ERIC Educational Resources Information Center
Reusser, Kurt; And Others
The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…
Cognitive Principles of Problem Solving and Instruction. Final Report.
ERIC Educational Resources Information Center
Greeno, James G.; And Others
Research in this project studied cognitive processes involved in understanding and solving problems used in instruction in the domain of mathematics, and explored implications of these cognitive analyses for the design of instruction. Three general issues were addressed: knowledge required for understanding problems, knowledge of the conditions…
High School Students' Use of Meiosis When Solving Genetics Problems.
ERIC Educational Resources Information Center
Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy
2001-01-01
Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…
Children's Understanding of the Inverse Relation between Multiplication and Division
ERIC Educational Resources Information Center
Robinson, Katherine M.; Dube, Adam K.
2009-01-01
Children's understanding of the inversion concept in multiplication and division problems (i.e., that on problems of the form "d multiplied by e/e" no calculations are required) was investigated. Children in Grades 6, 7, and 8 completed an inversion problem-solving task, an assessment of procedures task, and a factual knowledge task of simple…
Class and Home Problems: Optimization Problems
ERIC Educational Resources Information Center
Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard
2011-01-01
Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…
Adolescent Problem Behavior and Problem Driving in Young Adulthood
ERIC Educational Resources Information Center
Bingham, C. Raymond; Shope, Jean T.
2004-01-01
Motor vehicle crashes are the leading cause of death among drivers younger than age 35, making problem driving behavior among young drivers a significant public concern. Effective intervention requires a better understanding of the antecedents of problem driving. Problem behavior theory, social control theory, and Kandel's model of substance use…
Living with Radiation. The Problems of the Nuclear Age for the Layman.
ERIC Educational Resources Information Center
Brannigan, Francis L.
The text takes a practical approach to the understanding of industrial radiation hazards. It is intended for the layman who requires a basic understanding of the relationship of radiation problems to his own field. Discussion includes such topics as: uses which benefit mankind; radiation energy versus fission energy; effects of excessive radiation…
Dividing Fractions Using an Area Model: A Look at In-Service Teachers' Understanding
ERIC Educational Resources Information Center
Lamberg, Teruni; Wiest, Lynda R.
2015-01-01
The paper reports an investigation into how a group of elementary and middle school teachers collectively attempted to solve and understand a fraction division problem using an area model. Solving the word problem required that teachers determine how many two-thirds fit into three-fourths. The teachers struggled to conceptualise fraction division,…
A Rubric for Assessing Students' Experimental Problem-Solving Ability
ERIC Educational Resources Information Center
Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.
2012-01-01
The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-07-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.
Auditory Processing Disorder (For Parents)
... or other speech-language difficulties? Are verbal (word) math problems difficult for your child? Is your child ... inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...
ERIC Educational Resources Information Center
Alexander, John J., Ed.
1980-01-01
Presents background information and a problem on "escape velocity," which applies the gas laws to atmospheric and meteorological phenomena. Also, a problem is presented which requires an understanding of the principles of operation of pressure gauges. (CS)
Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives
ERIC Educational Resources Information Center
Palinkas, Lawrence A.
2014-01-01
Achieving the goals of social work requires matching a specific solution to a specific problem. Understanding why the problem exists and why the solution should work requires a consideration of cause and effect. However, it is unclear whether it is desirable for social workers to identify cause and effect, whether it is possible for social workers…
Universal Skills and Competencies for Geoscientists
NASA Astrophysics Data System (ADS)
Mosher, S.
2015-12-01
Geoscience students worldwide face a changing future workforce, but all geoscience work has universal cross-cutting skills and competencies that are critical for success. A recent Geoscience Employers Workshop, and employers' input on the "Future of Undergraduate Geoscience Education" survey, identified three major areas. Geoscience work requires spatial and temporal (3D & 4D) thinking, understanding that the Earth is a system of interacting parts and processes, and geoscience reasoning and synthesis. Thus, students need to be able to solve problems in the context of an open and dynamic system, recognizing that most geoscience problems have no clear, unambiguous answers. Students must learn to manage uncertainty, work by analogy and inference, and make predations with limited data. Being able to visualize and solve problems in 3D, incorporate the element of time, and understand scale is critical. Additionally students must learn how to tackle problems using real data, including understand the problems' context, identify appropriate questions to ask, and determine how to proceed. Geoscience work requires integration of quantitative, technical, and computational skills and the ability to be intellectually flexible in applying skills to new situations. Students need experience using high-level math and computational methods to solve geoscience problems, including probability and statistics to understand risk. Increasingly important is the ability to use "Big Data", GIS, visualization and modeling tools. Employers also agree a strong field component in geoscience education is important. Success as a geoscientist also requires non-technical skills. Because most work environments involve working on projects with a diverse team, students need experience with project management in team settings, including goal setting, conflict resolution, time management and being both leader and follower. Written and verbal scientific communication, as well as public speaking and listening skills, are important. Success also depends on interpersonal skills and professionalism, including business acumen, risk management, ethical conduct, and leadership. A global perspective is increasingly important, including cultural literacy and understanding societal relevance.
ERIC Educational Resources Information Center
van Velzen, Joke H.
2016-01-01
The mathematics curriculum often provides for relatively few mathematical thinking problems or non-routine problems that focus on a deepening of understanding mathematical concepts and the problem-solving process. To develop such problems, methods are required to evaluate their suitability. The purpose of this preliminary study was to find such an…
Effect of stress concentrations in composite structures
NASA Technical Reports Server (NTRS)
Babcock, G. D.; Knauss, W. G.
1984-01-01
The goal of achieving a better understanding of the failure of complex composite structure is sought. This type of structure requires a thorough understanding of the behavior under load both on a macro and micro scale if failure mechanisms are to be understood. The two problems being studied are the failure at a panel/stiffener interface and a generic problem of failure at a stress concentration.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.
ERIC Educational Resources Information Center
Smith, Mike U.; Sims, O. Suthern, Jr.
1992-01-01
Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…
Nilsen, Liv; Frich, Jan C; Friis, Svein; Norheim, Irene; Røssberg, Jan Ivar
2016-04-01
To explore the perceived benefits for patients and family members of psychoeducational family intervention following a first episode of psychosis. A qualitative exploratory study using data from interviews with 12 patients and 14 family members who participated in a psychoeducational multi- or single-family treatment programme. Semi-structured interviews were digitally recorded and transcribed verbatim with slight modifications, after which they were analysed by systematic text condensation. Patients and family members reported benefits that could be classified in five categories: (i) developing insight and acceptance requires understanding of the fact that the patient has an illness, and recognizing the need for support; (ii) recognizing warning signs requires an understanding of early signs of deterioration in the patient; (iii) improving communication skills is linked to new understanding and better communication both within the family and in groups; (iv) Learning to plan and solve problems requires the ability to solve problems in new ways; (v) becoming more independent requires patients to take responsibility for their own life. The study suggests that developing insight and acceptance, learning about warning signs, improving communications skills, learning to plan and solve problems, and becoming more independent are perceived as benefits of a psychoeducational family intervention. © 2014 Wiley Publishing Asia Pty Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallado, David A.; Cefola, Paul J.; Kiziah, Rex R.
Here, observing geosynchronous satellites has numerous applications. Lighting conditions near the equinoxes routinely cause problems for traditional observations of sensors near the equator – the solar exclusion. We investigate using sensors on satellites (in polar and high- altitude orbits) to observe satellites that are in geosynchronous orbit. It is hoped that these satellite configurations will alleviate many of these problems. Assessing the orbit insertion and station-keeping requirements are important to understand. We summarize the literature to understand the relevant perturbing forces and assess the delta-v requirements.
Vallado, David A.; Cefola, Paul J.; Kiziah, Rex R.; ...
2016-09-09
Here, observing geosynchronous satellites has numerous applications. Lighting conditions near the equinoxes routinely cause problems for traditional observations of sensors near the equator – the solar exclusion. We investigate using sensors on satellites (in polar and high- altitude orbits) to observe satellites that are in geosynchronous orbit. It is hoped that these satellite configurations will alleviate many of these problems. Assessing the orbit insertion and station-keeping requirements are important to understand. We summarize the literature to understand the relevant perturbing forces and assess the delta-v requirements.
Robinson, Katherine M; Ninowski, Jerilyn E
2003-12-01
Problems of the form a + b - b have been used to assess conceptual understanding of the relationship between addition and subtraction. No study has investigated the same relationship between multiplication and division on problems of the form d x e / e. In both types of inversion problems, no calculation is required if the inverse relationship between the operations is understood. Adult participants solved addition/subtraction and multiplication/division inversion (e.g., 9 x 22 / 22) and standard (e.g., 2 + 27 - 28) problems. Participants started to use the inversion strategy earlier and more frequently on addition/subtraction problems. Participants took longer to solve both types of multiplication/division problems. Overall, conceptual understanding of the relationship between multiplication and division was not as strong as that between addition and subtraction. One explanation for this difference in performance is that the operation of division is more weakly represented and understood than the other operations and that this weakness affects performance on problems of the form d x e / e.
Counselling Ethnic Minorities: Does It Require Special Skills?
ERIC Educational Resources Information Center
Shack, Sybil
1978-01-01
Ethnicity is an important part of Canadian life. There is no magic formula for counseling "ethnic" students. Ethnic differences create some problems, but add spice and color to Canadian classrooms. Knowledge, understanding, sensitivity, acceptance, and mutual trust help to dissipate the problems. (Author)
Contact in an Expanding Universe: An Instructive Exercise in Dynamic Geometry
ERIC Educational Resources Information Center
Zimmerman, Seth
2010-01-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic…
Resource and Information Maintenance of Foreign Citizens in Russia: Statement of a Problem
ERIC Educational Resources Information Center
Dorozhkin, Evgenij M.; Leontyeva, Tatyana V.; Shchetynina, Anna V.; Krivtsov, Artem I.
2016-01-01
The relevance of studied problem is determined by the fact that in a multiethnic country the problem of the ethno-cultural specificity of different groups of people is extremely severe, and the activity of the processes of intercultural communications in the modern world requires knowledge and understanding of other cultures. The aim of the…
From Walls to Windows: Using Barriers as Pathways to Insightful Solutions
ERIC Educational Resources Information Center
Walinga, Jennifer
2010-01-01
The purpose of this study was to explore and develop a conceptual model for how individuals unlock insight. The concept of insight--the "out of the box" or "aha!" solution to a problem--offers a framework for exploring and understanding how best to enhance problem solving skills due to the cognitive shift insight requires. Creative problem solving…
Problem Posing with Realistic Mathematics Education Approach in Geometry Learning
NASA Astrophysics Data System (ADS)
Mahendra, R.; Slamet, I.; Budiyono
2017-09-01
One of the difficulties of students in the learning of geometry is on the subject of plane that requires students to understand the abstract matter. The aim of this research is to determine the effect of Problem Posing learning model with Realistic Mathematics Education Approach in geometry learning. This quasi experimental research was conducted in one of the junior high schools in Karanganyar, Indonesia. The sample was taken using stratified cluster random sampling technique. The results of this research indicate that the model of Problem Posing learning with Realistic Mathematics Education Approach can improve students’ conceptual understanding significantly in geometry learning especially on plane topics. It is because students on the application of Problem Posing with Realistic Mathematics Education Approach are become to be active in constructing their knowledge, proposing, and problem solving in realistic, so it easier for students to understand concepts and solve the problems. Therefore, the model of Problem Posing learning with Realistic Mathematics Education Approach is appropriately applied in mathematics learning especially on geometry material. Furthermore, the impact can improve student achievement.
Plasma membrane theory in nutrient uptake and rhizotoxicity
USDA-ARS?s Scientific Manuscript database
A clear understanding of plant-ion interactions is required to address problems of plant nutrition, toxicity, and the alleviation of toxicity. One or a combination of these problems limits productivity and persistence of pasture species (and other agronomic species) in vast regions of the world. F...
ERIC Educational Resources Information Center
Shumway, Jessica F.; Kyriopoulos, Joan
2014-01-01
Being able to find the correct answer to a math problem does not always indicate solid mathematics mastery. A student who knows how to apply the basic algorithms can correctly solve problems without understanding the relationships between numbers or why the algorithms work. The Common Core standards require that students actually understand…
Code of Federal Regulations, 2011 CFR
2011-10-01
...) The individual's medical problems; (2) The level of impact these problems have on the individual's...) Independent living development such as meal preparation, budgeting and personal finances, survival skills... the most personal care needs; (B) Understand simple commands; (C) Communicate basic needs and wants...
Automating the Detection of Reflection-on-Action
ERIC Educational Resources Information Center
Saucerman, Jenny; Ruis, A. R.; Shaffer, David Williamson
2017-01-01
Learning to solve "complex problems"--problems whose solutions require the application of more than basic facts and skills--is critical to meaningful participation in the economic, social, and cultural life of the digital age. In this paper, we use a theoretical understanding of how professionals use reflection-in-action to solve complex…
Media Advocacy. Technical Assistance Packet.
ERIC Educational Resources Information Center
Join Together, Boston, MA.
Media advocacy is an environmental strategy that can be used to support alcohol and other drug prevention and policy development efforts. It helps shift the focus from understanding public health issues as individual problems to understanding them as social conditions that require collective behavior changes. Successful media advocacy uses the…
Performing Systematic Literature Reviews with Novices: An Iterative Approach
ERIC Educational Resources Information Center
Lavallée, Mathieu; Robillard, Pierre-N.; Mirsalari, Reza
2014-01-01
Reviewers performing systematic literature reviews require understanding of the review process and of the knowledge domain. This paper presents an iterative approach for conducting systematic literature reviews that addresses the problems faced by reviewers who are novices in one or both levels of understanding. This approach is derived from…
1990-07-31
examples on their use is available with the PASS User Documentation Manual. 2 The data structure of PASS requires a three- lvel organizational...files, and missing control variables. A specific problem noted involved the absence of 8087 mathematical co-processor on the target IBM-XT 21 machine...System, required an operational understanding of the advanced mathematical technique used in the model. Problems with the original release of the PASS
Diagramming Word Problems: A Strategic Approach for Instruction
ERIC Educational Resources Information Center
van Garderen, Delinda; Scheuermann, Amy M.
2015-01-01
While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…
Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics.
DeCaro, Marci S
2016-10-01
An important goal in mathematics is to flexibly use and apply multiple, efficient procedures to solve problems and to understand why these procedures work. One factor that may limit individuals' ability to notice and flexibly apply strategies is the mental set induced by the problem context. Undergraduate (N = 41, Experiment 1) and fifth- and sixth-grade students (N = 87, Experiment 2) solved mathematical equivalence problems in one of two set-inducing conditions. Participants in the complex-first condition solved problems without a repeated addend on both sides of the equal sign (e.g., 7 + 5 + 9 = 3 + _), which required multistep strategies. Then these students solved problems with a repeated addend (e.g., 7 + 5 + 9 = 7 + _), for which a shortcut strategy could be readily used (i.e., adding 5 + 9). Participants in the shortcut-first condition solved the same problem set but began with the shortcut problems. Consistent with laboratory studies of mental set, participants in the complex-first condition were less likely to use the more efficient shortcut strategy when possible. In addition, these participants were less likely to demonstrate procedural flexibility and conceptual understanding on a subsequent assessment of mathematical equivalence knowledge. These findings suggest that certain problem-solving contexts can help or hinder both flexibility in strategy use and deeper conceptual thinking about the problems.
The Construction of a Square through Multiple Approaches to Foster Learners' Mathematical Thinking
ERIC Educational Resources Information Center
Reyes-Rodriguez, Aaron; Santos-Trigo, Manuel; Barrera-Mora, Fernando
2017-01-01
The task of constructing a square is used to argue that looking for and pursuing several solution routes is a powerful principle to identify and analyse properties of mathematical objects, to understand problem statements and to engage in mathematical thinking activities. Developing mathematical understanding requires that students delve into…
ERIC Educational Resources Information Center
van Velzen, Joke H.
2016-01-01
Theoretically, it has been argued that a conscious understanding of metacognitive knowledge requires that this knowledge is explicit and systematic. The purpose of this descriptive study was to obtain a better understanding of explicitness and systematicity in knowledge of the mathematical problem-solving process. Eighteen 11th-grade…
Case Study: Assessing Critical-Thinking Skills Using Articles from the Popular Press
ERIC Educational Resources Information Center
Terry, David R.
2012-01-01
Meaningful science education requires an understanding of essential concepts, but it is just as important for scientifically literate persons to use critical thinking as they apply scientific understanding to their lives. Students should learn to use scientific information appropriately to make wise choices and to effectively solve problems that…
Morris, Alan H
2018-02-01
Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.
NASA Technical Reports Server (NTRS)
Smith, Crawford F.; Podleski, Steve D.
1993-01-01
The proper use of a computational fluid dynamics code requires a good understanding of the particular code being applied. In this report the application of CFL3D, a thin-layer Navier-Stokes code, is compared with the results obtained from PARC3D, a full Navier-Stokes code. In order to gain an understanding of the use of this code, a simple problem was chosen in which several key features of the code could be exercised. The problem chosen is a cone in supersonic flow at an angle of attack. The issues of grid resolution, grid blocking, and multigridding with CFL3D are explored. The use of multigridding resulted in a significant reduction in the computational time required to solve the problem. Solutions obtained are compared with the results using the full Navier-Stokes equations solver PARC3D. The results obtained with the CFL3D code compared well with the PARC3D solutions.
ERIC Educational Resources Information Center
Rhodes, Ashley E.; Rozell, Timothy G.
2017-01-01
Cognitive flexibility is defined as the ability to assimilate previously learned information and concepts to generate novel solutions to new problems. This skill is crucial for success within ill-structured domains such as biology, physiology, and medicine, where many concepts are simultaneously required for understanding a complex problem, yet…
ERIC Educational Resources Information Center
Caviglia, Francesco; Delfino, Manuela
2016-01-01
Active participation in the information society requires the ability to find some order in the chaotic nature of the Web and not to get lost within the endemic presence of inaccurate, misleading, biased and false information. This article presents an approach to Information Problem Solving (IPS)--that is, finding, understanding and assessing…
ERIC Educational Resources Information Center
Chao, Jen-Yi; Chao, Shu-Jen; Yao, Lo-Yi; Liu, Chuan-His
2016-01-01
This study used Focus Group to analyze user requirements for user interface so as to understand what capabilities of the Collaborative Problem Solving (CPS) Instructional Platform were expected by users. After 12 focus group interviews, the following four functions had been identified as essential to the CPS Instructional Platform: CPS…
ERIC Educational Resources Information Center
Aydogdu, Bülent; Erkol, Mehmet; Erten, Nuran
2014-01-01
Individuals benefit from science process skills while trying to solve problems through research (Bagci-Kiliç, 2003). To solve these problems individuals must acquire sufficient science process skills. Teachers must be able to understand these skills so that students can obtain the required proficiency (Mutisya, Rotich & Rotich, 2013). This…
Understanding Systems Theory for U.S. Marines
2007-01-01
Combat Development Command Quantico, Virginia 22134-5068 FUTURE WAR Understanding Systems Theory for U.S. Marines SUBMITTED IN...Systems Theory for U.S. Marines 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...attached as Appendix C). Developing solutions requires understanding the problem( s ). In complex situations, some behavior of the target system
Riva, Giuseppe; Graffigna, Guendalina; Baitieri, Maddalena; Amato, Alessandra; Bonanomi, Maria Grazia; Valentini, Paolo; Castelli, Guido
2014-01-01
The quest for an active and healthy ageing can be considered a "wicked problem." It is a social and cultural problem, which is difficult to solve because of incomplete, changing, and contradictory requirements. These problems are tough to manage because of their social complexity. They are a group of linked problems embedded in the structure of the communities in which they occur. First, they require the knowledge of the social and cultural context in which they occur. They can be solved only by understanding of what people do and why they do it. Second, they require a multidisciplinary approach. Wicked problems can have different solutions, so it is critical to capture the full range of possibilities and interpretations. Thus, we suggest that Università Cattolica del Sacro Cuore (UCSC) is well suited for accepting and managing this challenge because of its applied research orientation, multidisciplinary approach, and integrated vision. After presenting the research activity of UCSC, we describe a possible "systems thinking" strategy to consider the complexity and interdependence of active ageing and healthy living.
ERIC Educational Resources Information Center
Hwang, Yoon-Suk; Klieve, Helen; Kearney, Patrick; Saggers, Beth
2015-01-01
Provision of an individually responsive education requires a comprehensive understanding of the inner worlds of learners, such as their feelings and thoughts. However, this is difficult to achieve when learners, such as those with Autism Spectrum Disorders (ASD) and cognitive difficulties, have problems with communication. To address this issue,…
Novices and Experts in Geoinformatics: the Cognitive Gap.
NASA Astrophysics Data System (ADS)
Zhilin, M.
2012-04-01
Modern geoinformatics is an extremely powerful tool for problem analysis and decision making in various fields. Currently general public uses geoinformatics predominantly for navigating (GPS) and sharing information about particular places (GoogleMaps, Wikimapia). Communities also use geoinformatics for particular purposes: fans of history use it to correspond historical and actual maps (www.retromap.ru), birdwatchers point places where they met birds (geobirds.com/rangemaps) etc. However the majority of stakeholders local authorities are not aware of advantages and possibilities of geoinformatics. The same problem is observed for students. At the same time many professional geoinformatic tools are developed, but sometimes the experts even can't explain their purpose to non-experts. So the question is how to shrink the gap between experts and non-experts in understanding and application of geoinformatics. We think that this gap has a cognitive basis. According to modern cognitive theories (Shiffrin-Atkinson and descending) the information primary has to pass through the perceptual filter that cuts off the information that seems to be irrelevant. The mind estimates the relevance implicitly (unconsciously) basing on previous knowledge and judgments what is important. Then it comes to the working memory which is used (a) for proceeding and (b) for problem solving. The working memory has limited capacity and can operate only with about 7 objects simultaneously. Then information passes to the long-term memory that is of unlimited capacity. There it is stored as more or less complex structures with associative links. When necessary it is extracted into the working memory. If great amount of information is linked ("chunked") the working memory operates with it as one object of seven thus overcoming the limitations of the working memory capacity. To adopt any information it should (a) pass through the perceptual filter, (b) not to overload the working memory and (c) to be structured in the long-term memory. Expert easily adopt domain-specific information because they (a) understand terminology and consider the information to be important thus passing it through the perceptual filter and (b) have a lot of complex domain-specific chunks that are processed by the working memory as a whole thus avoiding to overload it. Novices (students and general public) have neither understanding and feeling importance nor necessary chunks. The following measures should be taken to bridge experts' and novices' understanding of geoinformatics. Expert community should popularize geoscientific problems developing understandable language and available tools for their solving. This requires close collaboration with educational system (especially second education). If students understand a problem, they can find and apply appropriate tool for it. Geoscientific problems and models are extremely complex. In cognitive terms, they require hierarchy of chunks. This hierarchy should coherently develop beginning from simple ones later joining them to complex. It requires an appropriate sequence of learning tasks. There is no necessity in correct solutions - the students should understand how are they solved and realize limitations of models. We think that tasks of weather forecast, global climate modeling etc are suitable. The first step on bridging experts and novices is the elaboration of a set and a sequence of learning tasks and its sequence as well as tools for their solution. The tools should be easy for everybody who understands the task and as versatile as possible - otherwise students will waste a lot of time mastering it. This development requires close collaboration between geoscientists and educators.
Non-Zero Net Force and Constant Velocity: A Study in Mazur's Peer Instruction
NASA Astrophysics Data System (ADS)
Newburgh, Ronald
2009-10-01
A problem addressed infrequently in beginning physics courses is that of a moving body with changing mass. Elementary texts often have footnotes referring to jet planes and rockets but rarely do they go further. This omission is understandable because calculations with variable mass generally require the tools of calculus. This paper presents a changing mass problem that can be treated on an elementary level, thereby leading to an understanding of the role of changing mass on Newton's second law. It also illustrates Mazur's technique of Peer Instruction, a technique that demands active student participation.
High school students' understanding and problem solving in population genetics
NASA Astrophysics Data System (ADS)
Soderberg, Patti D.
This study is an investigation of student understanding of population genetics and how students developed, used and revised conceptual models to solve problems. The students in this study participated in three rounds of problem solving. The first round involved the use of a population genetics model to predict the number of carriers in a population. The second round required them to revise their model of simple dominance population genetics to make inferences about populations containing three phenotype variations. The third round of problem solving required the students to revise their model of population genetics to explain anomalous data where the proportions of males and females with a trait varied significantly. As the students solved problems, they were involved in basic scientific processes as they observed population phenomena, constructed explanatory models to explain the data they observed, and attempted to persuade their peers as to the adequacy of their models. In this study, the students produced new knowledge about the genetics of a trait in a population through the revision and use of explanatory population genetics models using reasoning that was similar to what scientists do. The students learned, used and revised a model of Hardy-Weinberg equilibrium to generate and test hypotheses about the genetics of phenotypes given only population data. Students were also interviewed prior to and following instruction. This study suggests that a commonly held intuitive belief about the predominance of a dominant variation in populations is resistant to change, despite instruction and interferes with a student's ability to understand Hardy-Weinberg equilibrium and microevolution.
Information management for commercial aviation - A research perspective
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.; Abbott, Kathy H.; Jonsson, Jon E.; Boucek, George; Rogers, William H.
1991-01-01
The problem of flight deck information management (IM), defined as processing, controlling, and directing information, for commercial flight decks, and a research effort underway to address this problem, are discussed. The premises provided are utilized to lay the groundwork required for such research by providing a framework to describe IM problems and an avenue to follow when investigating solution concepts. The research issues presented serve to identify specific questions necessary to achieve a better understanding of the IM problem, and to provide assessments of the relative merit of various solution concepts.
ERIC Educational Resources Information Center
Cooper, Melanie M.; Klymkowsky, Michael W.
2013-01-01
Helping students understand "chemical energy" is notoriously difficult. Many hold inconsistent ideas about what energy is, how and why it changes during the course of a chemical reaction, and how these changes are related to bond energies and reaction dynamics. There are (at least) three major sources for this problem: 1) the way biologists talk…
ERIC Educational Resources Information Center
Laswadi; Kusumah, Yaya S.; Darwis, Sutawanir; Afgani, Jarnawi D.
2016-01-01
Conceptual understanding (CU) and procedural fluency (PF) are two important mathematical competencies required by students. CU helps students organizing their knowledge into a coherent whole, and PF helps them to find the right solution of a problem. In order to enhance CU and PF, students need learning experiences in constructing knowledge and…
NASA Technical Reports Server (NTRS)
Nichols, D. A.
1982-01-01
The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.
Post Viking planetary protection requirements study
NASA Technical Reports Server (NTRS)
Wolfson, R. P.
1977-01-01
Past planetary quarantine requirements were reviewed in the light of present Viking data to determine the steps necessary to prevent contamination of the Martian surface on future missions. The currently used term planetary protection reflects a broader scope of understanding of the problems involved. Various methods of preventing contamination are discussed in relation to proposed projects, specifically the 1984 Rover Mission.
R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove
2016-01-01
The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Balfanz, Robert; Byrnes, Vaughan
2009-01-01
The ambitious goal set by Colorado's governor to address the state's dropout problem is a model for the nation. Helping thousands of young people to receive their high school diplomas instead of leaving school without them is a crucial step in improving the quality of life for all Colorado residents. Accomplishing this goal will require focused…
ERIC Educational Resources Information Center
Mac Iver, Martha Abele; Balfanz, Robert; Byrnes, Vaughan
2009-01-01
The ambitious goal set by Colorado's governor to address the state's dropout problem is a model for the nation. Helping thousands of young people to receive their high school diplomas instead of leaving school without them is a crucial step in improving the quality of life for all Colorado residents. Accomplishing this goal will require focused…
Towards a Methodology for Identifying Program Constraints During Requirements Analysis
NASA Technical Reports Server (NTRS)
Romo, Lilly; Gates, Ann Q.; Della-Piana, Connie Kubo
1997-01-01
Requirements analysis is the activity that involves determining the needs of the customer, identifying the services that the software system should provide and understanding the constraints on the solution. The result of this activity is a natural language document, typically referred to as the requirements definition document. Some of the problems that exist in defining requirements in large scale software projects includes synthesizing knowledge from various domain experts and communicating this information across multiple levels of personnel. One approach that addresses part of this problem is called context monitoring and involves identifying the properties of and relationships between objects that the system will manipulate. This paper examines several software development methodologies, discusses the support that each provide for eliciting such information from experts and specifying the information, and suggests refinements to these methodologies.
Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.
Miyake, Teru
This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tactical Synthesis Of Efficient Global Search Algorithms
NASA Technical Reports Server (NTRS)
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2009-01-01
Algorithm synthesis transforms a formal specification into an efficient algorithm to solve a problem. Algorithm synthesis in Specware combines the formal specification of a problem with a high-level algorithm strategy. To derive an efficient algorithm, a developer must define operators that refine the algorithm by combining the generic operators in the algorithm with the details of the problem specification. This derivation requires skill and a deep understanding of the problem and the algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve a similar purpose to tactics used for determining indefinite integrals in calculus, that is suggesting possible ways to attack the problem.
2018-01-01
Everyday conversation frequently includes challenges to the clarity of the acoustic speech signal, including hearing impairment, background noise, and foreign accents. Although an obvious problem is the increased risk of making word identification errors, extracting meaning from a degraded acoustic signal is also cognitively demanding, which contributes to increased listening effort. The concepts of cognitive demand and listening effort are critical in understanding the challenges listeners face in comprehension, which are not fully predicted by audiometric measures. In this article, the authors review converging behavioral, pupillometric, and neuroimaging evidence that understanding acoustically degraded speech requires additional cognitive support and that this cognitive load can interfere with other operations such as language processing and memory for what has been heard. Behaviorally, acoustic challenge is associated with increased errors in speech understanding, poorer performance on concurrent secondary tasks, more difficulty processing linguistically complex sentences, and reduced memory for verbal material. Measures of pupil dilation support the challenge associated with processing a degraded acoustic signal, indirectly reflecting an increase in neural activity. Finally, functional brain imaging reveals that the neural resources required to understand degraded speech extend beyond traditional perisylvian language networks, most commonly including regions of prefrontal cortex, premotor cortex, and the cingulo-opercular network. Far from being exclusively an auditory problem, acoustic degradation presents listeners with a systems-level challenge that requires the allocation of executive cognitive resources. An important point is that a number of dissociable processes can be engaged to understand degraded speech, including verbal working memory and attention-based performance monitoring. The specific resources required likely differ as a function of the acoustic, linguistic, and cognitive demands of the task, as well as individual differences in listeners’ abilities. A greater appreciation of cognitive contributions to processing degraded speech is critical in understanding individual differences in comprehension ability, variability in the efficacy of assistive devices, and guiding rehabilitation approaches to reducing listening effort and facilitating communication. PMID:28938250
Peelle, Jonathan E
Everyday conversation frequently includes challenges to the clarity of the acoustic speech signal, including hearing impairment, background noise, and foreign accents. Although an obvious problem is the increased risk of making word identification errors, extracting meaning from a degraded acoustic signal is also cognitively demanding, which contributes to increased listening effort. The concepts of cognitive demand and listening effort are critical in understanding the challenges listeners face in comprehension, which are not fully predicted by audiometric measures. In this article, the authors review converging behavioral, pupillometric, and neuroimaging evidence that understanding acoustically degraded speech requires additional cognitive support and that this cognitive load can interfere with other operations such as language processing and memory for what has been heard. Behaviorally, acoustic challenge is associated with increased errors in speech understanding, poorer performance on concurrent secondary tasks, more difficulty processing linguistically complex sentences, and reduced memory for verbal material. Measures of pupil dilation support the challenge associated with processing a degraded acoustic signal, indirectly reflecting an increase in neural activity. Finally, functional brain imaging reveals that the neural resources required to understand degraded speech extend beyond traditional perisylvian language networks, most commonly including regions of prefrontal cortex, premotor cortex, and the cingulo-opercular network. Far from being exclusively an auditory problem, acoustic degradation presents listeners with a systems-level challenge that requires the allocation of executive cognitive resources. An important point is that a number of dissociable processes can be engaged to understand degraded speech, including verbal working memory and attention-based performance monitoring. The specific resources required likely differ as a function of the acoustic, linguistic, and cognitive demands of the task, as well as individual differences in listeners' abilities. A greater appreciation of cognitive contributions to processing degraded speech is critical in understanding individual differences in comprehension ability, variability in the efficacy of assistive devices, and guiding rehabilitation approaches to reducing listening effort and facilitating communication.
Climate modeling. [for use in understanding earth's radiation budget
NASA Technical Reports Server (NTRS)
1978-01-01
The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.
COMPUTER TECHNOLOGY AND SOCIAL CHANGE,
This paper presents a discussion of the social , political, economic and psychological problems associated with the rapid growth and development of...public officials and responsible groups is required to increase public understanding of the computer as a powerful tool, to select appropriate
Özbek, Emel; Bongers, Ilja L; Lobbestael, Jill; van Nieuwenhuizen, Chijs
2015-12-01
This study investigated the relationship between acculturation and psychological problems in Turkish and Moroccan young adults living in the Netherlands. A sample of 131 healthy young adults aged between 18 and 24 years old, with a Turkish or Moroccan background was recruited using snowball sampling. Data on acculturation, internalizing and externalizing problems, beliefs about psychological problems, attributions of psychological problems and barriers to care were collected and analyzed using Latent Class Analysis and multinomial logistic regression. Three acculturation classes were identified in moderately to highly educated, healthy Turkish or Moroccan young adults: integration, separation and diffusion. None of the participants in the sample were marginalized or assimilated. Young adults reporting diffuse acculturation reported more internalizing and externalizing problems than those who were integrated or separated. Separated young adults reported experiencing more practical barriers to care than integrated young adults. Further research with a larger sample, including young adult migrants using mental health services, is required to improve our understanding of acculturation, psychological problems and barriers to care in this population. Including experiences of discrimination in the model might improve our understanding of the relationship between different forms of acculturation and psychological problems.
Why do children and adolescents bully their peers? A critical review of key theoretical frameworks.
Thomas, Hannah J; Connor, Jason P; Scott, James G
2018-05-01
Bullying is a significant public health problem for children and adolescents worldwide. Evidence suggests that both being bullied (bullying victimisation) and bullying others (bullying perpetration) are associated with concurrent and future mental health problems. The onset and course of bullying perpetration are influenced by individual as well as systemic factors. Identifying effective solutions to address bullying requires a fundamental understanding of why it occurs. Drawing from multi-disciplinary domains, this review provides a summary and synthesis of the key theoretical frameworks applied to understanding and intervening on the issue of bullying. A number of explanatory models have been used to elucidate the dynamics of bullying, and broadly these correspond with either system (e.g., social-ecological, family systems, peer-group socialisation) or individual-level (e.g., developmental psychopathology, genetic, resource control, social-cognitive) frameworks. Each theory adds a unique perspective; however, no single framework comprehensively explains why bullying occurs. This review demonstrates that the integration of theoretical perspectives achieves a more nuanced understanding of bullying which is necessary for strengthening evidence-based interventions. Future progress requires researchers to integrate both the systems and individual-level theoretical frameworks to further improve current interventions. More effective intervention across different systems as well as tailoring interventions to the specific needs of the individuals directly involved in bullying will reduce exposure to a key risk factor for mental health problems.
Communication Problems in Requirements Engineering: A Field Study
NASA Technical Reports Server (NTRS)
Al-Rawas, Amer; Easterbrook, Steve
1996-01-01
The requirements engineering phase of software development projects is characterized by the intensity and importance of communication activities. During this phase, the various stakeholders must be able to communicate their requirements to the analysts, and the analysts need to be able to communicate the specifications they generate back to the stakeholders for validation. This paper describes a field investigation into the problems of communication between disparate communities involved in the requirements specification activities. The results of this study are discussed in terms of their relation to three major communication barriers: (1) ineffectiveness of the current communication channels; (2) restrictions on expressiveness imposed by notations; and (3) social and organizational barriers. The results confirm that organizational and social issues have great influence on the effectiveness of communication. They also show that in general, end-users find the notations used by software practitioners to model their requirements difficult to understand and validate.
An Overview Of The Ecosystem Services Research Program Decision Support Framework
There is an increasing understanding that top-down regulatory and technology driven responses are not sufficient to address current and emerging environmental challenges such as climate change, sustainable communities, and environmental justice. Such problems require ways to dee...
7 CFR 764.457 - Vendor requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Maintain and use a financial management information system to make financial decisions; (3) Understand and... budget; and (6) Use production records and other production information to identify problems, evaluate... general goal setting, risk management, and planning. (2) Financial management courses, covering all...
Adolescents' Demonstrative Behavior Research
ERIC Educational Resources Information Center
Parfilova, Gulfiya G.; Karimova, Lilia Sh.
2016-01-01
The problem of demonstrative behavior is very topical among teenagers and this issue has become the subject of systematic scientific research. Demonstrative manifestations in adolescents disrupt the favorable socialization; therefore, understanding, prevention and correction of demonstrative behavior at this age is relevant and requires special…
Earth resources ground data handling systems for the 1980's
NASA Technical Reports Server (NTRS)
Vanvleck, E. M.; Sinclair, K. F.; Pitts, S. W.; Slye, R. E.
1973-01-01
The system requirements of an operational data handling system for earth resources in the decade of the 1980's are investigated. Attention is drawn to problems encountered in meeting the stringent agricultural user requirements of that time frame. Such an understanding of requirements is essential not only in designing the ground system that will ultimately handle the data, but also in design studies of the earth resources platform, sensors, and data relay satellites which may be needed.
A survey of candidate missions to explore Saturn's rings
NASA Technical Reports Server (NTRS)
Wells, W. C.; Price, M. J.
1972-01-01
The ring system around Saturn is discussed. Exploration of the rings is required for an understanding of their origin and the hazard they represent to spacecraft near Saturn. In addition the rings may provide useful clues to the origin of the solar system. This study examines the problem of ring system exploration and recommends a sequence of missions which will collect the data required.
Issues on combining human and non-human intelligence
NASA Technical Reports Server (NTRS)
Statler, Irving C.; Connors, Mary M.
1991-01-01
The purpose here is to call attention to some of the issues confronting the designer of a system that combines human and non-human intelligence. We do not know how to design a non-human intelligence in such a way that it will fit naturally into a human organization. The author's concern is that, without adequate understanding and consideration of the behavioral and psychological limitations and requirements of the human member(s) of the system, the introduction of artificial intelligence (AI) subsystems can exacerbate operational problems. We have seen that, when these technologies are not properly applied, an overall degradation of performance at the system level can occur. Only by understanding how human and automated systems work together can we be sure that the problems introduced by automation are not more serious than the problems solved.
Distal Tracheal Resection and Reconstruction: State of the Art and Lessons Learned.
Mathisen, Douglas
2018-05-01
Tracheal disease is an infrequent problem requiring surgery. A high index of suspicion is necessary to correctly diagnose the problems. Primary concerns are safe control and assessment of the airway, familiarity with the principles of airway surgery, preserving tracheal blood supply, and avoiding anastomotic tension. A precise reproducible anastomotic technique must be mastered. Operation requires close cooperation with a knowledgeable anesthesia team. The surgeon must understand how to achieve the least tension on the anastomosis to avoid. It is advisable to examine the airway before discharge to check for normal healing and airway patency. Copyright © 2018 Elsevier Inc. All rights reserved.
Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord
NASA Astrophysics Data System (ADS)
Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun
2017-08-01
Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.
The Image Understanding Architecture Project
1988-04-01
The error resulted in the frame being reduced in size and incorrectly bonded . The problem has been corrected and3 the design has been re-submitted...Promotional literature, Beaverton, OR, 1985. Nii, 1986] Nil, H.P., The Blackboard Model of Problem Solving and the Evolution of Blackboard...microns. This resulted in a reduction in pad sizes to two thirds of the minimum required for safe bonding . All chips had many wire bonds on the die
Analysis of routine pilot-controller communication
NASA Technical Reports Server (NTRS)
Morrow, Daniel G.; Lee, Alfred; Rodvold, Michelle
1990-01-01
Although pilot-controller communication is central to aviation safety, this area of aviation human factors has not been extensively researched. Most research has focused on what kinds of communication problems occur. A more complete picture of communication problems requires understanding how communication usually works in routine operations. A sample of routine pilot-controller communication in the TRACON environment is described. After describing several dimensions of routine communication, three kinds of communication problems are treated: inaccuracies such as incorrect readbacks, procedural deviations such as missing callsigns and readbacks, and nonroutine transactions where pilot and controller must deal with misunderstandings or other communication problems. Preliminary results suggest these problems are not frequent events in daily operations. However, analysis of the problems that do occur suggest some factors that may cause them.
Perceiving fingers in single-digit arithmetic problems.
Berteletti, Ilaria; Booth, James R
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
Perceiving fingers in single-digit arithmetic problems
Berteletti, Ilaria; Booth, James R.
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda Shaller; Willoughby, John K.
1991-01-01
Traditional practice of systems engineering management assumes requirements can be precisely determined and unambiguously defined prior to system design and implementation; practice further assumes requirements are held static during implementation. Human-computer decision support systems for service planning and scheduling applications do not conform well to these assumptions. Adaptation to the traditional practice of systems engineering management are required. Basic technology exists to support these adaptations. Additional innovations must be encouraged and nutured. Continued partnership between the programmatic and technical perspective assures proper balance of the impossible with the possible. Past problems have the following origins: not recognizing the unusual and perverse nature of the requirements for planning and scheduling; not recognizing the best starting point assumptions for the design; not understanding the type of system that being built; and not understanding the design consequences of the operations concept selected.
Upscaling issues in ecohydrological observations
USDA-ARS?s Scientific Manuscript database
Scale is recognized as a central concept in the description of the hierarchical organization of our world. Pressing environmental and societal problems such require an understanding of how processes operate at different scales, and how they can be linked across scales. Ecohydrology as many other dis...
Interpretation methodology and analysis of in-flight lightning data
NASA Technical Reports Server (NTRS)
Rudolph, T.; Perala, R. A.
1982-01-01
A methodology is presented whereby electromagnetic measurements of inflight lightning stroke data can be understood and extended to other aircraft. Recent measurements made on the NASA F106B aircraft indicate that sophisticated numerical techniques and new developments in corona modeling are required to fully understand the data. Thus the problem is nontrivial and successful interpretation can lead to a significant understanding of the lightning/aircraft interaction event. This is of particular importance because of the problem of lightning induced transient upset of new technology low level microcircuitry which is being used in increasing quantities in modern and future avionics. Inflight lightning data is analyzed and lightning environments incident upon the F106B are determined.
ERIC Educational Resources Information Center
Safadi, Rafi'
2017-01-01
I examined the impact of a self-diagnosis activity on students' conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own--namely, to identify and explain their errors--and self-score them--that is, assign scores to their solutions--aided by…
ERIC Educational Resources Information Center
Dehne, George C.
1995-01-01
Many colleges address complex problems with a single "silver bullet" strategy. Because value shifts according to the consumer's situation or goal, private colleges should become more aware of their "situational value" and exploit it. This requires an understanding of how students choose colleges. In contrast, popular silver bullets target…
USDA-ARS?s Scientific Manuscript database
Scale is recognized as a central concept in the description of the hierarchical organization of our world. Pressing environmental and societal problems such require an understanding of how processes operate at different scales, and how they can be linked across scales. Soil science as many other dis...
Designing Effective Supports for Causal Reasoning
ERIC Educational Resources Information Center
Jonassen, David H.; Ionas, Ioan Gelu
2008-01-01
Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…
Extra-Pulmonary Tuberculosis and Its Surgical Treatment.
Fry, Donald E
2016-08-01
Tuberculous infection has declined in the United States but remains a major infectious disease with morbidity and death for millions of people. Although the primary therapy is drugs, complications of the disease require surgical interventions. The published literature on tuberculosis was reviewed to provide a current understanding of the medical treatment of the disease and to define those areas where surgical intervention continues to be necessary. Multi-drug therapy for tuberculosis has become the standard and has reduced the complications of the disease necessitating surgical intervention. However, multi-drug resistance and extensively drug-resistant tuberculosis continue to be major problems and require effective initial therapy with surveillance to define resistant infections. The roles of surgery in tuberculosis are in establishing the diagnosis in extra-pulmonary infection and in the management of complications of disseminated disease. Tuberculosis remains an occupational risk for surgeons and surgical personnel. Tuberculosis is still a global problem, mandating recognition and treatment. Surgeons should have an understanding of the diverse presentation and complications of the disease.
Multiple representations and free-body diagrams: Do students benefit from using them?
NASA Astrophysics Data System (ADS)
Rosengrant, David R.
2007-12-01
Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.
Control of Flexible Structures (COFS) Flight Experiment Background and Description
NASA Technical Reports Server (NTRS)
Hanks, B. R.
1985-01-01
A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.
Comparing the development of the multiplication of fractions in Turkish and American textbooks
NASA Astrophysics Data System (ADS)
Kar, Tuğrul; Güler, Gürsel; Şen, Ceylan; Özdemir, Ercan
2018-02-01
This study analyzed the methods used to teach the multiplication of fractions in Turkish and American textbooks. Two Turkish textbooks and two American textbooks, Everyday Mathematics (EM) and Connected Mathematics 3 (CM), were analyzed. The analyses focused on the content and the nature of the mathematical problems presented in the textbooks. The findings of the study showed that the American textbooks aimed at developing conceptual understanding first and then procedural fluency, whereas the Turkish textbooks aimed at developing both concurrently. The American textbooks provided more opportunities for different computational strategies. The solutions to most problems in all textbooks required a single computational step, a numerical answer, and procedural knowledge. Furthermore, compared with the Turkish textbooks, the American textbooks contained a greater number of problems that required high-level cognitive skills such as mathematical reasoning.
Test of understanding of vectors: A reliable multiple-choice vector concept test
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2014-06-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.
NASA Astrophysics Data System (ADS)
Compton, W. Dale; Reitz, John R.
1981-01-01
Physicists have made important contributions to many areas of Ford Motor Company activity, particularly in areas of basic and applied research and product development. A number have assumed positions with management responsibility. Many of the technical problems facing the automotive industry today require a fundamental understanding, and the ability of physicists to contribute to the solution of these problems is greater now than it has been in the past. The present paper discusses some of these problems, and also traces a few case histories of physicists at Ford Motor Company; these illustrate the wide diversity of career paths for persons entering industry with a physics background.
ERIC Educational Resources Information Center
Caravita, Silvia; Falchetti, Elisabetta
2005-01-01
Many studies have investigated the classification of living things. Our study deals with a different problem: the attribution of life to one component of a living organism, specifically the bones. The task involves not only specifying what we mean by "alive", but also requires "informed thinking" leading to an understanding of…
The Architect's Guide to Mechanical Systems.
ERIC Educational Resources Information Center
Andrews, F. T.
The principles and problems of designing new building mechanical systems are discussed in this reference source in the light of data on the functions and operation of mechanical systems. As a practical guide to understanding mechanical systems it describes system types, functions, space requirements, weights, installation, maintenance and…
SIMULATION MODEL FOR WATERSHED MANAGEMENT PLANNING. VOLUME 1. MODEL THEORY AND FORMULATION
Evaluation of nonpoint source pollution problems requires an understanding of the behavioral response to an ecosystem to the impacts of land use activities on individual components of that ecosystem. By analyzing basic ecosystem processes and impacts of land use activities on spe...
DOT National Transportation Integrated Search
2008-10-01
Traffic safety is a widespread social concern. Tackling the problem requires understanding the people : who are driving. This includes information about driver behavior, but also about perceptions these drivers : hold regarding their driving. North D...
Traumatic Brain Injury Inpatient Rehabilitation
ERIC Educational Resources Information Center
Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen
2010-01-01
Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…
The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.
White, Harold B
2007-05-01
Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.
Advanced instrumentation: Technology database enhancement, volume 4, appendix G
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of this task was to add to the McDonnell Douglas Space Systems Company's Sensors Database, including providing additional information on the instruments and sensors applicable to physical/chemical Environmental Control and Life Support System (P/C ECLSS) or Closed Ecological Life Support System (CELSS) which were not previously included. The Sensors Database was reviewed in order to determine the types of data required, define the data categories, and develop an understanding of the data record structure. An assessment of the MDSSC Sensors Database identified limitations and problems in the database. Guidelines and solutions were developed to address these limitations and problems in order that the requirements of the task could be fulfilled.
Moral Understanding in the Psychopath*
Malatesti, Luca
2010-01-01
A pressing and difficult practical problem concerns the general issue of the right social response to offenders classified as having antisocial personality disorder. This paper approaches this general problem by focusing, from a philosophical perspective, on the still relevant but more approachable question whether psychopathic offenders are morally responsible. In particular, I investigate whether psychopaths possess moral understanding. A plausible way to approach the last question requires a satisfactory philosophical interpretation of the empirical evidence that appears to show that psychopaths fail to draw the distinction between conventional and moral norms. Specifically, I will consider a recent philosophical debate polarized between supporters of rationalist and sentimentalist accounts of moral understanding. These opponents have discussed whether the case of psychopathy offers empirical support for their account and undermine the rival view. I will argue that the available empirical data leave the outcome of this discussion indeterminate. However, this implies that both these principal theories of moral understanding, if independently motivated, would imply that psychopaths have certain deficits that might affect their moral understanding and, consequently, their moral responsibility. PMID:21151766
NASA Astrophysics Data System (ADS)
Wilson, H. F.
2013-12-01
First-principles atomistic simulation is a vital tool for understanding the properties of materials at the high-pressure high-temperature conditions prevalent in giant planet interiors, but properties such as solubility and phase boundaries are dependent on entropy, a quantity not directly accessible in simulation. Determining entropic properties from atomistic simulations is a difficult problem typically requiring a time-consuming integration over molecular dynamics trajectories. Here I will describe recent advances in first-principles thermodynamic calculations which substantially increase the simplicity and efficiency of thermodynamic integration and make entropic properties more readily accessible. I will also describe the use of first-principles thermodynamic calculations for understanding problems including core solubility in gas giants and superionic phase changes in ice giants, as well as future prospects for combining first-principles thermodynamics with planetary-scale models to help us understand the origin and consequences of compositional inhomogeneity in giant planet interiors.
NASA Technical Reports Server (NTRS)
Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)
1988-01-01
The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.
Designing and Validating Assessments of Complex Thinking in Science
ERIC Educational Resources Information Center
Ryoo, Kihyun; Linn, Marcia C.
2015-01-01
Typical assessment systems often measure isolated ideas rather than the coherent understanding valued in current science classrooms. Such assessments may motivate students to memorize, rather than to use new ideas to solve complex problems. To meet the requirements of the Next Generation Science Standards, instruction needs to emphasize sustained…
Can't Do Maths--Understanding Students' Maths Anxiety
ERIC Educational Resources Information Center
Metje, N.; Frank, H. L.; Croft, P.
2007-01-01
The number of students continuing with their mathematics education post GCSE level has declined in recent years and hence students entering Engineering degrees are reducing. The University of Birmingham recognized this problem and introduced the Suite of Technology programme (STP) which no longer requires students to have A-level mathematics.…
The Role of Information about "Convention," "Design," and "Goal" in Representing Artificial Kinds
ERIC Educational Resources Information Center
German, Tim P.; Truxaw, Danielle; Defeyter, Margaret Anne
2007-01-01
Artifact knowledge requires integration of information from different areas of human commonsense knowledge--our everyday understanding of object mechanics and our everyday psychology. Here, we address the question of artifact conceptual structure, outlining evidence from tasks involving categorization, function judgments, and problem solving.
21st century environmental problems are wicked and require holistic systems thinking and solutions that integrate social and economic knowledge with knowledge of the environment. Computer-based technologies are fundamental to our ability to research and understand the relevant sy...
USDA-ARS?s Scientific Manuscript database
Aluminum (Al) toxicity is an important abiotic stress that affects soybean production in acidic soils. Development of Al-tolerant cultivars is an efficient and environmentally friendly solution to the problem. Effective selection of Al-tolerant genotypes in applied breeding requires an understanding...
Using Portfolio Assignments to Assess Students' Mathematical Thinking
ERIC Educational Resources Information Center
Fukawa-Connelly, Timothy; Buck, Stephen
2010-01-01
Writing in mathematics can improve procedural knowledge and communication skills and may also help students better understand and then remember problems. The majority of mathematics teachers know that they ought to include some writing assignments in their instructional plans, but the challenge of covering the curriculum and the time required to…
A Required Course in Clinical Chemistry and Biochemistry
ERIC Educational Resources Information Center
Stohs, S. J.; Rosenberg, H.
1976-01-01
The two-credit, one-semester course was initiated for fourth-year pharmacy students at the University of Nebraska Medical Center. It was organized to enable the student to better understand the health problems of the patient and to better communicate information on drugs to patients and health professionals. (LBH)
Intelligent CAI: An Author Aid for a Natural Language Interface.
ERIC Educational Resources Information Center
Burton, Richard R.; Brown, John Seely
This report addresses the problems of using natural language (English) as the communication language for advanced computer-based instructional systems. The instructional environment places requirements on a natural language understanding system that exceed the capabilities of all existing systems, including: (1) efficiency, (2) habitability, (3)…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Lein, Amy E.; Star, Jon R.; Dupuis, Danielle N.
2013-01-01
Proportional thinking, which requires understanding fractions, ratios, and proportions, is an area of mathematics that is cognitively challenging for many children and adolescents (Fujimura, 2001; Lamon, 2007; Lobato, Ellis, Charles, & Zbiek, 2010; National Mathematics Advisory Panel [NMAP], 2008) and "transcends topical barriers in adult…
ERIC Educational Resources Information Center
Downing, John H.; Lander, Jeffrey E.
1997-01-01
Integrating physical training with physics concepts gives teachers increased opportunities for exploration, problem solving, and concept application, while providing an additional medium for cooperative learning and mutual understanding of each others' goals and objectives. An interdisciplinary model requires alternative planning and preparation…
Coding Skills as a Success Factor for a Society
ERIC Educational Resources Information Center
Tuomi, Pauliina; Multisilta, Jari Antero; Saarikoski, Petri; Suominen, Jaakko
2018-01-01
Digitalization is one of the most promising ways to increase productivity in the public sector and is needed to reform the economy by creating new innovation related jobs. The implementation of digital services requires problem solving, design skills, logical thinking, an understanding of how computers and networks operate, and programming…
Design of Lexicons in Some Natural Language Systems.
ERIC Educational Resources Information Center
Cercone, Nick; Mercer, Robert
1980-01-01
Discusses an investigation of certain problems concerning the structural design of lexicons used in computational approaches to natural language understanding. Emphasizes three aspects of design: retrieval of relevant portions of lexicals items, storage requirements, and representation of meaning in the lexicon. (Available from ALLC, Dr. Rex Last,…
Unified Approximations: A New Approach for Monoprotic Weak Acid-Base Equilibria
ERIC Educational Resources Information Center
Pardue, Harry; Odeh, Ihab N.; Tesfai, Teweldemedhin M.
2004-01-01
The unified approximations reduce the conceptual complexity by combining solutions for a relatively large number of different situations into just two similar sets of processes. Processes used to solve problems by either the unified or classical approximations require similar degrees of understanding of the underlying chemical processes.
Productive Struggle in Mathematics. Interactive STEM Research + Practice Brief
ERIC Educational Resources Information Center
Pasquale, Marian
2016-01-01
Mathematical problems and puzzles that require commitment and perseverance to solve can help foster deep mathematics understanding in students. In this brief, the author describes factors that influence productive struggle, shares four examples of how teachers often respond to their students' productive struggles, and offers four strategies to…
A Conceptual Approach to Absolute Value Equations and Inequalities
ERIC Educational Resources Information Center
Ellis, Mark W.; Bryson, Janet L.
2011-01-01
The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…
Solving Rational Expectations Models Using Excel
ERIC Educational Resources Information Center
Strulik, Holger
2004-01-01
Simple problems of discrete-time optimal control can be solved using a standard spreadsheet software. The employed-solution method of backward iteration is intuitively understandable, does not require any programming skills, and is easy to implement so that it is suitable for classroom exercises with rational-expectations models. The author…
Educational Leadership: The Uses of Adversity
ERIC Educational Resources Information Center
Culbertson, Jack
1976-01-01
Skepticism about the power of education challenges the educational administrator to (1) attain a better understanding of the sources of dissatisfaction and their implications for change, (2) learn to cope with adversity and make constructive use of it, and (3) define the leadership requirements needed to address education's problems. (MB)
Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms
NASA Astrophysics Data System (ADS)
Johansson, Niklas; Larsson, Jan-Åke
2017-09-01
A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.
Water and Social Justice in Bangladesh: A Transdisciplinary and Intercultural Approach
NASA Astrophysics Data System (ADS)
Gilligan, J. M.; Ackerly, B.; Ahmed, K.; Benneyworth, L.; Goodbred, S. L.; Hall, M.; Jacobi, J. H.; Mondal, D. R.; Pickering, J.; Rogers, K. G.; Roy, K.; Wallace Auerbach, L.
2013-12-01
Effectively addressing environmental problems---at local, national, and global scales---requires actively crossing disciplinary boundaries between natural sciences, engineering, social sciences, and policymaking. The best technical solution is useless if it cannot win political support from the people it is intended to help. Enacted policies are too often hindered either by misunderstanding or ignorance of scientific and technical aspects of the problem or by misunderstanding the behavior of the population they address. Environmental problems at the international scale also require understanding of cultural and social differences across national boundaries. To prepare graduate students to be professionally effective at addressing major environmental problems, Vanderbilt University has created a transdisciplinary, intercultural course that brings students from the US and Bangladesh together, both through online connections such as blogs and Skype sessions, and in person in a week-long joint field trip in which students and faculty from universities in both countries, and representing many disciplines work side-by-side to study water as both a natural resource and a natural hazard. Activities included studying sources of drinking water, observing areas affected by flooding from cyclone storm surges, cataloging physical infrastructure, and conducting interviews with residents of vulnerable areas. Few if any students can simultaneously master the social sciences, natural sciences, and engineering skills necessary to comprehensively address major environmental problems, but students can learn to work and communicate effectively with peers in other disciplines, working together to understand the complex interactions between different aspects of their problem. We will report on the structure of the course; our experiences as faculty and student participants; and connections between this class, graduate curricula in environmental sciences, and international transdisciplinary research projects.
Managing the Budget: Stock-Flow Reasoning and the CO2 Accumulation Problem.
Newell, Ben R; Kary, Arthur; Moore, Chris; Gonzalez, Cleotilde
2016-01-01
The majority of people show persistent poor performance in reasoning about "stock-flow problems" in the laboratory. An important example is the failure to understand the relationship between the "stock" of CO2 in the atmosphere, the "inflow" via anthropogenic CO2 emissions, and the "outflow" via natural CO2 absorption. This study addresses potential causes of reasoning failures in the CO2 accumulation problem and reports two experiments involving a simple re-framing of the task as managing an analogous financial (rather than CO2 ) budget. In Experiment 1 a financial version of the task that required participants to think in terms of controlling debt demonstrated significant improvements compared to a standard CO2 accumulation problem. Experiment 2, in which participants were invited to think about managing savings, suggested that this improvement was fortuitous and coincidental rather than due to a fundamental change in understanding the stock-flow relationships. The role of graphical information in aiding or abetting stock-flow reasoning was also explored in both experiments, with the results suggesting that graphs do not always assist understanding. The potential for leveraging the kind of reasoning exhibited in such tasks in an effort to change people's willingness to reduce CO2 emissions is briefly discussed. Copyright © 2015 Cognitive Science Society, Inc.
Creative brains: designing in the real world†
Goel, Vinod
2014-01-01
The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846
TEACHING PHYSICS: The quantum understanding of pre-university physics students
NASA Astrophysics Data System (ADS)
Ireson, Gren
2000-01-01
Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.
Status and Direction of Tribology as a Science in the 80's. Understanding and Prediction
NASA Technical Reports Server (NTRS)
Tabor, D.
1984-01-01
The most challenging research problems in tribology for the next decade or beyond are classified horizontally into two categories: (1) understanding of basic mechanisms and (2) prediction of practical performance. Vertical classifications are in terms of particular themes or fields of interest. Areas where more fundamental work is required are: adhesion and friction of clean and contaminated surfaces; lubrication; new materials; surface characterization at the engineering level (topography) and at the atomic levels (various spectroscopies); and wear.
Problem reporting and tracking system: a systems engineering challenge
NASA Astrophysics Data System (ADS)
Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector
2016-08-01
The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.
Innovation and problem solving: a review of common mechanisms.
Griffin, Andrea S; Guez, David
2014-11-01
Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.
State analysis requirements database for engineering complex embedded systems
NASA Technical Reports Server (NTRS)
Bennett, Matthew B.; Rasmussen, Robert D.; Ingham, Michel D.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer's intent, potentially leading to software errors. This problem is addressed by a systems engineering tool called the State Analysis Database, which provides a tool for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using the State Analysis Database.
Choi, Yoonsun; Harachi, Tracy W.; Gillmore, Mary Rogers; Catalano, Richard F.
2011-01-01
The development of preventive interventions targeting adolescent problem behaviors requires a thorough understanding of risk and protective factors for such behaviors. However, few studies examine whether different cultural and ethnic groups share these factors. This study is an attempt to fill a gap in research by examining similarities and differences in risk factors across racial and ethnic groups. The social development model has shown promise in organizing predictors of problem behaviors. This article investigates whether a version of that model can be generalized to youth in different racial and ethnic groups (N = 2,055, age range from 11 to 15), including African American (n = 478), Asian Pacific Islander (API) American (n = 491), multiracial (n = 442), and European American (n = 644) youth. The results demonstrate that common risk factors can be applied to adolescents, regardless of their race and ethnicity. The findings also demonstrate that there are racial and ethnic differences in the magnitudes of relationships among factors that affect problem behaviors. Further study is warranted to develop a better understanding of these differential magnitudes. PMID:21625351
More than just "plug-and-chug": Exploring how physics students make sense with equations
NASA Astrophysics Data System (ADS)
Kuo, Eric
Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.
Wireless device connection problems and design solutions
NASA Astrophysics Data System (ADS)
Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng
2016-09-01
Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.
NASA Astrophysics Data System (ADS)
Ogoshi, Yasuhiro; Nakai, Akio; Mitsuhashi, Yoshinori; Araki, Chikahiro
At the present, educational support is required to the school children who confronts problems on study, life style, mental and health. For the school children who hold these problems, inference and understanding of those around adults are mandatory, for that intimate cooperation between the school, home and specialized agencies should be important. With above reason, the school children support system using ICF to communicate the school, the specialist and the guardian is developed in this works. Realization of this system, immediate support to the school children and their guardians will be possible. It is also considered to be a preventive support instead of an allopathic support.
Infectious mononucleosis and the spleen.
Kinderknecht, James J
2002-04-01
Infectious mononucleosis is an extremely common problem in the athletic population. "Mono" occurs in 3% of college students. Diagnosing infectious mononucleosis requires an understanding of the clinical features such as fever, lymphadenopathy, pharyngitis, and splenomegaly, as well as laboratory findings. The time at which these clinical features and laboratory abnormalities develop is also important to understand. Splenomegaly is common, but splenic rupture is very rare. Whether an athlete may return to activity usually relates to the presence of splenomegaly and the duration of the illness. Splenic rupture has not been reported after an individual has been ill for more than 3 weeks. This article provides an overview of infectious mononucleosis. The most common complications are reviewed and the management of these problems discussed. A practical approach to determining when an athlete may return to activity is presented.
Exploration versus exploitation in space, mind, and society
Hills, Thomas T.; Todd, Peter M.; Lazer, David; Redish, A. David; Couzin, Iain D.
2015-01-01
Search is a ubiquitous property of life. Although diverse domains have worked on search problems largely in isolation, recent trends across disciplines indicate that the formal properties of these problems share similar structures and, often, similar solutions. Moreover, internal search (e.g., memory search) shows similar characteristics to external search (e.g., spatial foraging), including shared neural mechanisms consistent with a common evolutionary origin across species. Search problems and their solutions also scale from individuals to societies, underlying and constraining problem solving, memory, information search, and scientific and cultural innovation. In summary, search represents a core feature of cognition, with a vast influence on its evolution and processes across contexts and requiring input from multiple domains to understand its implications and scope. PMID:25487706
The Emerging Genre of Data Comics.
Bach, Benjamin; Riche, Nathalie Henry; Carpendale, Sheelagh; Pfister, Hanspeter
2017-01-01
As we increasingly rely on data to understand our world, and as problems require global solutions, we need to effectively communicate that data to help people make informed decisions. The special Art on Graphics article explores the potential of data comics and their unique ability to communicate both data and context via compelling visual storytelling.
ERIC Educational Resources Information Center
Mitchell, Claudia
2010-01-01
Competency standards require baccalaureate nursing graduates to demonstrate knowledge, understanding, and the ability to solve complex problems. In an effort to achieve these program outcomes, educators seek empirical evidence related to the learning process and the effect of innovative teaching strategies, such as simulation, on the learner.…
Self-Development of Pedagogical Competence of Future Teacher
ERIC Educational Resources Information Center
Mirzagitova, Alsu Linarovna; Akhmetov, Linar Gimazetdinovich
2015-01-01
Relevance of a considered problem is caused by that situation, in which appeared pedagogical education of Russia at present. Absence of clear understanding of prospect of school, of requirements to the modern teacher, of the purposes of students training in the conditions of continuous reformed education brought in pedagogical universities to loss…
ERIC Educational Resources Information Center
Ichu, Emmanuel A.
2010-01-01
Software quality is perhaps one of the most sought-after attributes in product development, however; this goal is unattained. Problem factors in software development and how these have affected the maintainability of the delivered software systems requires a thorough investigation. It was, therefore, very important to understand software…
Identifying Threshold Concepts: Case Study of an Open Catchment Hydraulics Course
ERIC Educational Resources Information Center
Knight, D. B.; Callaghan, D. P.; Baldock, T. E.; Meyer, J. H. F.
2014-01-01
The Threshold Concept Framework is used to initiate a dialogue on an empirically supported pedagogy that focuses on students' conceptual understanding required for solving application-based problems. The present paper uses a triangulation approach to identify the threshold concept in a third-year undergraduate civil engineering course on open…
ERIC Educational Resources Information Center
Zisk, Daniel S.; Owyar-Hosseini, Marion M.; DuBose, Philip B.
2015-01-01
Companies face many challenges as they staff managerial positions in overseas operations, including decisions on whether to staff using expatriates, host-country nationals, or third-country nationals. We developed an exercise--designed to help students understand the differences between these three groups of employees--that requires students to…
Shooting Free Throws, Probability, and the Golden Ratio
ERIC Educational Resources Information Center
Goodman, Terry
2010-01-01
Part of the power of algebra is that it provides students with tools that they can use to model a variety of problems and applications. Such modeling requires them to understand patterns and choose from a variety of representations--numeric, graphical, symbolic--to construct a model that accurately reflects the relationships found in the original…
My Solar System: A Developmentally Adapted Eco-Mapping Technique for Children
ERIC Educational Resources Information Center
Curry, Jennifer R.; Fazio-Griffith, Laura J.; Rohr, Shannon N.
2008-01-01
Counseling children requires specific skills and techniques, such as play therapy and expressive arts, to address developmental manifestations and to facilitate the understanding of presenting problems. This article outlines an adapted eco-mapping activity that can be used as a creative counseling technique with children in order to promote…
ERIC Educational Resources Information Center
Blanchet, Eileen
The fact that our school system is not prepared to help neurologically impaired children nor able to understand the difficulties these children face prompted the writing of this guide for parents. Acceptance of the child and his problem and the ridding of your own and his anxieties are first requirements for successful parental assistance. A…
Pragmatic Abilities in Adults with and without Dyslexia: A Pilot Study
ERIC Educational Resources Information Center
Griffiths, Catherine C. B.
2007-01-01
This study examines well-compensated adults with dyslexia to see if they experience more problems with pragmatic awareness than the normal population. Social interaction requires an individual to process language at speed by using working memory efficiently, in order to understand the intended, rather than literal, meaning between speaker and…
Understanding and Minimizing Staff Burnout. An Introductory Packet.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Mental Health Schools.
Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…
ERIC Educational Resources Information Center
Firozzaman, Firoz; Firoz, Fahim
2017-01-01
Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the…
ERIC Educational Resources Information Center
Gaffney, Janet S.; Paynter, Susan Y.
A literacy intervention is designed to produce accelerated change, moving student achievement rapidly and providing for sustained performance over time. Adopting a complex intervention is a problem-solving process that requires understanding of the conceptual congruity of all aspects of the theory, intervention, and training underlying the…
A Fruitful Activity for Finding the Greatest Common Factor
ERIC Educational Resources Information Center
Bell, Carol J.; Leisner, Heather J.; Shelley, Kristina
2011-01-01
Posing mathematics problems in different ways will raise students' level of cognitive demand because it will push them to think more deeply about mathematics. By engaging students in a task that requires them to determine their own solution strategies, students will gain a deeper understanding of the mathematical concept explored through the task.…
NASA Astrophysics Data System (ADS)
Oza, Amit R.
The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or "correct" mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and operational constraint model data blocks in the pre-design stages. • Allow the product model, mission model, and operational constraint model to be cross referenced with a generic aircraft synthesis capability to identify disciplinary analysis methods and processes. • Allow for matching, comparison, and balancing of the aircraft hardware portfolio to the associated developmental and technology risk metrics. • Allow for visualization technology portfolio decision space. The problem formulation architecture is finally implemented and verified for a generic hypersonic vehicle research demonstrator where a portfolio of technology hardware are measured for developmental and technology risks, prioritized by the researcher risk constraints, and the data generated delivered to a novel aircraft synthesis tool to confirm vehicle feasibility.
Is Quaternary geology ready for the future?
NASA Astrophysics Data System (ADS)
Ritter, Dale F.
1996-07-01
Armed with a better understanding of process and an array of developing dating techniques, Quaternary geology is poised to achieve greater recognition in the general scientific community. This recognition however, will require some thought adjustment. Quaternary geologists will have to convince government, industry and a variety of scientific groups that they possess unique training and expertise that is needed as part of the thrust to fully understand and/or resolve major scientific problems. Therefore, future research and education efforts should not focus on developing a rigidly defined identity within geoscience, but instead should seek ways to be integrated with interdisciplinary teams that will investigate complex environmental and climate change problems. Such a scenaria creates and enermous dilemma for Quaternary geologists because they will derive greater intellectual stimulation from scientists working in discplines other than geology, and their scientific collaboratiors will most likely not be their academic colleagues. This outward expansion of our scientific network will require the development of interdsciplinary research collaboration and/or degree-granting programs at the graduate level. To accomplish such goals, universities must resist "turf protection", and funding agencies muts become more efficient at facilitating interdisciplinary research.
The Welfare of Bears in Zoos: A Case Study of Poland.
Maślak, Robert; Sergiel, Agnieszka; Bowles, David; Paśko, Łukasz
2016-01-01
The welfare of captive bears became a big issue of concern in Poland when a case of a bear being ill-treated became a high-profile case in the media. This case created a challenge to verify, study, and understand the main problems associated with bear keeping so that zoos could significantly improve the conditions in which they keep bears or ensure they keep bears at the minimum required standards. The results presented here are from 1 of the few countrywide studies of captive bear conditions conducted in all the captive institutions in Poland that keep bears. Thirteen institutions kept bears at the time of the study (2007-2009), including 54 individuals of 5 species. Major welfare problems were identified, and the results have been used to challenge zoos to address the changes required and focus the government's attention on areas that require legislative improvement.
Using templates and linguistic patterns to define process performance indicators
NASA Astrophysics Data System (ADS)
del-Río-Ortega, Adela; Resinas, Manuel; Durán, Amador; Ruiz-Cortés, Antonio
2016-02-01
Process performance management (PPM) aims at measuring, monitoring and analysing the performance of business processes (BPs), in order to check the achievement of strategic and operational goals and to support decision-making for their optimisation. PPM is based on process performance indicators (PPIs), so having an appropriate definition of them is crucial. One of the main problems of PPIs definition is to express them in an unambiguous, complete, understandable, traceable and verifiable manner. In practice, PPIs are defined informally - usually in ad hoc, natural language, with its well-known problems - or they are defined from an implementation perspective, hardly understandable to non-technical people. In order to solve this problem, in this article we propose a novel approach to improve the definition of PPIs using templates and linguistic patterns. This approach promotes reuse, reduces both ambiguities and missing information, is understandable to all stakeholders and maintains traceability with the process model. Furthermore, it enables the automated processing of PPI definitions by its straightforward translation into the PPINOT metamodel, allowing the gathering of the required information for their computation as well as the analysis of the relationships between them and with BP elements.
NASA Astrophysics Data System (ADS)
Warner, T. T.; Swerdlin, S. P.; Chen, F.; Hayden, M.
2009-05-01
The innovative use of Computational Fluid-Dynamics (CFD) models to define the building- and street-scale atmospheric environment in urban areas can benefit society in a number of ways. Design criteria used by architectural climatologists, who help plan the livable cities of the future, require information about air movement within street canyons for different seasons and weather regimes. Understanding indoor urban air- quality problems and their mitigation, especially for older buildings, requires data on air movement and associated dynamic pressures near buildings. Learning how heat waves and anthropogenic forcing in cities collectively affect the health of vulnerable residents is a problem in building thermodynamics, human behavior, and neighborhood-scale and street-canyon-scale atmospheric sciences. And, predicting the movement of plumes of hazardous material released in urban industrial or transportation accidents requires detailed information about vertical and horizontal air motions in the street canyons. These challenges are closer to being addressed because of advances in CFD modeling, the coupling of CFD models with models of indoor air motion and air quality, and the coupling of CFD models with mesoscale weather-prediction models. This paper will review some of the new knowledge and technologies that are being developed to meet these atmospheric-environment needs of our growing urban populations.
Language matters in demonstrations of understanding in early years mathematics assessment
NASA Astrophysics Data System (ADS)
Mushin, Ilana; Gardner, Rod; Munro, Jennifer M.
2013-09-01
In classrooms tests, students are regularly required to demonstrate their understanding of mathematical concepts. When children encounter problems in demonstrating such understanding, it is often not clear whether this is because of the language of the teachers' questions and instructions or a genuine non-understanding of the concept itself. This paper uses Conversation Analysis to investigate the role that language plays in Year 1 oral maths assessment in an Australian Indigenous community school. This approach allows us to monitor the very subtle communicative gestures, verbal and non-verbal, that contribute to the trajectory of a particular test task. Here we are able to bring to light a range of ways in which language may interfere with demonstrations of understanding of mathematical concepts. These include particular mathematical words (e.g., size, shape, same), as well as problems with what is being asked in an instruction. We argue that while all children must learn new mathematical language in their early years of schooling, the challenge for the students we have recorded may be compounded by the language differences between the Indigenous variety of language they speak in the community, and the Standard Australian English of the classroom and teachers.
NASA Astrophysics Data System (ADS)
Rizkallah, Mohammed W.
While Problem-based Learning (PBL) has been established in the literature in different contexts, there remains few studies on how PBL has an impact on students' attitude towards mathematics and their conceptual understanding of it in Egyptian classrooms. This study was conducted in an international university in Egypt, and the participants were non-science undergraduate students who took a course called "Fun with Problem-Solving" as a requirement core class. The study shows that students' attitude towards mathematics developed throughout the course, and this was tested using the Fennema-Sherman Mathematics Attitude Scale, where students had a pretest and posttest. While the sample size was small, there was statistical significance in the change of the means of how students perceived mathematics as a male domain, and how teachers perceived students' achievements. This notion was coupled with students' development of conceptual understanding, which was tracked throughout the semester by mapping students' work with the Lesh Translation Model.
Evaluation and treatment of urinary incontinence in long term care.
Pannill, F C; Williams, T F; Davis, R
1988-10-01
All elderly patients with established urinary incontinence residing in an intermediate care facility during one year were evaluated for medical and urological conditions contributing to the incontinence; treatment was initiated for all diagnosed problems if possible. Unstable detrusor function (65%), sphincter weakness (13%), and overflow incontinence (10%) were all frequent urological causes, although several patients required extensive testing in addition to cystometrics to establish a complete diagnosis. Frequent nonurological causes of incontinence included behavioral problems (53%), immobility (45%), medication problems (24%), diabetes (18%), and local pathology (47%). Thirty-seven percent had three or more conditions identified. Treatment aimed at nonurological causes was more successful in ameliorating incontinence than urological medication; side effects were significant limitations to urological treatment success. Of the 22 patients who completed evaluation, treatment, and follow-up, five patients (23%) were cured, three (14%) showed at least a 65% decrease in incontinence, four (18%) showed at least a 30% decrease in incontinence, and 10 (45%) showed no change or worsened. We conclude that nonurological problems frequently contribute to urinary incontinence in long term care facilities; incontinence in some of these patients can be improved without urological therapy. Nonurological problems need careful definition and treatment; patients whose incontinence persists require comprehensive urological evaluation and therapy. A complete solution to incontinence in this setting may require safer drugs and better understanding of urinary pathophysiology.
Rational approaches to the treatment of hypertension: modification of lifestyle measures.
Sayarlioglu, Hayriye
2013-12-01
Hypertension is an important health problem. Informative counseling is required for patients to completely understand the importance of non-pharmacologic treatments. Lifestyle changes such as restriction of salt intake, exercise, restriction of alcohol intake, diet, and weight loss are included in all hypertension treatment guidelines. However, serious motivation is required from the patient and the physician to succeed in this. Although the decrease in blood pressure may be limited with these measures, lifestyle modifications should be continued.
Rethinking medical humanities.
Chiapperino, Luca; Boniolo, Giovanni
2014-12-01
This paper questions different conceptions of Medical Humanities in order to provide a clearer understanding of what they are and why they matter. Building upon former attempts, we defend a conception of Medical Humanities as a humanistic problem-based approach to medicine aiming at influencing its nature and practice. In particular, we discuss three main conceptual issues regarding the overall nature of this discipline: (i) a problem-driven approach to Medical Humanities; (ii) the need for an integration of Medical Humanities into medicine; (iii) the methodological requirements that could render Medical Humanities an effective framework for medical decision-making.
Modeling games from the 20th century
Killeen, P.R.
2008-01-01
A scientific framework is described in which scientists are cast as problem-solvers, and problems as solved when data are mapped to models. This endeavor is limited by finite attentional capacity which keeps depth of understanding complementary to breadth of vision; and which distinguishes the process of science from its products, scientists from scholars. All four aspects of explanation described by Aristotle trigger, function, substrate, and model are required for comprehension. Various modeling languages are described, ranging from set theory to calculus of variations, along with exemplary applications in behavior analysis. PMID:11369459
Carroll, Margaret; Downes, Carmel; Gill, Ailish; Monahan, Mark; Nagle, Ursula; Madden, Deirdre; Higgins, Agnes
2018-05-18
The study aimed to identify midwives' competency in perinatal mental health care in terms of their knowledge, confidence, skill and educational priorities, and to explore their clinical practices in relation to the assessment and management of perinatal mental health problems. An exploratory descriptive study design was used on a sample of 438 midwives in the Republic of Ireland. Data were collected over a two-month period in 2016 using an anonymous, self-completed survey designed by the research team. The majority of midwives cared for women with perinatal mental health problems in their clinical practice; however, beyond depression and anxiety, their knowledge of perinatal mental health problems was quite limited. Similarly, midwives reported a lack of skill in opening a discussion with women on sensitive issues, such as sexual abuse, intimate partner violence and psychosis, and providing information to women's partners/families. The findings indicated that midwives adopted a selective approach to screening for perinatal mental health problems, with a tendency not to inquire about sensitive topics, or address them only with women deemed at-risk. Timely and appropriate care is required to ensure the best outcomes for women with perinatal mental health problems and their families. A greater understanding of perinatal mental health among midwives is required to enable them to provide support and information to women and their families, and to identify when specialist intervention is required. Education and other structural supports, such as care pathways and documentation, is required to train and support midwives in their key role of caring for, and collaborating with, women with perinatal mental health problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Drug policy, intravenous drug use, and heroin addiction in the UK.
Geraghty, Jemell
In order to fully understand and appreciate today's drug problem in the UK, the foundations of drug legislation and the history of drug evolution require exploration. This paper critically examines the history of drug policy and the growth of heroin addiction from the perspective of a novice researcher who works closely with intravenous drug users in relation to leg ulceration and wound care in the acute setting. Today's drug policy has come a long way in understanding the problems of heroin addiction and establishing services to meet intravenous drug users' needs and the needs of society. This paper highlights the early warning signs of drug addiction and growth within the UK from an early stage with key areas such as who the early users were and how addiction grew so rapidly between 1920 and 1960. Current policy and decision makers as well as clinicians and researchers in this field must understand the impacts of past policy and embed it within their decisions surrounding drug policy today.
A practical approach to object based requirements analysis
NASA Technical Reports Server (NTRS)
Drew, Daniel W.; Bishop, Michael
1988-01-01
Presented here is an approach developed at the Unisys Houston Operation Division, which supports the early identification of objects. This domain oriented analysis and development concept is based on entity relationship modeling and object data flow diagrams. These modeling techniques, based on the GOOD methodology developed at the Goddard Space Flight Center, support the translation of requirements into objects which represent the real-world problem domain. The goal is to establish a solid foundation of understanding before design begins, thereby giving greater assurance that the system will do what is desired by the customer. The transition from requirements to object oriented design is also promoted by having requirements described in terms of objects. Presented is a five step process by which objects are identified from the requirements to create a problem definition model. This process involves establishing a base line requirements list from which an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the identification of objects from the requirements. An example is given of how semantic modeling may be used to improve the entity-relationship model and a brief discussion on how this approach might be used in a large scale development effort.
Policy Implications of Air Quality Research
NASA Astrophysics Data System (ADS)
Sheinbaum, C.
2004-12-01
While an integrated assessment approach will be required to achieve and sustain improvements in the air quality of Mexico City Metropolitan Area's (MCMA), policy strategies must be based on a solid understanding of the pollutant emissions and atmospheric processes that lead to unacceptable levels of air pollution. The required level of understanding can only be achieved by comprehensive atmospheric measurements followed by a coordinated atmospheric modeling program. The innovative, two-phase atmospheric measurement program, which was a collaborative effort between Massachusetts Institute of Technology and the Mexican Metropolitan Environmental Commission, with exploratory measurements in February 2002 and extensive measurements from late March through early May of 2003, was an important step towards meeting these requirements. Although the extensive data sets from the two measurement programs are still being analyzed by the investigators, their preliminary analysis efforts have yielded important insights into the nature and extent of air pollution problem in the MCMA, which in turn will have important policy implications.
Requirements' Role in Mobilizing and Enabling Design Conversation
NASA Astrophysics Data System (ADS)
Bergman, Mark
Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.
The development of tool manufacture in humans: what helps young children make innovative tools?
Chappell, Jackie; Cutting, Nicola; Apperly, Ian A; Beck, Sarah R
2013-11-19
We know that even young children are proficient tool users, but until recently, little was known about how they make tools. Here, we will explore the concepts underlying tool making, and the kinds of information and putative cognitive abilities required for children to manufacture novel tools. We will review the evidence for novel tool manufacture from the comparative literature and present a growing body of data from children suggesting that innovation of the solution to a problem by making a tool is a much more challenging task than previously thought. Children's difficulty with these kinds of tasks does not seem to be explained by perseveration with unmodified tools, difficulty with switching to alternative strategies, task pragmatics or issues with permission. Rather, making novel tools (without having seen an example of the required tool within the context of the task) appears to be hard, because it is an example of an 'ill-structured problem'. In this type of ill-structured problem, the starting conditions and end goal are known, but the transformations and/or actions required to get from one to the other are not specified. We will discuss the implications of these findings for understanding the development of problem-solving in humans and other animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingenfelter, A. C., LLNL
Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing.more » A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.« less
Problem based learning - A brief review
NASA Astrophysics Data System (ADS)
Nunes, Sandra; Oliveira, Teresa A.; Oliveira, Amílcar
2017-07-01
Teaching is a complex mission that requires not only the theoretical knowledge transmission, but furthermore requires to provide the students the necessary skills for solving real problems in their respective professional activities where complex issues and problems must be frequently faced. Over more than twenty years we have been experiencing an increase in scholar failure in the scientific area of mathematics, which means that Teaching Mathematics and related areas can be even a more complex and hard task. Scholar failure is a complex phenomenon that depends on various factors as social factors, scholar factors or biophysical factors. After numerous attempts made in order to reduce scholar failure our goal in this paper is to understand the role of "Problem Based Learning" and how this methodology can contribute to the solution of both: increasing mathematical courses success and increasing skills in the near future professionals in Portugal. Before designing a proposal for applying this technique in our institutions, we decided to conduct a survey to provide us with the necessary information about and the respective advantages and disadvantages of this methodology, so this is the brief review aim.
Human factors for a sustainable future.
Thatcher, Andrew; Yeow, Paul H P
2016-11-01
Current human activities are seriously eroding the ability of natural and social systems to cope. Clearly we cannot continue along our current path without seriously damaging our own ability to survive as a species. This problem is usually framed as one of sustainability. As concerned professionals, citizens, and humans there is a strong collective will to address what we see as a failure to protect the natural and social environments that supports us. While acknowledging that we cannot do this alone, human factors and ergonomics needs to apply its relevant skills and knowledge to assist where it can in addressing the commonly identified problem areas. These problems include pollution, climate change, renewable energy, land transformation, and social unrest amongst numerous other emerging global problems. The issue of sustainability raises two fundamental questions for human factors and ergonomics: which system requires sustaining and what length of time is considered sustainable? In this paper we apply Wilson (2014) parent-sibling-child model to understanding what is required of an HFE sustainability response. This model is used to frame the papers that appear in this Special Issue. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Expanding our understanding of students' use of graphs for learning physics
NASA Astrophysics Data System (ADS)
Laverty, James T.
It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejong, G.F.; Waltz, D.L.
1983-01-01
This paper treats in some detail the problem of designing mechanisms that will allow one to deal with two types of novel language: (1) text requiring scheme learning; and (2) the understanding of novel metaphorical use of verbs. Schema learning is addressed by four types of processes: scheme composition, secondary effect elevation, schema alteration, and volitionalization. The processing of novel metaphors depends on a decompositional analysis of verbs into event shape diagrams, along with a matching process that uses semantic marker-like information, to construct novel meaning structures. The examples described have been chosen to be types that occur commonly, somore » that rules that are needed to understand them can also be used to understand a much wider range of novel language. 38 references.« less
ERIC Educational Resources Information Center
Aiken, Anna
2017-01-01
Anna Aiken and her history colleagues had been reflecting on the stubborn problem of students failing to tackle GCSE questions about sources with adequate thought or understanding of evidence. Teaching them the typical requirements of the GCSE examination even appeared to make things worse, encouraging superficiality and failing to bring about…
Role of Enhancing Visual Effects Education Delivery to Encounter Career Challenges in Malaysia
ERIC Educational Resources Information Center
Ng, Lynn-Sze
2017-01-01
Problem-based Learning (PBL) is one of the most effective methods of instruction that helps Visual Effects (VFX) students to be more adaptable at encountering career challenges in Malaysia. These challenges are; lack of several important requirements such as, the basic and fundamental knowledge of VFX concepts, the ability to understand real-world…
Can a Rabbit Be a Scientist? Stimulating Philosophical Dialogue in Science Classes
ERIC Educational Resources Information Center
Dunlop, Lynda; de Schrijver, Jelle
2018-01-01
Philosophical dialogue requires an approach to teaching and learning in science that is focused on problem posing and provides space for meaning making, finding new ways of thinking and understanding and for linking science with broader human experiences. This article explores the role that philosophical dialogue can play in science lessons and…
The Agency frequently encounters situations where it must make decisions about the potential health and environmental effects of chemicals when all of the relevant data is not available. One rational approach to this problem is to estimate the relevant missing information by ext...
ERIC Educational Resources Information Center
Pavletic, Adria C.
2011-01-01
Nurses as accessible, helping adults within schools have daily opportunities to reach adolescents with unmet mental health needs. Understanding the relationship between frequent clinic visits or somatic complaints as a sign of underlying problems, which may be organic or psychoemotional in origin, requires the unique skill set of the school nurse.…
Academic Research Instruments and Instrumentation Needs: 1992.
ERIC Educational Resources Information Center
Arena, Carolyn B.
For several decades there has been a general concern that the level of research funding for academic instrumentation was not sufficient to keep pace with the requirements of cutting edge research. To develop the factual trend data necessary to understand the depth of the problems in academia and thus provide an adequate response to these concerns,…
Method to Identify Deep Cases Based on Relationships between Nouns, Verbs, and Particles
ERIC Educational Resources Information Center
Ide, Daisuke; Kimura, Masaomi
2016-01-01
Deep cases representing the significant meaning of nouns in sentences play a crucial role in semantic analysis. However, a case tends to be manually identified because it requires understanding the meaning and relationships of words. To address this problem, we propose a method to predict deep cases by analyzing the relationship between nouns,…
Process-based models are required to manage ecological systems in a changing world
K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray
2013-01-01
Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...
Using an APOS Framework to Understand Teachers' Responses to Questions on the Normal Distribution
ERIC Educational Resources Information Center
Bansilal, Sarah
2014-01-01
This study is an exploration of teachers' engagement with concepts embedded in the normal distribution. The participants were a group of 290 in-service teachers enrolled in a teacher development program. The research instrument was an assessment task that can be described as an "unknown percentage" problem, which required the application…
ERIC Educational Resources Information Center
Munday, Jenni; Smith, Wyverne
2010-01-01
Pre-service teacher degree programs are increasingly crowded with subjects covering the wide gamut of knowledge a teacher requires. Ensuring musical knowledge and language for classroom teaching poses a difficult problem for teacher educators. This article examines the challenges of including in the pre-service classroom teaching program a music…
Cetacean Frustration: The Representation of Whales and Dolphins in Picture Books for Young Children
ERIC Educational Resources Information Center
Beaumont, Ellen S.; Mudd, Phillipa; Turner, Ian J.; Barnes, Kate
2017-01-01
To enable children to develop towards becoming part of the solution to environmental problems, it is essential that they are given the opportunity to become familiar with the natural world from early childhood. Familiarity is required to develop understanding of, care for and, ultimately, action in terms of protecting the natural world. As…
Non-Zero Net Force and Constant Velocity: A Study in Mazur's Peer Instruction
ERIC Educational Resources Information Center
Newburgh, Ronald
2009-01-01
A problem addressed infrequently in beginning physics courses is that of a moving body with changing mass. Elementary texts often have footnotes referring to jet planes and rockets but rarely do they go further. This omission is understandable because calculations with variable mass generally require the tools of calculus. This paper presents a…
Things of the Mind. Dialogues with J. Krishnamurti.
ERIC Educational Resources Information Center
Khare, Brij B.
This book is about the human mind which is conditioned through education, formal or informal; it utilizes the philosophy of a world sage in order to understand the problems of contemporary society. "Things of the Mind" consists of four Socratic dialogues of which the main topics are: the meaning of an education that requires young people…
ERIC Educational Resources Information Center
Stark, Kate H.; Barnes, Julia C.; Young, Nicholas D.; Gabriels, Robin L.
2015-01-01
Children and adolescents with autism spectrum disorder (ASD) are at risk for emotional dysregulation and behavior problems that can escalate to levels requiring psychiatric hospitalization. Evaluating the etiology of such behaviors can be challenging for health care providers, as individuals with ASD can have difficulty self-reporting concerns.…
A Call for a Neuroscience Approach to Cancer-Related Cognitive Impairment.
Horowitz, Todd S; Suls, Jerry; Treviño, Melissa
2018-05-23
Cancer-related cognitive impairment (CRCI) is a widespread problem for the increasing population of cancer survivors. Our understanding of the nature, causes, and prevalence of CRCI is hampered by a reliance on clinical neuropsychological methods originally designed to detect focal lesions. Future progress will require collaboration between neuroscience and clinical neuropsychology. Published by Elsevier Ltd.
Defining High-Risk Precursor Signaling to Advance Breast Cancer Risk Assessment and Prevention
2016-03-01
the incidence and lethality of breast cancer will require a detailed understanding of the earliest tissue changes that ultimately drive the process of...Changes/Problems 12-14 6. Products ...as stated in the approved SOW. If the application listed milestones/target dates for important activities or phases of the project, identify these
Sabine, P M
1999-10-01
For anyone who finds walking and standing painful, the working day can seem interminable and miserable. This is compounded for nurses who lead busy, active lives, and foot problems can become a major barrier to an effective working day. Chronic foot problems have led nurses to seek alternative employment, often outside the profession, thus leaving health services even less well staffed with experienced personnel. Foot health, then, plays an important role in maintaining the mobility of nurses and foot care is vital for continued comfort during gait. It is equally important to understand which foot problems may be safely dealth with by the sufferer and to identify those that require specialist help and advice from a State Registered Chiropodist/Podiatrist.
Applying Physics: Opportunities in Semiconductor Technology Companies
NASA Astrophysics Data System (ADS)
Redinbo, Greg
2011-03-01
While many physicists practice in university settings, physics skills can also be applied outside the traditional academic track. ~Identifying these opportunities requires a clear understanding of how your physics training can be used in an industrial setting, understanding what challenges technology companies face, and identifying how your problem solving skills can be broadly applied in technology companies. ~In this talk I will highlight the common features of such companies, discuss what specific skills are useful for an industrial physicist, and explain roles (possibly unfamiliar) that may be available to you.
Proffitt, D R; Kaiser, M K; Whelan, S M
1990-07-01
In five experiments, assessments were made of people's understandings about the dynamics of wheels. It was found that undergraduates make highly erroneous dynamical judgments about the motions of this commonplace event, both in explicit problem-solving contexts and when viewing ongoing events. These problems were also presented to bicycle racers and high-school physics teachers; both groups were found to exhibit misunderstandings similar to those of naive undergraduates. Findings were related to our account of dynamical event complexity. The essence of this account is that people encounter difficulties when evaluating the dynamics of any mechanical system that has more than one dynamically relevant object parameter. A rotating wheel is multidimensional in this respect: in addition to the motion of its center of mass, its mass distribution is also of dynamical relevance. People do not spontaneously form the essential multidimensional quantities required to adequately evaluate wheel dynamics.
"Fast" Is Not "Real-Time": Designing Effective Real-Time AI Systems
NASA Astrophysics Data System (ADS)
O'Reilly, Cindy A.; Cromarty, Andrew S.
1985-04-01
Realistic practical problem domains (such as robotics, process control, and certain kinds of signal processing) stand to benefit greatly from the application of artificial intelligence techniques. These problem domains are of special interest because they are typified by complex dynamic environments in which the ability to select and initiate a proper response to environmental events in real time is a strict prerequisite to effective environmental interaction. Artificial intelligence systems developed to date have been sheltered from this real-time requirement, however, largely by virtue of their use of simplified problem domains or problem representations. The plethora of colloquial and (in general) mutually inconsistent interpretations of the term "real-time" employed by workers in each of these domains further exacerbates the difficul-ties in effectively applying state-of-the-art problem solving tech-niques to time-critical problems. Indeed, the intellectual waters are by now sufficiently muddied that the pursuit of a rigorous treatment of intelligent real-time performance mandates the redevelopment of proper problem perspective on what "real-time" means, starting from first principles. We present a simple but nonetheless formal definition of real-time performance. We then undertake an analysis of both conventional techniques and AI technology with respect to their ability to meet substantive real-time performance criteria. This analysis provides a basis for specification of problem-independent design requirements for systems that would claim real-time performance. Finally, we discuss the application of these design principles to a pragmatic problem in real-time signal understanding.
Error, blame, and the law in health care--an antipodean perspective.
Runciman, William B; Merry, Alan F; Tito, Fiona
2003-06-17
Patients are frequently harmed by problems arising from the health care process itself. Addressing these problems requires understanding the role of errors, violations, and system failures in their genesis. Problem-solving is inhibited by a tendency to blame those involved, often inappropriately. This has been aggravated by the need to attribute blame before compensation can be obtained through tort and the human failing of attributing blame simply because there has been a serious outcome. Blaming and punishing for errors that are made by well-intentioned people working in the health care system drives the problem of iatrogenic harm underground and alienates people who are best placed to prevent such problems from recurring. On the other hand, failure to assign blame when it is due is also undesirable and erodes trust in the medical profession. Understanding the distinction between blameworthy behavior and inevitable human errors and appreciating the systemic factors that underlie most failures in complex systems are essential for the response to a harmed patient to be informed, fair, and effective in improving safety. It is important to meet society's needs to blame and exact retribution when appropriate. However, this should not be a prerequisite for compensation, which should be appropriately structured, fair, timely, and, ideally, properly funded as an intrinsic part of health care and social security systems.
NASA Astrophysics Data System (ADS)
Bradford, Robert Sanders
1998-12-01
The rate of environmental degradation in the Third World continues to present residents of countries like Honduras with conditions that threaten the quality of life and ecological systems. How people conceptualize their environment could be a point of entry into a greater understanding of environmental problems. Through individual interviews and focus group discussions, this study comprises a qualitative examination of the environmental concepts of a sample of 75 rural Hondurans. Analysis of their concepts was used to construct a tentative interpretation of the rural Honduran worldview characteristics of Self, Other, Relationship, Classification, Causality, Time, and Space. The findings of this investigation indicated that rural Hondurans conceptualize their environment through the worldview lenses of survival and poverty, leading to a sense of fatalism when confronting the complex and multifaceted problems associated with quality of life and environmental quality. Analysis of concepts and worldview also indicated that rural Hondurans generally do not believe their environmental problems are solvable, nor do they appear to understand that these problems are also cultural problems whose solutions will most likely require some revision of their current worldview. An educational approach that fosters the integration of compatible environmental concepts into the rural Honduran worldview is recommended through the application of design strategies for a prospective environmental education process.
Engineering Complex Embedded Systems with State Analysis and the Mission Data System
NASA Technical Reports Server (NTRS)
Ingham, Michel D.; Rasmussen, Robert D.; Bennett, Matthew B.; Moncada, Alex C.
2004-01-01
It has become clear that spacecraft system complexity is reaching a threshold where customary methods of control are no longer affordable or sufficiently reliable. At the heart of this problem are the conventional approaches to systems and software engineering based on subsystem-level functional decomposition, which fail to scale in the tangled web of interactions typically encountered in complex spacecraft designs. Furthermore, there is a fundamental gap between the requirements on software specified by systems engineers and the implementation of these requirements by software engineers. Software engineers must perform the translation of requirements into software code, hoping to accurately capture the systems engineer's understanding of the system behavior, which is not always explicitly specified. This gap opens up the possibility for misinterpretation of the systems engineer s intent, potentially leading to software errors. This problem is addressed by a systems engineering methodology called State Analysis, which provides a process for capturing system and software requirements in the form of explicit models. This paper describes how requirements for complex aerospace systems can be developed using State Analysis and how these requirements inform the design of the system software, using representative spacecraft examples.
Career Opportunities for Physicists in the Micro Electronics Industry
NASA Astrophysics Data System (ADS)
Bourianoff, George
1997-10-01
The US micro electronics industry anticipates growth of 20 to 30 percent per year for the next five years. The need for engineers and scientists poses a critical problem for the industry but conversely presents great opportunities for those in closely related fields such as physics where career opportunities may be more limited. There is no shortage of important and challenging problems on the Semiconductor Institute of America (SIA) roadmap which will require solution in the next 10 years and which require expertise in the physical sciences. However, significant cultural differences exist between the physics community and the engineering oriented semiconductor community which must be understood and addressed in order for a physicist to successfully contribute in this environment. This talk will identify some of those cultural differences and describe some of the critical physics related problems which must be solved. Critical roadblocks include lithographic patterning below 0.18m. and design of Very Large Scale Integrated (VLSI) circuits in the deep submicron regime. The former will require developing radiation sources and optical elements for the EUV or XRAY part of the spectrum. The latter will require incorporating electromagnetic field equations with traditional lumped element circuit design methods. The cultural barriers alluded to earlier involve the manner in which engineering detail is approached. A physicist's basic instinct is to strip off the detail in order to make a problem mathematically tractable. This enables understanding of the underlying physical relationships but does not yield the quantitative detail necessary in semiconductor production.
NASA Astrophysics Data System (ADS)
Watters, James J.; English, Lyn D.
The research reported in this article was undertaken to obtain a better understanding of problem solving and scientific reasoning in 10-year-old children. The study involved measuring children's competence at syllogistic reasoning and in solving a series of problems requiring inductive reasoning. Children were also categorized on the basis of levels of simultaneous and successive synthesis. Simultaneous and successive synthesis represent two dimensions of information processing identified by Luria in a program of neuropsychological research. Simultaneous synthesis involves integration of information in a holistic or spatial fashion, whereas successive synthesis involves processing information sequentially with temporal links between stimuli. Analysis of the data generated in the study indicated that syllogistic reasoning and inductive reasoning were significantly correlated with both simultaneous and successive synthesis. However, the strongest correlation was found between simultaneous synthesis and inductive reasoning. These findings provide a basis for understanding the roles of spatial and verbal-logical ability as defined by Luria's neuropsychological theory in scientific problem solving. The results also highlight the need for teachers to provide experiences which are compatible with individual students' information processing styles.Received: 19 October 1993; Revised: 15 December 1994;
Bee, Penny
2016-01-01
Sleep problems are common in people with serious mental illness, and impact negatively on functioning and wellbeing. To understand the development of sleep problems, their maintenance, and their treatment, an in depth understanding of patient perspectives is crucial. A systematic literature review was conducted using Medline, AMED, PsychInfo, Embase and CINAHL. Qualitative and quantitative studies were included if they explored or measured patient perspectives on sleep, sleep problems or sleep treatments in people with serious mental illness. Of the 2,067 hits, only 22 met review inclusion criteria, and high quality evidence was sparse. The limited findings suggested sleep was seen as highly interlinked with mental health. Evaluations of treatments varied, however perceived efficacy and personalisation of treatments were valued. Some evidence suggested patient priorities and conceptualisations regarding sleep may diverge from those of validated screening tools developed in general population and sleep medicine samples. More rigorous research is needed to support adaptation and development of interventions and outcome measures for use in specialist mental health settings. Qualitative studies exploring the experience of sleep disturbance in particular diagnostic groups and contexts are urgently required, as are patient perspectives on sleep interventions. PMID:27657927
Clark, Martyn P.; Slater, Andrew G.; Rupp, David E.; Woods, Ross A.; Vrugt, Jasper A.; Gupta, Hoshin V.; Wagener, Thorsten; Hay, Lauren E.
2008-01-01
The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose differences in hydrological model structures: the Framework for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique model structures by combining components of 4 existing hydrological models. These new models were used to simulate streamflow in two of the basins used in the Model Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the French Broad River (North Carolina). Results show that the new models produced simulations of streamflow that were at least as good as the simulations produced by the models that participated in the MOPEX experiment. Our initial application of the FUSE method for the Guadalupe River exposed relationships between model structure and model performance, suggesting that the choice of model structure is just as important as the choice of model parameters. However, further work is needed to evaluate model simulations using multiple criteria to diagnose the relative importance of model structural differences in various climate regimes and to assess the amount of independent information in each of the models. This work will be crucial to both identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure. To facilitate research on these problems, the FORTRAN‐90 source code for FUSE is available upon request from the lead author.
NASA Astrophysics Data System (ADS)
Bhavsar, Suketu
2015-08-01
I will introduce the radical concept of a final exam where the questions are given beforehand, a method I first encountered as a graduate student at Princeton University from an outstanding and well known astrophysicist and exceptional teacher, Lyman Spitzer.Every Instructor aspires for students to master all the material covered. A comprehensive final can assess the breadth and depth of their learning. Students are required to review early material in light of later topics, create connections and integrate understanding, thus retaining knowledge for the long term. Comprehensive finals can therefore be a significant basis for student learning and evaluation, but are especially daunting for non-STEM majors in required GE synthesis STEM classes. The exam format proposed here calmed student fears and encouraged thorough review.Ten days before the exam students received 20-30 challenging, well-crafted, numbered questions that interconnected and spanned the entire range of topics. The key is crafting questions that lead to deeply understanding the subject matter and mastering skills to solve problems. At the final, each student was required to pick a number out of a hat and answer that numbered question in a 5-minute presentation. They also had to critically comment on 10 other presentations of their peers. They are graded equally on both.The exam sets up definite goals for a student. Equally important, it enhances collaborative learning and peer mentoring. The conceptual questions and problems that students are required to answer can be studied together in study groups. The final presentation is theirs and they are not only encouraged but required to be constructively critical of their peer presentations.I will provide examples of some of the conceptual and problem solving questions I used. These were crafted to interconnect and span the entire range of topics. This method requires students to be prepared for all of the multitude of crafted question encouraging interaction and communication while studying. Knowing the questions beforehand provides a guide to their studying as well as allays their fears about what could be asked. The students also receive guidance to what constitutes a good answer, namely accuracy, thoroughness and the quality of the presentation.
The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design
NASA Technical Reports Server (NTRS)
Elchert, J. P.
2012-01-01
Engineers working to understand and reduce cryogenic boil-off must solve a variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions. This includes a few thermal radiation and conduction combined mode solutions with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. The literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.
The Transport of Mass, Energy, and Entropy in Cryogenic Support Struts for Engineering Design
NASA Technical Reports Server (NTRS)
Elchert, J. P.
2012-01-01
Engineers working to understand and reduce cryogenic boil-off must solve a. variety of transport problems. An important class of nonlinear problems involves the thermal and mechanical design of cryogenic struts. These classic problems are scattered about the literature and typically require too many resources to obtain. So, to save time for practicing engineers, the author presents this essay. Herein, a variety of new, old, and revisited analytical and finite difference solutions of the thermal problem are covered in this essay, along with commentary on approach and assumptions, This includes a few thermal radiation and conduction combined mode solution with a discussion on insulation, optimum emissivity, and geometrical phenomenon. Solutions to cooling and heat interception problems are also presented, including a discussion of the entropy generation. And the literature on the combined mechanical and thermal design of cryogenic support struts is reviewed with an introduction to the associated numerical methods.
Olvingson, Christina; Hallberg, Niklas; Timpka, Toomas; Greenes, Robert A
2002-12-18
The introduction of computer-based information systems (ISs) in public health provides enhanced possibilities for service improvements and hence also for improvement of the population's health. Not least, new communication systems can help in the socialization and integration process needed between the different professions and geographical regions. Therefore, development of ISs that truly support public health practices require that technical, cognitive, and social issues be taken into consideration. A notable problem is to capture 'voices' of all potential users, i.e., the viewpoints of different public health practitioners. Failing to capture these voices will result in inefficient or even useless systems. The aim of this study is to develop a minimal data set for capturing users' voices on problems experienced by public health professionals in their daily work and opinions about how these problems can be solved. The issues of concern thus captured can be used both as the basis for formulating the requirements of ISs for public health professionals and to create an understanding of the use context. Further, the data can help in directing the design to the features most important for the users.
Swap Meet: A Novel Way to Introduce Unit Conversion
ERIC Educational Resources Information Center
Anticole, Matthew
2012-01-01
Many science problems require students to convert units. While this skill may not get the attention that more central science concepts do, teachers in the middle school and early high school grades will be doing their students a great service by leaving them with a strong understanding of both the skill itself and the reasons behind it. When the…
ERIC Educational Resources Information Center
Lucio, Magda L.; Almeida, Lindijane S. B.; Silveira, Raquel M. C.
2018-01-01
Contemporary public management in Brazil is undergoing a great deal of transformation. From the year 2008 the Brazilian Federal government has been investing in policies and planned actions that aim to expand access to Higher Education. This paradigm shift was possible through the understanding that the agenda of public problems required trained…
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
ERIC Educational Resources Information Center
Méndez-Fragoso, Ricardo; Villavicencio-Torres, Mirna; Martínez-Moreno, Josué
2017-01-01
In this contribution, we show the practical use of the computer to visualise simple computational simulations to show phenomena that occur in everyday life, or require an abstract understanding for being unintuitive phenomena. The relationship of the mathematics to different scientific disciplines motivates us to devise different treatments to…
ERIC Educational Resources Information Center
Gray, Donald, Ed.; Colucci-Gray, Laura, Ed.; Camino, Elena, Ed.
2011-01-01
Recent work in science and technological studies has provided a clearer understanding of the way in which science functions in society and the interconnectedness among different strands of science, policy, economy and environment. It is well acknowledged that a different way of thinking is required in order to address problems facing the global…
ERIC Educational Resources Information Center
Bennett, Jeannine B.
2012-01-01
This study addressed the problems associated with users' understanding, accepting, and complying with requirements of security-oriented solutions. The goal of the research was not to dispute existing theory on IT project implementations, but rather to further the knowledge on the topic of technology user acceptance of security-oriented IT…
de Vries, Jan M A; Timmins, Fiona
2017-09-01
Psychology is a required element in nursing education in many countries. It is particularly aimed at teaching nursing students to get a better understanding of patients, colleagues, health care organizations and themselves, and moreover to apply what they learn about psychology to optimise their care. A meaningful integration of psychology within nursing education requires an emphasis on its application in understanding aspects of care and skills development. However, its ultimate value is demonstrated when addressing problem areas in nursing and health care. In this paper the authors outline an approach to psychology education in nursing which emphasises its development as a problem solving support. An example is presented which focuses on the application of psychology to the challenge of care erosion and deficient critical nursing reflection. The discussion includes the organisational context, social pressure, social cognition, reflection and the role of inner conflict (cognitive dissonance). Nursing educators can contribute to the prevention of care erosion by a combined effort to teach awareness of psychological mechanisms, 'critical' reflection, mastery in practice, strong values and standards, and 'inoculation' against justifications of substandard care. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Challenge of Wireless Reliability and Coexistence.
Berger, H Stephen
2016-09-01
Wireless communication plays an increasingly important role in healthcare delivery. This further heightens the importance of wireless reliability, but quantifying wireless reliability is a complex and difficult challenge. Understanding the risks that accompany the many benefits of wireless communication should be a component of overall risk management. The emerging trend of using sensors and other device-to-device communications, as part of the emerging Internet of Things concept, is evident in healthcare delivery. The trend increases both the importance and complexity of this challenge. As with most system problems, finding a solution requires breaking down the problem into manageable steps. Understanding the operational reliability of a new wireless device and its supporting system requires developing solid, quantified answers to three questions: 1) How well can this new device and its system operate in a spectral environment where many other wireless devices are also operating? 2) What is the spectral environment in which this device and its system are expected to operate? Are the risks and reliability in its operating environment acceptable? 3) How might the new device and its system affect other devices and systems already in use? When operated under an insightful risk management process, wireless technology can be safely implemented, resulting in improved delivery of care.
NASA Technical Reports Server (NTRS)
Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)
1992-01-01
The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.
NASA Technical Reports Server (NTRS)
Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)
1991-01-01
The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.
NASA Technical Reports Server (NTRS)
Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.
1993-01-01
Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.
Knowing about guessing and guessing about knowing: preschoolers' understanding of indeterminacy.
Fay, A L; Klahr, D
1996-04-01
In this article we investigate preschool children's understanding of indeterminacy by examining their ability to distinguish between determinate situations--in which the available evidence eliminates all uncertainty about an outcome--and indeterminate situations--in which it does not. We argue that a full understanding of indeterminacy requires the coordination of 3 processes: search, evaluation, and mapping. We describe 3 experiments aimed at discovering the extent to which these processes, each of which has been implicated in previous accounts of indeterminate reasoning, are developed in preschoolers and the extent to which different children organize the processes into different strategies. Experiment 1 examines 5-year-olds' performance on 1- versus 2-solution problems having different configurations of irrelevant information. Experiments 2 and 3 extend the possible sources of indeterminacy from 2 to 4 and vary the amount of consistent, inconsistent, and to-be-discovered evidence. Our results show that 4- and 5-year-old children readily give "Can tell" responses to determinate problems, as well as "Can't tell" responses when they think that the evidence warrants such a response. In addition, we report 2 new findings: (a) different children use different strategies to process determinate evidence, and these strategies, in turn, predict their performance on indeterminate problems; (b) evidence patterns in which a single positive instance is contrasted with 1 or more negative or unknown instances are particularly difficult to resolve. Many children use a decision rule--the Positive Capture rule--that produces consistent errors on this type of problem.
The sixth generation robot in space
NASA Technical Reports Server (NTRS)
Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.
1990-01-01
The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.
Function plot response: A scalable system for teaching kinematics graphs
NASA Astrophysics Data System (ADS)
Laverty, James; Kortemeyer, Gerd
2012-08-01
Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.
Children's need for favorable acoustics in schools
NASA Astrophysics Data System (ADS)
Nelson, Peggy B.
2003-10-01
Children continue to improve their understanding of speech in noise and reverberation throughout childhood and adolescence. They do not typically achieve adult performance levels until their late teenage years. As a result, schools that are designed to be acoustically adequate for adult understanding may be insufficient for full understanding by young children. In addition, children with hearing loss, those with attention problems, and those learning in a non-native language require even more favorable signal-to-noise ratios. This tutorial will review the literature gathered by the ANSl/ASA working group on classroom acoustics that shaped the recommendations of the working group. Special topics will include speech perception data from typically developing infants and children, from children with hearing loss, and from adults and children listening in a non-native language. In addition, the tutorial will overview recommendations contained within ANSI standard 12.60-2002: Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools. The discussion will also include issues related to designing quiet classrooms and working with local schools and professionals.
Contact in an expanding universe: an instructive exercise in dynamic geometry
NASA Astrophysics Data System (ADS)
Zimmerman, Seth
2010-11-01
The particular problem solved in this paper is that of calculating the time required to overtake a distant object receding under cosmic expansion, and the speed at which that object is passed. This is a rarely investigated problem leading to some interesting apparent paradoxes. We employ the problem to promote a deeper understanding of the dynamic geometry behind the expansion of space in three eras, especially for physics undergraduates. We do not utilize the standard cosmological formulae, but deliberately take a simpler approach, comprehensible to any student comfortable with differentials. This should offer an intuitive preparation for later courses in general relativity. The paper can be read straight through, or offered to a class in segments as problems to investigate. The overall intention is to leave students with a more tangible grasp of expanding space.
Semiconductor measurement technology: Microelectronic ultrasonic bonding
NASA Technical Reports Server (NTRS)
Harman, G. G. (Editor)
1974-01-01
Information for making high quality ultrasonic wire bonds is presented as well as data to provide a basic understanding of the ultrasonic systems used. The work emphasizes problems and methods of solving them. The required measurement equipment is first introduced. This is followed by procedures and techniques used in setting up a bonding machine, and then various machine- or operator-induced reliability problems are discussed. The characterization of the ultrasonic system and its problems are followed by in-process bonding studies and work on the ultrasonic bonding (welding) mechanism. The report concludes with a discussion of various effects of bond geometry and wire metallurgical characteristics. Where appropriate, the latest, most accurate value of a particular measurement has been substituted for an earlier reported one.
Does understanding relational terminology mediate effects of intervention on compare word problems?
Schumacher, Robin F; Fuchs, Lynn S
2012-04-01
The purpose of this study was to assess whether understanding relational terminology (i.e., more, less, and fewer) mediates the effects of intervention on compare word problems. Second-grade classrooms (N=31) were randomly assigned to one of three conditions: researcher-designed word-problem intervention, researcher-designed calculation intervention, or business-as-usual (teacher-designed) control. Students in word-problem intervention classrooms received instruction on the compare problem type, which included a focus on understanding relational terminology within compare word problems. Analyses, which accounted for variance associated with classroom clustering, indicated that (a) compared with the calculation intervention and business-as-usual conditions, word-problem intervention significantly increased performance on all three subtypes of compare problems and on understanding relational terminology, and (b) the intervention effect was fully mediated by students' understanding of relational terminology for one subtype of compare problems and partially mediated by students' understanding of relational terminology for the other two subtypes. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamics of problem setting and framing in citizen discussions on synthetic biology.
Betten, Afke Wieke; Broerse, Jacqueline E W; Kupper, Frank
2018-04-01
Synthetic biology is an emerging scientific field where engineers and biologists design and build biological systems for various applications. Developing synthetic biology responsibly in the public interest necessitates a meaningful societal dialogue. In this article, we argue that facilitating such a dialogue requires an understanding of how people make sense of synthetic biology. We performed qualitative research to unravel the underlying dynamics of problem setting and framing in citizen discussions on synthetic biology. We found that most people are not inherently for or against synthetic biology as a technology or development in itself, but that their perspectives are framed by core values about our relationships with science and technology and that sensemaking is much dependent on the context and general feelings of (dis)content. Given that there are many assumptions focused on a more binary idea of the public's view, we emphasize the need for frame awareness and understanding in a meaningful dialogue.
Underdetermination in evidence-based medicine.
Chin-Yee, Benjamin H
2014-12-01
This article explores the philosophical implications of evidence-based medicine's (EBM's) epistemology in terms of the problem of underdetermination of theory by evidence as expounded by the Duhem-Quine thesis. EBM hierarchies of evidence privilege clinical research over basic science, exacerbating the problem of underdetermination. Because of severe underdetermination, EBM is unable to meaningfully test core medical beliefs that form the basis of our understanding of disease and therapeutics. As a result, EBM adopts an epistemic attitude that is sceptical of explanations from the basic biological sciences, and is relegated to a view of disease at a population level. EBM's epistemic attitude provides a limited research heuristic by preventing the development of a theoretical framework required for understanding disease mechanism and integrating knowledge to develop new therapies. Medical epistemology should remain pluralistic and include complementary approaches of basic science and clinical research, thus avoiding the limited epistemic attitude entailed by EBM hierarchies. © 2014 John Wiley & Sons, Ltd.
The dental literature on occlusion and myogenous orofacial pain: application of critical thinking.
Solow, Roger Alan
2016-09-01
To enhance the reader's critical thinking when reading the dental literature on the relationship of occlusion and myogenous orofacial pain (MOP). Representative journal articles and systematic reviews from the dental literature confirming and denying a relationship of occlusion to MOP were analyzed and reviewed. Studies using computerized occlusal analysis (COA) consistently find a relationship of the occlusion to MOP. Studies that do not confirm this relationship have problems with invalid primary source conclusions, unstated assumptions, bias, and errors in logic that disqualify their conclusion. This review explains four categories of problems with the dental literature that denies occlusion has a relationship with MOP. When the reader understands these examples of flaws in this literature, they can apply this critical thinking to future studies. Correct interpretation of the literature on occlusion and MOP requires a foundation of basic and clinical scientific knowledge as well as an understanding of the details of the primary source articles.
NASA Astrophysics Data System (ADS)
Brandstetter, Miriam; Sandmann, Angela; Florian, Christine
2017-06-01
In classroom, scientific contents are increasingly communicated through visual forms of representations. Students' learning outcomes rely on their ability to read and understand pictorial information. Understanding pictorial information in biology requires cognitive effort and can be challenging to students. Yet evidence-based knowledge about students' visual reading strategies during the process of understanding pictorial information is pending. Therefore, 42 students at the age of 14-15 were asked to think aloud while trying to understand visual representations of the blood circulatory system and the patellar reflex. A category system was developed differentiating 16 categories of cognitive activities. A Principal Component Analysis revealed two underlying patterns of activities that can be interpreted as visual reading strategies: 1. Inferences predominated by using a problem-solving schema; 2. Inferences predominated by recall of prior content knowledge. Each pattern consists of a specific set of cognitive activities that reflect selection, organisation and integration of pictorial information as well as different levels of expertise. The results give detailed insights into cognitive activities of students who were required to understand the pictorial information of complex organ systems. They provide an evidence-based foundation to derive instructional aids that can promote students pictorial-information-based learning on different levels of expertise.
2014-11-01
Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough Kevin Burns...4. TITLE AND SUBTITLE Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 1 Challenge Problem Walkthrough...Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 1 challenge problem. The pages include screen shots
Earth System Science Education Modules
NASA Astrophysics Data System (ADS)
Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.
2009-12-01
The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific information into words that are understandable and useful for policy makers and other stakeholders. The inability of scientists to effectively communicate with the public has been highlighted as a major reason for the anti-science attitude of a large segment of the public. This module, unlike other ESSEA modules, addresses this problem by first, investigating a global change environmental problem using Earth System Science methodologies, then developing several solutions to that problem, and finally writing a position paper for the policy makers to use. These three hands-on, real-world modules that engage students in authentic research share similar goals: 1) to use global change data sets to examine controversial environmental problems; 2) to use an earth system science approach to understand the complexity of global problems; and 3) to help students understand the political complexity of environmental problems where there is a clash between economic and ecological problems. The curriculum will meet National Standards in science, geography, math, etc.
Major Thought Restructuring: The Roles of Different Prefrontal Cortical Regions.
Seyed-Allaei, Shima; Avanaki, Zahra Nasiri; Bahrami, Bahador; Shallice, Tim
2017-07-01
An important question for understanding the neural basis of problem solving is whether the regions of human prefrontal cortices play qualitatively different roles in the major cognitive restructuring required to solve difficult problems. However, investigating this question using neuroimaging faces a major dilemma: either the problems do not require major cognitive restructuring, or if they do, the restructuring typically happens once, rendering repeated measurements of the critical mental process impossible. To circumvent these problems, young adult participants were challenged with a one-dimensional Subtraction (or Nim) problem [Bouton, C. L. Nim, a game with a complete mathematical theory. The Annals of Mathematics, 3, 35-39, 1901] that can be tackled using two possible strategies. One, often used initially, is effortful, slow, and error-prone, whereas the abstract solution, once achieved, is easier, quicker, and more accurate. Behaviorally, success was strongly correlated with sex. Using voxel-based morphometry analysis controlling for sex, we found that participants who found the more abstract strategy (i.e., Solvers) had more gray matter volume in the anterior medial, ventrolateral prefrontal, and parietal cortices compared with those who never switched from the initial effortful strategy (i.e., Explorers). Removing the sex covariate showed higher gray matter volume in Solvers (vs. Explorers) in the right ventrolateral prefrontal and left parietal cortex.
NASA Astrophysics Data System (ADS)
Carpenter, Steven Michael
This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or dimensions. Much of this new knowledge has come from the analysis and understanding of the Tier 1, Tier 2 and Emergent traits of the transdisciplinarian.
The Salience and Severity of Relationship Problems among Low-Income Couples
Jackson, Grace L.; Trail, Thomas E.; Kennedy, David P.; Williamson, Hannah C.; Bradbury, Thomas N.; Karney, Benjamin R.
2015-01-01
Developing programs to support low-income married couples requires an accurate understanding of the challenges they face. To address this question, we assessed the salience and severity of relationship problems by asking 862 Black, White, and Latino newlywed spouses (N=431 couples) living in low-income neighborhoods to (a) free list their three biggest sources of disagreement in the marriage, and (b) rate the severity of the problems appearing on a standard relationship problem inventory. Comparing the two sources of information revealed that, although relational problems (e.g., communication and moods) were rated as severe on the inventory, challenges external to the relationship (e.g., children) were more salient in the free listing task. The pattern of results is robust across couples of varying race/ethnicity, parental status, and income levels. We conclude that efforts to strengthen marriages among low-income couples may be more effective if they address not only relational problems, but also couples’ external stresses by providing assistance with childcare, finances, or job training. PMID:26571196
Epithelial transport in The Journal of General Physiology
2017-01-01
Epithelia define the boundaries of the body and often transfer solutes and water from outside to inside (absorption) or from inside to outside (secretion). Those processes involve dual plasma membranes with different transport components that interact with each other. Understanding those functions has entailed breaking down the problem to analyze properties of individual membranes (apical vs. basolateral) and individual transport proteins. It also requires understanding of how those components interact and how they are regulated. This article outlines the modern history of this research as reflected by publications in The Journal of General Physiology. PMID:28931633
Epithelial transport in The Journal of General Physiology.
Palmer, Lawrence G
2017-10-02
Epithelia define the boundaries of the body and often transfer solutes and water from outside to inside (absorption) or from inside to outside (secretion). Those processes involve dual plasma membranes with different transport components that interact with each other. Understanding those functions has entailed breaking down the problem to analyze properties of individual membranes (apical vs. basolateral) and individual transport proteins. It also requires understanding of how those components interact and how they are regulated. This article outlines the modern history of this research as reflected by publications in The Journal of General Physiology . © 2017 Palmer.
Chappell, Jackie; Hawes, Nick
2012-01-01
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571
Chappell, Jackie; Hawes, Nick
2012-10-05
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.
NASA Astrophysics Data System (ADS)
Grose, C. J.
2008-05-01
Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.
Computational ecology as an emerging science
Petrovskii, Sergei; Petrovskaya, Natalia
2012-01-01
It has long been recognized that numerical modelling and computer simulations can be used as a powerful research tool to understand, and sometimes to predict, the tendencies and peculiarities in the dynamics of populations and ecosystems. It has been, however, much less appreciated that the context of modelling and simulations in ecology is essentially different from those that normally exist in other natural sciences. In our paper, we review the computational challenges arising in modern ecology in the spirit of computational mathematics, i.e. with our main focus on the choice and use of adequate numerical methods. Somewhat paradoxically, the complexity of ecological problems does not always require the use of complex computational methods. This paradox, however, can be easily resolved if we recall that application of sophisticated computational methods usually requires clear and unambiguous mathematical problem statement as well as clearly defined benchmark information for model validation. At the same time, many ecological problems still do not have mathematically accurate and unambiguous description, and available field data are often very noisy, and hence it can be hard to understand how the results of computations should be interpreted from the ecological viewpoint. In this scientific context, computational ecology has to deal with a new paradigm: conventional issues of numerical modelling such as convergence and stability become less important than the qualitative analysis that can be provided with the help of computational techniques. We discuss this paradigm by considering computational challenges arising in several specific ecological applications. PMID:23565336
Perspective on the National Aero-Space Plane Program instrumentation development
NASA Technical Reports Server (NTRS)
Bogue, Rodney K.; Erbland, Peter
1993-01-01
A review of the requirement for, and development of, advanced measurement technology for the National Aerospace Plane program is presented. The objective is to discuss the technical need and the program commitment required to ensure that adequate and timely measurement capabilities are provided for ground and flight testing in the NASP program. The scope of the measurement problem is presented, the measurement process is described, how instrumentation technology development has been affected by NASP program evolution is examined, the national effort to define measurement requirements and assess the adequacy of current technology to support the NASP program is discussed, and the measurement requirements are summarized. The unique features of the NASP program that complicate the understanding of requirements and the development of viable solutions are illustrated.
Risks, risk assessment and risk competence in toxicology.
Stahlmann, Ralf; Horvath, Aniko
2015-01-01
Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage) assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems.
Asessing for Structural Understanding in Childrens' Combinatorial Problem Solving.
ERIC Educational Resources Information Center
English, Lyn
1999-01-01
Assesses children's structural understanding of combinatorial problems when presented in a variety of task situations. Provides an explanatory model of students' combinatorial understandings that informs teaching and assessment. Addresses several components of children's structural understanding of elementary combinatorial problems. (Contains 50…
NASA Astrophysics Data System (ADS)
Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li
2018-05-01
Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.
ERIC Educational Resources Information Center
Surya, Edy; Sabandar, Jozua; Kusumah, Yaya S.; Darhim
2013-01-01
The students' difficulty which was found is in the problem of understanding, drawing diagrams, reading the charts correctly, conceptual formal mathematical understanding, and mathematical problem solving. The appropriate problem representation is the basic way in order to understand the problem itself and make a plan to solve it. This research was…
ERIC Educational Resources Information Center
Chesimet, M. C.; Githua, B. N.; Ng'eno, J. K.
2016-01-01
Mathematics is a subject which seeks to understand patterns that permeate both the world around us and the mind within us. There are many ways of thinking and the kind of thinking one learns in mathematics is an ability to handle abstraction and solve problems that require knowledge of mathematics. Mathematical creativity is essential for…
ERIC Educational Resources Information Center
Smail, Linda
2017-01-01
Mathematics is the foundation of all sciences, but most students have problems learning math. Although students' success in life related to their success in learning, many would not take a math course unless it is their university's core requirements. Multiple reasons exist for students' poor performance in mathematics, but one prevalent variable…
ERIC Educational Resources Information Center
Wuttiprom, Sura; Toeddhanya, Khanti; Buachoom, Aakapong; Wuttisela, Karntarat
2017-01-01
In decades Peer Instruction (PI) has been confirmed that it can improve students' conceptual understanding. Anyway the main problem for using PI is an audience responding system which is required for gathering students' answer, to enhance the learning process of PI instead of using Clickers which cost about 40 USD per item. In this work we decided…
Review for the generalist: evaluation of pediatric foot and ankle pain
Houghton, Kristin M
2008-01-01
Foot and ankle pain is common in children and adolescents. Problems are usually related to skeletal maturity and are fairly specific to the age of the child. Evaluation and management is challenging and requires a thorough history and physical exam, and understanding of the pediatric skeleton. This article will review common causes of foot and ankle pain in the pediatric population. PMID:18400098
ERIC Educational Resources Information Center
Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.
2017-01-01
A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…
ERIC Educational Resources Information Center
Guggisberg, Marika
2017-01-01
Professionals in the health and education sector require knowledge and understanding of issues of family violence. Violence in the family home against women and children continues to present alarming problems. Significant evidence suggests that not only current and former female partners, but also children, are exposed to violence in the home.…
Fundamentals of Physics, 6th Edition Enhanced Problems Version
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2002-04-01
No other text on the market today can match the success of Halliday, Resnick and Walker's Fundamentals of Physics. This text continues to outperform the competition year after year, and the new edition will be no exception. Intended for Calculus-based Physics courses, the 6th edition of this extraordinary text is a major redesign of the best-selling 5th edition, which still maintains many of the elements that led to its enormous success. Jearl Walker adds his unique style to this edition with the addition of new problems designed to capture, and keep, students' attention. Nearly all changes are based on suggestions from instructors and students using the 5th edition, from reviewer comments, and from research done on the process of learning. The primary goal of this text is to provide students with a solid understanding of fundamental physics concepts, and to help them apply this conceptual understanding to quantitative problem solving. The principal goal of Halliday-Resnick-Walker is to provide instructors with a tool by which they can teach students how to effectively read scientific material and successfully reason through scientific questions. To sharpen this tool, the Enhanced Problems Version of the sixth edition of Fundamentals of Physics contains over 1000 new, high-quality problems that require thought and reasoning rather than simplistic plugging of data into formulas.
Nonlinear Inference in Partially Observed Physical Systems and Deep Neural Networks
NASA Astrophysics Data System (ADS)
Rozdeba, Paul J.
The problem of model state and parameter estimation is a significant challenge in nonlinear systems. Due to practical considerations of experimental design, it is often the case that physical systems are partially observed, meaning that data is only available for a subset of the degrees of freedom required to fully model the observed system's behaviors and, ultimately, predict future observations. Estimation in this context is highly complicated by the presence of chaos, stochasticity, and measurement noise in dynamical systems. One of the aims of this dissertation is to simultaneously analyze state and parameter estimation in as a regularized inverse problem, where the introduction of a model makes it possible to reverse the forward problem of partial, noisy observation; and as a statistical inference problem using data assimilation to transfer information from measurements to the model states and parameters. Ultimately these two formulations achieve the same goal. Similar aspects that appear in both are highlighted as a means for better understanding the structure of the nonlinear inference problem. An alternative approach to data assimilation that uses model reduction is then examined as a way to eliminate unresolved nonlinear gating variables from neuron models. In this formulation, only measured variables enter into the model, and the resulting errors are themselves modeled by nonlinear stochastic processes with memory. Finally, variational annealing, a data assimilation method previously applied to dynamical systems, is introduced as a potentially useful tool for understanding deep neural network training in machine learning by exploiting similarities between the two problems.
From users involvement to users' needs understanding: a case study.
Niès, Julie; Pelayo, Sylvia
2010-04-01
Companies developing and commercializing Healthcare IT applications may decide to involve the users in the software development lifecycle in order to better understand the users' needs and to optimize their products. Unfortunately direct developers-users dialogues are not sufficient to ensure a proper understanding of the users' needs. It is also necessary to involve human factors specialists to analyze the users' expression of their needs and to properly formalize the requirements for design purposes. The objective of this paper is to present a case study reporting the collaborative work between HF experts and a company developing and commercializing a CPOE. This study shows how this collaboration helps resolve the limits of direct users involvement and usual problems pertaining to users' needs description and understanding. The company participating in the study has implemented a procedure to convene regular meetings allowing direct exchanges between the development team and users' representatives. Those meetings aim at getting users' feedbacks on the existing products and at validating further developments. In parallel with usual HF methods supporting the analysis of the work system (onsite observations followed by debriefing interviews) and the usability evaluation of the application (usability inspection and usability tests), HF experts took the opportunity of the meetings organized by the company to collect, re-interpret and re-formulate the needs expressed by the users. The developers perceive the physicians' requirements concerning the display of the patient's list of medication as contradictory. In a previous meeting round the users had required a detailed view of the medication list against the synthesized existing one. Once this requirement satisfied, the users participating in the current meeting round require a synthesized view against the existing detailed one. The development team is unable to understand what they perceive as a reverse claim. Relying on a cognitive analysis of the physicians' decision making concerning the patient's treatment, the HF experts help re-formulate the physicians' cognitive needs in terms of synthesized/detailed display of the medication list depending on the stage of the decision making process. This led to an astute re-engineering of the application allowing the physicians to easily navigate back and forth between the synthesized and detailed views depending on the progress of their decision making. This study demonstrates that the integration of users' representatives in the software lifecycle is a good point for the end users. But it remains insufficient to resolve the complex usability problems of the system. Such solutions require the integration of HF expertise. Moreover, such an involvement of HF experts may generate benefits in terms of reduction of (i) the number of iterative developments and (ii) the users' training costs. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Using Arabidopsis to understand centromere function: progress and prospects.
Copenhaver, Gregory P
2003-01-01
Arabidopsis thaliana has emerged in recent years as a leading model for understanding the structure and function of higher eukaryotic centromeres. Arabidopsis centromeres, like those of virtually all higher eukaryotes, encompass large DNA domains consisting of a complex combination of unique, dispersed middle repetitive and highly repetitive DNA. For this reason, they have required creative analysis using molecular, genetic, cytological and genomic techniques. This synergy of approaches, reinforced by rapid progress in understanding how proteins interact with the centromere DNA to form a complete functional unit, has made Arabidopsis one the best understood centromere systems. Yet major problems remain to be solved: gaining a complete structural definition of the centromere has been surprisingly difficult, and developing synthetic mini-chromosomes in plants has been even more challenging.
MacDoctor: The Macintosh diagnoser
NASA Technical Reports Server (NTRS)
Lavery, David B.; Brooks, William D.
1990-01-01
When the Macintosh computer was first released, the primary user was a computer hobbyist who typically had a significant technical background and was highly motivated to understand the internal structure and operational intricacies of the computer. In recent years the Macintosh computer has become a widely-accepted general purpose computer which is being used by an ever-increasing non-technical audience. This has lead to a large base of users which has neither the interest nor the background to understand what is happening 'behind the scenes' when the Macintosh is put to use - or what should be happening when something goes wrong. Additionally, the Macintosh itself has evolved from a simple closed design to a complete family of processor platforms and peripherals with a tremendous number of possible configurations. With the increasing popularity of the Macintosh series, software and hardware developers are producing a product for every user's need. As the complexity of configuration possibilities grows, the need for experienced or even expert knowledge is required to diagnose problems. This presents a problem to uneducated or casual users. This problem indicates a new Macintosh consumer need; that is, a diagnostic tool able to determine the problem for the user. As the volume of Macintosh products has increased, this need has also increased.
NASA Astrophysics Data System (ADS)
Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati
2017-09-01
One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.
Studies in Software Cost Model Behavior: Do We Really Understand Cost Model Performance?
NASA Technical Reports Server (NTRS)
Lum, Karen; Hihn, Jairus; Menzies, Tim
2006-01-01
While there exists extensive literature on software cost estimation techniques, industry practice continues to rely upon standard regression-based algorithms. These software effort models are typically calibrated or tuned to local conditions using local data. This paper cautions that current approaches to model calibration often produce sub-optimal models because of the large variance problem inherent in cost data and by including far more effort multipliers than the data supports. Building optimal models requires that a wider range of models be considered while correctly calibrating these models requires rejection rules that prune variables and records and use multiple criteria for evaluating model performance. The main contribution of this paper is to document a standard method that integrates formal model identification, estimation, and validation. It also documents what we call the large variance problem that is a leading cause of cost model brittleness or instability.
MIT/marine industry collegium opportunity brief No. 9. oil spills: Problems and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-07-20
The events occurring during the grounding and break up of the Liberian tanker, Argo Merchant, in December 1976, are used to illustrate the types and magnitudes of problems involved in responding to accidental oil spills. The Argo Merchant incident provides a framework for understanding what is needed for dealing with such events in the future. A chronology of the important events between the grounding and the break up are presented. The need for instrumentation and research to answer the question of 'how much oil has been spilled and where is it likely to go' is dealt with. The equipment andmore » vehicles needed for containment of a spill on the high seas are discussed and then the logistical requirements of getting people and equipment to the spill, containing and collecting oil and removing it are discussed and finally the general characteristics required for two boats and barges are summarized.« less
Causality and Causal Inference in Social Work: Quantitative and Qualitative Perspectives
Palinkas, Lawrence A.
2015-01-01
Achieving the goals of social work requires matching a specific solution to a specific problem. Understanding why the problem exists and why the solution should work requires a consideration of cause and effect. However, it is unclear whether it is desirable for social workers to identify cause and effect, whether it is possible for social workers to identify cause and effect, and, if so, what is the best means for doing so. These questions are central to determining the possibility of developing a science of social work and how we go about doing it. This article has four aims: (1) provide an overview of the nature of causality; (2) examine how causality is treated in social work research and practice; (3) highlight the role of quantitative and qualitative methods in the search for causality; and (4) demonstrate how both methods can be employed to support a “science” of social work. PMID:25821393
Surgical quality assessment. A simplified approach.
DeLong, D L
1991-10-01
The current approach to QA primarily involves taking action when problems are discovered and designing a documentation system that records the deliverance of quality care. Involving the entire staff helps eliminate problems before they occur. By keeping abreast of current problems and soliciting input from staff members, the QA at our hospital has improved dramatically. The cross-referencing of JCAHO and AORN standards on the assessment form and the single-sheet reporting form expedite the evaluation process and simplify record keeping. The bulletin board increases staff members' understanding of QA and boosts morale and participation. A sound and effective QA program does not require reorganizing an entire department, nor should it invoke negative connotations. Developing an effective QA program merely requires rethinking current processes. The program must meet the department's specific needs, and although many departments concentrate on documentation, auditing charts does not give a complete picture of the quality of care delivered. The QA committee must employ a variety of data collection methods on multiple indicators to ensure an accurate representation of the care delivered, and they must not overlook any issues that directly affect patient outcomes.
Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL
NASA Astrophysics Data System (ADS)
Elenius, Daniel; Martin, David; Ford, Reginald; Denker, Grit
Military training and testing events are highly complex affairs, potentially involving dozens of legacy systems that need to interoperate in a meaningful way. There are superficial interoperability concerns (such as two systems not sharing the same messaging formats), but also substantive problems such as different systems not sharing the same understanding of the terrain, positions of entities, and so forth. We describe our approach to facilitating such events: describe the systems and requirements in great detail using ontologies, and use automated reasoning to automatically find and help resolve problems. The complexity of our problem took us to the limits of what one can do with OWL, and we needed to introduce some innovative techniques of using and extending it. We describe our novel ways of using SWRL and discuss its limitations as well as extensions to it that we found necessary or desirable. Another innovation is our representation of hierarchical tasks in OWL, and an engine that reasons about them. Our task ontology has proved to be a very flexible and expressive framework to describe requirements on resources and their capabilities in order to achieve some purpose.
A responsible method of making healthcare choices.
Scandlen, Greg
2002-01-01
The essential problem in healthcare has never been fee-for-service. The problem is third-party payment that inevitably leads to excessive demand for services. Third-party payers will always try to limit the use and cost of services to reduce their exposure. The big question facing us in the next 10 years is who decides what gets paid for and what doesn't. Will it be employers, insurers, the government? Or it will it be consumers? Many employers have concluded that Americans are perfectly capable of expressing their preferences and choices in healthcare. But they need to understand that resources are limited and trade-offs are required.
van Raak, Arno; Paulus, Aggie; Cuijpers, Rianne; Te Velde, Clary
2008-12-01
Cooperation in networks of providers of palliative care in Europe is problematic. Based on the concept of routines (patterns of behavior) and data about a Dutch network, we developed an explanation of this problem, in order to better understand the conditions for cooperation. Although more research is needed, the study suggests that disparate matches (divergence) between routines of the network members hampers cooperation. To promote cooperation, divergence, and legislation that stabilizes existing routines, must be identified. Divergence must be overcome and negotiations and transformational leadership, which require power sources, may be useful for this.
Disease-Induced Skeletal Muscle Atrophy and Fatigue
Powers, Scott K.; Lynch, Gordon S.; Murphy, Kate T.; Reid, Michael B.; Zijdewind, Inge
2016-01-01
Numerous health problems including acute critical illness, cancer, diseases associated with chronic inflammation, and neurological disorders often result in skeletal muscle weakness and fatigue. Disease-related muscle atrophy and fatigue is an important clinical problem because acquired skeletal muscle weakness can increase the duration of hospitalization, result in exercise limitation, and contribute to a poor quality of life. Importantly, skeletal muscle atrophy is also associated with increased morbidity and mortality of patients. Therefore, improving our understanding of the mechanism(s) responsible for skeletal muscle weakness and fatigue in patients is a required first step to develop clinical protocols to prevent these skeletal muscle problems. This review will highlight the consequences and potential mechanisms responsible for skeletal muscle atrophy and fatigue in patients suffering from acute critical illness, cancer, chronic inflammatory diseases, and neurological disorders. PMID:27128663
NASA Astrophysics Data System (ADS)
Safadi, Rafi'
2017-01-01
I examined the impact of a self-diagnosis activity on students’ conceptual understanding and achievements in physics. This activity requires students to self-diagnose their solutions to problems that they have solved on their own—namely, to identify and explain their errors—and self-score them—that is, assign scores to their solutions—aided by a rubric demonstrating how to solve each problem step by step. I also examined a common practice in the physics classroom in which teachers manage a whole class discussion during which they solve, together with their students, problems that students had solved on their own. Three 8th-grade classes studying force and motion with the same teacher participated. Students were first taught the unit in force and motion. Then a first summative exam was administered. Next, two classes (59 students) were assigned to the self-diagnosis activity and the other class to the whole class discussion (27 students). To assess students’ learning with these activities, a repeat exam was administered. Results suggest that at least for teachers who are not competent in managing argumentative class discussions, the self-diagnosis activity is more effective than the whole class discussion in advancing students’ conceptual understanding and achievements. I account for these results and suggest possible directions for future research.
The development of tool manufacture in humans: what helps young children make innovative tools?
Chappell, Jackie; Cutting, Nicola; Apperly, Ian A.; Beck, Sarah R.
2013-01-01
We know that even young children are proficient tool users, but until recently, little was known about how they make tools. Here, we will explore the concepts underlying tool making, and the kinds of information and putative cognitive abilities required for children to manufacture novel tools. We will review the evidence for novel tool manufacture from the comparative literature and present a growing body of data from children suggesting that innovation of the solution to a problem by making a tool is a much more challenging task than previously thought. Children's difficulty with these kinds of tasks does not seem to be explained by perseveration with unmodified tools, difficulty with switching to alternative strategies, task pragmatics or issues with permission. Rather, making novel tools (without having seen an example of the required tool within the context of the task) appears to be hard, because it is an example of an ‘ill-structured problem’. In this type of ill-structured problem, the starting conditions and end goal are known, but the transformations and/or actions required to get from one to the other are not specified. We will discuss the implications of these findings for understanding the development of problem-solving in humans and other animals. PMID:24101620
Towards improving software security by using simulation to inform requirements and conceptual design
Nutaro, James J.; Allgood, Glenn O.; Kuruganti, Teja
2015-06-17
We illustrate the use of modeling and simulation early in the system life-cycle to improve security and reduce costs. The models that we develop for this illustration are inspired by problems in reliability analysis and supervisory control, for which similar models are used to quantify failure probabilities and rates. In the context of security, we propose that models of this general type can be used to understand trades between risk and cost while writing system requirements and during conceptual design, and thereby significantly reduce the need for expensive security corrections after a system enters operation
Applying an innovative educational program for the education of today's engineers
NASA Astrophysics Data System (ADS)
Kans, M.
2012-05-01
Engineers require a broad spectrum of knowledge and skills: basic skills in mathematics and physics, skills and competencies within the major subject area as well as more general knowledge about business and enterprise contexts, society regulations and understanding of the future professions' characteristics. In addition, social, intercultural, analytical and managing competencies are desired. The CDIO educational program was initiated as a means to come closer to practice and to assure the training of engineering skills that are required of today's engineers. CDIO is short for Conceive-Design-Implement-Operate and describes the full life cycle understanding of a system or asset that engineering students should reach during education. The CDIO initiative is formulated in a program consisting of two important documents: the CDIO standards and the CDIO syllabus. The standards describe a holistic approach on education, from knowledge and skills to be trained, how to train and assess them, to how to develop the teaching staff and the work places for enabling the goals. The specific knowledge and skills to be achieved are accounted for in the syllabus. In this paper we share our more than 15 years of experiences in problem and project based learning from the perspective of the CDIO standards. For each standard, examples of how to set up the education and overcome challenges connected to the standard are given. The paper concludes with recommendations to others wishing to work toward problem and real-life based education without compromising the requirements of a scientific approach.
Using Clickers to Facilitate Development of Problem-Solving Skills
Levesque, Aime A.
2011-01-01
Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and were polled for the correct answer. A histogram of class responses was displayed, and students were encouraged to discuss the problem, which enabled them to better understand the correct answer. Students were then presented with a similar problem and were again polled. My results indicate that those students who were initially unable to solve the problem were then able to figure out how to solve similar types of problems through a combination of trial and error and class discussion. This was reflected in student performance on exams, where there was a statistically significant positive correlation between grades and the percentage of clicker questions answered. Interestingly, there was no clear correlation between exam grades and the percentage of clicker questions answered correctly. These results suggest that students who attempt to solve problems in class are better equipped to solve problems on exams. PMID:22135374
Powell, Sarah R.; Fuchs, Lynn S.
2014-01-01
According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty. PMID:25309044
NASA Astrophysics Data System (ADS)
Amalia, A.; Gunawan, D.; Hardi, S. M.; Rachmawati, D.
2018-02-01
The Internal Quality Assurance System (in Indonesian: SPMI (Sistem Penjaminan Mutu Internal) is a systemic activity of quality assurance of higher education in Indonesia. SPMI should be done by all higher education or universities in Indonesia based on the Regulation of the Minister of Research, Technology and Higher Education of the Republic of Indonesia Number 62 of 2016. Implementation of SPMI must refer to the principle of SPMI that is independent, standardize, accurate, well planned and sustainable, documented and systematic. To assist the SPMI cycle properly, universities need a supporting software to monitor all the activities of SPMI. But in reality, many universities are not optimal in building this SPMI monitoring system. One of the obstacles is the determination of system requirements in support of SPMI principles is difficult to achieve. In this paper, we observe the initial phase of the engineering requirements elicitation. Unlike other methods that collect system requirements from users and stakeholders, we find the system requirements of the SPMI principles from SPMI guideline book. The result of this paper can be used as a choice in determining SPMI software requirements. This paper can also be used by developers and users to understand the scenario of SPMI so that could overcome the problems of understanding between this two parties.
NASA Astrophysics Data System (ADS)
Fuller, Nathaniel J.; Licata, Nicholas A.
2018-05-01
Obtaining a detailed understanding of the physical interactions between a cell and its environment often requires information about the flow of fluid surrounding the cell. Cells must be able to effectively absorb and discard material in order to survive. Strategies for nutrient acquisition and toxin disposal, which have been evolutionarily selected for their efficacy, should reflect knowledge of the physics underlying this mass transport problem. Motivated by these considerations, in this paper we discuss the results from an undergraduate research project on the advection-diffusion equation at small Reynolds number and large Péclet number. In particular, we consider the problem of mass transport for a Stokesian spherical swimmer. We approach the problem numerically and analytically through a rescaling of the concentration boundary layer. A biophysically motivated first-passage problem for the absorption of material by the swimming cell demonstrates quantitative agreement between the numerical and analytical approaches. We conclude by discussing the connections between our results and the design of smart toxin disposal systems.
The theory of interface slicing
NASA Technical Reports Server (NTRS)
Beck, Jon
1993-01-01
Interface slicing is a new tool which was developed to facilitate reuse-based software engineering, by addressing the following problems, needs, and issues: (1) size of systems incorporating reused modules; (2) knowledge requirements for program modification; (3) program understanding for reverse engineering; (4) module granularity and domain management; and (5) time and space complexity of conventional slicing. The definition of a form of static program analysis called interface slicing is addressed.
Review and Appraisal of the Federal Investment in STEM Education Research
2006-10-06
science literacy and education efforts, the NIH has also been supporting the Science Education Partnership Awards (SEPA) for close to 15 years...agency websites. While individual projects may be required to work directly and closely with practitioners, rarely do federal programs convey the...understanding of the factors that give rise to this national problem and provide evidence-based corrective actions for effectively modifying the current
NASA Astrophysics Data System (ADS)
Mashkov, O. A.; Samborskiy, I. I.
2009-10-01
A bundle of papers dealing with functionally stable systems requires the necessity of analyzing of obtained results and their understanding in a general context of cybernetic's development and applications. Description of this field of science, main results and perspectives of the new theory of functionally stability of dynamical systems concerning the problem of remote-piloted aircrafts engineering using pseudosatellite technologies are proposed in the paper.
ERIC Educational Resources Information Center
Darrah, Charles N.
This book explores how people look at workplaces and the consequences for one's understanding of work. Chapter 1 discusses the rhetoric of skill requirements. Chapter 2 follows the attempt of Kramden Computers to provide training to reduce problems in workmanship and the program's failure due to the inadequacy of the skill concept. Chapter 3…
ERIC Educational Resources Information Center
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
Identifying Requirements for Effective Human-Automation Teamwork
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; John O'Hara; Heather D. Medema
Previous studies have shown that poorly designed human-automation collaboration, such as poorly designed communication protocols, often leads to problems for the human operators, such as: lack of vigilance, complacency, and loss of skills. These problems often lead to suboptimal system performance. To address this situation, a considerable amount of research has been conducted to improve human-automation collaboration and to make automation function better as a “team player.” Much of this research is based on an understanding of what it means to be a good team player from the perspective of a human team. However, the research is often based onmore » a simplified view of human teams and teamwork. In this study, we sought to better understand the capabilities and limitations of automation from the standpoint of human teams. We first examined human teams to identify the principles for effective teamwork. We next reviewed the research on integrating automation agents and human agents into mixed agent teams to identify the limitations of automation agents to conform to teamwork principles. This research resulted in insights that can lead to more effective human-automation collaboration by enabling a more realistic set of requirements to be developed based on the strengths and limitations of all agents.« less
State of science: occupational slips, trips and falls on the same level.
Chang, Wen-Ruey; Leclercq, Sylvie; Lockhart, Thurmon E; Haslam, Roger
2016-07-01
Occupational slips, trips and falls on the same level (STFL) result in substantial injuries worldwide. This paper summarises the state of science regarding STFL, outlining relevant aspects of epidemiology, biomechanics, psychophysics, tribology, organisational influences and injury prevention. This review reaffirms that STFL remain a major cause of workplace injury and STFL prevention is a complex problem, requiring multi-disciplinary, multi-faceted approaches. Despite progress in recent decades in understanding the mechanisms involved in STFL, especially slipping, research leading to evidence-based prevention practices remains insufficient, given the problem scale. It is concluded that there is a pressing need to develop better fall prevention strategies using systems approaches conceptualising and addressing the factors involved in STFL, with considerations of the full range of factors and their interactions. There is also an urgent need for field trials of various fall prevention strategies to assess the effectiveness of different intervention components and their interactions. Practitioner Summary: Work-related slipping, tripping and falls on the same level are a major source of occupational injury. The causes are broadly understood, although more attention is needed from a systems perspective. Research has shown preventative action to be effective, but further studies are required to understand which aspects are most beneficial.
Using Mean Orbit Period in Mars Reconnaissance Orbiter Maneuver Design
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.; Menon, Premkumar R.; Wagner, Sean V.; Williams, Jessica L.
2014-01-01
Mars Reconnaissance Orbiter (MRO) has provided communication relays for a number of Mars spacecraft. In 2016 MRO is expected to support a relay for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft. In addition, support may be needed by another mission, ESA's ExoMars EDL Demonstrator Module's (EDM), only 21 days after the InSight coverage. The close proximity of these two events presents a unique challenge to a conventional orbit synchronization maneuver where one deterministic maneuver is executed prior to each relay. Since the two events are close together and the difference in required phasing between InSight and EDM may be up to half an orbit (yielding a large execution error), the downtrack timing error can increase rapidly at the EDM encounter. Thus, a new maneuver strategy that does not require a deterministic maneuver in-between the two events (with only a small statistical cleanup) is proposed in the paper. This proposed strategy rests heavily on the stability of the mean orbital period. The ability to search and set the specified mean period is fundamental in the proposed maneuver design as well as in understanding the scope of the problem. The proposed strategy is explained and its result is used to understand and solve the problem in the flight operations environment.
State of science: occupational slips, trips and falls on the same level *
Chang, Wen-Ruey; Leclercq, Sylvie; Lockhart, Thurmon E.; Haslam, Roger
2016-01-01
Abstract Occupational slips, trips and falls on the same level (STFL) result in substantial injuries worldwide. This paper summarises the state of science regarding STFL, outlining relevant aspects of epidemiology, biomechanics, psychophysics, tribology, organisational influences and injury prevention. This review reaffirms that STFL remain a major cause of workplace injury and STFL prevention is a complex problem, requiring multi-disciplinary, multi-faceted approaches. Despite progress in recent decades in understanding the mechanisms involved in STFL, especially slipping, research leading to evidence-based prevention practices remains insufficient, given the problem scale. It is concluded that there is a pressing need to develop better fall prevention strategies using systems approaches conceptualising and addressing the factors involved in STFL, with considerations of the full range of factors and their interactions. There is also an urgent need for field trials of various fall prevention strategies to assess the effectiveness of different intervention components and their interactions. Practitioner Summary: Work-related slipping, tripping and falls on the same level are a major source of occupational injury. The causes are broadly understood, although more attention is needed from a systems perspective. Research has shown preventative action to be effective, but further studies are required to understand which aspects are most beneficial. PMID:26903401
Risks, risk assessment and risk competence in toxicology
Stahlmann, Ralf; Horvath, Aniko
2015-01-01
Understanding the toxic effects of xenobiotics requires sound knowledge of physiology and biochemistry. The often described lack of understanding pharmacology/toxicology is therefore primarily caused by the general absence of the necessary fundamental knowledge. Since toxic effects depend on exposure (or dosage) assessing the risks arising from toxic substances also requires quantitative reasoning. Typically public discussions nearly always neglect quantitative aspects and laypersons tend to disregard dose-effect-relationships. One of the main reasons for such disregard is the fact that exposures often occur at extremely low concentrations that can only be perceived intellectually but not by the human senses. However, thresholds in the low exposure range are often scientifically disputed. At the same time, ignorance towards known dangers is wide-spread. Thus, enhancing the risk competence of laypersons will have to be initially restricted to increasing the awareness of existing problems. PMID:26195922
NASA Technical Reports Server (NTRS)
Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.
1998-01-01
Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.
Treatment Considerations in Internet and Video Game Addiction: A Qualitative Discussion.
Greenfield, David N
2018-04-01
Internet and video game addiction has been a steadily developing consequence of modern living. Behavioral and process addictions and particularly Internet and video game addiction require specialized treatment protocols and techniques. Recent advances in addiction medicine have improved our understanding of the neurobiology of substance and behavioral addictions. Novel research has expanded the ways we understand and apply well-established addiction treatments as well as newer therapies specific to Internet and video game addiction. This article reviews the etiology, psychology, and neurobiology of Internet and video game addiction and presents treatment strategies and protocols for addressing this growing problem. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Fundamentals Handbook: Mathematics, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
DOE Fundamentals Handbook: Mathematics, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
The Mathematics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mathematics and its application to facility operation. The handbook includes a review of introductory mathematics and the concepts and functional use of algebra, geometry, trigonometry, and calculus. Word problems, equations, calculations, and practical exercises that require the use of each of the mathematical concepts are also presented. This information will provide personnel with a foundation for understanding and performing basic mathematical calculations that are associated with various DOE nuclearmore » facility operations.« less
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
The 2011 study, "Benefits of Practicing 4 = 2 + 2: Nontraditional Problem Formats Facilitate Children's Understanding of Mathematical Equivalence," examined the effects of addition practice using nontraditional problem formats on students' understanding of mathematical equivalence. In nontraditional problem formats, operations appear on…
NASA Astrophysics Data System (ADS)
Irsal, I. L.; Jupri, A.; Prabawanto, S.
2017-09-01
Line and angles is important topics to learn to develop the geometry skills and also mathematics skills such as understanding and problem solving skills. But, the fact was given by Indonesian researcher show that Indonesian students’ understanding and problem solving skills still low in this topics. This fact be a background to investigate students’ understanding and problem solving skills in line and angles topics. To investigate these skills, this study used descriptive-qualitative approach. Individual written test (essay) and interview was used in this study. 72 students grade 8th from one of Junior High School in Lembang, worked the written test and 18 of them were interviewed. Based on result, almost of student were have a good instrumental understanding in line and angles topic in same area, but almost all student have a low instrumental understanding in line and angles topic in different area. Almost all student have a low relational understanding. Also, almost all student have a low problem solving skills especially in make and use strategy to solve the problem and looking back their answer. Based on result there is need a meaningfulness learning strategy, which can make students build their understanding and develop their problem solving skill independently.
A Visual Decision Aid for Gear Materials Selection
NASA Astrophysics Data System (ADS)
Maity, S. R.; Chakraborty, S.
2013-10-01
Materials play an important role during the entire design process and the designers need to identify materials with specific functionalities in order to find out feasible design concepts. While selecting materials for engineering designs from an ever-increasing array of alternatives, with each having its own characteristics, applications, advantages and limitations, a clear understanding of the functional requirements for each individual component is required and various important criteria need to be considered. Although various approaches have already been adopted by the past researchers to solve the material selection problems, they all require profound knowledge in mathematics from the part of the designers for their implementation. This paper proposes the application of an integrated preference ranking organization method for enrichment evaluation and geometrical analysis for interactive aid method as a visual decision aid for material selection. Two real time gear material selection problems are solved which prove the potentiality and usefulness of this combined approach. It is observed that Nitralloy 135M and Nylon glass fiber reinforced 6/6 are respectively the choicest metallic and non-metallic gear materials.
Sexual dysfunctions in non-heterosexual men - literature review.
Grabski, Bartosz; Kasparek, Krzysztof
2017-02-26
The paper aims to present results and discuss methodology of research conducted so far on sexual dysfunction in non-heterosexual men, as well as to form suggestions for future research and clinical practice. The present paper is a continuation of our earlier paper, which discussed the specific context of the issue connected with the characteristics of gay sexual orientation and the social situation those men face. There is little research on dysfunctions and sexual problems in non-heterosexual men, and none has been conducted in Poland. The research that has been done is characterized by inconsistent methodology that is far from perfect, and varied results which cannot be compared. There are still many unanswered questions in the field. The issues connected with research that require attention include the choice of samples and their representativeness, and the accuracy of the methods used for identifying sexual dysfunctions. It is also still not clear whether sexual problems occur more often in non-heterosexual than heterosexual men, how non-heterosexual men deal with those problems, and how the problems influence their functioning. Another issue that requires a deeper understanding is the connections between sexual dysfunctions in this group and various aspects of the so-called minority stress, such as internalized homophobia and experiencing discrimination, psychoactive substance abuse, HIV infection, and the sexual and partnership lifestyle.
NASA Astrophysics Data System (ADS)
Karim, S.; Saepuzaman, D.; Sriyansyah, S. P.
2016-08-01
This study is initiated by low achievement of prospective teachers in understanding concepts in introductory physics course. In this case, a problem has been identified that students cannot develop their thinking skills required for building physics concepts. Therefore, this study will reconstruct a learning process, emphasizing a physics concept building. The outcome will design physics lesson plans for the concepts of particle system as well as linear momentum conservation. A descriptive analysis method will be used in order to investigate the process of learning reconstruction carried out by students. In this process, the students’ conceptual understanding will be evaluated using essay tests for concepts of particle system and linear momentum conservation. The result shows that the learning reconstruction has successfully supported the students’ understanding of physics concept.
Children's strategies to solving additive inverse problems: a preliminary analysis
NASA Astrophysics Data System (ADS)
Ding, Meixia; Auxter, Abbey E.
2017-03-01
Prior studies show that elementary school children generally "lack" formal understanding of inverse relations. This study goes beyond lack to explore what children might "have" in their existing conception. A total of 281 students, kindergarten to third grade, were recruited to respond to a questionnaire that involved both contextual and non-contextual tasks on inverse relations, requiring both computational and explanatory skills. Results showed that children demonstrated better performance in computation than explanation. However, many students' explanations indicated that they did not necessarily utilize inverse relations for computation. Rather, they appeared to possess partial understanding, as evidenced by their use of part-whole structure, which is a key to understanding inverse relations. A close inspection of children's solution strategies further revealed that the sophistication of children's conception of part-whole structure varied in representation use and unknown quantity recognition, which suggests rich opportunities to develop students' understanding of inverse relations in lower elementary classrooms.
2014-11-01
Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS): Phase 2 Challenge Problem Walkthrough Kevin Burns...neuroscience Architectures for Understanding Sensemaking (ICArUS) Phase 2 challenge problem. The pages include screen shots from the tutorial that...Burns, K., Fine, M., Bonaceto, C., & Oertel, C. (2014). Integrated Cognitive-neuroscience Architectures for Understanding Sensemaking (ICArUS
TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M.; van Keken, P.
2012-12-01
Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are generated from this file but share an infrastructure for services common to all models, e.g. diagnostics, checkpointing and global non-linear convergence monitoring. This maximizes code reusability, reliability and longevity ensuring that scientific results and the methods used to acquire them are transparent and reproducible. TerraFERMA has been tested against many published geodynamic benchmarks including 2D/3D thermal convection problems, the subduction zone benchmarks and benchmarks for magmatic solitary waves. It is currently being used in the investigation of reactive cracking phenomena with applications to carbon sequestration, but we will principally discuss its use in modeling the migration of fluids in subduction zones. Subduction zones require an understanding of the highly nonlinear interactions of fluids with solids and thus provide an excellent scientific driver for the development of multi-physics software.
Waheedi, Mohammad; Jeragh-Alhaddad, Fatima B; Awad, Abdelmoneim Ismail; Enlund, Hannes
2017-01-01
Nonadherence to diabetes medication is a significant barrier toward achieving positive treatment outcomes. There is an abundance of research looking at the problem from the patient perspective, but less from the provider perspective. The Middle East region has one of the highest prevalences of type 2 diabetes in the world, with special cultural characteristics, which require research attention. The aim of this study was to explore the views of primary-care physicians on medication nonadherence among type 2 diabetes patients. A descriptive qualitative study was performed using one-on-one semistructured interviews of 21 primary-care physicians who were selected using stratified and random sampling from polyclinics in the five health districts in Kuwait. The interviews elicited the participants' views about barriers and facilitators of medication adherence in type 2 diabetes patients. The interviews were audio-recorded and transcribed verbatim. Thematic content analysis with constant comparison was used to generate the codes and themes to arrive at a core category. Patient understanding, including knowledge, beliefs, and attitudes, was identified by respondents as the core determinant of medication nonadherence in type 2 diabetes. This was composed of six major themes: four against understanding and two for understanding. The ones against were "Patients do not understand diabetes", "Patients do not understand the importance of medications", "What the patient hears from friends is more important than what the doctor says", "Patients are in denial (or difficult)". Themes for understanding were "I need to educate more" and "Patients must hear it from other sources". That lack of understanding among patients results in medication nonadherence is the dominant view of primary-care physicians. This finding has implications in relation to the evolution of diabetes care toward more patient-centeredness within the cultural context.
People With Cerebral Palsy: Effects of and Perspectives for Therapy
Mayston, Margaret J.
2001-01-01
The movement disorder of cerebral palsy (CP) is expressed in a variety of ways and to varying degrees in each individual. The condition has become more complex over the last 20 years with the increasing survival of children born at less than 28 to 30 weeks gestationai age. Impairments present in children with CP as a direct result of the brain injury or occurring indirectly to compensate for underlying problems include abnormal muscle tone; weakness and lack of fitness; limited variety of muscle synergies; contracture and altered biomechanics, the net result being limited functional ability. Other contributors to the motor disorder include sensory, cognitive and perceptual impairments. In recent years understanding of the motor problem has increased, but less is known about effects of therapy. Evidence suggests that therapy can improve functional possibilities for children with cerebral palsy but is inconclusive as to which approach might be most beneficial. The therapist requires an understanding of the interaction of all systems, cognitive/perceptual, motor, musculoskeletal, sensory and behavioral, in the context of the development and plasticity of the CNS. It is necessary to understand the limitations of the damaged immature nervous system, but important to optimize the child's functional possibilities. PMID:11530888
Visualization for Hyper-Heuristics: Back-End Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Luke
Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualizationmore » for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.« less
Dynamics of problem setting and framing in citizen discussions on synthetic biology
Betten, Afke Wieke; Broerse, Jacqueline E.W.; Kupper, Frank
2017-01-01
Synthetic biology is an emerging scientific field where engineers and biologists design and build biological systems for various applications. Developing synthetic biology responsibly in the public interest necessitates a meaningful societal dialogue. In this article, we argue that facilitating such a dialogue requires an understanding of how people make sense of synthetic biology. We performed qualitative research to unravel the underlying dynamics of problem setting and framing in citizen discussions on synthetic biology. We found that most people are not inherently for or against synthetic biology as a technology or development in itself, but that their perspectives are framed by core values about our relationships with science and technology and that sensemaking is much dependent on the context and general feelings of (dis)content. Given that there are many assumptions focused on a more binary idea of the public’s view, we emphasize the need for frame awareness and understanding in a meaningful dialogue. PMID:28597721
Meta-cognitive student reflections
NASA Astrophysics Data System (ADS)
Barquist, Britt; Stewart, Jim
2009-05-01
We have recently concluded a project testing the effectiveness of a weekly assignment designed to encourage awareness and improvement of meta-cognitive skills. The project is based on the idea that successful problem solvers implement a meta-cognitive process in which they identify the specific concept they are struggling with, and then identify what they understand, what they don't understand, and what they need to know in order to resolve their problem. The assignment required the students to write an email assessing the level of completion of a weekly workbook assignment and to examine in detail their experiences regarding a specific topic they struggled with. The assignment guidelines were designed to coach them through this meta-cognitive process. We responded to most emails with advice for next week's assignment. Our data follow 12 students through a quarter consisting of 11 email assignments which were scored using a rubric based on the assignment guidelines. We found no correlation between rubric scores and final grades. We do have anecdotal evidence that the assignment was beneficial.
Changing to Concept-Based Curricula: The Process for Nurse Educators.
Baron, Kristy A
2017-01-01
The complexity of health care today requires nursing graduates to use effective thinking skills. Many nursing programs are revising curricula to include concept-based learning that encourages problem-solving, effective thinking, and the ability to transfer knowledge to a variety of situations-requiring nurse educators to modify their teaching styles and methods to promote student-centered learning. Changing from teacher-centered learning to student-centered learning requires a major shift in thinking and application. The focus of this qualitative study was to understand the process of changing to concept-based curricula for nurse educators who previously taught in traditional curriculum designs. The sample included eight educators from two institutions in one Western state using a grounded theory design. The themes that emerged from participants' experiences consisted of the overarching concept, support for change, and central concept, finding meaning in the change. Finding meaning is supported by three main themes : preparing for the change, teaching in a concept-based curriculum, and understanding the teaching-learning process. Changing to a concept-based curriculum required a major shift in thinking and application. Through support, educators discovered meaning to make the change by constructing authentic learning opportunities that mirrored practice, refining the change process, and reinforcing benefits of teaching.
A hitchhiker's guide to an ISS experiment in under 9 months.
Nadir, Andrei James; Sato, Kevin
2017-01-01
The International Space Station National Laboratory gives students a platform to conduct space-flight science experiments. To successfully take advantage of this opportunity, students and their mentors must have an understanding of how to develop and then conduct a science project on international space station within a school year. Many factors influence the speed in which a project progresses. The first step is to develop a science plan, including defining a hypothesis, developing science objectives, and defining a concept of operation for conducting the flight experiment. The next step is to translate the plan into well-defined requirements for payload development. The last step is a rapid development process. Included in this step is identifying problems early and negotiating appropriate trade-offs between science and implementation complexity. Organizing the team and keeping players motivated is an equally important task, as is employing the right mentors. The project team must understand the flight experiment infrastructure, which includes the international space station environment, payload resource requirements and available components, fail-safe operations, system logs, and payload data. Without this understanding, project development can be impacted, resulting in schedule delays, added costs, undiagnosed problems, and data misinterpretation. The information and processes for conducting low-cost, rapidly developed student-based international space station experiments are presented, including insight into the system operations, the development environment, effective team organization, and data analysis. The details are based on the Valley Christian Schools (VCS, San Jose, CA) fluidic density experiment and penicillin experiment, which were developed by 13- and 14-year-old students and flown on ISS.
Wachtel, Ruth E.; Dexter, Franklin
2010-01-01
Background Residency programs accredited by the ACGME are required to teach core competencies, including systems-based practice (SBP). Projects are important for satisfying this competency, but the level of knowledge and problem-solving skills required presupposes a basic understanding of the field. The responsibilities of anesthesiologists include the coordination of patient flow in the surgical suite. Familiarity with this topic is crucial for many improvement projects. Intervention A course in operations research for surgical services was originally developed for hospital administration students. It satisfies 2 of the Institute of Medicine's core competencies for health professionals: evidence-based practice and work in interdisciplinary teams. The course lasts 3.5 days (eg, 2 weekends) and consists of 45 cognitive objectives taught using 7 published articles, 10 lectures, and 156 computer-assisted problem-solving exercises based on 17 case studies. We tested the hypothesis that the cognitive objectives of the curriculum provide the knowledge and problem-solving skills necessary to perform projects that satisfy the SBP competency. Standardized terminology was used to define each component of the SBP competency for the minimum level of knowledge needed. The 8 components of the competency were examined independently. Findings Most cognitive objectives contributed to at least 4 of the 8 core components of the SBP competency. Each component of SBP is addressed at the minimum requirement level of exemplify by at least 6 objectives. There is at least 1 cognitive objective at the level of summarize for each SBP component. Conclusions A curriculum in operating room management can provide the knowledge and problem-solving skills anesthesiologists need for participation in projects that satisfy the SBP competency. PMID:22132289
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
Radar image interpretation techniques applied to sea ice geophysical problems
NASA Technical Reports Server (NTRS)
Carsey, F. D.
1983-01-01
The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.
NASA's aviation safety research and technology program
NASA Technical Reports Server (NTRS)
Fichtl, G. H.
1977-01-01
Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.
Storage and Database Management for Big Data
2015-07-27
and value ), each cell is actually a seven tuple where the column is broken into three parts, and there is an additional field for a timestamp as seen...questions require a careful understanding of the technology field in addition to the types of problems that are being solved. This chapter aims to address...formats such as comma separated values (CSV), JavaScript Object Notation (JSON) [21], or other proprietary sensor formats. Most often, this raw data
Semantics of Procedures: A Cognitive Basis for Maintenance Training Competency
1988-04-01
provided by presenting these multiple, interacting views. These 0 conclusions are similar to the views of George Polya , who proposed the use of... exercises . It is also clear that at least some understanding of machine structure and function is required to interpret much of the information in the...check of the problem lists provides the names of all the usual subpects. This accessibility permits the technician to modify the sequence according to
1990-01-01
least-squares sense by adding a penalty term proportional to the square of the divergence to the variational principle At the start of this project... principle required for stable solutions of the electromagnetic field: It must be possible to express the basis functions used in the finite element method as... principle to derive several different methods for computing stable solutions to electromagnetic field problems. To understand above principle , notice that
Program Aids Visualization Of Data
NASA Technical Reports Server (NTRS)
Truong, L. V.
1995-01-01
Living Color Frame System (LCFS) computer program developed to solve some problems that arise in connection with generation of real-time graphical displays of numerical data and of statuses of systems. Need for program like LCFS arises because computer graphics often applied for better understanding and interpretation of data under observation and these graphics become more complicated when animation required during run time. Eliminates need for custom graphical-display software for application programs. Written in Turbo C++.
Computer-Generated Movies for Mission Planning
NASA Technical Reports Server (NTRS)
Roberts, P. H., Jr.; vanDillen, S. L.
1973-01-01
Computer-generated movies help the viewer to understand mission dynamics and get quantitative details. Sample movie frames demonstrate the uses and effectiveness of movies in mission planning. Tools needed for movie-making include computer programs to generate images on film and film processing to give the desired result. Planning scenes to make an effective product requires some thought and experience. Viewpoints and timing are particularly important. Lessons learned so far and problems still encountered are discussed.
2009-05-18
serves as a didactic tool to understand the information required for the approach to coordinate free tracking and navigation problems. Observe that the...layout (left), and in the CN -Complex (right). These paths can be compared by using the algebraic topological tools covered in chapter 2. . . . 34 3.9...right). mathematical tools necessary to make our discussion formal; chapter 3 will present the construction of a simplicial representation called
Tarrant, Carolyn; O'Donnell, Barbara; Martin, Graham; Bion, Julian; Hunter, Alison; Rooney, Kevin D
2016-11-16
Implementation of the 'Sepsis Six' clinical care bundle within an hour of recognition of sepsis is recommended as an approach to reduce mortality in patients with sepsis, but achieving reliable delivery of the bundle has proved challenging. There remains little understanding of the barriers to reliable implementation of bundle components. We examined frontline clinical practice in implementing the Sepsis Six. We conducted an ethnographic study in six hospitals participating in the Scottish Patient Safety Programme Sepsis collaborative. We conducted around 300 h of non-participant observation in emergency departments, acute medical receiving units and medical and surgical wards. We interviewed a purposive sample of 43 members of hospital staff. Data were analysed using a constant comparative approach. Implementation strategies to promote reliable use of the Sepsis Six primarily focused on education, engaging and motivating staff, and providing prompts for behaviour, along with efforts to ensure that equipment required was readily available. Although these strategies were successful in raising staff awareness of sepsis and engagement with implementation, our study identified that completing the bundle within an hour was not straightforward. Our emergent theory suggested that rather than being an apparently simple sequence of six steps, the Sepsis Six actually involved a complex trajectory comprising multiple interdependent tasks that required prioritisation and scheduling, and which was prone to problems of coordination and operational failures. Interventions that involved allocating specific roles and responsibilities for completing the Sepsis Six in ways that reduced the need for coordination and task switching, and the use of process mapping to identify system failures along the trajectory, could help mitigate against some of these problems. Implementation efforts that focus on individual behaviour change to improve uptake of the Sepsis Six should be supplemented by an understanding of the bundle as a complex trajectory of work in which improving reliability requires attention to coordination of workflow, as well as addressing the mundane problems of interruptions and operational failures that obstruct task completion.
Benson, Neil
2015-08-01
Phase II attrition remains the most important challenge for drug discovery. Tackling the problem requires improved understanding of the complexity of disease biology. Systems biology approaches to this problem can, in principle, deliver this. This article reviews the reports of the application of mechanistic systems models to drug discovery questions and discusses the added value. Although we are on the journey to the virtual human, the length, path and rate of learning from this remain an open question. Success will be dependent on the will to invest and make the most of the insight generated along the way. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)
1990-01-01
The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.
Physical insight into the simultaneous optimization of structure and control
NASA Technical Reports Server (NTRS)
Jacques, Robert N.; Miller, David W.
1993-01-01
Recent trends in spacecraft design which yield larger structures with more stringent performance requirements place many flexible modes of the structure within the bandwidth of active controllers. The resulting complications to the spacecraft design make it highly desirable to understand the impact of structural changes on an optimally controlled structure. This work uses low structural models with optimal H(sub 2) and H(sub infinity) controllers to develop some basic insight into this problem. This insight concentrates on several basic approaches to improving controlled performance and how these approaches interact in determining the optimal designs. A numerical example is presented to demonstrate how this insight can be generalized to more complex problems.
Mental health services at selected private schools.
Van Hoof, Thomas J; Sherwin, Tierney E; Baggish, Rosemary C; Tacy, Peter B; Meehan, Thomas P
2004-04-01
Private schools educate a significant percentage of US children and adolescents. Private schools, particularly where students reside during the academic year, assume responsibility for the health and well-being of their students. Children and adolescents experience mental health problems at a predictable rate, and private schools need a mechanism for addressing their students' mental health needs. Understanding that need requires data to guide the services and programs a school may put in place. Having data helps inform those services, and comparative data from other schools provides feedback and perspective. This project surveyed type and frequency of mental health problems experienced by students who received a formal evaluation at 11 private schools in Connecticut during academic year 2001-2002.
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
NASA Astrophysics Data System (ADS)
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
NASA Technical Reports Server (NTRS)
Kulkarni, Nilesh; Krishnakumar, Kalmaje
2005-01-01
The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.
NASA Technical Reports Server (NTRS)
Lowman, Douglas S.; Withers, B. Edward; Shagnea, Anita M.; Dent, Leslie A.; Hayhurst, Kelly J.
1990-01-01
A variety of instructions to be used in the development of implementations of software for the Guidance and Control Software (GCS) project is described. This document fulfills the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, 'Software Considerations in Airborne Systems and Equipment Certification' requirements for document No. 4, which specifies the information necessary for understanding and programming the host computer, and document No. 12, which specifies the software design and implementation standards that are applicable to the software development and testing process. Information on the following subjects is contained: activity recording, communication protocol, coding standards, change management, error handling, design standards, problem reporting, module testing logs, documentation formats, accuracy requirements, and programmer responsibilities.
Wicked problems in space technology development at NASA
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Stevens, John
2016-01-01
Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards preferred outcomes.
2013-07-01
This issue of JERHRE examines informed consent requirements as they arise in diverse countries and cultures, and in relation to level of risk of the research and vulnerability of the potential participants. It also examines issues of literacy as they affect informed consent. And it examines whether research participants want to be informed. Adequate informed consent is a statement that is meaningful and understandable by the particular research participant and that allows the participant free choice regarding participation. The way in which an adequate consent procedure is administered must, by definition, depend on the level of literacy of the potential research participants, and the nature and values of the culture of the potential participants. An implication of these requirements is that Western consent procedures are likely to violate ethical standards when employed in non-Western cultures. Educational activities presented below will enable readers to consolidate their knowledge and understanding of these issues. Written informed consent statements are not valid for use with research participants who lack literacy. The level of literacy required depends on the complexity of the research topic. In Clough et al., we find that cultural differences in self-concept, understanding of research methods, level of education, and deference to researchers challenge researchers to modify standard consent procedures to render them valid in some cultural contexts. In Abou Zeina et al., we find an even more complex problem of communicating patients' rights to illiterate patients in an Egyptian public hospital: not only can they not read, but they consider "patients' rights" as the least of their problems. In Iverson et al., we find still different issues concerning the scientific literacy of surrogate decision makers for critically ill patients. And in Ghandour et al., we find in Lebanon, within a very large sample of socioeconomically diverse students, a virtually total lack of interest in being informed before participating in a survey on a highly sensitive topic. For those of us who would unthinkingly impose standard Western consent procedures on everyone, these four articles may have much to teach us.
Siegel, Carole E.; Laska, Eugene; Meisner, Morris
2004-01-01
Objectives. We sought to estimate the extended mental health service capacity requirements of persons affected by the September 11, 2001, terrorist attacks. Methods. We developed a formula to estimate the extended mental health service capacity requirements following disaster situations and assessed availability of the information required by the formula. Results. Sparse data exist on current services and supports used by people with mental health problems outside of the formal mental health specialty sector. There also are few systematically collected data on mental health sequelae of disasters. Conclusions. We recommend research-based surveys to understand service usage in non–mental health settings and suggest that federal guidelines be established to promote uniform data collection of a core set of items in studies carried out after disasters. PMID:15054009
Shrimer, Fred H.
2005-01-01
The supply of aggregates suitable for use in construction and maintenance of infrastructure in western North America is a continuing concern to the engineering and resources-management community. Steady population growth throughout the region has fueled demand for high-quality aggregates, in the face of rapid depletion of existing aggregate resources and slow and difficult permitting of new sources of traditional aggregate types. In addition to these challenges, the requirement for aggregates to meet various engineering standards continues to increase. In addition to their physical-mechanical properties, other performance characteristics of construction aggregates specifically depend on their mineralogy and texture. These properties can result in deleterious chemical reactions when aggregate is used in concrete mixes. When this chemical reaction-termed 'alkali-aggregate reaction' (AAR)-occurs, it can pose a major problem for concrete structures, reducing their service life and requiring expensive repair or even replacement of the concrete. AAR is thus to be avoided in order to promote the longevity of concrete structures and to ensure that public moneys invested in infrastructure are well spent. Because the AAR phenomenon is directly related to the mineral composition, texture, and petrogenesis of the rock particles that make up aggregates, an understanding of the relation between the geology and the performance of aggregates in concrete is important. In the Pacific Northwest, some aggregates have a moderate to high AAR potential, but many others have no or only a low AAR potential. Overall, AAR is not as widespread or serious a problem in the Pacific Northwest as in other regions of North America. The identification of reactive aggregates in the Pacific Northwest and the accurate prediction of their behavior in concrete continue to present challenges for the assessment and management of geologic resources to the owners and operators of pits and quarries and to the users of the concrete aggregates mined from these deposits. This situation is complicated by the length of time typically required for AAR to become noticeable in concrete construction in the Pacific Northwest, commonly on such a scale that other deterioration mechanisms may have masked the effects of AAR. Distinguishing between the effects of AAR and those related to other problems in concrete is important for understanding the nature and severity of AAR throughout the Pacific Northwest. Furthermore, developing an understanding of the extent of the problem will assist efforts to maximize the intelligent and stewardly use of aggregate resources in the Pacific Northwest. This chapter illustrates the current 'state of the art' of AAR studies in the Pacific Northwest, a region with a common geologic heritage as well as many distinct geologic elements. The optimal use of aggregates in the construction of concrete structures that will achieve their design life is possible through an understanding of the engineering and geologic properties of these aggregates and of their geologic setting.
Solving the detour problem in navigation: a model of prefrontal and hippocampal interactions.
Spiers, Hugo J; Gilbert, Sam J
2015-01-01
Adapting behavior to accommodate changes in the environment is an important function of the nervous system. A universal problem for motile animals is the discovery that a learned route is blocked and a detour is required. Given the substantial neuroscience research on spatial navigation and decision-making it is surprising that so little is known about how the brain solves the detour problem. Here we review the limited number of relevant functional neuroimaging, single unit recording and lesion studies. We find that while the prefrontal cortex (PFC) consistently responds to detours, the hippocampus does not. Recent evidence suggests the hippocampus tracks information about the future path distance to the goal. Based on this evidence we postulate a conceptual model in which: Lateral PFC provides a prediction error signal about the change in the path, frontopolar and superior PFC support the re-formulation of the route plan as a novel subgoal and the hippocampus simulates the new path. More data will be required to validate this model and understand (1) how the system processes the different options; and (2) deals with situations where a new path becomes available (i.e., shortcuts).
Posing Problems to Understand Children's Learning of Fractions
ERIC Educational Resources Information Center
Cheng, Lu Pien
2013-01-01
In this study, ways in which problem posing activities aid our understanding of children's learning of addition of unlike fractions and product of proper fractions was examined. In particular, how a simple problem posing activity helps teachers take a second, deeper look at children's understanding of fraction concepts will be discussed. The…
Observational Research: Formalized Curiosity
ERIC Educational Resources Information Center
Skaggs, Paul
2004-01-01
Design research is a valuable tool to help the designer understand the problem that he/she needs to solve. The purpose of design research is to help state or understand the problems better, which will lead to better solutions. Observational research is a design research method for helping the designer understand and define the problem.…
Characterizing Task-Based OpenMP Programs
Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats
2015-01-01
Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023
Skin Color in the Development of Identity: A Biopsychosocial Model
Fullilove, Mindy Thompson; Reynolds, Tyrone
1984-01-01
The role of skin color in the development of identity has been studied by a variety of paradigms. This paper applies the biopsychosocial model to this problem, with the hope that systems hierarchies offer a way to understand how many variables have an impact on a single point. This model postulates that complex social interactions are the life setting for the individual whose development also reflects biological endowment, including the contributions of heredity and nurturance. The final personal integration of an adult understanding of skin color requires an active assertion by the individual. This model is explored through the writings of Jessie Fauset, a leading participant in the literary movement known as the Harlem Renaissance. PMID:6748102
Report of the Dark Energy Task Force
DOE R&D Accomplishments Database
Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.
2006-01-01
Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.
Applied extreme-value statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinnison, R.R.
1983-05-01
The statistical theory of extreme values is a well established part of theoretical statistics. Unfortunately, it is seldom part of applied statistics and is infrequently a part of statistical curricula except in advanced studies programs. This has resulted in the impression that it is difficult to understand and not of practical value. In recent environmental and pollution literature, several short articles have appeared with the purpose of documenting all that is necessary for the practical application of extreme value theory to field problems (for example, Roberts, 1979). These articles are so concise that only a statistician can recognise all themore » subtleties and assumptions necessary for the correct use of the material presented. The intent of this text is to expand upon several recent articles, and to provide the necessary statistical background so that the non-statistician scientist can recognize and extreme value problem when it occurs in his work, be confident in handling simple extreme value problems himself, and know when the problem is statistically beyond his capabilities and requires consultation.« less
Overview of psychiatric ethics V: utilitarianism and the ethics of duty.
Robertson, Michael; Morris, Kirsty; Walter, Garry
2007-10-01
The aim of this paper is to describe the ethical theories of utilitarianism and the ethics of duty (Kant's ethics) and to evaluate their value as theoretical bases of psychiatric ethics. Utilitarianism is a well-established moral philosophy and has significant instrumental value in dealing with common ethical problems faced by psychiatrists. Despite its capacity to generate solutions to ethical problems, utilitarianism requires a process of what Rawls described as 'reflective equilibrium' to avoid morally repugnant choices, based on utility. The criticisms of utilitarianism, such as the problems of quantifying utility and the responsibility for consequences, are very relevant for psychiatry. Singer's model of utilitarian thinking is particularly problematic for our profession. Kant's ethics provides the pretext for duty bound codes of ethics for psychiatrists, but suffers from problems of flawed claims to the universalizability prescribed by Kant's 'categorical imperative'. Kant's valorization of reason as the core of the autonomy of persons is a valuable insight in understanding psychiatrists' ethical obligations to their patients.
Local Approximation and Hierarchical Methods for Stochastic Optimization
NASA Astrophysics Data System (ADS)
Cheng, Bolong
In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the PJM Interconnect and show that it outperforms the baseline approach used in the industry.
NASA Astrophysics Data System (ADS)
Prayitno, S. H.; Suwarsono, St.; Siswono, T. Y. E.
2018-03-01
Conceptual comprehension in this research is the ability to use the procedures that are owned by pre-service teachers to solve problems by finding the relation of the concept to another, or can be done by identifying the type of problem and associating it with a troubleshooting procedures, or connect the mathematical symbols with mathematical ideas and incorporate them into a series of logical reasoning, or by using prior knowledge that occurred directly, through its conceptual knowledge. The goal of this research is to describe the profile of conceptual comprehensin of pre-service teachers with low emotional intelligence in mathematical problems solving. Through observation and in-depth interview with the research subject the conclusion was that: pre-service teachers with low emotional intelligence pertained to the level of formal understanding in understanding the issues, relatively to the level of intuitive understanding in planning problem solving, to the level of relational understanding in implementing the relational problem solving plan, and pertained to the level of formal understanding in looking back to solve the problem.
Students’ Relational Understanding in Quadrilateral Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Safitri, A. N.; Juniati, D.; Masriyah
2018-01-01
The type of research is qualitative approach which aims to describe how students’ relational understanding of solving mathematic problem that was seen from Adversity Quotient aspect. Research subjects were three 7th grade students of Junior High School. They were taken by category of Adversity Quotient (AQ) such quitter, camper, and climber. Data collected based on problem solving and interview. The research result showed that (1) at the stage of understanding the problem, the subjects were able to state and write down what is known and asked, and able to mention the concepts associated with the quadrilateral problem. (2) The three subjects devise a plan by linking concepts relating to quadrilateral problems. (3) The three subjects were able to solve the problem. (4) The three subjects were able to look back the answers. The three subjects were able to understand the problem, devise a plan, carry out the plan and look back. However, the quitter and camper subjects have not been able to give a reason for the steps they have taken.
Preclinical studies for induced pluripotent stem cell-based therapeutics.
Harding, John; Mirochnitchenko, Oleg
2014-02-21
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
On the optimization of electromagnetic geophysical data: Application of the PSO algorithm
NASA Astrophysics Data System (ADS)
Godio, A.; Santilano, A.
2018-01-01
Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.
Traceability in healthcare: crossing boundaries.
Lovis, C
2008-01-01
This paper is a survey on the problem of traceability in healthcare. Traceability covers many different aspects and its understanding varies among different players. In supply chains and retails, traceability usually covers aspects pertaining to logistics. The challenge is to keep trace of objects manufactured, to track their locations in a production and distribution processes. In food industry, traceability has received a lot of attention because of public health problems related to infectious diseases. For instance, in Europe, the challenge of traceability has been to build the tracking of meat, from the living animal to the shell. In the health sector, traceability has mostly been involved in patient safety around human products such as blood derivates contaminants or implanted devices and prosthesis such as mammary implants. There are growing interests involving traceability in health related to drug safety, including the problem of counterfeited drugs, and to privacy. Traceability is also increasingly seen as a mean to improve efficiency of the logistics of care and a way to better understand costs and usage of resources. This survey is reviewing the literature and proposes a discussion based on the real use and needs of traceability in a large teaching hospital. Traceability in healthcare is at the crossroads of numerous needs. It is therefore of particular complexity and raises many new challenges. Identification management and entity tracking, from serialization of consumers' good production in the supply chains, to the identification of actors, patients, care providers, locations and processes is a huge effort, tackling economical, political, ethical and technical challenges. New requirements are needed, not usually met in the supply chain, such as serialization and persistence in time. New problems arise, such as privacy and legal frameworks. There are growing needs to increase traceability for drug products, related to drug safety, counterfeited drugs, and to privacy. Technical problems around reliability, robustness and efficiency of carriers are still to be resolved. There is a lot at stakes. Traceability is a major aspect of the future in healthcare and requires the attention of the community of medical informatics.
NASA Astrophysics Data System (ADS)
Suflita, Joseph M.; Duncan, Kathleen E.
The anaerobic biodegradation of petroleum hydrocarbons is important for the intrinsic remediation of spilt fuels (Gieg and Suflita, 2005), for the conversion of hydrocarbons to clean burning natural gas (Gieg et al., 2008; Jones et al., 2008) and for the fundamental cycling of carbon on the planet (Caldwell et al., 2008). However, the same process has also been implicated in a host of difficult problems including reservoir souring (Jack and Westlake, 1995), oil viscosity alteration (Head et al., 2003), compromised equipment performance and microbiologically influenced corrosion (Duncan et al., 2009). Herein, we will focus on the role of anaerobic microbial communities in catalysing biocorrosion activities in oilfield facilities. Biocorrosion is a costly problem that remains relatively poorly understood. Understanding of the underlying mechanisms requires reliable information on the carbon and energy sources supporting biofilm microorganisms capable of catalysing such activities.
Evans, Jamie; Fitch, Christopher; Collard, Sharon; Henderson, Claire
2018-04-27
In recent years, the UK debt collection industry has taken steps to improve its policies and practices in relation to customers with mental health problems. Little data, however, have been collected to evidence change. This paper examines whether the reported attitudes and practices of debt collection staff when working with customers with mental health problems have changed between 2010 and 2016. This paper draws on descriptive and regression analyses of two cross-sectional surveys of debt collection staff: one conducted in 2010 and one conducted in 2016. All variables analysed show statistically significant changes between 2010 and 2016 indicative of improved reported attitudes and practices. While results suggest an improvement in attitudes and practice may have occurred between 2010 and 2016, research is required to understand this potential shift, its likely causes, and concrete impact on customers.
Additional Crime Scenes for Projectile Motion Unit
NASA Astrophysics Data System (ADS)
Fullerton, Dan; Bonner, David
2011-12-01
Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.
The motivating operation and negatively reinforced problem behavior: a systematic review.
Langthorne, Paul; McGill, Peter; Oliver, Chris
2014-01-01
The concept of motivational operations exerts an increasing influence on the understanding and assessment of problem behavior in people with intellectual and developmental disability. In this systematic review of 59 methodologically robust studies of the influence of motivational operations in negative reinforcement paradigms in this population, we identify themes related to situational and biological variables that have implications for assessment, intervention, and further research. There is now good evidence that motivational operations of differing origins influence negatively reinforced problem behavior, and that these might be subject to manipulation to facilitate favorable outcomes. There is also good evidence that some biological variables warrant consideration in assessment procedures as they predispose the person's behavior to be influenced by specific motivational operations. The implications for assessment and intervention are made explicit with reference to variables that are open to manipulation or that require further research and conceptualization within causal models.
NASA Technical Reports Server (NTRS)
Rubbert, P. E.
1978-01-01
The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.
Solving lot-sizing problem with quantity discount and transportation cost
NASA Astrophysics Data System (ADS)
Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei
2013-04-01
Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.
Biological degradation of plastics: a comprehensive review.
Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia
2008-01-01
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.
Collaborative human-machine analysis using a controlled natural language
NASA Astrophysics Data System (ADS)
Mott, David H.; Shemanski, Donald R.; Giammanco, Cheryl; Braines, Dave
2015-05-01
A key aspect of an analyst's task in providing relevant information from data is the reasoning about the implications of that data, in order to build a picture of the real world situation. This requires human cognition, based upon domain knowledge about individuals, events and environmental conditions. For a computer system to collaborate with an analyst, it must be capable of following a similar reasoning process to that of the analyst. We describe ITA Controlled English (CE), a subset of English to represent analyst's domain knowledge and reasoning, in a form that it is understandable by both analyst and machine. CE can be used to express domain rules, background data, assumptions and inferred conclusions, thus supporting human-machine interaction. A CE reasoning and modeling system can perform inferences from the data and provide the user with conclusions together with their rationale. We present a logical problem called the "Analysis Game", used for training analysts, which presents "analytic pitfalls" inherent in many problems. We explore an iterative approach to its representation in CE, where a person can develop an understanding of the problem solution by incremental construction of relevant concepts and rules. We discuss how such interactions might occur, and propose that such techniques could lead to better collaborative tools to assist the analyst and avoid the "pitfalls".
Fyffe, Chris; McCubbery, Jeffrey; Reid, Katharine J
2008-09-01
Active support (AS) has been shown to increase the amount of time that residents in shared residential settings are involved in purposeful activities. The organisational processes required to implement AS have been less well researched. Staff in community houses answered questions about the occurrence of organisational activities and processes thought to assist AS implementation (e.g., training and teamwork), their understanding of engagement, and their experience of changes in staff practice consistent with AS (including implementation problems). Non-house-based managers were also interviewed about their role in AS implementation. Reported occurrence of organisational activities and processes (e.g., training and teamwork) and understanding of engagement were associated with more reports of changes in staff practice and fewer staff reports of implementation problems. Staff reports on the role of non-house-based managers were not associated with reports of changes in staff practice or with reports of fewer AS implementation problems. Non-house-based managers' reports overestimated their role in AS implementation when compared with reports from house-based staff groups. While there are limitations in the research design (including the reliance on staff reports), the findings support the importance of wider organisational factors (beyond training programs for direct support staff) as integral to the implementation of AS. There is a need for further research on AS implementation.
Daruwalla, Nayreen; Belur, Jyoti; Kumar, Meena; Tiwari, Vinay; Sarabahi, Sujata; Tilley, Nick; Osrin, David
2014-11-30
Most burns happen in low- and middle-income countries. In India, deaths related to burns are more common in women than in men and occur against a complex background in which the cause - accidental or non-accidental, suicidal or homicidal - is often unclear. Our study aimed to understand the antecedents to burns and the problem of ascribing cause, the sequence of medicolegal events after a woman was admitted to hospital, and potential opportunities for improvement. We conducted semi-structured interviews with 33 women admitted to two major burns units, their families, and 26 key informant doctors, nurses, and police officers. We used framework analysis to examine the context in which burns occurred and the sequence of medicolegal action after admission to hospital. Interviewees described accidents, attempted suicide, and attempted homicide. Distinguishing between these was difficult because the underlying combination of poverty and cultural precedent was common to all and action was contingent on potentially conflicting narratives. Space constraint, problems with cooking equipment, and inflammable clothing increased the risk of accidental burns, but coexisted with household conflict, gender-based violence, and alcohol use. Most burns were initially ascribed to accidents. Clinicians adhered to medicolegal procedures, the police carried out their investigative requirements relatively rapidly, but both groups felt vulnerable in the face of the legal process. Women's understandable reticence to describe burns as non-accidental, the contested nature of statements, their perceived history of changeability, the limited quality and validity of forensic evidence, and the requirement for resilience on the part of clients underlay a general pessimism. The similarities between accident and intention cluster so tightly as to make them challenging to distinguish, especially given women's understandable reticence to describe burns as non-accidental. The contested status of forensic evidence and a reliance on testimony means that only a minority of cases lead to conviction. The emphasis should be on improving documentation, communication between service providers, and public understanding of the risks of burns.
GAIA - A New Approach To Decision Making on Climate Disruption Issues
NASA Astrophysics Data System (ADS)
Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction
2011-12-01
GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.
Science modelling in pre-calculus: how to make mathematics problems contextually meaningful
NASA Astrophysics Data System (ADS)
Sokolowski, Andrzej; Yalvac, Bugrahan; Loving, Cathleen
2011-04-01
'Use of mathematical representations to model and interpret physical phenomena and solve problems is one of the major teaching objectives in high school math curriculum' (National Council of Teachers of Mathematics (NCTM), Principles and Standards for School Mathematics, NCTM, Reston, VA, 2000). Commonly used pre-calculus textbooks provide a wide range of application problems. However, these problems focus students' attention on evaluating or solving pre-arranged formulas for given values. The role of scientific content is reduced to provide a background for these problems instead of being sources of data gathering for inducing mathematical tools. Students are neither required to construct mathematical models based on the contexts nor are they asked to validate or discuss the limitations of applied formulas. Using these contexts, the instructor may think that he/she is teaching problem solving, where in reality he/she is teaching algorithms of the mathematical operations (G. Kulm (ed.), New directions for mathematics assessment, in Assessing Higher Order Thinking in Mathematics, Erlbaum, Hillsdale, NJ, 1994, pp. 221-240). Without a thorough representation of the physical phenomena and the mathematical modelling processes undertaken, problem solving unintentionally appears as simple algorithmic operations. In this article, we deconstruct the representations of mathematics problems from selected pre-calculus textbooks and explicate their limitations. We argue that the structure and content of those problems limits students' coherent understanding of mathematical modelling, and this could result in weak student problem-solving skills. Simultaneously, we explore the ways to enhance representations of those mathematical problems, which we have characterized as lacking a meaningful physical context and limiting coherent student understanding. In light of our discussion, we recommend an alternative to strengthen the process of teaching mathematical modelling - utilization of computer-based science simulations. Although there are several exceptional computer-based science simulations designed for mathematics classes (see, e.g. Kinetic Book (http://www.kineticbooks.com/) or Gizmos (http://www.explorelearning.com/)), we concentrate mainly on the PhET Interactive Simulations developed at the University of Colorado at Boulder (http://phet.colorado.edu/) in generating our argument that computer simulations more accurately represent the contextual characteristics of scientific phenomena than their textual descriptions.
Using the living laboratory framework as a basis for understanding next-generation analyst work
NASA Astrophysics Data System (ADS)
McNeese, Michael D.; Mancuso, Vincent; McNeese, Nathan; Endsley, Tristan; Forster, Pete
2013-05-01
The preparation of next generation analyst work requires alternative levels of understanding and new methodological departures from the way current work transpires. Current work practices typically do not provide a comprehensive approach that emphasizes the role of and interplay between (a) cognition, (b) emergent activities in a shared situated context, and (c) collaborative teamwork. In turn, effective and efficient problem solving fails to take place, and practice is often composed of piecemeal, techno-centric tools that isolate analysts by providing rigid, limited levels of understanding of situation awareness. This coupled with the fact that many analyst activities are classified produces a challenging situation for researching such phenomena and designing and evaluating systems to support analyst cognition and teamwork. Through our work with cyber, image, and intelligence analysts we have realized that there is more required of researchers to study human-centered designs to provide for analyst's needs in a timely fashion. This paper identifies and describes how The Living Laboratory Framework can be utilized as a means to develop a comprehensive, human-centric, and problem-focused approach to next generation analyst work, design, and training. We explain how the framework is utilized for specific cases in various applied settings (e.g., crisis management analysis, image analysis, and cyber analysis) to demonstrate its value and power in addressing an area of utmost importance to our national security. Attributes of analyst work settings are delineated to suggest potential design affordances that could help improve cognitive activities and awareness. Finally, the paper puts forth a research agenda for the use of the framework for future work that will move the analyst profession in a viable manner to address the concerns identified.
NASA Astrophysics Data System (ADS)
Schuchardt, Anita
Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM approaches, the types and amount of teacher support needed to achieve these types of student learning gains were investigated. In the context of providing teachers with access to educative materials, students achieved learning gains in both areas in the absence of face-to-face teacher professional development. However, maximal student learning gains required the investment of face-to-face professional development. This finding can govern distribution of scarce resources, but does not preclude implementation of MCM instruction even where resource availability does not allow for face-to-face professional development.
Ellner, Jerrold J
2008-12-01
Surveillance studies and outbreak investigations indicate that an extensively drug-resistant (XDR) form of tuberculosis (TB) is increasing in prevalence worldwide. In outbreak settings among HIV-infected, there is a high-case fatality rate. Better outcomes occur in HIV-uninfected, particularly if drug susceptibility test (DST) results are available rapidly to allow tailoring of drug therapy. This review will be presented in two segments. The first characterizes the problem posed by XDR-TB, addressing the epidemiology and evolution of XDR-TB and treatment outcomes. The second reviews technologic advances that may contribute to the solution, new diagnostics, and advances in understanding drug resistance and in the development of new drugs.
A systemic approach to occupational and environmental health.
Spitzer, Skip
2005-01-01
As the corporate role in occupational and public health receives increased scrutiny, it is essential to recognize that it is not sufficient to identify specific acts of malfeasance or influence, or even to campaign to address them. A more comprehensive and systemic framework for understanding the role of corporations requires consideration of corporate power and its effects as endemic features of national socioeconomic systems and the rapidly integrating global order. The underlying social structures that produce social and environmental problems, and undermine reform, make systemic change necessary. Identifying this "structure of harm" provides important implications for researchers, policymakers, activists, and others trying to address environmental and social problems, particularly with regard to integrating efforts to address immediate impacts with those for longer-term, systemic change.
ERIC Educational Resources Information Center
Banus, Abdullahi Audu; Dauda, Bala
2015-01-01
The study assessed the relative effectiveness of understanding the problem statement on students' mathematical behaviours in Borno State Secondary Schools. The study was guided by an objective: to determine the Understanding the problem statement on student's performance in senior secondary school and a null hypothesis: there was no effect of…
Role of Cognitive Testing in the Development of the CAHPS® Hospital Survey
Levine, Roger E; Fowler, Floyd J; Brown, Julie A
2005-01-01
Objective To describe how cognitive testing results were used to inform the modification and selection of items for the Consumer Assessment of Health Providers and Systems (CAHPS®) Hospital Survey pilot test instrument. Data Sources Cognitive interviews were conducted on 31 subjects in two rounds of testing: in December 2002–January 2003 and in February 2003. In both rounds, interviews were conducted in northern California, southern California, Massachusetts, and North Carolina. Study Design A common protocol served as the basis for cognitive testing activities in each round. This protocol was modified to enable testing of the items as interviewer-administered and self-administered items and to allow members of each of three research teams to use their preferred cognitive research tools. Data Collection/Extraction Methods Each research team independently summarized, documented, and reported their findings. Item-specific and general issues were noted. The results were reviewed and discussed by senior staff from each research team after each round of testing, to inform the acceptance, modification, or elimination of candidate items. Principal Findings Many candidate items required modification because respondents lacked the information required to answer them, respondents failed to understand them consistently, the items were not measuring the constructs they were intended to measure, the items were based on erroneous assumptions about what respondents wanted or experienced during their hospitalization, or the items were asking respondents to make distinctions that were too fine for them to make. Cognitive interviewing enabled the detection of these problems; an understanding of the etiology of the problem informed item revisions. However, for some constructs, the revisions proved to be inadequate. Accordingly, items could not be developed to provide acceptable measures of certain constructs such as shared decision making, coordination of care, and delays in the admissions process. Conclusions Cognitive testing is the most direct way of finding out whether respondents understand questions consistently, have the information needed to answer the questions, and can use the response alternatives provided to describe their experiences or their opinions accurately. Many of the candidate questions failed to meet these standards. Cognitive testing only evaluates the way in which respondents understand and answer questions. Although it does not directly assess the validity of the answers, it is a reasonable premise that cognitive problems will seriously compromise validity and reliability. PMID:16316437
Ethnographic field work in requirements engineering
NASA Astrophysics Data System (ADS)
Reddivari, Sandeep; Asaithambi, Asai; Niu, Nan; Wang, Wentao; Xu, Li Da; Cheng, Jing-Ru C.
2017-01-01
The requirements engineering (RE) processes have become a key in developing and deploying enterprise information system (EIS) for organisations and corporations in various fields and industrial sectors. Ethnography is a contextual method allowing scientific description of the stakeholders, their needs and their organisational customs. Despite the recognition in the RE literature that ethnography could be helpful, the actual leverage of the method has been limited and ad hoc. To overcome the problems, we report in this paper a systematic mapping study where the relevant literature is examined. Building on the literature review, we further identify key parameters, their variations and their connections. The improved understanding about the role of ethnography in EIS RE is then presented in a consolidated model, and the guidelines of how to apply ethnography are organised by the key factors uncovered. Our study can direct researchers towards thorough understanding about the role that ethnography plays in EIS RE, and more importantly, to help practitioners better integrate contextually rich and ecologically valid methods in their daily practices.
Big Data: An Opportunity for Collaboration with Computer Scientists on Data-Driven Science
NASA Astrophysics Data System (ADS)
Baru, C.
2014-12-01
Big data technologies are evolving rapidly, driven by the need to manage ever increasing amounts of historical data; process relentless streams of human and machine-generated data; and integrate data of heterogeneous structure from extremely heterogeneous sources of information. Big data is inherently an application-driven problem. Developing the right technologies requires an understanding of the applications domain. Though, an intriguing aspect of this phenomenon is that the availability of the data itself enables new applications not previously conceived of! In this talk, we will discuss how the big data phenomenon creates an imperative for collaboration among domain scientists (in this case, geoscientists) and computer scientists. Domain scientists provide the application requirements as well as insights about the data involved, while computer scientists help assess whether problems can be solved with currently available technologies or require adaptaion of existing technologies and/or development of new technologies. The synergy can create vibrant collaborations potentially leading to new science insights as well as development of new data technologies and systems. The area of interface between geosciences and computer science, also referred to as geoinformatics is, we believe, a fertile area for interdisciplinary research.
Integrated Safety Analysis Teams
NASA Technical Reports Server (NTRS)
Wetherholt, Jonathan C.
2008-01-01
Today's complex systems require understanding beyond one person s capability to comprehend. Each system requires a team to divide the system into understandable subsystems which can then be analyzed with an Integrated Hazard Analysis. The team must have both specific experiences and diversity of experience. Safety experience and system understanding are not always manifested in one individual. Group dynamics make the difference between success and failure as well as the difference between a difficult task and a rewarding experience. There are examples in the news which demonstrate the need to connect the pieces of a system into a complete picture. The Columbia disaster is now a standard example of a low consequence hazard in one part of the system; the External Tank is a catastrophic hazard cause for a companion subsystem, the Space Shuttle Orbiter. The interaction between the hardware, the manufacturing process, the handling, and the operations contributed to the problem. Each of these had analysis performed, but who constituted the team which integrated this analysis together? This paper will explore some of the methods used for dividing up a complex system; and how one integration team has analyzed the parts. How this analysis has been documented in one particular launch space vehicle case will also be discussed.
Changing to Concept-Based Curricula: The Process for Nurse Educators
Baron, Kristy A.
2017-01-01
Background: The complexity of health care today requires nursing graduates to use effective thinking skills. Many nursing programs are revising curricula to include concept-based learning that encourages problem-solving, effective thinking, and the ability to transfer knowledge to a variety of situations—requiring nurse educators to modify their teaching styles and methods to promote student-centered learning. Changing from teacher-centered learning to student-centered learning requires a major shift in thinking and application. Objective: The focus of this qualitative study was to understand the process of changing to concept-based curricula for nurse educators who previously taught in traditional curriculum designs. Methods: The sample included eight educators from two institutions in one Western state using a grounded theory design. Results: The themes that emerged from participants’ experiences consisted of the overarching concept, support for change, and central concept, finding meaning in the change. Finding meaning is supported by three main themes: preparing for the change, teaching in a concept-based curriculum, and understanding the teaching-learning process. Conclusion: Changing to a concept-based curriculum required a major shift in thinking and application. Through support, educators discovered meaning to make the change by constructing authentic learning opportunities that mirrored practice, refining the change process, and reinforcing benefits of teaching. PMID:29399236
Bandyopadhyay, Mridula
2011-11-25
The complexities inherent in understanding the social determinants of health are often not well-served by quantitative approaches. My aim is to show that well-designed and well-conducted ethnographic studies have an important contribution to make in this regard. Ethnographic research designs are a difficult but rigorous approach to research questions that require us to understand the complexity of people's social and cultural lives. I draw on an ethnographic study to describe the complexities of studying maternal health in a rural area in India. I then show how the lessons learnt in that setting and context can be applied to studies done in very different settings. I show how ethnographic research depends for rigour on a theoretical framework for sample selection; why immersion in the community under study, and rapport building with research participants, is important to ensure rich and meaningful data; and how flexible approaches to data collection lead to the gradual emergence of an analysis based on intense cross-referencing with community views and thus a conclusion that explains the similarities and differences observed. When using ethnographic research design it can be difficult to specify in advance the exact details of the study design. Researchers can encounter issues in the field that require them to change what they planned on doing. In rigorous ethnographic studies, the researcher in the field is the research instrument and needs to be well trained in the method. Ethnographic research is challenging, but nevertheless provides a rewarding way of researching complex health problems that require an understanding of the social and cultural determinants of health.
NASA Astrophysics Data System (ADS)
Challet, Damien; Marsili, M.; Ottino, Gabriele
2004-02-01
We mathematize El Farol bar problem and transform it into a workable model. We find general conditions on the predictor space under which the convergence of the average attendance to the resource level does not require any intelligence on the side of the agents. Secondly, specializing to a particular ensemble of continuous strategies yields a model similar to the Minority Game. Statistical physics of disordered systems allows us to derive a complete understanding of the complex behavior of this model, on the basis of its phase diagram.
MSFC Skylab electrical power systems mission evaluation
NASA Technical Reports Server (NTRS)
Woosley, A. P.
1974-01-01
The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.
Predicting materials for sustainable energy sources: The key role of density functional theory
NASA Astrophysics Data System (ADS)
Galli, Giulia
Climate change and the related need for sustainable energy sources replacing fossil fuels are pressing societal problems. The development of advanced materials is widely recognized as one of the key elements for new technologies that are required to achieve a sustainable environment and provide clean and adequate energy for our planet. We discuss the key role played by Density Functional Theory, and its implementations in high performance computer codes, in understanding, predicting and designing materials for energy applications.
The Intelligentsia and Social Movements
NASA Astrophysics Data System (ADS)
Bleimaier, John Kuhn
2015-03-01
The Intelligentsia is that social stratum comprised of individuals for whom intellectual activity is a passion. To a certain extent all human enterprise has an intellectual component, being based on mans sentient nature. In a technologically advanced society most employment requires advanced education and the application of complex reasoning to problem solving. However, the members of the Intelligentsia engage in analytical and creative thinking for its own sake. The Intelligentsia probes the theoretical underpinnings and seeks transcendent understanding. This entails attempting to discover fundamental principles...
Occupancy models to study wildlife
Bailey, Larissa; Adams, Michael John
2005-01-01
Many wildlife studies seek to understand changes or differences in the proportion of sites occupied by a species of interest. These studies are hampered by imperfect detection of these species, which can result in some sites appearing to be unoccupied that are actually occupied. Occupancy models solve this problem and produce unbiased estimates of occupancy and related parameters. Required data (detection/non-detection information) are relatively simple and inexpensive to collect. Software is available free of charge to aid investigators in occupancy estimation.
Fibromyalgia: clinical features, diagnosis and management.
Walker, Jennie
2016-09-28
Patients with fibromyalgia experience chronic widespread pain, with associated symptoms of fatigue, sleep disturbance and memory problems. There are many therapies which may be helpful in managing the symptoms of fibromyalgia; however, these often require a process of trial and error to establish optimum management using a combination of pharmacological and non-pharmacological approaches. Nurses can support patients with fibromyalgia using a biopsychosocial approach to symptom management. Understanding the nature of fibromyalgia and management options will enable nurses to deliver holistic patient-centred care.
Oncogenomics and the development of new cancer therapies.
Strausberg, Robert L; Simpson, Andrew J G; Old, Lloyd J; Riggins, Gregory J
2004-05-27
Scientists have sequenced the human genome and identified most of its genes. Now it is time to use these genomic data, and the high-throughput technology developed to generate them, to tackle major health problems such as cancer. To accelerate our understanding of this disease and to produce targeted therapies, further basic mutational and functional genomic information is required. A systematic and coordinated approach, with the results freely available, should speed up progress. This will best be accomplished through an international academic and pharmaceutical oncogenomics initiative.
Aircraft Dynamic Response to Damaged and Repaired Runways.
1982-08-01
is particularly beneficial in giving the engineer a fast understanding of problems encountered. This can extend, if required, to computer animation of...pitch response following a repair for a selection of ’critical’ initial states o animation of time history responses o routines, for the multiple repair...forms L&alit6 so produit on css do glissement avao ~ed i/~ Ct am :ooefficient do laminago do l’huilo, eat dittdrant ontro is d6tonte at i’ontonoeent at
1984-04-01
compounds time, understanding and coordination problems. Just too many people in the process. In fact, there are numerous versions of a task with the...sometimes -his caused interruptions. Nhis was further compounded by the fact that the cnalyss * voas toarted ar-d +hen t~opped, when the first cnaiyst...productive. Discrepancies - The major discrepancy was ’he use of Anti-Seize Compound . It is applied to components as a light, thin coat to prevent i..re, any
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phinney, N.
The SLAC Linear Collider (SLC) is the first example of an entirely new type of lepton collider. Many years of effort were required to develop the understanding and techniques needed to approach design luminosity. This paper discusses some of the key issues and problems encountered in producing a working linear collider. These include the polarized source, techniques for emittance preservation, extensive feedback systems, and refinements in beam optimization in the final focus. The SLC experience has been invaluable for testing concepts and developing designs for a future linear collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, J.R.; Maltby, J.H.
The purpose of this presentation was to discuss the emerging role of financial entities in determining environmental requirements for international power projects. The paper outlines the following: emerging conditions; examples of announced privatization energy projects by country; types of government and international financial entity sources; problems for IPPs; similarity and differences between the World Bank and the USEPA; comparison of the international standards and regulations for power plants; recent trends/issues involving international power project approval; and recommendations for understanding/expediting the financial entities` environmental approval process and how to expedite this process.
Scale-Up: Improving Large Enrollment Physics Courses
NASA Astrophysics Data System (ADS)
Beichner, Robert
1999-11-01
The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.
Differential diagnosis and management of human-directed aggression in cats.
Frank, Diane; Dehasse, Joel
2003-03-01
Human-directed aggression in cats should be evaluated as a multifactorial problem. It results from the combined actions of heredity, environment, learning, human social requirements (or needs), client interactions, lack of understanding of normal feline behavior, unrealistic client expectations, and lack of meeting the cat's basic ethologic needs. Managing human-directed aggression in cats encompasses the use of environmental modification, therapies, and, when and if needed, regulatory drugs so as to increase learning capabilities and adaptation and decrease danger to the human victims.
Elmusharaf, Khalifa; Byrne, Elaine; Manandhar, Mary; Hemmings, Joanne; O’Donovan, Diarmuid
2016-01-01
Many methodological approaches have been used to understand cultural dimensions to maternal health issues. Although a well-designed quantitative survey with a representative sample can provide essential information on trends in behavior, it does not necessarily establish a contextualized understanding of the complexity in which different behaviors occur. This article addresses how contextualized data can be collected in a short time and under conditions in which participants in conflict-affected zones might not have established, or time to establish, trust with the researchers. The solution, the Participatory Ethnographic Evaluation and Research (PEER) approach, is illustrated through a study whereby South Sudanese marginalized women were trained to design research instruments, and collect and analyze qualitative data. PEER overcomes the problem that many ethnographic or participatory approaches face—the extensive time and resources required to develop trusting relationships with the community to understand the local context and the social networks they form. PMID:27811290
West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine
2016-05-17
Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.
Elmusharaf, Khalifa; Byrne, Elaine; Manandhar, Mary; Hemmings, Joanne; O'Donovan, Diarmuid
2017-07-01
Many methodological approaches have been used to understand cultural dimensions to maternal health issues. Although a well-designed quantitative survey with a representative sample can provide essential information on trends in behavior, it does not necessarily establish a contextualized understanding of the complexity in which different behaviors occur. This article addresses how contextualized data can be collected in a short time and under conditions in which participants in conflict-affected zones might not have established, or time to establish, trust with the researchers. The solution, the Participatory Ethnographic Evaluation and Research (PEER) approach, is illustrated through a study whereby South Sudanese marginalized women were trained to design research instruments, and collect and analyze qualitative data. PEER overcomes the problem that many ethnographic or participatory approaches face-the extensive time and resources required to develop trusting relationships with the community to understand the local context and the social networks they form.
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
Tarullo, Amanda R; Youssef, Adriana; Frenn, Kristin A; Wiik, Kristen; Garvin, Melissa C; Gunnar, Megan R
2016-05-01
Internationally adopted postinstitutionalized (PI) children are at risk for lower levels of emotion understanding. This study examined how postadoption parenting influences emotion understanding and whether lower levels of emotion understanding are associated with behavior problems. Emotion understanding and parent mental state language were assessed in 3-year-old internationally adopted PI children (N = 25), and comparison groups of children internationally adopted from foster care (N = 25) and nonadopted (NA) children (N = 36). At 5.5-year follow-up, PI children had lower levels of emotion understanding than NA children, a group difference not explained by language. In the total sample, parent mental state language at age 3 years predicted 5.5-year emotion understanding after controlling for child language ability. The association of parent mental state language and 5.5-year emotion understanding was moderated by adoption status, such that parent mental state language predicted 5.5-year emotion understanding for the internationally adopted children, but not for the NA children. While postadoption experience does not erase negative effects of early deprivation on emotion understanding, results suggest that parents can promote emotion understanding development through mental state talk. At 5.5 years, PI children had more internalizing and externalizing problems than NA children, and these behavioral problems related to lower levels of emotion understanding.
NASA Astrophysics Data System (ADS)
Habib, Shahid
2005-05-01
There are many vital issues which are impacting our daily lives and will continue to haunt us as long as we live on this planet of ours. These issues range from food supply availability, drought, coastal zone erosion, volcanoes, hurricanes, terrorism, global warming, earthquakes, water resources, air quality, public health, and agriculture production. Such societal needs are directly linked to our geometric population growth, and abundance of automobiles, industrial emissions, industrial waste and extensive fishing of our oceans and elimination of our ecology. The questions which require serious thoughts, research, coordination, and resources to understand, plan and strike a sensible balance in our daily lives and the above issues are tough to deal with. However, with the advent of remote sensing technologies, tremendous progress has been made in applying space-based and airborne data and products in solving real societal problems. Several of these problems, such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, land slides and others are intricately related; and in the long run can have serious consequences if not properly addressed by scientists, regulatory bodies and policy makers. Although it is a much involved and tangled web to unravel, nevertheless we have an excellent start in understanding some of the phenomena and hopefully can mitigate some of the severe effects by advancing our scientific knowledge. This paper briefly discusses the applications of remote sensing data from Terra, Aqua, and other NASA satellites how to deal with such complex problems; it provides an excellent start.
Understanding What's Critical in Protecting Our Society: Can Satellite Observations Help?
NASA Technical Reports Server (NTRS)
Habib, Shahid
2005-01-01
There are many vital issues which are impacting our daily lives and will continue to haunt us as long as we live on this planet of ours. These issues range from food supply availability, drought, coastal zone erosion, volcanoes, hurricanes, terrorism, global warming, earthquakes, water resources, air quality, public health, and agriculture production. Such societal needs are directly linked to our geometric population growth, and abundance of automobiles, industrial emissions, industrial waste and extensive fishing of our oceans and elimination of our ecology. The questions which require serious thoughts, research, coordination, and resources to understand, plan and strike a sensible balance in our daily lives and the above issues are tough to deal with. However, with the advent of remote sensing technologies, tremendous progress has been made in applying space-based and airborne data and products in solving real societal problems. Several of these problems, such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, land slides and others are intricately related; and in the long run can have serious consequences if not properly addressed by scientists, regulatory bodies and policy makers. Although it is a much involved and tangled web to unravel, nevertheless we have an excellent start in understanding some of the phenomena and hopefully can mitigate some of the severe effects by advancing our scientific knowledge. This paper briefly discusses the applications of remote sensing data from Terra, Aqua, and other NASA satellites how to deal with such complex problems; it provides an excellent start.
Managers and leaders: are they different?
Zaleznik, Abraham
2004-01-01
The traditional view of management, back in 1977 when Abraham Zaleznik wrote this article, centered on organizational structure and processes. Managerial development at the time focused exclusively on building competence, control, and the appropriate balance of power. That view, Zaleznik argued, omitted the essential leadership elements of inspiration, vision, and human passion which drive corporate success. The difference between managers and leaders, he wrote, lies in the conceptions they hold, deep in their psyches, of chaos and order. Managers embrace process, seek stability and control, and instinctively try to resolve problems quickly--sometimes before they fully understand a problems significance. Leaders, in contrast, tolerate chaos and lack of structure and are willing to delay closure to understand the issues more fully. In this way, Zaleznik argued, business leaders have much more in common with artists, scientists, and other creative thinkers than they do with managers. Organizations need both managers and leaders to succeed, but developing both requires a reduced focus on logic and strategic exercises in favor of an environment where creativity and imagination are permitted to flourish.
Triantafyllidou, Simoni; Raetz, Meredith; Parks, Jeffrey; Edwards, Marc
2012-06-15
The lead leaching potential of new brass plumbing devices has come under scrutiny as a significant source of lead in drinking water (>300 μg/L) of new buildings around the world. Experiments were conducted using ball valves that were sold as certified and known to have caused problems in practice, in order to better understand how installed products could create such problems, even if they passed "leaching tests" such as National Sanitation Foundation (NSF) Standard 61 Section 8. Diffusion of lead from within the device into water when installed can increase lead leaching by orders of magnitude relative to results of NSF testing, which once only required exposure of very small volumes of water within the device. "Normalization" of the lead-in-water result tended to produce estimates of lead concentration that were much lower than actual lead measured at the tap. Finally, the presence of flux could also dramatically increase lead leaching, whereas high water velocity had relatively little effect. Copyright © 2012. Published by Elsevier Ltd.
Quantifying MCMC exploration of phylogenetic tree space.
Whidden, Chris; Matsen, Frederick A
2015-05-01
In order to gain an understanding of the effectiveness of phylogenetic Markov chain Monte Carlo (MCMC), it is important to understand how quickly the empirical distribution of the MCMC converges to the posterior distribution. In this article, we investigate this problem on phylogenetic tree topologies with a metric that is especially well suited to the task: the subtree prune-and-regraft (SPR) metric. This metric directly corresponds to the minimum number of MCMC rearrangements required to move between trees in common phylogenetic MCMC implementations. We develop a novel graph-based approach to analyze tree posteriors and find that the SPR metric is much more informative than simpler metrics that are unrelated to MCMC moves. In doing so, we show conclusively that topological peaks do occur in Bayesian phylogenetic posteriors from real data sets as sampled with standard MCMC approaches, investigate the efficiency of Metropolis-coupled MCMC (MCMCMC) in traversing the valleys between peaks, and show that conditional clade distribution (CCD) can have systematic problems when there are multiple peaks. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Qualitative Analysis for Maintenance Process Assessment
NASA Technical Reports Server (NTRS)
Brand, Lionel; Kim, Yong-Mi; Melo, Walcelio; Seaman, Carolyn; Basili, Victor
1996-01-01
In order to improve software maintenance processes, we first need to be able to characterize and assess them. These tasks must be performed in depth and with objectivity since the problems are complex. One approach is to set up a measurement-based software process improvement program specifically aimed at maintenance. However, establishing a measurement program requires that one understands the problems to be addressed by the measurement program and is able to characterize the maintenance environment and processes in order to collect suitable and cost-effective data. Also, enacting such a program and getting usable data sets takes time. A short term substitute is therefore needed. We propose in this paper a characterization process aimed specifically at maintenance and based on a general qualitative analysis methodology. This process is rigorously defined in order to be repeatable and usable by people who are not acquainted with such analysis procedures. A basic feature of our approach is that actual implemented software changes are analyzed in order to understand the flaws in the maintenance process. Guidelines are provided and a case study is shown that demonstrates the usefulness of the approach.
Understanding pre-mRNA splicing through crystallography.
Espinosa, Sara; Zhang, Lingdi; Li, Xueni; Zhao, Rui
2017-08-01
Crystallography is a powerful tool to determine the atomic structures of proteins and RNAs. X-ray crystallography has been used to determine the structure of many splicing related proteins and RNAs, making major contributions to our understanding of the molecular mechanism and regulation of pre-mRNA splicing. Compared to other structural methods, crystallography has its own advantage in the high-resolution structural information it can provide and the unique biological questions it can answer. In addition, two new crystallographic methods - the serial femtosecond crystallography and 3D electron crystallography - were developed to overcome some of the limitations of traditional X-ray crystallography and broaden the range of biological problems that crystallography can solve. This review discusses the theoretical basis, instrument requirements, troubleshooting, and exciting potential of these crystallographic methods to further our understanding of pre-mRNA splicing, a critical event in gene expression of all eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.
The political ecology of lead poisoning in eastern North Carolina.
Hanchette, Carol L
2008-06-01
In the United States, childhood blood lead levels have dropped substantially since 1991, when the Centers for Disease Control and Prevention (CDC) implemented new screening guidelines. Many states, including North Carolina, have established successful screening and intervention programs. Still, pockets of higher lead poisoning rates continue to be a problem in some geographic areas. One of these areas consists of several counties in eastern North Carolina. This cluster of higher rates cannot be explained by poverty and housing characteristics alone. Instead, the explanation requires an understanding of place that encompasses a range of historical, social, political, and economic processes. This paper utilizes a political ecology approach to provide a deeper understanding of how these processes can contribute to ill health.
Globalization, culture and psychology.
Melluish, Steve
2014-10-01
This article outlines the cultural and psychological effects of globalization. It looks at the impact of globalization on identity; ideas of privacy and intimacy; the way we understand and perceive psychological distress; and the development of the profession of psychology around the world. The article takes a critical perspective on globalization, seeing it as aligned with the spread of neoliberal capitalism, a tendency towards cultural homogenization, the imposition of dominant 'global north' ideas and the resultant growing inequalities in health and well-being. However, it also argues that the increased interconnectedness created by globalization allows for greater acknowledgement of our common humanity and for collective efforts to be developed to tackle what are increasingly global problems. This requires the development of more nuanced understandings of cultural differences and of indigenous psychologies.
AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program
NASA Astrophysics Data System (ADS)
Gothard, Benny M.
2002-02-01
One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.
Work problems due to low back pain: what do GPs do? A questionnaire survey.
Coole, Carol; Watson, Paul J; Drummond, Avril
2010-02-01
Low back pain can affect work ability and remains a main cause of sickness absence. In the UK the GP is usually the first contact for patients seeking health care. The UK government intends that the GP will continue to be responsible for sickness certification and work advice. This role requires a considerable level of understanding of work rehabilitation, and effective communication between GPs, patients, employers and therapists. The aim of this study was to identify GPs' current practice in managing patients whose ability to work is affected by low back pain, and their perception of the support services required. A postal questionnaire of 441 GPs in the South Nottinghamshire area of the UK was carried out. Areas covered included referral patterns, sickness certification, and communication with therapists and employers. There was a 54.6% response rate. The majority of GPs (76.8%) reported that they did not take overall responsibility for managing the work problems of patients arising from low back pain. Few 'mainly agreed' that they initiated communication with employers (2.5%) and/or therapists (10.4%) regarding their patients' work. The results of this study demonstrate that most GPs do not readily engage in vocational rehabilitation and do not initiate contact with employers or other health care practitioners regarding patients' work problems. Thus the current government expectation that GPs are able to successfully manage this role may be unrealistic; considerable training and a change in the GPs' perception of their role will be required.
ERIC Educational Resources Information Center
Mackinlay, Elizabeth; Thatcher, Kristy; Seldon, Camille
2004-01-01
Problem-based learning (PBL) is a pedagogical approach in which students encounter a problem and systematically set about finding ways to understand the problem through dialogue and research. PBL is an active process where students take responsibility for their learning by asking their own questions about the problem and in this paper we explore…
Integration of language and sensor information
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Weijers, Bertus
2003-04-01
The talk describes the development of basic technologies of intelligent systems fusing data from multiple domains and leading to automated computational techniques for understanding data contents. Understanding involves inferring appropriate decisions and recommending proper actions, which in turn requires fusion of data and knowledge about objects, situations, and actions. Data might include sensory data, verbal reports, intelligence intercepts, or public records, whereas knowledge ought to encompass the whole range of objects, situations, people and their behavior, and knowledge of languages. In the past, a fundamental difficulty in combining knowledge with data was the combinatorial complexity of computations, too many combinations of data and knowledge pieces had to be evaluated. Recent progress in understanding of natural intelligent systems, including the human mind, leads to the development of neurophysiologically motivated architectures for solving these challenging problems, in particular the role of emotional neural signals in overcoming combinatorial complexity of old logic-based approaches. Whereas past approaches based on logic tended to identify logic with language and thinking, recent studies in cognitive linguistics have led to appreciation of more complicated nature of linguistic models. Little is known about the details of the brain mechanisms integrating language and thinking. Understanding and fusion of linguistic information with sensory data represent a novel challenging aspect of the development of integrated fusion systems. The presentation will describe a non-combinatorial approach to this problem and outline techniques that can be used for fusing diverse and uncertain knowledge with sensory and linguistic data.
NASA Astrophysics Data System (ADS)
Ortega Gelabert, Olga; Zlotnik, Sergio; Afonso, Juan Carlos; Díez, Pedro
2017-04-01
The determination of the present-day physical state of the thermal and compositional structure of the Earth's lithosphere and sub-lithospheric mantle is one of the main goals in modern lithospheric research. All this data is essential to build Earth's evolution models and to reproduce many geophysical observables (e.g. elevation, gravity anomalies, travel time data, heat flow, etc) together with understanding the relationship between them. Determining the lithospheric state involves the solution of high-resolution inverse problems and, consequently, the solution of many direct models is required. The main objective of this work is to contribute to the existing inversion techniques in terms of improving the estimation of the elevation (topography) by including a dynamic component arising from sub-lithospheric mantle flow. In order to do so, we implement an efficient Reduced Order Method (ROM) built upon classic Finite Elements. ROM allows to reduce significantly the computational cost of solving a family of problems, for example all the direct models that are required in the solution of the inverse problem. The strategy of the method consists in creating a (reduced) basis of solutions, so that when a new problem has to be solved, its solution is sought within the basis instead of attempting to solve the problem itself. In order to check the Reduced Basis approach, we implemented the method in a 3D domain reproducing a portion of Earth that covers up to 400 km depth. Within the domain the Stokes equation is solved with realistic viscosities and densities. The different realizations (the family of problems) is created by varying viscosities and densities in a similar way as it would happen in an inversion problem. The Reduced Basis method is shown to be an extremely efficiently solver for the Stokes equation in this context.
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff
2017-05-01
The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.
A multidisciplinary approach to solving computer related vision problems.
Long, Jennifer; Helland, Magne
2012-09-01
This paper proposes a multidisciplinary approach to solving computer related vision issues by including optometry as a part of the problem-solving team. Computer workstation design is increasing in complexity. There are at least ten different professions who contribute to workstation design or who provide advice to improve worker comfort, safety and efficiency. Optometrists have a role identifying and solving computer-related vision issues and in prescribing appropriate optical devices. However, it is possible that advice given by optometrists to improve visual comfort may conflict with other requirements and demands within the workplace. A multidisciplinary approach has been advocated for solving computer related vision issues. There are opportunities for optometrists to collaborate with ergonomists, who coordinate information from physical, cognitive and organisational disciplines to enact holistic solutions to problems. This paper proposes a model of collaboration and examples of successful partnerships at a number of professional levels including individual relationships between optometrists and ergonomists when they have mutual clients/patients, in undergraduate and postgraduate education and in research. There is also scope for dialogue between optometry and ergonomics professional associations. A multidisciplinary approach offers the opportunity to solve vision related computer issues in a cohesive, rather than fragmented way. Further exploration is required to understand the barriers to these professional relationships. © 2012 The College of Optometrists.
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details. PMID:26158662
Doubravsky, Karel; Dohnal, Mirko
2015-01-01
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Infinite variance in fermion quantum Monte Carlo calculations.
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
ERIC Educational Resources Information Center
Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.
2008-01-01
More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…
Children's understanding of the addition/subtraction complement principle.
Torbeyns, Joke; Peters, Greet; De Smedt, Bert; Ghesquière, Pol; Verschaffel, Lieven
2016-09-01
In the last decades, children's understanding of mathematical principles has become an important research topic. Different from the commutativity and inversion principles, only few studies have focused on children's understanding of the addition/subtraction complement principle (if a - b = c, then c + b = a), mainly relying on verbal techniques. This contribution aimed at deepening our understanding of children's knowledge of the addition/subtraction complement principle, combining verbal and non-verbal techniques. Participants were 67 third and fourth graders (9- to 10-year-olds). Children solved two tasks in which verbal reports as well as accuracy and speed data were collected. These two tasks differed only in the order of the problems and the instructions. In the looking-back task, children were told that sometimes the preceding problem might help to answer the next problem. In the baseline task, no helpful preceding items were offered. The looking-back task included 10 trigger-target problem pairs on the complement relation. Children verbally reported looking back on about 40% of all target problems in the looking-back task; the target problems were also solved faster and more accurately than in the baseline task. These results suggest that children used their understanding of the complement principle. The verbal and non-verbal data were highly correlated. This study complements previous work on children's understanding of mathematical principles by highlighting interindividual differences in 9- to 10-year-olds' understanding of the complement principle and indicating the potential of combining verbal and non-verbal techniques to investigate (the acquisition of) this understanding. © 2016 The British Psychological Society.
Data Understanding Applied to Optimization
NASA Technical Reports Server (NTRS)
Buntine, Wray; Shilman, Michael
1998-01-01
The goal of this research is to explore and develop software for supporting visualization and data analysis of search and optimization. Optimization is an ever-present problem in science. The theory of NP-completeness implies that the problems can only be resolved by increasingly smarter problem specific knowledge, possibly for use in some general purpose algorithms. Visualization and data analysis offers an opportunity to accelerate our understanding of key computational bottlenecks in optimization and to automatically tune aspects of the computation for specific problems. We will prototype systems to demonstrate how data understanding can be successfully applied to problems characteristic of NASA's key science optimization tasks, such as central tasks for parallel processing, spacecraft scheduling, and data transmission from a remote satellite.
Complex collaborative problem-solving processes in mission control.
Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo
2014-04-01
NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.
Mathematical Metaphors: Problem Reformulation and Analysis Strategies
NASA Technical Reports Server (NTRS)
Thompson, David E.
2005-01-01
This paper addresses the critical need for the development of intelligent or assisting software tools for the scientist who is working in the initial problem formulation and mathematical model representation stage of research. In particular, examples of that representation in fluid dynamics and instability theory are discussed. The creation of a mathematical model that is ready for application of certain solution strategies requires extensive symbolic manipulation of the original mathematical model. These manipulations can be as simple as term reordering or as complicated as discovery of various symmetry groups embodied in the equations, whereby Backlund-type transformations create new determining equations and integrability conditions or create differential Grobner bases that are then solved in place of the original nonlinear PDEs. Several examples are presented of the kinds of problem formulations and transforms that can be frequently encountered in model representation for fluids problems. The capability of intelligently automating these types of transforms, available prior to actual mathematical solution, is advocated. Physical meaning and assumption-understanding can then be propagated through the mathematical transformations, allowing for explicit strategy development.
Three Modes of Hydrogeophysical Investigation: Puzzles, Mysteries, and Conundrums
NASA Astrophysics Data System (ADS)
Ferre, P. A.
2011-12-01
In an article in the New Yorker in 2007, Malcolm Gladwell discussed the distinction that national security expert Gregory Treverton has made between puzzles and mysteries. Specifically, puzzles are problems that we understand and that will eventually be solved when we amass enough information. (Think crossword puzzles.) Mysteries are problems for which we have the necessary information, but it is often overwhelmed by irrelevant or misleading input. To solve a mystery, we require improved analysis. (Think find-a-word.) Gladwell goes on to explain that, in the national security realm, the Cold War was a puzzle while the current national security condition is a mystery. I will discuss the past, current, and future trajectories of hydrogeophysics in terms of puzzles and mysteries. I will also add a third class of problem: conundrums - those for which we lack sufficient information about their structure to know how to solve them. A conundrum is a mystery with an unexpected twist. I hope to make the case that the future growth of hydrogeophysics lies in our ability to address this more challenging and more interesting class of problem.
Beryllium for fusion application - recent results
NASA Astrophysics Data System (ADS)
Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.
2002-12-01
The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.
Marur, Tania; Tuna, Yakup; Demirci, Selman
2014-01-01
Dermatologic problems of the face affect both function and aesthetics, which are based on complex anatomical features. Treating dermatologic problems while preserving the aesthetics and functions of the face requires knowledge of normal anatomy. When performing successfully invasive procedures of the face, it is essential to understand its underlying topographic anatomy. This chapter presents the anatomy of the facial musculature and neurovascular structures in a systematic way with some clinically important aspects. We describe the attachments of the mimetic and masticatory muscles and emphasize their functions and nerve supply. We highlight clinically relevant facial topographic anatomy by explaining the course and location of the sensory and motor nerves of the face and facial vasculature with their relations. Additionally, this chapter reviews the recent nomenclature of the branching pattern of the facial artery. © 2013 Elsevier Inc. All rights reserved.
Dale, Vicki H M; Wieland, Barbara; Pirkelbauer, Birgit; Nevel, Amanda
2009-01-01
This study provides an overview of the perceptions of alumni in relation to their experience of open-book examinations (OBEs) as post-graduate students. This type of assessment was introduced as a way of allowing these adult learners to demonstrate their conceptual understanding and ability to apply knowledge in practice, which in theory would equip them with problem-solving skills required for the workplace. This study demonstrates that alumni-shown to be predominantly deep learners-typically regarded OBEs as less stressful than closed-book examinations, and as an effective way to assess the application of knowledge to real-life problems. Additional staff training and student induction, particularly for international students, are suggested as a means of improving the acceptability and effectiveness of OBEs.
Weinberg's syndrome: a disorder of attention and behavior problems needing further research.
Brumback, R A
2000-07-01
A subset of inattentive children have an underlying problem in sustaining wakefulness ("vigilance"). This disorder of vigilance, termed Weinberg's syndrome, is characterized by difficulty in maintaining wakefulness and alertness as evidenced by (among other symptoms) motor restlessness (fidgeting and moving about, yawning and stretching, talkativeness) and complaints of tiredness. During tasks requiring concentration (continuous mental activity) such as reading, children with Weinberg's syndrome will daydream, lose interest, complain of boredom, and become increasingly restless. Napping, while infrequent, usually is not refreshing. A distinct personality described by family members and friends as kind, affectionate, compassionate, or "angelic" also seems to characterize this condition. Weinberg's syndrome has a familial pattern suggesting autosomal-dominant inheritance. Additional neurophysiologic, pharmacotherapeutic, epidemiologic, and genetic studies will be necessary for a full understanding of Weinberg's syndrome.
Ellner, Jerrold J.
2008-01-01
Abstract Surveillance studies and outbreak investigations indicate that an extensively drug‐resistant (XDR) form of tuberculosis (TB) is increasing in prevalence worldwide. In outbreak settings among HIV‐infected, there is a high‐case fatality rate. Better outcomes occur in HIV‐uninfected, particularly if drug susceptibility test (DST) results are available rapidly to allow tailoring of drug therapy. This review will be presented in two segments. The first characterizes the problem posed by XDR‐TB, addressing the epidemiology and evolution of XDR‐TB and treatment outcomes. The second reviews technologic advances that may contribute to the solution, new diagnostics, and advances in understanding drug resistance and in the development of new drugs. PMID:20443856
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
NASA Technical Reports Server (NTRS)
Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)
1990-01-01
The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.
Big Data Analytics with Datalog Queries on Spark.
Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo
2016-01-01
There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.
Big Data Analytics with Datalog Queries on Spark
Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo
2017-01-01
There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296
Effect of problem type toward students’ conceptual understanding level on heat and temperature
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Sukarmin; Suparmi, S.
2017-11-01
The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.
Writing testable software requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knirk, D.
1997-11-01
This tutorial identifies common problems in analyzing requirements in the problem and constructing a written specification of what the software is to do. It deals with two main problem areas: identifying and describing problem requirements, and analyzing and describing behavior specifications.
Application of the Water Needs Index: Can Tho City, Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Moglia, Magnus; Neumann, Luis E.; Alexander, Kim S.; Nguyen, Minh N.; Sharma, Ashok K.; Cook, Stephen; Trung, Nguyen H.; Tuan, Dinh D. A.
2012-10-01
SummaryProvision of urban water supplies to rapidly growing cities of South East Asia is difficult because of increasing demand for limited water supplies, periodic droughts, and depletion and contamination of surface and groundwater. In such adverse environments, effective policy and planning processes are required to secure adequate water supplies. Developing a Water Needs Index reveals key elements of the complex urban water supply by means of a participatory approach for rapid and interdisciplinary assessment. The index uses deliberative interactions with stakeholders to create opportunities for mutual understanding, confirmation of constructs and capacity building of all involved. In Can Tho City, located at the heart of the Mekong delta in Vietnam, a Water Needs Index has been developed with local stakeholders. The functional attributes of the Water Needs Index at this urban scale have been critically appraised. Systemic water issues, supply problems, health issues and inadequate, poorly functioning infrastructure requiring attention from local authorities have been identified. Entrenched social and economic inequities in access to water and sanitation, as well as polluting environmental management practices has caused widespread problems for urban populations. The framework provides a common language based on systems thinking, increased cross-sectoral communication, as well as increased recognition of problem issues; this ought to lead to improved urban water management. Importantly, the case study shows that the approach can help to overcome biases of local planners based on their limited experience (information black spots), to allow them to address problems experienced in all areas of the city.
Whale, Katie; Cramer, Helen; Joinson, Carol
2018-05-01
To explore the impact of the secondary school environment on young people with continence problems. In-depth qualitative semi-structured interviews. We interviewed 20 young people aged 11-19 years (11 female and nine male) with continence problems (daytime wetting, bedwetting, and/or soiling). Interviews were conducted by Skype (n = 11) and telephone (n = 9). Transcripts were analysed using inductive thematic analysis. We generated five main themes: (1) Boundaries of disclosure: friends and teachers; (2) Social consequences of avoidance and deceit; (3) Strict and oblivious gatekeepers; (4) Intimate actions in public spaces; and (5) Interrupted learning. Disclosure of continence problems at school to both friends and teachers was rare, due to the perceived stigma and fears of bullying and social isolation. The lack of disclosure to teachers and other school staff, such as pastoral care staff, creates challenges in how best to support these young people. Young people with continence problems require unrestricted access to private and adequate toilet facilities during the school day. There is a need for inclusive toilet access policies and improved toilet standards in schools. Addressing the challenges faced by young people with continence problems at school could help to remove the barriers to successful self-management of their symptoms. It is particularly concerning that young people with continence problems are at higher risk of academic underachievement. Increased support at school is needed to enable young people with continence problems to achieve their academic potential. Statement of Contribution What is already known on this subject? Continence problems are among the most common paediatric health problems Self-management of continence problems requires a structured schedule of fluid intake and bladder emptying Inadequate toilet facilities and restricted access make it difficult for young people to manage their incontinence What does this study add? Improvement is needed in teacher understanding of the needs of young people with continence problems Young people are reluctant to disclose continence problems due to perceived stigma and fear of social isolation Young people with continence problems may be at increased risk of academic underachievement. © 2017 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.
Comprehension and computation in Bayesian problem solving
Johnson, Eric D.; Tubau, Elisabet
2015-01-01
Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976
Ferenchick, Gary S; Foreback, Jami; Towfiq, Basim; Kavanaugh, Kevin; Solomon, David; Mohmand, Asad
2010-01-29
Facilitating direct observation of medical students' clinical competencies is a pressing need. We developed an electronic problem-specific Clinical Evaluation Exercise (eCEX) based on a national curriculum. We assessed its feasibility in monitoring and recording students' competencies and the impact of a grading incentive on the frequency of direct observations in an internal medicine clerkship. Students (n = 56) at three clinical sites used the eCEX and comparison students (n = 56) at three other clinical sites did not. Students in the eCEX group were required to arrange 10 evaluations with faculty preceptors. Students in the second group were required to document a single, faculty observed 'Full History and Physical' encounter with a patient. Students and preceptors were surveyed at the end of each rotation. eCEX increased students' and evaluators' understanding of direct-observation objectives and had a positive impact on the evaluators' ability to provide feedback and assessments. The grading incentive increased the number of times a student reported direct observation by a resident preceptor. eCEX appears to be an effective means of enhancing student evaluation.
Fujishiro, Kaori; Gong, Fang; Baron, Sherry; Jacobson, C Jeffery; DeLaney, Sheli; Flynn, Michael; Eggerth, Donald E
2010-02-01
The increasing ethnic diversity of the US workforce has created a need for research tools that can be used with multi-lingual worker populations. Developing multi-language questionnaire items is a complex process; however, very little has been documented in the literature. Commonly used English items from the Job Content Questionnaire and Quality of Work Life Questionnaire were translated by two interdisciplinary bilingual teams and cognitively tested in interviews with English-, Spanish-, and Chinese-speaking workers. Common problems across languages mainly concerned response format. Language-specific problems required more conceptual than literal translations. Some items were better understood by non-English speakers than by English speakers. De-centering (i.e., modifying the English original to correspond with translation) produced better understanding for one item. Translating questionnaire items and achieving equivalence across languages require various kinds of expertise. Backward translation itself is not sufficient. More research efforts should be concentrated on qualitative approaches to developing useful research tools. Published 2009 Wiley-Liss, Inc.
An Improved Aerial Target Localization Method with a Single Vector Sensor
Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin
2017-01-01
This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956
A numerical approach to controller design for the ACES facility
NASA Technical Reports Server (NTRS)
Frazier, W. Garth; Irwin, R. Dennis
1993-01-01
In recent years the employment of active control techniques for improving the performance of systems involving highly flexible structures has become a topic of considerable research interest. Most of these systems are quite complicated, using multiple actuators and sensors, and possessing high order models. The majority of analytical controller synthesis procedures capable of handling multivariable systems in a systematic way require considerable insight into the underlying mathematical theory to achieve a successful design. This insight is needed in selecting the proper weighting matrices or weighting functions to cast what is naturally a multiple constraint satisfaction problem into an unconstrained optimization problem. Although designers possessing considerable experience with these techniques have a feel for the proper choice of weights, others may spend a significant amount of time attempting to find an acceptable solution. Another disadvantage of such procedures is that the resulting controller has an order greater than or equal to that of the model used for the design. Of course, the order of these controllers can often be reduced, but again this requires a good understanding of the theory involved.
Task 1.6 -- Mixed waste. Topical report, April 1994--September 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rindt, J.R.; Jones, F.A.
1996-01-01
For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect US interests. Now that the Cold War is over, the US is faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. The ability to understand the problems encountered when dealing with radioactive waste, both from a scientific standpointmore » and from a legislative standpoint, requires knowledge of treatment and disposal subject areas. This required the accumulation of applicable information. A literature database was developed; site visits were made; and contact relationships were established. Informational databases from government agencies involved in environmental remediation were ordered or purchased, and previously established private sector relationships were used to develop an information base. An appendix contains 482 bibliographic citations that have been integrated into a Microsoft Access{reg_sign} database.« less
Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.
ERIC Educational Resources Information Center
Kim, Eunsook; Pak, Sung-Jae
2002-01-01
Investigates the relationship between traditional physics textbook problem solving and conceptual understanding. Reports that students had many of the well-known conceptual difficulties with basic mechanics and that there was little correlation between the number of problems solved and conceptual understanding. (Contains 21 references.)…
Understanding Sleep Disorders in a College Student Population.
ERIC Educational Resources Information Center
Jensen, Dallas R.
2003-01-01
College students' sleep habits are changing dramatically, and related sleep problems are increasing. Reviews the current literature on sleep problems, focusing on the college student population. The unique challenges of college settings are discussed as they apply to understanding sleep problems, and suggestions are made for professionals who work…
ERIC Educational Resources Information Center
van Velzen, Joke H.
2017-01-01
The solving of reasoning problems in first language (L1) education can produce an understanding of language, and student autonomy in language problem solving, both of which are contemporary goals in senior high school education. The purpose of this study was to obtain a better understanding of senior high school students' knowledge of the language…
ERIC Educational Resources Information Center
Nunokawa, Kazuhiko
2004-01-01
The purpose of this paper was to investigate how it becomes possible for solvers to make drawings to advance their problem solving processes, in order to understand the use of drawings in mathematical problem solving more deeply. For this purpose, three examples in which drawings made by the solver played a critical role in the solutions have been…
Lunn, Judith; Lewis, Charlie; Sherlock, Christopher
2015-02-01
Children with epilepsy (CWE) have social difficulties that can persist into adulthood, and this could be related to problems with understanding others' thoughts, feelings, and intentions. This study assessed children's ability to interpret and reason on mental and emotional states (Theory of Mind) and examined the relationships between task scores and reports of communication and behavior. Performance of 56 CWE (8-16years of age) with below average IQ (n=17) or an average IQ (n=39) was compared with that of 62 healthy controls with an average IQ (6-16years of age) on cognition, language, and two advanced Theory of Mind (ToM) tasks that required children to attribute mental or emotional states to eye regions and to reason on internal mental states in order to explain behavior. The CWE-below average group were significantly poorer in both ToM tasks compared with controls. The CWE - average group showed a significantly poorer ability to reason on mental states in order to explain behavior, a difference that remained after accounting for lower IQ and language deficits. Poor ToM skills were related to increased communication and attention problems in both CWE groups. There is a risk for atypical social understanding in CWE, even for children with average cognitive function. Copyright © 2014 Elsevier Inc. All rights reserved.
Galgiani, J N
1993-01-01
Coccidioidomycosis is a systemic fungal infection endemic to the southwestern United States and other parts of the western hemisphere. Although producing a wide range of disorders in healthy persons, immunosuppression predisposes to especially severe disease. Thus, a knowledge of the pathogenesis of coccidioidal infections and its relation to the normal immune responses is useful to understand the diversity of problems that Coccidioides immitis may cause. Diagnosis usually requires laboratory studies such as fungal culture or specific serologic testing. Fortunately, many patients do not need to be treated for the infection to resolve. Therapy for the more severe forms of coccidioidal infection was once limited to amphotericin B but now includes azole antifungal agents. These expanded alternatives now require physicians to weigh many factors in determining the best management for specific patients. Images PMID:8212681
Evaluating the Process of Generating a Clinical Trial Protocol
Franciosi, Lui G.; Butterfield, Noam N.; MacLeod, Bernard A.
2002-01-01
The research protocol is the principal document in the conduct of a clinical trial. Its generation requires knowledge about the research problem, the potential experimental confounders, and the relevant Good Clinical Practices for conducting the trial. However, such information is not always available to authors during the writing process. A checklist of over 80 items has been developed to better understand the considerations made by authors in generating a protocol. It is based on the most cited requirements for designing and implementing the randomised controlled trial. Items are categorised according to the trial's research question, experimental design, statistics, ethics, and standard operating procedures. This quality assessment tool evaluates the extent that a generated protocol deviates from the best-planned clinical trial.
A parallel data management system for large-scale NASA datasets
NASA Technical Reports Server (NTRS)
Srivastava, Jaideep
1993-01-01
The past decade has experienced a phenomenal growth in the amount of data and resultant information generated by NASA's operations and research projects. A key application is the reprocessing problem which has been identified to require data management capabilities beyond those available today (PRAT93). The Intelligent Information Fusion (IIF) system (ROEL91) is an ongoing NASA project which has similar requirements. Deriving our understanding of NASA's future data management needs based on the above, this paper describes an approach to using parallel computer systems (processor and I/O architectures) to develop an efficient parallel database management system to address the needs. Specifically, we propose to investigate issues in low-level record organizations and management, complex query processing, and query compilation and scheduling.
2011-01-01
Objective The complexities inherent in understanding the social determinants of health are often not well-served by quantitative approaches. My aim is to show that well-designed and well-conducted ethnographic studies have an important contribution to make in this regard. Ethnographic research designs are a difficult but rigorous approach to research questions that require us to understand the complexity of people’s social and cultural lives. Approach I draw on an ethnographic study to describe the complexities of studying maternal health in a rural area in India. I then show how the lessons learnt in that setting and context can be applied to studies done in very different settings. Results I show how ethnographic research depends for rigour on a theoretical framework for sample selection; why immersion in the community under study, and rapport building with research participants, is important to ensure rich and meaningful data; and how flexible approaches to data collection lead to the gradual emergence of an analysis based on intense cross-referencing with community views and thus a conclusion that explains the similarities and differences observed. Conclusion When using ethnographic research design it can be difficult to specify in advance the exact details of the study design. Researchers can encounter issues in the field that require them to change what they planned on doing. In rigorous ethnographic studies, the researcher in the field is the research instrument and needs to be well trained in the method. Implication Ethnographic research is challenging, but nevertheless provides a rewarding way of researching complex health problems that require an understanding of the social and cultural determinants of health. PMID:22168509
MO-F-204-00: Preparing for the ABR Diagnostic and Nuclear Medical Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
MO-F-204-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance of allmore » aspects of clinical medical physics. All parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those unique aspects of the nuclear exam, and how preparing for a second specialty differs from the first. Medical physicists who recently completed each ABR exam portion will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-04: Preparing for Parts 2 & 3 of the ABR Nuclear Medicine Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-00: Preparing for the ABR Diagnostic and Nuclear Medicine Physics Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-01: Preparing for Part 1 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, S.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-03: Preparing for Part 3 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevins, N.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
WE-D-213-02: Preparing for Part 2 of the ABR Diagnostic Physics Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zambelli, J.
Adequate, efficient preparation for the ABR Diagnostic and Nuclear Medical Physics exams is key to successfully obtain ABR professional certification. Each part of the ABR exam presents its own challenges: Part I: Determine the scope of basic medical physics study material, efficiently review this material, and solve related written questions/problems. Part II: Understand imaging principles, modalities, and systems, including image acquisition, processing, and display. Understand the relationship between imaging techniques, image quality, patient dose and safety, and solve related written questions/problems. Part III: Gain crucial, practical, clinical medical physics experience. Effectively communicate and explain the practice, performance, and significance ofmore » all aspects of clinical medical physics. All three parts of the ABR exam require specific skill sets and preparation: mastery of basic physics and imaging principles; written problem solving often involving rapid calculation; responding clearly and succinctly to oral questions about the practice, methods, and significance of clinical medical physics. This symposium focuses on the preparation and skill sets necessary for each part of the ABR exam. Although there is some overlap, the nuclear exam covers a different body of knowledge than the diagnostic exam. A separate speaker will address those aspects that are unique to the nuclear exam. Medical physicists who have recently completed each of part of the ABR exam will share their experiences, insights, and preparation methods to help attendees best prepare for the challenges of each part of the ABR exam. In accordance with ABR exam security policy, no recalls or exam questions will be discussed. Learning Objectives: How to prepare for Part 1 of the ABR exam by determining the scope of basic medical physics study material and related problem solving/calculations How to Prepare for Part 2 of the ABR exam by understanding diagnostic and/or nuclear imaging physics, systems, dosimetry, safety and related problem solving/calculations How to Prepare for Part 3 of the ABR exam by effectively communicating the practice, methods, and significance of clinical diagnostic and/or nuclear medical physics.« less
A qualitative study of contextual factors' impact on measures to reduce surgery cancellations.
Hovlid, Einar; Bukve, Oddbjørn
2014-05-13
Contextual factors influence quality improvement outcomes. Understanding this influence is important when adapting and implementing interventions and translating improvements into new settings. To date, there is limited knowledge about how contextual factors influence quality improvement processes. In this study, we explore how contextual factors affected measures to reduce surgery cancellations, which are a persistent problem in healthcare. We discuss the usefulness of the theoretical framework provided by the model for understanding success in quality (MUSIQ) for this kind of research. We performed a qualitative case study at Førde Hospital, Norway, where we had previously demonstrated a reduction in surgery cancellations. We interviewed 20 clinicians and performed content analysis to explore how contextual factors affected measures to reduce cancellations of planned surgeries. We identified three common themes concerning how contextual factors influenced the change process: 1) identifying a need to change, 2) facilitating system-wide improvement, and 3) leader involvement and support. Input from patients helped identify a need to change and contributed to the consensus that change was necessary. Reducing cancellations required improving the clinical system. This improvement process was based on a strategy that emphasized the involvement of frontline clinicians in detecting and improving system problems. Clinicians shared information about their work by participating in improvement teams to develop a more complete understanding of the clinical system and its interdependencies. This new understanding allowed clinicians to detect system problems and design adequate interventions. Middle managers' participation in the improvement teams and in regular work processes was important for successfully implementing and adapting interventions. Contextual factors interacted with one another and with the interventions to facilitate changes in the clinical system, reducing surgery cancellations. The MUSIQ framework is useful for exploring how contextual factors influence the improvement process and how they influence one another. Discussing data in relation to a theoretical framework can promote greater uniformity in reporting findings, facilitating knowledge-building across studies.
An Investigation into Post-Secondary Students' Understanding of Combinatorial Questions
ERIC Educational Resources Information Center
Bulone, Vincent William
2017-01-01
The purpose of this dissertation was to study aspects of how post-secondary students understand combinatorial problems. Within this dissertation, I considered understanding through two different lenses: i) student connections to previous problems; and ii) common combinatorial distinctions such as ordered versus unordered and repetitive versus…
Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.
Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A
2015-06-01
The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Practices to enable the geophysical research spectrum: from fundamentals to applications
NASA Astrophysics Data System (ADS)
Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.
2016-12-01
In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.
[Therapeutical itineraries in poverty situations: diversity and plurality].
Gerhardt, Tatiana Engel
2006-11-01
The low-income population's practices and strategies for coping with daily problems, especially in relation to the search for health care, are analyzed by means of therapeutic itineraries. To unveil this population's coping strategies in relation to their health-disease process means identifying the individual and collective strategies and the meaning of these social dynamics related directly or indirectly to health. The search for treatment is described and analyzed here in relation to socio-cultural practices in terms of the paths chosen by individuals in the attempt to solve their health problems. The study thus indicates an interdisciplinary and multi-methodological and conceptual approach relating concepts of practices, strategies, and health and life situations. The point of departure is that ways of coping with health problems require an understanding of the strategies developed in a process of (re)appropriation and (re)construction of knowledge. It is equally important to identify social support networks and individual capacity to mobilize such resources. The recognition of these practices allows (re)directing actions in collective health.
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem
Williams, Patricia AH; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.
Williams, Patricia Ah; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.
A Multifaceted Mathematical Approach for Complex Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, F.; Anitescu, M.; Bell, J.
2012-03-07
Applied mathematics has an important role to play in developing the tools needed for the analysis, simulation, and optimization of complex problems. These efforts require the development of the mathematical foundations for scientific discovery, engineering design, and risk analysis based on a sound integrated approach for the understanding of complex systems. However, maximizing the impact of applied mathematics on these challenges requires a novel perspective on approaching the mathematical enterprise. Previous reports that have surveyed the DOE's research needs in applied mathematics have played a key role in defining research directions with the community. Although these reports have had significantmore » impact, accurately assessing current research needs requires an evaluation of today's challenges against the backdrop of recent advances in applied mathematics and computing. To address these needs, the DOE Applied Mathematics Program sponsored a Workshop for Mathematics for the Analysis, Simulation and Optimization of Complex Systems on September 13-14, 2011. The workshop had approximately 50 participants from both the national labs and academia. The goal of the workshop was to identify new research areas in applied mathematics that will complement and enhance the existing DOE ASCR Applied Mathematics Program efforts that are needed to address problems associated with complex systems. This report describes recommendations from the workshop and subsequent analysis of the workshop findings by the organizing committee.« less
NASA Astrophysics Data System (ADS)
Huppert, J.; Michal Lomask, S.; Lazarowitz, R.
2002-08-01
Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.
Europe, the professions and interprofessional education: an exploration in inter-culture relativity.
Lorenz, Walter
2009-09-01
This paper seeks to understand the inter-cultural relationships between the notions of Europe, the professions and interprofessional education (IPE) in developing an argument for the necessity of interprofessional education for meeting the complex challenges for the professions and society in the 21st century. The concept of "strange loops" is used to explore the paradoxes and recursions in understanding what Europe, the professions and interprofessional education really are. After questioning perceptions of the professions in a changing Europe, I challenge interprofessional education to greater heights. IPE has to accompany all professional exchanges across borders as a critical, constructive process that focuses on differences in theory and practice within the different professional fields to overcome their problems of adjustment to changing user needs and cultural requirements.
NASA Astrophysics Data System (ADS)
Yusoff, Tengku Ahmad Imran Ku; Shaufi Sokiman, Mohamad
2017-10-01
This research is conducted to understand the sedimentology and morphological change before and during the northeast monsoon at the east coast of peninsular Malaysia. The increase in wind speed, wave energy and rainfall during the northeast monsoon are believed to causes the coastal erosion to increase during the season. Rapid development along the east coast area might disrupt the sediments distribution which can increase the coastal erosion rate every year. The understanding on the sediments distribution, erosion and deposition as well as the morphological change can help to figure out if the coastal erosion can affect the infrastructure in the future. The result of the study can show the necessity to perform mitigation or any required action toward the problem that might happen
Analysis of glow discharges for understanding the process of film formation
NASA Technical Reports Server (NTRS)
Venugopalan, M.; Avni, R.
1984-01-01
The physical and chemical processes which occur during the formation of different types of films in a variety of glow discharge plasmas are discussed. Emphasis is placed on plasma diagnostic experiments using spectroscopic methods, probe analysis, mass spectrometric sampling and magnetic resonance techniques which are well suited to investigate the neutral and ionized gas phase species as well as some aspects of plasma surface interactions. The results on metallic, semi-conducting and insulating films are reviewed in conjunction with proposed models and the problem encountered under film deposition conditions. It is concluded that the understanding of film deposition process requires additional experimental information on plasma surface interactions of free radicals and the synergetic effects where photon, electron and ion bombardment change the reactivity of the incident radical with the surface.
Covalent Organic Frameworks as a Platform for Multidimensional Polymerization.
Bisbey, Ryan P; Dichtel, William R
2017-06-28
The simultaneous polymerization and crystallization of monomers featuring directional bonding designs provides covalent organic frameworks (COFs), which are periodic polymer networks with robust covalent bonds arranged in two- or three-dimensional topologies. The range of properties characterized in COFs has rapidly expanded to include those of interest for heterogeneous catalysis, energy storage and photovoltaic devices, and proton-conducting membranes. Yet many of these applications will require materials quality, morphological control, and synthetic efficiency exceeding the capabilities of contemporary synthetic methods. This level of control will emerge from an improved fundamental understanding of COF nucleation and growth processes. More powerful characterization of structure and defects, improved syntheses guided by mechanistic understanding, and accessing diverse isolated forms, ranging from single crystals to thin films to colloidal suspensions, remain important frontier problems.
Covalent Organic Frameworks as a Platform for Multidimensional Polymerization
2017-01-01
The simultaneous polymerization and crystallization of monomers featuring directional bonding designs provides covalent organic frameworks (COFs), which are periodic polymer networks with robust covalent bonds arranged in two- or three-dimensional topologies. The range of properties characterized in COFs has rapidly expanded to include those of interest for heterogeneous catalysis, energy storage and photovoltaic devices, and proton-conducting membranes. Yet many of these applications will require materials quality, morphological control, and synthetic efficiency exceeding the capabilities of contemporary synthetic methods. This level of control will emerge from an improved fundamental understanding of COF nucleation and growth processes. More powerful characterization of structure and defects, improved syntheses guided by mechanistic understanding, and accessing diverse isolated forms, ranging from single crystals to thin films to colloidal suspensions, remain important frontier problems. PMID:28691064
LEO Spacecraft Charging Guidelines
NASA Technical Reports Server (NTRS)
Hillard, G. B.; Ferguson, D. C.
2002-01-01
Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, has commissioned and funded a design guidelines document intended to capture the current state of understanding. We present here an overview of this document, which is now nearing completion.
Breakdown of plastics and polymers by microorganisms.
Kawai, F
1995-01-01
The interest in environmental issues is still growing and there are increasing demands to develop materials which do not burden the environment significantly. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. Biodegradation is necessary for water-soluble or water-miscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires both biochemical insight and understanding of the interactions between materials and microorganisms. It is now widely requested that polymeric materials come from renewable resources instead of petrochemical sources. The microbial production of polymeric and oligomeric materials is also described.
NASA Astrophysics Data System (ADS)
Utami, D. N.; Wulandari, H. R. T.
2016-11-01
The aim of this research is to detect misconceptions in the concept of physics at high school level by using astronomy questions as a testing instrument. Misconception is defined as a thought or an idea that is different from what has been agreed by experts who are reliable in the field, and it is believed to interfere with the acquisition of new understanding and integration of new knowledge or skills. While lack of concept or knowledge can be corrected with the next instruction and learning, students who have misconceptions have to “unlearn” their misconception before learning a correct one. Therefore, the ability to differentiate between these two things becomes crucial. CRI is one of the methods that can identify efficiently, between misconceptions and lack of knowledge that occur in the students. This research used quantitative- descriptive method with ex-post-facto research approach. An instrument used for the test is astronomy questions that require an understanding of physics concepts to solve the problem. By using astronomy questions, it is expected to raise a better understanding such that a concept can be viewed from various fields of science. Based on test results, misconceptions are found on several topics of physics. This test also revealed that student's ability to analyse a problem is still quite low.
NASA Astrophysics Data System (ADS)
Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech
2017-04-01
The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Sakaki, T.; Smits, K. M.; Limsuwat, A.; Terrés-Nícoli, J. M.
2008-12-01
Understanding the dynamics of soil moisture distribution near the ground surface is of interest in various applications involving land-atmospheric interaction, evaporation from soils, CO2 leakage from carbon sequestration, vapor intrusion into buildings, and land mine detection. Natural soil heterogeneity in combination with water and energy fluxes at the soil surface creates complex spatial and temporal distributions of soil moisture. Even though considerable knowledge exists on how soil moisture conditions change in response to flux and energy boundary conditions, emerging problems involving land atmospheric interactions require the quantification of soil moisture variability both at high spatial and temporal resolutions. The issue of up-scaling becomes critical in all applications, as in general, field measurements are taken at sparsely distributed spatial locations that require assimilation with measurements taken using remote sensing technologies. It is our contention that the knowledge that will contribute to both improving our understanding of the fundamental processes and practical problem solution cannot be obtained easily in the field due to a number of constraints. One of these basic constraints is the inability to make measurements at very fine spatial scales at high temporal resolutions in naturally heterogeneous field systems. Also, as the natural boundary conditions at the land/atmospheric interface are not controllable in the field, even in pilot scale studies, the developed theories and tools cannot be validated for the diversity of conditions that could be expected in the field. Intermediate scale testing using soil tanks packed to represent different heterogeneous test configurations provides an attractive and cost effective alternative to investigate a class of problems involving the shallow unsaturated zone. In this presentation, we will discuss the advantages and limitations of studies conducted in both two and three dimensional intermediate scale test systems together with instrumentation and measuring techniques. The features and capabilities of a new coupled porous media/climate wind tunnel test system that allows for the study of near surface unsaturated soil moisture conditions under climate boundary conditions will also be presented with the goal of exploring opportunities to use such a facility to study some of the multi-scale problems in the near surface unsaturated zone.
Review of heavy metal bio-remediation in contaminated freeway facilitated by adsorption
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2017-08-01
Toxicity around biological systems is a significant issue for environmental health in a long term. Recent biotechnological approaches for bio-remediation of heavy metals in freeway frequently include mineralization, bio-adsorption or even remediation. Thus, adequate restoration in freeway requiring cooperation, integration and assimilation of such biotechnological advances along with traditional and ethical wisdom to unravel the mystery of nature in the emerging field of bio-remediation was reviewed with highlights to better understand problems associated with toxicity of heavy metals and eco-friendly technologies.
NASA Astrophysics Data System (ADS)
Vishniac, Ethan T.
2012-01-01
Manuscripts submitted to The Astrophysical Journal are required to contain "novel and significant" material and to be free of plagiarism. There is a surprising amount of confusion regarding the definition of plagiarism and what constitutes prior publication. I will discuss the definitions used by the ApJ and the procedures we follow to to support this rule. Individual members of the community frequently show a very different understanding of these standards and are surprised at the conflict. Time allowing, I will briefly discuss some of the other common ethical problems that arise during the preparation and publication of articles.
Assessing esophageal dysphagia.
Kruger, Danielle
2014-05-01
Dysphagia, or difficulty swallowing, is a common problem. Although most cases are attributable to benign disease processes, dysphagia is also a key symptom in several malignancies, making it an important symptom to evaluate. The differential diagnosis of dysphagia requires an understanding of deglutition, in particular the oropharyngeal versus esophageal stages. Stroke is the leading cause of oropharyngeal dysphagia, which is common in older adults and frequently presents as part of a broader complex of clinical manifestations. In esophageal dysphagia, difficulty swallowing is often the main complaint and is caused by localized neuromuscular disorders or obstructive lesions.
Realizing situation awareness within a cyber environment
NASA Astrophysics Data System (ADS)
Tadda, George; Salerno, John J.; Boulware, Douglas; Hinman, Michael; Gorton, Samuel
2006-04-01
Situation Awareness (SA) problems all require an understanding of current activities, an ability to anticipate what may happen next, and techniques to analyze the threat or impact of current activities and predictions. These processes of SA are common regardless of the domain and can be applied to the detection of cyber attacks. This paper will describe the application of a SA framework to implementing Cyber SA, describe some metrics for measuring and evaluating systems implementing Cyber SA, and discuss ongoing work in this area. We conclude with some ideas for future activities.
Police Self-Deployment at Critical Incidents: A Wicked Problem or a Part of the Solution
2017-09-01
bombings , this thesis explored police self-deployment through the lens of wicked problems. A better understanding of the definition resulted in...police, ICS, wicked problems, Boston Marathon bombings , edge of chaos, apperception, phronesis, self-initiated, Cynefin framework, after-action...manhunt and 2013 Boston Marathon bombings , this thesis explored police self-deployment through the lens of wicked problems. A better understanding of
Individual differences in children's understanding of inversion and arithmetical skill.
Gilmore, Camilla K; Bryant, Peter
2006-06-01
Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.
Developing and validating the Youth Conduct Problems Scale-Rwanda: a mixed methods approach.
Ng, Lauren C; Kanyanganzi, Frederick; Munyanah, Morris; Mushashi, Christine; Betancourt, Theresa S
2014-01-01
This study developed and validated the Youth Conduct Problems Scale-Rwanda (YCPS-R). Qualitative free listing (n = 74) and key informant interviews (n = 47) identified local conduct problems, which were compared to existing standardized conduct problem scales and used to develop the YCPS-R. The YCPS-R was cognitive tested by 12 youth and caregiver participants, and assessed for test-retest and inter-rater reliability in a sample of 64 youth. Finally, a purposive sample of 389 youth and their caregivers were enrolled in a validity study. Validity was assessed by comparing YCPS-R scores to conduct disorder, which was diagnosed with the Mini International Neuropsychiatric Interview for Children, and functional impairment scores on the World Health Organization Disability Assessment Schedule Child Version. ROC analyses assessed the YCPS-R's ability to discriminate between youth with and without conduct disorder. Qualitative data identified a local presentation of youth conduct problems that did not match previously standardized measures. Therefore, the YCPS-R was developed solely from local conduct problems. Cognitive testing indicated that the YCPS-R was understandable and required little modification. The YCPS-R demonstrated good reliability, construct, criterion, and discriminant validity, and fair classification accuracy. The YCPS-R is a locally-derived measure of Rwandan youth conduct problems that demonstrated good psychometric properties and could be used for further research.
Integrated research in natural resources: the key role of problem framing.
Roger N. Clark; George H. Stankey
2006-01-01
Integrated research is about achieving holistic understanding of complex biophysical and social issues and problems. It is driven by the need to improve understanding about such systems and to improve resource management by using the results of integrated research processes.Traditional research tends to fragment complex problems, focusing more on the pieces...
Introduction to Problem Solving: Strategies for the Elementary Math Classroom.
ERIC Educational Resources Information Center
O'Connell, Susan
This book is designed to help better understand problem-solving instruction. It presents information on helping students understand the problem-solving process as well as information on teaching specific strategies, including: Choose an Operation; Find a Pattern; Make a Table; Make an Organized List; Draw a Picture or Diagram; Guess, Check, and…
Promoting College Students' Problem Understanding Using Schema-Emphasizing Worked Examples
ERIC Educational Resources Information Center
Yan, Jie; Lavigne, Nancy C.
2014-01-01
Statistics learners often bypass the critical step of understanding a problem before executing solutions. Worked-out examples that identify problem information (e.g., data type, number of groups, purpose of analysis) key to determining a solution (e.g., "t" test, chi-square, correlation) can address this concern. The authors examined the…
Using Quotitive Division Problems to Promote Place-Value Understanding
ERIC Educational Resources Information Center
Bicknell, Brenda; Young-Loveridge, Jenny; Simpson, Jackie
2017-01-01
A robust understanding of place value is essential. Using a problem-based approach set within meaningful contexts, students' attention may be drawn to the multiplicative structure of place value. By using quotitive division problems through a concrete-representational-abstract lesson structure, this study showed a powerful strengthening of Year 3…
Sensor Technologies for Particulate Detection and Characterization
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
2008-01-01
Planned Lunar missions have resulted in renewed attention to problems attributable to fine particulates. While the difficulties experienced during the sequence of Apollo missions did not prove critical in all cases, the comparatively long duration of impending missions may present a different situation. This situation creates the need for a spectrum of particulate sensing technologies. From a fundamental perspective, an improved understanding of the properties of the dust fraction is required. Described here is laboratory-based reference instrumentation for the measurement of fundamental particle size distribution (PSD) functions from 2.5 nanometers to 20 micrometers. Concomitant efforts for separating samples into fractional size bins are also presented. A requirement also exists for developing mission compatible sensors. Examples include provisions for air quality monitoring in spacecraft and remote habitation modules. Required sensor attributes such as low mass, volume, and power consumption, autonomy of operation, and extended reliability cannot be accommodated by existing technologies.
[Public health, genetics and ethics].
Kottow, Miguel H
2002-10-01
Genetics research has shown enormous developments in recent decades, although as yet with only limited clinical application. Bioethical analysis has been unable to deal with the vast problems of genetics because emphasis has been put on the principlism applied to both clinical and research bioethics. Genetics nevertheless poses its most complex moral dilemmas at the public level, where a social brand of ethics ought to supersede the essentially interpersonal perspective of principlism. A more social understanding of ethics in genetics is required to unravel issues such as research and clinical explorations, ownership and patents, genetic manipulation, and allocation of resources. All these issues require reflection based on the requirements of citizenry, consideration of common assets, and definition of public policies in regulating genetic endeavors and protecting the society as a whole Bioethics has privileged the approach to individual ethical issues derived from genetic intervention, thereby neglecting the more salient aspects of genetics and social ethics.
Negotiation and Contracting in Collaborative Networks
NASA Astrophysics Data System (ADS)
Oliveira, Ana Inês; Camarinha-Matos, Luis M.
Due to the increasing market turbulence, companies, organizations and individuals need to tune their actuation forms so that they can prevail. It is particularly essential to create alliances and partnerships for collaborative problem solving when responding to new businesses or collaborative opportunities. In all types of alliances it is necessary to establish agreements that represent the rights and duties of all involved parts in a given collaboration opportunity. Therefore, it is important to deeply understand the structures and requirements of these alliances, i.e. what kind of members does the alliance have, what kind of protocols may be implied, how conflicts may possibly be resolved, etc. Moreover to these requirements, also the required support tools and mechanisms have to be identified. For that, this paper presents a research work that is being carried in the negotiation and contracting field, in order to promote agility in collaborative networks.
Management of optics. [for HEAO-2 X ray telescope
NASA Technical Reports Server (NTRS)
Kirchner, T. E.; Russell, M.
1981-01-01
American Science and Engineering, Inc., designed the large X-ray optic for the HEAO-2 X-ray Telescope. The key element in this project was the High Resolution Mirror Assembly (HRMA), subcontracting the fabrication of the optical surfaces and their assembly and alignment. The roles and organization of the key participants in the creation of HRMA are defined, and the degree of interaction between the groups is described. Management of this effort was extremely complex because of the intricate weaving of responsibilities, and AS&E, as HEAO-2 Program managers, needed to be well versed in the scientific objectives, the technical requirements, the program requirements, and the subcontract management. Understanding these factors was essential for implementing both technical and management controls, such as schedule and budget constraints, in-process control, residence requirements, and scientist review and feedback. Despite unforeseen technical problems and interaction differences, the HEAO-2 was built on schedule and to specification.
Scandurra, Isabella; Hägglund, Maria; Koch, Sabine
2008-01-01
A significant problem with current health information technologies is that they poorly support collaborative work of healthcare professionals, sometimes leading to a fragmentation of workflow and disruption of healthcare processes. This paper presents two homecare cases, both applying multi-disciplinary thematic seminars (MdTS) as a collaborative method for user needs elicitation and requirements specification. This study describes the MdTS application to elicit user needs from different perspectives to coincide with collaborative professions' work practices in two cases. Despite different objectives, the two cases validated that MdTS emphasized the "points of intersection" in cooperative work. Different user groups with similar, yet distinct needs reached a common understanding of the entire work process, agreed upon requirements and participated in the design of prototypes supporting cooperative work. MdTS was applicable in both exploratory and normative studies aiming to elicit the specific requirements in a cooperative environment.
A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.
Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela
2017-09-02
Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.
Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei
2015-05-01
Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth. Copyright © 2015 Elsevier Inc. All rights reserved.
Stubbs, Brendon; Vancampfort, Davy; Thompson, Trevor; Veronese, Nicola; Carvalho, Andre F; Solmi, Marco; Mugisha, James; Schofield, Patricia; Matthew Prina, A; Smith, Lee; Koyanagi, Ai
2018-05-22
Pain and sleep disturbances are widespread, and are an important cause of a reduced quality of life. Despite this, there is a paucity of multinational population data assessing the association between pain and sleep problems, particularly among low- and middle-income countries (LMICs). Therefore, we investigated the relationship between pain and severe sleep disturbance across 45 LMICs. Community-based data on 240,820 people recruited via the World Health Survey were analyzed. Multivariable logistic regression analyses adjusted for multiple confounders were performed to quantify the association between pain and severe sleep problems in the last 30 days. A mediation analysis was conducted to explore potential mediators of the relationship between pain and severe sleep disturbance. The prevalence of mild, moderate, severe, and extreme levels of pain was 26.0%, 16.2%, 9.1%, and 2.2% respectively, whilst 7.8% of adults had severe sleep problems. Compared to those with no pain, the odds ratio (OR, 95% CI) for severe sleep problems was 3.65 (3.24-4.11), 9.35 (8.19-10.67) and 16.84 (13.91-20.39) for those with moderate, severe and extreme pain levels respectively. A country wide meta-analysis adjusted for age and sex demonstrated a significant increased OR across all 45 countries. Anxiety, depression and stress sensitivity explained 12.9%, 3.6%, and 5.2%, respectively, of the relationship between pain and severe sleep disturbances. Pain and sleep problems are highly co-morbid across LMICs. Future research is required to better understand this relationship. Moreover, future interventions are required to prevent and manage the pain and sleep disturbance comorbidity. Copyright © 2018 Elsevier Inc. All rights reserved.
Fostering Mathematical Understanding through Physical and Virtual Manipulatives
ERIC Educational Resources Information Center
Loong, Esther Yook Kin
2014-01-01
When solving mathematical problems, many students know the procedure to get to the answer but cannot explain why they are doing it in that way. According to Skemp (1976) these students have instrumental understanding but not relational understanding of the problem. They have accepted the rules to arriving at the answer without questioning or…
Transition Process of Procedural to Conceptual Understanding in Solving Mathematical Problems
ERIC Educational Resources Information Center
Fatqurhohman
2016-01-01
This article aims to describe the transition process from procedural understanding to conceptual understanding in solving mathematical problems. Subjects in this study were three students from 20 fifth grade students of SDN 01 Sumberberas Banyuwangi selected based on the results of the students' answers. The transition process from procedural to…
Marketing/Sales Students' Understanding of What Counts as Sales
ERIC Educational Resources Information Center
Hoshower, Leon; Gupta, Ashok K.
2009-01-01
Improper sales revenue recognition is the single largest issue contributing to financial restatements. Understanding and applying the rules of sales revenue recognition is not just an accounting problem; it is a marketing problem, too. Thus, it is important that the sales force has a basic understanding of the rules of sales recognition and be…
Neonatal pulmonary physiology.
Davis, Ryan P; Mychaliska, George B
2013-11-01
Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.
Van Regenmortel, Marc H. V.
2018-01-01
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066
How to Effectively Use Bismuth Quadruple Therapy: The Good, the Bad, and the Ugly
Graham, David Y.; Lee, Sun-Young
2015-01-01
Bismuth triple therapy was the first truly effective Helicobacter pylori eradication therapy. The addition of a proton pump inhibitor largely overcame the problem of metronidazole resistance. Resistance to its being the primary first line therapy have centered on convenience (the large number of tablets required) and side effects causing difficulties with patient adherence. Understanding why the regimen is less successful in some regions remains unexplained in part because of the lack of studies including susceptibility testing. A number of modifications have been proposed such as twice-a-day therapy which addresses both major criticism but the studies with susceptibility testing required to prove its effectiveness in high metronidazole resistance areas are lacking. Most publications lack the data required to understand why they were successful or failed (e.g., detailed resistance and adherence data) and are therefore of little value. We discuss and provide recommendations regarding variations including substitution of doxycycline, amoxicillin, and twice a day therapy. We describe what is known and unknown and provide suggestions regarding what is needed to rationally and effectively use bismuth quadruple therapy. Its primary use is when penicillin cannot be used or when clarithromycin and metronidazole resistance is common. Durations of therapy less than 14 days are not recommended. PMID:26314667
de Koning, Jos J; Foster, Carl; Lucia, Alejandro; Bobbert, Maarten F; Hettinga, Florentina J; Porcari, John P
2011-06-01
Every new competitive season offers excellent examples of human locomotor abilities, regardless of the sport. As a natural consequence of competitions, world records are broken every now and then. World record races not only offer spectators the pleasure of watching very talented and highly trained athletes performing muscular tasks with remarkable skill, but also represent natural models of the ultimate expression of human integrated muscle biology, through strength, speed, or endurance performances. Given that humans may be approaching our species limit for muscular power output, interest in how athletes improve on world records has led to interest in the strategy of how limited energetic resources are best expended over a race. World record performances may also shed light on how athletes in different events solve exactly the same problem-minimizing the time required to reach the finish line. We have previously applied mathematical modeling to the understanding of world record performances in terms of improvements in facilities/equipment and improvements in the athletes' physical capacities. In this commentary, we attempt to demonstrate that differences in world record performances in various sports can be explained using a very simple modeling process.
Visualization of diversity in large multivariate data sets.
Pham, Tuan; Hess, Rob; Ju, Crystal; Zhang, Eugene; Metoyer, Ronald
2010-01-01
Understanding the diversity of a set of multivariate objects is an important problem in many domains, including ecology, college admissions, investing, machine learning, and others. However, to date, very little work has been done to help users achieve this kind of understanding. Visual representation is especially appealing for this task because it offers the potential to allow users to efficiently observe the objects of interest in a direct and holistic way. Thus, in this paper, we attempt to formalize the problem of visualizing the diversity of a large (more than 1000 objects), multivariate (more than 5 attributes) data set as one worth deeper investigation by the information visualization community. In doing so, we contribute a precise definition of diversity, a set of requirements for diversity visualizations based on this definition, and a formal user study design intended to evaluate the capacity of a visual representation for communicating diversity information. Our primary contribution, however, is a visual representation, called the Diversity Map, for visualizing diversity. An evaluation of the Diversity Map using our study design shows that users can judge elements of diversity consistently and as or more accurately than when using the only other representation specifically designed to visualize diversity.
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.
Zenke, Friedemann; Ganguli, Surya
2018-06-01
A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.
It's a Sooty Problem: Black Carbon and Aerosols from Space
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.
2005-01-01
Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.
NASA Astrophysics Data System (ADS)
de Astudillo, Luisa Rojas; Niaz, Mansoor
1996-06-01
Achievement in science depends on a series of factors that characterize the cognitive abilities of the students and the complex interactions between these factors and the environment that intervenes in the formation of students' background. The objective of this study is to: a) investigate reasoning strategies students use in solving stoichiometric problems; b) explore the relation between these strategies and alternative conceptions, prior knowledge and cognitive variables; and c) interpret the results within an epistemological framework. Results obtained show how stoichiometric relations produce conflicting situations for students, leading to conceptual misunderstanding of concepts, such as mass, atoms and moles. The wide variety of strategies used by students attest to the presence of competing and conflicting frameworks (progressive transitions, cf. Lakatos, 1970), leading to greater conceptual understanding. It is concluded that the methodology developed in this study (based on a series of closely related probing questions, generally requiring no calculations, that elicit student conceptual understanding to varying degrees within an intact classroom context) was influential in improving student performance. This improvement in performance, however, does not necessarily affect students' hard core of beliefs.
Qualitative investigation into students' use of divergence and curl in electromagnetism
NASA Astrophysics Data System (ADS)
Bollen, Laurens; van Kampen, Paul; Baily, Charles; De Cock, Mieke
2016-12-01
Many students struggle with the use of mathematics in physics courses. Although typically well trained in rote mathematical calculation, they often lack the ability to apply their acquired skills to physical contexts. Such student difficulties are particularly apparent in undergraduate electrodynamics, which relies heavily on the use of vector calculus. To gain insight into student reasoning when solving problems involving divergence and curl, we conducted eight semistructured individual student interviews. During these interviews, students discussed the divergence and curl of electromagnetic fields using graphical representations, mathematical calculations, and the differential form of Maxwell's equations. We observed that while many students attempt to clarify the problem by making a sketch of the electromagnetic field, they struggle to interpret graphical representations of vector fields in terms of divergence and curl. In addition, some students confuse the characteristics of field line diagrams and field vector plots. By interpreting our results within the conceptual blending framework, we show how a lack of conceptual understanding of the vector operators and difficulties with graphical representations can account for an improper understanding of Maxwell's equations in differential form. Consequently, specific learning materials based on a multiple representation approach are required to clarify Maxwell's equations.
ModeLang: a new approach for experts-friendly viral infections modeling.
Wasik, Szymon; Prejzendanc, Tomasz; Blazewicz, Jacek
2013-01-01
Computational modeling is an important element of systems biology. One of its important applications is modeling complex, dynamical, and biological systems, including viral infections. This type of modeling usually requires close cooperation between biologists and mathematicians. However, such cooperation often faces communication problems because biologists do not have sufficient knowledge to understand mathematical description of the models, and mathematicians do not have sufficient knowledge to define and verify these models. In many areas of systems biology, this problem has already been solved; however, in some of these areas there are still certain problematic aspects. The goal of the presented research was to facilitate this cooperation by designing seminatural formal language for describing viral infection models that will be easy to understand for biologists and easy to use by mathematicians and computer scientists. The ModeLang language was designed in cooperation with biologists and its computer implementation was prepared. Tests proved that it can be successfully used to describe commonly used viral infection models and then to simulate and verify them. As a result, it can make cooperation between biologists and mathematicians modeling viral infections much easier, speeding up computational verification of formulated hypotheses.
ModeLang: A New Approach for Experts-Friendly Viral Infections Modeling
Blazewicz, Jacek
2013-01-01
Computational modeling is an important element of systems biology. One of its important applications is modeling complex, dynamical, and biological systems, including viral infections. This type of modeling usually requires close cooperation between biologists and mathematicians. However, such cooperation often faces communication problems because biologists do not have sufficient knowledge to understand mathematical description of the models, and mathematicians do not have sufficient knowledge to define and verify these models. In many areas of systems biology, this problem has already been solved; however, in some of these areas there are still certain problematic aspects. The goal of the presented research was to facilitate this cooperation by designing seminatural formal language for describing viral infection models that will be easy to understand for biologists and easy to use by mathematicians and computer scientists. The ModeLang language was designed in cooperation with biologists and its computer implementation was prepared. Tests proved that it can be successfully used to describe commonly used viral infection models and then to simulate and verify them. As a result, it can make cooperation between biologists and mathematicians modeling viral infections much easier, speeding up computational verification of formulated hypotheses. PMID:24454531
Pathophysiology of wound healing and alterations in venous leg ulcers-review.
Raffetto, Joseph D
2016-03-01
Venous leg ulcer (VLU) is one of the most common lower extremity ulcerated wound, and is a significant healthcare problem with implications that affect social, economic, and the well-being of a patient. VLU can have debilitating related problems which require weekly medical care and may take months to years to heal. The pathophysiology of VLU is complex, and healing is delayed in many patients due to a persistent inflammatory condition. Patient genetic and environmental factors predispose individuals to chronic venous diseases including VLU. Changes in shear stress affecting the glycocalyx are likely initiating events, leading to activation of adhesion molecules on endothelial cells, and leukocyte activation with attachment and migration into vein wall, microcirculation, and in the interstitial space. Multiple chemokines, cytokines, growth factors, proteases and matrix metalloproteinases are produced. The pathology of VLU involves an imbalance of inflammation, inflammatory modulators, oxidative stress, and proteinase activity. Understanding the cellular and biochemical events that lead to the progression of VLU is critical. With further understanding of inflammatory pathways and potential mechanisms, certain biomarkers could be revealed and studied as both involvement in the pathophysiology of VLU but also as therapeutic targets for VLU healing. © The Author(s) 2016.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers
NASA Technical Reports Server (NTRS)
Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.
2004-01-01
For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne diseases, forecasts of harmful algal blooms as well as forest fires and wildfires, and the intercontinental transport of dust storms and pollution.
Women targeted and women negated. An aspect of the environmental movement in Bangladesh.
Mannan, M
1996-05-01
There are many ways to solve environmental problems. In this article the issue of energy consumption in Bangladesh and the rapid introduction of improved stove projects illustrates the importance of involving women in decision making that directly involves their lives. 82% of total energy consumption is based on traditional, renewable resources such as firewood, agricultural residues, tree residues, and dung. It is argued that resource depletion is related to population growth, the introduction of high yield seeds and related agricultural practices, and the lack of a sound basis for social and natural forestry. Improved stoves were introduced in order to reduce the depletion of resources. It was assumed that women would understand the value of preserving national natural resources and that energy resources for cooking were becoming scarce. The improved technology had the advantage of saving energy and saving women's time and effort in biomass and fuelwood collection. What was not considered in the decision was the design of the stove which was not adaptable to traditional cooking tools and pots and was more time consuming. The new stoves produced ash too quickly that needed to be removed before the combustion process was obstructed. The stove required straight straw or fuelwood, when available supplies were irregularly shaped. The ash residues could not be recycled, whereas potash could be used as fertilizer. Stoves required the use of a trained and sophisticated user. Stoves were expensive commodities. Women's time was obstructed because the stove needed tending and the usual chores could not be performed while food was cooking. The women in several projects rejected the stoves based on technological, cultural, and economic factors. It is argued that the environmental movement in Bangladesh conceptualized the environmental problem in economic terms but solved the problem technologically. The failure was in imposing new technology on women and in an inappropriate understanding of the situation.
LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S
2011-07-01
Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
Drawing Dynamic Geometry Figures Online with Natural Language for Junior High School Geometry
ERIC Educational Resources Information Center
Wong, Wing-Kwong; Yin, Sheng-Kai; Yang, Chang-Zhe
2012-01-01
This paper presents a tool for drawing dynamic geometric figures by understanding the texts of geometry problems. With the tool, teachers and students can construct dynamic geometric figures on a web page by inputting a geometry problem in natural language. First we need to build the knowledge base for understanding geometry problems. With the…
Developing Pre-Service Teachers Understanding of Fractions through Problem Posing
ERIC Educational Resources Information Center
Toluk-Ucar, Zulbiye
2009-01-01
This study investigated the effect of problem posing on the pre-service primary teachers' understanding of fraction concepts enrolled in two different versions of a methods course at a university in Turkey. In the experimental version, problem posing was used as a teaching strategy. At the beginning of the study, the pre-service teachers'…
ERIC Educational Resources Information Center
Yates, Jennifer L.
2011-01-01
The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…