizon to adjacent technical areas.
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
The Electrical Self-Potential Method as a Non-Intrusive Snow-Hydrological Sensor
NASA Astrophysics Data System (ADS)
Kulessa, B.; Thompson, S. S.; Luethi, M. P.; Essery, R.
2015-12-01
Building on growing momentum in the application of geophysical techniques to snow problems and, specifically, on new theory and an electrical geophysical snow hydrological model published recently; we demonstrate for the first time that the electrical self-potential geophysical technique can sense in-situ bulk meltwater fluxes. This has broad and immediate implications for snow measurement practice, modelling and operational snow forecasting. Our ability to measure, quantify and assimilate hydrological properties and processes of snow in operational models is disproportionally poor compared to the significance of seasonal snowmelt as a global water resource and major risk factor in flood and avalanche forecasting. Encouraged by recent theoretical, modelling and laboratory work, we show here that the diurnal evolution of aerially-distributed self-potential magnitudes closely track those of bulk meltwater fluxes in melting in-situ snowpacks at Rhone and Jungfraujoch glaciers, Switzerland. Numerical modelling infers temporally-evolving liquid water contents in the snowpacks on successive days in close agreement with snow-pit measurements. Muting previous concerns, the governing physical and chemical properties of snow and meltwater became temporally invariant for modelling purposes. Because measurement procedure is straightforward and readily automated for continuous monitoring over significant spatial scales, we conclude that the self-potential geophysical method is a highly-promising non-intrusive snow-hydrological sensor for measurement practice, modelling and operational snow forecasting.
Agricultural Geophysics: Past, present, and future
USDA-ARS?s Scientific Manuscript database
Geophysical methods are becoming an increasingly valuable tool for agricultural applications. Agricultural geophysics investigations are commonly (although certainly not always) focused on delineating small- and/or large-scale objects/features within the soil profile (~ 0 to 2 m depth) over very lar...
Geophysical data analysis and visualization using the Grid Analysis and Display System
NASA Technical Reports Server (NTRS)
Doty, Brian E.; Kinter, James L., III
1995-01-01
Several problems posed by the rapidly growing volume of geophysical data are described, and a selected set of existing solutions to these problems is outlined. A recently developed desktop software tool called the Grid Analysis and Display System (GrADS) is presented. The GrADS' user interface is a natural extension of the standard procedures scientists apply to their geophysical data analysis problems. The basic GrADS operations have defaults that naturally map to data analysis actions, and there is a programmable interface for customizing data access and manipulation. The fundamental concept of the GrADS' dimension environment, which defines both the space in which the geophysical data reside and the 'slice' of data which is being analyzed at a given time, is expressed The GrADS' data storage and access model is described. An argument is made in favor of describable data formats rather than standard data formats. The manner in which GrADS users may perform operations on their data and display the results is also described. It is argued that two-dimensional graphics provides a powerful quantitative data analysis tool whose value is underestimated in the current development environment which emphasizes three dimensional structure modeling.
Workshop on Radar Investigations of Planetary and Terrestrial Environments
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Salt Kinematics and InSAR. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt. Modem Radar Techniques for Geophysical Applications: Two Examples. WISDOM Experiment on the EXOMARS ESA Mission. An Ice Thickness Study Utilizing Ground Penetrating Radar on the Lower Jamapa. Probing the Martian Subsurface with Synthetic Aperture Radar. Planetary Surface Properties from Radar Polarimetric Observations. Imaging the Sub-surface Reflectors : Results From the RANETA/NETLANDER Field Test on the Antarctic Ice Shelf. Strategy for Selection of Mars Geophysical Analogue Sites. Observations of Low Frequency Low Altitude Plasma Oscillations at Mars and Implications for Electromagnetic Sounding of the Subsurface. Ionospheric Transmission Losses Associated with Mars-orbiting Radar. A Polarimetric Scattering Model for the 2-Layer Problem. Radars for Imaging and Sounding of Polar Ice Sheets. Strata: Ground Penetrating Radar for Mars Rovers. Scattering Limits to Depth of Radar Investigation: Lessons from the Bishop Tuff.
Archaeological Geophysics in Israel: Past, Present and Future
NASA Astrophysics Data System (ADS)
Eppelbaum, L. V.
2009-04-01
Israel is a country with diverse and rapidly changeable environments where is localized a giant number of archaeological objects of various age, origin and size. The archaeological remains occur in a complex (multi-layered and variable) geological-archaeological media. It is obvious that direct archaeological excavations cannot be employed at all localized and supposed sites taking into account the financial, organizational, ecological and other reasons. Therefore, for delineation of buried archaeological objects, determination their physical-geometrical characteristics and classification, different geophysical methods are widely applied. The number of employed geophysical methodologies is constantly increasing and now Israeli territory may be considered as a peculiar polygon for various geophysical methods testing. The geophysical investigations at archaeological sites in Israel could be tentatively divided on three stages: (1) past [- 1990] (e.g., Batey, 1987; Ben-Menahem, 1979; Dolphin, 1981; Ginzburg and Levanon, 1977; Karcz et al., 1977; Karcz and Kafri, 1978; Tanzi et al., 1983; Shalem, 1949; Willis, 1928), (2) present [1991 - 2008] (e.g., Bauman et al., 2005; Ben-Dor et al., 1999; Ben-Yosef et al., 2008; Berkovitch et al., 2000; Borradaile, 2003; Boyce et al., 2004; Bruins et al., 2003; Daniels et al., 2003; Ellenblum et al., 1998; Eppelbaum, 1999, 2000a, 2000b, 2005, 2007a, 2007b, 2008b; Eppelbaum and Ben-Avraham, 2002; Eppelbaum and Itkis, 2000, 2001; 2003, 2009; Eppelbaum et al., 2000a, 2000b, 2001a, 2001b, 2003a, 2003b, 2004a, 2004b; 2005, 2006a, 2006b, 2006c, 2006d, 2007, 2009a, 2009b; Ezersky et al., 2000; Frumkin et al., 2003; Itkis and Eppelbaum, 1998; Itkis, 2003; Itkis et al., 2002, 2003, 2008; Jol et al., 2003, 2008; Kamai and Hatzor, 2007; Khesin et al., 1996; Korjenkov and Mazor, 1999; Laukin et al., 2001; McDermott et al., 1993; Marco, 2008; Marco et al., 2003; Nahas et al., 2006; Neishtadt et al., 2006; Nur and Ron, 1997; Paparo, 1991; Porat et al., 1999; Reeder et al., 2004; Reinhardt et al., 2006; Reich et al., 2003; Ron et al., 2003; Segal et al., 2003; Sternberg and Lass, 2007; Sternberg et al., 1999; Verri et al., 2004; Weiner et al., 1993; Weinstein-Evron et al., 1991, 2003; Weiss et al., 2007; Witten et al., 1994), and (3) future [2010 -]. The past stage with several archaeoseismic reviews and very limited application of geophysical methods was replaced by the present stage with the violent employment of numerous geophysical techniques (first of all, high-precise magnetic survey and GPR). It is supposed that the future stage will be characterized by extensive development of multidiscipline physical-archaeological databases (Eppelbaum et al., 2009b), utilization of supercomputers for 4D monitoring and ancient sites reconstruction (Foster et al., 2001; Pelfer et al., 2004) as well as wide application of geophysical surveys using remote operated vehicles at low altitudes (Eppelbaum, 2008a). REFERENCES Batey, R.A., 1987. Subsurface Interface Radar at Sepphoris, Israel 1985. Journal of Field Archaeology, 14 (1), 1-8. Bauman, P., Parker, D., Coren, A., Freund, R., and Reeder, P., 2005. Archaeological Reconnaissance at Tel Yavne, Israel: 2-D Electrical Imaging and Low Altitude Aerial Photography. CSEG Recorder, No. 6, 28-33. Ben-Dor, E., Portugali, J., Kochavi, M., Shimoni, M., and Vinitzky, L., 1999. Airborne thermal video radiometry and excavation planning at Tel Leviah, Golan Heights, Israel. Journal of Field Archaeology, 26 (2), 117-127. Ben-Menahem, A., 1979. Earthquake catalogue for the Middle East (92 B.C. - 1980 A.D.). Bollettino di Geofisica Teorica ed Applicata, 21 (84), 245-310. Ben-Yosef, E., Tauxe, L., Ronb, H., Agnon, A., Avner, U., Najjar, M., and Levy, T.E., 2008. A new approach for geomagnetic archaeointensity research: insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science, 25, 2863-2879. Berkovitch, A.L., Eppelbaum, L.V., and Basson, U., 2000. Application of multifocusing seismic processing to the GPR data analysis. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Hyatt Regency Crystal City, Arlington, USA, 597-606. Borradaile, G. J., 2003. Viscous magnetization, archaeology and Bayesian statistics of small samples from Israel and England. Geophysical Research Letters, 30 (10), 1528, doi:10.1029/2003GL016977. Boyce, J.I., Reinhardt, E.G., Raban, A., and Pozza, M.R., 2004. The utility of marine magnetic surveying for mapping buried hydraulic concrete harbour structures: Marine Magnetic Survey of a Submerged Roman Harbour, Caesarea Maritima, Israel. The International Journal of Nautical Archaeology, 33, 1, 122-136. Bruins, H.J., van der Plicht, J., and Mazar, A., 2003. 14C dates from Tel-Rehov: Iron-age chronology, Pharaohs and Hebrew kings. Science, 300, 315-318. Daniels, J., Blumberg, D.J., Vulfson, L.D., Kotlyar, A.L., Freiliker, V., Ronen, G., and Ben-Asher, J., 2003. Microwave remote sensing of physically buried objects in the Negev Desert: implications for environmental research. Remote Sensing of Environment, 86, 243-256, 2003. Dolphin, L.T., 1981. Geophysical methods for archaeological surveys in Israel. Stanford Research International, Menlo Park, Calif., USA, 7 pp. Ellenblum, R., Marco, M., Agnon, A., Rockwell, T., and Boas, A., 1998. Crusader castle torn apart by earthquake at dawn, 20 May 1202. Geology, 26, No. 4, 303-306. Eppelbaum, L.V., 1999. Quantitative interpretation of resistivity anomalies using advanced methods developed in magnetic prospecting. Trans. of the XXIV General Assembly of the Europ. Geoph. Soc., Strasburg 1 (1), p.166. Eppelbaum, L.V., 2000a. Detailed geophysical investigations at archaeological sites. In: (Ed. A. Nissenbaum), Relation between archaeology and other scientific disciplines, Collection of Papers, Weitzman Inst., Rehovot, Israel, No.8, 39-54 (in Hebrew). Eppelbaum, L.V., 2000b. Applicability of geophysical methods for localization of archaeological targets: An introduction. Geoinformatics, 11, No.1, 19-28. Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 4 pp. Eppelbaum, L.V., 2007a. Localization of Ring Structures in Earth's Environments. Proceed. of the 7th Conference of Archaeological Prospection. Nitra, Slovakia, 145-148. Eppelbaum, L.V., 2007b. Revealing of subterranean karst using modern analysis of potential and quasi-potential fields. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 797-810. Eppelbaum, L.V., 2008a. Remote operated vehicle geophysical survey using magnetic and VLF methods: proposed schemes for data processing and interpretation. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, USA, 938-963. Eppelbaum, L.V., 2008b. On the application of near-surface temperature investigations for delineation of archaeological targets. Trans. of the 1st International Workshop on Advances in Remote Sensing for Archaeology and Cultural Heritage Management, Rome, Italy, 179-183. Eppelbaum, L.V., 2009. Application of microgravity at archaeological sites in Israel: some estimation derived from 3D modeling and quantitative analysis of gravity field. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Denver, USA, 10 pp. Eppelbaum, L. and Ben-Avraham, Z., 2002. On the development of 4D geophysical Data Base of archaeological sites in Israel. Trans. of the Conf. of the Israel Geol. Soc. Ann. Meet., MaHagan - Lake Kinneret, Israel, p.21. Eppelbaum, L., Ben-Avraham, Z., and Itkis, S., 2003a. Ancient Roman Remains in Israel provide a challenge for physical-archaeological modeling techniques. First Break, 21 (2), 51-61. Eppelbaum, L.V., Ben-Avraham, Z., and Itkis, S.E., 2003b. Integrated geophysical investigations at the Halutza archaeological site. Proceed. of the 64 EAGE Conf., Florence, Italy, P151, 4 pp. Eppelbaum, L., Ben-Avraham, Z., Itkis, S., and Kouznetsov, S., 2001a. First results of self-potential method application at archaeological sites in Israel. Trans. of the EUG XI Intern. Symp., Strasbourg, France, p. 657. Eppelbaum, L.V. and Itkis, S.E., 2000. Magnetic investigations in the Proto-Historic site to the east of Tel Megiddo. In: (Eds. I. Finkelstein, D. Ussishkin and B. Halpern), Monograph Series of the Inst. of Archaeology, Emery and Claire Yass Publications in Archaeology, Tel Aviv University, "Megiddo III", Monogr. Ser. No. 18, 504-514. Eppelbaum, L.V. and Itkis, S.E., 2001. Detailed magnetic investigations at the ancient Roman site Banias II (northern Israel). Proceed. of the 1st Intern Symp. on Soil and Archaeology, Szazhalombatta, Hungary, 13-16. Eppelbaum, L.V. and Itkis, S.E., 2003. Geophysical examination of the Christian archaeological site Emmaus-Nicopolis (central Israel). Collection of Papers of the XIX CIPA Conf. "New Perspectives to Save the Cultural Heritage", Antalya, Turkey, 395-400. Eppelbaum, L.V., Itkis, S.E., Fleckenstein, K.-H., and Fleckenstein, L., 2007. Latest results of geophysical-archaeological investigations at the Christian archaeological site Emmaus-Nicopolis (central Israel). Proceed. of the 69th EAGE Conference, P118, London, Great Britain, 5 pp. Eppelbaum, L.V., Itkis, S.E., and Gopher A., 2009a. Interpreting magnetic data at Nahal Zehora II. In: (Ed. A. Gopher), Monograph Series of the Inst. of Archaeology, Emery and Claire Yass Publications in Archaeology, Tel Aviv University, "Archaeological investigations at the sites of Nahal-Zehora", Monogr. Ser. No. 19. Eppelbaum, L.V., Itkis, S.E., and Khesin, B.E., 2000a. Optimization of magnetic investigations in the archaeological sites in Israel, In: Special Issue of Prospezioni Archeologiche "Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects", 65-92. Eppelbaum, L.V., Itkis S.E., and Khesin, B.E., 2004a. Initial visualization of magnetic survey results at the Prehistoric archaeological sites in Israel. Proceed. of the 5th Intern. Symp. on Eastern Mediterranean Geology. Thessaloniki, Greece, Vol. 2, 747-750. Eppelbaum, L.V., Itkis, S.E., and Khesin, B.E., 2005. Magnetic survey at the Prehistoric archaeological sites in Israel. Proceed. of the 67th EAGE Conf., P331, Madrid, Spain, 4 pp. Eppelbaum, L., Itkis, S., and Khesin, B., 2006a. Detailed magnetic survey unmasks Prehistoric archaeological sites in Israel. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Calgary, Canada, 1366-1373. Eppelbaum, L.V., Itkis, S.E., and Petrov, A.V., 2000b. Physics and archaeology: magnetic field as a reliable tool for searching ancient remains in Israel. Scientific Israel, No. 2, 68-78. Eppelbaum, L.V. and Khesin, B.E., 2001. Disturbing factors in geophysical investigations at archaeological sites and ways of their elimination. Trans. of the IV Conf. on Archaeological Prospection, Vienna, Austria, 99-101. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2001b. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8 (3), 163-185. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2006b. Some peculiarities of geophysical investigations at archaeological sites in Israel. Russian Archaeology, No. 1, 59-70. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2006c. Modern geophysical methodologies as reliable tool for reducing risk of archaeological heritage destruction. Trans. of the Intern. Conf. on Mathematical Geophysics, Sea of Galilee, Israel, p. 35. Eppelbaum, L.V., Khesin, B.E., and Itkis, S.E., 2009b. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments (in Press). Eppelbaum, L.V., Khesin, B.E., Itkis S.E., and Ben-Avraham, Z., 2004b. Advanced analysis of self-potential data in ore deposits and archaeological sites. Proceed. of the 10th European Meeting of Environmental and Engineering Geophysics, Utrecht, The Netherlands, 4 pp. Ezersky, M., Goldman, M., Bar-Matthews, M., and Ayalon, A., 2000. Geoelectric investigation of the Soreq Cave area in Israel. Proceed. of the EAGE/EEGS 6th Meetings, Bochum, Germany, PCD01, 2 pp. Foster, I., Kesselman, C., and Tueke, S., 2001. The anatomy of the grid. Enabling scalable virtual organization. Intl. J. Supercomputer Applications, 15, No.3, 200-222. Frumkin, A., Shimron, A., and Rosenbaum, J., 2003. Radiometric dating of the Siloam Tunnel, Jerusalem. Letters to Nature, 425, 169-171. Ginzburg, A. and Levanon, A., 1977. Direct current resistivity measurements in archaeology. Geoexploration, 15, 47-56. Itkis, S.E., 2003. Magnetic Susceptibility Measurements of Soil: A Diagnostic Tool for Location Human Activity Areas. In: (H. Khalaily and O. Marder, Eds.) The Neolithic Site of Abu Ghosh: The 1995 Excavations, Chapter 14, (IAA Reports 19), Jerusalem, 129-131. Itkis, S.E. and Eppelbaum, L.V., 1998. First results of magnetic prospecting application at the Prehistoric sites of Israel. Journal of the Prehistoric Society of Israel, 28, 177-187. Itkis, S., Feinstein, S., and Khesin, B., 2008. Archaeomagnetic provinces in Israel as a basis for magnetic prospecting of archaeological sites. Proceed. of the 14th Near-Surface Europ. Meeting of Environmental and Engineering Geophysics, Krakow, Poland, 5 pp. Itkis, S., Khesin, B., Eppelbaum, L., and Khalaily, H., 2003. The Natufian site of Eynan (Hula valley, northern Israel): Magnetic prospecting reveals new features. Israel Journal of Earth Sciences, 52 (3-4), 209-219. Itkis, S., Khesin, B., and Feinstein, S., 2002. Detailed magnetic prospecting at archaeological sites of Israel - complications and physical-srchaeological models. Proceed. of the 64th EAGE Annual Conf., Florence, Italy, 4 pp. Jol, H.M., Broshi, M., and Eshel, H., 2003. GPR investigations at Qumran, Israel: site of the Dead Sea Scrolls discovery. Proceed. of SPIE Conf., 4758, Santa-Barbara, USA, 125-129. Jol, H.M., Freund, R.A., Darawsha, M., Bauman, P.D., Nahas, S., Reeder, P., Savage, K., and Syon, D., 2008. Nazareth excavations project: A GPR perspective. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Philadelphia, USA, 1407-1413. Kamai, R. and Hatzor, Y.H., 2007. Numerical analysis of block stone displacements in ancient masonry structures: A new method to estimate historic ground motions. Intern. Jour. for Numerical and Analytical Methods in Geomechanics, 32, 1321-1340. Karcz, I. and Kafri, U., 1978. Evaluation of supposed archaeoseismic damage in Israel. Journal of Archaeological Science, 5, No. 3, 237-253. Karcz, I., Kafri, U., and Meshel, Z., 1977. Archaeological evidence for subrecent seismic activity along the Dead Sea-Jordan Rift. Nature, 269, 234-235. Khesin, B.E., Alexeyev, V.V., and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers (Springer), Ser.: Modern Approaches in Geophysics, Boston - Dordrecht - London. Korjenkov, A.M. and Mazor, E., 1999. Seismogenic origin of the ancient Avdat ruins, Negev Desert, Israel. Natural Hazards, 18, 193-226. Laukhin, S.S., Ronen, A., Pospelova, G.A., Sharonova, Z.V., Ranov, V.A., Burdukiewicz, J.M., Volgina V.A., and Tsatskin, A., 2001. New data on the geology and geochronology of the Lower Palaeolithic site Bizat Ruhama in the Southern Levant. Paleorient, 27 (1), 69-80. McDermott, F., Grün, R., Stringer C.B., and Hawkesworth, C.J., 1993. Mass-spectrometric U-series dates for Israeli Neanderthal/early modern human sites. Nature, 363, 252-255. Marco, S., 2008. Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone. Tectonophysics, 453, No. 1-4, 122-147. Marco, S., Hartal, M., Hazan, N., Lev, L., and Stein, M., 2003. Archaeology, History, and geology of the A.D. 749 earthquake, Dead Sea transform. Geology, 31 (8), 665-668. Nahas, C., Bauman, P., Jol, H., Reeder, P., and Freund, R., 2006. Geophysical investigations at coastal archaeological sites in Israel. Proceed. of the Symp. on the Application of Geophysics to Engineering and Environmental Problems, Seattle, Washington, 1397-1406. Neishtadt, N.M., Eppelbaum, L.V., and Levitski, A.G., 2006. Application of seismo-electric phenomena in exploration geophysics: Review of Russian and Israeli experience. Geophysics, 71 (2), B41-B53. Nur, A. and Ron, H., 1997. Armageddon's earthquake. International Geology Review, 39, No. 6, 532-541. Paparo, H., 1991. Temperature study of the archaeological site Crusades Fortress Um Haled (Netanya). Trans. of the Conf. of Israel Geol. Soc., Annual Meeting, Akko, Israel, p. 77. Pelfer, P.G., Barcelo, J.A., McDonaill, C., and Pelfer, G., 2004. ArchaeoGRID, a GRID for archaeology. Proceed. of the IEEE Nuclear Science Symp. Conf., 4, 2095-2099. Porat, N., Zhou, L.P., Chazan, M., Noy, T., and Horwitz, L.K., 1999. Dating the lower Paleolithic open-air site of Holon, Israel, by luminescence and ESR techniques. Quaternary Research, 51, 328-341. Reeder, P., Jol, H., Bauman, P., and Freund, R., 2004. Multidisciplinary research at the Cave of Letters, Israel: a melding of physical and social sciences. Proceed. of Trans-Karst Intern. Transdisciplinary Conf. on Development and Conservation of Karst Regions, Ha Noi, Vietnam, 181-184. Reich, S., Leitus, G., and Shalev, S., 2003. Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 991-999, 2003. Reinhardt, E.G., Goodman, B.N., Boyce, J.I., Lopez, G., van Hengstum, P., Rink, W.J., Mart, Y., and Raban, A., 2006. The tsunami of 13 December A.D. 115 and the destruction of Herod the Great's harbor at Caesarea Maritima, Israel. Geology, 34, No. 12, 1061-1064. Ron, H., Porat, N., Ronen, A., Tchernov, E., and Horwitz, L., 2003. Magnetostratigraphy of the Evron Member - implications for the age of the Middle Acheulian site of Evron Quarry. Journal of Human Evolution, 44, 633-639. Segal, Y., Marco, S., and Ellenblum, R., 2003. Intensity and direction of the geomagnetic field in 24 August, 1179 measured in Vadum Iacob (Ateret) Crusader Fortress, northern Israel. Israel Jour. Earth Sci., 52, 203-208. Shalem, N., 1949. Earthquakes in Jerusalem. Jerushalaim, 1, 22-54 (in Hebrew). Sternberg, R. and Lass, E. H.E., 2007. An archaeomagnetic study of two hearths from Kebara Cave, Israel. In: (O. Bar-Yosef and L. Meignen, eds.) Kebara Cave, Mt. Carmel, Israel: The Middle and Upper Paleolithic Archaeology, Part I, American School of Prehistoric Research, Bull. 49, Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, 123-130. Sternberg, R., Lass, E., Marion, E., Katari, K., and Holbrook, M., 1999. Anomalous archaeomagnetic directions and site formation processes at archaeological sites in Israel. Geoarchaeology, 14 (5), 415-439. Tanzi, J.D., Vickers, R.S., and Burns, P.L., 1983. Application of electrical resistivity techniques to archaeological surveys. Proceed. of the International Geoscience and Remote Sensing Symposium, 1-3. Verri, G. Barkai, R., Bordeanu, C., Gopher, A., Hass, M., Kaufman, A., Kubik, P., Montanari, E., Paul, M., Ronen, A., Weiner, S., and Boaretto, E., 2004. Flint mining in prehistory recorded by in situ-produced cosmogenic 10Be. Proceed. of the National Academy of Sciences (USA), 101, No. 21, 7880-7884. Weinstein-Evron, M., Mart, Y., and Beck, A., 1991. Geophysical investigations in the el-Wad Cave, Mt. Carmel, Israel. Geoarchaeology, 6, 355-365. Weiner, S., Goldberg, P., and Bar-Yosef, O., 1993. Bone preparation in Kebara cave, Israel using on-site Fourier-transform infrared spectrometry. Journal of Archaeological Science, 20, 613-627. Weinstein-Evron, M., Beck, A., and Ezersky, M., 2003. Geophysical investigations in the service of Mount Carmel (Israel) prehistoric research. Journal of Archaeological Science, 30, 1331-1341. Willis, B., 1928. Earthquakes in the Holy Land. Bull. of Seismol. Soc. of America, 18, 73-103. Weiss, E., Ginzburg, B., Cohen, T.R., Zafrir, H. Alimi, R. Salomonski, N., and Shatvit, J., 2007. High resolution marine magnetic survey of shallow water littoral area. Sensors, 7, 1697-1712. Witten, A.J., Levy, T.E., Ursic, J., and White, P., 1994. Geophysical diffraction tomography: New views on the Shiqmim prehistoric subterranean village site (Israel). Geoarchaeology, 10 (2), 97-118.
NASA Technical Reports Server (NTRS)
Zuber, Maria T. (Editor); Plescia, Jeff L. (Editor); James, Odette B. (Editor); Macpherson, Glenn (Editor)
1989-01-01
Research topics within the NASA Planetary Geosciences Program are presented. Activity in the fields of planetary geology, geophysics, materials, and geochemistry is covered. The investigator's current research efforts, the importance of that work in understanding a particular planetary geoscience problem, the context of that research, and the broader planetary geoscience effort is described. As an example, theoretical modelling of the stability of water ice within the Martian regolith, the applicability of that work to understanding Martian volatiles in general, and the geologic history of Mars is discussed.
High resolution land surface geophysical parameters estimation from ALOS PALSAR data
USDA-ARS?s Scientific Manuscript database
High resolution land surface geophysical products, such as soil moisture, surface roughness and vegetation water content, are essential for a variety of applications ranging from water management to regional climate predictions. In India high resolution geophysical products, in particular soil moist...
Refraction statics and seismic imaging: 2-D versus 3-D solutions in the Western Desert of Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Emam, A.; Nessim, M.
1994-12-31
Careful review of old geophysical and geological data from the Western Desert of Egypt led to the decision of shooting a 3-D seismic survey targeted to solve some of the encountered geophysical problems such as difficulty of tracing the very thin pay zone, identifying the stratigraphic plays and the main two problems of the seismic method in the Western Desert which are statics and poor imaging. In a case history form illustrated by examples, the result of the 3-D solutions will be shown. Furthermore, an analytical approach will be undertaken to clarify and highlight the sources of those geophysical problemsmore » and how the 3-D solution helped in resolving them.« less
Regularization of Instantaneous Frequency Attribute Computations
NASA Astrophysics Data System (ADS)
Yedlin, M. J.; Margrave, G. F.; Van Vorst, D. G.; Ben Horin, Y.
2014-12-01
We compare two different methods of computation of a temporally local frequency:1) A stabilized instantaneous frequency using the theory of the analytic signal.2) A temporally variant centroid (or dominant) frequency estimated from a time-frequency decomposition.The first method derives from Taner et al (1979) as modified by Fomel (2007) and utilizes the derivative of the instantaneous phase of the analytic signal. The second method computes the power centroid (Cohen, 1995) of the time-frequency spectrum, obtained using either the Gabor or Stockwell Transform. Common to both methods is the necessity of division by a diagonal matrix, which requires appropriate regularization.We modify Fomel's (2007) method by explicitly penalizing the roughness of the estimate. Following Farquharson and Oldenburg (2004), we employ both the L curve and GCV methods to obtain the smoothest model that fits the data in the L2 norm.Using synthetic data, quarry blast, earthquakes and the DPRK tests, our results suggest that the optimal method depends on the data. One of the main applications for this work is the discrimination between blast events and earthquakesFomel, Sergey. " Local seismic attributes." , Geophysics, 72.3 (2007): A29-A33.Cohen, Leon. " Time frequency analysis theory and applications." USA: Prentice Hall, (1995).Farquharson, Colin G., and Douglas W. Oldenburg. "A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems." Geophysical Journal International 156.3 (2004): 411-425.Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. " Complex seismic trace analysis." Geophysics, 44.6 (1979): 1041-1063.
Metaheuristic Optimization and its Applications in Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
A common but challenging task in modelling geophysical and geological processes is to handle massive data and to minimize certain objectives. This can essentially be considered as an optimization problem, and thus many new efficient metaheuristic optimization algorithms can be used. In this paper, we will introduce some modern metaheuristic optimization algorithms such as genetic algorithms, harmony search, firefly algorithm, particle swarm optimization and simulated annealing. We will also discuss how these algorithms can be applied to various applications in earth sciences, including nonlinear least-squares, support vector machine, Kriging, inverse finite element analysis, and data-mining. We will present a few examples to show how different problems can be reformulated as optimization. Finally, we will make some recommendations for choosing various algorithms to suit various problems. References 1) D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evolutionary Computation, Vol. 1, 67-82 (1997). 2) X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008). 3) X. S. Yang, Mathematical Modelling for Earth Sciences, Dunedin Academic Press, (2008).
Current trends in geomathematics
Griffiths, J.C.
1970-01-01
Geoscience has extended its role and improved its applications by the development of geophysics since the nineteen-thirties, geochemistry since the nineteen-fifties and now, in the late nineteen-sixties, a new synergism leads to geomathematics; again the greatest pressure for change arises from areas of application of geoscience and, as the problems to which geoscience is applied increase in complexity, the analytical tools become more sophisticated, a development which is accelerated by growth in the use of computers in geological problem-solving. In the next decade the problems with greatest public impact appear to be the ones which will receive greatest emphasis and support. This will require that the geosciences comprehend exceedingly complex probabilistic systems and these, in turn, demand the use of operations research, cybernetics and systems analysis. Such a development may well lead to a change in the paradigms underlying geoscience; they will certainly include more realistic models of "real-world" systems and the tool of simulation with cybernetic models may well become the basis for rejuvenation of experimentation in the geosciences. ?? 1970.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.
2014-01-01
Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.
Applications of Differential Operators in Geodetic Coordinates
NASA Astrophysics Data System (ADS)
Hallam, K. A. T.; Oliveira, V. C., Jr.
2016-12-01
The definition of coordinate systems and frames is an essential step to even start a problem in physical geodesy and geophysics. The commonly used coordinate systems when dealing with problems on (or close to) the surface of the Earth are the geocentric Cartesian coordinates, geocentric spherical coordinates and geodetic coordinates. Transformations between Cartesian and spherical coordinates are widely known and used for several problems. More complex, but not less important, are the transformations between Cartesian and geodetic coordinates. Although most of them utilize an ellipsoidal frame in which the three coordinates are geodetic longitude (λ), geodetic latitude (φ) and the scale factor (u), the latter being a combination of X and Y, not the geometric height (h), the data sets measured on (or close to) the surface of the Earth are given in geodetic coordinates which are usually transformed into Cartesian or spherical coordinates for mathematical developments. It would be useful, however, to preclude coordinate transformations for the subsequent operations. Thus, we derived expressions for the gradient and Laplacian operators in geodetic coordinates in order to make further use on mathematical developments. Results obtained analitically and from numerical simulations validate our expressions. We applied our operators to derive the gravitational field produced by a point mass and used it for representing the regional gravity field in geodetic coordinates. The results obtained with the numerical simulations show that our approach is potentially useful in solving a wide range of problems in physical geodesy and geophysics.
NASA Astrophysics Data System (ADS)
Vasantrao, Baride Mukund; Bhaskarrao, Patil Jitendra; Mukund, Baride Aarti; Baburao, Golekar Rushikesh; Narayan, Patil Sanjaykumar
2017-12-01
The area chosen for the present study is Dhule district, which belongs to the drought prone area of Maharashtra State, India. Dhule district suffers from water problem, and therefore, there is no extra water available to supply for the agricultural and industrial growth. To understand the lithological characters in terms of its hydro-geological conditions, it is necessary to understand the geology of the area. It is now established fact that the geophysical method gives a better information of subsurface geology. Geophysical electrical surveys with four electrodes configuration, i.e., Wenner and Schlumberger method, were carried out at the same selected sites to observe the similarity and compared both the applications in terms of its use and handling in the field. A total 54 VES soundings were carried out spread over the Dhule district and representing different lithological units. The VES curves are drawn using inverse slope method for Wenner configuration, IPI2 win Software, and curve matching techniques were used for Schlumberger configuration. Regionwise lithologs are prepared based on the obtained resistivity and thickness for Wenner method. Regionwise curves were prepared based on resistivity layers for Schlumberger method. Comparing the two methods, it is observed that Wenner and Schlumberger methods have merits or demerits. Considering merits and demerits from the field point of view, it is suggested that Wenner inverse slope method is more handy for calculation and interpretation, but requires lateral length which is a constrain. Similarly, Schlumberger method is easy in application but unwieldy for their interpretation. The work amply proves the applicability of geophysical techniques in the water resource evaluation procedure. This technique is found to be suitable for the areas with similar geological setup elsewhere.
Student Research Projects in Geophysics Through a Consortium of Undergraduate Geology Departments
NASA Astrophysics Data System (ADS)
Kroeger, G. C.
2003-12-01
Beginning in 1987, and continuing to the present, the Keck Geology Consortium, a group of 12 undergraduate institutions, has sponsored a series of summer research projects. These projects typically involve from 9 to 12 students and 3 to 4 faculty members and consist of a 4 to 5 week summer research program followed by continuation of the research at the students' home institutions, often as a senior thesis. Many of these projects have included extensive field and laboratory geophysical components. In order for students to carry out successful research projects in geophysics, several hurdles have to be cleared. Frequently these students have not had a formal course in geophysics, so although they may have strong geologic and quantitative skills, there is usually the need for a concentrated classroom immersion in the geophysical theory and methods related to the project. Field geophysics projects are labor intensive, so it is common for a group of three or more students to produce only one or two complete data sets in the course of the summer program. Generating individualized projects so that students feel ownership of their thesis research can be challenging. Most of the departments do not have a geophysicist on the faculty, so follow-up support for the student research involves continued long-distance collaboration between project directors, students and sponsoring faculty. The impact of the internet on this collaboration cannot be overstated. Finally, diverse computing environments at the participating institutions were a significant problem in the early years. Migration of geophysical software to Windows from Unix, and the widespread availability of Linux has mitigated these problems in recent years. The geophysical components of these projects have been largely successful. A series of vignettes is presented showing the range and nature of geophysical projects that have been carried out. In addition to anecdotal evidence of student satisfaction, there is quantitative evidence of success. A substantial number of students have gone on to graduate work in geophysics. Of those students who did not pursue geophysics, a substantial fraction has pursued graduate work or careers in other areas of quantitative geosciences.
Integrated Approaches On Archaeo-Geophysical Data
NASA Astrophysics Data System (ADS)
Kucukdemirci, M.; Piro, S.; Zamuner, D.; Ozer, E.
2015-12-01
Key words: Ground Penetrating Radar (GPR), Magnetometry, Geophysical Data Integration, Principal Component Analyse (PCA), Aizanoi Archaeological Site An application of geophysical integration methods which often appealed are divided into two classes as qualitative and quantitative approaches. This work focused on the application of quantitative integration approaches, which involve the mathematical and statistical integration techniques, on the archaeo-geophysical data obtained in Aizanoi Archaeological Site,Turkey. Two geophysical methods were applied as Ground Penetrating Radar (GPR) and Magnetometry for archaeological prospection on the selected archaeological site. After basic data processing of each geophysical method, the mathematical approaches of Sums and Products and the statistical approach of Principal Component Analysis (PCA) have been applied for the integration. These integration approches were first tested on synthetic digital images before application to field data. Then the same approaches were applied to 2D magnetic maps and 2D GPR time slices which were obtained on the same unit grids in the archaeological site. Initially, the geophysical data were examined individually by referencing with archeological maps and informations obtained from archaeologists and some important structures as possible walls, roads and relics were determined. The results of all integration approaches provided very important and different details about the anomalies related to archaeological features. By using all those applications, integrated images can provide complementary informations as well about the archaeological relics under the ground. Acknowledgements The authors would like to thanks to Scientific and Technological Research Council of Turkey (TUBITAK), Fellowship for Visiting Scientists Programme for their support, Istanbul University Scientific Research Project Fund, (Project.No:12302) and archaeologist team of Aizanoi Archaeological site for their support during the field work.
2015-09-24
engineering field, or equivalent experience, and are familiar with the basic MR processes. Section 2 summarizes the physical justification for the... Engineering Problems (SAGEEP), Seattle, April 2 -6, 2006. 8. Interstate Technology and Regulatory Council. 2004. “Geophysical Prove-Outs for Munitions Response...YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
2015-09-24
engineering field, or equivalent experience, and are familiar with the basic MR processes. Section 2 summarizes the physical justification for the... Engineering Problems (SAGEEP), Seattle, April 2 -6, 2006. 8. Interstate Technology and Regulatory Council. 2004. “Geophysical Prove-Outs for Munitions Response...YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
Fundamentals of digital filtering with applications in geophysical prospecting for oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesko, A.
This book is a comprehensive work bringing together the important mathematical foundations and computing techniques for numerical filtering methods. The first two parts of the book introduce the techniques, fundamental theory and applications, while the third part treats specific applications in geophysical prospecting. Discussion is limited to linear filters, but takes in related fields such as correlational and spectral analysis.
The Expanding Marketplace for Applied Geophysics
NASA Astrophysics Data System (ADS)
Carlson, N.; Sirles, P.
2012-12-01
While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing a better image of the subsurface to locate areas that are not being properly decomposed due to poor fluid flow or inefficient air circulation.Raw IP data in traditional pseudosection format, prior to modeling, showing the change in IP effects after four years of accelerated biodegradation of an old, buried, municipal solid waste landfill. Posted values are chargeability in milliseconds.
Forward problem studies of electrical resistance tomography system on concrete materials
NASA Astrophysics Data System (ADS)
Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.
2017-03-01
Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.
Electromagnetic geophysical observation with controlled source
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg
2016-04-01
In the paper the new theoretical and methodical approaches are examined for detailed investigations of the structure and state of the geological medium, and its behavior as a dynamic system in reaction to external man-made influences. To solve this problem it is necessary to use geophysical methods that have sufficient resolution and that are built on more complicated models than layered or layered-block models. One of these methods is the electromagnetic induction frequency-geometrical method with controlled sources. Here we consider new approaches using this method for monitoring rock shock media by means of natural experiments and interpretation of the practical results. That method can be used by oil production in mines, where the same events of non stability can occur. The key ideas of twenty first century geophysics from the point of view of geologist academician A.N. Dmitrievskiy [Dmitrievskiy, 2009] are as follows. "The geophysics of the twenty first century is an understanding that the Earth is a self-developing, self-supporting geo-cybernetic system, in which the role of the driving mechanism is played by the field gradients; the evolution of geological processes is a continuous chain of transformations and the interaction of geophysical fields in the litho- hydro- and atmosphere. The use of geophysical principles of a hierarchical quantum of geophysical space, non-linear effects, and the effects of reradiating geophysical fields will allow the creation of a new geophysics. The research, in which earlier only pure geophysical processes and technologies were considered, nowadays tends to include into consideration geophysical-chemical processes and technologies. This transformation will allow us to solve the problems of forecasting geo-objects and geo-processes in previously unavailable geological-technological conditions." The results obtained allow us to make the following conclusions, according to the key ideas of academician A.N. Dmitrievskiy: the rock massif is a multi-ranked hierarchical structure. Research of the massif state dynamics, its structure and the effects of self-organization in it can be provided by geophysical methods, which are built upon the model of such medium. The use of the planshet multi-level induction electromagnetic method with a controlled source of excitation and a corresponding method of processing and interpretation has allowed us to reveal the disintegration zones which are indicators of massif stability and understand the causes of low productivity of oil recovery from boreholes.
Multiscale geophysical imaging of the critical zone
Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee
2015-01-01
Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.
NASA Astrophysics Data System (ADS)
Pueyo Anchuela, O.; Soriano, A.; Casas Sainz, A.; Pocoví Juan, A.
2009-12-01
Industrial and urban growth must deal in some settings with geological hazards. In the last 50 years, the city of Zaragoza (NE Spain) has developed an increase of its urbanized area in a progression several orders higher than expected from its population increase. This fast growth has affected several areas around the city that were not usually used for construction. Maps of the Zaragoza city area at the end of the XIXth century and beginning of the XXth reveal the presence of karst hazards in several zones that can be observed in more modern data, as aerial photographs taken during a period ranging from 1927 to present. The urban and industrial development has covered many of these hazardous zones, even though potential risks were known. The origins of the karst problems are related to the solution of evaporites (mainly gypsum, glauberite and halite) that represent the Miocene substratum of the Zaragoza area underlying the Quaternary terraces and pediments related to the Ebro River and its tributaries. Historical data show the persistence of subsidence foci during long periods of time while in recent urbanized areas this stability is not shared, observing the increase of activity and/or radius affection in short periods of time after building over. These problems can be related to two factors: i) urban development over hazardous areas can increase the karst activity and ii) the affection radius is not properly established with the commonly applied methods. One way to develop these detailed maps can be related to the geophysical approach. The applied geophysical routine, dependent on the characteristics of the surveyed area, is based on potential geophysical techniques (magnetometry and gravimetry) and others related to the application of induced fields (EM and GPR). The obtained results can be related to more straightforward criteria as the detection of cavities in the subsoil and indirect indicators related to the long-term activity of the subsidence areas (changes in the filling of the subsidence area, changes in the position of the substratum or processes inferred from geometrical changes from the surveyed materials). In open field, techniques as magnetometry and EM radiation can be a very fast survey methodology and GPR and microgravimetry can be applied to inhomogeneous identified zones. In urban settings GPR must be applied first, followed by gravimetry in the inhomogeneous zones. Some hazardous areas can be unnoticed from the sole application of aerial photography or historical cartographies whereas when used together with multidisciplinar geophysical surveys, they can be sensitive to the different karst hazards features. The presented routine can permit the urban planning development at regional and local scale or the engineering and architectural building development at more local scale.
Inverse Problems in Complex Models and Applications to Earth Sciences
NASA Astrophysics Data System (ADS)
Bosch, M. E.
2015-12-01
The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied for the estimation of lithological structure of the crust, with the lithotype body regions conditioning the mass density and magnetic susceptibility fields. At planetary scale, the Earth mantle temperature and element composition is inferred from seismic travel-time and geodetic data.
NASA Astrophysics Data System (ADS)
Revil, A.
2015-12-01
Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of gravity and galvanometric resistivity data. For this 2D synthetic example, we note that the position of the facies are well-recovered except far from the ground surfce where the sensitivity is too low. The figure shows the evolution of the shape of the facies during the inversion itertion by iteration.
Speeding Up Geophysical Research Using Docker Containers Within Multi-Cloud Environment.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.; Starovoit, Y. O.
2016-12-01
How useful are the geophysical observations in a scope of minimizing losses from natural disasters today? Does it help to decrease number of human victims during tsunami and earthquake? Unfortunately it's still at early stage these days. It's a big goal and achievement to make such observations more useful by improving early warning and prediction systems with the help of cloud computing. Cloud computing technologies have proved the ability to speed up application development in many areas for 10 years already. Cloud unlocks new opportunities for geoscientists by providing access to modern data processing tools and algorithms including real-time high-performance computing, big data processing, artificial intelligence and others. Emerging lightweight cloud technologies, such as Docker containers, are gaining wide traction in IT due to the fact of faster and more efficient deployment of different applications in a cloud environment. It allows to deploy and manage geophysical applications and systems in minutes across multiple clouds and data centers that becomes of utmost importance for the next generation applications. In this session we'll demonstrate how Docker containers technology within multi-cloud can accelerate the development of applications specifically designed for geophysical researches.
The use of surface geophysical techniques to detect fractures in bedrock; an annotated bibliography
Lewis, Mark R.; Haeni, F.P.
1987-01-01
This annotated bibliography compiles references about the theory and application of surface geophysical techniques to locate fractures or fracture zones within bedrock units. Forty-three publications are referenced, including journal articles, theses, conference proceedings, abstracts, translations, and reports prepared by private contractors and U.S. Government agencies. Thirty-one of the publications are annotated. The remainder are untranslated foreign language articles, which are listed only as bibliographic references. Most annotations summarize the location, geologic setting, surface geophysical technique used, and results of a study. A few highly relevant theoretical studies are annotated also. Publications that discuss only the use of borehole geophysical techniques to locate fractures are excluded from this bibliography. Also excluded are highly theoretical works that may have little or no known practical application.
Unleashing Geophysics Data with Modern Formats and Services
NASA Astrophysics Data System (ADS)
Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley
2016-04-01
Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability. The first geophysical data collection selected for transformation by GA was Airborne ElectroMagnetics (AEM) data which was held in proprietary-format files, with associated ISO 19115 metadata held in a separate relational database. Existing NetCDF-CF metadata profiles were enhanced to cover AEM and other geophysical data types, and work is underway to formalise the new geophysics vocabulary as a proposed extension to the Climate & Forecasting conventions. The richness and flexibility of HDF5's internal indexing mechanisms has allowed lossless restructuring of the AEM data for efficient storage, subsetting and access via either the NetCDF4/HDF5 APIs or Open-source Project for a Network Data Access Protocol (OPeNDAP) data services. This approach not only supports large-scale HPC processing, but also interactive access to a wide range of geophysical data in user-friendly environments such as iPython notebooks and more sophisticated cloud-enabled portals such as the Virtual Geophysics Laboratory (VGL). As multidimensional AEM datasets are relatively complex compared to other geophysical data types, the general approach employed in this project for modernizing AEM data is likely to be applicable to other geophysics data types. When combined with the use of standards-based data services and APIs, a coordinated, systematic modernisation will result in vastly improved accessibility to, and usability of, geophysical data in a wide range of computational environments both within and beyond the geophysics community.
Research and career opportunities in the geophysical sciences for physics students
NASA Astrophysics Data System (ADS)
Nyblade, Andrew
2008-10-01
The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.
NASA Astrophysics Data System (ADS)
Bassrei, A.; Terra, F. A.; Santos, E. T.
2007-12-01
Inverse problems in Applied Geophysics are usually ill-posed. One way to reduce such deficiency is through derivative matrices, which are a particular case of a more general family that receive the name regularization. The regularization by derivative matrices has an input parameter called regularization parameter, which choice is already a problem. It was suggested in the 1970's a heuristic approach later called L-curve, with the purpose to provide the optimum regularization parameter. The L-curve is a parametric curve, where each point is associated to a λ parameter. In the horizontal axis one represents the error between the observed data and the calculated one and in the vertical axis one represents the product between the regularization matrix and the estimated model. The ideal point is the L-curve knee, where there is a balance between the quantities represented in the Cartesian axes. The L-curve has been applied to a variety of inverse problems, also in Geophysics. However, the visualization of the knee is not always an easy task, in special when the L-curve does not the L shape. In this work three methodologies are employed for the search and obtainment of the optimal regularization parameter from the L curve. The first criterion is the utilization of Hansen's tool box which extracts λ automatically. The second criterion consists in to extract visually the optimal parameter. By third criterion one understands the construction of the first derivative of the L-curve, and the posterior automatic extraction of the inflexion point. The utilization of the L-curve with the three above criteria were applied and validated in traveltime tomography and 2-D gravity inversion. After many simulations with synthetic data, noise- free as well as data corrupted with noise, with the regularization orders 0, 1, and 2, we verified that the three criteria are valid and provide satisfactory results. The third criterion presented the best performance, specially in cases where the L-curve has an irregular shape.
NASA Astrophysics Data System (ADS)
Ortega Gelabert, Olga; Zlotnik, Sergio; Afonso, Juan Carlos; Díez, Pedro
2017-04-01
The determination of the present-day physical state of the thermal and compositional structure of the Earth's lithosphere and sub-lithospheric mantle is one of the main goals in modern lithospheric research. All this data is essential to build Earth's evolution models and to reproduce many geophysical observables (e.g. elevation, gravity anomalies, travel time data, heat flow, etc) together with understanding the relationship between them. Determining the lithospheric state involves the solution of high-resolution inverse problems and, consequently, the solution of many direct models is required. The main objective of this work is to contribute to the existing inversion techniques in terms of improving the estimation of the elevation (topography) by including a dynamic component arising from sub-lithospheric mantle flow. In order to do so, we implement an efficient Reduced Order Method (ROM) built upon classic Finite Elements. ROM allows to reduce significantly the computational cost of solving a family of problems, for example all the direct models that are required in the solution of the inverse problem. The strategy of the method consists in creating a (reduced) basis of solutions, so that when a new problem has to be solved, its solution is sought within the basis instead of attempting to solve the problem itself. In order to check the Reduced Basis approach, we implemented the method in a 3D domain reproducing a portion of Earth that covers up to 400 km depth. Within the domain the Stokes equation is solved with realistic viscosities and densities. The different realizations (the family of problems) is created by varying viscosities and densities in a similar way as it would happen in an inversion problem. The Reduced Basis method is shown to be an extremely efficiently solver for the Stokes equation in this context.
Black hole algorithm for determining model parameter in self-potential data
NASA Astrophysics Data System (ADS)
Sungkono; Warnana, Dwa Desa
2018-01-01
Analysis of self-potential (SP) data is increasingly popular in geophysical method due to its relevance in many cases. However, the inversion of SP data is often highly nonlinear. Consequently, local search algorithms commonly based on gradient approaches have often failed to find the global optimum solution in nonlinear problems. Black hole algorithm (BHA) was proposed as a solution to such problems. As the name suggests, the algorithm was constructed based on the black hole phenomena. This paper investigates the application of BHA to solve inversions of field and synthetic self-potential (SP) data. The inversion results show that BHA accurately determines model parameters and model uncertainty. This indicates that BHA is highly potential as an innovative approach for SP data inversion.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates
NASA Astrophysics Data System (ADS)
Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.
2007-05-01
The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.
The GeoClaw software for depth-averaged flows with adaptive refinement
Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, Kyle T.
2011-01-01
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.
Assigning uncertainties in the inversion of NMR relaxation data.
Parker, Robert L; Song, Yi-Qaio
2005-06-01
Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.
NASA Astrophysics Data System (ADS)
Spak, S.; Pooley, M.
2012-12-01
The next generation of coupled human and earth systems models promises immense potential and grand challenges as they transition toward new roles as core tools for defining and living within planetary boundaries. New frontiers in community model development include not only computational, organizational, and geophysical process questions, but also the twin objectives of more meaningfully integrating the human dimension and extending applicability to informing policy decisions on a range of new and interconnected issues. We approach these challenges by posing key policy questions that require more comprehensive coupled human and geophysical models, identify necessary model and organizational processes and outputs, and work backwards to determine design criteria in response to these needs. We find that modular community earth system model design must: * seamlessly scale in space (global to urban) and time (nowcasting to paleo-studies) and fully coupled on all component systems * automatically differentiate to provide complete coupled forward and adjoint models for sensitivity studies, optimization applications, and 4DVAR assimilation across Earth and human observing systems * incorporate diagnostic tools to quantify uncertainty in couplings, and in how human activity affects them * integrate accessible community development and application with JIT-compilation, cloud computing, game-oriented interfaces, and crowd-sourced problem-solving We outline accessible near-term objectives toward these goals, and describe attempts to incorporate these design objectives in recent pilot activities using atmosphere-land-ocean-biosphere-human models (WRF-Chem, IBIS, UrbanSim) at urban and regional scales for policy applications in climate, energy, and air quality.
An Exploration Geophysics Course With an Environmental Focus for an Urban Minority Institution
NASA Astrophysics Data System (ADS)
Kenyon, P. M.
2004-12-01
A hands-on exploration geophysics field course with an environmental focus has been developed with NSF support for use at the City College of New York in Manhattan. To maximize access for the students, no prerequisites beyond introductory earth science and physics are required. The course is taught for three hours on Saturday mornings. This has resulted in it attracting not only regular City College students, but also earth science teachers studying for alternate certification or Master's degrees. After a brief introduction to the nature of geophysics and to concepts in data processing, the course is taught in four three-week modules, one each on seismology, resistivity surveying, electromagnetic ground conductivity, and magnetic measurements. Each module contains one week of theory, a field experience, computer data analysis, and a final report. Field exercises are planned to emphasize teamwork and include realistic urban applications of the techniques. Student surveys done in conjunction with this course provide insights into the motivations and needs of the mostly minority students taking it. In general, these students come to the course already comfortable with teamwork and with working in the field. The questionnaires indicate that their greatest need is increased knowledge of the methods of geophysics and of the problems that can be attacked using it. Most of the students gave high ratings to the course, citing the fieldwork as the part that they most enjoyed. The results of these surveys will be presented, along with examples of the field exercises used. The computer analysis assignments written for this course will also be available.
Transport in zonal flows in analogous geophysical and plasma systems
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
1999-11-01
Zonal flows occur naturally in the oceans and the atmosphere of planets. Important examples include the zonal flows in Jupiter, the stratospheric polar jet in Antarctica, and oceanic jets like the Gulf Stream. These zonal flows create transport barriers that have a crucial influence on mixing and confinement (e.g. the ozone depletion in Antarctica). Zonal flows also give rise to long-lasting vortices (e.g. the Jupiter red spot) by shear instability. Because of this, the formation and stability of zonal flows and their role on transport have been problems of great interest in geophysical fluid dynamics. On the other hand, zonal flows have also been observed in fusion plasmas and their impact on the reduction of transport has been widely recognized. Based on the well-known analogy between Rossby waves in quasigeostrophic flows and drift waves in magnetically confined plasmas, I will discuss the relevance to fusion plasmas of models and experiments recently developed in geophysical fluid dynamics. Also, the potential application of plasma physics ideas to geophysical flows will be discussed. The role of shear in the suppression of transport and the effect of zonal flows on the statistics of transport will be studied using simplified models. It will be shown how zonal flows induce large particle displacements that can be characterized as Lévy flights, and that the trapping effect of vortices combined with the zonal flows gives rise to anomalous diffusion and Lévy (non-Gaussian) statistics. The models will be compared with laboratory experiments and with atmospheric and oceanographic qualitative observations.
NASA Technical Reports Server (NTRS)
Mc Kenna, K. J.; Schmeichel, H.
1968-01-01
This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.
Cosmic Rays in the Earth's Atmosphere and Underground
NASA Astrophysics Data System (ADS)
Dorman, Lev I.
2004-08-01
This book consists of four parts. In the first part (Chapters 1-4) a full overview is given of the theoretical and experimental basis of Cosmic Ray (CR) research in the atmosphere and underground for Geophysics and Space Physics; the development of CR research and a short history of many fundamental discoveries, main properties of primary and secondary CR, methods of transformation of CR observation data in the atmosphere and underground to space, and the experimental basis of CR research underground and on the ground, on balloons and on satellites and space probes. The second part (Chapters 5-9) is devoted to the influence of atmospheric properties on CR, so called CR meteorological effects; pressure, temperature, humidity, snow, wind, gravitation, and atmospheric electric field effects. The inverse problem - the influence of CR properties on the atmosphere and atmospheric processes is considered in the third part (Chapters 10-14); influence on atmospheric, nuclear and chemical compositions, ionization and radio-wave propagation, formation of thunderstorms and lightning, clouds and climate change. The fourth part (Chapters 15-18) describes many realized and potential applications of CR research in different branches of Science and Technology; Meteorology and Aerodrome Service, Geology and Geophysical Prospecting, Hydrology and Agricultural Applications, Archaeology and Medicine, Seismology and Big Earthquakes Forecasting, Space Weather and Environment Monitoring/Forecasting. The book ends with a list providing more than 1,500 full references, a discussion on future developments and unsolved problems, as well as object and author indices. This book will be useful for experts in different branches of Science and Technology, and for students to be used as additional literature to text-books.
NASA Astrophysics Data System (ADS)
Schrott, Lothar; Sass, Oliver
2008-01-01
During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure ( e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material ( e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.
Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Childress, S.
1987-01-01
This text is the first study to apply systematically the successive bifurcations approach to complex time-dependent processes in large scale atmospheric dynamics, geomagnetism, and theoretical climate dynamics. The presentation of recent results on planetary-scale phenomena in the earth's atmosphere, ocean, cryosphere, mantle and core provides an integral account of mathematical theory and methods together with physical phenomena and processes. The authors address a number of problems in rapidly developing areas of geophysics, bringing into closer contact the modern tools of nonlinear mathematics and the novel problems of global change in the environment.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2015-04-01
Geophysical methods are prompt, non-invasive and low-cost tool for quantitative delineation of buried archaeological targets. However, taking into account the complexity of geological-archaeological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient (Khesin and Eppelbaum, 1997). Besides this, it is well-known that the majority of inverse-problem solutions in geophysics are ill-posed (e.g., Zhdanov, 2002), which means, according to Hadamard (1902), that the solution does not exist, or is not unique, or is not a continuous function of observed geophysical data (when small perturbations in the observations will cause arbitrary mistakes in the solution). This fact has a wide application for informational, probabilistic and wavelet methodologies in archaeological geophysics (Eppelbaum, 2014a). The goal of the modern geophysical data examination is to detect the geophysical signatures of buried targets at noisy areas via the analysis of some physical parameters with a minimal number of false alarms and miss-detections (Eppelbaum et al., 2011; Eppelbaum, 2014b). The proposed wavelet approach to recognition of archaeological targets (AT) by the examination of geophysical method integration consists of advanced processing of each geophysical method and nonconventional integration of different geophysical methods between themselves. The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods was utilized to integrate the geophysical data and detect existing irregularities. The approach is based on the wavelet packet techniques applied as to the geophysical images (or graphs) versus coordinates. For such an analysis may be utilized practically all geophysical methods (magnetic, gravity, seismic, GPR, ERT, self-potential, etc.). On the first stage of the proposed investigation a few tens of typical physical-archaeological models (PAM) (e.g., Eppelbaum et al., 2010; Eppelbaum, 2011) of the targets under study for the concrete area (region) are developed. These PAM are composed on the basis of the known archaeological and geological data, results of previous archaeogeophysical investigations and 3D modeling of geophysical data. It should be underlined that the PAMs must differ (by depth, size, shape and physical properties of AT as well as peculiarities of the host archaeological-geological media). The PAMs must include also noise components of different orders (corresponding to the archaeogeophysical conditions of the area under study). The same models are computed and without the AT. Introducing complex PAMs (for example, situated in the vicinity of electric power lines, some objects of infrastructure, etc. (Eppelbaum et al., 2001)) will reflect some real class of AT occurring in such unfavorable for geophysical searching conditions. Anomalous effects from such complex PAMs will significantly disturb the geophysical anomalies from AT and impede the wavelet methodology employment. At the same time, the 'self-learning' procedure laid in this methodology will help further to recognize the AT even in the cases of unfavorable S/N ratio. Modern developments in the wavelet theory and data mining are utilized for the analysis of the integrated data. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical fields. The modern methodologies based on the matching pursuit with wavelet packet dictionaries enables to extract desired signals even from strongly noised data (Averbuch et al., 2014). Researchers usually met the problem of extraction of essential features from available data contaminated by a random noise and by a non-relevant background (Averbuch et al., 2014). If the essential structure of a signal consists of several sine waves then we may represent it via trigonometric basis (Fourier analysis). In this case one can compare the signal with a set of sinusoids and extract consistent ones. An indicator of presence a wave in a signal f(t) is the Fourier coefficient ∫ f(t) sinwt dt. Wavelet analysis provides a rich library of waveforms available and fast, computationally efficient procedures of representation of signals and of selection of relevant waveforms. The basic assumption justifying an application of wavelet analysis is that the essential structure of a signal analyzed consists of not a large number of various waveforms. The best way to reveal this structure is representation of the signal by a set of basic elements containing waveforms coherent to the signal. For structures of the signal coherent to the basis, large coefficients are attributed to a few basic waveforms, whereas we expect small coefficients for the noise and structures incoherent to all basic waveforms. Wavelets are a family of functions ranging from functions of arbitrary smoothness to fractal ones. Wavelet procedure involves two aspects. The first one is a decomposition, i.e. breaking up a signal to obtain the wavelet coefficients and the 2nd one is a reconstruction, which consists of a reassembling the signal from coefficients There are many modifications of the WA. Note, first of all, so-called Continuous WA in whichsignal f(t) is tested for presence of waveforms ψ(t-b) a. Here, a is scaling parameter (dilation), bdetermines location of the wavelet ψ(t-b) a in a signal f(t). The integral ( ) ∫ t-b (W ψf) (b,a) = f (t) ψ a dt is the Continuous Wavelet Transform.When parameters a,b in ψ( ) t-ab take some discrete values, we have the Discrete Wavelet Transform. A general scheme of the Wavelet Decomposition Tree is shown, for instance, in (Averbuch et al., 2014; Eppelbaum et al., 2014). The signal is compared with the testing signal on each scale. It is estimated wavelet coefficients which enable to reconstruct the 1st approximation of the signal and details. On the next level, wavelet transform is applied to the approximation. Then, we can present A1 as A2 + D2, etc. So, if S - Signal, A - Approximation, D - Details, then S = A1 + D1 = A2 + D2 + D1 = A3 + D3 + D2 + D1. Wavelet packet transform is applied to both low pass results (approximations) and high pass results (Details). For analyzing the geophysical data, we used a technique based on the algorithm to characterize a geophysical image by a limited number of parameters (Eppelbaum et al., 2012). This set of parameters serves as a signature of the image and is utilized for discrimination of images (a) containing AT from the images (b) non-containing AT (let will designate these images as N). The constructed algorithm consists of the following main phases: (a) collection of the database, (b) characterization of geophysical images, (c) and dimensionality reduction. Then, each image is characterized by the histogram of the coherency directions (Alperovich et al., 2013). As a result of the previous steps we obtain two sets: containing AT and N of the signatures vectors for geophysical images. The obtained 3D set of the data representatives can be used as a reference set for the classification of newly arriving geophysical data. The obtained data sets are reduced by embedding features vectors into the 3D Euclidean space using the so-called diffusion map. This map enables to reveal the internal structure of the datasets AT and N and to distinctly separate them. For this, a matrix of the diffusion distances for the combined feature matrix F = FN ∴ FC of size 60 x C is constructed (Coifman and Lafon, 2006; Averbuch et al., 2010). Then, each row of the matrices FN and FC is projected onto three first eigenvectors of the matrix D(F ). As a result, each data curve is represented by a 3D point in the Euclidean space formed by eigenvectors of D(F ). The Euclidean distances between these 3D points reflect the similarity of the data curves. The scattered projections of the data curves onto the diffusion eigenvectors will be composed. Finally we observe that as a result of the above operations we embedded the original data into 3-dimensional space where data related to the AT subsurface are well separated from the N data. This 3D set of the data representatives can be used as a reference set for the classification of newly arriving data. Geophysically it means a reliable division of the studied areas for the AT-containing and not containing (N) these objects. Testing this methodology for delineation of archaeological cavities by magnetic and gravity data analysis displayed an effectiveness of this approach. References Alperovich, L., Eppelbaum, L., Zheludev, V., Dumoulin, J., Soldovieri, F., Proto, M., Bavusi, M. and Loperte, A., 2013. A new combined wavelet methodology applied to GPR and ERT data in the Montagnole experiment (French Alps). Journal of Geophysics and Engineering, 10, No. 2, 025017, 1-17. Averbuch, A., Hochman, K., Rabin, N., Schclar, A. and Zheludev, V., 2010. A diffusion frame-work for detection of moving vehicles. Digital Signal Processing, 20, No.1, 111-122. Averbuch A.Z., Neittaanmäki, P., and Zheludev, V.A., 2014. Spline and Spline Wavelet Methods with Applications to Signal and Image Processing. Volume I: Periodic Splines. Springer. Coifman, R.R. and Lafon, S., 2006. Diffusion maps, Applied and Computational Harmonic Analysis. Special issue on Diffusion Maps and Wavelets, 21, No. 7, 5-30. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014a. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V. 2014b. Four Color Theorem and Applied Geophysics. Applied Mathematics, 5, 358-366. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Eppelbaum, L.V., Zheludev, V. and Averbuch, A., 2014. Diffusion maps as a powerful tool for integrated geophysical field analysis to detecting hidden karst terranes. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 1-2, 36-46. Hadamard, J., 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 13, 49-52. Khesin, B.E. and Eppelbaum, L.V., 1997. The number of geophysical methods required for target classification: quantitative estimation. Geoinformatics, 8, No.1, 31-39. Zhdanov, M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods in Geochemistry and Geophysics, Vol. 36. Elsevier, Amsterdam.
NASA Astrophysics Data System (ADS)
Saadat, S. A.; Safari, A.; Needell, D.
2016-06-01
The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.
2014-12-01
Geophysical imaging (e.g., electrical, radar, seismic) can provide valuable information for the characterization of hydrologic properties and monitoring of hydrologic processes, as evidenced in the rapid growth of literature on the subject. Geophysical imaging has been used for monitoring tracer migration and infiltration, mapping zones of focused groundwater/surface-water exchange, and verifying emplacement of amendments for bioremediation. Despite the enormous potential for extraction of hydrologic information from geophysical images, there also is potential for misinterpretation and over-interpretation. These concerns are particularly relevant when geophysical results are used within quantitative frameworks, e.g., conversion to hydrologic properties through petrophysical relations, geostatistical estimation and simulation conditioned to geophysical inversions, and joint inversion. We review pitfalls to interpretation associated with limited image resolution, spatially variable image resolution, incorrect data weighting, errors in the timing of measurements, temporal smearing resulting from changes during data acquisition, support-volume/scale effects, and incorrect assumptions or approximations involved in modeling geophysical or other jointly inverted data. A series of numerical and field-based examples illustrate these potential problems. Our goal in this talk is to raise awareness of common pitfalls and present strategies for recognizing and avoiding them.
Geophysical methods for determining the geotechnical engineering properties of earth materials.
DOT National Transportation Integrated Search
2010-03-01
Surface and borehole geophysical methods exist to measure in-situ properties and structural : characteristics of earth materials. Application of such methods has demonstrated cost savings through : reduced design uncertainty and lower investigation c...
Geophysical applications for arctic/subarctic transportation planning.
DOT National Transportation Integrated Search
2014-07-01
This report describes a series of geophysical surveys conducted in conjunction with : geotechnical investigations carried out by the Alaska Department of Transportation and Public : Facilities. The purpose of the study was to evaluate the value of an...
Selected Papers on Noctilucent Clouds
NASA Technical Reports Server (NTRS)
1963-01-01
The papers presented herein were taken from two Russian publications on the International Geophysical Year. The first four articles (footnoted Certain Articles Regarding Meteorology") are from Nekotoryye Problemy Meteorologii; Sbornik Statey, II Razdel Programmy MGG (Meteorologiya), No. 1, Izdat. Akademii Nauk SSSR (Certain Problems Regarding Meteorology; Collection of Articles, Second Section of the IGY Program (Meteorology), No. 1. Published by the Academy of Sciences Press) Moscow, 1960. The last two articles (footnoted "International Geophysical Year") are from Mezhdunarodnoy Geofizicheskiy God; Sbornik Statey i Materialov, Izdat. Leningradskogo Universiteta (International Geophysical Year; Collection of Articles and Materials. Published by the Leningrad University Press) 1960.
Archaeological Geophysics at the San Marcos Pueblo, New Mexico, USA
NASA Astrophysics Data System (ADS)
Grimes, K.; Joiner, C. J.; Musa, D.; Allred, I.; Delhaye, R. P.; Zorin, N.; Feucht, D. W.; Johnston, G.; Pellerin, L.; McPhee, D.; Ferguson, J. F.
2013-12-01
The students and faculty of the Summer of Applied Geophysical Experience (SAGE) geophysical field course have studied the San Marcos Pueblo (LA 98) since 2004. This activity has provided instruction in near-surface geophysics and research into the application of geophysical techniques to southwestern archaeological problems. Our study site, the San Marcos Pueblo, is a classical and colonial period (1200-1680) pueblo that was once one of the largest communities in the southwest. Previous SAGE publications have discussed the discovery of archaeological features, the underlying geology and hydrological conditions. This study focuses on the interpretation of 'El Mapo Grande', 150 m X 150 m, high-resolution (0.5 m) maps of magnetic and electrical properties and 12 seismic refraction lines. The map covers room block, plaza and midden areas as well as areas where colonial period metallurgical activities were known to have occurred. We acquired magnetic, electromagnetic (EM), and ground-penetrating radar (GPR) data in 30 m X 30 m quads producing geophysical maps of each quad (2 or 3 produced each year). Total magnetic field measurements were made with a Geometrics cesium vapor magnetometer, GPR data collected using a Sensors and Software 250 MHz radar were on 0.5 m spaced lines, and EM data were acquired with a Geonics EM-31 on 1 m spaced lines. Seismic data were collected on interconnected lines with 0.5 m receiver and 3 m source interval. El Mapo Grande shows anomalies correlated among the diverse physical properties that were mapped. The edges of strong magnetic anomalies correlate with areas of high GPR scattering possibly associated with rocky floors under room blocks. Areas of high magnetic response are associated with hill-slope erosion channels and plumes of debris in the plaza to the south that are apparently washing down from the metallurgical sites near room blocks. EM data display a good correlation with the magnetic map. Debris channels and plumes are more conductive as well as more magnetically susceptible. Seismic velocity models reveal archaeological features and Plio-Pleistocene geology.
NASA Astrophysics Data System (ADS)
Ruggeri, Paolo; Irving, James; Gloaguen, Erwan; Holliger, Klaus
2013-04-01
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches to the regional scale still represents a major challenge, yet is critically important for the development of groundwater flow and contaminant transport models. To address this issue, we have developed a regional-scale hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure. The objective is to simulate the regional-scale distribution of a hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, our approach first involves linking the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. We present the application of this methodology to a pertinent field scenario, where we consider collocated high-resolution measurements of the electrical conductivity, measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, estimated from EM flowmeter and slug test measurements, in combination with low-resolution exhaustive electrical conductivity estimates obtained from dipole-dipole ERT meausurements.
NASA Astrophysics Data System (ADS)
Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.
2016-12-01
The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material placement stability.
2014-07-02
Tuesday Morning • March 18 S A G E E P 2 01 1 T E C H N IC A L P R O G R A M B orehole G eophysics C hair: Jam es LoC oco C o-C hair: D aryl Tw...ssib ilities in th e R eservo ir E n g in eerin g , Leo n id A n isim ov, LU K O IL-E n g in eerin g G eo p hysical Flow A n alysis o f A n iso
Application of innovative nondestructive methods to geotechnical and environmental investigations
DOT National Transportation Integrated Search
2003-04-01
Geophysical surveys were conducted for the Missouri Department of Transportation (MoDOT) by the Department of Geology and Geophysics at the University of Missouri-Rolla. This report contains the results of several projects that utilized nondestructiv...
Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.
2007-01-01
Based on the geophysical data, conceptual models of the distributions of emulsified vegetable oil and ground water with altered chemistry were developed. The field data indicate that, in several cases, the plume of ground water with altered chemistry would not be detected by direct chemical sampling given the construction of monitoring wells; hence the geophysical data provide valuable site-specific insights for the interpretation of water samples and monitoring of biostimulation projects. Application of geophysical methods to data from the ACP demonstrated the utility of radar for monitoring biostimulation injections.
NASA Astrophysics Data System (ADS)
Mussett, Alan E.; Aftab Khan, M.; Button, Illustrated By Sue
2000-12-01
Looking Into the Earth comprehensively describes the principles and applications of both `global' and `exploration' geophysics on all scales. It forms an introduction to geophysics suitable for those who do not necessarily intend to become professional geophysicists, including geologists, civil engineers, environmental scientists, and field archaeologists. The book is organised into two parts: Part 1 describes the geophysical methods, while Part 2 illustrates their use in a number of extended case histories. Mathematical and physical principles are introduced at an elementary level, and then developed as necessary. Student questions and exercises are included at the end of each chapter. The book is aimed primarily at introductory and intermediate university students taking courses in geology, earth science, environmental science, and engineering. It will also form an excellent introductory textbook in geophysics departments, and will help practising geologists, archaeologists and engineers understand what geophysics can offer their work. Accessible to students with little background in maths and physics Covers both global and applied geophysics Well illustrated and contains many student exercises and case studies Written by experienced teachers of geophysics
The remote sensing needs of Arctic geophysics
NASA Technical Reports Server (NTRS)
Campbell, W. J.
1970-01-01
The application of remote sensors for obtaining geophysical information of the Arctic regions is discussed. Two significant requirements are to acquire sequential, synoptic imagery of the Arctic Ocean during all weather and seasons and to measure the strains in the sea ice canopy and the heterogeneous character of the air and water stresses acting on the canopy. The acquisition of geophysical data by side looking radar and microwave sensors in military aircraft is described.
Archaeogeophysical tests in water saturated and under water scenarios at the Hydrogeosite Laboratory
NASA Astrophysics Data System (ADS)
Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Perciante, Felice; Rizzo, Enzo
2016-04-01
The growing interest in underwater archaeology as witnessed by numerous archaeological campaigns carried out in the Mediterranean region in marine and lacustrine environments involves a challenge of great importance for archaeogeophysical discipline. Through a careful use of geophysical techniques it is possible support archaeological research to identify and analyse the undiscovered cultural heritage placed under water located near rivers and sea. Over the past decades, geophysical methods were applied successfully in the field of archaeology: an integrated approach based on the use of electric, electromagnetic and magnetic techniques have showed the ability to individuate and reconstruct the presence of archaeological remains in the subsoil allowing to define their distribution in the space limiting the excavation activities. Moreover the capability of geophysics could be limited cause the low geophysical contrasts occurring between archaeological structures and surrounding environment; in particular problems of resolution, depth of investigation and sensitivity related to each adopted technique can result in a distorted reading of the subsurface behaviour preventing the identification of archaeological remains. This problem is amplified when geophysical approach is applied in very humid environments such as in lacustrine and marine scenarios, or in soils characterized by high clay content that make more difficult the propagation of geophysical signals. In order to improve our geophysical knowledge in lacustrine and coastal scenarios a complex and innovative research project was realized at the CNR laboratory of Hydrogeosite which permitted to perform an archaeogeophysical experiment in controlled conditions. The designed archaeological context was focused on the Roman age and various elements characterized by different shapes and materials were placed at different depths in the sub-soil. The preliminary project activities with some scenarios were presented last year, now we would like to show the final results of the project where different scenarios were set up for GPR and ERT investigations. Severale phases were performed: buried objects were covered by different thickness of sediments and different soil water contents were defined. Moreover, geophysical measurements were acquired on an underwater scenario. The 2D and 3D acquisitions have allowed to identify the limits and the abilities of the GPR and resistivity measurements.
The Variety of Fluid Dynamics.
ERIC Educational Resources Information Center
Barnes, Francis; And Others
1980-01-01
Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
This study is part of a series of Studies in Geophysics that have been undertaken for the Geophysics Research Forum by the Geophysics Study Committee. One purpose of each study is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such assessments is an evaluation of the adequacy of current geophysical knowledge and the appropriateness of current research programs as a source of information required for those decisions. The study addresses our current scientific understanding of active tectonics --- particularly the patterns and rates of ongoing tectonicmore » processes. Many of these processes cannot be described reasonably using the limited instrumental or historical records; however, most can be described adequately for practical purposes using the geologic record of the past 500,000 years. A program of fundamental research focusing especially on Quaternary tectonic geology and geomorphology, paleoseismology, neotectonics, and geodesy is recommended to better understand ongoing, active tectonic processes. This volume contains 16 papers. Individual papers are indexed separately on the Energy Database.« less
Nondestructive tests for railway monitoring. European Experience in COST Action TU1208
NASA Astrophysics Data System (ADS)
Fontul, Simona; Solla, Mercedes; Loizos, Andreas
2016-04-01
The railway monitoring is an important issue for a proper maintenance planning. With the increase in loads and travel speed, it is important to be able to diagnose the track defects and to plan the proper maintenance without interfering with the users. Traditionally, the maintenance actions are planned based on the geometric level parameters assessed without contact with the line, at traffic speed, by dedicated inspection vehicles. Nevertheless, the geometric condition of the line does not provide information on the defects causes. In order to complements the information on the causes, geophysics measurements can be performed in a nondestructive way. Among these later methods, Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. A resume of the European experience in COST Action TU1208 of the application of GPR for railway monitoring and the measurement interpretation is presented in this paper. Also complementary nondestructive tests and other geophysical methods are referred, together with case studies of their application. The main troubleshooting and the needs for data analysis tools that can improve the processing of the measurements are highlighted. Future approaches of combined application of geophysical methods, load tests and track geometry measurements are addressed. A possible methodology of joint interpretation and examples of maintenance measurements adequate to the deterioration causes are presented.
NASA Astrophysics Data System (ADS)
Ialongo, S.; Cella, F.; Fedi, M.; Florio, G.
2011-12-01
Most geophysical inversion problems are characterized by a number of data considerably higher than the number of the unknown parameters. This corresponds to solve highly underdetermined systems. To get a unique solution, a priori information must be therefore introduced. We here analyze the inversion of the gravity gradient tensor (GGT). Previous approaches to invert jointly or independently more gradient components are by Li (2001) proposing an algorithm using a depth weighting function and Zhdanov et alii (2004), providing a well focused inversion of gradient data. Both the methods give a much-improved solution compared with the minimum length solution, which is invariably shallow and not representative of the true source distribution. For very undetermined problems, this feature is due to the role of the depth weighting matrices used by both the methods. Recently, Cella and Fedi (2011) showed however that for magnetic and gravity data the depth weighting function has to be defined carefully, under a preliminary application of Euler Deconvolution or Depth from Extreme Point methods, yielding the appropriate structural index and then using it as the rate decay of the weighting function. We therefore propose to extend this last approach to invert jointly or independently the GGT tensor using the structural index as weighting function rate decay. In case of a joint inversion, gravity data can be added as well. This multicomponent case is also relevant because the simultaneous use of several components and gravity increase the number of data and reduce the algebraic ambiguity compared to the inversion of a single component. The reduction of such ambiguity was shown in Fedi et al, (2005) decisive to get an improved depth resolution in inverse problems, independently from any form of depth weighting function. The method is demonstrated to synthetic cases and applied to real cases, such as the Vredefort impact area (South Africa), characterized by a complex density distribution, well defining a central uplift area, ring structures and low density sediments. REFERENCES Cella F., and Fedi M., 2011, Inversion of potential field data using the structural index as weighting function rate decay, Geophysical Prospecting, doi: 10.1111/j.1365-2478.2011.00974.x Fedi M., Hansen P. C., and Paoletti V., 2005 Analysis of depth resolution in potential-field inversion. Geophysics, 70, NO. 6 Li, Y., 2001, 3-D inversion of gravity gradiometry data: 71st Annual Meeting, SEG, Expanded Abstracts, 1470-1473. Zhdanov, M. S., Ellis, R. G., and Mukherjee, S., 2004, Regularized focusing inversion of 3-D gravity tensor data: Geophysics, 69, 925-937.
NASA Technical Reports Server (NTRS)
1989-01-01
A compilation is presented of selected bibliographic data relating to recent publications submitted by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program
DOT National Transportation Integrated Search
2003-03-01
Geophysical surveys were conducted for the Missouri Department of Transportation (MoDOT) by the Department of Geology and Geophysics at the University of Missouri-Rolla. This report contains the results of several projects that utilized nondestructiv...
A New Paradigm for Satellite Retrieval of Hydrologic Variables: The CDRD Methodology
NASA Astrophysics Data System (ADS)
Smith, E. A.; Mugnai, A.; Tripoli, G. J.
2009-09-01
Historically, retrieval of thermodynamically active geophysical variables in the atmosphere (e.g., temperature, moisture, precipitation) involved some time of inversion scheme - embedded within the retrieval algorithm - to transform radiometric observations (a vector) to the desired geophysical parameter(s) (either a scalar or a vector). Inversion is fundamentally a mathematical operation involving some type of integral-differential radiative transfer equation - often resisting a straightforward algebraic solution - in which the integral side of the equation (typically the right-hand side) contains the desired geophysical vector, while the left-hand side contains the radiative measurement vector often free of operators. Inversion was considered more desirable than forward modeling because the forward model solution had to be selected from a generally unmanageable set of parameter-observation relationships. However, in the classical inversion problem for retrieval of temperature using multiple radiative frequencies along the wing of an absorption band (or line) of a well-mixed radiatively active gas, in either the infrared or microwave spectrums, the inversion equation to be solved consists of a Fredholm integral equation of the 2nd kind - a specific type of transform problem in which there are an infinite number of solutions. This meant that special treatment of the transform process was required in order to obtain a single solution. Inversion had become the method of choice for retrieval in the 1950s because it appealed to the use of mathematical elegance, and because the numerical approaches used to solve the problems (typically some type of relaxation or perturbation scheme) were computationally fast in an age when computers speeds were slow. Like many solution schemes, inversion has lingered on regardless of the fact that computer speeds have increased many orders of magnitude and forward modeling itself has become far more elegant in combination with Bayesian averaging procedures given that the a priori probabilities of occurrence in the true environment of the parameter(s) in question can be approximated (or are actually known). In this presentation, the theory of the more modern retrieval approach using a combination of cloud, radiation and other specialized forward models in conjunction with Bayesian weighted averaging will be reviewed in light of a brief history of inversion. The application of the theory will be cast in the framework of what we call the Cloud-Dynamics-Radiation-Database (CDRD) methodology - which we now use for the retrieval of precipitation from spaceborne passive microwave radiometers. In a companion presentation, we will specifically describe the CDRD methodology and present results for its application within the Mediterranean basin.
MT+, integrating magnetotellurics to determine earth structure, physical state, and processes
Bedrosian, P.A.
2007-01-01
As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.
Scientific Knowledge Discovery in Complex Semantic Networks of Geophysical Systems
NASA Astrophysics Data System (ADS)
Fox, P.
2012-04-01
The vast majority of explorations of the Earth's systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or semantic, level. Recent successes in the application of complex network theory and algorithms to climate data, raise expectations that more general graph-based approaches offer the opportunity for new discoveries. In the past ~ 5 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using semantically-equipped tools, and semantically aware interfaces between science application components allowing for discovery at the knowledge level. More recently, formal semantic approaches to continuous and aggregate physical processes are beginning to show promise and are soon likely to be ready to apply to geoscientific systems. To illustrate these opportunities, this presentation presents two application examples featuring domain vocabulary (ontology) and property relations (named and typed edges in the graphs). First, a climate knowledge discovery pilot encoding and exploration of CMIP5 catalog information with the eventual goal to encode and explore CMIP5 data. Second, a multi-stakeholder knowledge network for integrated assessments in marine ecosystems, where the data is highly inter-disciplinary.
Adaptive Wavelet Modeling of Geophysical Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.
2009-12-01
Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
Advancing MODFLOW Applying the Derived Vector Space Method
NASA Astrophysics Data System (ADS)
Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.
2015-12-01
The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
NASA Technical Reports Server (NTRS)
1991-01-01
A compilation of selected bibliographic data specifically relating to recent publications submitted by principal investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program is presented.
NASA Technical Reports Server (NTRS)
1990-01-01
This is a compilation of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through the NASA Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program.
NASA Astrophysics Data System (ADS)
Webb, S. J.; Manzi, M.; Scheiber-Enslin, S. E.; Durrheim, R. J.; Jones, M. Q. W.; Nyblade, A.
2015-12-01
There are many challenges faced by geophysics students and academic staff in Africa that make it difficult to develop effective field and research programs. Challenges to conducting field work that have been identified, and that can be tackled are: lack of training on geophysical equipment and lack of exposure to field program design and implementation. To address these challenges, the AfricaArray/Wits Geophysics field school is designed to expose participants to a wide variety of geophysical instruments and the entire workflow of a geophysical project. The AA field school was initially developed for the geophysics students at the University of the Witwatersrand. However, by increasing the number of participants, we are able to make more effective use of a large pool of equipment, while addressing challenging geophysical problems at a remote field site. These additional participants are selected partially based on the likely hood of being able start a field school at their home institution. A good candidate would have access to geophysical equipment, but may not have knowledge of how to use it or how to effectively design surveys. These are frequently junior staff members or graduate students in leadership roles. The three week program introduces participants to the full geophysical field workflow. The first week is spent designing a geophysical survey, including determining the cost. The second week is spent collecting data to address a real geophysical challenge, such as determining overburden thickness, loss of ground features due to dykes in a mine, or finding water. The third week is spent interpreting and integrating the various data sets culminating in a final presentation. Participants are given all lecture material and much of the software is open access; this is done to encourage using the material at the home institution. One innovation has been to use graduate students as instructors, thus building a pool of talent that has developed the logistic and training skills necessary to implement field programs. Several geophysics field schools are being developed in Madagascar, Zimbabwe, Nigeria, Kenya, Uganda, Tanzania and Cameroon. We hope to enable some of our graduate students to help with these budding programs.
The Legacy of Benoit Mandelbrot in Geophysics
NASA Astrophysics Data System (ADS)
Turcotte, D. L.
2001-12-01
The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).
Radar image interpretation techniques applied to sea ice geophysical problems
NASA Technical Reports Server (NTRS)
Carsey, F. D.
1983-01-01
The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)
2000-01-01
The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.
International Polar Research and Space Weather
NASA Astrophysics Data System (ADS)
Lanzerotti, Louis J.
2009-02-01
The fiftieth anniversary of the International Geophysical Year (IGY), currently celebrated in the 2007-2009 International Polar Year (IPY), highlights space weather's heritage from polar research. The polar regions were still very much "terra incognito" 50 years ago. At the same time, communications technologies had significantly advanced since the time of the second IPY, in 1932-1933. Yet even before the second IPY, several directors of international meteorological services stated in a 1928 resolution that "increased knowledge [of the polar regions] will be of practical application to problems connected with terrestrial magnetism, marine and aerial navigation, wireless telegraphy and weather forecasting" (see http://scaa.usask.ca/gallery/northern/currie/en_polaryear.shtml).
Automated lithology prediction from PGNAA and other geophysical logs.
Borsaru, M; Zhou, B; Aizawa, T; Karashima, H; Hashimoto, T
2006-02-01
Different methods of lithology predictions from geophysical data have been developed in the last 15 years. The geophysical logs used for predicting lithology are the conventional logs: sonic, neutron-neutron, gamma (total natural-gamma) and density (backscattered gamma-gamma). The prompt gamma neutron activation analysis (PGNAA) is another established geophysical logging technique for in situ element analysis of rocks in boreholes. The work described in this paper was carried out to investigate the application of PGNAA to the lithology interpretation. The data interpretation was conducted using the automatic interpretation program LogTrans based on statistical analysis. Limited test suggests that PGNAA logging data can be used to predict the lithology. A success rate of 73% for lithology prediction was achieved from PGNAA logging data only. It can also be used in conjunction with the conventional geophysical logs to enhance the lithology prediction.
Probabilistic data integration and computational complexity
NASA Astrophysics Data System (ADS)
Hansen, T. M.; Cordua, K. S.; Mosegaard, K.
2016-12-01
Inverse problems in Earth Sciences typically refer to the problem of inferring information about properties of the Earth from observations of geophysical data (the result of nature's solution to the `forward' problem). This problem can be formulated more generally as a problem of `integration of information'. A probabilistic formulation of data integration is in principle simple: If all information available (from e.g. geology, geophysics, remote sensing, chemistry…) can be quantified probabilistically, then different algorithms exist that allow solving the data integration problem either through an analytical description of the combined probability function, or sampling the probability function. In practice however, probabilistic based data integration may not be easy to apply successfully. This may be related to the use of sampling methods, which are known to be computationally costly. But, another source of computational complexity is related to how the individual types of information are quantified. In one case a data integration problem is demonstrated where the goal is to determine the existence of buried channels in Denmark, based on multiple sources of geo-information. Due to one type of information being too informative (and hence conflicting), this leads to a difficult sampling problems with unrealistic uncertainty. Resolving this conflict prior to data integration, leads to an easy data integration problem, with no biases. In another case it is demonstrated how imperfections in the description of the geophysical forward model (related to solving the wave-equation) can lead to a difficult data integration problem, with severe bias in the results. If the modeling error is accounted for, the data integration problems becomes relatively easy, with no apparent biases. Both examples demonstrate that biased information can have a dramatic effect on the computational efficiency solving a data integration problem and lead to biased results, and under-estimation of uncertainty. However, in both examples, one can also analyze the performance of the sampling methods used to solve the data integration problem to indicate the existence of biased information. This can be used actively to avoid biases in the available information and subsequently in the final uncertainty evaluation.
Introductory Geophysics at Colorado College: A Research-Driven Course
NASA Astrophysics Data System (ADS)
Bank, C.
2003-12-01
Doing research during an undergraduate course provides stimulus for students and instructor. Students learn to appreciate the scientific method and get hands-on experience, while the instructor remains thrilled about teaching her/his discipline. The introductory geophysics course taught at Colorado College is made up of four units (gravity, seismic, resistivity, and magnetic) using available geophysical equipment. Within each unit students learn the physical background of the method, and then tackle a small research project selected by the instructor. Students pose a research question (or formulate a hypothesis), collect near-surface data in the field, process it using personal computers, and analyse it by creating computer models and running simple inversions. Computer work is done using the programming language Matlab, with several pre-coded scripts to make the programming experience more comfortable. Students then interpret the data and answer the question posed at the beginning. The unit ends with students writing a summary report, creating a poster, or presenting their findings orally. First evaluations of the course show that students appreciate the emphasis on field work and applications to real problems, as well as developing and testing their own hypotheses. The main challenge for the instructor is to find feasible projects, given the time constraints of a course and availability of field sites with new questions to answer. My presentation will feature a few projects done by students during the course and will discuss the experience students and I have had with this approach.
Geophysical Methods for Investigating Ground-Water Recharge
Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.
2007-01-01
While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods that are currently available or under development for recharge monitoring. The material is written primarily for hydrogeologists. Uses of geophysical methods for improving recharge monitoring are explored through brief discussions and case studies. The intent is to indicate how geophysical methods can be used effectively in studying recharge processes and quantifying recharge. As such, the material constructs a framework for matching the strengths of individual geophysical methods with the manners in which they can be applied for hydrologic analyses. The appendix is organized in three sections. First, the key hydrologic parameters necessary to determine the rate, timing, and patterns of recharge are identified. Second, the basic operating principals of the relevant geophysical methods are discussed. Methods are grouped by the physical property that they measure directly. Each measured property is related to one or more of the key hydrologic properties for recharge monitoring. Third, the emerging conceptual framework for applying geophysics to recharge monitoring is presented. Examples of the application of selected geophysical methods to recharge monitoring are presented in nine case studies. These studies illustrate hydrogeophysical applications under a wide range of conditions and measurement scales, which vary from tenths of a meter to hundreds of meters. The case studies include practice-proven as well as emerging applications of geophysical methods to recharge monitoring.
Ninety Years of International Cooperation in Geophysics
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Beer, T.
2009-05-01
Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes, climate dynamics, and in geodetic, hydrological, meteorological, oceanographic, seismological, and volcanological research. IUGG also places particular emphasis on the scientific problems of economically less-developed countries by sponsoring activities relevant to their scientific needs (e.g. Geosciences in Africa, Water Resources, Health and Well-Being etc.) The American Geophysical Union was established as the U.S. National Committee for IUGG in 1919 and today has become a distinguished union of individual geoscientists around the world. Several regional geoscience societies also evolved during the last several decades, most prominent being the European Geosciences Union and the Asia Oceania Geosciences Society. These, and some other national and regional geophysical societies, together with IUGG play a strong part in the international cooperation and promotion of geophysical sciences. At the same time the "geosciences" space is getting crowded, and there is a lot of overlap. International linkages between IUGG, AGU, EGU and other geophysical societies as well as their linkage with International Scientific Unions, that comprise the GeoUnions, are going to become more and more important. Working together is going to be more fruitful than territorial disputes. But what mechanisms can be used to encourage relationships between the international, national and regional geophysical and geoscientific bodies? We will discuss some possibilities on how to come together, to develop and to implement joint programs, research meeting, open forums, and policy statements.
Localized Smart-Interpretation
NASA Astrophysics Data System (ADS)
Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas; Bach, Torben; Pallesen, Tom
2014-05-01
The complex task of setting up a geological model consists not only of combining available geological information into a conceptual plausible model, but also requires consistency with availably data, e.g. geophysical data. However, in many cases the direct geological information, e.g borehole samples, are very sparse, so in order to create a geological model, the geologist needs to rely on the geophysical data. The problem is however, that the amount of geophysical data in many cases are so vast that it is practically impossible to integrate all of them in the manual interpretation process. This means that a lot of the information available from the geophysical surveys are unexploited, which is a problem, due to the fact that the resulting geological model does not fulfill its full potential and hence are less trustworthy. We suggest an approach to geological modeling that 1. allow all geophysical data to be considered when building the geological model 2. is fast 3. allow quantification of geological modeling. The method is constructed to build a statistical model, f(d,m), describing the relation between what the geologists interpret, d, and what the geologist knows, m. The para- meter m reflects any available information that can be quantified, such as geophysical data, the result of a geophysical inversion, elevation maps, etc... The parameter d reflects an actual interpretation, such as for example the depth to the base of a ground water reservoir. First we infer a statistical model f(d,m), by examining sets of actual interpretations made by a geological expert, [d1, d2, ...], and the information used to perform the interpretation; [m1, m2, ...]. This makes it possible to quantify how the geological expert performs interpolation through f(d,m). As the geological expert proceeds interpreting, the number of interpreted datapoints from which the statistical model is inferred increases, and therefore the accuracy of the statistical model increases. When a model f(d,m) successfully has been inferred, we are able to simulate how the geological expert would perform an interpretation given some external information m, through f(d|m). We will demonstrate this method applied on geological interpretation and densely sampled airborne electromagnetic data. In short, our goal is to build a statistical model describing how a geological expert performs geological interpretation given some geophysical data. We then wish to use this statistical model to perform semi automatic interpretation, everywhere where such geophysical data exist, in a manner consistent with the choices made by a geological expert. Benefits of such a statistical model are that 1. it provides a quantification of how a geological expert performs interpretation based on available diverse data 2. all available geophysical information can be used 3. it allows much faster interpretation of large data sets.
NASA Astrophysics Data System (ADS)
Bernard, J.
2012-12-01
The Manufacturers of geophysical instruments have been facing these past decades the fast evolution of the electronics and of the computer sciences. More automatisms have been introduced into the equipment and into the processing and interpretation software which may let believe that conducting geophysical surveys requires less understanding of the method and less experience than in the past. Hence some misunderstandings in the skills that are needed to make the geophysical results well integrated among the global information which the applied geologist needs to acquire to be successful in his applications. Globally, the demand in geophysical investigation goes towards more penetration depth, requiring more powerful transmitters, and towards a better resolution, requiring more data such as in 3D analysis. Budgets aspects strongly suggest a high efficiency in the field associated to high speed data processing. The innovation is required in all aspects of geophysics to fit with the market needs, including new technological (instruments, software) and methodological (methods, procedures, arrays) developments. The structures in charge of the geophysical work can be public organisations (institutes, ministries, geological surveys,…) or can come from the private sector (large companies, sub-contractors, consultants, …), each one of them getting their own constraints in the field work and in the processing and interpretation phases. In the applications concerning Groundwater investigations, Mining Exploration, Environmental and Engineering surveys, examples of data and their interpretation presently carried out all around the world will be presented for DC Resistivity (Vertical Electrical Sounding, 2D, 3D Resistivity Imaging, Resistivity Monitoring), Induced Polarisation (Time Domain 2D, 3D arrays for mining and environmental), Magnetic Resonance Sounding (direct detection and characterisation of groundwater) and Electromagnetic (multi-component and multi-spacing Frequency Domain Sounding and Profiling technique). The place that Geophysics takes in the market among the other investigation techniques is, and will remain, dependant on the quality of the results obtained, despite the uncertainties linked to the field (noise aspects) and to the interpretation (equivalence aspects), under the control of budget decisions.Resistivity Imaging measurements for groundwater investigations
Geophysical investigations in the 100 Areas: Fiscal year 1991 through December 1993
NASA Astrophysics Data System (ADS)
Mitchell, T. H.
1994-09-01
The geophysical investigations identified in this document were conducted by the Westinghouse Hanford Company (WHC) Surface Geophysics Team, Geophysics Group, between October, 1991 and December, 1993. The investigations supported 100-Area activities for the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensations and Liability Act of 1980 (CERCLA). The primary intent of this document is to provide a general map location and the associated document number for investigations that have been conducted as of December, 1993. The results of the individual investigations are not included here. The results of all of these investigations have been previously reported individually in WHC supporting documents. The investigations conducted during Fiscal Year (FY) 1992 are summarized in a single WHC document, WHC-SD-EN-TI-204, Rev. O. A brief summary of some of the successful applications of geophysics in the 100-Areas is included.
An electromagnetic geophysical survey of the freshwater lens of Isla de Mona, Puerto Rico
Richards, R.T.; Troester, J.W.; Martinez, M.I.
1998-01-01
An electromagnetic reconnaissance of the freshwater lens of Isla de Mona, Puerto Rico was conducted with both terrain conductivity (TC) and transient electromagnetic (TEM) surface geophysical techniques. These geophysical surveys were limited to the southern and western parts of the island because of problems with access and cultural metallic objects such as reinforced concrete roadways on the eastern part of the island. The geophysical data were supplemented with the location of a freshwater spring found by scuba divers at a depth of about 20 m below sea level along the northern coast of the island. The geophysical data suggest that the freshwater lens has a maximum thickness of 20 m in the southern half of the island. The freshwater lens is not thickest at the center of the island but nearer the southwestern edge in Quaternary deposits and the eastern edge of the island in the Tertiary carbonates. This finding indicates that the groundwater flow paths on Isla de Mona are not radially summetrical from the center of the island to the ocean. The asymmetry of the freshwater lens indicates that the differences in hydraulic conductivity are a major factor in determining the shape of the freshwater lens. The porosity of the aquifer, as determined by the geophysical data is about 33%.
Reports of planetary geology and geophysics program, 1988
NASA Technical Reports Server (NTRS)
Holt, Henry E. (Editor)
1989-01-01
This is a compilation of abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1988. Each report reflects significant accomplishments within the area of the author's funded grant or contract.
Introduction of Special Physics Topics (Geophysics) Through the Use of Physics Laboratory Projects
ERIC Educational Resources Information Center
Parker, R. H.; Whittles, A. B. L.
1970-01-01
Describes the objectives and content of a physics laboratory program for freshman students at the British Columbia Institute of Technology. The first part of the program consists of basic physics experiments, while the second part emphasizes student work on projects in geophysics that have direct technical applications. (LC)
Reports of Planetary Geology and Geophysics Program, 1986
NASA Technical Reports Server (NTRS)
1987-01-01
Abstracts compiled from reports from Principal Investigators of the NASA Planetary Geology and Geophysics Program, Office of Space Science and Applications are presented. The purpose is to document in summary form work conducted in this program during 1986. Each report reflects significant accomplishments within the area of the author's funded grant or contract.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
... submitted. Permittees are to be reimbursed also for the reasonable cost of processing geophysical information required to be submitted when processing is in a form or manner required by the Director, BOEM... G&G exploration, including deep stratigraphic tests/ revisions when necessary. 74 applications x $2...
Reports of planetary geology and geophysics program, 1987
NASA Technical Reports Server (NTRS)
1988-01-01
This is a compilation of abstracts of reports from Principal Investigators of NASA's PLanetary Geology and Geophysics program, Office of Space Science and Applications. The purpose is to document in summary form research work conducted in this program during 1987. Each report reflects significant accomplishments in the area of the author's funded grant or contract.
Bibliography of borehole geophysics as applied to ground-water hydrology
Taylor, Ticie A.; Dey, Joyce A.
1985-01-01
Most of the references on borehole geophysics that are relevant to ground-water hydrology are contained in this bibliography, but it does not include every reference that is available under each subject heading; the literature is much too extensive to compile a complete listing. Some of the references may appear under more than one subject heading because the references commonly relate to more than one main topic. Many articles have been cross-referenced in order to assist the reader in locating an article. For example, the article entitled, 'Application of the acoustic televiewer to the characterization of hydraulic fractures in geothermal wells' is listed under both 'Acoustic televiewer,' and 'Geothermal'. The bibliography is intended to lead the reader to other articles on borehole-geophysical logging and related subjects, because each article cited also will have a list of references, which may be more specialized, covering many subjects with related applications, such as physics, mathematics, chemistry, geology, electronics, acoustics, hydrology, and surface geophysics. However, not all of these related subject headings could be included in this bibliography.
NASA Astrophysics Data System (ADS)
Thimmisetty, C.; Talbot, C.; Tong, C. H.; Chen, X.
2016-12-01
The representativeness of available data poses a significant fundamental challenge to the quantification of uncertainty in geophysical systems. Furthermore, the successful application of machine learning methods to geophysical problems involving data assimilation is inherently constrained by the extent to which obtainable data represent the problem considered. We show how the adjoint method, coupled with optimization based on methods of machine learning, can facilitate the minimization of an objective function defined on a space of significantly reduced dimension. By considering uncertain parameters as constituting a stochastic process, the Karhunen-Loeve expansion and its nonlinear extensions furnish an optimal basis with respect to which optimization using L-BFGS can be carried out. In particular, we demonstrate that kernel PCA can be coupled with adjoint-based optimal control methods to successfully determine the distribution of material parameter values for problems in the context of channelized deformable media governed by the equations of linear elasticity. Since certain subsets of the original data are characterized by different features, the convergence rate of the method in part depends on, and may be limited by, the observations used to furnish the kernel principal component basis. By determining appropriate weights for realizations of the stochastic random field, then, one may accelerate the convergence of the method. To this end, we present a formulation of Weighted PCA combined with a gradient-based means using automatic differentiation to iteratively re-weight observations concurrent with the determination of an optimal reduced set control variables in the feature space. We demonstrate how improvements in the accuracy and computational efficiency of the weighted linear method can be achieved over existing unweighted kernel methods, and discuss nonlinear extensions of the algorithm.
Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages
NASA Astrophysics Data System (ADS)
Eppelbaum, L. V.
2012-04-01
The Caucasian Mountains occupy an area of about 440,000 km2. A number of important mineral resources are concentrated there. Geophysical data on the geological structure of Caucasus can shed light on the basic principles of evolution of the Earth, the distribution of minerals and seismic activity. However, geophysical surveys under complex conditions are generally riddled by poor accessibility to certain mountainous regions, the unevenness of observation surfaces, as well as by a great variety and frequent changes of tectonic structures and geological bodies with variable physical properties. These factors either restrict geophysical surveys in difficult environments or confine the scope of useful information drawn from the results obtained. This has led to the development of special techniques in geophysical surveys, data processing and interpretation that draws heavily on the experience accumulated in the specific conditions of these mountainous regions. First applied geophysical observations in the Caucasus region - thermal measurements in boreholes - were carried out by Bazevich (1881) in the Absheron Peninsula. At the same time, start of the initial stage is usually referred to as the mid 20-s of the XX century, when the rare, but systematic geophysical observations (mainly gravity and magnetic) were begun in some Caucasian areas. Somewhat later began to apply the resistivity method. Mid 30-s is characterized by the beginning of application of borehole geophysics and seismic prospecting. The marine seismics firstly in the former Soviet Union was tested in the Caspian Sea. In general, the initial stage is characterized by slow, but steady rise (except during World War II) lasted until 1960. A basic stage (1960-1991) is characterized by very intensive employment of geophysical methods (apparently, any possible geophysical methods were tested in this region). At this time the Caucasus region is considered in the former Soviet Union as a geophysical polygon for testing different geophysical methods and methodologies in complicated environments. Airborne magnetic and gravity surveys covered all the Caucasus, regional seismic and magnetotelluric studies were used as reference profiles for deep structure investigation. Numerous effective applications of geophysical methods for searching ore, oil&gas deposits, building raw, fresh water localization, solving engineering, etc. was demonstrated. Seismological investigations (including different methods) were widely applied throughout the entire Caucasian region. Satellite geophysical examinations were successfully combined with other methods. Finally, destruction of the former Soviet Union in 1991 (beginning of the modern stage) caused a sharp common decreasing of the geophysical activity in this region. Only foreign oil-&gas companies (mainly American and England) demonstrated some industrial geophysical activity basically in the Caspian Sea. In the last few years the situation began to straighten out, especially in the field of seismology. This presentation is based of the author's experience (e.g., Eppelbaum, 1989, 1991, 2009; Eppelbaum et al., 1987; Eppelbaum and Finkelstein, 1998; Eppelbaum and Khesin, 1988, 1992, 2002, 2004, 2011, 2012; Eppelbaum and Mishne, 2011; Eppelbaum et al., 2003, 2004; Khesin et al., 1988, 1993a, 1993b, 1996, 1997; Khesin and Eppelbaum, 1986, 1994, 1997, 2007; Pilchin and Eppelbaum, 1997, 2011) and corresponding publications and reviews of other authors.
Information fusion in regularized inversion of tomographic pumping tests
Bohling, Geoffrey C.; ,
2008-01-01
In this chapter we investigate a simple approach to incorporating geophysical information into the analysis of tomographic pumping tests for characterization of the hydraulic conductivity (K) field in an aquifer. A number of authors have suggested a tomographic approach to the analysis of hydraulic tests in aquifers - essentially simultaneous analysis of multiple tests or stresses on the flow system - in order to improve the resolution of the estimated parameter fields. However, even with a large amount of hydraulic data in hand, the inverse problem is still plagued by non-uniqueness and ill-conditioning and the parameter space for the inversion needs to be constrained in some sensible fashion in order to obtain plausible estimates of aquifer properties. For seismic and radar tomography problems, the parameter space is often constrained through the application of regularization terms that impose penalties on deviations of the estimated parameters from a prior or background model, with the tradeoff between data fit and model norm explored through systematic analysis of results for different levels of weighting on the regularization terms. In this study we apply systematic regularized inversion to analysis of tomographic pumping tests in an alluvial aquifer, taking advantage of the steady-shape flow regime exhibited in these tests to expedite the inversion process. In addition, we explore the possibility of incorporating geophysical information into the inversion through a regularization term relating the estimated K distribution to ground penetrating radar velocity and attenuation distributions through a smoothing spline model. ?? 2008 Springer-Verlag Berlin Heidelberg.
Advances in borehole geophysics for hydrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, P.H.
1982-01-01
Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems themore » most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.« less
The Caltech Concurrent Computation Program - Project description
NASA Technical Reports Server (NTRS)
Fox, G.; Otto, S.; Lyzenga, G.; Rogstad, D.
1985-01-01
The Caltech Concurrent Computation Program wwhich studies basic issues in computational science is described. The research builds on initial work where novel concurrent hardware, the necessary systems software to use it and twenty significant scientific implementations running on the initial 32, 64, and 128 node hypercube machines have been constructed. A major goal of the program will be to extend this work into new disciplines and more complex algorithms including general packages that decompose arbitrary problems in major application areas. New high-performance concurrent processors with up to 1024-nodes, over a gigabyte of memory and multigigaflop performance are being constructed. The implementations cover a wide range of problems in areas such as high energy and astrophysics, condensed matter, chemical reactions, plasma physics, applied mathematics, geophysics, simulation, CAD for VLSI, graphics and image processing. The products of the research program include the concurrent algorithms, hardware, systems software, and complete program implementations.
NASA Technical Reports Server (NTRS)
Morozov, S. K.; Krasitskiy, O. P.
1978-01-01
A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.
NASA Astrophysics Data System (ADS)
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
A German Geophysics School Project First steps to bring geophysical topics to schoolclasses
NASA Astrophysics Data System (ADS)
Schneider, S.
2002-12-01
In Germany Geophysics is a science with almost none or a bad reputation. People do not know to distinguish between Geophysics, Geography and Geology. In order to change the public view on Geosciences, a,School Project Geophysics' is going to be created at the Institute of Meteorology and Geophysics, Johann Wolfgang Goethe University, Frankfurt, which will offer geophysical ideas, methodes and scientific results to schoolclasses. After researches like PISA or TIMSS (third international Math and Nature-Science test) new concepts in education will be required. Interdisciplinary tasks are demanded by national and international commissions.\\The,School Project Geophysics' will be created to bring geophysical themes and results of scientific research into schools. One Day- or one Week-Workshops will help to publish geophysical contents in close cooperation with Physics - and Geography - teachers.\\Hands-on experiments (for advanced pupils) like refraction-Seismics or Magnetic measurements will lead students closer to scientific work and will help to establish personal interests in Earthsciences. Working with personally produced datasets will show the basics of inversion theory and point out the difficulties in creating models. Boundaries of data interpretation (the plurality of variables needed) will teach the school children to see scientific and statistic predictions and declarations more criticaly. Animations and Videos will present global examples (for example of volcanoes or Earthquakes) and lead over to regional sites. Excursions to these sites will help to show fieldwork methods and its problems and will convince to take a different look on topography and landscapes.\\All necessary utilities (Animations, Videos, Pictures and foils) will be offered to teachers in an online-data base which will be installed and managed by the project. Teachers and pupils might get easily into contact with Scientists to discuss geoscientific items. Further on extensions to geographic and geologic topics could be additional targets to this project. A poster will show the structure of one examplary workshop. This poster might stimulate to discuss experiences and further ideas.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Coupled Hydrogeophysical Inversion and Hydrogeological Data Fusion
NASA Astrophysics Data System (ADS)
Cirpka, O. A.; Schwede, R. L.; Li, W.
2012-12-01
Tomographic geophysical monitoring methods give the opportunity to observe hydrogeological tests at higher spatial resolution than is possible with classical hydraulic monitoring tools. This has been demonstrated in a substantial number of studies in which electrical resistivity tomography (ERT) has been used to monitor salt-tracer experiments. It is now accepted that inversion of such data sets requires a fully coupled framework, explicitly accounting for the hydraulic processes (groundwater flow and solute transport), the relationship between solute and geophysical properties (petrophysical relationship such as Archie's law), and the governing equations of the geophysical surveying techniques (e.g., the Poisson equation) as consistent coupled system. These data sets can be amended with data from other - more direct - hydrogeological tests to infer the distribution of hydraulic aquifer parameters. In the inversion framework, meaningful condensation of data does not only contribute to inversion efficiency but also increases the stability of the inversion. In particular, transient concentration data themselves only weakly depend on hydraulic conductivity, and model improvement using gradient-based methods is only possible when a substantial agreement between measurements and model output already exists. The latter also holds when concentrations are monitored by ERT. Tracer arrival times, by contrast, show high sensitivity and a more monotonic dependence on hydraulic conductivity than concentrations themselves. Thus, even without using temporal-moment generating equations, inverting travel times rather than concentrations or related geoelectrical signals themselves is advantageous. We have applied this approach to concentrations measured directly or via ERT, and to heat-tracer data. We present a consistent inversion framework including temporal moments of concentrations, geoelectrical signals obtained during salt-tracer tests, drawdown data from hydraulic tomography and flowmeter measurements to identify mainly the hydraulic-conductivity distribution. By stating the inversion as geostatistical conditioning problem, we obtain parameter sets together with their correlated uncertainty. While we have applied the quasi-linear geostatistical approach as inverse kernel, other methods - such as ensemble Kalman methods - may suit the same purpose, particularly when many data points are to be included. In order to identify 3-D fields, discretized by about 50 million grid points, we use the high-performance-computing framework DUNE to solve the involved partial differential equations on midrange computer cluster. We have quantified the worth of different data types in these inference problems. In practical applications, the constitutive relationships between geophysical, thermal, and hydraulic properties can pose a problem, requiring additional inversion. However, not well constrained transient boundary conditions may put inversion efforts on larger (e.g. regional) scales even more into question. We envision that future hydrogeophysical inversion efforts will target boundary conditions, such as groundwater recharge rates, in conjunction with - or instead of - aquifer parameters. By this, the distinction between data assimilation and parameter estimation will gradually vanish.
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J P; Johnson, S M
2008-03-26
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less
NASA Technical Reports Server (NTRS)
Witbeck, N. E. (Editor)
1984-01-01
A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.
Potential for geophysical experiments in large scale tests.
Dieterich, J.H.
1981-01-01
Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author
Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2017-04-01
The piezoelectric and seismo-electrokinetic phenomena are manifested by electrical and electromagnetic processes that occur in rocks under the influence of elastic oscillations triggered by shots or mechanical impacts (hits) (e.g., Neishtadt and Osipov, 1958; Neishtadt, 1961; Parkhomenko, 1971; Neishtadt et al., 1986; Maxwell et al., 1992; Butler et al., 1994; Kepic et al., 1995; Neishtadt et al., 1996; Mikhalov et al., 1997; Boulytchov, 2000; Dupuis et al., 2009; Schakel et al., 2011; Neishtadt and Eppelbaum, 2012; Jouniaux and Zyserman, 2016). The developed classification divides the above phenomena into the following types: (1) the seismo-electrokinetic (electrokinetic) phenomenon E, which occurs in polyphase media due to the mutual displacement of the solid and liquid phases; (2) the piezoelectric phenomenon, which occurs in rocks that contain piezoactive minerals; (3) the shot-triggered phenomenon, which is observed in rocks in the vicinity of a shot or hit point; (4) the seismoelectric phenomenon I, manifested by the change of the electric current passing through rocks, and (5) high-frequency impulse electromagnetic radiation, which is generated by massive base-metal bodies. This paper describes the above phenomena in detail, describing their nature, manifestation patterns, and registration techniques. Because the manifestation patterns of the above phenomena are different in different rocks, these phenomena can be used as a basis for geophysical exploration techniques. The piezoelectric method is an example of a successful application of piezoelectric and seismo-electrokinetic phenomena in exploration geophysics. It has been successfully applied in mineral exploration and environmental features research in Russia, USA, Canada, Australia, Belorussia, Azerbaijan, Georgia, Israel and other countries. This method uses comparatively new geophysical parameter - piezoelectric activity of rocks, ores, and minerals. It enables direct exploration for pegmatite, apatite-nepheline, essentially sphalerite, and ore-quartz deposits of gold, tin, tungsten, molybdenum, zinc, crystal, and other raw materials. This method also enables differentiation of rocks such as bauxites, kimberlites, etc., from the host rocks, by their electrokinetic properties. Classification of some rocks, ores, and minerals by their piezoactivity is given in Table 1. These objects (targets) transform wave elastic oscillations into electromagnetic ones. It should be taken into account that anomalous bodies may be detected not only by positive, but also by negative anomalies, if low-piezoactive body occurs in the higher piezoactive medium. The piezoelectric method is an example of successful application of piezoelectric and seismo-electrokinetic phenomena in exploration and environmental geophysics and designed for delineation of targets differing from the host media by piezoelectric properties (Neishtadt et al., 2006, Neishtadt and Eppelbaum, 2012). This method is employed in surface, downhole, and underground modes. Recent testing of piezeoelectric effects of archaeological samples composed from fired clay have shown values of 2.0 - 3.0 ṡ 10-14 C/N. However, absence of reliable procedures for solving the direct and inverse problems of piezoelectric anomalies (PEA), drastically hampers further progression of the method. Therefore, it was suggested to adapt the tomography procedure, widely used in the seismic prospecting, to the PEA modeling. Diffraction of seismic waves has been computed for models of circular cylinder, thin inclined bed and thick bed (Alperovich et al., 1997). As a result, spatial-time distribution of the electromagnetic field caused by the seismic wave has been found. The computations have shown that effectiveness and reliability of PEA analysis may be critically enhanced by considering total electro- and magnetograms as differentiated from the conventional approaches. Distribution of the electromagnetic field obtained by solving the direct problem was the basis for an inverse problem, i.e. revealing depth of a body occurrence, its location in a space as well as determining physical properties. At the same time, this method has not received a wide practical application taking into account complexity of real geological media. Careful analysis piezo- and seismoelectric anomalies shows the possibility of application of quantitative analysis of these effects advanced methodologies developed in magnetic prospecting for complex physical-geological conditions (Eppelbaum et al., 2000, 2001, 2010; Eppelbaum, 2010; 2011, 2015). Employment of these methodologies (improved modifications of tangents, characteristic points areal methods) for obtaining quantitative characteristics of ore bodies, environmental features and archaeological targets (models of horizontal circular cylinder, sphere, thin bed, thick bed and thin horizontal plate were utilized) have demonstrated their effectiveness. Case study at the archaeological site Tel Kara Hadid Field piezoelectric observations were conducted at the ancient archaeological site Tel Kara Hadid with gold-quartz mineralization in southern Israel within the Precambrian terrain at the northern extension of the Arabian-Nubian Shield (Neishtadt et al., 2006). The area of the archaeological site is located eight kilometers north of the town of Eilat, in an area of strong industrial noise. Ancient river alluvial terraces (extremely heterogeneous at a local scale, varying from boulders to silt) cover the quartz veins and complicate their identification. Piezoelectric measurements conducted over a quartz vein covered by surface sediments (approximately of 0.4 m thickness) produced a sharp (500 μV ) piezoelectric anomaly. Values recorded over the host rocks (clays and shales of basic composition) were close to zero. The observed piezoelectric anomaly was successfully interpreted by the use of methodologies developed in magnetic prospecting. For effective integration of piezo- and seismoelectric interpretation results with other geophysical methods, some schemes developed in theory of information (Eppelbaum, 2014) and wavelet theory (Eppelbaum et al., 2011) can be effectively applied. Table 1. Classification of some rocks, ores, and minerals by their piezoactivity d (10-14 Coulomb/Newton) (after Neishdadt et al., 2006 and Neishtadt and Eppelbaum, 2012, with modifications) Piezoactivity groupRock, Ore, Mineral dmin - dmaxdaver Quartz-tourmaline-cassiterite ore 0.8-28 15.7 Antimonite-quartz ore 0.2-1.35 0.6 I Apatite-nepheline ore 0-5 0.9 Galenite-sphalerite ore 0.2-7.7 3.3 Ijolite 0.1-8 1.2 Melteigite 0.2-5 1.6 Pegmatite 0.1-4.8 1.3 Skarn with galenite-sphalerite mineralization0.1-3 0.6 II Sphalerite-galenite ore 0.3-7.7 3.8 Turjaite 0.9-4.8 2.2 Urtite 0.1-32.5 3.4 Juvite 0.2-5.4 1.8 Aleurolite silicificated 0-0.5 0.2 Aplite 0-1.7 0.6 Breccia aleurolite-quartz 0.1-0.4 0.2 Gneiss 0-1.4 0.2 Granite 0-1.6 0.4 Granodiorite 0-0.2 0.1 Quartzite 0-3.3 0.6 III Pegmatite ceramic 0-1 0.15 Sandstone silicificated and tourmalinised 0.1-1.4 0.5 Feldspars 0-0.4 0.15 Porphyrite 0-0.3 0.1 Ristschorrite 0.3-0.9 0.5 Schist argillaceous 0-0.6 0.2 Hornfels 0-0.4 0.2 Skarn sphaleritic-garnet 0-1 0.3 Skarn pyroxene-garnet 0-0.2 0.1 Aleurolite, amphibolites, andesite, gabbro, 0-0.1 0.05 IV greisens, diabase, sandstone Argillite, beresite, dacite, diorite-porphyrite, 0 0 felsite-liparite, limestone, tuff, fenite I - highly active — piezo-activity of samples is greater than 5.0 ṡ 10-14 C/N II - moderately active — piezo-activity of samples is (0.5 - 5.0) ṡ 10-14 C/N III - weakly active — piezo-activity of samples is lower than 0.5 ṡ 10-14 C/N IV - non-active — piezo-activity of samples are near zero. REFERENCES Alperovich, L.S., Neishtadt, N.M., Berkovitch, A.L. and Eppelbaum, L.V., 1997. Tomography approach and interpretation of the piezoelectric data. Trans. of IX General Assembly of the European Geophysical Society. Strasbourg, France, 59/4P02, p. 546. Boulytchov, A., 2000, Seismic-electric effect method on guided and reflected waves. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 25, No.4, 333-336. Butler, K.E., Russell, R.D., Kepic A.W. and Maxwell, M., 1994. Mapping of a stratigraphic boundary by its seismoelectric response. SAGEEP '94 Conference Proceedings, 689-699. Eppelbaum, L.V., 2010. Archaeological geophysics in Israel: Past, Present and Future. Advances in Geosciences, 24, 45-68. Dupuis, J.C., Butler, K.E., Kepic, A.W. and Harris, B.D., 2009. Anatomy of a seismoelectric conversion: Measurements and conceptual modeling in boreholes penetrating a sandy aquifer. Journal of Geophysical Research, 114, B10306, doi:10.1029/2008JB005939 Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., 2014. Geophysical observations at archaeological sites: Estimating informational content. Archaeological Prospection, 21, No. 2, 25-38. Eppelbaum, L.V., 2015. Quantitative interpretation of magnetic anomalies from thick bed, horizontal plate and intermediate models under complex physical-geological environments in archaeological prospection. Archaeological Prospection, 23, No. 2, 255-268. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Itkis, S.E. and Khesin, B.E., 2000. Optimization of magnetic investigations in the archaeological sites in Israel, In: Special Issue of Prospezioni Archeologiche "Filtering, Modeling and Interpretation of Geophysical Fields at Archaeological Objects", 65-92. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Jouniaux, L. and Zyserman, F., 2016. A review on electrokinetically induced seismo-electrics, electro-seismics, and seismo-magnetics for Earth sciences. Solid Earth, 7, 249-284. Kepic, A.W., Maxwell, M. and Russell, R.D., 1995. Field trials of a seismoelectric method for detecting massive sulfides. Geophysics, 60, 365-373. Maxwell, M., Russel, R.D., Kepic, A.W. and Butler, K.E., 1992. Electromagnetic responses from seismically excited targets: Non-Piezoelectric Phenomena. Exploration Geophysics, 23, 201-208. Mikhailov, O.V., Haarsten, M.W. and Toksoz, N., 1997. Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling. Geophysics, 62, No. 1, 97-105. Neishtadt, N.M., 1961. Searching pegmatites using seismo-electric effect of the second kind. Soviet Geology, No.1, 121-127. Neishtadt, N.M. and Eppelbaum, L.V., 2012. Perspectives of application of piezoelectric and seismoelectric methods in applied geophysics. Russian Geophysical Journal, Nos. 51-52, 63-80. Neishtadt, N., Eppelbaum, L. and Levitski, A., 2006. Application of seismo-electric phenomena in exploration geophysics: Review of Russian and Israeli experience. Geophysics, 71, No. 2, B41-B53. Neishdadt, N.M., Mazanova, Z.V., and Suvorov, N.D., 1986. The application of piezoelectric method for searching ore-quartz deposits in Yakutia. In: Seismic Methods of Studying Complex Media in Ore Regions. NPO Rudgeofizika, Leningrad, 109-116 (in Russian). Neishdadt, N.M., and Osipov, L.N., 1958. On using of seismoelectric effects of the second type observed by pegmatites searching. Trans. of VITR (All-Union Institute of Technical Prospecting Methods), 11, 63-71 (in Russian). Parkhomenko, E.I., 1971. Electrification Phenomena in Rocks. Plenum Press, New York. Schakel, M.D., Smeulders, D.M.J., Slob, E.C. and Heller, H.K.J., 2011. Seismoelectric interface response: Experimental results and forward model. Geophysics, 76, No. 4, p. N29-N36.
Appraisal of geodynamic inversion results: a data mining approach
NASA Astrophysics Data System (ADS)
Baumann, T. S.
2016-11-01
Bayesian sampling based inversions require many thousands or even millions of forward models, depending on how nonlinear or non-unique the inverse problem is, and how many unknowns are involved. The result of such a probabilistic inversion is not a single `best-fit' model, but rather a probability distribution that is represented by the entire model ensemble. Often, a geophysical inverse problem is non-unique, and the corresponding posterior distribution is multimodal, meaning that the distribution consists of clusters with similar models that represent the observations equally well. In these cases, we would like to visualize the characteristic model properties within each of these clusters of models. However, even for a moderate number of inversion parameters, a manual appraisal for a large number of models is not feasible. This poses the question whether it is possible to extract end-member models that represent each of the best-fit regions including their uncertainties. Here, I show how a machine learning tool can be used to characterize end-member models, including their uncertainties, from a complete model ensemble that represents a posterior probability distribution. The model ensemble used here results from a nonlinear geodynamic inverse problem, where rheological properties of the lithosphere are constrained from multiple geophysical observations. It is demonstrated that by taking vertical cross-sections through the effective viscosity structure of each of the models, the entire model ensemble can be classified into four end-member model categories that have a similar effective viscosity structure. These classification results are helpful to explore the non-uniqueness of the inverse problem and can be used to compute representative data fits for each of the end-member models. Conversely, these insights also reveal how new observational constraints could reduce the non-uniqueness. The method is not limited to geodynamic applications and a generalized MATLAB code is provided to perform the appraisal analysis.
Geophysical examination of coal deposits
NASA Astrophysics Data System (ADS)
Jackson, L. J.
1981-04-01
Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.
Reflection and transmission coefficients of a single layer in poroelastic media.
Corredor, Robiel Martinez; Santos, Juan E; Gauzellino, Patricia M; Carcione, José M
2014-06-01
Wave propagation in poroelastic media is a subject that finds applications in many fields of research, from geophysics of the solid Earth to material science. In geophysics, seismic methods are based on the reflection and transmission of waves at interfaces or layers. It is a relevant canonical problem, which has not been solved in explicit form, i.e., the wave response of a single layer, involving three dissimilar media, where the properties of the media are described by Biot's theory. The displacement fields are recast in terms of potentials and the boundary conditions at the two interfaces impose continuity of the solid and fluid displacements, normal and shear stresses, and fluid pressure. The existence of critical angles is discussed. The results are verified by taking proper limits-zero and 100% porosity-by comparison to the canonical solutions corresponding to single-phase solid (elastic) media and fluid media, respectively, and the case where the layer thickness is zero, representing an interface separating two poroelastic half-spaces. As examples, it was calculated the reflection and transmission coefficients for plane wave incident at a highly permeable and compliant fluid-saturated porous layer, and the case where the media are saturated with the same fluid.
Stochastic modeling for time series InSAR: with emphasis on atmospheric effects
NASA Astrophysics Data System (ADS)
Cao, Yunmeng; Li, Zhiwei; Wei, Jianchao; Hu, Jun; Duan, Meng; Feng, Guangcai
2018-02-01
Despite the many applications of time series interferometric synthetic aperture radar (TS-InSAR) techniques in geophysical problems, error analysis and assessment have been largely overlooked. Tropospheric propagation error is still the dominant error source of InSAR observations. However, the spatiotemporal variation of atmospheric effects is seldom considered in the present standard TS-InSAR techniques, such as persistent scatterer interferometry and small baseline subset interferometry. The failure to consider the stochastic properties of atmospheric effects not only affects the accuracy of the estimators, but also makes it difficult to assess the uncertainty of the final geophysical results. To address this issue, this paper proposes a network-based variance-covariance estimation method to model the spatiotemporal variation of tropospheric signals, and to estimate the temporal variance-covariance matrix of TS-InSAR observations. The constructed stochastic model is then incorporated into the TS-InSAR estimators both for parameters (e.g., deformation velocity, topography residual) estimation and uncertainty assessment. It is an incremental and positive improvement to the traditional weighted least squares methods to solve the multitemporal InSAR time series. The performance of the proposed method is validated by using both simulated and real datasets.
NASA Astrophysics Data System (ADS)
Myre, Joseph M.
Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.
PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI
NASA Astrophysics Data System (ADS)
Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.
2016-01-01
This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
Application of electrical geophysics to the release of water resources, case of Ain Leuh (Morocco)
NASA Astrophysics Data System (ADS)
Zitouni, A.; Boukdir, A.; El Fjiji, H.; Baite, W.; Ekouele Mbaki, V. R.; Ben Said, H.; Echakraoui, Z.; Elissami, A.; El Maslouhi, M. R.
2018-05-01
Being seen needs in increasing waters in our contry for fine domestics, manufactures and agricultural, the prospecting of subterranean waters by geologic and hydrogeologic classic method remains inaplicable in the cases of the regions where one does not arrange drillings or polls (soundings) of gratitude (recongnition) in very sufficient (self-important) number. In that case of figure, the method of prospecting geophysics such as the method of nuclear magnetic resonance (NMR) and the method of the geophysics radar are usually used most usually because they showed, worldwide, results very desive in the projects of prospecting and evaluation of the resources in subterranean waters. In the present work, which concerns only the methodology of the electric resistivity, we treat the adopted methodological approach and the study of the case of application in the tray of Ajdir Ain Leuh.
Results of airborne geophysical surveys in the Weser-Elbe area in Northern Germany
NASA Astrophysics Data System (ADS)
Meyer, U.; Siemon, B.; Steuer, A.; Ibs-von Seht, M.; Voss, W.; Miensopust, M. P.; Wiederhold, H.
2012-12-01
Airborne geophysical surveys were carried out by the German Federal Institute for Geosciences and Natural Resources (BGR) in Northern Germany close to the estuaries of the Weser and Elbe rivers from 2000 to 2010. Two of the six helicopter-borne surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). The common aim was the acquisition of a reference data set for monitoring climate or man-made induced changes of the saltwater/freshwater interface at the German North Sea coast and to build up a data base containing all airborne geophysical data sets. Airborne frequency-domain electromagnetic, magnetic, and radiometric data were collected simultaneously with the helicopter-borne geophysical system operated at BGR. The airborne geophysical results show both geological and hydrogeological structures down to about 100 m depth. The electromagnetic results reveal several hydrogeological important features such as the distribution of sandy or clayey sediments, the extension of saltwater intrusion, and buried valleys. These results are supported by magnetic and radiometric data indicating lateral changes of weakly magnetized sediments or mineral compositions of the top soil. The airborne geophysical data sets provide serve as base-line data for a variety of applications and particularly for groundwater modeling and monitoring.
NASA Technical Reports Server (NTRS)
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
International, private-public, multi-mission, next-generation Lunar/Martian laser retroreflectors
NASA Astrophysics Data System (ADS)
Dellagnello, S.
2017-09-01
We describe an international, private-public, multi-mission effort to deploy on the Moon next-generation lunar laser retroreflectors to extend (also to the far side) the existing passive Lunar Geophysical Network (LNG) consisting of the three Apollo and the two Lunokhod payloads. We also describe important applications and extension of this program to Mars Geophysical Network (MGN).
ERIC Educational Resources Information Center
Saglam, Murat
2010-01-01
This study aims to explore problem-based learning (PBL) in conjunction with students' confidence in the basic ideas of electromagnetism and their motivational orientations and learning strategies. The 78 first-year geology and geophysics students followed a three-week PBL instruction in electromagnetism. The students' confidence was assessed…
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Ranging algebraically with more observations than unknowns
NASA Astrophysics Data System (ADS)
Awange, J. L.; Fukuda, Y.; Takemoto, S.; Ateya, I. L.; Grafarend, E. W.
2003-07-01
In the recently developed Spatial Reference System that is designed to check and control the accuracy of the three-dimensional coordinate measuring machines and tooling equipment (Metronom US., Inc., Ann Arbor: http://www.metronomus.com), the coordinates of the edges of the instrument are computed from distances of the bars. The use of distances in industrial application is fast gaining momentum just as in Geodesy and in Geophysical applications and thus necessitating efficient algorithms to solve the nonlinear distance equations. Whereas the ranging problem with minimum known stations was considered in our previous contribution in the same Journal, the present contribution extends to the case where one is faced with many distance observations than unknowns (overdetermined case) as is usually the case in practise. Using the Gauss-Jacobi Combinatorial approach, we demonstrate how one can proceed to position without reverting to iterative and linearizing procedures such as Newton's or Least Squares approach.
Software complex for geophysical data visualization
NASA Astrophysics Data System (ADS)
Kryukov, Ilya A.; Tyugin, Dmitry Y.; Kurkin, Andrey A.; Kurkina, Oxana E.
2013-04-01
The effectiveness of current research in geophysics is largely determined by the degree of implementation of the procedure of data processing and visualization with the use of modern information technology. Realistic and informative visualization of the results of three-dimensional modeling of geophysical processes contributes significantly into the naturalness of physical modeling and detailed view of the phenomena. The main difficulty in this case is to interpret the results of the calculations: it is necessary to be able to observe the various parameters of the three-dimensional models, build sections on different planes to evaluate certain characteristics and make a rapid assessment. Programs for interpretation and visualization of simulations are spread all over the world, for example, software systems such as ParaView, Golden Software Surfer, Voxler, Flow Vision and others. However, it is not always possible to solve the problem of visualization with the help of a single software package. Preprocessing, data transfer between the packages and setting up a uniform visualization style can turn into a long and routine work. In addition to this, sometimes special display modes for specific data are required and existing products tend to have more common features and are not always fully applicable to certain special cases. Rendering of dynamic data may require scripting languages that does not relieve the user from writing code. Therefore, the task was to develop a new and original software complex for the visualization of simulation results. Let us briefly list of the primary features that are developed. Software complex is a graphical application with a convenient and simple user interface that displays the results of the simulation. Complex is also able to interactively manage the image, resize the image without loss of quality, apply a two-dimensional and three-dimensional regular grid, set the coordinate axes with data labels and perform slice of data. The feature of geophysical data is their size. Detailed maps used in the simulations are large, thus rendering in real time can be difficult task even for powerful modern computers. Therefore, the performance of the software complex is an important aspect of this work. Complex is based on the latest version of graphic API: Microsoft - DirectX 11, which reduces overhead and harness the power of modern hardware. Each geophysical calculation is the adjustment of the mathematical model for a particular case, so the architecture of the complex visualization is created with the scalability and the ability to customize visualization objects, for better visibility and comfort. In the present study, software complex 'GeoVisual' was developed. One of the main features of this research is the use of bleeding-edge techniques of computer graphics in scientific visualization. The research was supported by The Ministry of education and science of Russian Federation, project 14.B37.21.0642.
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.
2010-08-01
Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
NASA Astrophysics Data System (ADS)
Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.
2005-12-01
We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management
NASA Astrophysics Data System (ADS)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-10-01
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Applications of personal computers in geophysics
NASA Astrophysics Data System (ADS)
Lee, W. H. K.; Lahr, J. C.; Habermann, R. E.
Since 1981, the use of personal computers (PCs) to increase productivity has become widespread. At present, more than 5 million personal computers are in operation for business, education, engineering, and scientific purposes. Activities within AGU reflect this trend: KOSMOS, the AGU electronic network, was introduced this year, and the AGU Committee on Personal Computers, chaired by W.H K. Lee (U.S. Geological Survey, Menlo Park, Calif.), was recently formed. In addition, in conjunction with the 1986 AGU Fall Meeting, this committee is organizing a personal computer session and hands-on demonstrations to promote applications of personal computers in geophysics.
Inversion of geophysical potential field data using the finite element method
NASA Astrophysics Data System (ADS)
Lamichhane, Bishnu P.; Gross, Lutz
2017-12-01
The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.
Field Geophysics at SAGE: Strategies for Effective Education
NASA Astrophysics Data System (ADS)
Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.
2011-12-01
SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider issues - safety, constraints, data quality/quantity, research objective, educational experience, survey parameters, why multidisciplinary?, etc.; 6. knowledge of multiple geophysical field methods (each student works with all methods); 7. information on geophysics careers and networking provided by industry visitors; 8. measures of success of the program include high rate of continuation to graduate school and careers in geophysics, support and feedback from industry participants and visitors, student evaluations at end of program, presentations at professional meetings, publications, and faculty evaluation of student work.
NASA Astrophysics Data System (ADS)
Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.
2017-12-01
The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for some degree programs, provides an alternative to land-based field courses and to our knowledge, remains the only class of its kind. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
NASA Astrophysics Data System (ADS)
Endom, Joerg
2014-05-01
Having a look into geophysical text books, you will find for all the described methods detailed lists of good practice. The variety of annotations specifies how to perform a reliable, trusty and plausible geophysical survey. Much space is used for considerations about all the necessary parameters like target depth, contrast, frequency, sampling, resolution and many other boundary conditions that account for a high quality report. But you will find rather fewer comments on locating and positioning. It seems to be self-evident in times of GNSS (Global Navigation Satellite Systems) and high performance laser total stations that positioning is a solved issue. This seems to apply for all geophysical methods that operate at walking speed or slower and for typical geoscientific or environmental investigation sites like brownfields, wasteland or archaeological spots, usually of nearly rectangular size. Using of measuring tapes, ropes and ranging poles here is also good practice. In civil engineering applications we observe lots of rectangular shaped inspection areas too but we as well get many linear structures like elongated bridge decks, dikes, railway tracks, runways and roads. Surveying of an archaeological place of 60 m by 82 m width requires a different positioning technology than surveying 5000 m along a highway although both sites have the same areal extent of around 5000 m2. If we furthermore take into account that during the last years GPR evolved into one of the fastest investigation methods in geophysics, survey speed becomes an important item. While examining railway tracks or roads today it is common to make use of these high speed capabilities. GPR services are typically performed at speeds of 80 km/h or even with higher velocities. Standard positioning methods do not longer apply to this problem. With speeds of more than 22 m/sec the internal latency of surveying systems gets quite relevant and even the effect of rounding within survey wheel systems is not negligible any more. Locating for example the exact position of joints, rebars on site, getting correct calibration information or overlaying measurements of independent methods requires high accuracy positioning for all data. Different technologies of synchronizing and stabilizing are discussed in this presentation. Furthermore a scale problem for interdisciplinary work between the geotechnical engineer, the civil engineer, the surveyor and the geophysicist is presented. Manufacturers as well as users are addressed to work on a unified methodology that could be implemented in future. This presentation is a contribution to COST Action TU1208.
Developing integrated methods to address complex resource and environmental issues
Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.
2016-02-08
IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.
Practical aspects of using a neural network to solve inverse geophysical problems
NASA Astrophysics Data System (ADS)
Yakimenko, A. A.; Morozov, A. E.; Karavaev, D. A.
2018-05-01
In this paper, an approach to solve an inverse problem of geophysics, such as determining the position of an object (cavity or cavern) and its geometrical parameters according to the propagation picture of a wave field, is proposed. At present there are no fast and accurate methods for determining such parameters. In this paper, a method based on neural networks (NNs) is proposed and a possible architecture of the NN is presented. The results of experiments on implementing and training the NN are also presented. The model obtained shows the presence of an "understanding" of the input data, demonstrating answers that are similar to the original data. In the NN answers, one can identify a relationship between the quality of the network response and the number of waves that have passed through the medium’s object being investigated.
NASA Astrophysics Data System (ADS)
Prakojo, F.; Lobova, G.; Abramova, R.
2015-11-01
This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.
2017-12-01
Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.
Hierarchical Material Properties in Finite Element Analysis: The Oilfield Infrastructure Problem.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Wilson, G. A.
2017-12-01
Geophysical simulation of low-frequency electromagnetic signals within built environments such as urban centers and industrial landscapes facilities is a challenging computational problem because strong conductors (e.g., pipes, fences, rail lines, rebar, etc.) are not only highly conductive and/or magnetic relative to the surrounding geology, but they are very small in one or more of their physical length coordinates. Realistic modeling of such structures as idealized conductors has long been the standard approach; however this strategy carries with it computational burdens such as cumbersome implementation of internal boundary conditions, and limited flexibility for accommodating realistic geometries. Another standard approach is "brute force" discretization (often coupled with an equivalent medium model) whereby 100's of millions of voxels are used to represent these strong conductors, but at the cost of extreme computation times (and mesh design) for a simulation result when possible. To minimize these burdens, a new finite element scheme (Weiss, Geophysics, 2017) has been developed in which the material properties reside on a hierarchy of geometric simplicies (i.e., edges, facets and volumes) within an unstructured tetrahedral mesh. This allows thin sheet—like structures, such as subsurface fractures, to be economically represented by a connected set of triangular facets, for example, that freely conform to arbitrary "real world" geometries. The same holds thin pipe/wire-like structures, such as casings or pipelines. The hierarchical finite element scheme has been applied to problems in electro- and magnetostatics for oilfield problems where the elevated, but finite, conductivity and permeability of the steel-cased oil wells must be properly accounted for, yielding results that are otherwise unobtainable, with run times as low as a few 10s of seconds. Extension of the hierarchical finite element concept to broadband electromagnetics is presently underway, as are its implications for geophysical inversion.
Lorentz force effect on mixed convection micropolar flow in a vertical conduit
NASA Astrophysics Data System (ADS)
Abdel-wahed, Mohamed S.
2017-05-01
The present work provides a simulation of control and filtration process of hydromagnetic blood flow with Hall current under the effect of heat source or sink through a vertical conduit (pipe). This work meets other engineering applications, such as nuclear reactors cooled during emergency shutdown, geophysical transport in electrically conducting and heat exchangers at low velocity conditions. The problem is modeled by a system of partial differential equations taking the effect of viscous dissipation, and these equations are simplified and solved analytically as a series solution using the Differential Transformation Method (DTM). The velocities and temperature profiles of the flow are plotted and discussed. Moreover, the conduit wall shear stress and heat flux are deduced and explained.
Lasocki, Stanislaw; Antoniuk, Janusz; Moscicki, Jerzy
2003-08-01
The Zelazny Most depository of wastes from copper-ore processing, located in southwest Poland, is the largest mineral wastes repository in Europe. Moreover, it is located in a seismically active area. The seismicity is induced and is connected with mining works in the nearby underground copper mines. Any release of the contents of the repository to the environment could have devastating and even catastrophic consequences. For this reason, geophysical methods are used for continuous monitoring the state of the repository containment dams. The article presents examples of the application of geoelectric methods for detecting sites of leakage of contaminated water and a sketch of the seismic hazard analysis, which was used to predict future seismic vibrations of the repository dams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Petersson, N. A.; Rodgers, A.
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less
Imaging spectrometry - Technology and applications
NASA Technical Reports Server (NTRS)
Solomon, Jerry E.
1989-01-01
The development history and current status of NASA imaging-spectrometer (IS) technology are discussed in a review covering the period 1982-1988. Consideration is given to the Airborne IS first flown in 1982, the second-generation Airborne Visible and IR IS (AVIRIS), the High-Resolution IS being developed for the EOS polar platform, improved two-dimensional focal-plane arrays for the short-wave IR spectral region, and noncollinear acoustooptic tunable filters for use as spectral dispersing elements. Also examined are approaches to solving the data-processing problems posed by the high data volumes of state-of-the-art ISs (e.g., 160 MB per 600 x 600-pixel AVIRIS scene), including intelligent data editing, lossless and lossy data compression techniques, and direct extraction of scientifically meaningful geophysical and biophysical parameters.
Computational methods for inverse problems in geophysics: inversion of travel time observations
Pereyra, V.; Keller, H.B.; Lee, W.H.K.
1980-01-01
General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.
The 1990 Western Pacific Geophysics meeting
NASA Technical Reports Server (NTRS)
1990-01-01
The 1990 Western Pacific Geophysics Meeting was held in Kanazawa, Japan from 15-21 Aug. 1990. This was the first meeting of a new series of meetings for the American Geophysical Union, and it proved to be very successful in terms of the scientific program and attendance, which included over 1,000 participants. The intent of this meeting was an effort on the part of the American Geophysical Union (AGU) and several Japanese geophysical societies to gather individual Earth and space scientists at a major scientific meeting to focus on geophysical problems being studied in the western Pacific rim. The meeting was organized along the lines of a typical AGU annual meeting with some invited talks, many contributed talks, poster sessions, and with emphasis on presentations and informal discussions. The program committee consisted of scientists from both the U.S. and Japan. This meeting provided ample opportunities for U.S. and Japanese scientists to get to know each other and their works on a one-to-one basis. It was also a valuable opportunity for students studying geophysics to get together and interact with each other and with scientists from both the U.S. and Japan. There were 939 abstracts submitted to the conference and a total of 102 sessions designed as a result of the abstracts received. The topics of interest are as follows: space geodetic and observatory measurements for earthquake and tectonic studies; gravity, sea level, and vertical motion; variations in earth rotation and earth dynamics; sedimentary magnetism; global processes and precipitation; subsurface contaminant transport; U.S. Western Pacific Rim initiatives in hydrology; shelf and coastal circulation; tectonics, magmatism, and hydrothermal processes; earthquake prediction and hazard assessment; seismic wave propagation in realistic media; and dynamics and structure of plate boundaries and of the Earth's deep interior.
Buesch, David C.
2014-01-01
Geologic and geophysical investigations in the vicinity of Fort Irwin National Training Center, California, have been completed in support of groundwater investigations, and are presented in eight chapters of this report. A generalized surficial geologic map along with field and borehole investigations conducted during 2010–11 provide a lithostratigraphic and structural framework for the area during the Cenozoic. Electromagnetic properties of resistivity were measured in the laboratory on hand and core samples, and compared to borehole geophysical resistivity data. These data were used in conjunction with ground-based time-domain and airborne data and interpretations to provide a framework for the shallow lithologic units and structure. Gravity and aeromagnetic maps cover areas ~4 to 5 times that of Fort Irwin. Each chapter includes hydrogeologic applications of the data or model results.
NASA Astrophysics Data System (ADS)
Kiełczyński, P.; Szalewski, M.; Balcerzak, A.
2014-07-01
Simultaneous determination of the viscosity and density of liquids is of great importance in the monitoring of technological processes in the chemical, petroleum, and pharmaceutical industry, as well as in geophysics. In this paper, the authors present the application of Love waves for simultaneous inverse determination of the viscosity and density of liquids. The inversion procedure is based on measurements of the dispersion curves of phase velocity and attenuation of ultrasonic Love waves. The direct problem of the Love wave propagation in a layered waveguide covered by a viscous liquid was formulated and solved. Love waves propagate in an elastic layered waveguide covered on its surface with a viscous (Newtonian) liquid. The inverse problem is formulated as an optimization problem with appropriately constructed objective function that depends on the material properties of an elastic waveguide of the Love wave, material parameters of a liquid (i.e., viscosity and density), and the experimental data. The results of numerical calculations show that Love waves can be efficiently applied to determine simultaneously the physical properties of liquids (i.e., viscosity and density). Sensors based on this method can be very attractive for industrial applications to monitor on-line the parameters (density and viscosity) of process liquid during the course of technological processes, e.g., in polymer industry.
Application of Huang-Hilbert Transforms to Geophysical Datasets
NASA Technical Reports Server (NTRS)
Duffy, Dean G.
2003-01-01
The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.
Genetic algorithms and their use in Geophysical Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Paul B.
1999-04-01
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show thatmore » certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.« less
Genetic algorithms and their use in geophysical problems
NASA Astrophysics Data System (ADS)
Parker, Paul Bradley
Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or "fittest" models from a "population" and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Also, optimal efficiency is usually achieved with smaller (<50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (>2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2012-06-01
The celebrated Boltzmann-Gibbs (BG) entropy, S BG = -kΣi p i ln p i, and associated statistical mechanics are essentially based on hypotheses such as ergodicity, i.e., when ensemble averages coincide with time averages. This dynamical simplification occurs in classical systems (and quantum counterparts) whose microscopic evolution is governed by a positive largest Lyapunov exponent (LLE). Under such circumstances, relevant microscopic variables behave, from the probabilistic viewpoint, as (nearly) independent. Many phenomena exist, however, in natural, artificial and social systems (geophysics, astrophysics, biophysics, economics, and others) that violate ergodicity. To cover a (possibly) wide class of such systems, a generalization (nonextensive statistical mechanics) of the BG theory was proposed in 1988. This theory is based on nonadditive entropies such as S_q = kfrac{{1 - sumnolimits_i {p_i^q } }} {{q - 1}}left( {S_1 = S_{BG} } right). Here we comment some central aspects of this theory, and briefly review typical predictions, verifications and applications in geophysics and elsewhere, as illustrated through theoretical, experimental, observational, and computational results.
Continuation of down-hole geophysical testing for rock sockets.
DOT National Transportation Integrated Search
2013-11-01
Site characterization for the design of deep foundations is crucial for ensuring a reliable and economic substructure design, as unanticipated site conditions can cause significant problems and disputes during construction. Traditional invasive explo...
Investigation of coastal areas in Northern Germany using airborne geophysical surveys
NASA Astrophysics Data System (ADS)
Miensopust, Marion; Siemon, Bernhard; Wiederhold, Helga; Steuer, Annika; Ibs-von Seht, Malte; Voß, Wolfgang; Meyer, Uwe
2014-05-01
Since 2000, the German Federal Institute for Geosciences and Natural Resources (BGR) carried out several airborne geophysical surveys in Northern Germany to investigate the coastal areas of the North Sea and some of the North and East Frisian Islands. Several of those surveys were conducted in cooperation with the Leibniz Institute for Applied Geophysics (LIAG). Two helicopter-borne geophysical systems were used, namely the BGR system, which collects simultaneously frequency-domain electromagnetic, magnetic and radiometric data, and the SkyTEM system, a time-domain electromagnetic system developed by the University of Aarhus. Airborne geophysical surveys enable to investigate huge areas almost completely with high lateral resolution in a relatively short time at economic cost. In general, the results can support geological and hydrogeological mapping. Of particular importance are the airborne electromagnetic results, as the surveyed parameter - the electrical conductivity - depends on both lithology and groundwater status. Therefore, they can reveal buried valleys and the distribution of sandy and clayey sediments as well as salinization zones and fresh-water occurrences. The often simultaneously recorded magnetic and radiometric data support the electromagnetic results. Lateral changes of Quaternary and Tertiary sediments (shallow source - several tens of metres) as well as evidences of the North German Basin (deep source - several kilometres) are revealed by the magnetic results. The radiometric data indicate the various mineral compositions of the soil sediments. This BGR/LIAG project aims to build up a geophysics data base (http://geophysics-database.de/) which contains all airborne geophysical data sets. However, the more significant effort is to create a reference data set as basis for monitoring climate or man-made induced changes of the salt-water/fresh-water interface at the German North Sea coast. The significance of problems for groundwater extraction and treatment caused by groundwater salinization is more and more increasing and particularly coastal areas are affected by a latent risk for the sustainable usage of aquifers.
Applications of the EOS SAR to monitoring global change
NASA Technical Reports Server (NTRS)
Schier, Marguerite; Way, Jobea; Holt, Benjamin
1991-01-01
The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.
NASA Astrophysics Data System (ADS)
Fiorucci, Donatella; Harms, Jan; Barsuglia, Matteo; Fiori, Irene; Paoletti, Federico
2018-03-01
Density changes in the atmosphere produce a fluctuating gravity field that affects gravity strainmeters or gravity gradiometers used for the detection of gravitational waves and for geophysical applications. This work addresses the impact of the atmospheric local gravity noise on such detectors, extending previous analyses. In particular we present the effect introduced by the building housing the detectors, and we analyze local gravity-noise suppression by constructing the detector underground. We present also new sound spectra and correlation measurements. The results obtained are important for the design of future gravitational-wave detectors and gravity gradiometers used to detect prompt gravity perturbations from earthquakes.
Smartphones - the Geophysics Lab in Your Students' Pocket
NASA Astrophysics Data System (ADS)
Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.
2017-12-01
Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone_array.pdf Video: https://youtu.be/SL5dr4o5oTI
Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María
2017-11-13
The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
Application of differential evolution algorithm on self-potential data.
Li, Xiangtao; Yin, Minghao
2012-01-01
Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods.
Application of Differential Evolution Algorithm on Self-Potential Data
Li, Xiangtao; Yin, Minghao
2012-01-01
Differential evolution (DE) is a population based evolutionary algorithm widely used for solving multidimensional global optimization problems over continuous spaces, and has been successfully used to solve several kinds of problems. In this paper, differential evolution is used for quantitative interpretation of self-potential data in geophysics. Six parameters are estimated including the electrical dipole moment, the depth of the source, the distance from the origin, the polarization angle and the regional coefficients. This study considers three kinds of data from Turkey: noise-free data, contaminated synthetic data, and Field example. The differential evolution and the corresponding model parameters are constructed as regards the number of the generations. Then, we show the vibration of the parameters at the vicinity of the low misfit area. Moreover, we show how the frequency distribution of each parameter is related to the number of the DE iteration. Experimental results show the DE can be used for solving the quantitative interpretation of self-potential data efficiently compared with previous methods. PMID:23240004
NASA Astrophysics Data System (ADS)
Candy, Adam S.; Pietrzak, Julie D.
2018-01-01
The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.
NASA Astrophysics Data System (ADS)
Mencin, David; Hodgkinson, Kathleen; Sievers, Charlie; David, Phillips; Charles, Meertens; Glen, Mattioli
2017-04-01
UNAVCO has been providing infrastructure and support for solid-earth sciences and earthquake natural hazards for the past two decades. Recent advances in GNSS technology and data processing are now providing position solutions with centimeter-level precision at high-rate (>1 Hz) and low latency (i.e. the time required for data to arrive for analysis, in this case less than 1 second). These data have the potential to improve our understanding in diverse areas of geophysics including properties of seismic, volcanic, magmatic and tsunami sources, and thus profoundly transform rapid event characterization and warning. Scientific and operational applications also include glacier and ice sheet motions; tropospheric modeling; and space weather. These areas of geophysics represent a spectrum of research fields, including geodesy, seismology, tropospheric weather, space weather and natural hazards. Processed Real-Time GNSS (RT-GNSS) data will require formats and standards that allow this broad and diverse community to use these data and associated meta-data in existing research infrastructure. These advances have critically highlighted the difficulties associated with merging data and metadata between scientific disciplines. Even seemingly very closely related fields such as geodesy and seismology, which both have rich histories of handling large volumes of data and metadata, do not go together well in any automated way. Community analysis strategies, or lack thereof, such as treatment of error prove difficult to address and are reflected in the data and metadata. In addition, these communities have differing security, accessibility and reliability requirements. We propose some solutions to the particular problem of making RT-GNSS processed solution data and metadata accessible to multiply scientific and natural hazard communities. Importantly, we discuss the roadblocks encounter and solved and those that remain to be addressed.
New Hydrologic Insights to Advance Geophysical Investigation of the Unsaturated Zone
NASA Astrophysics Data System (ADS)
Nimmo, J. R.; Perkins, K. S.
2015-12-01
Advances in hydrology require information from the unsaturated zone, especially for problems related to groundwater contamination, water-supply sustainability, and ecohydrology. Unsaturated-zone processes are notoriously difficult to quantify; soils and rocks are visually opaque, spatially variable in the extreme, and easily disturbed by instrument installation. Thus there is great value in noninvasive techniques that produce water-related data of high density in space and time. Methods based on resistivity and electromagnetic waves have already produced significant new understanding of percolation processes, root-zone water retention, influences of evapotranspiration on soil-water, and effects of preferential flow. Further developments are underway for such purposes as noninvasive application to greater depths, increased resolution, adaptation for lab-scale experiments, and calibration in heterogeneous media. Beyond these, however, there is need for a stronger marriage of hydrologic and geophysical knowledge and perspective. Possible means to greater and faster progress include: Apply the latest hydrologic understanding, both pore-scale and macroscopic, to the detection of preferential flow paths and their degree of activation. In the continuing advancement of hardware and techniques, draw creatively from developments in such fields as high-energy physics, medical imaging, astrogeology, high-tech semiconductors, and bioinstrumentation. Sidestep the imaging process where possible to measure essential properties and fluxes more directly. Pose questions that have a strong end-use character, like "how does storm intensity relate to aquifer recharge rate" rather than "what is the shape of the wetting front". The greatest advances in geophysical investigation of the unsaturated zone will come from methods informed by the latest understanding of unsaturated systems and processes, and aimed as directly as possible at the answers to important hydrologic questions.
High performance GPU processing for inversion using uniform grid searches
NASA Astrophysics Data System (ADS)
Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios
2017-04-01
Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on both platforms, and execution time as a function of the grid dimension for each problem was recorded. Results indicate an average speedup in calculations by a factor of 100 on the GPU platform; for example problems with 1012 grid-points require less than two hours instead of several days on conventional desktop computers. Such a speedup encourages the application of TOPINV on high performance platforms, as a GPU, in cases where nearly real time decisions are necessary, for example finite fault modeling to identify possible tsunami sources.
40 CFR 194.15 - Content of compliance re-certification application(s).
Code of Federal Regulations, 2011 CFR
2011-07-01
... application shall be updated to provide sufficient information for the Administrator to determine whether or... include: (1) All additional geologic, geophysical, geochemical, hydrologic, and meteorologic information; (2) All additional monitoring data, analyses and results; (3) All additional analyses and results of...
Handbook of geophysics and the space environment, 4th edition
NASA Astrophysics Data System (ADS)
Jursa, A. S.
1985-12-01
This fourth edition of the Air Force Handbook of Geophysics and the Space Environment has been completely revised. It begins with chapters on the sun and its emissions, then treats the Earth's magnetic field and the radiation belts, and follows with chapters on the ionosphere and the aurora. The subject of electrical charging of space vehicles has been of special concern to the Air Force and has been included to aid the designers interested in that problem. The next group of chapters deals with properties of the atmosphere, and the handbook concludes with chapters on the earth sciences and infrared astronomy.
NASA Astrophysics Data System (ADS)
Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.
2017-12-01
Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.
The impact of approximations and arbitrary choices on geophysical images
NASA Astrophysics Data System (ADS)
Valentine, Andrew P.; Trampert, Jeannot
2016-01-01
Whenever a geophysical image is to be constructed, a variety of choices must be made. Some, such as those governing data selection and processing, or model parametrization, are somewhat arbitrary: there may be little reason to prefer one choice over another. Others, such as defining the theoretical framework within which the data are to be explained, may be more straightforward: typically, an `exact' theory exists, but various approximations may need to be adopted in order to make the imaging problem computationally tractable. Differences between any two images of the same system can be explained in terms of differences between these choices. Understanding the impact of each particular decision is essential if images are to be interpreted properly-but little progress has been made towards a quantitative treatment of this effect. In this paper, we consider a general linearized inverse problem, applicable to a wide range of imaging situations. We write down an expression for the difference between two images produced using similar inversion strategies, but where different choices have been made. This provides a framework within which inversion algorithms may be analysed, and allows us to consider how image effects may arise. In this paper, we take a general view, and do not specialize our discussion to any specific imaging problem or setup (beyond the restrictions implied by the use of linearized inversion techniques). In particular, we look at the concept of `hybrid inversion', in which highly accurate synthetic data (typically the result of an expensive numerical simulation) is combined with an inverse operator constructed based on theoretical approximations. It is generally supposed that this offers the benefits of using the more complete theory, without the full computational costs. We argue that the inverse operator is as important as the forward calculation in determining the accuracy of results. We illustrate this using a simple example, based on imaging the density structure of a vibrating string.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-06
... application. SUMMARY: Notice is hereby given that Lamont-Doherty Earth Observatory of Columbia University (L...#applications . FOR FURTHER INFORMATION CONTACT: Howard Goldstein or Jolie Harrison, Office of Protected...
Through the looking glass: Applications of ground-penetrating radar in archaeology
NASA Astrophysics Data System (ADS)
Stamos, Antonia
The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now applied for "surface surveying." Each survey site is introduced via geographical location and proximity to known features, as well as with a comprehensive breakdown of the data into real-time depth, or depth-slices, for better identification of features.
NASA Astrophysics Data System (ADS)
Ruggeri, Paolo; Irving, James; Holliger, Klaus
2015-08-01
We critically examine the performance of sequential geostatistical resampling (SGR) as a model proposal mechanism for Bayesian Markov-chain-Monte-Carlo (MCMC) solutions to near-surface geophysical inverse problems. Focusing on a series of simple yet realistic synthetic crosshole georadar tomographic examples characterized by different numbers of data, levels of data error and degrees of model parameter spatial correlation, we investigate the efficiency of three different resampling strategies with regard to their ability to generate statistically independent realizations from the Bayesian posterior distribution. Quite importantly, our results show that, no matter what resampling strategy is employed, many of the examined test cases require an unreasonably high number of forward model runs to produce independent posterior samples, meaning that the SGR approach as currently implemented will not be computationally feasible for a wide range of problems. Although use of a novel gradual-deformation-based proposal method can help to alleviate these issues, it does not offer a full solution. Further, we find that the nature of the SGR is found to strongly influence MCMC performance; however no clear rule exists as to what set of inversion parameters and/or overall proposal acceptance rate will allow for the most efficient implementation. We conclude that although the SGR methodology is highly attractive as it allows for the consideration of complex geostatistical priors as well as conditioning to hard and soft data, further developments are necessary in the context of novel or hybrid MCMC approaches for it to be considered generally suitable for near-surface geophysical inversions.
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Application of Laser Imaging for Bio/geophysical Studies
NASA Technical Reports Server (NTRS)
Hummel, J. R.; Goltz, S. M.; Depiero, N. L.; Degloria, D. P.; Pagliughi, F. M.
1992-01-01
SPARTA, Inc. has developed a low-cost, portable laser imager that, among other applications, can be used in bio/geophysical applications. In the application to be discussed here, the system was utilized as an imaging system for background features in a forested locale. The SPARTA mini-ladar system was used at the International Paper Northern Experimental Forest near Howland, Maine to assist in a project designed to study the thermal and radiometric phenomenology at forest edges. The imager was used to obtain data from three complex sites, a 'seed' orchard, a forest edge, and a building. The goal of the study was to demonstrate the usefulness of the laser imager as a tool to obtain geometric and internal structure data about complex 3-D objects in a natural background. The data from these images have been analyzed to obtain information about the distributions of the objects in a scene. A range detection algorithm has been used to identify individual objects in a laser image and an edge detection algorithm then applied to highlight the outlines of discrete objects. An example of an image processed in such a manner is shown. Described here are the results from the study. In addition, results are presented outlining how the laser imaging system could be used to obtain other important information about bio/geophysical systems, such as the distribution of woody material in forests.
Asch, Theodore H.; Deszcz-Pan, Maria; Burton, Bethany L.; Ball, Lyndsay B.
2008-01-01
A geophysical characterization of a portion of American River levees in Sacramento, California was conducted in May, 2007. Targets of interest included the distribution and thickness of sand lenses that underlie the levees and the depth to a clay unit that underlies the sand. The concern is that the erosion of these sand lenses can lead to levee failure in highly populated areas of Sacramento. DC resistivity (Geometric?s OhmMapper and Advanced Geosciences, Inc.?s SuperSting R8 systems) and electromagnetic surveys (Geophex?s GEM-2) were conducted over a 6 mile length of the levee on roads and bicycle and horse trails. 2-D inversions were conducted on all the geophysical data. The OhmMapper and SuperSting surveys produced consistent inversion results that delineated potential sand and clay units. GEM-2 apparent resistivity data were consistent with the DC inversion results. However, the GEM-2 data could not be inverted due to low electromagnetic response levels, high ambient electromagnetic noise, and large system drifts. While this would not be as large a problem in conductive terrains, it is a problem for a small induction number electromagnetic profiling system such as the GEM-2 in a resistive terrain (the sand lenses). An integrated interpretation of the geophysical data acquired in this investigation is presented in this report that includes delineation of those areas consisting of predominantly sand and those areas consisting predominantly of clay. In general, along most of this part of the American River levee system, sand lenses are located closest to the river and clay deposits are located further away from the river. The interpreted thicknesses of the detected sand deposits are variable and range from 10 ft up to 60 ft. Thus, despite issues with the GEM-2 inversion, this geophysical investigation successfully delineated sand lenses and clay deposits along the American River levee system and the approximate depths to underlying clay zones. The results of this geophysical investigation should help the USACE to maintain the current levee system while also assisting the designers and planners of levee enhancements with the knowledge of what is to be expected from the near-surface geology and where zones of concern may be located.
Three-dimensional inversion of multisource array electromagnetic data
NASA Astrophysics Data System (ADS)
Tartaras, Efthimios
Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either amore » spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of thermodynamics and fulfills the necessary requirements for a well-posed initial-value problem. In the next manuscripts, we will further develop specific closures for multiphase RANS, LES, and hybrid-LES.« less
A stochastic approach for model reduction and memory function design in hydrogeophysical inversion
NASA Astrophysics Data System (ADS)
Hou, Z.; Kellogg, A.; Terry, N.
2009-12-01
Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the memory function as a new prior and generate samples from it for further updating when more geophysical data is available. We applied this approach for deep oil reservoir characterization and for shallow subsurface flow monitoring. The model reduction approach reliably helps reduce the joint seismic/EM/radar inversion computational time to reasonable levels. Continuous inversion images are obtained using time-lapse data with the “memory function” applied in the Bayesian inversion.
NASA Astrophysics Data System (ADS)
Herrera, I.; Herrera, G. S.
2015-12-01
Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (>2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. We employed a data-resolution matrix to select data that would be well predicted and we find that there are advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher-mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher-mode data are normally more accurately predicted than fundamental-mode data because of restrictions on the data kernel for the inversion system. We used synthetic and real-world examples to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher-mode data in inversion can provide better results. We also calculated model-resolution matrices in these examples to show the potential of increasing model resolution with selected surface-wave data. ?? Birkhaueser 2008.
Improving Discoverability of Geophysical Data using Location Based Services
NASA Astrophysics Data System (ADS)
Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.
2014-12-01
The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.
Virtual Geophysics Laboratory: Exploiting the Cloud and Empowering Geophysicsts
NASA Astrophysics Data System (ADS)
Fraser, Ryan; Vote, Josh; Goh, Richard; Cox, Simon
2013-04-01
Over the last five decades geoscientists from Australian state and federal agencies have collected and assembled around 3 Petabytes of geoscience data sets under public funding. As a consequence of technological progress, data is now being acquired at exponential rates and in higher resolution than ever before. Effective use of these big data sets challenges the storage and computational infrastructure of most organizations. The Virtual Geophysics Laboratory (VGL) is a scientific workflow portal addresses some of the resulting issues by providing Australian geophysicists with access to a Web 2.0 or Rich Internet Application (RIA) based integrated environment that exploits eResearch tools and Cloud computing technology, and promotes collaboration between the user community. VGL simplifies and automates large portions of what were previously manually intensive scientific workflow processes, allowing scientists to focus on the natural science problems, rather than computer science and IT. A number of geophysical processing codes are incorporated to support multiple workflows. For example a gravity inversion can be performed by combining the Escript/Finley codes (from the University of Queensland) with the gravity data registered in VGL. Likewise, tectonic processes can also be modeled by combining the Underworld code (from Monash University) with one of the various 3D models available to VGL. Cloud services provide scalable and cost effective compute resources. VGL is built on top of mature standards-compliant information services, many deployed using the Spatial Information Services Stack (SISS), which provides direct access to geophysical data. A large number of data sets from Geoscience Australia assist users in data discovery. GeoNetwork provides a metadata catalog to store workflow results for future use, discovery and provenance tracking. VGL has been developed in collaboration with the research community using incremental software development practices and open source tools. While developed to provide the geophysics research community with a sustainable platform and scalable infrastructure; VGL has also developed a number of concepts, patterns and generic components of which have been reused for cases beyond geophysics, including natural hazards, satellite processing and other areas requiring spatial data discovery and processing. Future plans for VGL include a number of improvements in both functional and non-functional areas in response to its user community needs and advancement in information technologies. In particular, research is underway in the following areas (a) distributed and parallel workflow processing in the cloud, (b) seamless integration with various cloud providers, and (c) integration with virtual laboratories representing other science domains. Acknowledgements: VGL was developed by CSIRO in collaboration with Geoscience Australia, National Computational Infrastructure, Australia National University, Monash University and University of Queensland, and has been supported by the Australian Government's Education Investment Funds through NeCTAR.
Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)
NASA Astrophysics Data System (ADS)
Gorman, Richard M.; Oliver, Hilary J.
2018-06-01
Most geophysical models include many parameters that are not fully determined by theory, and can be tuned
to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops
) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.
Filtering observations without the initial guess
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.
2017-12-01
Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.
MoisturEC: a new R program for moisture content estimation from electrical conductivity data
Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.
2018-01-01
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.
Bayesian Inference in Satellite Gravity Inversion
NASA Technical Reports Server (NTRS)
Kis, K. I.; Taylor, Patrick T.; Wittmann, G.; Kim, Hyung Rae; Torony, B.; Mayer-Guerr, T.
2005-01-01
To solve a geophysical inverse problem means applying measurements to determine the parameters of the selected model. The inverse problem is formulated as the Bayesian inference. The Gaussian probability density functions are applied in the Bayes's equation. The CHAMP satellite gravity data are determined at the altitude of 400 kilometer altitude over the South part of the Pannonian basin. The model of interpretation is the right vertical cylinder. The parameters of the model are obtained from the minimum problem solved by the Simplex method.
NASA Astrophysics Data System (ADS)
Liu, Boda; Liang, Yan
2017-04-01
Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.
Sedimentary basin geochemistry and fluid/rock interactions workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and othermore » Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.« less
Sharp bounds for singular values of fractional integral operators
NASA Astrophysics Data System (ADS)
Burman, Prabir
2007-03-01
From the results of Dostanic [M.R. Dostanic, Asymptotic behavior of the singular values of fractional integral operators, J. Math. Anal. Appl. 175 (1993) 380-391] and Vu and Gorenflo [Kim Tuan Vu, R. Gorenflo, Singular values of fractional and Volterra integral operators, in: Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology, Ho Chi Minh City, 1995, Ho Chi Minh City Math. Soc., Ho Chi Minh City, 1995, pp. 174-185] it is known that the jth singular value of the fractional integral operator of order [alpha]>0 is approximately ([pi]j)-[alpha] for all large j. In this note we refine this result by obtaining sharp bounds for the singular values and use these bounds to show that the jth singular value is ([pi]j)-[alpha][1+O(j-1)].
NASA Astrophysics Data System (ADS)
Vrugt, J. A.
2012-12-01
In the past decade much progress has been made in the treatment of uncertainty in earth systems modeling. Whereas initial approaches has focused mostly on quantification of parameter and predictive uncertainty, recent methods attempt to disentangle the effects of parameter, forcing (input) data, model structural and calibration data errors. In this talk I will highlight some of our recent work involving theory, concepts and applications of Bayesian parameter and/or state estimation. In particular, new methods for sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) simulation will be presented with emphasis on massively parallel distributed computing and quantification of model structural errors. The theoretical and numerical developments will be illustrated using model-data synthesis problems in hydrology, hydrogeology and geophysics.
A Symbiotic Framework for coupling Machine Learning and Geosciences in Prediction and Predictability
NASA Astrophysics Data System (ADS)
Ravela, S.
2017-12-01
In this presentation we review the two directions of a symbiotic relationship between machine learning and the geosciences in relation to prediction and predictability. In the first direction, we develop ensemble, information theoretic and manifold learning framework to adaptively improve state and parameter estimates in nonlinear high-dimensional non-Gaussian problems, showing in particular that tractable variational approaches can be produced. We demonstrate these applications in the context of autonomous mapping of environmental coherent structures and other idealized problems. In the reverse direction, we show that data assimilation, particularly probabilistic approaches for filtering and smoothing offer a novel and useful way to train neural networks, and serve as a better basis than gradient based approaches when we must quantify uncertainty in association with nonlinear, chaotic processes. In many inference problems in geosciences we seek to build reduced models to characterize local sensitivies, adjoints or other mechanisms that propagate innovations and errors. Here, the particular use of neural approaches for such propagation trained using ensemble data assimilation provides a novel framework. Through these two examples of inference problems in the earth sciences, we show that not only is learning useful to broaden existing methodology, but in reverse, geophysical methodology can be used to influence paradigms in learning.
A proposed Applications Information System - Concept, implementation, and growth
NASA Technical Reports Server (NTRS)
Mcconnell, Dudley G.; Hood, Carroll A.; Butera, M. Kristine
1987-01-01
This paper describes a newly developed concept within NASA for an Applications Information System (AIS). The AIS would provide the opportunity to the public and private sectors of shared participation in a remote sensing research program directed to a particular set of land-use or environmental problems. Towards this end, the AIS would offer the technological framework and information system resources to overcome many of the deficiencies that end-users have faced over the years such as limited access to data, delay in data delivery, and a limited access to data reduction algorithms and models to convert data to geophysical measurements. In addition, the AIS will take advantage of NASA developments in networking among information systems and use of state of the art technology, such as CD Roms and optical disks for the purpose of increasing the scientific benefits of applied environmental research. The rationale for the establishment of an AIS, a methodology for a step-wise, modular implementation, and the relationship of the AIS to other NASA information systems are discussed.
Application of genetic algorithms to focal mechanism determination
NASA Astrophysics Data System (ADS)
Kobayashi, Reiji; Nakanishi, Ichiro
1994-04-01
Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.
Sainath, Kamalesh; Teixeira, Fernando L; Donderici, Burkay
2014-01-01
We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.
Applicability of radar subsurface profiling in estimating sidewalk undermining.
DOT National Transportation Integrated Search
1979-01-01
An evaluation was made of the applicability of the geophysical technique of radar subsurface profiling to estimating the extent of sidewalk undermining. It was found that there is a distinct difference between the observed radar echo patterns of a no...
Smart Interpretation - Application of Machine Learning in Geological Interpretation of AEM Data
NASA Astrophysics Data System (ADS)
Bach, T.; Gulbrandsen, M. L.; Jacobsen, R.; Pallesen, T. M.; Jørgensen, F.; Høyer, A. S.; Hansen, T. M.
2015-12-01
When using airborne geophysical measurements in e.g. groundwater mapping, an overwhelming amount of data is collected. Increasingly larger survey areas, denser data collection and limited resources, combines to an increasing problem of building geological models that use all the available data in a manner that is consistent with the geologists knowledge about the geology of the survey area. In the ERGO project, funded by The Danish National Advanced Technology Foundation, we address this problem, by developing new, usable tools, enabling the geologist utilize her geological knowledge directly in the interpretation of the AEM data, and thereby handle the large amount of data, In the project we have developed the mathematical basis for capturing geological expertise in a statistical model. Based on this, we have implemented new algorithms that have been operationalized and embedded in user friendly software. In this software, the machine learning algorithm, Smart Interpretation, enables the geologist to use the system as an assistant in the geological modelling process. As the software 'learns' the geology from the geologist, the system suggest new modelling features in the data. In this presentation we demonstrate the application of the results from the ERGO project, including the proposed modelling workflow utilized on a variety of data examples.
Lunar science. [geophysics, mineralogy and evolution of moon
NASA Technical Reports Server (NTRS)
Brett, R.
1973-01-01
A review of the recent developments in lunar science summarizing the most important lunar findings and the known restraints on the theories of lunar evolution is presented. Lunar geophysics is discussed in sections dealing with the figure of the moon, mascons, and the lunar thermal regime; recent seismic studies and magnetic results are reported. The chemical data on materials taken from lunar orbit are analyzed, and the lunar geology is discussed. Special attention is accorded the subject of minerology, reflecting the information obtained from lunar samples of both mare and nonmare origin. A tentative timetable of lunar events is proposed, and the problem of the moon's origin is briefly treated.
NASA Astrophysics Data System (ADS)
Moldwin, Mark B.; Florindo, Fabio; Okin, Gregory; Robock, Alan; Rohling, Eelco J.; Cardenas, Bayani; Carlton, Annmarie; Chen, Kate Huihsuan; Crucifix, Michel; Gettelman, Andrew; Hubbard, Alun; Katsura, Tomoo; Painter, Thomas H.
2017-12-01
High-impact review papers describe and synthesize the current state of the art, the open questions and controversies, and provide ideas for future investigations. They are written not only for a specific scientific discipline but also for the broader Earth and space science community. They not only summarize the literature, but they also create a framework from which to understand the progress, problems, and connections between different communities, observations, models, and approaches. Here we describe how to write a high-impact review paper, and why you should consider writing one for
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ruthkoski, T.
2013-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
Transforming Polar Research with Google Glass Augmented Reality (Invited)
NASA Astrophysics Data System (ADS)
Ramachandran, R.; McEniry, M.; Maskey, M.
2011-12-01
Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device
NASA Astrophysics Data System (ADS)
Vera, N. C.; GMMC
2013-05-01
In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.
Geostatistical regularization operators for geophysical inverse problems on irregular meshes
NASA Astrophysics Data System (ADS)
Jordi, C.; Doetsch, J.; Günther, T.; Schmelzbach, C.; Robertsson, J. OA
2018-05-01
Irregular meshes allow to include complicated subsurface structures into geophysical modelling and inverse problems. The non-uniqueness of these inverse problems requires appropriate regularization that can incorporate a priori information. However, defining regularization operators for irregular discretizations is not trivial. Different schemes for calculating smoothness operators on irregular meshes have been proposed. In contrast to classical regularization constraints that are only defined using the nearest neighbours of a cell, geostatistical operators include a larger neighbourhood around a particular cell. A correlation model defines the extent of the neighbourhood and allows to incorporate information about geological structures. We propose an approach to calculate geostatistical operators for inverse problems on irregular meshes by eigendecomposition of a covariance matrix that contains the a priori geological information. Using our approach, the calculation of the operator matrix becomes tractable for 3-D inverse problems on irregular meshes. We tested the performance of the geostatistical regularization operators and compared them against the results of anisotropic smoothing in inversions of 2-D surface synthetic electrical resistivity tomography (ERT) data as well as in the inversion of a realistic 3-D cross-well synthetic ERT scenario. The inversions of 2-D ERT and seismic traveltime field data with geostatistical regularization provide results that are in good accordance with the expected geology and thus facilitate their interpretation. In particular, for layered structures the geostatistical regularization provides geologically more plausible results compared to the anisotropic smoothness constraints.
NASA Astrophysics Data System (ADS)
Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.
2016-12-01
New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.
USAF/SCEEE Summer Faculty Research Program (1982). Management Report.
1982-10-01
Patrick J. Sweeney, Ph.D., P.E. Mary Doddy, M.S. ABSTRACT This dynamic simulation computer model demonstrates the affects of C-forces upon the eyeball...Assistant Professor Specialty: Numerical Modeling and University of Lowell Computer Simulation of Mathematics Department Geophysical Problems Lowell...Problems And Promises 25 Modeling And Tracking Saccadic Dr. John D. Enderle Eye Movements 26 Dynamic Response Of Doubly Curved Dr. Fernando E. Fagundo
NASA Astrophysics Data System (ADS)
Petrov, P.; Newman, G. A.
2010-12-01
Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace-Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.
The long-solved problem of the best-fit straight line: application to isotopic mixing lines
NASA Astrophysics Data System (ADS)
Wehr, Richard; Saleska, Scott R.
2017-01-01
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introduce the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods - ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) - have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general - and convenient - solution is always the least biased.
About well-posed definition of geophysical fields'
NASA Astrophysics Data System (ADS)
Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara
2013-04-01
We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation (in an underground half-space) a field measured at the surface, allows you to make the interpretation of geophysical data, to build a cross-section, determine the depth, the approximate shape and size of the sources measured at the surface of the geophysical fields. Appliance of the method are any geophysical surveys: magnetic, gravimetric, electrical exploration, seismic, geochemical surveying, etc. Method was tested on model examples, and practical data. The results are confirmed by drilling.
NASA Astrophysics Data System (ADS)
Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.
2012-12-01
Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core students are the geophysics Honours students (~4th year undergraduates). In addition, up to 8 students from all over Africa are included in the program to help address practical training in Africa. The final cohort are minority students from the USA. Participants spend a week planning and costing out surveys, a week in the field collecting data using different methods including: gravity, DGPS, magnetics, resistivity, refraction seismic, EM methods, core logging and physical property measurements. The final week is spent interpreting and integrating their results. Graduate students are given the opportunity to instruct on the field school and manage the logistics for a particular method. The field school is unique in Africa and satisfies a need for practical training with limited resources, with a rare blend of cultural interactions!
Rypina Receives 2008 Donald L. Turcotte Award
NASA Astrophysics Data System (ADS)
2008-12-01
Irina Rypina has been awarded the Donald L. Turcotte Award, given annually to recent Ph.D. recipients for outstanding dissertation research that contributes directly to the field of nonlinear geophysics. Rypina's thesis is entitled ``Lagrangian coherent structures and transport in two-dimensional incompressible flows with oceanographic and atmospheric applications.'' She will be formally presented with the award at the Nonlinear Geophysics Focus Group Reception during the 2008 AGU Fall Meeting, which will be held 15-19 December in San Francisco, Calif.
NASA Astrophysics Data System (ADS)
Belyashov, A.; Shaitorov, V.; Yefremov, M.
2014-03-01
This article describes geological and geophysical studies of an underground nuclear explosion area in one of the boreholes at the Semipalatinsk test site in Kazakhstan. During these studies, the typical elements of mechanical impact of the underground explosion on the host medium—fracturing of rock, spall zones, faults, cracks, etc., were observed. This information supplements to the database of underground nuclear explosion phenomenology and can be applied in fulfilling on-site inspection tasks under the Comprehensive Nuclear-Test-Ban Treaty.
Archaeological Geophysics for DoD Field Use: A Guide for New and Novice Users
2009-01-01
filled ditches that had been excavated into dry natural gravel at Dorchester-on-Thames, UK (Atkinson 1953; Clark 1996; Gaffney and Gater 2003). In...application of geophysics occurred in 1958, when Martin Aitken used a proton magnetometer to detect an early kiln near Peterborough, UK (Aitken...the data density. Clark (1996) shows that as the sampling interval is decreased from 1.5 to .125 m, the ability to differentiate a kiln from a piece
NASA Astrophysics Data System (ADS)
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto optimality of the found solutions can be made. Identification of the leading particle traditionally requires a costly combination of ranking and niching techniques. In our approach, we use a decision rule under uncertainty to identify the currently leading particle of the swarm. In doing so, we consider the different objectives of our optimization problem as competing agents with partially conflicting interests. Analysis of the maximin fitness function allows for robust and cheap identification of the currently leading particle. The final optimization result comprises a set of possible models spread along the Pareto front. For convex Pareto fronts, solution density is expected to be maximal in the region ideally compromising all objectives, i.e. the region of highest curvature.
Geophysics of Geothermal Areas: State of the Art and Future Development
NASA Astrophysics Data System (ADS)
Mabey, Don R.
In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.
NASA Astrophysics Data System (ADS)
Koldan, Jelena; Puzyrev, Vladimir; de la Puente, Josep; Houzeaux, Guillaume; Cela, José María
2014-06-01
We present an elaborate preconditioning scheme for Krylov subspace methods which has been developed to improve the performance and reduce the execution time of parallel node-based finite-element (FE) solvers for 3-D electromagnetic (EM) numerical modelling in exploration geophysics. This new preconditioner is based on algebraic multigrid (AMG) that uses different basic relaxation methods, such as Jacobi, symmetric successive over-relaxation (SSOR) and Gauss-Seidel, as smoothers and the wave front algorithm to create groups, which are used for a coarse-level generation. We have implemented and tested this new preconditioner within our parallel nodal FE solver for 3-D forward problems in EM induction geophysics. We have performed series of experiments for several models with different conductivity structures and characteristics to test the performance of our AMG preconditioning technique when combined with biconjugate gradient stabilized method. The results have shown that, the more challenging the problem is in terms of conductivity contrasts, ratio between the sizes of grid elements and/or frequency, the more benefit is obtained by using this preconditioner. Compared to other preconditioning schemes, such as diagonal, SSOR and truncated approximate inverse, the AMG preconditioner greatly improves the convergence of the iterative solver for all tested models. Also, when it comes to cases in which other preconditioners succeed to converge to a desired precision, AMG is able to considerably reduce the total execution time of the forward-problem code-up to an order of magnitude. Furthermore, the tests have confirmed that our AMG scheme ensures grid-independent rate of convergence, as well as improvement in convergence regardless of how big local mesh refinements are. In addition, AMG is designed to be a black-box preconditioner, which makes it easy to use and combine with different iterative methods. Finally, it has proved to be very practical and efficient in the parallel context.
A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks
NASA Astrophysics Data System (ADS)
Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.
2017-12-01
We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.
Analysis of the geophysical data using a posteriori algorithms
NASA Astrophysics Data System (ADS)
Voskoboynikova, Gyulnara; Khairetdinov, Marat
2016-04-01
The problems of monitoring, prediction and prevention of extraordinary natural and technogenic events are priority of modern problems. These events include earthquakes, volcanic eruptions, the lunar-solar tides, landslides, falling celestial bodies, explosions utilized stockpiles of ammunition, numerous quarry explosion in open coal mines, provoking technogenic earthquakes. Monitoring is based on a number of successive stages, which include remote registration of the events responses, measurement of the main parameters as arrival times of seismic waves or the original waveforms. At the final stage the inverse problems associated with determining the geographic location and time of the registration event are solving. Therefore, improving the accuracy of the parameters estimation of the original records in the high noise is an important problem. As is known, the main measurement errors arise due to the influence of external noise, the difference between the real and model structures of the medium, imprecision of the time definition in the events epicenter, the instrumental errors. Therefore, posteriori algorithms more accurate in comparison with known algorithms are proposed and investigated. They are based on a combination of discrete optimization method and fractal approach for joint detection and estimation of the arrival times in the quasi-periodic waveforms sequence in problems of geophysical monitoring with improved accuracy. Existing today, alternative approaches to solving these problems does not provide the given accuracy. The proposed algorithms are considered for the tasks of vibration sounding of the Earth in times of lunar and solar tides, and for the problem of monitoring of the borehole seismic source location in trade drilling.
The QuakeSim Project: Web Services for Managing Geophysical Data and Applications
NASA Astrophysics Data System (ADS)
Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet
2008-04-01
We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.
Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2015-01-01
An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.
Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials
NASA Astrophysics Data System (ADS)
Niu, Qifei; Zhang, Chi
2018-03-01
There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.
Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.; Slater, L. D.; Johnson, T.
2012-12-01
Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.
Castrignanò, Annamaria; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio
2017-01-01
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0–1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed. PMID:29207510
Castrignanò, Annamaria; Buttafuoco, Gabriele; Quarto, Ruggiero; Vitti, Carolina; Langella, Giuliano; Terribile, Fabio; Venezia, Accursio
2017-12-03
To assess spatial variability at the very fine scale required by Precision Agriculture, different proximal and remote sensors have been used. They provide large amounts and different types of data which need to be combined. An integrated approach, using multivariate geostatistical data-fusion techniques and multi-source geophysical sensor data to determine simple summary scale-dependent indices, is described here. These indices can be used to delineate management zones to be submitted to differential management. Such a data fusion approach with geophysical sensors was applied in a soil of an agronomic field cropped with tomato. The synthetic regionalized factors determined, contributed to split the 3D edaphic environment into two main horizontal structures with different hydraulic properties and to disclose two main horizons in the 0-1.0-m depth with a discontinuity probably occurring between 0.40 m and 0.70 m. Comparing this partition with the soil properties measured with a shallow sampling, it was possible to verify the coherence in the topsoil between the dielectric properties and other properties more directly related to agronomic management. These results confirm the advantages of using proximal sensing as a preliminary step in the application of site-specific management. Combining disparate spatial data (data fusion) is not at all a naive problem and novel and powerful methods need to be developed.
Kamb, B
1964-10-16
From physical measurements on glaciers and experimental studies of ice properties a framework of concept and theory is being built which bids fair to place glaciers among the more quantitatively understandable phenomena in the earth sciences. Measurements of flow velocity, deformation and stress, ice thickness and channel configuration, temperature, internal structure of theice, mass and energy balance, and response to meteorological variables all contribute to this understanding, as do still other measurements hardly discussed here, such as electrical properties, radioactive age measurements, and detailed studies of chemical and isotopic composition. The obvious goals of this work-the interpretation of past and present glacier fluctuations in terms of changes in world climate, and the prediction of glacier behavior-remain elusive, even though a good conceptual groundwork has been laid for dealing with the more tractable aspects of these problems. Intriguing recent discoveries have been made about such matters as the way in which glaciers react dynamically to changing conditions, the inter-relations between thermal regime and ice motion, the structural mechanisms of glacier flow, and the changes produced in ice by flow. One can recognize in these developments the possibility that concepts derived from the study of glacier flow may be applicable to phenomena of solid deformation deep in the earth. In this way glacier geophysics may have a useful impact beyond the study of glaciers themselves.
NASA Astrophysics Data System (ADS)
Pueyo-Anchuela, Ó.; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.
Complex geological shallow subsurface environments represent an important handicap in urban and building projects. The geological features of the Central Ebro Basin, with sharp lateral changes in Quaternary deposits, alluvial karst phenomena and anthropic activity can preclude the characterization of future urban areas only from isolated geomechanical tests or from non-correctly dimensioned geophysical techniques. This complexity is here analyzed in two different test fields, (i) one of them linked to flat-bottomed valleys with irregular distribution of Quaternary deposits related to sharp lateral facies changes and irregular preconsolidated substratum position and (ii) a second one with similar complexities in the alluvial deposits and karst activity linked to solution of the underlying evaporite substratum. The results show that different geophysical techniques allow for similar geological models to be obtained in the first case (flat-bottomed valleys), whereas only the application of several geophysical techniques can permit to correctly evaluate the geological model complexities in the second case (alluvial karst). In this second case, the geological and superficial information permit to refine the sensitivity of the applied geophysical techniques to different indicators of karst activity. In both cases 3D models are needed to correctly distinguish alluvial lateral sedimentary changes from superimposed karstic activity.
Detecting submerged objects: the application of side scan sonar to forensic contexts.
Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim
2013-09-10
Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusev, V. A.; Sobissevitch, A. L.
2008-06-24
Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less
A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets
NASA Astrophysics Data System (ADS)
JafarGandomi, Arash; Binley, Andrew
2013-09-01
We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is successful not only in enhancing the subsurface information but also as a survey design tool to identify the appropriate combination of the geophysical tools and show whether application of an individual method for further investigation of a specific site is beneficial.
NASA Astrophysics Data System (ADS)
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
MoisturEC: A New R Program for Moisture Content Estimation from Electrical Conductivity Data.
Terry, Neil; Day-Lewis, Frederick D; Werkema, Dale; Lane, John W
2018-03-06
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data-analysis tools are needed to "translate" geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user-friendly tools are required to fully capitalize on the potential of geophysical information for soil-moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two- and three-dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.; Commer, Michael
2009-07-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
Seismic data classification and artificial neural networks: can software replace eyeballs?
NASA Astrophysics Data System (ADS)
Reusch, D. B.; Larson, A. M.
2006-05-01
Modern seismic datasets are providing many new opportunities for furthering our understanding of our planet, ranging from the deep earth to the sub-ice sheet interface. With many geophysical applications, the large volume of these datasets raises issues of manageability in areas such as quality control (QC) and event identification (EI). While not universally true, QC can be a labor intensive, subjective (and thus not entirely reproducible) and uninspiring task when such datasets are involved. The EI process shares many of these drawbacks but has the benefit of (usually) being closer to interesting science-based questions. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of QC and EI on seismic datasets. In particular, we focus on QC of receiver functions from broadband seismic data collected by the 2000-2003 Transantarctic Mountains Seismic Experiment (TAMSEIS). Self-organizing maps (SOMs) enable unsupervised classification of large, complex geophysical data sets (e.g., time series of the atmospheric circulation) into a fixed number of distinct generalized patterns or modes representing the probability distribution function of the input data. These patterns are organized spatially as a two-dimensional grid such that distances represent similarity (adjacent patterns will be most similar). After training, input data are matched to their most similar generalized pattern to produce frequency maps, i.e., what fraction of the data is represented best by each individual SOM pattern. Given a priori information on data quality (from previous manual grading) or event type, a probabilistic classification can be developed that gives a likelihood for each category of interest for each SOM pattern. New data are classified by identifying the closest matching pattern (without retraining) and examining the associated probabilities. Feed-forward ANNs (FFNNs) are a supervised classification tool that has been successfully used in a number of seismic applications (e.g., Langer et al, 2003; Del Pezzo et al 2003). FFNNs require a correct answer for each training record so that the transfer functions between input predictors and output predictions can be developed during training. After training, applying new input data to the FFNNs classifies the input based on the existing transfer functions. Key to the success of both approaches is the selection of proper predictor variables that reflect, to varying degrees, the criteria humans use when doing these tasks manually. SOMs also have the potential to assist in this selection process. Because SOMs and FFNNs are used in different ways, they can address different aspects of the overall data classification problem in complementary ways. While not the first application of computers to these problems, ANN-based tools bring unique characteristics to the problem of capturing human decision-making processes.
NASA Astrophysics Data System (ADS)
Mahardika, Harry
Hydromechanical energy can be partially converted into electromagnetic energy due to electrokinetic effect, where mechanical energy causes the relative displacement of the charged pore water with respect to the solid skeleton of the porous material and generated electrical current density. An application of this phenomenon is seismoelectric method, a geophysical method in which electromagnetic signals are recorded and associated with the propagation of seismic waves. Due to its coupling nature, seismoelectric method promises advantages in characterizing the subsurface properties and geometry compared to independent employments of seismic or electromagnetic acquisition alone. Since the recorded seismoelectric signal are sensitive to water content changes this method have been applied for groundwater studies to delineates vadoze zone-aquifer boundary since the last twenty years. The problem, however, the existing governing equations of coupled seismic and electromagnetic are not accounted for unsaturated conditions and its petrophysical sensitivity to water content. In this thesis we extend the applications of seismoelectric method for unsaturated porous medium for several geophysical problems. (1) We begin our study with numerical study to localize and characterize a seismic event induced by hydraulic fracturing operation sedimentary rocks. In this problem, we use the fully-saturated case of seismoelectric method and we propose a new joint inversion scheme (seismic and seismoelectric) to determine the position and moment tensor that event. (2) We expand the seismoelectric theory for unsaturated condition and show that the generation of electrical current density are depend on several important petrophysical properties that are sensitive to water content. This new expansion of governing equation provide us theory for developing a new approach for seismoelectric method to image the oil water encroachment front during water flooding of an oil reservoir or an aquifer contaminated with DNAPL. (3) Next, we present a test case which is the first-attempt analysis of seismoelectric sounding measurements done on glacial environment of Glacier de Tsanfleuron through numerical forward modeling. Here we treat the snow-glacial environment similar as with vadoze zone-aquifer zone in unsaturated porous medium. (4) The modified governing equations also provides us foundations to do another case study, which is characterization of seismoelectrical events generated from water content changes in the vadoze zone measured using seismoelectric sounding from NE England. (5) We finalize the thesis with an interpretation of electrical signal generated from water injection experiment done on the top two meter of the soil surface (vadoze zone) using inverse calculation presented on the first topic of the thesis. The fundamental research presented on this thesis hopefully provides a basis for further advancement on seismoelectric or joint seismic-electrical methods for applications ranging from hydrogeology, volcanology and geothermal energy, and oil and gas cases.
NASA Astrophysics Data System (ADS)
Hajarolasvadi, Setare; Elbanna, Ahmed E.
2017-11-01
The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.
NASA Astrophysics Data System (ADS)
Zunino, A. J., III
2017-12-01
The presented assemblage of data and maps was collected and created from May 20th to 25th, 2017 on Hong Kong's Independent Schools Foundation (ISF) Academy's trip to the district of Baray, Cambodia, where students participated in an experiential learning program (ELP) in the rural village of Dharmrai Slaap. The focus of this data and mapping is to display development trends both static within Dharmrai Slaap as well as over time as ISF continues to serve the village. Ultimately the hope is that these resources will help all involved to better understand the needs of the community. The primary takeaways from this project with relation to topics of a geophysical nature are the application of scientific research techniques to the issue of development, the teaching of these applications to high school students within an experiential learning context, and ultimately the application of geophysical topics beyond the science classroom. Within 5 short days in Cambodia students: Gained a brief, hands-on introduction to ArcGIS via the design of the project's basemap. Applied quantitative research techniques to social science via the conducting of household interviews. Conducted spatial data collection in the field via the use of handheld GPS devices. Gained hands-on experience with soil coring and water sampling equipment collecting data in the field. Sociological and scientific attributes gathered by students in the field were then assigned spatial data based on coordinates recorded and ported into ArcGIS. Based on the information gathered a selection of maps could then be prepared to reflect trends and needs within the community. This record of spatial data ties into the service component of the experiential learning program, as over the years as this GIS project continues students will be able to see the community's upward trend toward development as a reflection of their service. It is through this application of geophysical research skills and approaches that the topic of development is examined through a new lens in the Baray project. By challenging students to think about the causes and consequences of poverty in such a way not only does it give them a fresh and personal perspective, it empowers them with unique applications of new skills which typically find themselves confined to a science classroom.
Geophysics and nutritional science: toward a novel, unified paradigm.
Eshel, Gidon; Martin, Pamela A
2009-05-01
This article discusses a few basic geophysical processes, which collectively indicate that several nutritionally adverse elements of current Western diets also yield environmentally harmful food consumption patterns. We address oceanic dead zones, which are at the confluence of oceanography, aquatic chemistry, and agronomy and which are a clear environmental problem, and agriculture's effects on the surface heat budget. These exemplify the unknown, complex, and sometimes unexpected large-scale environmental effects of agriculture. We delineate the significant alignment in purpose between nutritional and environmental sciences. We identify red meat, and to a lesser extent the broader animal-based portion of the diet, as having the greatest environmental effect, with clear nutritional parallels.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
NASA Astrophysics Data System (ADS)
Thieulot, Cedric
2016-04-01
Many Finite Element geodynamical codes (Fullsack,1995; Zhong et al., 2000; Thieulot, 2011) are based on bi/tri-linear velocity constant pressure element (commonly called Q1P0), because of its ease of programming and rather low memory footprint, despite the presence of (pressure) checkerboard modes. However, it is long known that the Q1P0 is not inf-sup stable and does not lend itself to the use of iterative solvers, which makes it a less than ideal candidate for high resolution 3D models. Other attempts were made more recently (Burstedde et al., 2013; Le Pourhiet et al., 2012) with the use of the stabilised Q1Q1 element (bi/tri-linear velocity and pressure). This element, while also attractive from an implementation and memory standpoint, suffers a major drawback due to the artificial compressibility introduced by the polynomial projection stabilization. These observations have shifted part of the community towards the Finite Difference Method while the remaining part is now embracing infsup stable second order elements [May et al., 2015; Kronbichler,2012). Rather surprinsingly, a third option exists when it comes to first order elements in the form of the stabilised Q1P0 element, but virtually no literature exists concerning its use for geodynamical applications. I will then recall the specificity of the stabilisation and will carry out a series of benchmark experiments and geodynamical tests to assess its performance. While being shown to work as expected in benchmark experiments, the stabilised Q1P0 element turns out to introduce first-order numerical artefacts in the velocity and pressure solutions in the case of buoyancy-driven flows. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O. (2013). Largescale adaptive mantle convection simulation. Geophysical Journal International, 192(3), 889906. Fullsack, P. (1995). An arbitrary LagrangianEulerian formulation for creeping flows and its application in tectonic models. Geophysical Journal International, 120(1), 123. Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods. Geophysical Journal International, 191(1), 1229. Le Pourhiet, L., Huet, B., May, D. A., Labrousse, L., & Jolivet, L. (2012). Kinematic interpretation of the 3D shapes of metamorphic core complexes. Geochemistry, Geophysics, Geosystems, 13(9). May, D. A., Brown, J., & Le Pourhiet, L. (2015). A scalable, matrixfree multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow. Computer Methods in Applied Mechanics and Engineering, 290, 496523. Thieulot, C. (2011). FANTOM: Twoand threedimensional numerical modelling of creeping flows for the solution of geological problems. Physics of the Earth and Planetary Interiors, 188(1), 4768. Zhong, S., Zuber, M. T., Moresi, L., & Gurnis, M. (2000). Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research: Solid Earth (1978-2012), 105(B5), 1106311082.
NASA Astrophysics Data System (ADS)
Danov, Dimitar
2008-02-01
The statistical field-aligned current (FAC) distribution has been demonstrated by [Iijima, T., Potemra, T.A., 1976. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research 81(13), 2165-2174] and many other authors. The large-scale (LS) FACs have been described by different empirical/statistical models [Feldstein, Ya. I., Levitin, A.E., 1986. Solar wind control of electric fields and currents in the ionosphere. Journal of Geomagnetism and Geoelectricity 38, 1143; Papitashvili, V.O., Rich, F.J., Heinemann, M.A., Hairston, M.R., 1999. Parameterization of the Defense Meteorological Satellite Program ionospheric electrostatic potentials by the interplanetary magnetic field strength and direction. Journal of Geophysical Research 104, 177-184; Papitashvili, V.O., Christiansen, F., Neubert, T., 2002. A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophysical Research Letters, 29(14), 1683, doi:10.1029/2001GL014207; Tsyganenko, N.A., 2001. A model of the near magnetosphere with a dawn-dusk asymetry (I. Mathematical structure). Journal of Geophysical Research 107(A8), doi:10.1029/2001JA000219; Weimer, D.R., 1996a. A new model for prediction of ionospheric electric potentials as a function of the IMF. In: Snowmass'96 Online Poster Session; Weimer, D.R., 1996b. Substorm influence on the ionospheric convection patterns. In: Snowmass'96 Online Poster Session; Weimer, D.R., 2001. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamic Explorer 2 data. Journal of Geophysical Research 106, 12,889-12,902; Weimer, D.R., 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research 110, A05306, doi:10.1029/2004JA010884]. In the present work, we compare two cases of LS FAC obtained from magnetic field measurements onboard the Intercosmos Bulgaria-1300 satellite with three models: two empirical [Tsyganenko, N.A., 2001. A model of the near magnetosphere with a down-dusk asymetry (I. Mathematical structure). Journal of Geophysical Research 107(A8), doi:10.1029/2001JA000219; Weimer, D.R., 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research 110, A05306, doi:10.1029/2004JA010884] and one computer-based MHD-simulation in "The Community Coordinated Modeling Center" (CCMC) [Toth, G., et al., 2005. Space weather modeling framework: a new tool for the space science community. Journal of Geophysical Research 110, A12226, doi:10.1029/2005JA011126]. We found that the position of the measured FAC is close to the positions predicted by the models, but the measured density can be greater than the model FAC densities. We discuss the possible reasons for the observed discrepancy between the measured and modeled FACs.
Geophysical logging data from the Mills Gap Road area near Asheville, North Carolina
Chapman, Melinda J.; Huffman, Brad A.
2011-01-01
In September 2009, the U.S. Geological Survey (USGS) was requested to assist the Environmental Protection Agency (EPA) Region 4 Superfund Section in the development of a conceptual groundwater flow model in the area of the Mills Gap Road contaminant investigation near Asheville, North Carolina (Site ID A4P5) through an Interagency Grant and work authorization IAD DW number 14946085. The USGS approach included the application of established and state-of-the-science borehole geophysical tools and methods used to delineate and characterize fracture zones in the regolith-fractured bedrock groundwater system. Borehole geophysical logs were collected in eight wells in the Mills Gap Road project area from January through June 2010. These subsurface data were compared to local surface geologic mapping data collected by the North Carolina Geological Survey (NCGS) from January through May 2010.
Simultaneous use of geological, geophysical, and LANDSAT digital data in uranium exploration. [Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missallati, A.; Prelat, A.E.; Lyon, R.J.P.
1979-08-01
The simultaneous use of geological, geophysical and Landsat data in uranium exploration in southern Libya is reported. The values of 43 geological, geophysical and digital data variables, including age and type of rock, geological contacts, aeroradio-metric and aeromagnetic values and brightness ratios, were used as input into a geomathematical model. Stepwise discriminant analysis was used to select grid cells most favorable for detailed mineral exploration and to evaluate the significance of each variable in discriminating between the anomalous (radioactive) and nonanomalous (nonradioactive) areas. It is found that the geological contact relationships, Landsat Bands 6 and Band 7/4 ratio values weremore » most useful in the discrimination. The procedure was found to be statistically and geologically reliable, and applicable to similar regions using only the most important geological and Landsat data.« less
Efficiency Evaluation of Handling of Geologic-Geophysical Information by Means of Computer Systems
NASA Astrophysics Data System (ADS)
Nuriyahmetova, S. M.; Demyanova, O. V.; Zabirova, L. M.; Gataullin, I. I.; Fathutdinova, O. A.; Kaptelinina, E. A.
2018-05-01
Development of oil and gas resources, considering difficult geological, geographical and economic conditions, requires considerable finance costs; therefore their careful reasons, application of the most perspective directions and modern technologies from the point of view of cost efficiency of planned activities are necessary. For ensuring high precision of regional and local forecasts and modeling of reservoirs of fields of hydrocarbonic raw materials, it is necessary to analyze huge arrays of the distributed information which is constantly changing spatial. The solution of this task requires application of modern remote methods of a research of the perspective oil-and-gas territories, complex use of materials remote, nondestructive the environment of geologic-geophysical and space methods of sounding of Earth and the most perfect technologies of their handling. In the article, the authors considered experience of handling of geologic-geophysical information by means of computer systems by the Russian and foreign companies. Conclusions that the multidimensional analysis of geologicgeophysical information space, effective planning and monitoring of exploration works requires broad use of geoinformation technologies as one of the most perspective directions in achievement of high profitability of an oil and gas industry are drawn.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.
2015-07-01
This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.
Moridis, George J.; Oldenburg, Curtis M.
2001-01-01
Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.
REVIEWS OF TOPICAL PROBLEMS: Global phase-stable radiointerferometric systems
NASA Astrophysics Data System (ADS)
Dravskikh, A. F.; Korol'kov, Dimitrii V.; Pariĭskiĭ, Yu N.; Stotskiĭ, A. A.; Finkel'steĭn, A. M.; Fridman, P. A.
1981-12-01
We discuss from a unitary standpoint the possibility of building a phase-stable interferometric system with very long baselines that operate around the clock with real-time data processing. The various problems involved in the realization of this idea are discussed: the methods of suppression of instrumental and tropospheric phase fluctuations, the methods for constructing two-dimensional images and determining the coordinates of radio sources with high angular resolution, and the problem of the optimal structure of the interferometric system. We review in detail the scientific problems from the various branches of natural science (astrophysics, cosmology, geophysics, geodynamics, astrometry, etc.) whose solution requires superhigh angular resolution.
A guidelines handbook for GPR surveys in tunnels: a COST Action TU1208 contribution
NASA Astrophysics Data System (ADS)
Bianchini Ciampoli, Luca; Alani, Amir M.; Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Tosti, Fabio
2016-04-01
A significant open issue concerning the reliability of geophysical methods and in particular of ground penetrating radar (GPR), both in research and professional context, is a general lack of international standards. This is a major problem to be faced, in order to gain scientific strictness for the GPR practices, and to easily extend to the international community the results achieved within the area of single virtuous countries. Producing international guidelines can represent an important step forward, in this sense. In the memorandum of understanding of the COST Action TU1208 is clearly stated that one of the main purposes of the Action is the "development of innovative protocols and guidelines which will be published in a handbook and constitute a basis for European Standards, for an effective GPR application in CE tasks; safety, economic and financial criteria will be integrated within the protocols". Of course this is not a simple task to be accomplished. Firstly, survey procedures are highly dependent on the objective of the survey itself. On the basis of the objective of each geophysical test, the GPR system, the antenna configuration, and even the processing procedures may change. Besides, these procedures are also influenced by the environmental conditions in which the tests are performed. This affects several aspects spanning from hardware to software, but including, for instance, also safety issues. Due to these reasons, one of the main goal of the COST Action TU1208 is the development of several guidelines related to the main applications of GPR in the field of civil engineering. In this work, the structure of a guidelines handbook for GPR activities in tunnels is outlined. In the first sections, the principal references in the field are provided, and the most common GPR equipment and complementary technologies are described. Subsequently, the survey methodologies are explained. Particular attention is paid to the preliminary activities to be carried out prior to the GPR surveys, which can cover an important role in such a complex environment. Lastly, the main applications of GPR technology in tunnels are discussed. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar."
The Mark III Hypercube-Ensemble Computers
NASA Technical Reports Server (NTRS)
Peterson, John C.; Tuazon, Jesus O.; Lieberman, Don; Pniel, Moshe
1988-01-01
Mark III Hypercube concept applied in development of series of increasingly powerful computers. Processor of each node of Mark III Hypercube ensemble is specialized computer containing three subprocessors and shared main memory. Solves problem quickly by simultaneously processing part of problem at each such node and passing combined results to host computer. Disciplines benefitting from speed and memory capacity include astrophysics, geophysics, chemistry, weather, high-energy physics, applied mechanics, image processing, oil exploration, aircraft design, and microcircuit design.
ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS
NASA Astrophysics Data System (ADS)
Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.
2009-12-01
Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.
Adaptive Fusion of Information for Seeing into Ordos Basin, China: A China-Germany-US Joint Venture.
NASA Astrophysics Data System (ADS)
Yeh, T. C. J.; Yin, L.; Sauter, M.; Hu, R.; Ptak, T.; Hou, G. C.
2014-12-01
Adaptive fusion of information for seeing into geological basins is the theme of this joint venture. The objective of this venture is to initiate possible collaborations between scientists from China, Germany, and US to develop innovative technologies, which can be utilized to characterize geological and hydrological structures and processes as well as other natural resources in regional scale geological basins of hundreds of thousands of kilometers (i.e., the Ordos Basin, China). This adaptive fusion of information aims to assimilate active (manmade) and passive (natural) hydrologic and geophysical tomography surveys to enhance our ability of seeing into hydrogeological basins at the resolutions of our interests. The active hydrogeophysical tomography refers to recently developed hydraulic tomgoraphic surveys by Chinese and German scientists, as well as well-established geophysical tomography surveys (such as electrical resistivity tomography, cross-borehole radars, electrical magnetic surveys). These active hydrogeophysical tomgoraphic surveys have been proven to be useful high-resolution surveys for geological media of tens and hundreds of meters wide and deep. For basin-scale (i.e., tens and hundreds of kilometers) problems, their applicabilities are however rather limited. The passive hydrogeophysical tomography refers to unexplored technologies that exploit natural stimuli as energy sources for tomographic surveys, which include direct lightning strikes, groundwater level fluctuations due to earthquakes, river stage fluctuations, precipitation storms, barometric pressure variations, and long term climate changes. These natural stimuli are spatially varying, recurrent, and powerful, influencing geological media over great distances and depths (e.g., tens and hundreds of kilometers). Monitoring hydrological and geophysical responses of geological media to these stimuli at different locations is tantamount to collecting data of naturally occurring tomographic surveys. Exploiting natural stimuli as tomographic surveys is a novel concept for cost-effective characterization and monitor of subsurface processes in regional-scale basins at great depths.
NASA Astrophysics Data System (ADS)
Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Bernardo, I.; Farzamian, M.; Nascimento, C.; Fernandes, J.; Casal, B.; Ribeiro, J. A.
2017-09-01
Seawater intrusion is an increasingly widespread problem in coastal aquifers caused by climate changes -sea-level rise, extreme phenomena like flooding and droughts- and groundwater depletion near to the coastline. To evaluate and mitigate the environmental risks of this phenomenon it is necessary to characterize the coastal aquifer and the salt intrusion. Geophysical methods are the most appropriate tool to address these researches. Among all geophysical techniques, electrical methods are able to detect seawater intrusions due to the high resistivity contrast between saltwater, freshwater and geological layers. The combination of two or more geophysical methods is recommended and they are more efficient when both data are inverted jointly because the final model encompasses the physical properties measured for each methods. In this investigation, joint inversion of vertical electric and time domain soundings has been performed to examine seawater intrusion in an area within the Ferragudo-Albufeira aquifer system (Algarve, South of Portugal). For this purpose two profiles combining electrical resistivity tomography (ERT) and time domain electromagnetic (TDEM) methods were measured and the results were compared with the information obtained from exploration drilling. Three different inversions have been carried out: single inversion of the ERT and TDEM data, 1D joint inversion and quasi-2D joint inversion. Single inversion results identify seawater intrusion, although the sedimentary layers detected in exploration drilling were not well differentiated. The models obtained with 1D joint inversion improve the previous inversion due to better detection of sedimentary layer and the seawater intrusion appear to be better defined. Finally, the quasi-2D joint inversion reveals a more realistic shape of the seawater intrusion and it is able to distinguish more sedimentary layers recognised in the exploration drilling. This study demonstrates that the quasi-2D joint inversion improves the previous inversions methods making it a powerful tool applicable to different research areas.
Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani
2016-04-01
The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins) project.
DOT National Transportation Integrated Search
2003-06-01
It is estimated that approximately 8,500 abandoned underground mines are present in Ohio and mine-related : subsidence has been a problem dating back to the 1920's. Many investigative methods have been utilized with : varying degrees of success in an...
A survey of the theory of the Earth's rotation
NASA Technical Reports Server (NTRS)
Cannon, W. H.
1981-01-01
The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.
2013-05-01
In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth, inadequate education systems, immigration, economic crises, conflicts and other issues. Case history analyses and proposals for collaboration programs, know-how transfer and better use of geophysical tools, data, observatories and monitoring networks will be discussed.
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Nylund, S. R.; Patrone, D.; Aiello, J.; Talaat, E. R.; Sarris, T.
2015-12-01
The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. These services will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.
A trade-off between model resolution and variance with selected Rayleigh-wave data
Xia, J.; Miller, R.D.; Xu, Y.
2008-01-01
Inversion of multimode surface-wave data is of increasing interest in the near-surface geophysics community. For a given near-surface geophysical problem, it is essential to understand how well the data, calculated according to a layered-earth model, might match the observed data. A data-resolution matrix is a function of the data kernel (determined by a geophysical model and a priori information applied to the problem), not the data. A data-resolution matrix of high-frequency (??? 2 Hz) Rayleigh-wave phase velocities, therefore, offers a quantitative tool for designing field surveys and predicting the match between calculated and observed data. First, we employed a data-resolution matrix to select data that would be well predicted and to explain advantages of incorporating higher modes in inversion. The resulting discussion using the data-resolution matrix provides insight into the process of inverting Rayleigh-wave phase velocities with higher mode data to estimate S-wave velocity structure. Discussion also suggested that each near-surface geophysical target can only be resolved using Rayleigh-wave phase velocities within specific frequency ranges, and higher mode data are normally more accurately predicted than fundamental mode data because of restrictions on the data kernel for the inversion system. Second, we obtained an optimal damping vector in a vicinity of an inverted model by the singular value decomposition of a trade-off function of model resolution and variance. In the end of the paper, we used a real-world example to demonstrate that selected data with the data-resolution matrix can provide better inversion results and to explain with the data-resolution matrix why incorporating higher mode data in inversion can provide better results. We also calculated model-resolution matrices of these examples to show the potential of increasing model resolution with selected surface-wave data. With the optimal damping vector, we can improve and assess an inverted model obtained by a damped least-square method.
Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.
2016-12-01
We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for promotion of data processing collected by the IMS Network.
NAPL detection with ground-penetrating radar (Invited)
NASA Astrophysics Data System (ADS)
Bradford, J. H.
2013-12-01
Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency dependent attenuation analysis, and 5) reflectivity inversion. Examples are taken from a variety of applications that include oil spills on the ocean, oil spills on and under sea ice, and both LNAPL and DNAPL contaminated groundwater systems. Many factors conspire to complicate field data analysis, yet careful analysis and integration of multiple techniques has proven robust. Use of these methods in practical application has been slow to take root. Nonetheless, a best practices working model integrates geophysics from the outset and mirrors the approach utilized in hydrocarbon exploration. This model ultimately minimizes site characterization and remediation costs.
Geophysical methods for road construction and maintenance
NASA Astrophysics Data System (ADS)
Rasul, Hedi; Karlson, Caroline; Jamali, Imran; Earon, Robert; Olofsson, Bo
2015-04-01
Infrastructure, such as road transportation, is a vital in civilized societies; which need to be constructed and maintained regularly. A large part of the project cost is attributed to subsurface conditions, where unsatisfactory conditions could increase either the geotechnical stabilization measures needed or the design cost itself. A way to collect information of the subsurface and existing installations which can lead to measures reducing the project cost and damage is to use geophysical methods during planning, construction and maintenance phases. The moisture in road layers is an important factor, which will affect the bearing capacity of the construction as well as the maintenances. Moisture in the road is a key factor for a well-functioning road. On the other hand the excessive moisture is the main reason of road failure and problems. From a hydrological point of view geophysical methods could help road planners identify the water table, geological strata, pollution arising from the road and the movement of the pollution before, during and after construction. Geophysical methods also allow road planners to collect valuable data for a large area without intrusive investigations such as with boreholes, i.e. minimizing the environmental stresses and costs. However, it is important to specify the investigation site and to choose the most appropriate geophysical method based on the site chosen and the objective of the investigation. Currently, numerous construction and rehabilitation projects are taking places around the world. Many of these projects are focused on infrastructural development, comprising both new projects and expansion of the existing infrastructural network. Geophysical methods can benefit these projects greatly during all phases. During the construction phase Ground Penetrating radar (GPR) is very useful in combination with Electrical Resistivity (ER) for detecting soil water content and base course compaction. However, ER and Electromagnetic (EM) methods can also be used for monitoring changes in water content and pollutant spreading during the maintenance phase. The objective of this study was to describe various geophysical methods which could benefit the road planning, construction and maintenance phases focusing on hydrological impacts.
Low frequency full waveform seismic inversion within a tree based Bayesian framework
NASA Astrophysics Data System (ADS)
Ray, Anandaroop; Kaplan, Sam; Washbourne, John; Albertin, Uwe
2018-01-01
Limited illumination, insufficient offset, noisy data and poor starting models can pose challenges for seismic full waveform inversion. We present an application of a tree based Bayesian inversion scheme which attempts to mitigate these problems by accounting for data uncertainty while using a mildly informative prior about subsurface structure. We sample the resulting posterior model distribution of compressional velocity using a trans-dimensional (trans-D) or Reversible Jump Markov chain Monte Carlo method in the wavelet transform domain of velocity. This allows us to attain rapid convergence to a stationary distribution of posterior models while requiring a limited number of wavelet coefficients to define a sampled model. Two synthetic, low frequency, noisy data examples are provided. The first example is a simple reflection + transmission inverse problem, and the second uses a scaled version of the Marmousi velocity model, dominated by reflections. Both examples are initially started from a semi-infinite half-space with incorrect background velocity. We find that the trans-D tree based approach together with parallel tempering for navigating rugged likelihood (i.e. misfit) topography provides a promising, easily generalized method for solving large-scale geophysical inverse problems which are difficult to optimize, but where the true model contains a hierarchy of features at multiple scales.
An efficient distribution method for nonlinear transport problems in stochastic porous media
NASA Astrophysics Data System (ADS)
Ibrahima, F.; Tchelepi, H.; Meyer, D. W.
2015-12-01
Because geophysical data are inexorably sparse and incomplete, stochastic treatments of simulated responses are convenient to explore possible scenarios and assess risks in subsurface problems. In particular, understanding how uncertainties propagate in porous media with nonlinear two-phase flow is essential, yet challenging, in reservoir simulation and hydrology. We give a computationally efficient and numerically accurate method to estimate the one-point probability density (PDF) and cumulative distribution functions (CDF) of the water saturation for the stochastic Buckley-Leverett problem when the probability distributions of the permeability and porosity fields are available. The method draws inspiration from the streamline approach and expresses the distributions of interest essentially in terms of an analytically derived mapping and the distribution of the time of flight. In a large class of applications the latter can be estimated at low computational costs (even via conventional Monte Carlo). Once the water saturation distribution is determined, any one-point statistics thereof can be obtained, especially its average and standard deviation. Moreover, rarely available in other approaches, yet crucial information such as the probability of rare events and saturation quantiles (e.g. P10, P50 and P90) can be derived from the method. We provide various examples and comparisons with Monte Carlo simulations to illustrate the performance of the method.
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehr, Richard; Saleska, Scott R.
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
The long-solved problem of the best-fit straight line: Application to isotopic mixing lines
Wehr, Richard; Saleska, Scott R.
2017-01-03
It has been almost 50 years since York published an exact and general solution for the best-fit straight line to independent points with normally distributed errors in both x and y. York's solution is highly cited in the geophysical literature but almost unknown outside of it, so that there has been no ebb in the tide of books and papers wrestling with the problem. Much of the post-1969 literature on straight-line fitting has sown confusion not merely by its content but by its very existence. The optimal least-squares fit is already known; the problem is already solved. Here we introducemore » the non-specialist reader to York's solution and demonstrate its application in the interesting case of the isotopic mixing line, an analytical tool widely used to determine the isotopic signature of trace gas sources for the study of biogeochemical cycles. The most commonly known linear regression methods – ordinary least-squares regression (OLS), geometric mean regression (GMR), and orthogonal distance regression (ODR) – have each been recommended as the best method for fitting isotopic mixing lines. In fact, OLS, GMR, and ODR are all special cases of York's solution that are valid only under particular measurement conditions, and those conditions do not hold in general for isotopic mixing lines. Here, using Monte Carlo simulations, we quantify the biases in OLS, GMR, and ODR under various conditions and show that York's general – and convenient – solution is always the least biased.« less
Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data
Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.
2008-01-01
Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.
NASA Astrophysics Data System (ADS)
Afonso, Juan Carlos; Zlotnik, Sergio; Díez, Pedro
2015-10-01
We present a flexible, general, and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on Tensor Rank Decomposition methods, which transform the original multidimensional discrete information into a separated representation that contains significantly fewer terms, thus drastically reducing the amount of information to be stored in memory during a numerical simulation or geophysical inversion. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore, it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g., preliminary runs versus full resolution runs). We illustrate the benefits, generality, and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies. MATLAB implementations of the method and examples are provided as supporting information and can be downloaded from the journal's website.
NASA Astrophysics Data System (ADS)
Butler, D. K.
1982-03-01
This report reviews the scope of a research effort initiated in 1974 at the U.S. Army Engineer Waterways Experiment Station with the objectives of (a) assessing the state of the art in geophysical cavity detection and delineation methodology and (b) developing new methods and improving or adapting old methods for application to cavity detection and delineation. Two field test sites were selected: (a) the Medford Cave site with a relatively shallow (10- to 50-ft-deep) air-filled cavity system and (b) the Manatee Springs site with a deeper (approximately 100-ft-deep) water-filled cavity system. Results of field studies at the Medford Cave site are presented in this report: (a) the site geology, (b) the site topographic survey, (c) the site drilling program (boreholes for geophysical tests, for determination of a detailed geological cross section, and for verification of geophysical anomalies), (d) details of magnetic and microgravimetric surveys, and (e) correlation of geophysical results with known site geology. Qualitative interpretation guidelines using complementary geophysical techniques for site investigations in karst regions are presented. Including the results of electrical resistivity surveys conducted at the Medford Cave site, the qualitative guidelines are applied to four profile lines, and drilling locations are indicated on the profile plots of gravity, magnetic, and electrical resistivity data. Borehole logs are then presented for comparison with the predictions of the qualitative interpretation guidelines.
NASA Astrophysics Data System (ADS)
Alkan, Hilal; Balkaya, Çağlayan
2018-02-01
We present an efficient inversion tool for parameter estimation from horizontal loop electromagnetic (HLEM) data using Differential Search Algorithm (DSA) which is a swarm-intelligence-based metaheuristic proposed recently. The depth, dip, and origin of a thin subsurface conductor causing the anomaly are the parameters estimated by the HLEM method commonly known as Slingram. The applicability of the developed scheme was firstly tested on two synthetically generated anomalies with and without noise content. Two control parameters affecting the convergence characteristic to the solution of the algorithm were tuned for the so-called anomalies including one and two conductive bodies, respectively. Tuned control parameters yielded more successful statistical results compared to widely used parameter couples in DSA applications. Two field anomalies measured over a dipping graphitic shale from Northern Australia were then considered, and the algorithm provided the depth estimations being in good agreement with those of previous studies and drilling information. Furthermore, the efficiency and reliability of the results obtained were investigated via probability density function. Considering the results obtained, we can conclude that DSA characterized by the simple algorithmic structure is an efficient and promising metaheuristic for the other relatively low-dimensional geophysical inverse problems. Finally, the researchers after being familiar with the content of developed scheme displaying an easy to use and flexible characteristic can easily modify and expand it for their scientific optimization problems.
NASA Astrophysics Data System (ADS)
Lara, Gabriela; Klinger, Federico Lince; Perucca, Laura; Rojo, Guillermo; Vargas, Nicolás; Leiva, Flavia
2017-08-01
A high-resolution superficial geophysical study was carried out in an area of the retroarc region of the Andes mountains, located in the southwest of San Juan Province (31°45‧ S, 68°50‧ W), Central Precordillera of Argentina. The main objectives of this study were to confirm the presence of blind neotectonic structures and characterize them by observing variations in magnetic susceptibility, density and p-wave velocities. Geological evidence demonstrates the existence of a neotectonic fault scarps affecting Quaternary alluvial deposits in eastern piedmont of de Las Osamentas range, in addition to direct observation of the cinematic of this feature in several natural exposures. The Maradona valley is characterized by the imbricated eastern-vergence Maradona Fault System that uplifts Neogene sedimentary rocks (Albarracín Formation) over Quaternary (Late Pleistocene-Holocene) alluvial deposits. The combined application of different geophysical methods has allowed the characterization of a blind fault geometry also identified on a natural exposure. The magnetic data added to the gravimetric model, and its integration with a seismic profile clearly shows the existence of an anomalous zone, interpreted as uplifted blocks of Miocene sedimentary rocks of Formation Albarracín displaced over Quaternary deposits. The application and development of different geophysical methods, together with geological studies allow to significantly improving the knowledge of an area affected by Quaternary tectonic activity. Finally, this multidisciplinary study, applied in active blind structures is very relevant for future seismic hazard analysis on areas located very close to populated centers.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
Patent Documents as a Resource for Studies and Education in Geophysics - An Approach.
NASA Astrophysics Data System (ADS)
Wollny, K. G.
2016-12-01
Patents are a highly neglected source of information in geophysics, although they supply a wealth of technical and historically relevant data and might be an important asset for researchers and students. The technical drawings and descriptions in patent documents provide insight into the personal work of a researcher or a scientific group and give detailed technical background information, show interdisciplinary solutions for similar problems, help to learn about inventions too advanced for their time but maybe useful now, and to explore the historical background and timelines of inventions and their inventors. It will be shown how to get access to patent documents and how to use them for research and education purposes. Exemplary inventions by well-known geoscientists or scientists in related fields will be presented to illustrate the usefulness of patent documents. The data pool used is the International Patent Classification (IPC) class G01V that the United Nations' World Intellectual Property Organisation (WIPO) has set up mainly for inventions with key aspects in geophysics. This class contains approximately 235,000 patent documents (July 2016) for methods, apparatuses or scientific instruments developed during scientific projects or by geophysical companies. The patent documents can be accessed via patent databases. The most important patent databases are for free, search functionality is self-explanatory and the amount of information to be extracted is enormous. For example, more than 90 million multilingual patent documents are currently available online (July 2016) in DEPATIS database of the German Patent and Trade Mark Office or ESPACENET of the European Patent Office. To summarize, patent documents are a highly useful tool for educational and research purposes to strengthen students' and scientists' knowledge in a practically orientated geophysical field and to widen the horizon to adjacent technical areas. Last but not least, they also provide insight into historical aspects of geophysics and the persons working in that area.
Bakhshipour, Zeinab; Huat, Bujang B K; Ibrahim, Shaharin; Asadi, Afshin; Kura, Nura Umar
2013-01-01
This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems.
Stress transmission through a model system of cohesionless elastic grains
NASA Astrophysics Data System (ADS)
Da Silva, Miguel; Rajchenbach, Jean
2000-08-01
Understanding the mechanical properties of granular materials is important for applications in civil and chemical engineering, geophysical sciences and the food industry, as well as for the control or prevention of avalanches and landslides. Unlike continuous media, granular materials lack cohesion, and cannot resist tensile stresses. Current descriptions of the mechanical properties of collections of cohesionless grains have relied either on elasto-plastic models classically used in civil engineering, or on a recent model involving hyperbolic equations. The former models suggest that collections of elastic grains submitted to a compressive load will behave elastically. Here we present the results of an experiment on a two-dimensional model system-made of discrete square cells submitted to a point load-in which the region in which the stress is confined is photoelastically visualized as a parabola. These results, which can be interpreted within a statistical framework, demonstrate that the collective response of the pile contradicts the standard elastic predictions and supports a diffusive description of stress transmission. We expect that these findings will be applicable to problems in soil mechanics, such as the behaviour of cohesionless soils or sand piles.
Methods in the study of discrete upper hybrid waves
NASA Astrophysics Data System (ADS)
Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.
2007-11-01
Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.
Bakhshipour, Zeinab; Huat, Bujang B. K.; Ibrahim, Shaharin; Asadi, Afshin
2013-01-01
This work describes the application of the electrical resistivity (ER) method to delineating subsurface structures and cavities in Kuala Lumpur Limestone within the Batu Cave area of Selangor Darul Ehsan, Malaysia. In all, 17 ER profiles were measured by using a Wenner electrode configuration with 2 m spacing. The field survey was accompanied by laboratory work, which involves taking resistivity measurements of rock, soil, and water samples taken from the field to obtain the formation factor. The relationship between resistivity and the formation factor and porosity for all the samples was established. The porosity values were plotted and contoured. A 2-dimensional and 3-dimensional representation of the subsurface topography of the area was prepared through use of commercial computer software. The results show the presence of cavities and sinkholes in some parts of the study area. This work could help engineers and environmental managers by providing the information necessary to produce a sustainable management plan in order to prevent catastrophic collapses of structures and other related geohazard problems. PMID:24501583
Geophysical and solar activity indices
NASA Astrophysics Data System (ADS)
Bossy, L.; Lemaire, J.
1984-04-01
A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.
Map based navigation for autonomous underwater vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuohy, S.T.; Leonard, J.J.; Bellingham, J.G.
1995-12-31
In this work, a map based navigation algorithm is developed wherein measured geophysical properties are matched to a priori maps. The objectives is a complete algorithm applicable to a small, power-limited AUV which performs in real time to a required resolution with bounded position error. Interval B-Splines are introduced for the non-linear representation of two-dimensional geophysical parameters that have measurement uncertainty. Fine-scale position determination involves the solution of a system of nonlinear polynomial equations with interval coefficients. This system represents the complete set of possible vehicle locations and is formulated as the intersection of contours established on each map frommore » the simultaneous measurement of associated geophysical parameters. A standard filter mechanisms, based on a bounded interval error model, predicts the position of the vehicle and, therefore, screens extraneous solutions. When multiple solutions are found, a tracking mechanisms is applied until a unique vehicle location is determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
FORTRAN90 codes for inversion of electrostatic geophysical data in terms of three subsurface parameters in a single-well, oilfield environment: the linear charge density of the steel well casing (L), the point charge associated with an induced fracture filled with a conductive contrast agent (Q) and the location of said fracture (s). Theory is described in detail in Weiss et al. (Geophysics, 2016). Inversion strategy is to loop over candidate fracture locations, and at each one minimize the squared Cartesian norm of the data misfit to arrive at L and Q. Solution method is to construct the 2x2 linear system ofmore » normal equations and compute L and Q algebraically. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed by a simple L-Q-s model. This may include hydrofracking operations, as postulated in Weiss et al. (2016), but no field validation examples have so far been provided.« less
Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems
Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia; ...
2017-09-05
Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less
Wynn, J.C.; Roseboom, E.H.
1987-01-01
Evaluation of potential high-level nuclear waste repository sites is an area where geophysical capabilities and limitations may significantly impact a major governmental program. Since there is concern that extensive exploratory drilling might degrade most potential disposal sites, geophysical methods become crucial as the only nondestructive means to examine large volumes of rock in three dimensions. Characterization of potential sites requires geophysicists to alter their usual mode of thinking: no longer are anomalies being sought, as in mineral exploration, but rather their absence. Thus the size of features that might go undetected by a particular method take on new significance. Legal and regulatory considerations that stem from this different outlook, most notably the requirements of quality assurance (necessary for any data used in support of a repository license application), are forcing changes in the manner in which geophysicists collect and document their data. -Authors
Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudunuru, Maruti Kumar; Karra, Satish; Makedonska, Nataliia
Subsurface applications, including geothermal, geological carbon sequestration, and oil and gas, typically involve maximizing either the extraction of energy or the storage of fluids. Fractures form the main pathways for flow in these systems, and locating these fractures is critical for predicting flow. However, fracture characterization is a highly uncertain process, and data from multiple sources, such as flow and geophysical are needed to reduce this uncertainty. We present a nonintrusive, sequential inversion framework for integrating data from geophysical and flow sources to constrain fracture networks in the subsurface. In this framework, we first estimate bounds on the statistics formore » the fracture orientations using microseismic data. These bounds are estimated through a combination of a focal mechanism (physics-based approach) and clustering analysis (statistical approach) of seismic data. Then, the fracture lengths are constrained using flow data. In conclusion, the efficacy of this inversion is demonstrated through a representative example.« less
A new non-iterative reconstruction method for the electrical impedance tomography problem
NASA Astrophysics Data System (ADS)
Ferreira, A. D.; Novotny, A. A.
2017-03-01
The electrical impedance tomography (EIT) problem consists in determining the distribution of the electrical conductivity of a medium subject to a set of current fluxes, from measurements of the corresponding electrical potentials on its boundary. EIT is probably the most studied inverse problem since the fundamental works by Calderón from the 1980s. It has many relevant applications in medicine (detection of tumors), geophysics (localization of mineral deposits) and engineering (detection of corrosion in structures). In this work, we are interested in reconstructing a number of anomalies with different electrical conductivity from the background. Since the EIT problem is written in the form of an overdetermined boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional measuring the misfit between the boundary measurements and the electrical potentials obtained from the model is minimized with respect to a set of ball-shaped anomalies by using the concept of topological derivatives. It means that the objective functional is expanded and then truncated up to the second order term, leading to a quadratic and strictly convex form with respect to the parameters under consideration. Thus, a trivial optimization step leads to a non-iterative second order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to noisy data and independent of any initial guess. Finally, in order to show the effectiveness of the devised reconstruction algorithm, some numerical experiments into two spatial dimensions are presented, taking into account total and partial boundary measurements.
Towards quantitative usage of EMI-data for Digital Soil Mapping
NASA Astrophysics Data System (ADS)
Nüsch, A.-K.; Wunderlich, T.; Kathage, S.; Werban, U.; Dietrich, P.
2009-04-01
As formulated in the Thematic Strategy for Soil Protection prepared by the European Commission soil degradation is a serious problem in Europe. The degradation is driven or exacerbated by human activity and has a direct impact on water and air quality, biodiversity, climate and human life-quality. High-resolution soil property maps are one major prerequisite for the specific protection of soil function and restoration of degraded soils as well as sustainable land use, water and environmental management. However, the currently available techniques for (digital) soil mapping still have deficiencies in terms of reliability and precision, the feasibility of investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats at this scale. The focus of the iSOIL (Interactions between soil related science - Linking geophysics, soil science and digital soil mapping) project is on improving fast and reliable mapping of soil properties, soil functions and soil degradation threats. This requires the improvement as well as integration of geophysical and spectroscopic measurement techniques in combination with advanced soil sampling approaches, pedometrical and pedophysical approaches. Many commercially available geophysical sensors and equipment (EMI, DC, gamma-spectroscopy, magnetics) are ready to use for measurements of different parameters. Data collection with individual sensors is well developed and numerously described. However comparability of data of different sensor types as well as reproducibility of data is not self-evident. In particular handling of sensors has to be carried out accurately, e.g. consistent calibration. Soil parameters will be derived from geophysical properties to create comprehensive soil maps. Therefore one prerequisite is the comparison of different geophysical properties not only qualitative but also quantitative. At least reproducibility is one of the most important conditions for monitoring tasks. The first parameter we focussed on is apparent electrical conductivity (ECa). It is an important geophysical properity in soil science since soil parameters (water content, etc.) can be deduced. Nowadays mobile geophysical platforms allow to survey large areas comprehensively in a short time period. These platforms have been equipped with EM38DD (Geonics) and Profiler EMP-400 (GSSI) - two different types of electromagnetic induction (EMI) instruments - within first iSOIL field campaign. While EM38DD measures in horizontal and vertical mode at the same time, Profiler measures three frequencies simultaneously and magnetic susceptibility additionally. Coil separation of the instruments is nearly the same, so penetration depth is similar. On the other hand, frequencies are arbitrary at Profiler but fixed at EM38DD. These differences in penetration depth have to taken into account. By our measurement we tested the comparability of the data to show differences between instruments of the same type (EM38DD-EM38DD) using different settings, and different types (EM38DD-Profiler). Moreover both sensors work in continuous as well in discontinuous mode. The results show that quality of data is comparable, but the quantities are varying. This has to be considered for further interpretations and monitoring. In the next steps we have to determine how to convert relative data into absolute data since ECa data from different locations are not comparable to each other in a quantitative way. In the talk we will give an introduction in the application of EMI for soil monitoring, followed by an overview about comparability and reproducibility of data.
Grooms receives 2011 Donald L. Turcotte Award
NASA Astrophysics Data System (ADS)
2012-02-01
Ian Grooms has been awarded the AGU Donald L. Turcotte Award, given annually to recent Ph.D. recipients for outstanding dissertation research that contributes directly to the field of nonlinear geophysics. Grooms's thesis is entitled “Asymptotic and numerical methods for rapidly rotating buoyant flow.” He presented an invited talk and was formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif. Grooms received his B.S. in mathematics from the College of William and Mary, Williamsburg, Va., in 2005. He received a Ph.D. in applied mathematics in 2011 under the supervision of Keith Julien at the University of Colorado at Boulder. His research interests include asymptotic and numerical methods for multiscale problems in geophysical fluid dynamics.
A Wave Diagnostics in Geophysics: Algorithmic Extraction of Atmosphere Disturbance Modes
NASA Astrophysics Data System (ADS)
Leble, S.; Vereshchagin, S.
2018-04-01
The problem of diagnostics in geophysics is discussed and a proposal based on dynamic projecting operators technique is formulated. The general exposition is demonstrated by an example of symbolic algorithm for the wave and entropy modes in the exponentially stratified atmosphere. The novel technique is developed as a discrete version for the evolution operator and the corresponding projectors via discrete Fourier transformation. Its explicit realization for directed modes in exponential one-dimensional atmosphere is presented via the correspondent projection operators in its discrete version in terms of matrices with a prescribed action on arrays formed from observation tables. A simulation based on opposite directed (upward and downward) wave train solution is performed and the modes' extraction from a mixture is illustrated.
A Localized Ensemble Kalman Smoother
NASA Technical Reports Server (NTRS)
Butala, Mark D.
2012-01-01
Numerous geophysical inverse problems prove difficult because the available measurements are indirectly related to the underlying unknown dynamic state and the physics governing the system may involve imperfect models or unobserved parameters. Data assimilation addresses these difficulties by combining the measurements and physical knowledge. The main challenge in such problems usually involves their high dimensionality and the standard statistical methods prove computationally intractable. This paper develops and addresses the theoretical convergence of a new high-dimensional Monte-Carlo approach called the localized ensemble Kalman smoother.
Mechanical obstacles to the movement of continent-bearing plates
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1985-01-01
Selected geophysical problems associated with the concept of continental drift as an incidental corollary of plate movement are discussed. The problems include the absence of a suitable plate-driving mechanism for plates with continental leading edges, the absence of the low-velocity zone under shields, and continental roots of 400 to 700 km depths. It is shown that if continental drift occurs, it must use mechanisms not now understood, or that it may not occur at all, plate movement being confined to ocean basins.
GEOSIM: A numerical model for geophysical fluid flow simulation
NASA Technical Reports Server (NTRS)
Butler, Karen A.; Miller, Timothy L.; Lu, Huei-Iin
1991-01-01
A numerical model which simulates geophysical fluid flow in a wide range of problems is described in detail, and comparisons of some of the model's results are made with previous experimental and numerical studies. The model is based upon the Boussinesq Navier-Stokes equations in spherical coordinates, which can be reduced to a cylindrical system when latitudinal walls are used near the pole and the ratio of latitudinal length to the radius of the sphere is small. The equations are approximated by finite differences in the meridional plane and spectral decomposition in the azimuthal direction. The user can specify a variety of boundary and initial conditions, and there are five different spectral truncation options. The results of five validation cases are presented: (1) the transition between axisymmetric flow and baroclinic wave flow in the side heated annulus; (2) the steady baroclinic wave of the side heated annulus; (3) the wave amplitude vacillation of the side heated annulus; (4) transition to baroclinic wave flow in a bottom heated annulus; and (5) the Spacelab Geophysical Fluid Flow Cell (spherical) experiment.
Artificial neural systems for interpretation and inversion of seismic data
NASA Astrophysics Data System (ADS)
Calderon-Macias, Carlos
The goal of this work is to investigate the feasibility of using neural network (NN) models for solving geophysical exploration problems. First, a feedforward neural network (FNN) is used to solve inverse problems. The operational characteristics of a FNN are primarily controlled by a set of weights and a nonlinear function that performs a mapping between two sets of data. In a process known as training, the FNN weights are iteratively adjusted to perform the mapping. After training, the computed weights encode important features of the data that enable one pattern to be distinguished from another. Synthetic data computed from an ensemble of earth models and the corresponding models provide the training data. Two training methods are studied: the backpropagation method which is a gradient scheme, and a global optimization method called very fast simulated annealing (VFSA). A trained network is then used to predict models from new data (e.g., data from a new location) in a one-step procedure. The application of this method to the problems of obtaining formation resistivities and layer thicknesses from resistivity sounding data and 1D velocity models from seismic data shows that trained FNNs produce reasonably accurate earth models when observed data are input to the FNNs. In a second application, a FNN is used for automating the NMO correction process of seismic reflection data. The task of the FNN is to map CMP data at control locations along a seismic line into subsurface velocities. The network is trained while the velocity analyses are performed at the control locations. Once trained, the computed weights are used as an operator that acts on the remaining CMP data as a velocity interpolator, resulting in a fast method for NMO correction. The second part of this dissertation describes the application of a Hopfield neural network (HNN) to the problems of deconvolution and multiple attenuation. In these applications, the unknown parameters (reflection coefficients and source wavelet in the first problem and an operator in the second) are mapped as neurons of the HNN. The proposed deconvolution method attempts to reproduce the data with a limited number of events. The multiple attenuation method resembles the predictive deconvolution method. Results of this method are compared with a multiple elimination method based on estimating the source wavelet from the seismic data.
3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.
2017-04-01
Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov
For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less
Progress in the Determination of the Earth's Gravity Field
NASA Technical Reports Server (NTRS)
Rapp, Richard H. (Editor)
1989-01-01
Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.
NASA Astrophysics Data System (ADS)
Janzhura, Alexander
A real-time information on geophysical processes in polar regions is very important for goals of Space Weather monitoring by the ground-based means. The modern communication systems and computer technology makes it possible to collect and process the data from remote sites without significant delays. A new acquisition equipment based on microprocessor modules and reliable in hush climatic conditions was deployed at the Roshydromet networks of geophysical observations in Arctic and is deployed at observatories in Antarctic. A contemporary system for on-line collecting and transmitting the geophysical data from the Arctic and Antarctic stations to AARI has been realized and the Polar Geophysical Center (PGC) arranged at AARI ensures the near-real time processing and analyzing the geophysical information from 11 stations in Arctic and 5 stations in Antarctic. The space weather monitoring by the ground based means is one of the main tasks standing before the Polar Geophysical Center. As studies by Troshichev and Janzhura, [2012] showed, the PC index characterizing the polar cap magnetic activity appeared to be an adequate indicator of the solar wind energy that entered into the magnetosphere and the energy that is accumulating in the magnetosphere. A great advantage of the PC index application over other methods based on satellite data is a permanent on-line availability of information about magnetic activity in both northern and southern polar caps. A special procedure agreed between Arctic and Antarctic Research Institute (AARI) and Space Institute of the Danish Technical University (DTUSpace) ensures calculation of the unified PC index in quasi-real time by magnetic data from the Thule and Vostok stations (see public site: http://pc-index.org). The method for estimation of AL and Dst indices (as indicators of state of the disturbed magnetosphere) based on data on foregoing PC indices has been elaborated and testified in the Polar Geophysical Center. It is demonstrated that the PC index can be successfully used to monitor the state of the magnetosphere (space weather monitoring) and the readiness of the magnetosphere to producing substorm or storm (space weather nowcasting).
Possibilities of magnetotelluric methods in geophysical exploration for ore minerals
NASA Astrophysics Data System (ADS)
Varentsov M., Iv.; Kulikov, V. A.; Yakovlev, A. G.; Yakovlev, D. V.
2013-05-01
In the past decade, the applications of magnetotelluric method in the electric prospecting for ore bodies have been rapidly progressing. In the present work, we summarize the first results on this way. We discuss the specificity of the geoelectrical models in the problems of mining prospecting for ore bodies. The state-of-the-art capabilities of the method, which rely on the synchronous observation systems and the procedure of joint inversion of magnetotelluric and magnetovariational responses, are considered in the context of ore mineral exploration. The results of modeling a typical mining audio-magnetotelluric survey for ore minerals are presented. On the basis of these simulations and the data provided by in-situ soundings, the efficient approaches to the processing, analysis, and inversion of these data are discussed and illustrated. The future trends in magnetotellurics as applied to the mining prospecting are analyzed.
NASA Astrophysics Data System (ADS)
Metzler, Ralf; Klafter, Joseph
2004-08-01
Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1-77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.
Ice tracking techniques, implementation, performance, and applications
NASA Technical Reports Server (NTRS)
Rothrock, D. A.; Carsey, F. D.; Curlander, J. C.; Holt, B.; Kwok, R.; Weeks, W. F.
1992-01-01
Present techniques of ice tracking make use both of cross-correlation and of edge tracking, the former being more successful in heavy pack ice, the latter being critical for the broken ice of the pack margins. Algorithms must assume some constraints on the spatial variations of displacements to eliminate fliers, but must avoid introducing any errors into the spatial statistics of the measured displacement field. We draw our illustrations from the implementation of an automated tracking system for kinematic analyses of ERS-1 and JERS-1 SAR imagery at the University of Alaska - the Alaska SAR Facility's Geophysical Processor System. Analyses of the ice kinematic data that might have some general interest to analysts of cloud-derived wind fields are the spatial structure of the fields, and the evaluation and variability of average deformation and its invariants: divergence, vorticity and shear. Many problems in sea ice dynamics and mechanics can be addressed with the kinematic data from SAR.
NASA Astrophysics Data System (ADS)
Ubelmann, C.; Gerald, D.
2016-12-01
The SWOT data validation will be a first challenge after launch, as the nature of the measurement, in particular the two-dimensionality at short spatial scales, is new in altimetry. If the comparison with independent observations may be locally possible, a validation of the full signal and error spectrum will be challenging. However, some recent analyses in simulations have shown the possibility to separate the geophysical signals from the spatially coherent instrumental errors in the spectral space, through cross-spectral analysis. These results suggest that rapidly after launch, the instrument error canl be spectrally separated providing some validations and insights on the Ocean energy spectrum, as well as optimal calibrations. Beyond CalVal, such spectral computations will be also essential for producing high-level Ocean estimates (two and three dimensional Ocean state reconstructions).
Shallow Reflection Method for Water-Filled Void Detection and Characterization
NASA Astrophysics Data System (ADS)
Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.
2018-04-01
Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.
Ground water hydraulics as a geophysical aid
Ferris, John G.
1948-01-01
The publication of the non-equilibrium formula in 1935 in a paper by Theis marked the opening of a new era in the analysis and understanding of the hydraulics of percolating ground waters. Through the past decade 9 an ever-increasing number of engineers and geologists have become familiar-with the application of this formula to practical problems of ground-water flow and have tested it in the field, against precise observations, under controlled conditions. Although the highly idealized aquifer assumed for the derivation of this formula is not of widespread occurrence in the field, we gain increasing confidence in the use of the Theis method as our backlog of proven data accumulates until we now look askance at test data which do not conform to this theory. In many cases, careful study of these anomalous data will reveal the means for estimating the degree or manner in which an observed aquifer diverges from the idealized aquifer.
The World Data Fabric: A New Concept for Geophysical Data Collection and Dissemination
NASA Astrophysics Data System (ADS)
Papitashvili, V.; Papitashvili, N.
2005-12-01
Nowadays, a multitude of digital geophysical data have become available via the World Wide Web from a variety of sources, including the World Data Centers (WDC), their suppliers (discipline-specific observatories, research institutions, government agencies), and short-lived, sporadic datasets produced by individual investigators from their research grants. As a result, worldwide geophysical databases become diverse and distributed, urging for sophisticated search engines capable of identifying discipline-specific data on the Web and then retrieving requested intervals for scientific analyses or practical applications. Here we introduce a concept of the World Data Fabric (WDF) emerged from the essence of World Data Centers system that successfully served geophysical communities since the International Geophysical Year (1957-58). We propose to unify both components of the WDC System - data centers and data providers - into a worldwide data network (data fabric), where the WDC role would become more proactive through their direct interaction with the data producers. It suggested that the World Data Centers would become a backbone of the World Data Fabric, watching and copying newly ``Webbed'' geophysical data to the center archives - to preserve at least 2-3 copies (or as many as Centers exist) of the new datasets within the entire WDF. Thus, the WDF would become a self-organized system of the data nodes (providers) and data portals (the WDCs as``clearinghouse''). The WDF would be then developing similarly to the Web, but its focus would be on geophysical data rather than on the content of a specific geophysical discipline. Introducing the WDF concept, we face a number of challenges: (a) data providers should make their datasets available via the Internet using open (but secure) access protocols; (b) multiple copies of every dataset would spread across WDF; (c) every WDF dataset (original or copied) must be digitally signed by the data providers and then by the data copiers; and (c) the WDF datasets must be protected from deliberate corruption or hacking. As the WDF (for all or specific geophysical disciplines) is established and actively maintained by a series of policies and regulations (i.e., specific for a particular discipline) through the WDC activities, then one can write a specific middleware to retrieve required data from the ``data fabric'', building then either the specific Virtual Observatory or Distributed Data System. The presentation will address these challenges suggesting some immediate and intervening solutions.
The discovery and geophysical response of the Atlántida Cu-Au porphyry deposit, Chile
NASA Astrophysics Data System (ADS)
Hope, Matthew; Andersson, Steve
2016-03-01
The discovery of the Atlántida Cu-Au-Mo porphyry deposit, which is unconformably overlain by 25-80 m of gravels, is a recent example of exploration success under cover in a traditional mining jurisdiction. Early acquisition of geophysics was a key tool in the discovery, and in later guiding further exploration drilling throughout the life of the project. Detailed review of the geophysical response of the deposit, with respect to the distribution of lithologies and alteration, coupled with their petrophysical properties has allowed full characterisation, despite no exposure at the surface of host rock nor porphyry-style mineralisation. Data acquired over the project include induced polarisation, magnetotellurics, ground and airborne magnetics, ground-based gravimetry, and petrophysical sampling. The distribution of the key geological features of the deposit has been inferred via acquisition of petrophysical properties and interpretation of surface geophysical datasets. Magnetic susceptibility is influenced strongly by both alteration and primary lithology, whilst density variations are dominated by primary lithological control. Several studies have shown that electrical properties may map the footprint of the hydrothermal system and associated mineralisation, via a combination of chargeability and resistivity. These properties are observed in geophysical datasets acquired at surface and allow further targeting and sterilisation at the deposit and project scale. By understanding these geophysical characteristics in a geological context, these data can be used to infer distribution of lithological units, depth to exploration targets and the potential for high grade mineralisation. Future exploration will likely be increasingly reliant on the understanding of the surface manifestations of buried deposits in remotely acquired data. This review summarises the application and results of these principles at the Atlántida project of northern Chile. Geophysical data can be used to improve the chances of discovery beneath post-mineral cover, and also improve drilling results throughout the advanced exploration of the program. The process of data review against geological control information is essential.
NASA Astrophysics Data System (ADS)
Slater, L. D.; Robinson, J.; Weller, A.; Keating, K.; Robinson, T.; Parker, B. L.
2017-12-01
Geophysical length scales determined from complex conductivity (CC) measurements can be used to estimate permeability k when the electrical formation factor F describing the ratio between tortuosity and porosity is known. Two geophysical length scales have been proposed: [1] the imaginary conductivity σ" normalized by the specific polarizability cp; [2] the time constant τ multiplied by a diffusion coefficient D+. The parameters cp and D+ account for the control of fluid chemistry and/or varying minerology on the geophysical length scale. We evaluated the predictive capability of two recently presented CC permeability models: [1] an empirical formulation based on σ"; [2] a mechanistic formulation based on τ;. The performance of the CC models was evaluated against measured permeability; this performance was also compared against that of well-established k estimation equations that use geometric length scales to represent the pore scale properties controlling fluid flow. Both CC models predict permeability within one order of magnitude for a database of 58 sandstone samples, with the exception of those samples characterized by high pore volume normalized surface area Spor and more complex mineralogy including significant dolomite. Variations in cp and D+ likely contribute to the poor performance of the models for these high Spor samples. The ultimate value of such geophysical models for permeability prediction lies in their application to field scale geophysical datasets. Two observations favor the implementation of the σ" based model over the τ based model for field-scale estimation: [1] the limited range of variation in cp relative to D+; [2] σ" is readily measured using field geophysical instrumentation (at a single frequency) whereas τ requires broadband spectral measurements that are extremely challenging and time consuming to accurately measure in the field. However, the need for a reliable estimate of F remains a major obstacle to the field-scale implementation of either of the CC permeability models for k estimation.
The Seasat surface truth experiments
NASA Technical Reports Server (NTRS)
Shemdin, O. H.
1976-01-01
A surface truth program for Seasat A is formulated in two phases: pre- and post-launch. The pre-launch phase (which includes the Marineland experiments, the JONSWAP-75 experiment, the West Coast experiment, and the altimeter experiment) is designed to provide data from aircraft over instrumented ocean sites during desirable geophysical events. The objective is to gather sufficient data for the development of algorithms which transfer space data into geophysical variables useful for applications. In the post-launch phase, the surface truth program is designed to verify and improve the algorithms developed in the pre-launch phase and also to evaluate the performance of spaceborne sensors.
NASA Technical Reports Server (NTRS)
Allario, Frank (Editor)
1988-01-01
The present conference on airborne and spaceborne remote sensing laser applications discusses topics in atmospheric and geophysical sciences-related sensors, lidar and DIAL component and subsystem technologies, and coherent laser experiments and semiconductor laser technologies. Attention is given to airborne lidar measurement of aerosols, a ground-based injection-locked pulsed TEA laser for wind measurements, chemical/biological agent standoff detection methods, lidars for wind shear erosion, laser tuning to selected gas absorption lines in the atmosphere, the NASA lidar-in-space technology experiment, and the Laser Atmospheric Wind Sounder.
Air Force Geophysics Laboratory portable PCM ground station
NASA Astrophysics Data System (ADS)
Shaw, H.; Lawrence, F. A.
The present paper is concerned with the development of a portable Pulse-Code Modulation (PCM) telemetry station for the Air Force Geophysics Laboratory (AFGL). A system description is provided, taking into account the system equipment, the interface, the decommutator (DECOM) section of the interface, the direct memory access (DMA) section, and system specifications and capabilities. In the context of selecting between two conflicting philosophies regarding software, it was decided to favor a small scale specialized approach. Attention is given to the operating system, aspects of setting up the software, the application software, and questions of portability.
USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 413.
1978-01-17
weightlessness conditions. It is especial- ly timely now, when, as is well known, citizens of Czechoslovakia, Poland , GDR are in training for manned...consider Georgiy Grechko to be one of our specialists," says L. V. Des- inov . "He thoroughly knows these problems. He visited the Nurekskaya Hydro
Tensor-guided fitting of subduction slab depths
Bazargani, Farhad; Hayes, Gavin P.
2013-01-01
Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.
Dosso, Stan E; Nielsen, Peter L
2002-01-01
This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.
Geophysical Fluid Dynamics Laboratory Open Days at the Woods Hole Oceanographic Institution
NASA Astrophysics Data System (ADS)
Hyatt, Jason; Cenedese, Claudia; Jensen, Anders
2015-11-01
This event was hosted for one week for two consecutive years in 2013 and 2014. It targeted postdocs, graduate students, K-12 students and local community participation. The Geophysical Fluid Dynamics Laboratory at the Woods Hole Oceanographic Institution hosted 10 hands-on demonstrations and displays, with something for all ages, to share the excitement of fluid mechanics and oceanography. The demonstrations/experiments spanned as many fluid mechanics problems as possible in all fields of oceanography and gave insight into using fluids laboratory experiments as a research tool. The chosen experiments were `simple' yet exciting for a 6 year old child, a high school student, a graduate student, and a postdoctoral fellow from different disciplines within oceanography. The laboratory is a perfect environment in which to create excitement and stimulate curiosity. Even what we consider `simple' experiments can fascinate and generate interesting questions from both a 6 year old child and a physics professor. How does an avalanche happen? How does a bath tub vortex form? What happens to waves when they break? How does a hurricane move? Hands-on activities in the fluid dynamics laboratory helped students of all ages in answering these and other intriguing questions. The laboratory experiments/demonstrations were accompanied by `live' videos to assist in the interpretation of the demonstrations. Posters illustrated the oceanographic/scientific applicability and the location on Earth where the dynamics in the experiments occur. Support was given by the WHOI Doherty Chair in Education.
NASA Astrophysics Data System (ADS)
Perdigão, R. A. P.
2017-12-01
Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.
NASA Astrophysics Data System (ADS)
Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.
2016-04-01
One of the most important problems that have some cities is the urban floods because of poor drainage design. Therefore the systems the drainage do not have the capacity of capture the flow of discharge generated in a rain event and insert it into the drainage network. Even though the two problems that have caught the main attention are the evaluation of the volumes falling in the river basin because extreme rainfall events often lead to urban pluvial flooding being a hydrologic problem and the hydraulic design of the sewer network being a hydraulic problem to limiting capacity of the drainage system, there is an intermediate step between these two processes that is necessary to solve that is the hydraulic behavior of the grate inlet. We need to collect the runoff produced on the city surface and to introduce it in the sewer network. Normally foundry companies provide complete information about drainage grate structural capacity but provide nothing about their hydraulic capacity. This fact can be seen because at the moment does not exist any official regulation at national or international level in this field. It's obvious that, nowadays, there is a great gap in this field at the legislative level owing to the complexity of this field and the modernity of the urban hydrology as science [1]. In essence, we shows the relevance to know the inlet hydraulic interception capacity because surface drainage requires a satisfactory knowledge on storm frequency, gutter flow and above all inlet capacity. In addition, we development an important achievement is the invention and development of techniques for measurement of field velocities in hydraulics engineering applications. Hence knowledge the technological advances in digital cameras with high resolution and high speed found in the environmental, and the advances in image processing techniques, therefore now is a tremendous potential to obtain of behavior of the water surface flow [2]. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experiments assays with the grate inlets [3 - 4]. Indeed, the Methodology carried out can become a useful tools to understand the hydraulics behavior of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations [5 - 6]. References [1] Gómez, M., Macchione, F. and Russo, B. (2006). Inlet systems and risk criteria associated to street runoff application to urban drainage catchments. 27 Corso di aggiornamiento in techniche per la difesa dall'inquinamento. [2] Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 [3] DigiFlow. User Guide. (2012), (June). [4] Vila, T., Tellez, J., Sanchez, J.M., Sotillos, L., Diez, M., and Redondo, J.M. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014. [5] Tellez, J., Gómez, M., Russo, B. and Redondo, J.M. (2014). A simple technique to measuring surface flow velocity to analyze the behavior of fields velocities in hydraulics engineer applications. Geophysical Research Abstracts - EGU General Assembly 2015. [6] Tellez, J., Gómez, M. and Russo, B. (2015). Técnica para la obtención del campo de velocidad del flujo superficial en proximidad de rejas de alcantarillado. IV Jornadas de Ingeniería del Agua. La precipitación y los procesos erosivos.
Geophysical monitoring in a hydrocarbon reservoir
NASA Astrophysics Data System (ADS)
Caffagni, Enrico; Bokelmann, Goetz
2016-04-01
Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the environmental footprint of the shale-gas exploration and exploitation.
NASA Astrophysics Data System (ADS)
Choi, Sang-Hwa; Kim, Sung Dae; Park, Hyuk Min; Lee, SeungHa
2016-04-01
We established and have operated an integrated data system for managing, archiving and sharing marine geology and geophysical data around Korea produced from various research projects and programs in Korea Institute of Ocean Science & Technology (KIOST). First of all, to keep the consistency of data system with continuous data updates, we set up standard operating procedures (SOPs) for data archiving, data processing and converting, data quality controls, and data uploading, DB maintenance, etc. Database of this system comprises two databases, ARCHIVE DB and GIS DB for the purpose of this data system. ARCHIVE DB stores archived data as an original forms and formats from data providers for data archive and GIS DB manages all other compilation, processed and reproduction data and information for data services and GIS application services. Relational data management system, Oracle 11g, adopted for DBMS and open source GIS techniques applied for GIS services such as OpenLayers for user interface, GeoServer for application server, PostGIS and PostgreSQL for GIS database. For the sake of convenient use of geophysical data in a SEG Y format, a viewer program was developed and embedded in this system. Users can search data through GIS user interface and save the results as a report.
NASA Astrophysics Data System (ADS)
Afonso, J. C.; Zlotnik, S.; Diez, P.
2015-12-01
We present a flexible, general and efficient approach for implementing thermodynamic phase equilibria information (in the form of sets of physical parameters) into geophysical and geodynamic studies. The approach is based on multi-dimensional decomposition methods, which transform the original multi-dimensional discrete information into a dimensional-separated representation. This representation has the property of increasing the number of coefficients to be stored linearly with the number of dimensions (opposite to a full multi-dimensional cube requiring exponential storage depending on the number of dimensions). Thus, the amount of information to be stored in memory during a numerical simulation or geophysical inversion is drastically reduced. Accordingly, the amount and resolution of the thermodynamic information that can be used in a simulation or inversion increases substantially. In addition, the method is independent of the actual software used to obtain the primary thermodynamic information, and therefore it can be used in conjunction with any thermodynamic modeling program and/or database. Also, the errors associated with the decomposition procedure are readily controlled by the user, depending on her/his actual needs (e.g. preliminary runs vs full resolution runs). We illustrate the benefits, generality and applicability of our approach with several examples of practical interest for both geodynamic modeling and geophysical inversion/modeling. Our results demonstrate that the proposed method is a competitive and attractive candidate for implementing thermodynamic constraints into a broad range of geophysical and geodynamic studies.
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Balkaya, Çağlayan; Göktürkler, Gökhan; Turan, Seçil
2016-06-01
An efficient approach to estimate model parameters from residual gravity data based on differential evolution (DE), a stochastic vector-based metaheuristic algorithm, has been presented. We have showed the applicability and effectiveness of this algorithm on both synthetic and field anomalies. According to our knowledge, this is a first attempt of applying DE for the parameter estimations of residual gravity anomalies due to isolated causative sources embedded in the subsurface. The model parameters dealt with here are the amplitude coefficient (A), the depth and exact origin of causative source (zo and xo, respectively) and the shape factors (q and ƞ). The error energy maps generated for some parameter pairs have successfully revealed the nature of the parameter estimation problem under consideration. Noise-free and noisy synthetic single gravity anomalies have been evaluated with success via DE/best/1/bin, which is a widely used strategy in DE. Additionally some complicated gravity anomalies caused by multiple source bodies have been considered, and the results obtained have showed the efficiency of the algorithm. Then using the strategy applied in synthetic examples some field anomalies observed for various mineral explorations such as a chromite deposit (Camaguey district, Cuba), a manganese deposit (Nagpur, India) and a base metal sulphide deposit (Quebec, Canada) have been considered to estimate the model parameters of the ore bodies. Applications have exhibited that the obtained results such as the depths and shapes of the ore bodies are quite consistent with those published in the literature. Uncertainty in the solutions obtained from DE algorithm has been also investigated by Metropolis-Hastings (M-H) sampling algorithm based on simulated annealing without cooling schedule. Based on the resulting histogram reconstructions of both synthetic and field data examples the algorithm has provided reliable parameter estimations being within the sampling limits of M-H sampler. Although it is not a common inversion technique in geophysics, it can be stated that DE algorithm is worth to get more interest for parameter estimations from potential field data in geophysics considering its good accuracy, less computational cost (in the present problem) and the fact that a well-constructed initial guess is not required to reach the global minimum.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2013-04-01
Magnetic survey is one of most applied geophysical method for searching and localization of any objects with contrast magnetic properties (for instance, in Israel detailed magneric survey has been succesfully applied at more than 60 archaeological sites (Eppelbaum, 2010, 2011; Eppelbaum et al., 2011, 2010)). However, land magnetic survey at comparatively large archaeological sites (with observation grids 0.5 x 0.5 or 1 x 1 m) may occupy 5-10 days. At the same time the new Remote Operation Vehicle (ROV) generation - small and maneuvering vehicles - can fly at levels of few (and even one) meters over the earth's surface (flowing the relief forms or straight). Such ROV with precise magnetic field measurements (with a frequency of 20-25 observations per second) may be performed during 10-30 minutes, moreover at different levels over the earth's surface. Such geophysical investigations should have an extremely low exploitation cost. Finally, measurements of geophysical fields at different observation levels could provide new unique geophysical-archaeological information (Eppelbaum, 2005; Eppelbaum and Mishne, 2011). The developed interpretation methodology for magnetic anomalies advanced analysis (Khesin et al., 1996; Eppelbaum et al., 2001; Eppelbaum et al., 2011) may be successfully applied for ROV magnetic survey for delineation of archaeological objects and estimation averaged magnetization of geological medium. This methodology includes: (1) non-conventional procedure for elimination of secondary effect of magnetic temporary variations, (2) calculation of rugged relief influence by the use of a correlation method, (3) estimation of medium magnetization, (4) application of various informational and wavelet algorithms for revealing low anomalous effects against the strong noise background, (5) advanced procedures for magnetic anomalies quantitative analysis (they are applicable in conditions of rugged relief, inclined magnetization, and an unknown level of the total magnetic field for the models of thin bed, thick bed and horizontal circular cylinder; some of these procedures demand performing measurements at two levels over the earth's surface), (6) advanced 3D magnetic-gravity modeling for complex media, and (7) development of 3D physical-archaeological (or magnetic-archaeological) model of the studied area. ROV observations also permit to realize a multimodel approach to magnetic data analysis (Eppelbaum, 2005). Results of performed 3D modeling confirm an effectiveness of the proposed ROV low-altitude survey. Khesin's methodology (Khesin et al., 2006) for estimation of upper geological section magnetization consists of land magnetic observations along a profile disposing under inclined relief with the consequent data processing (this method cannot be applied at flat topography). The improved modification of this approach is based on combination of straight and inclined ROV observations that will help to obtain parameters of the medium magnetization with areas of flat terrain relief. ACKNOWLEDGEMENT This investigation is funding from the Tel Aviv University - the Cyprus Research Institute combined project "Advanced coupled electric-magnetic archaeological prospecting in Cyprus and Israel". REFERENCES Eppelbaum, L.V., 2005. Multilevel observations of magnetic field at archaeological sites as additional interpreting tool. Proceed. of the 6th Conference of Archaeological Prospection, Roma, Italy, 1-4. Eppelbaum, L.V., 2010. Archaeological geophysics in Israel: Past, Present and Future. Advances of Geosciences, 24, 45-68. Eppelbaum, L.V., 2011. Study of magnetic anomalies over archaeological targets in urban conditions. Physics and Chemistry of the Earth, 36, No. 16, 1318-1330. Eppelbaum, L.V., Alperovich, L., Zheludev, V. and Pechersky, A., 2011. Application of informational and wavelet approaches for integrated processing of geophysical data in complex environments. Proceed. of the 2011 SAGEEP Conference, Charleston, South Carolina, USA, 24, 24-60. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No.3, 163-185. Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2010. Archaeological geophysics in arid environments: Examples from Israel. Journal of Arid Environments, 74, No. 7, 849-860. Eppelbaum, L.V. and Mishne, A.R., 2011. Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future. Positioning, 2, No. 3, 112-133. Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers - Springer, Ser.: Modern Approaches in Geophysics.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
Gabitto, Jorge; Tsouris, Costas
2018-01-19
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
On uncertainty quantification in hydrogeology and hydrogeophysics
NASA Astrophysics Data System (ADS)
Linde, Niklas; Ginsbourger, David; Irving, James; Nobile, Fabio; Doucet, Arnaud
2017-12-01
Recent advances in sensor technologies, field methodologies, numerical modeling, and inversion approaches have contributed to unprecedented imaging of hydrogeological properties and detailed predictions at multiple temporal and spatial scales. Nevertheless, imaging results and predictions will always remain imprecise, which calls for appropriate uncertainty quantification (UQ). In this paper, we outline selected methodological developments together with pioneering UQ applications in hydrogeology and hydrogeophysics. The applied mathematics and statistics literature is not easy to penetrate and this review aims at helping hydrogeologists and hydrogeophysicists to identify suitable approaches for UQ that can be applied and further developed to their specific needs. To bypass the tremendous computational costs associated with forward UQ based on full-physics simulations, we discuss proxy-modeling strategies and multi-resolution (Multi-level Monte Carlo) methods. We consider Bayesian inversion for non-linear and non-Gaussian state-space problems and discuss how Sequential Monte Carlo may become a practical alternative. We also describe strategies to account for forward modeling errors in Bayesian inversion. Finally, we consider hydrogeophysical inversion, where petrophysical uncertainty is often ignored leading to overconfident parameter estimation. The high parameter and data dimensions encountered in hydrogeological and geophysical problems make UQ a complicated and important challenge that has only been partially addressed to date.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
Synthesis of geophysical data with space-acquired imagery: a review
Hastings, David A.
1983-01-01
Statistical correlation has been used to determine the applicability of specific data sets to the development of geologic or exploration models. Various arithmetic functions have proven useful in developing models from such data sets.
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
Pulsed mononode dye laser developed for a geophysical application
NASA Technical Reports Server (NTRS)
Jegou, J. P.; Pain, T.; Megie, G.
1986-01-01
Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.
Scientific Data Storage for Cloud Computing
NASA Astrophysics Data System (ADS)
Readey, J.
2014-12-01
Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.
Every Equation Tells a Story: Using Equation Dictionaries in Introductory Geophysics
ERIC Educational Resources Information Center
Caplan-Auerbach, Jacqueline
2009-01-01
Many students view equations as a series of variables and operators into which numbers should be plugged rather than as representative of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume it meets their needs, rather than selecting an equation that represents the appropriate physical…
NASA Astrophysics Data System (ADS)
Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo
2017-09-01
Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and aeolian sediments by their distinct geophysical signature. With this procedure we map aeolian sediments, debris flow sediments, floodplains, and channel sediments along the measured profiles in the entire basin. We show that the joint interpretation of drillings and geophysical profile measurements matches the information from remote sensing data, i.e., the sediment architecture of vast areas can be characterised by combining these techniques. The method presented here proves powerful for characterising large areas with minimal effort and can be applied to similar settings.
NASA Astrophysics Data System (ADS)
Sun, Kai; Chen, Chao; Du, Jinsong; Wang, Limin; Lei, Binhua
2018-01-01
Thickness estimation of sedimentary basin is a complex geological problem, especially in an orogenic environment. Intense and multiple tectonic movements and climate changes result in inhomogeneity of sedimentary layers and basement configurations, which making sedimentary structure modelling difficult. In this study, integrated geophysical methods, including gravity, magnetotelluric (MT) sounding and electrical resistivity tomography (ERT), were used to estimate basement relief to understand the geological structure and evolution of the eastern Barkol Basin in China. This basin formed with the uplift of the eastern Tianshan during the Cenozoic. Gravity anomaly map revealed the framework of the entire area, and ERT as well as MT sections reflected the geoelectric features of the Cenozoic two-layer distribution. Therefore, gravity data, constrained by MT, ERT and boreholes, were utilized to estimate the spatial distribution of the Quaternary layer. The gravity effect of the Quaternary layer related to the Tertiary layer was later subtracted to obtain the residual anomaly for inversion. For the Tertiary layer, the study area was divided into several parts because of lateral difference of density contrasts. Gravity data were interpreted to determine the density contrast constrained by the MT results. The basement relief can be verified by geological investigation, including the uplift process and regional tectonic setting. The agreement between geophysical survey and prior information from geology emphasizes the importance of integrated geophysical survey as a complementary means of geological studies in this region.
Modern Data Center Services Supporting Science
NASA Astrophysics Data System (ADS)
Varner, J. D.; Cartwright, J.; McLean, S. J.; Boucher, J.; Neufeld, D.; LaRocque, J.; Fischman, D.; McQuinn, E.; Fugett, C.
2011-12-01
The National Oceanic and Atmospheric Administration's National Geophysical Data Center (NGDC) World Data Center for Geophysics and Marine Geology provides scientific stewardship, products and services for geophysical data, including bathymetry, gravity, magnetics, seismic reflection, data derived from sediment and rock samples, as well as historical natural hazards data (tsunamis, earthquakes, and volcanoes). Although NGDC has long made many of its datasets available through map and other web services, it has now developed a second generation of services to improve the discovery and access to data. These new services use off-the-shelf commercial and open source software, and take advantage of modern JavaScript and web application frameworks. Services are accessible using both RESTful and SOAP queries as well as Open Geospatial Consortium (OGC) standard protocols such as WMS, WFS, WCS, and KML. These new map services (implemented using ESRI ArcGIS Server) are finer-grained than their predecessors, feature improved cartography, and offer dramatic speed improvements through the use of map caches. Using standards-based interfaces allows customers to incorporate the services without having to coordinate with the provider. Providing fine-grained services increases flexibility for customers building custom applications. The Integrated Ocean and Coastal Mapping program and Coastal and Marine Spatial Planning program are two examples of national initiatives that require common data inventories from multiple sources and benefit from these modern data services. NGDC is also consuming its own services, providing a set of new browser-based mapping applications which allow the user to quickly visualize and search for data. One example is a new interactive mapping application to search and display information about historical natural hazards. NGDC continues to increase the amount of its data holdings that are accessible and is augmenting the capabilities with modern web application frameworks such as Groovy and Grails. Data discovery is being improved and simplified by leveraging ISO metadata standards along with ESRI Geoportal Server.
NASA Astrophysics Data System (ADS)
Quintero-Chavarria, E.; Ochoa Gutierrez, L. H.
2016-12-01
Applications of the Self-potential Method in the fields of Hydrogeology and Environmental Sciences have had significant developments during the last two decades with a strong use on groundwater flows identification. Although only few authors deal with the forward problem's solution -especially in geophysics literature- different inversion procedures are currently being developed but in most cases they are compared with unconventional groundwater velocity fields and restricted to structured meshes. This research solves the forward problem based on the finite element method using the St. Venant's Principle to transform a point dipole, which is the field generated by a single vector, into a distribution of electrical monopoles. Then, two simple aquifer models were generated with specific boundary conditions and head potentials, velocity fields and electric potentials in the medium were computed. With the model's surface electric potential, the inverse problem is solved to retrieve the source of electric potential (vector field associated to groundwater flow) using deterministic and stochastic approaches. The first approach was carried out by implementing a Tikhonov regularization with a stabilized operator adapted to the finite element mesh while for the second a hierarchical Bayesian model based on Markov chain Monte Carlo (McMC) and Markov Random Fields (MRF) was constructed. For all implemented methods, the result between the direct and inverse models was contrasted in two ways: 1) shape and distribution of the vector field, and 2) magnitude's histogram. Finally, it was concluded that inversion procedures are improved when the velocity field's behavior is considered, thus, the deterministic method is more suitable for unconfined aquifers than confined ones. McMC has restricted applications and requires a lot of information (particularly in potentials fields) while MRF has a remarkable response especially when dealing with confined aquifers.
Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity
NASA Astrophysics Data System (ADS)
Pitz, Diogo B.; Marxen, Olaf; Chew, John
2016-11-01
Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.
Mapping Ocean Surface Topography with a Synthetic-Aperture Interferometry Radar
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriguez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology. and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
Towards Mapping the Ocean Surface Topography at 1 km Resolution
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng; Rodriquez, Ernesto
2006-01-01
We propose to apply the technique of synthetic aperture radar interferometry to the measurement of ocean surface topography at spatial resolution approaching 1 km. The measurement will have wide ranging applications in oceanography, hydrology, and marine geophysics. The oceanographic and related societal applications are briefly discussed in the paper. To meet the requirements for oceanographic applications, the instrument must be flown in an orbit with proper sampling of ocean tides.
Military applications and examples of near-surface seismic surface wave methods (Invited)
NASA Astrophysics Data System (ADS)
sloan, S.; Stevens, R.
2013-12-01
Although not always widely known or publicized, the military uses a variety of geophysical methods for a wide range of applications--some that are already common practice in the industry while others are truly novel. Some of those applications include unexploded ordnance detection, general site characterization, anomaly detection, countering improvised explosive devices (IEDs), and security monitoring, to name a few. Techniques used may include, but are not limited to, ground penetrating radar, seismic, electrical, gravity, and electromagnetic methods. Seismic methods employed include surface wave analysis, refraction tomography, and high-resolution reflection methods. Although the military employs geophysical methods, that does not necessarily mean that those methods enable or support combat operations--often times they are being used for humanitarian applications within the military's area of operations to support local populations. The work presented here will focus on the applied use of seismic surface wave methods, including multichannel analysis of surface waves (MASW) and backscattered surface waves, often in conjunction with other methods such as refraction tomography or body-wave diffraction analysis. Multiple field examples will be shown, including explosives testing, tunnel detection, pre-construction site characterization, and cavity detection.
Evolution of 3-D geologic framework modeling and its application to groundwater flow studies
Blome, Charles D.; Smith, David V.
2012-01-01
In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.
Field Testing of Geophysical Techniques.
1981-11-01
influence drainage and groundwater movement in the surrounding area. Presumably, the direction of groundwater movement is to the north and out of the...applicable. Specifically, these additional techniques are: e Audio magneto- telluric (AMT) resistivity * Electromagnetics a Ground-probing radar Both
Rucker, Dale Franklin
2010-04-01
A former radioactive waste disposal site is surveyed with two non-intrusive geophysical techniques, including magnetic gradiometry and electromagnetic induction. Data were gathered over the site by towing the geophysical equipment mounted to a non-electrically conductive and non-magnetic fibre-glass cart. Magnetic gradiometry, which detects the location of ferromagnetic material, including iron and steel, was used to map the existence of a previously unknown buried pipeline formerly used in the delivery of liquid waste to a number of surface disposal trenches and concrete vaults. The existence of a possible pipeline is reinforced by historical engineering drawing and photographs. The electromagnetic induction (EMI) technique was used to map areas of high and low electrical conductivity, which coincide with the magnetic gradiometry data. The EMI also provided information on areas of high electrical conductivity unrelated to a pipeline network. Both data sets demonstrate the usefulness of surface geophysical surveillance techniques to minimize the risk of exposure in the event of future remediation efforts.
Local regression type methods applied to the study of geophysics and high frequency financial data
NASA Astrophysics Data System (ADS)
Mariani, M. C.; Basu, K.
2014-09-01
In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.
Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems
Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.
2008-01-01
Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2017-11-01
The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.
NASA Astrophysics Data System (ADS)
Gao, Ji; Zhang, Haijiang
2018-05-01
Cross-gradient joint inversion that enforces structural similarity between different models has been widely utilized in jointly inverting different geophysical data types. However, it is a challenge to combine different geophysical inversion systems with the cross-gradient structural constraint into one joint inversion system because they may differ greatly in the model representation, forward modelling and inversion algorithm. Here we propose a new joint inversion strategy that can avoid this issue. Different models are separately inverted using the existing inversion packages and model structure similarity is only enforced through cross-gradient minimization between two models after each iteration. Although the data fitting and structural similarity enforcing processes are decoupled, our proposed strategy is still able to choose appropriate models to balance the trade-off between geophysical data fitting and structural similarity. This is realized by using model perturbations from separate data inversions to constrain the cross-gradient minimization process. We have tested this new strategy on 2-D cross borehole synthetic seismic traveltime and DC resistivity data sets. Compared to separate geophysical inversions, our proposed joint inversion strategy fits the separate data sets at comparable levels while at the same time resulting in a higher structural similarity between the velocity and resistivity models.
Williams, John H.; Lane, John W.; Singha, Kamini; Haeni, F. Peter
2002-01-01
An integrated suite of advanced geophysical logging methods was used to characterize the geology and hydrology of three boreholes completed in fractured-sedimentary bedrock in Ventura County, California. The geophysical methods included caliper, gamma, electromagnetic induction, borehole deviation, optical and acoustic televiewer, borehole radar, fluid resistivity, temperature, and electromagnetic flowmeter. The geophysical logging 1) provided insights useful for the overall geohydrologic characterization of the bedrock and 2) enhanced the value of information collected by other methods from the boreholes including core-sample analysis, multiple-level monitoring, and packer testing.The logged boreholes, which have open intervals of 100 to 200 feet, penetrate a sequence of interbedded sandstone and mudstone with bedding striking 220 to 250 degrees and dipping 15 to 40 degrees to the northwest. Fractures intersected by the boreholes include fractures parallel to bedding and fractures with variable strike that dip moderately to steeply. Two to three flow zones were detected in each borehole. The flow zones consist of bedding-parallel or steeply dipping fractures or a combination of bedding-parallel fractures and moderately to steeply dipping fractures. About 75 to more than 90 percent of the measured flow under pumped conditions was produced by only one of the flow zones in each borehole.
Applications of hybrid genetic algorithms in seismic tomography
NASA Astrophysics Data System (ADS)
Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet T.; Papazachos, Constantinos
2011-11-01
Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems. In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets that employ the same experimental geometry, wavelength and geometrical characteristics of the model anomalies. Moreover, real data from a crosswell tomographic project for the subsurface mapping of an ancient wall foundation are used for testing the efficiency of the proposed algorithm. The results show that the combined use of both methods can exploit the benefits of each approach, leading to improved final models and producing realistic velocity models, without significantly increasing the required computation time.
Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling
NASA Astrophysics Data System (ADS)
Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.
2011-12-01
A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4) possibilities to image across multiple scale lengths, incorporating different types of geophysical data and attributes in the process. Important numerical details of 3D seismic wave field simulation in the Laplace-Fourier domain for both acoustic and elastic cases will also be discussed.
Estimating uncertainty of Full Waveform Inversion with Ensemble-based methods
NASA Astrophysics Data System (ADS)
Thurin, J.; Brossier, R.; Métivier, L.
2017-12-01
Uncertainty estimation is one key feature of tomographic applications for robust interpretation. However, this information is often missing in the frame of large scale linearized inversions, and only the results at convergence are shown, despite the ill-posed nature of the problem. This issue is common in the Full Waveform Inversion community.While few methodologies have already been proposed in the literature, standard FWI workflows do not include any systematic uncertainty quantifications methods yet, but often try to assess the result's quality through cross-comparison with other results from seismic or comparison with other geophysical data. With the development of large seismic networks/surveys, the increase in computational power and the more and more systematic application of FWI, it is crucial to tackle this problem and to propose robust and affordable workflows, in order to address the uncertainty quantification problem faced for near surface targets, crustal exploration, as well as regional and global scales.In this work (Thurin et al., 2017a,b), we propose an approach which takes advantage of the Ensemble Transform Kalman Filter (ETKF) proposed by Bishop et al., (2001), in order to estimate a low-rank approximation of the posterior covariance matrix of the FWI problem, allowing us to evaluate some uncertainty information of the solution. Instead of solving the FWI problem through a Bayesian inversion with the ETKF, we chose to combine a conventional FWI, based on local optimization, and the ETKF strategies. This scheme allows combining the efficiency of local optimization for solving large scale inverse problems and make the sampling of the local solution space possible thanks to its embarrassingly parallel property. References:Bishop, C. H., Etherton, B. J. and Majumdar, S. J., 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Monthly weather review, 129(3), 420-436.Thurin, J., Brossier, R. and Métivier, L. 2017,a.: Ensemble-Based Uncertainty Estimation in Full Waveform Inversion. 79th EAGE Conference and Exhibition 2017, (12 - 15 June, 2017)Thurin, J., Brossier, R. and Métivier, L. 2017,b.: An Ensemble-Transform Kalman Filter - Full Waveform Inversion scheme for Uncertainty estimation; SEG Technical Program Expanded Abstracts 2012
NASA Astrophysics Data System (ADS)
An, M.; Assumpcao, M.
2003-12-01
The joint inversion of receiver function and surface wave is an effective way to diminish the influences of the strong tradeoff among parameters and the different sensitivity to the model parameters in their respective inversions, but the inversion problem becomes more complex. Multi-objective problems can be much more complicated than single-objective inversion in the model selection and optimization. If objectives are involved and conflicting, models can be ordered only partially. In this case, Pareto-optimal preference should be used to select solutions. On the other hand, the inversion to get only a few optimal solutions can not deal properly with the strong tradeoff between parameters, the uncertainties in the observation, the geophysical complexities and even the incompetency of the inversion technique. The effective way is to retrieve the geophysical information statistically from many acceptable solutions, which requires more competent global algorithms. Competent genetic algorithms recently proposed are far superior to the conventional genetic algorithm and can solve hard problems quickly, reliably and accurately. In this work we used one of competent genetic algorithms, Bayesian Optimization Algorithm as the main inverse procedure. This algorithm uses Bayesian networks to draw out inherited information and can use Pareto-optimal preference in the inversion. With this algorithm, the lithospheric structure of Paran"› basin is inverted to fit both the observations of inter-station surface wave dispersion and receiver function.
NASA Astrophysics Data System (ADS)
Nikolaidis, Andreas; Stylianou, Stavros; Georgiou, Georgios; Hajimitsis, Diofantos; Gravanis, Elias; Akylas, Evangelos
2015-04-01
During the last decade, Rixen (2005) and Alvera-Azkarate (2010) presented the DINEOF (Data Interpolating Empirical Orthogonal Functions) method, a EOF-based technique to reconstruct missing data in satellite images. The application of DINEOF method, proved to provide relative success in various experimental trials (Wang and Liu, 2013; Nikolaidis et al., 2013;2014), and tends to be an effective and computationally affordable solution, on the problem of data reconstruction, for missing data from geophysical fields, such as chlorophyll-a, sea surface temperatures or salinity and geophysical fields derived from satellite data. Implementation of this method in a GIS system will provide with a more complete, integrated approach, permitting the expansion of the applicability over various aspects. This may be especially useful in studies where various data of different kind, have to be examined. For this purpose, in this study we have implemented and present a GIS toolbox that aims to automate the usage of the algorithm, incorporating the DINEOF codes provided by GHER (GeoHydrodynamics and Environment Research Group of University of Liege) into the ArcGIS®. ArcGIS® is a well known standard on Geographical Information Systems, used over the years for various remote sensing procedures, in sea and land environment alike. A case-study of filling the missing satellite derived current data in the Eastern Mediterranean Sea area, for a monthly period is analyzed, as an example for the effectiveness and simplicity of the usage of this toolbox. The specific study focuses to OSCAR satellite data (http://www.oscar.noaa.gov/) collected by NOAA/NESDIS Operational Surface Current Processing and Data Center, from the respective products of OSCAR Project Office Earth and Space Research organization, that provides free online access to unfiltered (1/3 degree) resolution. All the 5-day mean products data coverage were successfully reconstructed. KEY WORDS: Remote Sensing, Cyprus, Mediterranean, DINEOF, ArcGIS, data reconstruction.
Nonlinear waves in earth crust faults: application to regular and slow earthquakes
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Bambakidis, Gust
2015-04-01
The genesis, development and cessation of regular earthquakes continue to be major problems of modern geophysics. How are earthquakes initiated? What factors determine the rapture velocity, slip velocity, rise time and geometry of rupture? How do accumulated stresses relax after the main shock? These and other questions still need to be answered. In addition, slow slip events have attracted much attention as an additional source for monitoring fault dynamics. Recently discovered phenomena such as deep non-volcanic tremor (NVT), low frequency earthquakes (LFE), very low frequency earthquakes (VLF), and episodic tremor and slip (ETS) have enhanced and complemented our knowledge of fault dynamic. At the same time, these phenomena give rise to new questions about their genesis, properties and relation to regular earthquakes. We have developed a model of macroscopic dry friction which efficiently describes laboratory frictional experiments [1], basic properties of regular earthquakes including post-seismic stress relaxation [3], the occurrence of ambient and triggered NVT [4], and ETS events [5, 6]. Here we will discuss the basics of the model and its geophysical applications. References [1] Gershenzon N.I. & G. Bambakidis (2013) Tribology International, 61, 11-18, http://dx.doi.org/10.1016/j.triboint.2012.11.025 [2] Gershenzon, N.I., G. Bambakidis and T. Skinner (2014) Lubricants 2014, 2, 1-x manuscripts; doi:10.3390/lubricants20x000x; arXiv:1411.1030v2 [3] Gershenzon N.I., Bykov V. G. and Bambakidis G., (2009) Physical Review E 79, 056601 [4] Gershenzon, N. I, G. Bambakidis, (2014a), Bull. Seismol. Soc. Am., 104, 4, doi: 10.1785/0120130234 [5] Gershenzon, N. I.,G. Bambakidis, E. Hauser, A. Ghosh, and K. C. Creager (2011), Geophys. Res. Lett., 38, L01309, doi:10.1029/2010GL045225. [6] Gershenzon, N.I. and G. Bambakidis (2014) Bull. Seismol. Soc. Am., (in press); arXiv:1411.1020
Development practices and lessons learned in developing SimPEG
NASA Astrophysics Data System (ADS)
Cockett, R.; Heagy, L. J.; Kang, S.; Rosenkjaer, G. K.
2015-12-01
Inverse modelling provides a mathematical framework for constructing a model of physical property distributions in the subsurface that are consistent with the data collected in geophysical surveys. The geosciences are increasingly moving towards the integration of geological, geophysical, and hydrological information to better characterize the subsurface. This integration must span disciplines and is not only challenging scientifically, but additionally the inconsistencies between conventions often makes implementations complicated, non reproducible, or inefficient. SimPEG is an open-source, multi-university effort aimed at providing a generalized framework for solving forward and inverse problems. SimPEG includes finite volume discretizations on structured and unstructured meshes, interfaces to standard numerical solver packages, convex optimization algorithms, model parameterizations, and visualization routines. The SimPEG package (http://simpeg.xyz) supports an ecosystem of forward and inverse modelling applications, including electromagnetics, vadose zone flow, seismic, and potential fields, that are all written with a common interface and toolbox. The goal of SimPEG is to support a community of researchers with well-tested, extensible tools, and encourage transparency and reproducibility both of the SimPEG software and the geoscientific research it is applied to. In this presentation, we will share some of the lessons we have learned in designing the modular infrastructure, testing and development practices of SimPEG. We will discuss our use of version control, extensive unit-testing, continuous integration, documentation, issue tracking, and resources that facilitate communication between existing team members and allows new researchers to get involved. These practices have enabled the use of SimPEG in research, industry, and education as well as the ability to support a growing number of dependent repositories and applications. We hope that sharing our practices and experiences will help other researchers who are creating communities around their own scientific software. As this session suggests, "software is critical to the success of science," but, it is the *communities* of researchers that must be supported as we strive to create top quality research tools.
Characterization of an alluvial aquifer with thermal tracer tomography
NASA Astrophysics Data System (ADS)
Somogyvári, Márk; Bayer, Peter
2017-04-01
In the summer of 2015, a series of thermal tracer tests was performed at the Widen field site in northeast Switzerland. At this site numerous hydraulic, tracer, geophysical and hydrogeophysical field tests have been conducted in the past to investigate a shallow alluvial aquifer. The goals of the campaign in 2015 were to design a cost-effective thermal tracer tomography setup and to validate the concept of travel time-based thermal tracer tomography under field conditions. Thermal tracer tomography uses repeated thermal tracer injections with different injection depths and distributed temperature measurements to map the hydraulic conductivity distribution of a heterogeneous aquifer. The tracer application was designed with minimal experimental time and cost. Water was heated in inflatable swimming pools using direct sunlight of the warm summer days, and it was injected as low temperature pulses in a well. Because of the small amount of injected heat, no long recovery times were required between the repeated heat tracer injections and every test started from natural thermal conditions. At Widen, four thermal tracer tests were performed during a period of three days. Temperatures were measured in one downgradient well using a distributed temperature measurement system installed at seven depth points. Totally 12 temperature breakthrough curves were collected. Travel time based tomographic inversion assumes that thermal transport is dominated by advection and the travel time of the thermal tracer can be related to the hydraulic conductivities of the aquifer. This assumption is valid in many shallow porous aquifers where the groundwater flow is fast. In our application, the travel time problem was treated by a tomographic solver, analogous to seismic tomography, to derive the hydraulic conductivity distribution. At the test site, a two-dimensional cross-well hydraulic conductivity profile was reconstructed with the travel time based inversion. The reconstructed profile corresponds well with the findings of the earlier hydraulic and geophysical experiments at the site.
Vernon, J.H.; Paillet, F.L.; Pedler, W.H.; Griswold, W.J.
1993-01-01
Wellbore geophysical techniques were used to characterize fractures and flow in a bedrock aquifer at a site near Blackwater Brook in Dover, New Hampshire. The primary focus ofthis study was the development of a model to assist in evaluating the area surrounding a planned water supply well where contaminants introduced at the land surface might be induced to flow towards a pumping well. Well logs and geophysical surveys used in this study included lithologic logs based on examination of cuttings obtained during drilling; conventional caliper and natural gamma logs; video camera and acoustic televiewer surveys; highresolution vertical flow measurements under ambient conditions and during pumping; and borehole fluid conductivity logs obtained after the borehole fluid was replaced with deionized water. These surveys were used for several applications: 1) to define a conceptual model of aquifer structure to be used in groundwater exploration; 2) to estimate optimum locations for test and observation wells; and 3) to delineate a wellhead protection area (WHPA) for a planned water supply well. Integration of borehole data with surface geophysical and geological mapping data indicated that the study site lies along a northeast-trending intensely fractured contact zone between surface exposures of quartz monzonite and metasedimentary rocks. Four of five bedrock boreholes at the site were estimated to produce more than 150 gallons per minute (gpm) (568 L/min) of water during drilling. Aquifer testing and other investigations indicated that water flowed to the test well along fractures parallel to the northeast-trending contact zone and along other northeast and north-northwest-trending fractures. Statistical plots of fracture strikes showed frequency maxima in the same northeast and north-northwest directions, although additional maxima occurred in other directions. Flowmeter surveys and borehole fluid conductivity logging after fluid replacement were used to identify water-producing zones in the boreholes; fractures associated with inflow into boreholes showed a dominant northeast orientation. Borehole fluid conductivity logging after fluid replacement also gave profiles of such water-quality parameters as fluid electrical conductivity (FEC), pH, temperature, and oxidation-reduction potential, strengthening the interpretation of crossconnection of boreholes by certain fracture zones. The results of this study showed that the application of these borehole geophysical techniques at the Blackwater Brook site led to an improved understanding of such parameters as fracture location, attitude, flow direction and velocity, and water quality; all of which are important in the determination of a WHPA.
Publications - GPR 2016-1 | Alaska Division of Geological & Geophysical
Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys Geophysical
NASA Astrophysics Data System (ADS)
Eppelbaum, L. V.; Masini, N.; Soldovieri, F.
2010-06-01
This special issue of the Journal of Geophysics and Engineering hosts a selection of the papers that were presented at the session entitled `Near surface geophysics for the study and the management of historical resources: past, present and future', organized within the framework of the General Assembly of the European Geosciences Union (Vienna, Austria, 19-24 April 2009). As the conveners, we invited the active participants of this session to prepare papers reflecting their presentations and submit them for publication in the Journal of Geophysics and Engineering. This special issue presents the papers which have passed through the prolonged and stringent reviewing process. The papers presented in this issue illustrate the application of novel instrumentation, surface and airborne remote sensing techniques, as well as data processing oriented both to new archaeological targets characterization and cultural heritage conservation. In this field, increasing interest has been observed in recent years in non-destructive and non-invasive geophysical test methods. They allow one to overcome the subjectivity and ambiguity arising from the number and locations of the sites chosen to perform the destructive examination. In addition, very recently, much attention has been given to the integration of the classical geophysical techniques (GPR, magnetic, ERT, IP) with new emerging surface and subsurface sensing techniques (optical sensors, lidar, microwave tomography, MASW) for a combined monitoring of archaeological constructions and artefacts. We hope that the presented research papers will be interesting for readers in the different branches of environmental and cultural heritage sciences and will attract new potential contributors to the important topics of archaeological targets recognition, cultural heritage monitoring and diagnostics. Statistically, every day several tens of significant archaeological objects are destroyed and damaged throughout the Earth, and we hope that our investigation will help to decrease these losses. We wish to thank all the authors for their presentations and fruitful discussions at the session and for preparing these articles. We are grateful to all the reviewers whose accurate and hard work has made the successful publication of this special issue possible. We also thank the editors and managers of the Journal of Geophysics and Engineering (particularly Sarah Quin) for their skilled and pleasant collaboration.
Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies
NASA Astrophysics Data System (ADS)
Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.
2014-12-01
Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.
Determination of key parameters of vector multifractal vector fields
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Tchiguirinskaia, I.
2017-12-01
For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).
Detection of Heterogeneous Small Inclusions by a Multi-Step MUSIC Method
NASA Astrophysics Data System (ADS)
Solimene, Raffaele; Dell'Aversano, Angela; Leone, Giovanni
2014-05-01
In this contribution the problem of detecting and localizing scatterers with small (in terms of wavelength) cross sections by collecting their scattered field is addressed. The problem is dealt with for a two-dimensional and scalar configuration where the background is given as a two-layered cylindrical medium. More in detail, while scattered field data are taken in the outermost layer, inclusions are embedded within the inner layer. Moreover, the case of heterogeneous inclusions (i.e., having different scattering coefficients) is addressed. As a pertinent applicative context we identify the problem of diagnose concrete pillars in order to detect and locate rebars, ducts and other small in-homogeneities that can populate the interior of the pillar. The nature of inclusions influences the scattering coefficients. For example, the field scattered by rebars is stronger than the one due to ducts. Accordingly, it is expected that the more weakly scattering inclusions can be difficult to be detected as their scattered fields tend to be overwhelmed by those of strong scatterers. In order to circumvent this problem, in this contribution a multi-step MUltiple SIgnal Classification (MUSIC) detection algorithm is adopted [1]. In particular, the first stage aims at detecting rebars. Once rebars have been detected, their positions are exploited to update the Green's function and to subtract the scattered field due to their presence. The procedure is repeated until all the inclusions are detected. The analysis is conducted by numerical experiments for a multi-view/multi-static single-frequency configuration and the synthetic data are generated by a FDTD forward solver. Acknowledgement This work benefited from networking activities carried out within the EU funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." [1] R. Solimene, A. Dell'Aversano and G. Leone, "MUSIC algorithms for rebar detection," J. of Geophysics and Engineering, vol. 10, pp. 1-8, 2013
Geophysical well-log analysis of fractured crystalline rocks at East Bull Lake, Ontario, Canada
Paillet, Frederick L.; Hess, A.E.
1986-01-01
Various conventional geophysical borehole measurements were made in conjunction with measurements using a recently designed, low-frequency, acoustic-waveform probe and slow velocity flowmeter for characterization of a fractured mafic intrusion in southern Ontario, Canada. Conventional geophysical measurements included temperature, caliper, gamma, acoustic, single-point resistance, and acoustic televiewer logs. Hole stability problems prevented the use of neutron and gamma-gamma logs, because these logs require that a radioactive source be lowered into the borehole. Measurements were made in three boreholes as much as 850 m deep and penetrating a few tens of meters into granitic basement. All rocks within the mafic intrusion were characterized by minimal gamma radiation and acoustic velocities of about 6.9 km/sec. The uniformity of the acoustic velocities and the character of acoustic-waveform logs made with a conventional high-frequency logging source correlated with the density of fractures evident on televiewer logs. Sample intervals of high-frequency waveform logs were transformed into interpretations of effective fracture opening using a recent model for acoustic attenuation in fractured rocks. The new low-frequency sparker source did not perform as expected at depths below 250 m because of previously unsuspected problems with source firing under large hydrostatic heads. A new heat-pulse, slow velocity flowmeter was used to delineate in detail the flow regime indicated in a general way by temperature logs. The flowmeter measurements indicated that water was entering 2 of the boreholes at numerous fractures above a depth of 200 m, with flow in at least 2 of the boreholes exiting through large isolated fractures below a depth of 400 m. (Author 's abstract)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-28
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Direct Statistical Simulation of Astrophysical and Geophysical Flows
NASA Astrophysics Data System (ADS)
Marston, B.; Tobias, S.
2011-12-01
Astrophysical and geophysical flows are amenable to direct statistical simulation (DSS), the calculation of statistical properties that does not rely upon accumulation by direct numerical simulation (DNS) (Tobias and Marston, 2011). Anisotropic and inhomogeneous flows, such as those found in the atmospheres of planets, in rotating stars, and in disks, provide the starting point for an expansion in fluctuations about the mean flow, leading to a hierarchy of equations of motion for the equal-time cumulants. The method is described for a general set of evolution equations, and then illustrated for two specific cases: (i) A barotropic jet on a rotating sphere (Marston, Conover, and Schneider, 2008); and (ii) A model of a stellar tachocline driven by relaxation to an underlying flow with shear (Cally 2001) for which a joint instability arises from the combination of shearing forces and magnetic stress. The reliability of DSS is assessed by comparing statistics so obtained against those accumulated from DNS, the traditional approach. The simplest non-trivial closure, CE2, sets the third and higher cumulants to zero yet yields qualitatively accurate low-order statistics for both systems. Physically CE2 retains only the eddy-mean flow interaction, and drops the eddy-eddy interaction. Quantitatively accurate zonal means are found for barotropic jet for long and short (but not intermediate) relaxation times, and for Cally problem in the case of strong shearing and large magnetic fields. Deficiencies in CE2 can be repaired at the CE3 level, that is by retaining the third cumulant (Marston 2011). We conclude by discussing possible extensions of the method both in terms of computational methods and the range of astrophysical and geophysical problems that are of interest.
NASA Astrophysics Data System (ADS)
Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia
2018-04-01
As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.
A multi-scale micromechanics framework for shale using the nano-tools
NASA Astrophysics Data System (ADS)
Ortega, J.; Ulm, F.; Abousleiman, Y.
2009-12-01
The successful prediction of poroelastic properties of fine-grained rocks such as shale continues to be a formidable challenge for the geophysics community. The highly heterogeneous nature of shale in terms of its compositional and microstructural features translates into a complex anisotropic behavior observed at macroscopic length scales. The recent application of instrumented indentation for the mechanical characterization of shale has revealed the granular response and intrinsic anisotropy of its porous clay phase at nanometer length scales [1-2]. This discovered mechanical behavior at the grain scale has been incorporated into the development of a multi-scale, micromechanics model for shale poroelasticity [3]. The only inputs to the model are two volumetric parameters synthesizing the mineralogy and porosity information of a shale sample. The model is meticulously calibrated and validated, as displayed in Fig. 1, with independent data sets of anisotropic elasticity obtained from nanoindentation experiments and standard laboratory acoustic measurements for shale specimens with and without organic content. The treatment of the elastic anisotropy corresponding to the porous clay fabric, as sensed by nanoindentation, delineates the contribution of the intrinsic anisotropy in shale to its overall anisotropy observed at macroscales. Furthermore, the proposed poroelastic formulation provides access to intrinsic rock parameters such as Biot pore pressure coefficients that are of importance for problems of flow in porous media. In addition, the model becomes a useful tool in geophysics applications for the prediction of shale acoustic properties from material-specific information such as porosity, mineralogy, and density measurements. References: [1] Ulm, F.-J., Abousleiman, Y. (2006) ‘The nanogranular nature of shale.’ Acta Geot. 1(2), 77-88. [2] Bobko, C., Ulm, F.-J. (2008) ‘The nano-mechanical morphology of shale.’ Mech. Mat. 40(4-5), 318-337. [3] Ortega, J. A., Ulm, F.-J., Abousleiman, Y. (2009) ‘The nanogranular acoustic signature of shale.’ Geophysics 74(3), D65-D84. Fig. 1. Comparisons between predicted and experimental elasticity obtained from nanoindentation experiments (left) and acoustic measurements (right) for shale with and without organic content (hollow and solid data points). Nanoindentation elasticity of the porous clay in shale is presented as a function of the clay packing density (one minus the nanoporosity). The x-1, x-3 directions correspond to parallel and normal-to-bedding plane properties, respectively. All nanoindentation data and acoustic measurements for organic-rich shale from [2-3]. Acoustic measurements for organic-free shale were gathered from literature sources compiled in [3].
Confidence set interference with a prior quadratic bound. [in geophysics
NASA Technical Reports Server (NTRS)
Backus, George E.
1989-01-01
Neyman's (1937) theory of confidence sets is developed as a replacement for Bayesian interference (BI) and stochastic inversion (SI) when the prior information is a hard quadratic bound. It is recommended that BI and SI be replaced by confidence set interference (CSI) only in certain circumstances. The geomagnetic problem is used to illustrate the general theory of CSI.
Introduction: geoscientific knowledgebase of Chernobyl and Fukushima
NASA Astrophysics Data System (ADS)
Yamauchi, Masatoshi; Voitsekhovych, Oleg; Korobova, Elena; Stohl, Andreas; Wotawa, Gerhard; Kita, Kazuyuki; Aoyama, Michio; Yoshida, Naohiro
2013-04-01
Radioactive contamination after the Chernobyl (1986) and Fukushima (2011) accidents is a multi-disciplinary geoscience problem. Just this session (GI1.4) contains presentations of (i) atmospheric transport for both short and long distances, (ii) aerosol physics and chemistry, (ii) geophysical measurement method and logistics, (iv) inversion method to estimate the geophysical source term and decay, (v) transport, migration, and sedimentation in the surface water system, (vi) transport and sedimentation in the ocean, (vii) soil chemistry and physics, (viii) forest ecosystem, (ix) risk assessments, which are inter-related to each other. Because of rareness of a severe accident like Chernobyl and Fukushima, the Chernobyl's 27 years experience is the only knowledgebase that provides a good guidance for the Fukushima case in understanding the physical/chemical processes related to the environmental radioactive contamination and in providing future prospectives, e.g., what we should do next for the observation/remediation. Unfortunately, the multi-disciplinary nature of the radioactive contamination problem makes it very difficult for a single scientist to obtain the overview of all geoscientific aspects of the Chernobyl experience. The aim of this introductory talk is to give a comprehensive knowledge of the wide geoscientific aspects of the Chernobyl contamination to Fukushima-related geoscience community.
Non invasive sensing technologies for cultural heritage management and fruition
NASA Astrophysics Data System (ADS)
Soldovieri, Francesco; Masini, Nicola
2016-04-01
The relevance of the information produced by science and technology for the knowledge of the cultural heritage depends on the quality of the feedback and, consequently, on the "cultural" distance between scientists and end-users. In particular, the solution to this problem mainly resides in the capability of end-users' capability to assess and transform the knowledge produced by diagnostics with regard to: information on both cultural objects and sites (decay patterns, vulnerability, presence of buried archaeological remains); decision making (management plan, conservation project, and excavation plan). From our experience in the field of the cultural heritage and namely the conservation, of monuments, there is a significant gap of information between technologists (geophysicists/physicists/engineers) and end-users (conservators/historians/architects). This cultural gap is due to the difficulty to interpret "indirect data" produced by non invasive diagnostics (i.e. radargrams/thermal images/seismic tomography etc..) in order to provide information useful to improve the historical knowledge (e.g. the chronology of the different phases of a building), to characterise the state of conservation (e.g. detection of cracks in the masonry) and to monitor in time cultural heritage artifacts and sites. The possible answer to this difficulty is in the set-up of a knowledge chain regarding the following steps: - Integrated application of novel and robust data processing methods; - Augmented reality as a tool for making easier the interpretation of non invasive - investigations for the analysis of decay pathologies of masonry and architectural surfaces; - The comparison between direct data (carrots, visual inspection) and results from non-invasive tests, including geophysics, aims to improve the interpretation and the rendering of the monuments and even of the archaeological landscapes; - The use of specimens or test beds for the detection of archaeological features and monitoring of monuments and sites. In this way, we will be able to improve the appreciation of diagnostics and remote sensing technologies by the end-users. At the conference, we will show and discuss several study cases depicting the deployment of this knowledge chain in realistic conditions regarding the CH management. References Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08 Masini N., Soldovieri F. 2011. Editorial: Integrated non-invasive sensing techniques and geophysical methods for the study and conservation of architectural, archaeological and artistic heritage, Journal of Geophysics and Engineering, 8 (3), 1-2, doi:10.1088/1742-2132/8/3/E01 Masini N., Persico R., Rizzo E., Calia A., Giannotta M.T., Quarta G., Pagliuca A. 2010, Integrated Techniques for Analysis and Monitoring of Historical Monuments: the case of S.Giovanni al Sepolcro in Brindisi (Southern Italy), Near Surface Geophysics, 8(5), 423-432, doi:10.3997/1873-0604.2010012
The use of FDEM in hydrogeophysics: A review
NASA Astrophysics Data System (ADS)
Boaga, Jacopo
2017-04-01
Hydrogeophysics is a rapidly evolving discipline emerging from geophysical methods. Geophysical methods are nowadays able to illustrate not only the fabric and the structure of the underground, but also the subsurface processes that occur within it, as fluids dynamic and biogeochemical reactions. This is a growing wide inter-disciplinary field, specifically dedicated to revealing soil properties and monitoring processes of change due to soil/bio/atmosphere interactions. The discipline involves environmental, hydrological, agricultural research and counts application for several engineering purposes. The most frequently used techniques in the hydrogeophysical framework are the electric and electromagnetic methods because they are highly sensitive to soil physical properties such as texture, salinity, mineralogy, porosity and water content. Non-invasive techniques are applied in a number of problems related to characterization of subsurface hydrology and groundwater dynamic processes. Ground based methods, as electrical tomography, proved to obtain considerable resolution but they are difficult to extend to wider exploration purposes due to their logistical limitation. Methods that don't need electrical contact with soil can be, on the contrary, easily applied to broad areas. Among these methods, a rapidly growing role is played by frequency domain electro-magnetic (FDEM) survey. This is due thanks to the improvement of multi-frequency and multi-coils instrumentation, simple time-lapse repeatability, cheap and accurate topographical referencing, and the emerging development of inversion codes. From raw terrain apparent conductivity meter, FDEM survey is becoming a key tool for 3D soil characterization and dynamics observation in near surface hydrological studies. Dozens of papers are here summarized and presented, in order to describe the promising potential of the technique.
Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models
Plant, Nathaniel G.; Holland, K. Todd
2011-01-01
Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.
Multistatic synthetic aperture radar image formation.
Krishnan, V; Swoboda, J; Yarman, C E; Yazici, B
2010-05-01
In this paper, we consider a multistatic synthetic aperture radar (SAR) imaging scenario where a swarm of airborne antennas, some of which are transmitting, receiving or both, are traversing arbitrary flight trajectories and transmitting arbitrary waveforms without any form of multiplexing. The received signal at each receiving antenna may be interfered by the scattered signal due to multiple transmitters and additive thermal noise at the receiver. In this scenario, standard bistatic SAR image reconstruction algorithms result in artifacts in reconstructed images due to these interferences. In this paper, we use microlocal analysis in a statistical setting to develop a filtered-backprojection (FBP) type analytic image formation method that suppresses artifacts due to interference while preserving the location and orientation of edges of the scene in the reconstructed image. Our FBP-type algorithm exploits the second-order statistics of the target and noise to suppress the artifacts due to interference in a mean-square sense. We present numerical simulations to demonstrate the performance of our multistatic SAR image formation algorithm with the FBP-type bistatic SAR image reconstruction algorithm. While we mainly focus on radar applications, our image formation method is also applicable to other problems arising in fields such as acoustic, geophysical and medical imaging.
The hydrocarbon accumulations mapping in crystalline rocks by mobile geophysical methods
NASA Astrophysics Data System (ADS)
Nesterenko, A.
2013-05-01
Sedimentary-migration origin theory of hydrocarbons dominates nowadays. However, a significant amount of hydrocarbon deposits were discovered in the crystalline rocks, which corroborates the theory of non-organic origin of hydrocarbons. During the solving of problems of oil and gas exploration in crystalline rocks and arrays so-called "direct" methods can be used. These methods include geoelectric methods of forming short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS express-technology). Use of remote Earth sounding (RES) methods is also actual. These mobile technologies are extensively used during the exploration of hydrocarbon accumulations in crystalline rocks, including those within the Ukrainian crystalline shield. The results of explorations Four anomalous geoelectric zones of "gas condensate reservoir" type were quickly revealed as a result of reconnaissance prospecting works (Fig. 1). DTA "Obukhovychi". Anomaly was traced over a distance of 4 km. Approximate area is 12.0 km2. DTA"Korolevskaya". Preliminary established size of anomalous zone is 10.0 km2. The anomalous polarized layers of gas and gas-condensate type were determined. DTA "Olizarovskaya". Approximate size of anomaly is about 56.0 km2. This anomaly is the largest and the most intense. DTA "Druzhba". Preliminary estimated size of anomaly is 16.0 km2. Conclusions Long experience of a successful application of non-classical geoelectric methods for the solving of variety of practical tasks allow one to state their contribution to the development of a new paradigm of geophysical researches. Simultaneous usage of the remote sensing data processing and interpretation method and FSPEF and VERS technologies can essentially optimize and speed up geophysical work. References 1. S.P. Levashov. Detection and mapping of anomalies of "hydrocarbon deposit" type in the fault zones of crystalline arrays by geoelectric methods. / S.P. Levashov, N.A. Yakymchuk, I.N. Korchagin, V.V. Prilukov, J.N. Yakymchuk / / Oil. Gas. Novations. - 2011/4. - P. 10-17. Introduction. (in Russian); Fig. 1. The map of "gas condensate reservoir" type anomalous geoelectric zones on the area of human settlements Malin: 1 - a scale of the intensity of anomalous response, 2 - the zones of tectonic disturbances.
NASA Astrophysics Data System (ADS)
Paasche, Hendrik
2018-01-01
Site characterization requires detailed and ideally spatially continuous information about the subsurface. Geophysical tomographic experiments allow for spatially continuous imaging of physical parameter variations, e.g., seismic wave propagation velocities. Such physical parameters are often related to typical geotechnical or hydrological target parameters, e.g. as achieved from 1D direct push or borehole logging. Here, the probabilistic inference of 2D tip resistance, sleeve friction, and relative dielectric permittivity distributions in near-surface sediments is constrained by ill-posed cross-borehole seismic P- and S-wave and radar wave traveltime tomography. In doing so, we follow a discovery science strategy employing a fully data-driven approach capable of accounting for tomographic ambiguity and differences in spatial resolution between the geophysical tomograms and the geotechnical logging data used for calibration. We compare the outcome to results achieved employing classical hypothesis-driven approaches, i.e., deterministic transfer functions derived empirically for the inference of 2D sleeve friction from S-wave velocity tomograms and theoretically for the inference of 2D dielectric permittivity from radar wave velocity tomograms. The data-driven approach offers maximal flexibility in combination with very relaxed considerations about the character of the expected links. This makes it a versatile tool applicable to almost any combination of data sets. However, error propagation may be critical and justify thinking about a hypothesis-driven pre-selection of an optimal database going along with the risk of excluding relevant information from the analyses. Results achieved by transfer function rely on information about the nature of the link and optimal calibration settings drawn as retrospective hypothesis by other authors. Applying such transfer functions at other sites turns them into a priori valid hypothesis, which can, particularly for empirically derived transfer functions, result in poor predictions. However, a mindful utilization and critical evaluation of the consequences of turning a retrospectively drawn hypothesis into an a priori valid hypothesis can also result in good results for inference and prediction problems when using classical transfer function concepts.
Rapid estimation of aquifer salinity structure from oil and gas geophysical logs
NASA Astrophysics Data System (ADS)
Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.
2016-12-01
We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity maps for the region of interest. We present results for select well fields in the Southern San Joaquin Valley, California.
NASA Astrophysics Data System (ADS)
Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.
2016-12-01
The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.
Combination of GPR with other NDT techniques in different fields of application - COST Action TU1208
NASA Astrophysics Data System (ADS)
Solla, Mercedes; Pérez-Gracia, Vega; Fontul, Simona; Santos-Assunçao, Sonia; Kucukdemirci, Melda
2017-04-01
During the last decades, there has been a continuous increase in the use of non-destructive testing (NDT) applied to many aspects related to civil engineering and other fields such as geology or sedimentology, archaeology and either monument or cultural heritage. This is principally due to the fact that most NDT methods work remotely, that is, without direct contact, while adding information of non-visible areas. Particularly, geophysics has significantly benefited the procedures for inspection and also, successfully solved some of the limitations of traditional methods such as a lack of objectiveness, destructive testing, loss of safety during infrastructure inspection, and also, low rates of production. The different geophysical methodologies are based on the measurement of physical properties of media. However, all geophysical methods are sensitive to different physical parameters and the success of these methods is related to the nature of the buried features themselves, in terms of their physical and geometric properties, soil conditions, operational factors such as the sensitivity of equipment and etc. Consequently, taking into account all of these factors, to obtain reliable and complementary results, multiple geophysical methods rather than single method and moreover data integration approaches are recommended to provide accurate interpretations. This work presents some examples of combination of Ground-Penetrating Radar (GPR) with other NDT techniques in different fields of application (pavements/railways, archaeological sites, monuments, and stratigraphy in beaches and bathymetries). An example of combination of GPR and Falling Weight Deflectometer (FWD) to assess the bearing capacity of flexible pavement is described as the most efficient structural evaluation of pavements and one of the most commonly applications of the methods on civil engineering inspections. Results of archaeogeophysical field surveys in Turkey are also included by combining the most common geophysical methods used for archaeological prospection (GPR and magnetometry). Regarding cultural heritage, an example in Barcelona (Spain) of the assessment of masonry structural elements, with embedded metallic targets, is included. Seismic tomography and 3D GPR imaging are applied, both supported with endoscopy. The results highlight the most affected areas of the structure and the existence of corroded metallic elements as consequence of humidity. Finally, two case studies support the importance of combining data in geological applications. Firstly, GPR and Electrical Resistivity Tomography (ERT) were combined for the analysis of the littoral drift and the tidal range affecting the transport of sediments in costal environments, and more particularly in O Adro Beach, in Vigo (Spain) that had been subjected to extension activities during the last decades. Secondly, the combination Multibeam Sonar and GPR data is presented for the study of a lake, which is an abandoned kaolin mine. Thus, it was possible to analyze the column of water in all the extension of the lake, while differentiating layers of lacustrine deposits and kaolin rock formations in subsurface. This work represents a contribution to the COST (European Cooperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The authors thank COST for funding the Action TU1208.
Earthquake prognosis:cause for failure and ways for the problem solution
NASA Astrophysics Data System (ADS)
Kondratiev, O.
2003-04-01
Despite of the more than 50-years history of the development of the prognosis earthquake method this problem is yet not to be resolved. This makes one to have doubt in rightness of the chosen approaches retrospective search of the diverse earthquake precursors. It is obvious to speak of long-term, middle-term and short-term earthquake prognosis. They all have a probabilistic character and it would be more correct to consider them as related to the seismic hazard prognosis. In distinction of them, the problem of the operative prognosis is being discussed in report. The operative prognosis should conclude the opportune presenting of the seismic alarm signal of the place, time and power of the earthquake in order to take necessary measures for maximal mitigation of the catastrophic consequence of this event. To do this it is necessary to predict the earthquake location with accuracy of first dozens of kilometres, time of its occurrence with accuracy of the first days and its power with accuracy of the magnitude units. If the problem is formulated in such a way, it cannot principally be resolved in the framework of the concept of the indirect earthquake precursors using. It is necessary to pass from the concept of the passive observatory network to the concept of the object-oriented search of the potential source zones and direct information obtaining on the parameter medium changes within these zones in the process of the earthquake preparation and development. While formulated in this way, the problem becomes a integrated task for the planet and prospecting geophysics. To detect the source zones it is possible to use the method of the converted waves of earthquakes, for monitoring - seismic reflecting and method of the common point. Arrangement of these and possible other geophysical methods should be provided by organising the special integrated geophysic expedition of the rapid response on the occurred strong earthquakes and conducting purposeful investigation within their epicentral zones. As a result the data on understanding of the geodynamic processes of the preparation and realisation of the catastrophic earthquakes will be obtained. And only in this way all the questions of the operative prognosis may be solved basing on the reliable scientific ground. The proposed approach for the operative earthquake prognosis is not the simple and prompt one. However considering the time and efforts which were already spent to the earthquake precursor search it may expect that the new approach would be more direct and effective.
Beyond triple collocation: Applications to satellite soil moisture
USDA-ARS?s Scientific Manuscript database
Triple collocation is now routinely used to resolve the exact (linear) relationships between multiple measurements and/or representations of a geophysical variable that are subject to errors. It has been utilized in the context of calibration, rescaling and error characterisation to allow comparison...
50 CFR 37.21 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...
50 CFR 37.21 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...
50 CFR 37.21 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN... field investigations and/or surface geological exploration proposed to commence before August 1, 1983... the time of plan submittal to participate in the proposed exploratory activities or share in the data...
Spatial interpolation quality assessments for soil sensor transect datasets
USDA-ARS?s Scientific Manuscript database
Near-ground geophysical soil sensors provide extremely valuable information for precision agriculture applications. Indeed, their readings can be used as proxy for many soil parameters. Typically, leave-one-out (loo) cross-validation (CV) of spatial interpolation of sensor data returns overly optimi...
Recent Advances in WRF Modeling for Air Quality Applications
The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...
Evaluating Remotely-Sensed Surface Soil Moisture Estimates Using Triple Collocation
USDA-ARS?s Scientific Manuscript database
Recent work has demonstrated the potential of enhancing remotely-sensed surface soil moisture validation activities through the application of triple collocation techniques which compare time series of three mutually independent geophysical variable estimates in order to acquire the root-mean-square...
NASA Astrophysics Data System (ADS)
Ozorovich, Yuri; Linkin, Vacheslav; Kosov, Alexandr; Fournier-Sicre, Alain; Klimov, Stanislav; Novikov, Denis; Ivanov, Anton; Skulachev, Dmitriy; Menshenin, Yaroslav
2016-04-01
This paper presents a new conceptual and methodological approach for geophysical survey of the planetary geoelectrical markers and oreols of the subsurface liquid ocean on the surface ice moons on the base "conceptual design phase" of the future space missions on the ice moons. At the design stage of such projects is considered the use of various space instruments and tools for the full the complex geophysical studies of the manifestations and planetary processes of the subsurface liquid ocean on the surface ice moons. The existence of various forms of the cryolithozone on terrestrial planets and their moons: advanced Martian permafrost zone in the form of existing of the frozen polar caps, subsurface frozen horizons, geological markers and oreols of the martian ancient (relict) ocean, subsurface oceans of Jupiter's and Saturn's moons-Europe and Enceladus, with the advanced form of permafrost freezes planetary caps, it allows to develop a common methodological basis and operational geophysical instruments (tools) for the future space program and planning space missions on these unique objects of the solar system, specialized for specific scientific problems of planetary missions. Geophysical practices and methodological principles, used in 1985-2015 by aurthors [ 1-5 ], respectively, as an example of the comprehensive geophysical experiment MARSES to study of the Martian permafrost zone and the martian ancient (relict) ocean, creating the preconditions for complex experimental setting and geo-physical monitoring of operational satellites of Jupiter and Saturn- Europe and Enceladus. This range of different planetary (like) planets with its geological history and prehistory of the common planetology formation processes of the planets formation and to define the role of a liquid ocean under the ice as a climate indicator of such planets, which is extremely important for the future construction of the geological and climatic history of the Earth. Main publications: [1]https://www.researchgate.net/publication/282151921_JUPITER%27S_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKER_AND_OREOLS_UNDER_ICE_SUBSUEFACE_OCEAN_ON_THE_SURFACE_OF_THE_JUPITER%27S_MOON_EUROPA?ev=prf_pub [2]https://www.researchgate.net/publication/281270655_YUPITERS_MOON_EUROPA_PLANETARY_GEOELECTRICAL_MARKERS_AND_OREOPLS_OF_THE_LIQUID_OCEAN_UNDER_THE_ICE_ON_THE_SURFACE_OF_THE_YUPITERS_MOON_EUROPE [3] https://www.researchgate.net/publication/276005128_Science-technology_aspects_and_opportunities_of_em_sounding_frozen_%28_permafrost%29_soil [4]https://www.researchgate.net/publication/275638508_Cryolitozone_of_Mars_-_as_the_climatic_indicator_of_the_Martian_relict_ocean [5]https://www.researchgate.net/publication/275266762_Microwave_remote_sensing_of_Martian_cryolitozone
Multivariate approximation methods and applications to geophysics and geodesy
NASA Technical Reports Server (NTRS)
Munteanu, M. J.
1979-01-01
The first report in a series is presented which is intended to be written by the author with the purpose of treating a class of approximation methods of functions in one and several variables and ways of applying them to geophysics and geodesy. The first report is divided in three parts and is devoted to the presentation of the mathematical theory and formulas. Various optimal ways of representing functions in one and several variables and the associated error when information is had about the function such as satellite data of different kinds are discussed. The framework chosen is Hilbert spaces. Experiments were performed on satellite altimeter data and on satellite to satellite tracking data.
Sampling functions for geophysics
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.; Lunquist, C. A.
1972-01-01
A set of spherical sampling functions is defined such that they are related to spherical-harmonic functions in the same way that the sampling functions of information theory are related to sine and cosine functions. An orderly distribution of (N + 1) squared sampling points on a sphere is given, for which the (N + 1) squared spherical sampling functions span the same linear manifold as do the spherical-harmonic functions through degree N. The transformations between the spherical sampling functions and the spherical-harmonic functions are given by recurrence relations. The spherical sampling functions of two arguments are extended to three arguments and to nonspherical reference surfaces. Typical applications of this formalism to geophysical topics are sketched.
Fast "swarm of detectors" and their application in cosmic rays
NASA Astrophysics Data System (ADS)
Shoziyoev, G. P.; Shoziyoev, Sh. P.
2017-06-01
New opportunities in science appeared with the latest technology of the 21st century. This paper points to creating a new architecture for detection systems of different characteristics in astrophysics and geophysics using the latest technologies related to multicopter cluster systems, alternative energy sources, cluster technologies, cloud computing and big data. The idea of a quick-deployable scaleable dynamic system of a controlled drone with a small set of different detectors for detecting various components of extensive air showers in cosmic rays and in geophysics is very attractive. Development of this type of new system also allows to give a multiplier effect for the development of various sciences and research methods to observe natural phenomena.
NASA Astrophysics Data System (ADS)
Marie, S.; Irving, J. D.; Looms, M. C.; Nielsen, L.; Holliger, K.
2011-12-01
Geophysical methods such as ground-penetrating radar (GPR) can provide valuable information on the hydrological properties of the vadose zone. In particular, there is evidence to suggest that the stochastic inversion of such data may allow for significant reductions in uncertainty regarding subsurface van-Genuchten-Mualem (VGM) parameters, which characterize unsaturated hydrodynamic behaviour as defined by the combination of the water retention and hydraulic conductivity functions. A significant challenge associated with the use of geophysical methods in a hydrological context is that they generally exhibit an indirect and/or weak sensitivity to the hydraulic parameters of interest. A novel and increasingly popular means of addressing this issue involves the acquisition of geophysical data in a time-lapse fashion while changes occur in the hydrological condition of the probed subsurface region. Another significant challenge when attempting to use geophysical data for the estimation of subsurface hydrological properties is the inherent non-linearity and non-uniqueness of the corresponding inverse problems. Stochastic inversion approaches have the advantage of providing a comprehensive exploration of the model space, which makes them ideally suited for addressing such issues. In this work, we present the stochastic inversion of time-lapse zero-offset-profile (ZOP) crosshole GPR traveltime data, collected during a forced infiltration experiment at the Arreneas field site in Denmark, in order to estimate subsurface VGM parameters and their corresponding uncertainties. We do this using a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach. We find that the Bayesian-MCMC methodology indeed allows for a substantial refinement in the inferred posterior parameter distributions of the VGM parameters as compared to the corresponding priors. To further understand the potential impact on capturing the underlying hydrological behaviour, we also explore how the posterior VGM parameter distributions affect the hydrodynamic characteristics. In doing so, we find clear evidence that the approach pursued in this study allows for effective characterization of the hydrological behaviour of the probed subsurface region.
Publications - GPR 2015-4 | Alaska Division of Geological & Geophysical
Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey airborne geophysical survey data compilation Authors: Burns, L.E., Geoterrex-Dighem, Stevens Exploration airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical Surveys
Publications - GPR 2015-3 | Alaska Division of Geological & Geophysical
Geologic Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey electromagnetic and magnetic airborne geophysical survey data compilation Authors: Burns, L.E., Fugro Airborne magnetic airborne geophysical survey data compilation: Alaska Division of Geological & Geophysical
Integration of Geophysical Methods By A Generalised Probability Tomography Approach
NASA Astrophysics Data System (ADS)
Mauriello, P.; Patella, D.
In modern science, the propensity interpretative approach stands on the assumption that any physical system consists of two kinds of reality: actual and potential. Also geophysical data systems have potentialities that extend far beyond the few actual models normally attributed to them. Indeed, any geophysical data set is in itself quite inherently ambiguous. Classical deterministic inversion, including tomography, usu- ally forces a measured data set to collapse into a few rather subjective models based on some available a priori information. Classical interpretation is thus an intrinsically limited approach requiring a very deep logical extension. We think that a way to high- light a system full potentiality is to introduce probability as the leading paradigm in dealing with field data systems. Probability tomography has been recently introduced as a completely new approach to data interpretation. Probability tomography has been originally formulated for the self-potential method. It has been then extended to geo- electric, natural source electromagnetic induction, gravity and magnetic methods. Fol- lowing the same rationale, in this paper we generalize the probability tomography the- ory to a generic geophysical anomaly vector field, including the treatment for scalar fields as a particular case. This generalization makes then possible to address for the first time the problem of the integration of different methods by a conjoint probabil- ity tomography imaging procedure. The aim is to infer the existence of an unknown buried object through the analysis of an ad hoc occurrence probability function, blend- ing the physical messages brought forth by a set of singularly observed anomalies.
Bioimpedance imaging: an overview of potential clinical applications.
Bayford, Richard; Tizzard, Andrew
2012-10-21
Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.
Parameter Estimation and Model Validation of Nonlinear Dynamical Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abarbanel, Henry; Gill, Philip
In the performance period of this work under a DOE contract, the co-PIs, Philip Gill and Henry Abarbanel, developed new methods for statistical data assimilation for problems of DOE interest, including geophysical and biological problems. This included numerical optimization algorithms for variational principles, new parallel processing Monte Carlo routines for performing the path integrals of statistical data assimilation. These results have been summarized in the monograph: “Predicting the Future: Completing Models of Observed Complex Systems” by Henry Abarbanel, published by Spring-Verlag in June 2013. Additional results and details have appeared in the peer reviewed literature.
NASA Astrophysics Data System (ADS)
Rodríguez-Robles, Ulises; Arredondo, Tulio; Huber-Sannwald, Elisabeth; Alfredo Ramos-Leal, José; Yépez, Enrico A.
2017-11-01
While semiarid forests frequently colonize rocky substrates, knowledge is scarce on how roots garner resources in these extreme habitats. The Sierra San Miguelito Volcanic Complex in central Mexico exhibits shallow soils and impermeable rhyolitic-rock outcrops, which impede water movement and root placement beyond the soil matrix. However, rock fractures, exfoliated rocks and soil pockets potentially permit downward water percolation and root growth. With ground-penetrating radar (GPR) and electrical resistivity tomography (ERT), two geophysical methods advocated by Jayawickreme et al. (2014) to advance root ecology, we advanced in the method development studying root and water distribution in shallow rocky soils and rock fractures in a semiarid forest. We calibrated geophysical images with in situ root measurements, and then extrapolated root distribution over larger areas. Using GPR shielded antennas, we identified both fine and coarse pine and oak roots from 0.6 to 7.5 cm diameter at different depths into either soil or rock fractures. We also detected, trees anchoring their trunks using coarse roots underneath rock outcroppings. With ERT, we tracked monthly changes in humidity at the soil-bedrock interface, which clearly explained spatial root distribution of both tree species. Geophysical methods have enormous potential in elucidating root ecology. More interdisciplinary research could advance our understanding in belowground ecological niche functions and their role in forest ecohydrology and productivity.
The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics
NASA Astrophysics Data System (ADS)
Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.
2017-12-01
Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer.
Bowling, Jerry C; Zheng, Chunmiao; Rodriguez, Antonio B; Harry, Dennis L
2006-05-05
Approximately 3000 measurements of hydraulic conductivity in over 50 flowmeter boreholes were available at the Macro-Dispersion Experiment (MADE) site in Columbus, Mississippi, USA to quantify the heterogeneity in hydraulic conductivity at the site scale. This high-density measurement approach is perhaps infeasible for time and expense in typical groundwater remediation sites. A natural-gradient tracer experiment from the MADE site was simulated by a groundwater flow and solute transport model incorporating direct-current (DC) resistivity data collected over the observed plume location. Hydraulic conductivity from one borehole collected during the original site characterization was used to calibrate the electrical resistivity data to hydraulic conductivity using a previously derived log-log relationship. Application of this relationship, using site-specific empirical constants determined from the data, transforms the 3D electrical resistivity data into a 3D description of hydraulic conductivity that can be used in groundwater models. The validity of this approach was tested by using the geophysically derived hydraulic conductivity representation in numerical simulations of the natural-gradient tracer experiment. The agreement between the simulated and observed tracer plumes was quantified to gauge the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field. This study demonstrates that a highly heterogeneous aquifer can be modeled with minimal hydrological data supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data.
Geophysical Investigations at Pahute Mesa, Nevada.
1987-08-12
Kelley et al., 1976), the Aki-Larner method (Aki and Larner, 1970) and generalized ray theory (Helmberger et al., 1985) to name a few examples. These...Three-dimensional calculations should be possible. Ferguson et al. (1988) have demonstrated that the so called Parker- Oldenburg technique (Parker...1972 Oldenburg , 1974) is effective in the inversion of large, three-dimensional problems. In this report an extension of the original formulation to
NASA Astrophysics Data System (ADS)
Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline
2017-04-01
Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugraha, Andri Dian; Adisatrio, Philipus Ronnie
2013-09-09
Seismic refraction survey is one of geophysical method useful for imaging earth interior, definitely for imaging near surface. One of the common problems in seismic refraction survey is weak amplitude due to attenuations at far offset. This phenomenon will make it difficult to pick first refraction arrival, hence make it challenging to produce the near surface image. Seismic interferometry is a new technique to manipulate seismic trace for obtaining Green's function from a pair of receiver. One of its uses is for improving first refraction arrival quality at far offset. This research shows that we could estimate physical properties suchmore » as seismic velocity and thickness from virtual refraction processing. Also, virtual refraction could enhance the far offset signal amplitude since there is stacking procedure involved in it. Our results show super - virtual refraction processing produces seismic image which has higher signal-to-noise ratio than its raw seismic image. In the end, the numbers of reliable first arrival picks are also increased.« less
NASA Technical Reports Server (NTRS)
Niciejewski, Rick; Killeen, Timothy L.; Turnbull, Matthew
1994-01-01
The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to "upgrade" our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPls but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.
Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
2008-09-30
retrievals, Geophysical Research Abstracts, Vol. 10, EGU2008-A-11193, 2008, SRef-ID: 1607-7962/gra/EGU2008-A 11193, EGU General Assembly 2008. Liu, M...Application of Earth Sciences Products for use in Next Generation Numerical Aerosol...can be generated and predicted. Through this system, we will be able to advance a number of US Navy Applied Science needs in the areas of improved
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.;
2015-01-01
There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Knight, R.
2009-05-01
One of the key factors in the sensible inference of subsurface geologic properties from both field and laboratory experiments is the ability to quantify the linkages between the inherently fine-scale structures, such as bedding planes and fracture sets, and their macroscopic expression through geophysical interrogation. Central to this idea is the concept of a "minimal sampling volume" over which a given geophysical method responds to an effective medium property whose value is dictated by the geometry and distribution of sub- volume heterogeneities as well as the experiment design. In this contribution we explore the concept of effective resistivity volumes for the canonical depth-to-bedrock problem subject to industry-standard DC resistivity survey designs. Four models representing a sedimentary overburden and flat bedrock interface were analyzed through numerical experiments of six different resistivity arrays. In each of the four models, the sedimentary overburden consists of a thinly interbedded resistive and conductive laminations, with equivalent volume-averaged resistivity but differing lamination thickness, geometry, and layering sequence. The numerical experiments show striking differences in the apparent resistivity pseudo-sections which belie the volume-averaged equivalence of the models. These models constitute the synthetic data set offered for inversion in this Back to Basics Resistivity Modeling session and offer the promise to further our understanding of how the sampling volume, as affected by survey design, can be constrained by joint-array inversion of resistivity data.
Evidence for a critical Earth: the New Geophysics
NASA Astrophysics Data System (ADS)
Crampin, Stuart; Gao, Yuan
2015-04-01
Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This new understanding of fluid-rock deformation unifies much of the behaviour and has currently-relevant applications: 1) The times, magnitudes, and in some circumstances locations, of impending earthquakes can be stress-forecast (predicted); 2) The times of impending volcanic eruptions can be stress-forecast (predicted); 3) The production of hydrocarbon reservoirs can be, in principle, calculated; 4) Recovery from hydrocarbon reservoirs will be increased if production is slower; 5) Time-lapse of SWS single-well imaging can monitor movement of oil/water contacts; 6) Time-lapse of SWS can monitor behaviour of fluids in fracking reservoirs; 7) Time-lapse SWS can monitor leakage in underground nuclear-waste repositories. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Gao & Crampin (SM3.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).
Bawiec, Walter J.
1998-01-01
The Commonwealth of Puerto Rico has been investigated over a very long period of time by earth scientists from many disciplines and with diverse objectives in the studies. This publication attempts to apply much of the geologic, geochemical, geophysical, and mineral occurrence information to a single objective focused on producing a mineral resource assessment for the Commonwealth of Puerto Rico. However, the value of this publication lies not within the results of the mineral resource assessment nor within the interactive PDF files which can be viewed on the screen, but within the geologic, geochemical, geophysical, and mineral occurrence digital map coverages and databases which can be used for their own unique applications. The mineral resource assessment of Puerto Rico represents compilation of several decades of mineral investigations and studies. These investigations have been the joint efforts of the U.S. Geological Survey, the Puerto Rico Department of Natural Resources, and the University of Puerto Rico. This report contains not only the mineral-resource assessment, but also much of the scientific evidence upon which the assessment was based.
NASA Technical Reports Server (NTRS)
Leprovost, Christian; Mazzega, P.; Vincent, P.
1991-01-01
Ocean tides must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean tide contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean tide solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean tide predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.
NASA Astrophysics Data System (ADS)
Supper, R.; Baroň, I.; Ottowitz, D.; Motschka, K.; Gruber, S.; Winkler, E.; Jochum, B.; Römer, A.
2013-12-01
In September 2009, a complex airborne geophysical survey was performed in the large landslide affected area of the Gschliefgraben valley, Upper Austria, in order to evaluate the applicability of this method for landslide detection and mapping. An evaluation of the results, including different remote-sensing and ground-based methods, proved that airborne geophysics, especially the airborne electromagnetic method, has a high potential for landslide investigation. This is due to its sensitivity to fluid and clay content and porosity, which are parameters showing characteristic values in landslide prone structures. Resistivity distributions in different depth levels as well as depth slices along selected profiles are presented and compared with ground geoelectrical profiles for the test area of Gschliefgraben. Further interesting results can be derived from the radiometric survey, whereas the naturally occurring radioisotopes 40K and 232Th, as well as the man-made nuclide 137Cs have been considered. While the content of potassium and thorium in the shallow subsurface layer is expressively related to the lithological composition, the distribution of caesium is mainly determined by mass wasting processes.
Geoid Recovery Using Geophysical Inverse Theory Applied to Satellite to Satellite Tracking Data
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
2000-01-01
This report describes a new method for determination of the geopotential, or the equivalent geoid. It is based on Satellite-to-Satellite Tracking (SST) of two co-orbiting low earth satellites separated by a few hundred kilometers. The analysis is aimed at the GRACE Mission, though it is generally applicable to any SST data. It is proposed that the SST be viewed as a mapping mission. That is, the result will be maps of the geoid or gravity, as contrasted with determination of spherical harmonics or Fourier coefficients. A method has been developed, based on Geophysical Inverse Theory (GIT), that can provide maps at a prescribed (desired) resolution and the corresponding error map from the SST data. This computation can be done area by area avoiding simultaneous recovery of all the geopotential information. The necessary elements of potential theory, celestial mechanics, and Geophysical Inverse Theory are described, a computation architecture is described, and the results of several simulations presented. Centimeter accuracy geoids with 50 to 100 km resolution can be recovered with a 30 to 60 day mission.
Near surface IP investigations: Four case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hearst, R.B.; Morris, W.A.; Clark, M.A.
1995-12-31
The use of the Induced Polarisation (IP) method of geophysical surveying for near surface site investigations is gaining acceptance within the geophysical community. In this study the IP method is evaluated as a tool for the delineation of ground water resources; contamination plume detection in a lateritic horizon; and acid mine drainage leak detection from decommissioned mine tailings. A time domain IP system was selected for this study primarily for the flexibility in the selection and setting of receiver time windows and diagnostic characteristics attributed to submitting the data to Cole-Cole analysis. Analysis of the acquired data in conjunction withmore » available borehole and geological information illustrates the effectiveness and usefulness of the survey method for solving near surface problems. In all of the locations tested, it was found that with a properly designed IP survey it was possible to resolve the target and/or related structures.« less
Campbell, David L.; Watts, Raymond D.
1978-01-01
Program listing, instructions, and example problems are given for 12 programs for the interpretation of geophysical data, for use on Hewlett-Packard models 67 and 97 programmable hand-held calculators. These are (1) gravity anomaly over 2D prism with = 9 vertices--Talwani method; (2) magnetic anomaly (?T, ?V, or ?H) over 2D prism with = 8 vertices?Talwani method; (3) total-field magnetic anomaly profile over thick sheet/thin dike; (4) single dipping seismic refractor--interpretation and design; (5) = 4 dipping seismic refractors--interpretation; (6) = 4 dipping seismic refractors?design; (7) vertical electrical sounding over = 10 horizontal layers--Schlumberger or Wenner forward calculation; (8) vertical electric sounding: Dar Zarrouk calculations; (9) magnetotelluric planewave apparent conductivity and phase angle over = 9 horizontal layers--forward calculation; (10) petrophysics: a.c. electrical parameters; (11) petrophysics: elastic constants; (12) digital convolution with = 10-1ength filter.
Writing memorable geophysical papers: The need for proper author coalitions
NASA Astrophysics Data System (ADS)
Baker, Daniel N.
A primary function of Eos is to serve the geophysical community. It does this by publishing meeting announcements, book reviews, advertisements for jobs, scientific news items, and the like. Recent articles have helped the membership assess the stage of their careers (Eos, 60, 1024, 1979), informed them of the advantages of having names near the beginning of the alphabet (Eos, 59, 118, 1978), and helped them maximize information transfer during scientific meetings (Eos, 62, 179, 1981). However, no one has dealt with the very difficult problem of making papers memorable. Some techniques, such as long author lists, are now passé. Everyone is doing it. Other techniques, such as writing a very short paper or a humorous paper, are beyond the ken of most AGU members. Fortunately, there remains one technique that can be used by a surprisingly large number of AGU members.
Students investigate environmental restoration site in New Mexico
NASA Astrophysics Data System (ADS)
Ferguson, John F.; Baldridge, W. Scott; Jiracek, George R.; Gonzalez, Victor; Pope, Paul A.
Investigations conducted during the 1997 Summer of Applied Geophysical Experience (SAGE) field course at one site at Los Alamos National Laboratory (LANL) successfully delineated a waste disposal trench dug in the 1940s. The survey, which was popular with the students, provided them with important experience in “real world” geophysical problems and demonstrated that students can obtain useful and important results during a short field exercise.The utility of the magnetic, seismic refraction, and ground-penetrating radar methods will be demonstrated on a profile through one of the major waste trenches at the site. The magnetic and radar methods are sensitive to the presence of metallic objects buried within the trenches. A low-velocity trench structure is defined by the seismic refraction data. Models of the trench structure are both accurate (linear dimensions are probably good to within a few meters) and somewhat different from prior expectations.
SIGKit: Software for Introductory Geophysics Toolkit
NASA Astrophysics Data System (ADS)
Kruse, S.; Bank, C. G.; Esmaeili, S.; Jazayeri, S.; Liu, S.; Stoikopoulos, N.
2017-12-01
The Software for Introductory Geophysics Toolkit (SIGKit) affords students the opportunity to create model data and perform simple processing of field data for various geophysical methods. SIGkit provides a graphical user interface built with the MATLAB programming language, but can run even without a MATLAB installation. At this time SIGkit allows students to pick first arrivals and match a two-layer model to seismic refraction data; grid total-field magnetic data, extract a profile, and compare this to a synthetic profile; and perform simple processing steps (subtraction of a mean trace, hyperbola fit) to ground-penetrating radar data. We also have preliminary tools for gravity, resistivity, and EM data representation and analysis. SIGkit is being built by students for students, and the intent of the toolkit is to provide an intuitive interface for simple data analysis and understanding of the methods, and act as an entrance to more sophisticated software. The toolkit has been used in introductory courses as well as field courses. First reactions from students are positive. Think-aloud observations of students using the toolkit have helped identify problems and helped shape it. We are planning to compare the learning outcomes of students who have used the toolkit in a field course to students in a previous course to test its effectiveness.
Search protocols for hidden forensic objects beneath floors and within walls.
Ruffell, Alastair; Pringle, Jamie K; Forbes, Shari
2014-04-01
The burial of objects (human remains, explosives, weapons) below or behind concrete, brick, plaster or tiling may be associated with serious crime and are difficult locations to search. These are quite common forensic search scenarios but little has been published on them to-date. Most documented discoveries are accidental or from suspect/witness testimony. The problem in locating such hidden objects means a random or chance-based approach is not advisable. A preliminary strategy is presented here, based on previous studies, augmented by primary research where new technology or applications are required. This blend allows a rudimentary search workflow, from remote desktop study, to non-destructive investigation through to recommendations as to how the above may inform excavation, demonstrated here with a case study from a homicide investigation. Published case studies on the search for human remains demonstrate the problems encountered when trying to find and recover sealed-in and sealed-over locations. Established methods include desktop study, photography, geophysics and search dogs: these are integrated with new technology (LiDAR and laser scanning; photographic rectification; close-quarter aerial imagery; ground-penetrating radar on walls and gamma-ray/neutron activation radiography) to propose this possible search strategy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Exact semi-separation of variables in waveguides with non-planar boundaries
NASA Astrophysics Data System (ADS)
Athanassoulis, G. A.; Papoutsellis, Ch. E.
2017-05-01
Series expansions of unknown fields Φ =∑φn Zn in elongated waveguides are commonly used in acoustics, optics, geophysics, water waves and other applications, in the context of coupled-mode theories (CMTs). The transverse functions Zn are determined by solving local Sturm-Liouville problems (reference waveguides). In most cases, the boundary conditions assigned to Zn cannot be compatible with the physical boundary conditions of Φ, leading to slowly convergent series, and rendering CMTs mild-slope approximations. In the present paper, the heuristic approach introduced in Athanassoulis & Belibassakis (Athanassoulis & Belibassakis 1999 J. Fluid Mech. 389, 275-301) is generalized and justified. It is proved that an appropriately enhanced series expansion becomes an exact, rapidly convergent representation of the field Φ, valid for any smooth, non-planar boundaries and any smooth enough Φ. This series expansion can be differentiated termwise everywhere in the domain, including the boundaries, implementing an exact semi-separation of variables for non-separable domains. The efficiency of the method is illustrated by solving a boundary value problem for the Laplace equation, and computing the corresponding Dirichlet-to-Neumann operator, involved in Hamiltonian equations for nonlinear water waves. The present method provides accurate results with only a few modes for quite general domains. Extensions to general waveguides are also discussed.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
NASA Astrophysics Data System (ADS)
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances
NASA Astrophysics Data System (ADS)
Williams, E. R.; Yu, H.
2014-12-01
Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.