Fuchs, Lynn S.; Zumeta, Rebecca O.; Schumacher, Robin Finelli; Powell, Sarah R.; Seethaler, Pamela M.; Hamlett, Carol L.; Fuchs, Douglas
2010-01-01
The purpose of this study was to assess the effects of schema-broadening instruction (SBI) on second graders’ word-problem-solving skills and their ability to represent the structure of word problems using algebraic equations. Teachers (n = 18) were randomly assigned to conventional word-problem instruction or SBI word-problem instruction, which taught students to represent the structural, defining features of word problems with overarching equations. Intervention lasted 16 weeks. We pretested and posttested 270 students on measures of word-problem skill; analyses that accounted for the nested structure of the data indicated superior word-problem learning for SBI students. Descriptive analyses of students’ word-problem work indicated that SBI helped students represent the structure of word problems with algebraic equations, suggesting that SBI promoted this aspect of students’ emerging algebraic reasoning. PMID:20539822
ERIC Educational Resources Information Center
van den Putte, Bas; Hoogstraten, Johan
1997-01-01
Problems found in the application of structural equation modeling to the theory of reasoned action are explored, and an alternative model specification is proposed that improves the fit of the data while leaving intact the structural part of the model being tested. Problems and the proposed alternative are illustrated. (SLD)
ERIC Educational Resources Information Center
Ngu, Bing Hiong; Yeung, Alexander Seeshing
2013-01-01
Text editing directs students' attention to the problem structure as they classify whether the texts of word problems contain sufficient, missing or irrelevant information for working out a solution. Equation worked examples emphasize the formation of a coherent problem structure to generate a solution. Its focus is on the construction of three…
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
NASA Astrophysics Data System (ADS)
Zalaletdinov, R. M.
1998-04-01
The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C., E-mail: waymire@math.oregonstate.edu
2015-07-15
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturallymore » arise as a result of this investigation.« less
Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations.
Dascaliuc, Radu; Michalowski, Nicholas; Thomann, Enrique; Waymire, Edward C
2015-07-01
The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
ERIC Educational Resources Information Center
Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.
2009-01-01
This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
Fitting ARMA Time Series by Structural Equation Models.
ERIC Educational Resources Information Center
van Buuren, Stef
1997-01-01
This paper outlines how the stationary ARMA (p,q) model (G. Box and G. Jenkins, 1976) can be specified as a structural equation model. Maximum likelihood estimates for the parameters in the ARMA model can be obtained by software for fitting structural equation models. The method is applied to three problem types. (SLD)
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
Parallel-vector solution of large-scale structural analysis problems on supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.
1989-01-01
A direct linear equation solution method based on the Choleski factorization procedure is presented which exploits both parallel and vector features of supercomputers. The new equation solver is described, and its performance is evaluated by solving structural analysis problems on three high-performance computers. The method has been implemented using Force, a generic parallel FORTRAN language.
Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1982-01-01
A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.
Implementing a Loosely Coupled Fluid Structure Interaction Finite Element Model in PHASTA
NASA Astrophysics Data System (ADS)
Pope, David
Fluid Structure Interaction problems are an important multi-physics phenomenon in the design of aerospace vehicles and other engineering applications. A variety of computational fluid dynamics solvers capable of resolving the fluid dynamics exist. PHASTA is one such computational fluid dynamics solver. Enhancing the capability of PHASTA to resolve Fluid-Structure Interaction first requires implementing a structural dynamics solver. The implementation also requires a correction of the mesh used to solve the fluid equations to account for the deformation of the structure. This results in mesh motion and causes the need for an Arbitrary Lagrangian-Eulerian modification to the fluid dynamics equations currently implemented in PHASTA. With the implementation of both structural dynamics physics, mesh correction, and the Arbitrary Lagrangian-Eulerian modification of the fluid dynamics equations, PHASTA is made capable of solving Fluid-Structure Interaction problems.
A note on the regularity of solutions of infinite dimensional Riccati equations
NASA Technical Reports Server (NTRS)
Burns, John A.; King, Belinda B.
1994-01-01
This note is concerned with the regularity of solutions of algebraic Riccati equations arising from infinite dimensional LQR and LQG control problems. We show that distributed parameter systems described by certain parabolic partial differential equations often have a special structure that smoothes solutions of the corresponding Riccati equation. This analysis is motivated by the need to find specific representations for Riccati operators that can be used in the development of computational schemes for problems where the input and output operators are not Hilbert-Schmidt. This situation occurs in many boundary control problems and in certain distributed control problems associated with optimal sensor/actuator placement.
A Riemann-Hilbert Approach for the Novikov Equation
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
Structural Equation Modeling of School Violence Data: Methodological Considerations
ERIC Educational Resources Information Center
Mayer, Matthew J.
2004-01-01
Methodological challenges associated with structural equation modeling (SEM) and structured means modeling (SMM) in research on school violence and related topics in the social and behavioral sciences are examined. Problems associated with multiyear implementations of large-scale surveys are discussed. Complex sample designs, part of any…
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Nestler, Steffen
2014-05-01
Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.
Diffraction of a plane wave on two-dimensional conductive structures and a surface wave
NASA Astrophysics Data System (ADS)
Davidovich, Mikhael V.
2018-04-01
We consider the structures type of two-dimensional electron gas in the form of a thin conductive, in particular, graphene films described by tensor conductivity, which are isolated or located on the dielectric layers. The dispersion equation for hybrid modes, as well as scattering parameters. We show that free wave (eigenwaves) problem follow from the problem of diffraction when linking the amplitude of the current of the linear equations are unsolvable, i.e., the determinant of this system is zero. As a particular case the dispersion equation follow from the conditions of matching (with zero reflection coefficient).
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
NASA Astrophysics Data System (ADS)
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
How to Obtain Accurate Equations-of-State by Eliminating the Effects of Deviatoric Stresses
NASA Astrophysics Data System (ADS)
Chesnut, Gary; Schiferl, David
2003-03-01
In the field of static high-pressure research, it is common to find disagreements in the data between individual experiments. For example, there are many disagreements about crystal structures and volume discontinuities at phase transitions. Of course, there are many causes that give rise to these problems. The intrinsic properties of some materials can be the source of the confusion. However, there is another source, which affects every static high-pressure experiment - deviatoric stress. This problem has been well defined in the last decade. In particular, A. K. Singh et al has derived the equations of the deviatoric stresses for all the crystallographic structures. However, it only takes a moment to realize the difficulty in solving these equations for all but the simplest structures. Fortunately, there is a way around the problem of deviatoric stress - Magic Angle X-ray Diffraction.
Finite element solution of torsion and other 2-D Poisson equations
NASA Technical Reports Server (NTRS)
Everstine, G. C.
1982-01-01
The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.
Special discontinuities in nonlinearly elastic media
NASA Astrophysics Data System (ADS)
Chugainova, A. P.
2017-06-01
Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
Brownian microhydrodynamics of active filaments.
Laskar, Abhrajit; Adhikari, R
2015-12-21
Slender bodies capable of spontaneous motion in the absence of external actuation in an otherwise quiescent fluid are common in biological, physical and technological contexts. The interplay between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a challenging fluid-structure interaction problem. Here, we model this problem by approximating the slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the fluid-structure interface. We derive equations of motion for such an active filament by enforcing momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the solution of an integral equation. A simplified form of the equations of motion, which allows for efficient numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation to the integral equation. We use this form of equation of motion to study dynamical steady states in free and hinged minimally active filaments. Our model provides the foundation to study collective phenomena in momentum-conserving, Brownian, active filament suspensions.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-01-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-08-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem.
Jansson, Johan; Degirmenci, Niyazi Cem; Hoffman, Johan
2017-09-01
In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion-type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study. Copyright © 2016 John Wiley & Sons, Ltd.
Multilevel Analysis of Structural Equation Models via the EM Algorithm.
ERIC Educational Resources Information Center
Jo, See-Heyon
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
Analysis, preliminary design and simulation systems for control-structure interaction problems
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, Kenneth F.
1991-01-01
Software aspects of control-structure interaction (CSI) analysis are discussed. The following subject areas are covered: (1) implementation of a partitioned algorithm for simulation of large CSI problems; (2) second-order discrete Kalman filtering equations for CSI simulations; and (3) parallel computations and control of adaptive structures.
Finite element solution of optimal control problems with state-control inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1992-01-01
It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.
Toward the automated analysis of plasma physics problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynick, H.E.
1989-04-01
A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications inmore » form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs.« less
Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations
ERIC Educational Resources Information Center
Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln
2007-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…
A Note on Structural Equation Modeling Estimates of Reliability
ERIC Educational Resources Information Center
Yang, Yanyun; Green, Samuel B.
2010-01-01
Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…
ERIC Educational Resources Information Center
Silberg, Judy L.; And Others
1994-01-01
Applied structural equation modeling to twin data to assess impact of genetic and environmental factors on children's behavioral and emotional functioning. Applied models to maternal ratings of behavior of 515 monozygotic and 749 dizygotic twin pairs. Importance of genetic, shared, and specific environmental factors for explaining variation was…
Solutions for Missing Data in Structural Equation Modeling
ERIC Educational Resources Information Center
Carter, Rufus Lynn
2006-01-01
Many times in both educational and social science research it is impossible to collect data that is complete. When administering a survey, for example, people may answer some questions and not others. This missing data causes a problem for researchers using structural equation modeling (SEM) techniques for data analyses. Because SEM and…
Fitting Meta-Analytic Structural Equation Models with Complex Datasets
ERIC Educational Resources Information Center
Wilson, Sandra Jo; Polanin, Joshua R.; Lipsey, Mark W.
2016-01-01
A modification of the first stage of the standard procedure for two-stage meta-analytic structural equation modeling for use with large complex datasets is presented. This modification addresses two common problems that arise in such meta-analyses: (a) primary studies that provide multiple measures of the same construct and (b) the correlation…
NASA Technical Reports Server (NTRS)
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1982-01-01
This paper looks at the structure of the solution of a matrix Riccati differential equation under a predefined group of transformations. The group of transformations used is an expanded form of the feedback group. It is shown that this group of transformations is a subgroup of the symplectic group. The orbits of the Riccati differential equation under the action of this group are studied and it is seen how these techniques apply to a decentralized optimal control problem.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
The solution of linear systems of equations with a structural analysis code on the NAS CRAY-2
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Overman, Andrea L.
1988-01-01
Two methods for solving linear systems of equations on the NAS Cray-2 are described. One is a direct method; the other is an iterative method. Both methods exploit the architecture of the Cray-2, particularly the vectorization, and are aimed at structural analysis applications. To demonstrate and evaluate the methods, they were installed in a finite element structural analysis code denoted the Computational Structural Mechanics (CSM) Testbed. A description of the techniques used to integrate the two solvers into the Testbed is given. Storage schemes, memory requirements, operation counts, and reformatting procedures are discussed. Finally, results from the new methods are compared with results from the initial Testbed sparse Choleski equation solver for three structural analysis problems. The new direct solvers described achieve the highest computational rates of the methods compared. The new iterative methods are not able to achieve as high computation rates as the vectorized direct solvers but are best for well conditioned problems which require fewer iterations to converge to the solution.
Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation
NASA Astrophysics Data System (ADS)
Feng, Bao-Feng; Kawahara, Takuji
2000-05-01
Initial value problems as well as stationary solitary and periodic waves are investigated for dissipative Benjamin-Ono (DBO) equation. Multi-hump stationary waves and their structures are identified numerically and the stability regions of stationary periodic waves are also examined numerically. These results elucidate a close relation between irregular behaviours in the initial value problem and the multiplicity of stationary waves.
Adjoint shape optimization for fluid-structure interaction of ducted flows
NASA Astrophysics Data System (ADS)
Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.
2018-03-01
Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.
Constructing a neutron star from the lattice in G2-QCD
NASA Astrophysics Data System (ADS)
Hajizadeh, Ouraman; Maas, Axel
2017-10-01
The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group G_2 , which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach.
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
A method of boundary equations for unsteady hyperbolic problems in 3D
NASA Astrophysics Data System (ADS)
Petropavlovsky, S.; Tsynkov, S.; Turkel, E.
2018-07-01
We consider interior and exterior initial boundary value problems for the three-dimensional wave (d'Alembert) equation. First, we reduce a given problem to an equivalent operator equation with respect to unknown sources defined only at the boundary of the original domain. In doing so, the Huygens' principle enables us to obtain the operator equation in a form that involves only finite and non-increasing pre-history of the solution in time. Next, we discretize the resulting boundary equation and solve it efficiently by the method of difference potentials (MDP). The overall numerical algorithm handles boundaries of general shape using regular structured grids with no deterioration of accuracy. For long simulation times it offers sub-linear complexity with respect to the grid dimension, i.e., is asymptotically cheaper than the cost of a typical explicit scheme. In addition, our algorithm allows one to share the computational cost between multiple similar problems. On multi-processor (multi-core) platforms, it benefits from what can be considered an effective parallelization in time.
Prescribing the mixed scalar curvature of a foliated Riemann-Cartan manifold
NASA Astrophysics Data System (ADS)
Rovenski, Vladimir Y.; Zelenko, Leonid
2018-03-01
The mixed scalar curvature is the simplest curvature invariant of a foliated Riemannian manifold. We explore the problem of prescribing the leafwise constant mixed scalar curvature of a foliated Riemann-Cartan manifold by conformal change of the structure in tangent and normal to the leaves directions. Under certain geometrical assumptions and in two special cases: along a compact leaf and for a closed fibered manifold, we reduce the problem to solution of a nonlinear leafwise elliptic equation for the conformal factor. We are looking for its solutions that are stable stationary solutions of the associated parabolic equation. Our main tool is using of majorizing and minorizing nonlinear heat equations with constant coefficients and application of comparison theorems for solutions of Cauchy's problem for parabolic equations.
Analytical study of sandwich structures using Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.
2017-01-01
This paper presents an analytical study of sandwich structures. In this study, the Euler-Bernoulli beam equation is solved analytically for a four-point bending problem. Appropriate initial and boundary conditions are specified to enclose the problem. In addition, the balance coefficient is calculated and the Rule of Mixtures is applied. The focus of this study is to determine the effective material properties and geometric features such as the moment of inertia of a sandwich beam. The effective parameters help in the development of a generic analytical correlation for complex sandwich structures from the perspective of four-point bending calculations. The main outcomes of these analytical calculations are the lateral displacements and longitudinal stresses for each particular material in the sandwich structure.
NASA Astrophysics Data System (ADS)
Dai, Guowei; Romero, Alfonso; Torres, Pedro J.
2018-06-01
We study the existence of spacelike graphs for the prescribed mean curvature equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. By using a conformal change of variable, this problem is translated into an equivalent problem in the Lorentz-Minkowski spacetime. Then, by using Rabinowitz's global bifurcation method, we obtain the existence and multiplicity of positive solutions for this equation with 0-Dirichlet boundary condition on a ball. Moreover, the global structure of the positive solution set is studied.
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1974-01-01
The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.
Comparing direct and iterative equation solvers in a large structural analysis software system
NASA Technical Reports Server (NTRS)
Poole, E. L.
1991-01-01
Two direct Choleski equation solvers and two iterative preconditioned conjugate gradient (PCG) equation solvers used in a large structural analysis software system are described. The two direct solvers are implementations of the Choleski method for variable-band matrix storage and sparse matrix storage. The two iterative PCG solvers include the Jacobi conjugate gradient method and an incomplete Choleski conjugate gradient method. The performance of the direct and iterative solvers is compared by solving several representative structural analysis problems. Some key factors affecting the performance of the iterative solvers relative to the direct solvers are identified.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.
1990-01-01
Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.
ERIC Educational Resources Information Center
Lee, Sik-Yum; Xia, Ye-Mao
2006-01-01
By means of more than a dozen user friendly packages, structural equation models (SEMs) are widely used in behavioral, education, social, and psychological research. As the underlying theory and methods in these packages are vulnerable to outliers and distributions with longer-than-normal tails, a fundamental problem in the field is the…
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
Structure formation in nonlocal MOND
NASA Astrophysics Data System (ADS)
Tan, L.; Woodard, R. P.
2018-05-01
We consider structure formation in a nonlocal, metric-based realization of Milgrom's MOdified Newtonian Dynamics (MOND). We derive the general equations for linearized scalar perturbations about the ΛCDM expansion history. These equations are considerably simplified for sub-horizon modes, and it becomes obvious (in this model) that the MOND enhancement is not sufficient to allow ordinary matter to drive structure formation. We discuss ways in which the model might be changed to correct the problem.
Substructure method in high-speed monorail dynamic problems
NASA Astrophysics Data System (ADS)
Ivanchenko, I. I.
2008-12-01
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for combined schemes modeling a strained elastic compound moving structure and a monorail elevated track. The problems of development of methods for dynamic analysis of monorails are very topical, especially because of increasing speeds of the rolling stock motion. These structures are studied in [16-18]. In the present paper, the above problem is solved by using the method for the moving load analysis and a step procedure of integration with respect to time, which were proposed in [9, 19], respectively. Further, these components are used to enlarge the possibilities of the substructure method in problems of dynamics. In the approach proposed for moving load analysis of structures, for a substructure (having the shape of a boundary element or a superelement) we choose an object moving at a constant speed (a monorail rolling stock); in this case, we use rod boundary elements of large length, which are gathered in a system modeling these objects. In particular, sets of such elements form a model of a monorail rolling stock, namely, carriage hulls, wheeled carts, elements of the wheel spring suspension, models of continuous beams of monorail ways and piers with foundations admitting emergency subsidence and unilateral links. These specialized rigid finite elements with linear and nonlinear links, included into the set of earlier proposed finite elements [14, 19], permit studying unsteady vibrations in the "monorail train-elevated track" (MTET) system taking into account various irregularities on the beam-rail, the pier emergency subsidence, and their elastic support by the basement. In this case, a high degree of the structure spatial digitization is obtained by using rods with distributed parameters in the analysis. The displacements are approximated by linear functions and trigonometric Fourier series, which, as was already noted, permits increasing the number of degrees of freedom of the system under study simultaneously preserving the order of the resolving system of equations. This approach permits studying the stress-strain state in the MTET system and determining accelerations at the desired points of the rolling stock. The proposed numerical procedure permits uniquely solving linear and nonlinear differential equations describing the operation of the model, which replaces the system by a monorail rolling stock consisting of several specialized mutually connected cars and a system of continuous beams on elastic inertial supports. This approach (based on the use of a moving substructure, which is also modeled by a system of boundary rod elements) permits maximally reducing the number of unknowns in the resolving system of equations at each step of its solution [11]. The authors of the preceding investigations of this problem, when studying the simultaneous vibrations of bridges and moving loads, considered only the case in which the rolling stock was represented by sufficiently complicated systems of rigid bodies connected by viscoelastic links [3-18] and the rolling stock motion was described by systems of ordinary differential equations. A specific characteristic of the proposed method is that it is convenient to derive the equations of motion of both the rolling stock and the bridge structure. The method [9, 14] permits obtaining the equations of interaction between the structures as two separate finite-element structures. Hence the researcher need not traditionally write out the system of equations of motion, for example, for the rolling stock (of cars) with finitely many degrees of freedom [3-18].We note several papers where simultaneous vibrations of an elastic moving load and an elastic carrying structure are considered in a rather narrow region and have a specific character. For example, the motion of an elastic rod along an elastic infinite rod on an elastic foundation is studied in [20], and the body of a car moving along a beam is considered as a rod with ten concentrated masses in [21].
Synchronization with propagation - The functional differential equations
NASA Astrophysics Data System (ADS)
Rǎsvan, Vladimir
2016-06-01
The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.
The Cauchy problem for space-time monopole equations in Sobolev spaces
NASA Astrophysics Data System (ADS)
Huh, Hyungjin; Yim, Jihyun
2018-04-01
We consider the initial value problem of space-time monopole equations in one space dimension with initial data in Sobolev space Hs. Observing null structures of the system, we prove local well-posedness in almost critical space. Unconditional uniqueness and global existence are proved for s ≥ 0. Moreover, we show that the H1 Sobolev norm grows at a rate of at most c exp(ct2).
NASA Astrophysics Data System (ADS)
Yang, Xiao; Du, Dianlou
2010-08-01
The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
Parallel block schemes for large scale least squares computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, G.H.; Plemmons, R.J.; Sameh, A.
1986-04-01
Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
ERIC Educational Resources Information Center
Kirkhaug, Bente; Drugli, May Britt; Klockner, Christian A.; Morch, Willy-Tore
2013-01-01
The present study examined the factor structure of the Teacher Involvement Questionnaire (Involve-T) by means of exploratory factor analysis and examined the association between children's socio-emotional and behavioural problems and teacher-reported parental involvement in school, using structural equation modelling. The study was conducted with…
NASA Astrophysics Data System (ADS)
Mönkölä, Sanna
2013-06-01
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.
Systems of fuzzy equations in structural mechanics
NASA Astrophysics Data System (ADS)
Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej
2008-08-01
Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series,
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
On a variational approach to some parameter estimation problems
NASA Technical Reports Server (NTRS)
Banks, H. T.
1985-01-01
Examples (1-D seismic, large flexible structures, bioturbation, nonlinear population dispersal) in which a variation setting can provide a convenient framework for convergence and stability arguments in parameter estimation problems are considered. Some of these examples are 1-D seismic, large flexible structures, bioturbation, and nonlinear population dispersal. Arguments for convergence and stability via a variational approach of least squares formulations of parameter estimation problems for partial differential equations is one aspect of the problem considered.
Regularization of the Perturbed Spatial Restricted Three-Body Problem by L-Transformations
NASA Astrophysics Data System (ADS)
Poleshchikov, S. M.
2018-03-01
Equations of motion for the perturbed circular restricted three-body problem have been regularized in canonical variables in a moving coordinate system. Two different L-matrices of the fourth order are used in the regularization. Conditions for generalized symplecticity of the constructed transform have been checked. In the unperturbed case, the regular equations have a polynomial structure. The regular equations have been numerically integrated using the Runge-Kutta-Fehlberg method. The results of numerical experiments are given for the Earth-Moon system parameters taking into account the perturbation of the Sun for different L-matrices.
Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.
2018-06-01
On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Baecklund transformation for the Ernst equation of general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, B.K.
A Baecklund transformation for the Ernst equation arising in general relativity in connection with several physical problems is derived, using the pseudopotential method of Wahlquist and Estabrook. A prolongation structure is also constructed, using a method of writing the equations in terms of differential forms, and an equation in the spirit of Lax is constructed, somewhat different from that given by Maison. Possible uses of the Baecklund transformation to generate new solutions are mentioned.
Scattering and bound states of spinless particles in a mixed vector-scalar smooth step potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, M.G.; Castro, A.S. de
2009-11-15
Scattering and bound states for a spinless particle in the background of a kink-like smooth step potential, added with a scalar uniform background, are considered with a general mixing of vector and scalar Lorentz structures. The problem is mapped into the Schroedinger-like equation with an effective Rosen-Morse potential. It is shown that the scalar uniform background present subtle and trick effects for the scattering states and reveals itself a high-handed element for formation of bound states. In that process, it is shown that the problem of solving a differential equation for the eigenenergies is transmuted into the simpler and moremore » efficient problem of solving an irrational algebraic equation.« less
An Inverse Problem for a Class of Conditional Probability Measure-Dependent Evolution Equations
Mirzaev, Inom; Byrne, Erin C.; Bortz, David M.
2016-01-01
We investigate the inverse problem of identifying a conditional probability measure in measure-dependent evolution equations arising in size-structured population modeling. We formulate the inverse problem as a least squares problem for the probability measure estimation. Using the Prohorov metric framework, we prove existence and consistency of the least squares estimates and outline a discretization scheme for approximating a conditional probability measure. For this scheme, we prove general method stability. The work is motivated by Partial Differential Equation (PDE) models of flocculation for which the shape of the post-fragmentation conditional probability measure greatly impacts the solution dynamics. To illustrate our methodology, we apply the theory to a particular PDE model that arises in the study of population dynamics for flocculating bacterial aggregates in suspension, and provide numerical evidence for the utility of the approach. PMID:28316360
NASA Astrophysics Data System (ADS)
Nishiguchi, Junya
2017-09-01
We introduce the retarded functional differential equations (RFDEs) with general delay structure to treat various delay differential equations (DDEs) in a unified way and to clarify the delay structure in those dynamics. We are interested in the question as to which space of histories is suitable for the dynamics of each DDE, and investigate the well-posedness of the initial value problems (IVPs) of the RFDEs. A main theorem is that the IVP is well-posed for any ;admissible; history functional if and only if the semigroup determined by the trivial RFDE x ˙ = 0 is continuous. We clarify the meaning of the Hale-Kato axiom (Hale & Kato [12]) by applying this result to RFDEs with infinite delay. We also apply the result to DDEs with unbounded time- and state-dependent delays.
NASA Astrophysics Data System (ADS)
Hussain, Nur Farahin Mee; Zahid, Zalina
2014-12-01
Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.
Multilevel structural equation models for assessing moderation within and across levels of analysis.
Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J
2016-06-01
Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A Multivariate Model of Physics Problem Solving
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Farley, John
2013-01-01
A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…
Zhang, Yong-Tao; Shi, Jing; Shu, Chi-Wang; Zhou, Ye
2003-10-01
A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the resolution power of high-order weighted essentially nonoscillatory (WENO) schemes for solving one- and two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale structures, the details of the small structures are determined by the physical viscosity (therefore, the Reynolds number) in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-dimensional and two-dimensional test problems.
Fluid-structure interaction in Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Kempf, Martin Horst Willi
1998-10-01
The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
An investigation of dynamic-analysis methods for variable-geometry structures
NASA Technical Reports Server (NTRS)
Austin, F.
1980-01-01
Selected space structure configurations were reviewed in order to define dynamic analysis problems associated with variable geometry. The dynamics of a beam being constructed from a flexible base and the relocation of the completed beam by rotating the remote manipulator system about the shoulder joint were selected. Equations of motion were formulated in physical coordinates for both of these problems, and FORTRAN programs were developed to generate solutions by numerically integrating the equations. These solutions served as a standard of comparison to gauge the accuracy of approximate solution techniques that were developed and studied. Good control was achieved in both problems. Unstable control system coupling with the system flexibility did not occur. An approximate method was developed for each problem to enable the analyst to investigate variable geometry effects during a short time span using standard fixed geometry programs such as NASTRAN. The average angle and average length techniques are discussed.
Pose-free structure from motion using depth from motion constraints.
Zhang, Ji; Boutin, Mireille; Aliaga, Daniel G
2011-10-01
Structure from motion (SFM) is the problem of recovering the geometry of a scene from a stream of images taken from unknown viewpoints. One popular approach to estimate the geometry of a scene is to track scene features on several images and reconstruct their position in 3-D. During this process, the unknown camera pose must also be recovered. Unfortunately, recovering the pose can be an ill-conditioned problem which, in turn, can make the SFM problem difficult to solve accurately. We propose an alternative formulation of the SFM problem with fixed internal camera parameters known a priori. In this formulation, obtained by algebraic variable elimination, the external camera pose parameters do not appear. As a result, the problem is better conditioned in addition to involving much fewer variables. Variable elimination is done in three steps. First, we take the standard SFM equations in projective coordinates and eliminate the camera orientations from the equations. We then further eliminate the camera center positions. Finally, we also eliminate all 3-D point positions coordinates, except for their depths with respect to the camera center, thus obtaining a set of simple polynomial equations of degree two and three. We show that, when there are merely a few points and pictures, these "depth-only equations" can be solved in a global fashion using homotopy methods. We also show that, in general, these same equations can be used to formulate a pose-free cost function to refine SFM solutions in a way that is more accurate than by minimizing the total reprojection error, as done when using the bundle adjustment method. The generalization of our approach to the case of varying internal camera parameters is briefly discussed. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
ERIC Educational Resources Information Center
Fischer, Judith L.; Forthun, Larry F.; Pidcock, Boyd W.; Dowd, Duane A.
2007-01-01
This study tested associations between problems in parent-youth relationships and problems with alcohol use among college students (N = 1592) using structural equation modeling. Hypotheses were that relationships between both substance-specific parenting factors (parental drinking) and non-substance-specific parenting factors (parental intrusive…
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
NASA Astrophysics Data System (ADS)
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
ERIC Educational Resources Information Center
Burstein, Marcy; Stanger, Catherine; Dumenci, Levent
2012-01-01
The present study: (1) examined relations between parent psychopathology and adolescent internalizing problems, externalizing problems, and substance use in substance-abusing families; and (2) tested family functioning problems as mediators of these relations. Structural equation modeling was used to estimate the independent effects of parent…
Survey of the status of finite element methods for partial differential equations
NASA Technical Reports Server (NTRS)
Temam, Roger
1986-01-01
The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.
Korayem, M H; Nekoo, S R
2015-07-01
This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Examining End-Of-Chapter Problems Across Editions of an Introductory Calculus-Based Physics Textbook
NASA Astrophysics Data System (ADS)
Xiao, Bin
End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To investigate whether EOC problems have connections between chapters, I solved all problems of the E&M; chapters of the most recent edition of a popular introductory level calculus-based textbook and coded the equations used to solve each problem. These results were compared to the first edition of the same text. Also, several relevant problem features were coded for those problems and results were compared for sample chapters across all editions. My findings include two parts. The result of equation usage shows that problems in the E&M; chapters do use equations from both other E&M; chapters and non-E&M; chapters. This out-of-chapter usage increased from the first edition to the last edition. Information about the knowledge structure of E&M; chapters was also revealed. The results of the problem feature study show that most EOC problems have common features but there was an increase of diversity in some of the problem features across editions.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.
Fuchs, Lynn S.; Compton, Donald L.; Fuchs, Douglas; Hollenbeck, Kurstin N.; Craddock, Caitlin F.; Hamlett, Carol L.
2008-01-01
Dynamic assessment (DA) involves helping students learn a task and indexing responsiveness to that instruction as a measure of learning potential. The purpose of this study was to explore the utility of a DA of algebraic learning in predicting 3rd graders’ development of mathematics problem solving. In the fall, 122 3rd-grade students were assessed on language, nonverbal reasoning, attentive behavior, calculations, word-problem skill, and DA. On the basis of random assignment, students received 16 weeks of validated instruction on word problems or received 16 weeks of conventional instruction on word problems. Then, students were assessed on word-problem measures proximal and distal to instruction. Structural equation measurement models showed that DA measured a distinct dimension of pretreatment ability and that proximal and distal word-problem measures were needed to account for outcome. Structural equation modeling showed that instruction (conventional vs. validated) was sufficient to account for math word-problem outcome proximal to instruction; by contrast, language, pretreatment math skill, and DA were needed to forecast learning on word-problem outcomes more distal to instruction. Findings are discussed in terms of responsiveness-to-intervention models for preventing and identifying learning disabilities. PMID:19884957
Stochastic differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobczyk, K.
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less
Family Structure and Mediators of Adolescent Drug Use
ERIC Educational Resources Information Center
Broman, Clifford L.; Li, Xin; Reckase, Mark
2008-01-01
This study investigates how family structure is associated with adolescent drug use and how parenting, peer use, religiosity, and neighborhood problems may mediate the relationship. The authors use structural equation modeling to examine the relationship between family structure and drug use across race, and examine potential mediators. Using data…
Computational structures for robotic computations
NASA Technical Reports Server (NTRS)
Lee, C. S. G.; Chang, P. R.
1987-01-01
The computational problem of inverse kinematics and inverse dynamics of robot manipulators by taking advantage of parallelism and pipelining architectures is discussed. For the computation of inverse kinematic position solution, a maximum pipelined CORDIC architecture has been designed based on a functional decomposition of the closed-form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the recurrence problem of the Newton-Euler equations of motion to achieve the time lower bound of O(log sub 2 n) has also been developed.
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.
On the structure of the master equation for a two-level system coupled to a thermal bath
NASA Astrophysics Data System (ADS)
de Vega, Inés
2015-04-01
We derive a master equation from the exact stochastic Liouville-von-Neumann (SLN) equation (Stockburger and Grabert 2002 Phys. Rev. Lett. 88 170407). The latter depends on two correlated noises and describes exactly the dynamics of an oscillator (which can be either harmonic or present an anharmonicity) coupled to an environment at thermal equilibrium. The newly derived master equation is obtained by performing analytically the average over different noise trajectories. It is found to have a complex hierarchical structure that might be helpful to explain the convergence problems occurring when performing numerically the stochastic average of trajectories given by the SLN equation (Koch et al 2008 Phys. Rev. Lett. 100 230402, Koch 2010 PhD thesis Fakultät Mathematik und Naturwissenschaften der Technischen Universitat Dresden).
Solution of matrix equations using sparse techniques
NASA Technical Reports Server (NTRS)
Baddourah, Majdi
1994-01-01
The solution of large systems of matrix equations is key to the solution of a large number of scientific and engineering problems. This talk describes the sparse matrix solver developed at Langley which can routinely solve in excess of 263,000 equations in 40 seconds on one Cray C-90 processor. It appears that for large scale structural analysis applications, sparse matrix methods have a significant performance advantage over other methods.
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Kuo, Fan-Ray
2015-01-01
Web-based problem-solving, a compound ability of critical thinking, creative thinking, reasoning thinking and information-searching abilities, has been recognised as an important competence for elementary school students. Some researchers have reported the possible correlations between problem-solving competence and information searching ability;…
When Mothers Have Serious Mental Health Problems: Parenting as a Proximal Mediator
ERIC Educational Resources Information Center
Oyserman, D.; Bybee, D.; Mowbray, C.; Hart-Johnson, T.
2005-01-01
Maternal mental health (MMH) problems are associated with lack of confidence in one's parenting, overly lax or too harsh discipline, and child academic underperformance. We asked if parenting mediates the effect of MMH problems on academic outcomes even among mothers with serious mental illness (n=164). Structural equation analyses show a…
Marital Problems, Maternal Gatekeeping Attitudes, and Father-Child Relationships in Adolescence
ERIC Educational Resources Information Center
Stevenson, Matthew M.; Fabricius, William V.; Cookston, Jeffrey T.; Parke, Ross D.; Coltrane, Scott; Braver, Sanford L.; Saenz, Delia S.
2014-01-01
We evaluated maternal gatekeeping attitudes as a mediator of the relation between marital problems and father-child relationships in 3 waves when children were in Grades 7-10. We assessed each parent's contribution to the marital problems experienced by the couple. Findings from mediational and cross-lagged structural equation models revealed that…
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
Chao, Lo-Hsin; Tsai, Meng-Che; Liang, Ya-Lun; Strong, Carol; Lin, Chung-Ying
2018-01-01
Childhood adversity (CA) is associated with problem behaviors in adolescence, but the mediators, that is, those factors that help build resilience and prevent some children who experience CA from engaging in problem behaviors, await more exploration, including social integration. The aim of this study was to identify the association between CA and adolescent problem behaviors, and to further examine the mediating role of social integration distinctly as psychological and structural integration. Data used were from the Taiwan Education Panel Survey, a core panel of 4,261 students (age 13) surveyed in 2001 and followed for three more waves until age 18. For psychological integration, an average score was calculated to represent adolescents' feelings about their school. Structural integration was constructed using several items about adolescents' school and extracurricular activities. We used structural equation modeling with the diagonally weighted least squares method to examine the effect of CA on the primary outcome: adolescent problem behaviors via social integration. The hypothesized structural equation model specifying the path from CA to adolescent problem behavior had good fit. Respondents with one CA were indirectly linked to problem behaviors via psychological but not structural integration (e.g. the level of participation in school and non-school activities). On mediation analysis, psychological integration significantly mediated the paths from one CA to all six problem behaviors (all P < 0.05). The presence of only one CA was indirectly associated with problem behavior via psychological integration; two or more CA were not associated with significant paths to problem behaviors. The contribution of social integration is crucial to an adolescent's development from CA to problem behaviors. To form supportive social relationships to achieve better health, we suggest that those adolescents who have been exposed to CA should be helped to join more teams and take part in more activities, thereby increasing their opportunities for social interaction, and improving their communication skills. © 2017 Japan Pediatric Society.
Parallel aeroelastic computations for wing and wing-body configurations
NASA Technical Reports Server (NTRS)
Byun, Chansup
1994-01-01
The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, R.A.; Lowery, P.S.; Lessor, D.L.
1987-09-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less
An Edge-Based Method for the Incompressible Navier-Stokes Equations on Polygonal Meshes
NASA Astrophysics Data System (ADS)
Wright, Jeffrey A.; Smith, Richard W.
2001-05-01
A pressure-based method is presented for discretizing the unsteady incompressible Navier-Stokes equations using hybrid unstructured meshes. The edge-based data structure and assembly procedure adopted lead naturally to a strictly conservative discretization, which is valid for meshes composed of n-sided polygons. Particular attention is given to the construction of a pressure-velocity coupling procedure which is supported by edge data, resulting in a relatively simple numerical method that is consistent with the boundary and initial conditions required by the incompressible Navier-Stokes equations. Edge formulas are presented for assembling the momentum equations, which are based on an upwind-biased linear reconstruction of the velocity field. Similar formulas are presented for assembling the pressure equation. The method is demonstrated to be second-order accurate in space and time for two Navier-Stokes problems admitting an exact solution. Results for several other well-known problems are also presented, including lid-driven cavity flow, impulsively started cylinder flow, and unsteady vortex shedding from a circular cylinder. Although the method is by construction minimalist, it is shown to be accurate and robust for the problems considered.
CFD-ACE+: a CAD system for simulation and modeling of MEMS
NASA Astrophysics Data System (ADS)
Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha
1999-03-01
Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.
Multiscale solvers and systematic upscaling in computational physics
NASA Astrophysics Data System (ADS)
Brandt, A.
2005-07-01
Multiscale algorithms can overcome the scale-born bottlenecks that plague most computations in physics. These algorithms employ separate processing at each scale of the physical space, combined with interscale iterative interactions, in ways which use finer scales very sparingly. Having been developed first and well known as multigrid solvers for partial differential equations, highly efficient multiscale techniques have more recently been developed for many other types of computational tasks, including: inverse PDE problems; highly indefinite (e.g., standing wave) equations; Dirac equations in disordered gauge fields; fast computation and updating of large determinants (as needed in QCD); fast integral transforms; integral equations; astrophysics; molecular dynamics of macromolecules and fluids; many-atom electronic structures; global and discrete-state optimization; practical graph problems; image segmentation and recognition; tomography (medical imaging); fast Monte-Carlo sampling in statistical physics; and general, systematic methods of upscaling (accurate numerical derivation of large-scale equations from microscopic laws).
Effects of Structural Flexibility on Aircraft-Engine Mounts
NASA Technical Reports Server (NTRS)
Phillips, W. H.
1986-01-01
Analysis extends technique for design of widely used type of vibration-isolating mounts for aircraft engines, in which rubber mounting pads located in plane behind center of gravity of enginepropeller combination. New analysis treats problem in statics. Results of simple approach useful in providing equations for design of vibrationisolating mounts. Equations applicable in usual situation in which engine-mount structure itself relatively light and placed between large mass of engine and other heavy components of airplane.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Determination of the temperature field of shell structures
NASA Astrophysics Data System (ADS)
Rodionov, N. G.
1986-10-01
A stationary heat conduction problem is formulated for the case of shell structures, such as those found in gas-turbine and jet engines. A two-dimensional elliptic differential equation of stationary heat conduction is obtained which allows, in an approximate manner, for temperature changes along a third variable, i.e., the shell thickness. The two-dimensional problem is reduced to a series of one-dimensional problems which are then solved using efficient difference schemes. The approach proposed here is illustrated by a specific example.
An analytical method for the inverse Cauchy problem of Lame equation in a rectangle
NASA Astrophysics Data System (ADS)
Grigor’ev, Yu
2018-04-01
In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.
Evaluation of In-Structure Shock Prediction Techniques for Buried Structures
1991-10-01
process of modeling this problem necessitated the inclus on of structure- 16 media interaction ( SMk ) for the development of loeds for the structural...shears, moments, and strains are also output. 5.2.1 Free-Field Load Generation The equations used in ISSV3 to characterize the free-field environment are
2015-12-02
simplification of the equations but at the expense of introducing modeling errors. We have shown that the Wick solutions have accuracy comparable to...the system of equations for the coefficients of formal power series solutions . Moreover, the structure of this propagator is seemingly universal, i.e...the problem of computing the numerical solution to kinetic partial differential equa- tions involving many phase variables. These types of equations
More than just "plug-and-chug": Exploring how physics students make sense with equations
NASA Astrophysics Data System (ADS)
Kuo, Eric
Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1989-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
An analysis of the vertical structure equation for arbitrary thermal profiles
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1987-01-01
The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.
Zhang, Liying; Li, Xiaoming; Wang, Bo; Shen, Zhiyong; Zhou, Yuejiao; Xu, Jinping; Tang, Zhenzhu; Stanton, Bonita
2017-07-01
Intimate partner violence is prevalent among female sex workers (FSWs) in China, and it is significantly associated with mental health problems among FSWs. However, limited studies have explored the mechanisms/process by which violence affects mental health. The purpose of this study was to explore the relationships among partner violence, internalized stigma, and mental health problems among FSWs. Data were collected using a self-administered cross-sectional survey administered to 1,022 FSWs in the Guangxi Zhuang Autonomous Region (Guangxi), China during 2008-2009. We used structural equation modeling to test the hypothesized relationships. Results indicated that violence perpetrated by either stable sexual partners or clients was directly and positively associated with mental health problems. Violence also had an indirect relation to mental health problems through stigma. Results highlight the need for interventions on counseling and care for FSWs who have experienced violence and for interventions to increase FSWs' coping skills and empowerment strategies.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain
We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.
A Simultaneous Equation Demand Model for Block Rates
NASA Astrophysics Data System (ADS)
Agthe, Donald E.; Billings, R. Bruce; Dobra, John L.; Raffiee, Kambiz
1986-01-01
This paper examines the problem of simultaneous-equations bias in estimation of the water demand function under an increasing block rate structure. The Hausman specification test is used to detect the presence of simultaneous-equations bias arising from correlation of the price measures with the regression error term in the results of a previously published study of water demand in Tucson, Arizona. An alternative simultaneous equation model is proposed for estimating the elasticity of demand in the presence of block rate pricing structures and availability of service charges. This model is used to reestimate the price and rate premium elasticities of demand in Tucson, Arizona for both the usual long-run static model and for a simple short-run demand model. The results from these simultaneous equation models are consistent with a priori expectations and are unbiased.
ERIC Educational Resources Information Center
Sarver, Dustin E.; Rapport, Mark D.; Kofler, Michael J.; Scanlan, Sean W.; Raiker, Joseph S.; Altro, Thomas A.; Bolden, Jennifer
2012-01-01
The current study examined individual differences in children's phonological and visuospatial short-term memory as potential mediators of the relationship among attention problems and near- and long-term scholastic achievement. Nested structural equation models revealed that teacher-reported attention problems were associated negatively with…
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
Flows in a tube structure: Equation on the graph
NASA Astrophysics Data System (ADS)
Panasenko, Grigory; Pileckas, Konstantin
2014-08-01
The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.
You'll See What You Mean: Students Encode Equations Based on Their Knowledge of Arithmetic
ERIC Educational Resources Information Center
McNeil, Nicole M.; Alibali, Martha W.
2004-01-01
This study investigated the roles of problem structure and strategy use in problem encoding. Fourth-grade students solved and explained a set of typical addition problems (e.g., 5 + 4 + 9 + 5 = ?) and mathematical equivalence problems (e.g., 4 + 3 + 6 = 4 + ? or 6 + 4 + 5 = ? + 5). Next, they completed an encoding task in which they reconstructed…
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. Dale, Jr.
1990-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number of operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
High-performance equation solvers and their impact on finite element analysis
NASA Technical Reports Server (NTRS)
Poole, Eugene L.; Knight, Norman F., Jr.; Davis, D. D., Jr.
1992-01-01
The role of equation solvers in modern structural analysis software is described. Direct and iterative equation solvers which exploit vectorization on modern high-performance computer systems are described and compared. The direct solvers are two Cholesky factorization methods. The first method utilizes a novel variable-band data storage format to achieve very high computation rates and the second method uses a sparse data storage format designed to reduce the number od operations. The iterative solvers are preconditioned conjugate gradient methods. Two different preconditioners are included; the first uses a diagonal matrix storage scheme to achieve high computation rates and the second requires a sparse data storage scheme and converges to the solution in fewer iterations that the first. The impact of using all of the equation solvers in a common structural analysis software system is demonstrated by solving several representative structural analysis problems.
PDEMOD: Software for control/structures optimization
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Zimmerman, David
1991-01-01
Because of the possibility of adverse interaction between the control system and the structural dynamics of large, flexible spacecraft, great care must be taken to ensure stability and system performance. Because of the high cost of insertion of mass into low earth orbit, it is prudent to optimize the roles of structure and control systems simultaneously. Because of the difficulty and the computational burden in modeling and analyzing the control structure system dynamics, the total problem is often split and treated iteratively. It would aid design if the control structure system dynamics could be represented in a single system of equations. With the use of the software PDEMOD (Partial Differential Equation Model), it is now possible to optimize structure and control systems simultaneously. The distributed parameter modeling approach enables embedding the control system dynamics into the same equations for the structural dynamics model. By doing this, the current difficulties involved in model order reduction are avoided. The NASA Mini-MAST truss is used an an example for studying integrated control structure design.
Study-simulation of space station dynamics
NASA Technical Reports Server (NTRS)
Gaitens, M. J.
1971-01-01
Matrix algebra translator and executor /MATE/ takes equations describing structural control system environmental interaction problem for flexible spacecraft components and loads them into self programming computer.
Research on numerical algorithms for large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1981-01-01
Numerical algorithms for analysis and design of large space structures are investigated. The sign algorithm and its application to decoupling of differential equations are presented. The generalized sign algorithm is given and its application to several problems discussed. The Laplace transforms of matrix functions and the diagonalization procedure for a finite element equation are discussed. The diagonalization of matrix polynomials is considered. The quadrature method and Laplace transforms is discussed and the identification of linear systems by the quadrature method investigated.
Engineering mechanics: statics and dynamics. [Textbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandor, B.I.
1983-01-01
The purpose of this textbook is to provide engineering students with basic learning material about statics and dynamics which are fundamental engineering subjects. The chapters contain information on: an introduction to engineering mechanics; forces on particles, rigid bodies, and structures; kinetics of particles, particle systems, and rigid bodies in motion; kinematics; mechanical vibrations; and friction, work, moments of inertia, and potential energy. Each chapter contains introductory material, the development of the essential equations, worked-out example problems, homework problems, and, finally, summaries of the essential methods and equations, graphically illustrated where appropriate. (LCL)
Initial value formulation of dynamical Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Delsate, Térence; Hilditch, David; Witek, Helvi
2015-01-01
We derive an initial value formulation for dynamical Chern-Simons gravity, a modification of general relativity involving parity-violating higher derivative terms. We investigate the structure of the resulting system of partial differential equations thinking about linearization around arbitrary backgrounds. This type of consideration is necessary if we are to establish well-posedness of the Cauchy problem. Treating the field equations as an effective field theory we find that weak necessary conditions for hyperbolicity are satisfied. For the full field equations we find that there are states from which subsequent evolution is not determined. Generically the evolution system closes, but is not hyperbolic in any sense that requires a first order pseudodifferential reduction. In a cursory mode analysis we find that the equations of motion contain terms that may cause ill-posedness of the initial value problem.
NASA Astrophysics Data System (ADS)
Wan, S.; He, W.
2016-12-01
The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963) equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data." On the basis of the intelligent features of evolutionary modeling (EM), including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
Algebraic and geometric structures of analytic partial differential equations
NASA Astrophysics Data System (ADS)
Kaptsov, O. V.
2016-11-01
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
1985-07-19
analytical, integral equation methods can be applied to the problem of elucidating the detailed structural properties of strongly interacting molecu- lar...curve. r. I equation -)f sate to calculate phase diagrams and critical irv,: for polar-non polar systems is described. Measurements with the .- r...FRANCE The fundamentai] equations of the Onsager approach of transport properties in linear response are summarized. From a reformula- tion of the
NASA Astrophysics Data System (ADS)
Bukač, M.
2016-05-01
We model the interaction between an incompressible, viscous fluid, thin elastic structure and a poroelastic material. The poroelastic material is modeled using the Biot's equations of dynamic poroelasticity. The fluid, elastic structure and the poroelastic material are fully coupled, giving rise to a nonlinear, moving boundary problem with novel energy estimates. We present a modular, loosely coupled scheme where the original problem is split into the fluid sub-problem, elastic structure sub-problem and poroelasticity sub-problem. An energy estimate associated with the stability of the scheme is derived in the case where one of the coupling parameters, β, is equal to zero. We present numerical tests where we investigate the effects of the material properties of the poroelastic medium on the fluid flow. Our findings indicate that the flow patterns highly depend on the storativity of the poroelastic material and cannot be captured by considering fluid-structure interaction only.
Similitude design for the vibration problems of plates and shells: A review
NASA Astrophysics Data System (ADS)
Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou
2017-06-01
Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.
Four tails problems for dynamical collapse theories
NASA Astrophysics Data System (ADS)
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
The influence of initial conditions on dispersion and reactions
NASA Astrophysics Data System (ADS)
Wood, B. D.
2016-12-01
In various generalizations of the reaction-dispersion problem, researchers have developed frameworks in which the apparent dispersion coefficient can be negative. Such dispersion coefficients raise several difficult questions. Most importantly, the presence of a negative dispersion coefficient at the macroscale leads to a macroscale representation that illustrates an apparent decrease in entropy with increasing time; this, then, appears to be in violation of basic thermodynamic principles. In addition, the proposition of a negative dispersion coefficient leads to an inherently ill-posed mathematical transport equation. The ill-posedness of the problem arises because there is no unique initial condition that corresponds to a later-time concentration distribution (assuming that if discontinuous initial conditions are allowed). In this presentation, we explain how the phenomena of negative dispersion coefficients actually arise because the governing differential equation for early times should, when derived correctly, incorporate a term that depends upon the initial and boundary conditions. The process of reactions introduces a similar phenomena, where the structure of the initial and boundary condition influences the form of the macroscopic balance equations. When upscaling is done properly, new equations are developed that include source terms that are not present in the classical (late-time) reaction-dispersion equation. These source terms depend upon the structure of the initial condition of the reacting species, and they decrease exponentially in time (thus, they converge to the conventional equations at asymptotic times). With this formulation, the resulting dispersion tensor is always positive-semi-definite, and the reaction terms directly incorporate information about the state of mixedness of the system. This formulation avoids many of the problems that would be engendered by defining negative-definite dispersion tensors, and properly represents the effective rate of reaction at early times.
Kellman, Philip J; Massey, Christine M; Son, Ji Y
2010-04-01
Learning in educational settings emphasizes declarative and procedural knowledge. Studies of expertise, however, point to other crucial components of learning, especially improvements produced by experience in the extraction of information: perceptual learning (PL). We suggest that such improvements characterize both simple sensory and complex cognitive, even symbolic, tasks through common processes of discovery and selection. We apply these ideas in the form of perceptual learning modules (PLMs) to mathematics learning. We tested three PLMs, each emphasizing different aspects of complex task performance, in middle and high school mathematics. In the MultiRep PLM, practice in matching function information across multiple representations improved students' abilities to generate correct graphs and equations from word problems. In the Algebraic Transformations PLM, practice in seeing equation structure across transformations (but not solving equations) led to dramatic improvements in the speed of equation solving. In the Linear Measurement PLM, interactive trials involving extraction of information about units and lengths produced successful transfer to novel measurement problems and fraction problem solving. Taken together, these results suggest (a) that PL techniques have the potential to address crucial, neglected dimensions of learning, including discovery and fluent processing of relations; (b) PL effects apply even to complex tasks that involve symbolic processing; and (c) appropriately designed PL technology can produce rapid and enduring advances in learning. Copyright © 2009 Cognitive Science Society, Inc.
Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem
Shao, Meiyue; da Jornada, Felipe H.; Yang, Chao; ...
2015-10-02
The Bethe–Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe–Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. In this paper, we establish the equivalence between Bethe–Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe–Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm–Dancoff approximation are overestimated. In order to solve large scale problemsmore » of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Finally, several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms.« less
Method of adiabatic modes in studying problems of smoothly irregular open waveguide structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevastianov, L. A., E-mail: sevast@sci.pfu.edu.ru; Egorov, A. A.; Sevastyanov, A. L.
2013-02-15
Basic steps in developing an original method of adiabatic modes that makes it possible to solve the direct and inverse problems of simulating and designing three-dimensional multilayered smoothly irregular open waveguide structures are described. A new element in the method is that an approximate solution of Maxwell's equations is made to obey 'inclined' boundary conditions at the interfaces between themedia being considered. These boundary conditions take into account the obliqueness of planes tangent to nonplanar boundaries between the media and lead to new equations for coupled vector quasiwaveguide hybrid adiabatic modes. Solutions of these equations describe the phenomenon of 'entanglement'more » of two linear polarizations of an irregular multilayered waveguide, the appearance of a new mode in an entangled state, and the effect of rotation of the polarization plane of quasiwaveguide modes. The efficiency of the method is demonstrated by considering the example of numerically simulating a thin-film generalized waveguide Lueneburg lens.« less
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model
NASA Technical Reports Server (NTRS)
Yakhot, A.; Staroselsky, I.; Orszag, S. A.
1994-01-01
Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.
Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves
NASA Astrophysics Data System (ADS)
Nemoto, Ryo; Iguchi, Tatsuo
2017-09-01
We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.
An approximation theory for the identification of linear thermoelastic systems
NASA Technical Reports Server (NTRS)
Rosen, I. G.; Su, Chien-Hua Frank
1990-01-01
An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Adolescents' Emotion Regulation Strategies, Self-Concept, and Internalizing Problems
ERIC Educational Resources Information Center
Hsieh, Manying; Stright, Anne Dopkins
2012-01-01
This study examined the relationships among adolescents' emotion regulation strategies (suppression and cognitive reappraisal), self-concept, and internalizing problems using structural equation modeling. The sample consisted of 438 early adolescents (13 to 15 years old) in Taiwan, including 215 boys and 223 girls. For both boys and girls,…
Preschool Interactive Peer Play Mediates Problem Behavior and Learning for Low-Income Children
ERIC Educational Resources Information Center
Bulotsky-Shearer, Rebecca J.; Bell, Elizabeth R.; Romero, Sandy L.; Carter, Tracy M.
2012-01-01
The study employed a developmental, ecological, and resiliency framework to examine whether interactive peer play competencies mediated associations between teacher reported problem behavior and learning outcomes for a representative sample of urban low-income children (N = 507 across 46 Head Start classrooms). Structural equation models provided…
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow
NASA Astrophysics Data System (ADS)
Aida-zade, K. R.; Ashrafova, E. R.
2017-12-01
An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.
REVIEWS OF TOPICAL PROBLEMS: Axisymmetric stationary flows in compact astrophysical objects
NASA Astrophysics Data System (ADS)
Beskin, Vasilii S.
1997-07-01
A review is presented of the analytical results available for a large class of axisymmetric stationary flows in the vicinity of compact astrophysical objects. The determination of the two-dimensional structure of the poloidal magnetic field (hydrodynamic flow field) faces severe difficulties, due to the complexity of the trans-field equation for stationary axisymmetric flows. However, an approach exists which enables direct problems to be solved even within the balance law framework. This possibility arises when an exact solution to the equation is available and flows close to it are investigated. As a result, with the use of simple model problems, the basic features of supersonic flows past real compact objects are determined.
Some aspects of algorithm performance and modeling in transient analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1981-01-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Al-Nasra, M.; Zhang, Y.; Baddourah, M. A.; Agarwal, T. K.; Storaasli, O. O.; Carmona, E. A.
1991-01-01
Several parallel-vector computational improvements to the unconstrained optimization procedure are described which speed up the structural analysis-synthesis process. A fast parallel-vector Choleski-based equation solver, pvsolve, is incorporated into the well-known SAP-4 general-purpose finite-element code. The new code, denoted PV-SAP, is tested for static structural analysis. Initial results on a four processor CRAY 2 show that using pvsolve reduces the equation solution time by a factor of 14-16 over the original SAP-4 code. In addition, parallel-vector procedures for the Golden Block Search technique and the BFGS method are developed and tested for nonlinear unconstrained optimization. A parallel version of an iterative solver and the pvsolve direct solver are incorporated into the BFGS method. Preliminary results on nonlinear unconstrained optimization test problems, using pvsolve in the analysis, show excellent parallel-vector performance indicating that these parallel-vector algorithms can be used in a new generation of finite-element based structural design/analysis-synthesis codes.
Structure and Stability of Finite Dimensional Approximations for Functional Differential Equations.
1983-10-01
approximating the solution of the algebraic Riccati equation associated with a retarded system. However, there remained one open problem in the...theory much more elegant and efficient (see e.g. BERNIER- MANITIUS ( 3 ], MANITIUS (14], DELFOUR-MANITIUS (71). They have led to a number of new results...characteristic function of the interval I. It is well known that equation (2.1) admits a unique solution2 n 12 x() e L 2o-h,-;iUn I W [0,_: 3 n ] for every
NASA Astrophysics Data System (ADS)
Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song
2008-07-01
Lakatos [Phys. Rev. E 71, 011103 (2005)] have studied a totally asymmetric exclusion process that contains periodically varying movement rates. They have presented a cluster mean-field theory for the problem. We show that their cluster mean-field theory leads to redundant equations. We present a mean-field analysis in which there is no redundant equation.
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
Computational complexities and storage requirements of some Riccati equation solvers
NASA Technical Reports Server (NTRS)
Utku, Senol; Garba, John A.; Ramesh, A. V.
1989-01-01
The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.
Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks
NASA Astrophysics Data System (ADS)
Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.
2018-01-01
This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.
Incompressible Navier-Stokes Computations with Heat Transfer
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Rogers, Stuart; Kutler, Paul (Technical Monitor)
1994-01-01
The existing pseudocompressibility method for the system of incompressible Navier-Stokes equations is extended to heat transfer problems by including the energy equation. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. Both forced and natural convection problems are examined. Numerical results from turbulent reattaching flow behind a backward-facing step will be compared against experimental measurements for the forced convection case. The validity of Boussinesq approximation to simplify the buoyancy force term will be investigated. The natural convective flow structure generated by heat transfer in a vertical rectangular cavity will be studied. The numerical results will be compared by experimental measurements by Morrison and Tran.
NASA Astrophysics Data System (ADS)
Martinet, L.; Mayor, M.
The basic problems and analysis techniques in examining the morphology, dynamics, and interactions between star systems, galaxies, and galactic clusters are detailed. Attention is devoted to the dynamics of hot stellar systems, with note taken of the derivation and application of the Vlasov equation, Jean's theorem, and the virial equations. Observations of galactic structure and dynamics are reviewed, and consideration is directed toward environmental influences on galactic structure. For individual items see A84-15503 to A84-15505
Regularized Moment Equations and Shock Waves for Rarefied Granular Gas
NASA Astrophysics Data System (ADS)
Reddy, Lakshminarayana; Alam, Meheboob
2016-11-01
It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.
Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.
Abbasi, Mahdi
2014-01-01
Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.
ERIC Educational Resources Information Center
Inbar-Furst, Hagit; Gumpel, Thomas P.
2015-01-01
Questionnaires were given to 392 elementary school teachers to examine help-seeking or help-avoidance in dealing with classroom behavioral problems. Scale validity was examined through a series of exploratory and confirmatory factor analyses. Using a series of multivariate regression analyses and structural equation modeling, we identified…
ERIC Educational Resources Information Center
Marsh, Herbert W.; Dowson, Martin; Pietsch, James; Walker, Richard
2004-01-01
Multicollinearity is a well-known general problem, but it also seriously threatens valid interpretations in structural equation models. Illustrating this problem, J. Pietsch, R. Walker, and E. Chapman (2003) found paths leading to achievement were apparently much larger for self-efficacy (.55) than self-concept (-.05), suggesting--erroneously, as…
Robust penalty method for structural synthesis
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1983-01-01
The Sequential Unconstrained Minimization Technique (SUMT) offers an easy way of solving nonlinearly constrained problems. However, this algorithm frequently suffers from the need to minimize an ill-conditioned penalty function. An ill-conditioned minimization problem can be solved very effectively by posing the problem as one of integrating a system of stiff differential equations utilizing concepts from singular perturbation theory. This paper evaluates the robustness and the reliability of such a singular perturbation based SUMT algorithm on two different problems of structural optimization of widely separated scales. The report concludes that whereas conventional SUMT can be bogged down by frequent ill-conditioning, especially in large scale problems, the singular perturbation SUMT has no such difficulty in converging to very accurate solutions.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Structure-preserving spectral element method in attenuating seismic wave modeling
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai
2016-04-01
This work describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems which has superior behaviors in long-time stability and dissipation preservation. To construct the conformal symplectic method, we first reformulate the damped acoustic wave equation and the elastic wave equations in their equivalent conformal multi-symplectic structures, which naturally reveal the intrinsic properties of the original systems, especially, the dissipation laws. We thereafter separate each structures into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed numerical scheme, which is conformal symplectic and can therefore guarantee the numerical stability and dissipation preservation after a large time modeling. Additionally, a relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh-wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic method in both the attenuating homogeneous and heterogeneous mediums.
Factorization and the synthesis of optimal feedback kernels for differential-delay systems
NASA Technical Reports Server (NTRS)
Milman, Mark M.; Scheid, Robert E.
1987-01-01
A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations
NASA Astrophysics Data System (ADS)
Sotoudeh, Zahra
2011-07-01
Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.
A study of the radiative transfer equation using a spherical harmonics-nodal collocation method
NASA Astrophysics Data System (ADS)
Capilla, M. T.; Talavera, C. F.; Ginestar, D.; Verdú, G.
2017-03-01
Optical tomography has found many medical applications that need to know how the photons interact with the different tissues. The majority of the photon transport simulations are done using the diffusion approximation, but this approximation has a limited validity when optical properties of the different tissues present large gradients, when structures near the photons source are studied or when anisotropic scattering has to be taken into account. As an alternative to the diffusion model, the PL equations for the radiative transfer problem are studied. These equations are discretized in a rectangular mesh using a nodal collocation method. The performance of this model is studied by solving different 1D and 2D benchmark problems of light propagation in tissue having media with isotropic and anisotropic scattering.
Study of the Bellman equation in a production model with unstable demand
NASA Astrophysics Data System (ADS)
Obrosova, N. K.; Shananin, A. A.
2014-09-01
A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by the urgency of analyzing well-known problems of functioning low competitive macroeconomic structures. The original formulation of the task represents an infinite-horizon optimal control problem. As a result, the model is formalized in the form of a Bellman equation. It is proved that the corresponding Bellman operator is a contraction and has a unique fixed point in the chosen class of functions. A closed-form solution of the Bellman equation is found using the method of steps. The influence of the credit interest rate on the firm market value assessment is analyzed by applying the developed model.
On mathematical modelling of aeroelastic problems with finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2018-06-01
This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.
Dynamic optimization and its relation to classical and quantum constrained systems
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo
2017-08-01
We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.
NASA Astrophysics Data System (ADS)
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
A spline-based parameter estimation technique for static models of elastic structures
NASA Technical Reports Server (NTRS)
Dutt, P.; Taasan, S.
1986-01-01
The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.
Effect of Configuration Pitching Motion on Twin Tail Buffet Response
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.
1998-01-01
The effect of dynamic pitch-up motion of delta wing on twin-tail buffet response is investigated. The computational model consists of a delta wing-twin tail configuration. The computations are carried out on a dynamic multi-block grid structure. This multidisciplinary problem is solved using three sets of equations which consists of the unsteady Navier-Stokes equations, the aeroelastic equations, and the grid displacement equations. The configuration is pitched-up from zero up to 60 deg. angle of attack, and the freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. With the twin tail fixed as rigid surfaces and with no-forced pitch-up motion, the problem is solved for the initial flow conditions. Next, the problem is solved for the twin-tail response for uncoupled bending and torsional vibrations due to the unsteady loads on the twin tail and due to the forced pitch-up motion. The dynamic pitch-up problem is also solved for the flow response with the twin tail kept rigid. The configuration is investigated for inboard position of the twin tail which corresponds to a separation distance between the twin tail of 33% wing chord. The computed results are compared with the available experimental data.
The discovery of indicator variables for QSAR using inductive logic programming
NASA Astrophysics Data System (ADS)
King, Ross D.; Srinivasan, Ashwin
1997-11-01
A central problem in forming accurate regression equations in QSAR studies isthe selection of appropriate descriptors for the compounds under study. Wedescribe a novel procedure for using inductive logic programming (ILP) todiscover new indicator variables (attributes) for QSAR problems, and show thatthese improve the accuracy of the derived regression equations. ILP techniqueshave previously been shown to work well on drug design problems where thereis a large structural component or where clear comprehensible rules arerequired. However, ILP techniques have had the disadvantage of only being ableto make qualitative predictions (e.g. active, inactive) and not to predictreal numbers (regression). We unify ILP and linear regression techniques togive a QSAR method that has the strength of ILP at describing stericstructure, with the familiarity and power of linear regression. We evaluatedthe utility of this new QSAR technique by examining the prediction ofbiological activity with and without the addition of new structural indicatorvariables formed by ILP. In three out of five datasets examined the additionof ILP variables produced statistically better results (P < 0.01) over theoriginal description. The new ILP variables did not increase the overallcomplexity of the derived QSAR equations and added insight into possiblemechanisms of action. We conclude that ILP can aid in the process of drugdesign.
Method for the Direct Solve of the Many-Body Schrödinger Wave Equation
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill
We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
Writing Problems in Developmental Dyslexia: Under-Recognized and Under-Treated2,3
Berninger, Virginia W.; Nielsen, Kathleen H.; Abbott, Robert D.; Wijsman, Ellen; Raskind, Wendy
2008-01-01
The International Dyslexia Association defines dyslexia as unexpected problems of neurobiological origin in accuracy and rate of oral reading of single real words, single pseudowords, or text or of written spelling. However, prior research has focused more on the reading than the spelling problems of students with dyslexia. A test battery was administered to 122 children who met inclusion criteria for dyslexia and qualified their families for participation in a family genetics study that has been ongoing for over a decade. Their parents completed the same test battery. Although a past structural equation modeling study of typically developing children identified a significant path from handwriting to composition quality, the current structural equation modeling study identified a significant path from spelling to composition for children and their parents with dyslexia. Grapho-motor planning did not contribute uniquely to their composition, showing that writing is not just a motor skill. Students with dyslexia do have a problem in automatic letter writing and naming, which was related to impaired inhibition and verbal fluency, and may explain their spelling problems. Results are discussed in reference to the importance of providing explicit instruction in the phonological, orthographic, and morphological processes of spelling and in composition to students with dyslexia and not only offering accommodation for their writing problems. PMID:18438452
Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis
NASA Technical Reports Server (NTRS)
Hasselman, T. K.
1972-01-01
The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.
HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, R.A.; Lowery, P.S.
1987-10-01
HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less
Tensor-GMRES method for large sparse systems of nonlinear equations
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1994-01-01
This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.
A stochastic process approach of the drake equation parameters
NASA Astrophysics Data System (ADS)
Glade, Nicolas; Ballet, Pascal; Bastien, Olivier
2012-04-01
The number N of detectable (i.e. communicating) extraterrestrial civilizations in the Milky Way galaxy is usually calculated by using the Drake equation. This equation was established in 1961 by Frank Drake and was the first step to quantifying the Search for ExtraTerrestrial Intelligence (SETI) field. Practically, this equation is rather a simple algebraic expression and its simplistic nature leaves it open to frequent re-expression. An additional problem of the Drake equation is the time-independence of its terms, which for example excludes the effects of the physico-chemical history of the galaxy. Recently, it has been demonstrated that the main shortcoming of the Drake equation is its lack of temporal structure, i.e., it fails to take into account various evolutionary processes. In particular, the Drake equation does not provides any error estimation about the measured quantity. Here, we propose a first treatment of these evolutionary aspects by constructing a simple stochastic process that will be able to provide both a temporal structure to the Drake equation (i.e. introduce time in the Drake formula in order to obtain something like N(t)) and a first standard error measure.
On global solutions of the random Hamilton-Jacobi equations and the KPZ problem
NASA Astrophysics Data System (ADS)
Bakhtin, Yuri; Khanin, Konstantin
2018-04-01
In this paper, we discuss possible qualitative approaches to the problem of KPZ universality. Throughout the paper, our point of view is based on the geometrical and dynamical properties of minimisers and shocks forming interlacing tree-like structures. We believe that the KPZ universality can be explained in terms of statistics of these structures evolving in time. The paper is focussed on the setting of the random Hamilton-Jacobi equations. We formulate several conjectures concerning global solutions and discuss how their properties are connected to the KPZ scalings in dimension 1 + 1. In the case of general viscous Hamilton-Jacobi equations with non-quadratic Hamiltonians, we define generalised directed polymers. We expect that their behaviour is similar to the behaviour of classical directed polymers, and present arguments in favour of this conjecture. We also define a new renormalisation transformation defined in purely geometrical terms and discuss conjectural properties of the corresponding fixed points. Most of our conjectures are widely open, and supported by only partial rigorous results for particular models.
ERIC Educational Resources Information Center
Doan, Stacey N.; Fuller-Rowell, Thomas E.; Evans, Gary W.
2012-01-01
The purpose of the present study was to examine longitudinal associations among maternal responsiveness, self-regulation, and behavioral adjustment in adolescents. The authors used structural equation modeling to test a model that demonstrates that the effects of early cumulative risk on behavioral problems is mediated by maternal responsiveness…
Theoretical thermal conductivity equation for uniform density wood cells
John F. Hunt; Hongmei Gu; Patricia Lebow
2008-01-01
The anisotropy of wood creates a complex problem requiring that analyses be based on fundamental material properties and characteristics of the wood structure to solve heat transfer problems. A two-dimensional finite element model that evaluates the effective thermal conductivity of a wood cell over the full range of moisture contents and porosities was previously...
ERIC Educational Resources Information Center
Metzger, Aaron; Dawes, Nickki; Mermelstein, Robin; Wakschlag, Lauren
2011-01-01
Longitudinal associations among different types of organized activity involvement, problem peer associations, and cigarette smoking were examined in a sample of 1040 adolescents (mean age = 15.62 at baseline, 16.89 at 15-month assessment, 17.59 at 24 months) enriched for smoking experimentation (83% had tried smoking). A structural equation model…
Effects of Parenting and Deviant Peers on Early to Mid-Adolescent Conduct Problems
ERIC Educational Resources Information Center
Trudeau, Linda; Mason, W. Alex; Randall, G. Kevin; Spoth, Richard; Ralston, Ekaterina
2012-01-01
We investigated the influence of effective parenting behaviors (father and mother reports) and deviant peer association (adolescent reports) on subsequent young adolescent conduct problems (teacher reports) during grades 7-9, using structural equation modeling. Data were from a sample of 226 rural adolescents (n = 112 boys; n = 107 girls; n = 7…
Linking Substance Use and Problem Behavior across Three Generations
ERIC Educational Resources Information Center
Bailey, Jennifer A.; Hill, Karl G.; Oesterle, Sabrina; Hawkins, J. David
2006-01-01
This study examined patterns of between-generation continuity in substance use from generation 1 (G1) parents to generation 2 (G2) adolescents and from G2 adult substance use and G1 substance use to generation 3 (G3) problem behavior in childhood. Structural equation modeling of prospective, longitudinal data from 808 participants, their parents,…
Higher-Order Hamiltonian Model for Unidirectional Water Waves
NASA Astrophysics Data System (ADS)
Bona, J. L.; Carvajal, X.; Panthee, M.; Scialom, M.
2018-04-01
Formally second-order correct, mathematical descriptions of long-crested water waves propagating mainly in one direction are derived. These equations are analogous to the first-order approximations of KdV- or BBM-type. The advantage of these more complex equations is that their solutions corresponding to physically relevant initial perturbations of the rest state may be accurate on a much longer timescale. The initial value problem for the class of equations that emerges from our derivation is then considered. A local well-posedness theory is straightforwardly established by a contraction mapping argument. A subclass of these equations possess a special Hamiltonian structure that implies the local theory can be continued indefinitely.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Determination of macro-scale soil properties from pore-scale structures: model derivation.
Daly, K R; Roose, T
2018-01-01
In this paper, we use homogenization to derive a set of macro-scale poro-elastic equations for soils composed of rigid solid particles, air-filled pore space and a poro-elastic mixed phase. We consider the derivation in the limit of large deformation and show that by solving representative problems on the micro-scale we can parametrize the macro-scale equations. To validate the homogenization procedure, we compare the predictions of the homogenized equations with those of the full equations for a range of different geometries and material properties. We show that the results differ by [Formula: see text] for all cases considered. The success of the homogenization scheme means that it can be used to determine the macro-scale poro-elastic properties of soils from the underlying structure. Hence, it will prove a valuable tool in both characterization and optimization.
ODEion--a software module for structural identification of ordinary differential equations.
Gennemark, Peter; Wedelin, Dag
2014-02-01
In the systems biology field, algorithms for structural identification of ordinary differential equations (ODEs) have mainly focused on fixed model spaces like S-systems and/or on methods that require sufficiently good data so that derivatives can be accurately estimated. There is therefore a lack of methods and software that can handle more general models and realistic data. We present ODEion, a software module for structural identification of ODEs. Main characteristic features of the software are: • The model space is defined by arbitrary user-defined functions that can be nonlinear in both variables and parameters, such as for example chemical rate reactions. • ODEion implements computationally efficient algorithms that have been shown to efficiently handle sparse and noisy data. It can run a range of realistic problems that previously required a supercomputer. • ODEion is easy to use and provides SBML output. We describe the mathematical problem, the ODEion system itself, and provide several examples of how the system can be used. Available at: http://www.odeidentification.org.
LORENE: Spectral methods differential equations solver
NASA Astrophysics Data System (ADS)
Gourgoulhon, Eric; Grandclément, Philippe; Marck, Jean-Alain; Novak, Jérôme; Taniguchi, Keisuke
2016-08-01
LORENE (Langage Objet pour la RElativité NumériquE) solves various problems arising in numerical relativity, and more generally in computational astrophysics. It is a set of C++ classes and provides tools to solve partial differential equations by means of multi-domain spectral methods. LORENE classes implement basic structures such as arrays and matrices, but also abstract mathematical objects, such as tensors, and astrophysical objects, such as stars and black holes.
Causal discovery and inference: concepts and recent methodological advances.
Spirtes, Peter; Zhang, Kun
This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.
Stanley Corrsin Award Talk: The role of singularities in hydrodynamics
NASA Astrophysics Data System (ADS)
Eggers, Jens
2017-11-01
If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.
Reduced order modeling of fluid/structure interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph
2009-11-01
This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preservesmore » numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.« less
ERIC Educational Resources Information Center
Bauer, Daniel J.; Curran, Patrick J.
2004-01-01
Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Belsky, Jay; Pasco Fearon, R M; Bell, Brian
2007-12-01
Building on prior work, this paper tests, longitudinally and repeatedly, the proposition that attentional control processes mediate the effect of earlier parenting on later externalizing problems. Repeated independent measurements of all three constructs--observed parenting, computer-tested attentional control and adult-reported externalizing problems--were subjected to structural equation modeling using data from the large-scale American study of child care and youth development. Structural equation modeling indicated (a) that greater maternal sensitivity at two different ages (54 months, approximately 6 years) predicted better attentional control on the Continuous Performance Test (CPT) of attention regulation two later ages ( approximately 6/9 years); (2) that better attentional control at three different ages (54 months, approximately 6/9 years) predicted less teacher-reported externalizing problems at three later ages ( approximately 6/8/10 years); and (3) that attentional control partially mediated the effect of parenting on externalizing problems at two different lags (i.e., 54 months--> approximately 6 years--> approximately 8 years; approximately 6 years--> approximately 9 years--> approximately 10 years), though somewhat more strongly for the first. Additionally, (4) some evidence of reciprocal effects of attentional processes on parenting emerged (54 months--> approximately 6 years; approximately 6 years--> approximately 8 years), but not of problem behavior on attention. Because attention control partially mediates the effects of parenting on externalizing problems, intervention efforts could target both parenting and attentional processes.
Numerical simulation of vortical ideal fluid flow through curved channel
NASA Astrophysics Data System (ADS)
Moshkin, N. P.; Mounnamprang, P.
2003-04-01
A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.
Solving differential equations with unknown constitutive relations as recurrent neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less
Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load
NASA Astrophysics Data System (ADS)
Saviz, M. R.; Shakeri, M.; Yas, M. H.
2007-10-01
The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.
New Galerkin operational matrices for solving Lane-Emden type equations
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.
2016-04-01
Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.
Solving Partial Differential Equations on Overlapping Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henshaw, W D
2008-09-22
We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less
Tube wave signatures in cylindrically layered poroelastic media computed with spectral method
NASA Astrophysics Data System (ADS)
Karpfinger, Florian; Gurevich, Boris; Valero, Henri-Pierre; Bakulin, Andrey; Sinha, Bikash
2010-11-01
This paper describes a new algorithm based on the spectral method for the computation of Stoneley wave dispersion and attenuation propagating in cylindrical structures composed of fluid, elastic and poroelastic layers. The spectral method is a numerical method which requires discretization of the structure along the radial axis using Chebyshev points. To approximate the differential operators of the underlying differential equations, we use spectral differentiation matrices. After discretizing equations of motion along the radial direction, we can solve the problem as a generalized algebraic eigenvalue problem. For a given frequency, calculated eigenvalues correspond to the wavenumbers of different modes. The advantage of this approach is that it can very efficiently analyse structures with complicated radial layering composed of different fluid, solid and poroelastic layers. This work summarizes the fundamental equations, followed by an outline of how they are implemented in the numerical spectral schema. The interface boundary conditions are then explained for fluid/porous, elastic/porous and porous interfaces. Finally, we discuss three examples from borehole acoustics. The first model is a fluid-filled borehole surrounded by a poroelastic formation. The second considers an additional elastic layer sandwiched between the borehole and the formation, and finally a model with radially increasing permeability is considered.
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
NASA Astrophysics Data System (ADS)
Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.
General Tricomi-Rassias problem and oblique derivative problem for generalized Chaplygin equations
NASA Astrophysics Data System (ADS)
Wen, Guochun; Chen, Dechang; Cheng, Xiuzhen
2007-09-01
Many authors have discussed the Tricomi problem for some second order equations of mixed type, which has important applications in gas dynamics. In particular, Bers proposed the Tricomi problem for Chaplygin equations in multiply connected domains [L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958]. And Rassias proposed the exterior Tricomi problem for mixed equations in a doubly connected domain and proved the uniqueness of solutions for the problem [J.M. Rassias, Lecture Notes on Mixed Type Partial Differential Equations, World Scientific, Singapore, 1990]. In the present paper, we discuss the general Tricomi-Rassias problem for generalized Chaplygin equations. This is one general oblique derivative problem that includes the exterior Tricomi problem as a special case. We first give the representation of solutions of the general Tricomi-Rassias problem, and then prove the uniqueness and existence of solutions for the problem by a new method. In this paper, we shall also discuss another general oblique derivative problem for generalized Chaplygin equations.
Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes
NASA Technical Reports Server (NTRS)
Menon, Suresh
1983-01-01
A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Buhl, W.F.
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less
Control of large flexible spacecraft by the independent modal-space control method
NASA Technical Reports Server (NTRS)
Meirovitch, L.; Shenar, J.
1984-01-01
The problem of control of a large-order flexible structure in the form of a plate-like lattice by the Independent Modal-Space Control (IMSC) method is presented. The equations of motion are first transformed to the modal space, thus obtaining internal (plant) decoupling of the system. Then, the control laws are designed in the modal space for each mode separately, so that the modal equations of motion are rendered externally (controller) decoupled. This complete decoupling applies both to rigid-body modes and elastic modes. The application of linear optimal control, in conjunction with a quadratic performance index, is first reviewed. A solution for high-order systems is proposed here by the IMSC method, whereby the problem is reduced to a number of modal minimum-fuel problems for the controlled modes.
TRUMP. Transient & S-State Temperature Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1992-03-03
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less
ERIC Educational Resources Information Center
Mannering, Anne M.; Harold, Gordon T.; Leve, Leslie D.; Shelton, Katherine H.; Shaw, Daniel S.; Conger, Rand D.; Neiderhiser, Jenae M.; Scaramella, Laura V.; Reiss, David
2011-01-01
This study examined the longitudinal association between marital instability and child sleep problems at ages 9 and 18 months in 357 families with a genetically unrelated infant adopted at birth. This design eliminates shared genes as an explanation for similarities between parent and child. Structural equation modeling indicated that T1 marital…
ERIC Educational Resources Information Center
Peleg-Oren, Neta; Hospital, Michelle; Morris, Staci Leon; Wagner, Eric F.
2013-01-01
The current study examines the effect of paternal alcohol problems on adolescent use of alcohol and other illicit drugs as a function of maternal communication, as well as adolescent social and coping skills (N = 145). Structural equation modeling (SEM) analyses indicated that adolescents with a paternal history of alcohol problems reported higher…
ERIC Educational Resources Information Center
Drugli, May Britt; Klokner, Christian; Larsson, Bo
2011-01-01
The present study explored the association between child internalising and externalising problems in schools and demographic factors (sex and age), school functioning (academic performance and adaptive functioning) and teacher-reported student-teacher relationship quality in a cross-sectional study using structural equation modelling. The study…
Discreteness of time in the evolution of the universe
NASA Astrophysics Data System (ADS)
Faizal, Mir; Ali, Ahmed Farag; Das, Saurya
2017-04-01
In this paper, we will first derive the Wheeler-DeWitt equation for the generalized geometry which occurs in M-theory. Then we will observe that M2-branes act as probes for this generalized geometry, and as M2-branes have an extended structure, their extended structure will limits the resolution to which this generalized geometry can be defined. We will demonstrate that this will deform the Wheeler-DeWitt equation for the generalized geometry. We analyze such a deformed Wheeler-DeWitt equation in the minisuperspace approximation, and observe that this deformation can be used as a solution to the problem of time. This is because this deformation gives rise to time crystals in our universe due to the spontaneous breaking of time reparametrization invariance.
Mathematical modeling of spinning elastic bodies for modal analysis.
NASA Technical Reports Server (NTRS)
Likins, P. W.; Barbera, F. J.; Baddeley, V.
1973-01-01
The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
Three-Dimensional Structure of Boundary Layers in Transition to Turbulence
1989-03-01
step-by-step Orr- Sommerfeld solution and integration. What is needed is an initial condition and initial wavenumber. These data can be obtained from a ...general than unsteady boundary-layer equations and Orr- Sommerfeld equation which are special cases. There- fore, the PSE will be a valuable tool for...spectra (discrete, continuous) result in a given problem is discussed in monographs and journal articles. Here, we try to find solutions to the
A convex penalty for switching control of partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clason, Christian; Rund, Armin; Kunisch, Karl
2016-01-19
A convex penalty for promoting switching controls for partial differential equations is introduced; such controls consist of an arbitrary number of components of which at most one should be simultaneously active. Using a Moreau–Yosida approximation, a family of approximating problems is obtained that is amenable to solution by a semismooth Newton method. In conclusion, the efficiency of this approach and the structure of the obtained controls are demonstrated by numerical examples.
Structure and Evoluton of the Large Scale Solar and Heliospheric Magnetic Fields.
1984-04-01
symmetric about the equator and therefore reinforces the dipole field. This has the effect of pushing the current sheet toward the equator as shown in Figure...drift only slightly in longitude. The postive sector near 90’ remains strong through the year too. The positive sector near 2700 appears to grow in...sheet position determined from coronal polarization brightness measurements from the Mauna Loa coronameter. An immediate problem with using the
Lyu, Juncheng; Shi, Hong; Wang, Suzhen; Zhang, Jie
2016-02-01
This research aimed to estimate the effect of perceived social factors in the community stress and problems on the residents' psychopathology such as depression and suicidal behaviors. Subjects of this study were the informants (N=1618) in a psychological autopsy (PA) study with a case-control design. We interviewed two informants (a family member and a close friend) for 392 suicides and 416 living controls, which came from 16 rural counties randomly selected from three provinces of China. Community stress and problems were measured by the WHO SUPRE-MISS scale. Depression was measured by CES-D scale, and suicidal behavior was assessed by NCS-R scale. Multivariable liner and logistic regression models and the Structural Equation Modeling (SEM) were applied to probe the correlation of the depression and the suicidal behaviors with some major demographic variables as covariates. It was found that community stress and problems were directly associated with rural Chinese residents' depression (Path coefficient=0.127, P<0.001). There was no direct correlation between community stress and problem and suicidal behaviors, but community stress and problem can affect suicidal behaviors indirectly through depression. The path coefficient between depression and suicidal behaviors was 0.975. The current study predicts a new research viewpoint, that is, the depression is the intermediate between community stress and problem and suicidal behaviors. It might be an effective route to prevent depression directly and suicidal behaviors indirectly by reducing the community stress and problems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kifonidis, K.; Müller, E.
2012-08-01
Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions: For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.
Embedding Number-Combinations Practice Within Word-Problem Tutoring
Powell, Sarah R.; Fuchs, Lynn S.; Fuchs, Douglas
2012-01-01
Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems. PMID:22661880
Embedding Number-Combinations Practice Within Word-Problem Tutoring.
Powell, Sarah R; Fuchs, Lynn S; Fuchs, Douglas
2010-09-01
Two aspects of mathematics with which students with mathematics learning difficulty (MLD) often struggle are word problems and number-combination skills. This article describes a math program in which students receive instruction on using algebraic equations to represent the underlying problem structure for three word-problem types. Students also learn counting strategies for answering number combinations that they cannot retrieve from memory. Results from randomized-control trials indicated that embedding the counting strategies for number combinations produces superior word-problem and number-combination outcomes for students with MLD beyond tutoring programs that focus exclusively on number combinations or word problems.
ERIC Educational Resources Information Center
Watts, Logan L.; Steele, Logan M.; Song, Hairong
2017-01-01
Prior studies have demonstrated inconsistent findings with regard to the relationship between need for cognition and creativity. In our study, measurement issues were explored as a potential source of these inconsistencies. Structural equation modeling techniques were used to examine the factor structure underlying the 18-item need for cognition…
NASA Astrophysics Data System (ADS)
Britt, S.; Tsynkov, S.; Turkel, E.
2018-02-01
We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.
Modelling biochemical reaction systems by stochastic differential equations with reflection.
Niu, Yuanling; Burrage, Kevin; Chen, Luonan
2016-05-07
In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
NASA Astrophysics Data System (ADS)
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.
Microscopic theory of linear light scattering from mesoscopic media and in near-field optics.
Keller, Ole
2005-08-01
On the basis of quantum mechanical response theory a microscopic propagator theory of linear light scattering from mesoscopic systems is presented. The central integral equation problem is transferred to a matrix equation problem by discretization in transitions between pairs of (many-body) energy eigenstates. The local-field calculation which appears from this approach is valid down to the microscopic region. Previous theories based on the (macroscopic) dielectric constant concept make use of spatial (geometrical) discretization and cannot in general be trusted on the mesoscopic length scale. The present theory can be applied to light scattering studies in near-field optics. After a brief discussion of the macroscopic integral equation problem a microscopic potential description of the scattering process is established. In combination with the use of microscopic electromagnetic propagators the formalism allows one to make contact to the macroscopic theory of light scattering and to the spatial photon localization problem. The quantum structure of the microscopic conductivity response tensor enables one to establish a clear physical picture of the origin of local-field phenomena in mesoscopic and near-field optics. The Huygens scalar propagator formalism is revisited and its generality in microscopic physics pointed out.
Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas
2012-01-01
Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.
Abstract numeric relations and the visual structure of algebra.
Landy, David; Brookes, David; Smout, Ryan
2014-09-01
Formal algebras are among the most powerful and general mechanisms for expressing quantitative relational statements; yet, even university engineering students, who are relatively proficient with algebraic manipulation, struggle with and often fail to correctly deploy basic aspects of algebraic notation (Clement, 1982). In the cognitive tradition, it has often been assumed that skilled users of these formalisms treat situations in terms of semantic properties encoded in an abstract syntax that governs the use of notation without particular regard to the details of the physical structure of the equation itself (Anderson, 2005; Hegarty, Mayer, & Monk, 1995). We explore how the notational structure of verbal descriptions or algebraic equations (e.g., the spatial proximity of certain words or the visual alignment of numbers and symbols in an equation) plays a role in the process of interpreting or constructing symbolic equations. We propose in particular that construction processes involve an alignment of notational structures across representation systems, biasing reasoners toward the selection of formal notations that maintain the visuospatial structure of source representations. For example, in the statement "There are 5 elephants for every 3 rhinoceroses," the spatial proximity of 5 and elephants and 3 and rhinoceroses will bias reasoners to write the incorrect expression 5E = 3R, because that expression maintains the spatial relationships encoded in the source representation. In 3 experiments, participants constructed equations with given structure, based on story problems with a variety of phrasings. We demonstrate how the notational alignment approach accounts naturally for a variety of previously reported phenomena in equation construction and successfully predicts error patterns that are not accounted for by prior explanations, such as the left to right transcription heuristic.
A monolithic Lagrangian approach for fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.
2010-11-01
Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-08-27
Here, we construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N = 1* field theory with a non-trivial chargedensity. The solutions we construct have a Ζ N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions formore » each value of the angular momentum. We study the phase structure of the solutions for various values of N . Also the continuum limit where N → ∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.« less
Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.
2018-05-01
We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.
NASA Technical Reports Server (NTRS)
Morozov, S. K.; Krasitskiy, O. P.
1978-01-01
A computational scheme and a standard program is proposed for solving systems of nonstationary spatially one-dimensional nonlinear differential equations using Newton's method. The proposed scheme is universal in its applicability and its reduces to a minimum the work of programming. The program is written in the FORTRAN language and can be used without change on electronic computers of type YeS and BESM-6. The standard program described permits the identification of nonstationary (or stationary) solutions to systems of spatially one-dimensional nonlinear (or linear) partial differential equations. The proposed method may be used to solve a series of geophysical problems which take chemical reactions, diffusion, and heat conductivity into account, to evaluate nonstationary thermal fields in two-dimensional structures when in one of the geometrical directions it can take a small number of discrete levels, and to solve problems in nonstationary gas dynamics.
Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds
NASA Astrophysics Data System (ADS)
Lassas, Matti; Uhlmann, Gunther; Wang, Yiran
2018-06-01
We consider inverse problems in space-time ( M, g), a 4-dimensional Lorentzian manifold. For semilinear wave equations {\\square_g u + H(x, u) = f}, where {\\square_g} denotes the usual Laplace-Beltrami operator, we prove that the source-to-solution map {L: f → u|_V}, where V is a neighborhood of a time-like geodesic {μ}, determines the topological, differentiable structure and the conformal class of the metric of the space-time in the maximal set, where waves can propagate from {μ} and return back. Moreover, on a given space-time ( M, g), the source-to-solution map determines some coefficients of the Taylor expansion of H in u.
Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I
NASA Astrophysics Data System (ADS)
Chelnokov, Yu. N.
2017-11-01
We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.
A model for tides and currents in the English Channel and southern North Sea
Walters, Roy A.
1987-01-01
The amplitude and phase of 11 tidal constituents for the English Channel and southern North Sea are calculated using a frequency domain, finite element model. The governing equations - the shallow water equations - are modifed such that sea level is calculated using an elliptic equation of the Helmholz type followed by a back-calculation of velocity using the primitive momentum equations. Triangular elements with linear basis functions are used. The modified form of the governing equations provides stable solutions with little numerical noise. In this field-scale test problem, the model was able to produce the details of the structure of 11 tidal constituents including O1, K1, M2, S2, N2, K2, M4, MS4, MN4, M6, and 2MS6.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
ERIC Educational Resources Information Center
Ghahari, Shima; Basanjideh, Mahin
2015-01-01
The study aimed at exploring the psychological as well as educational outcomes of strategies awareness and use. We set out to examine the effect of reading strategic investment on language achievement and problem solving ability (PSA). The participating EFL learners were heterogeneous in terms of reading instruction; two of the intact groups had…
The cosmic-ray shock structure problem for relativistic shocks
NASA Technical Reports Server (NTRS)
Webb, G. M.
1985-01-01
The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.
The Sharma-Parthasarathy stochastic two-body problem
NASA Astrophysics Data System (ADS)
Cresson, J.; Pierret, F.; Puig, B.
2015-03-01
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in ["Dynamics of a stochastically perturbed two-body problem," Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss's equations in the planar case.
Structure parameters in rotating Couette-Poiseuille channel flow
NASA Technical Reports Server (NTRS)
Knightly, George H.; Sather, D.
1986-01-01
It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.
Approximation methods for inverse problems involving the vibration of beams with tip bodies
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.
Veijola, Timo; Råback, Peter
2007-01-01
We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.
A Fluid Structure Algorithm with Lagrange Multipliers to Model Free Swimming
NASA Astrophysics Data System (ADS)
Sahin, Mehmet; Dilek, Ezgi
2017-11-01
A new monolithic approach is prosed to solve the fluid-structure interaction (FSI) problem with Lagrange multipliers in order to model free swimming/flying. In the present approach, the fluid domain is modeled by the incompressible Navier-Stokes equations and discretized using an Arbitrary Lagrangian-Eulerian (ALE) formulation based on the stable side-centered unstructured finite volume method. The solid domain is modeled by the constitutive laws for the nonlinear Saint Venant-Kirchhoff material and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. In order to impose the body motion/deformation, the distance between the constraint pair nodes is imposed using the Lagrange multipliers, which is independent from the frame of reference. The resulting algebraic linear equations are solved in a fully coupled manner using a dual approach (null space method). The present numerical algorithm is initially validated for the classical FSI benchmark problems and then applied to the free swimming of three linked ellipses. The authors are grateful for the use of the computing resources provided by the National Center for High Performance Computing (UYBHM) under Grant Number 10752009 and the computing facilities at TUBITAK-ULAKBIM, High Performance and Grid Computing Center.
Massively Parallel Solution of Poisson Equation on Coarse Grain MIMD Architectures
NASA Technical Reports Server (NTRS)
Fijany, A.; Weinberger, D.; Roosta, R.; Gulati, S.
1998-01-01
In this paper a new algorithm, designated as Fast Invariant Imbedding algorithm, for solution of Poisson equation on vector and massively parallel MIMD architectures is presented. This algorithm achieves the same optimal computational efficiency as other Fast Poisson solvers while offering a much better structure for vector and parallel implementation. Our implementation on the Intel Delta and Paragon shows that a speedup of over two orders of magnitude can be achieved even for moderate size problems.
Algorithms and software for solving finite element equations on serial and parallel architectures
NASA Technical Reports Server (NTRS)
George, Alan
1989-01-01
Over the past 15 years numerous new techniques have been developed for solving systems of equations and eigenvalue problems arising in finite element computations. A package called SPARSPAK has been developed by the author and his co-workers which exploits these new methods. The broad objective of this research project is to incorporate some of this software in the Computational Structural Mechanics (CSM) testbed, and to extend the techniques for use on multiprocessor architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y. B.; Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn; Dai, H. H.
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings aremore » considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.« less
Dissipation-preserving spectral element method for damped seismic wave equations
NASA Astrophysics Data System (ADS)
Cai, Wenjun; Zhang, Huai; Wang, Yushun
2017-12-01
This article describes the extension of the conformal symplectic method to solve the damped acoustic wave equation and the elastic wave equations in the framework of the spectral element method. The conformal symplectic method is a variation of conventional symplectic methods to treat non-conservative time evolution problems, which has superior behaviors in long-time stability and dissipation preservation. To reveal the intrinsic dissipative properties of the model equations, we first reformulate the original systems in their equivalent conformal multi-symplectic structures and derive the corresponding conformal symplectic conservation laws. We thereafter separate each system into a conservative Hamiltonian system and a purely dissipative ordinary differential equation system. Based on the splitting methodology, we solve the two subsystems respectively. The dissipative one is cheaply solved by its analytic solution. While for the conservative system, we combine a fourth-order symplectic Nyström method in time and the spectral element method in space to cover the circumstances in realistic geological structures involving complex free-surface topography. The Strang composition method is adopted thereby to concatenate the corresponding two parts of solutions and generate the completed conformal symplectic method. A relative larger Courant number than that of the traditional Newmark scheme is found in the numerical experiments in conjunction with a spatial sampling of approximately 5 points per wavelength. A benchmark test for the damped acoustic wave equation validates the effectiveness of our proposed method in precisely capturing dissipation rate. The classical Lamb problem is used to demonstrate the ability of modeling Rayleigh wave in elastic wave propagation. More comprehensive numerical experiments are presented to investigate the long-time simulation, low dispersion and energy conservation properties of the conformal symplectic methods in both the attenuating homogeneous and heterogeneous media.
The solution of the dam-break problem in the Porous Shallow water Equations
NASA Astrophysics Data System (ADS)
Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico
2018-04-01
The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.
Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft
NASA Technical Reports Server (NTRS)
Ardema, Mark D.; Windhorst, Robert; Phillips, James
1998-01-01
This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.
Regularization and Approximation of a Class of Evolution Problems in Applied Mathematics
1991-01-01
8217 DT)IG AD-A242 223 FINAL REPORT Nov61991:ti -ll IN IImI 1OV1 Ml99 1 REGULARIZATION AND APPROXIMATION OF A-CLASS OF EVOLUTION -PROBLEMS IN APPLIED...The University of Texas at Austin Austin, TX 78712 91 10 30 050 FINAL REPORT "Regularization and Approximation of a Class of Evolution Problems in...micro-structured parabolic system. A mathematical analysis of the regularized equations-has been developed to support our approach. Supporting
The Optimal Convergence Rate of the p-Version of the Finite Element Method.
1985-10-01
commercial and research codes. The p-version and h-p versions are new developments. There is only one commercial code, the system PROBE ( Noetic Tech, St...Louis). The theoretical aspects have been studied only recently. The first theoretical paper appeared in 1981 (see [7)). See also [1), [7], [81, [9...model problem (2.2) (2.3) is a classical case of the elliptic equation problem on a nonsmooth domain. The structure of this problem is well studied
Bellez, Sami; Bourlier, Christophe; Kubické, Gildas
2015-03-01
This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.
NASA Astrophysics Data System (ADS)
Rezazadeh, Ghader; Keyvani, Aliasghar; Sadeghi, Morteza H.; Bahrami, Manouchehr
2013-06-01
Effects of Ohmic resistance on MEMS/NEMS vibrating structures that have always been dismissed in some situations may cause important changes in resonance properties and impedance parameters of the MEMS/NEMS based circuits. In this paper it is aimed to present a theoretical model to precisely investigate the problem on a simple cantilever-substrate resonator. In this favor the Ohm's current law and charge conservation law have been merged to find a differential Equation for voltage propagation on the beam and because mostly nano structures are expected as the scope of the problem, modified couple stress theory is used to formulate the dynamic motion of the beam. The two governing equations were coupled and both nonlinear that have been solved simultaneously using a Galerkin based state space formulation. The obtained results that are in exact agreement with previous works show that dynamic pull-in voltage, switching time, and impedance of structure as a MEMS capacitor especially in frequencies higher than natural resonance frequency strongly relay on electrical resistance of the beam and substrate material.
NASA Astrophysics Data System (ADS)
Kiani, M.; Abdolali, A.; Safari, M.
2018-03-01
In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2018-04-01
We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.
Constructive methods of invariant manifolds for kinetic problems
NASA Astrophysics Data System (ADS)
Gorban, Alexander N.; Karlin, Iliya V.; Zinovyev, Andrei Yu.
2004-06-01
The concept of the slow invariant manifold is recognized as the central idea underpinning a transition from micro to macro and model reduction in kinetic theories. We present the Constructive Methods of Invariant Manifolds for model reduction in physical and chemical kinetics, developed during last two decades. The physical problem of reduced description is studied in the most general form as a problem of constructing the slow invariant manifold. The invariance conditions are formulated as the differential equation for a manifold immersed in the phase space ( the invariance equation). The equation of motion for immersed manifolds is obtained ( the film extension of the dynamics). Invariant manifolds are fixed points for this equation, and slow invariant manifolds are Lyapunov stable fixed points, thus slowness is presented as stability. A collection of methods to derive analytically and to compute numerically the slow invariant manifolds is presented. Among them, iteration methods based on incomplete linearization, relaxation method and the method of invariant grids are developed. The systematic use of thermodynamics structures and of the quasi-chemical representation allow to construct approximations which are in concordance with physical restrictions. The following examples of applications are presented: nonperturbative deviation of physically consistent hydrodynamics from the Boltzmann equation and from the reversible dynamics, for Knudsen numbers Kn∼1; construction of the moment equations for nonequilibrium media and their dynamical correction (instead of extension of list of variables) to gain more accuracy in description of highly nonequilibrium flows; determination of molecules dimension (as diameters of equivalent hard spheres) from experimental viscosity data; model reduction in chemical kinetics; derivation and numerical implementation of constitutive equations for polymeric fluids; the limits of macroscopic description for polymer molecules, etc.
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedman, P.
1984-01-01
This report presents a set of governing coupled differential equations for a model of a hybrid aircraft. The model consists of multiple rotor systems connected by an elastic interconnecting structure, with options to add any combination of or all of the following components; i.e., thrusters, a buoyant hull, and an underslung weight. The dynamic equations are written for the individual blade with hub motions, for the rigid body motions of the whole model, and also for the flexible modes of the interconnecting structure. One of the purposes of this study is to serve as the basis of a numerical study aimed at determining the aeroelastic stability and structural response characteristics of a Hybrid Heavy Lift Airship (HHLA). It is also expected that the formulation may be applicable to analyzing stability and responses of dual rotor helicopters such as a Heavy Lift Helicopter (HLH). Futhermore, the model is capable of representing coupled rotor/body aeromechanical problems of single rotor helicopters.
Three dimensional iterative beam propagation method for optical waveguide devices
NASA Astrophysics Data System (ADS)
Ma, Changbao; Van Keuren, Edward
2006-10-01
The finite difference beam propagation method (FD-BPM) is an effective model for simulating a wide range of optical waveguide structures. The classical FD-BPMs are based on the Crank-Nicholson scheme, and in tridiagonal form can be solved using the Thomas method. We present a different type of algorithm for 3-D structures. In this algorithm, the wave equation is formulated into a large sparse matrix equation which can be solved using iterative methods. The simulation window shifting scheme and threshold technique introduced in our earlier work are utilized to overcome the convergence problem of iterative methods for large sparse matrix equation and wide-angle simulations. This method enables us to develop higher-order 3-D wide-angle (WA-) BPMs based on Pade approximant operators and the multistep method, which are commonly used in WA-BPMs for 2-D structures. Simulations using the new methods will be compared to the analytical results to assure its effectiveness and applicability.
Hodgins, David C; Williams, Robert; Munro, Gordon
2009-01-01
The objectives of this study were to determine the prevalence of alcohol use and problems among employed individuals in Alberta, Canada (N = 1,890), and to conduct a multivariate examination of predictors of alcohol consumption-related problems. General alcohol problems were identified by 10%, although very few workers described any specific work-related alcohol problems (1%). Structural equation modeling revealed that, as hypothesized, workplace alcohol availability predicted general alcohol problems. Job responsibility and workplace norms also predicted alcohol problems but only for men. Perceived work stress did not predict alcohol problems. Results support the development of interventions that focus on re-shaping alcohol use norms.
Electromagnetic scattering of large structures in layered earths using integral equations
NASA Astrophysics Data System (ADS)
Xiong, Zonghou; Tripp, Alan C.
1995-07-01
An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.
High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
Kim, Tae-Yeon; Cassiani, Massimo; Albertson, John D; Dolbow, John E; Fried, Eliot; Gurtin, Morton E
2009-04-01
We study the effect of the length scales alpha and beta in the Navier-Stokes- alphabeta equations on the energy spectrum and the alignment between the vorticity and the eigenvectors of the stretching tensor in three-dimensional homogeneous and isotropic turbulent flows in a periodic cubic domain, including the limiting cases of the Navier-Stokes- alpha and Navier-Stokes equations. A significant increase in the accuracy of the energy spectrum at large wave numbers arises for beta
Koopman decomposition of Burgers' equation: What can we learn?
NASA Astrophysics Data System (ADS)
Page, Jacob; Kerswell, Rich
2017-11-01
Burgers' equation is a well known 1D model of the Navier-Stokes equations and admits a selection of equilibria and travelling wave solutions. A series of Burgers' trajectories are examined with Dynamic Mode Decomposition (DMD) to probe the capability of the method to extract coherent structures from ``run-down'' simulations. The performance of the method depends critically on the choice of observable. We use the Cole-Hopf transformation to derive an observable which has linear, autonomous dynamics and for which the DMD modes overlap exactly with Koopman modes. This observable can accurately predict the flow evolution beyond the time window of the data used in the DMD, and in that sense outperforms other observables motivated by the nonlinearity in the governing equation. The linearizing observable also allows us to make informed decisions about often ambiguous choices in nonlinear problems, such as rank truncation and snapshot spacing. A number of rules of thumb for connecting DMD with the Koopman operator for nonlinear PDEs are distilled from the results. Related problems in low Reynolds number fluid turbulence are also discussed.
Gyrodampers for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1979-01-01
The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.
A selfsimilar behavior of the urban structure in the spatially inhomogeneous model
NASA Astrophysics Data System (ADS)
Echkina, E. Y.; Inovenkov, O. I.; Kostomarov, D. P.
2006-03-01
At present there is a strong tendency to use new methods for the description of the regional and spatial economy. In increasing frequency we consider that any economic activity is spatially dependent. The problem of the evolution of internal urban formation can be described with the exact supposition. So that is why we use partial derivative equations set with the appropriate boundary and initial conditions for the solving the problem of the urban evolution. Here we describe the model of urban population's density modification taking into account a modification of the housing quality. A program has been created which realizes difference method of mixed problem solution for population's density. For the wide class of coefficients it has been shown that the problem's solution “quickly forgets” the parts of the initial conditions and comes out to the intermediate asymptotic form, which nature depends only on the problem's operator. Actually it means that the urban structure does not depend on external circumstances and is formed by the internal structure of the model.
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Numerical Solution of the Three-Dimensional Navier-Stokes Equation.
1982-03-01
compressible, viscous fluid in an arbitrary geometry. We wish to use a grid generating scheme so we assume that the geometry of the physical problem given in...bian J of the mapping are provided. (For work on grid generating schemes see [4], [5] or [6).) Hence we must solve the following system of equations...these limitations the data structure used in the ILLIAC code is to partition the grid into 8 x 8 x 8 blocks. A row of these blocks in a given
A model for tides and currents in the English Channel and southern North Sea
NASA Astrophysics Data System (ADS)
Walters, Roy. A.
The amplitude and phase of 11 tidal constituents for the English Channel and southern North Sea are calculated using a frequency domain, finite element model. The governing equations — the shallow water equations — are modifed such that sea level is calculated using an elliptic equation of the Helmholz type followed by a back-calculation of velocity using the primitive momentum equations. Triangular elements with linear basis functions are used. The modified form of the governing equations provides stable solutions with little numerical noise. In this field-scale test problem, the model was able to produce the details of the structure of 11 tidal constituents including O 1, K 1, M 2, S 2, N 2, K 2, M 4, MS 4, MN 4, M 6, and 2MS 6.
Active stability augmentation of large space structures: A stochastic control problem
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1987-01-01
A problem in SCOLE is that of slewing an offset antenna on a long flexible beam-like truss attached to the space shuttle, with rather stringent pointing accuracy requirements. The relevant methodology aspects in robust feedback-control design for stability augmentation of the beam using on-board sensors is examined. It is framed as a stochastic control problem, boundary control of a distributed parameter system described by partial differential equations. While the framework is mathematical, the emphasis is still on an engineering solution. An abstract mathematical formulation is developed as a nonlinear wave equation in a Hilbert space. That the system is controllable is shown and a feedback control law that is robust in the sense that it does not require quantitative knowledge of system parameters is developed. The stochastic control problem that arises in instrumenting this law using appropriate sensors is treated. Using an engineering first approximation which is valid for small damping, formulas for optimal choice of the control gain are developed.
Problems of Mathematical Finance by Stochastic Control Methods
NASA Astrophysics Data System (ADS)
Stettner, Łukasz
The purpose of this paper is to present main ideas of mathematics of finance using the stochastic control methods. There is an interplay between stochastic control and mathematics of finance. On the one hand stochastic control is a powerful tool to study financial problems. On the other hand financial applications have stimulated development in several research subareas of stochastic control in the last two decades. We start with pricing of financial derivatives and modeling of asset prices, studying the conditions for the absence of arbitrage. Then we consider pricing of defaultable contingent claims. Investments in bonds lead us to the term structure modeling problems. Special attention is devoted to historical static portfolio analysis called Markowitz theory. We also briefly sketch dynamic portfolio problems using viscosity solutions to Hamilton-Jacobi-Bellman equation, martingale-convex analysis method or stochastic maximum principle together with backward stochastic differential equation. Finally, long time portfolio analysis for both risk neutral and risk sensitive functionals is introduced.
A three-dimensional wide-angle BPM for optical waveguide structures.
Ma, Changbao; Van Keuren, Edward
2007-01-22
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
A three-dimensional wide-angle BPM for optical waveguide structures
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2007-01-01
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
Steady-State Solution of a Flexible Wing
NASA Technical Reports Server (NTRS)
Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh
1997-01-01
A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.
Computational methods for the identification of spatially varying stiffness and damping in beams
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1986-01-01
A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourmatin, Hossein, E-mail: mpourmat@andrew.cmu.edu; Dayal, Kaushik, E-mail: kaushik@cmu.edu
2016-10-15
Graphical abstract: - Abstract: We consider the scattering of incident plane-wave electrons from a defect in a crystal modeled by the time-harmonic Schrödinger equation. While the defect potential is localized, the far-field potential is periodic, unlike standard free-space scattering problems. Previous work on the Schrödinger equation has been almost entirely in free-space conditions; a few works on crystals have been in one-dimension. We construct absorbing boundary conditions for this problem using perfectly matched layers in a tight-binding formulation. Using the example of a point defect in graphene, we examine the efficiency and convergence of the proposed absorbing boundary condition.
NASA Astrophysics Data System (ADS)
Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio
2017-11-01
almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo
Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong
2015-11-01
The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Norrie, D. H.; De Vries, G.
1979-01-01
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions
The role of under-determined approximations in engineering and science application
NASA Technical Reports Server (NTRS)
Carpenter, William C.
1992-01-01
There is currently a great deal of interest in using response surfaces in the optimization of aircraft performance. The objective function and/or constraint equations involved in these optimization problems may come from numerous disciplines such as structures, aerodynamics, environmental engineering, etc. In each of these disciplines, the mathematical complexity of the governing equations usually dictates that numerical results be obtained from large computer programs such as a finite element method program. Thus, when performing optimization studies, response surfaces are a convenient way of transferring information from the various disciplines to the optimization algorithm as opposed to bringing all the sundry computer programs together in a massive computer code. Response surfaces offer another advantage in the optimization of aircraft structures. A characteristic of these types of optimization problems is that evaluation of the objective function and response equations (referred to as a functional evaluation) can be very expensive in a computational sense. Because of the computational expense in obtaining functional evaluations, the present study was undertaken to investigate under-determinined approximations. An under-determined approximation is one in which there are fewer training pairs (pieces of information about a function) than there are undetermined parameters (coefficients or weights) associated with the approximation. Both polynomial approximations and neural net approximations were examined. Three main example problems were investigated: (1) a function of one design variable was considered; (2) a function of two design variables was considered; and (3) a 35 bar truss with 4 design variables was considered.
Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems
NASA Astrophysics Data System (ADS)
Mei, Lijie; Wu, Xinyuan
2017-06-01
Symplecticity is also an important property for exponential Runge-Kutta (ERK) methods in the sense of structure preservation once the underlying problem is a Hamiltonian system, though ERK methods provide a good performance of higher accuracy and better efficiency than classical Runge-Kutta (RK) methods in dealing with stiff problems: y‧ (t) = My + f (y). On account of this observation, the main theme of this paper is to derive and analyze the symplectic conditions for ERK methods. Using the fundamental analysis of geometric integrators, we first establish one class of sufficient conditions for symplectic ERK methods. It is shown that these conditions will reduce to the conventional ones when M → 0, and this means that these conditions of symplecticity are extensions of the conventional ones in the literature. Furthermore, we also present a new class of structure-preserving ERK methods possessing the remarkable property of symplecticity. Meanwhile, the revised stiff order conditions are proposed and investigated in detail. Since the symplectic ERK methods are implicit and iterative solutions are required in practice, we also investigate the convergence of the corresponding fixed-point iterative procedure. Finally, the numerical experiments, including a nonlinear Schrödinger equation, a sine-Gordon equation, a nonlinear Klein-Gordon equation, and the well-known Fermi-Pasta-Ulam problem, are implemented in comparison with the corresponding symplectic RK methods and the prominent numerical results definitely coincide with the theories and conclusions made in this paper.
Multimaterial topology optimization of contact problems using phase field regularization
NASA Astrophysics Data System (ADS)
Myśliński, Andrzej
2018-01-01
The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.
A reformulation of mechanics and electrodynamics.
Pinheiro, Mario J
2017-07-01
Classical mechanics, as commonly taught in engineering and science, are confined to the conventional Newtonian theory. But classical mechanics has not really changed in substance since Newton formulation, describing simultaneous rotation and translation of objects with somewhat complicate drawbacks, risking interpretation of forces in non-inertial frames. In this work we introduce a new variational principle for out-of-equilibrium, rotating systems, obtaining a set of two first order differential equations that introduces a thermodynamic-mechanistic time into Newton's dynamical equation, and revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. The results is a more consistent formulation of dynamics and electrodynamics, explaining natural phenomena as the outcome from a balance between energy and entropy, embedding translational with rotational motion into a single equation, showing centrifugal and Coriolis force as derivatives from the transport of angular momentum, and offering a natural method to handle variational problems, as shown with the brachistochrone problem. In consequence, a new force term appears, the topological torsion current, important for spacecraft dynamics. We describe a set of solved problems showing the potential of a competing technique, with significant interest to electrodynamics as well. We expect this new approach to have impact in a large class of scientific and technological problems.
Simple models for estimating local removals of timber in the northeast
David N. Larsen; David A. Gansner
1975-01-01
Provides a practical method of estimating subregional removals of timber and demonstrates its application to a typical problem. Stepwise multiple regression analysis is used to develop equations for estimating removals of softwood, hardwood, and all timber from selected characteristics of socioeconomic structure.
Model verification of large structural systems
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1977-01-01
A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.
NASA Astrophysics Data System (ADS)
Nosov, V. V.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.
2017-11-01
The structure of air turbulent motion inside the closed dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory of the Russian Academy of Sciences (RAS) has been experimentally and theoretically studied. Theoretical results have been reached by numerical solving of boundary value problem for Navier-Stokes equations. Solitary large vortices (coherent structures, topological solitons) are observed indoors. Coherent breakdown of these vortices leads to the coherent turbulence. In the case of identical boundary conditions the pattern of air motions as a result of the simulation and the pattern, registered experimentally using the compact portable ultrasonic weather station, are practically the same.
NASA Astrophysics Data System (ADS)
Sarna, Neeraj; Torrilhon, Manuel
2018-01-01
We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.
Corrected goodness-of-fit test in covariance structure analysis.
Hayakawa, Kazuhiko
2018-05-17
Many previous studies report simulation evidence that the goodness-of-fit test in covariance structure analysis or structural equation modeling suffers from the overrejection problem when the number of manifest variables is large compared with the sample size. In this study, we demonstrate that one of the tests considered in Browne (1974) can address this long-standing problem. We also propose a simple modification of Satorra and Bentler's mean and variance adjusted test for non-normal data. A Monte Carlo simulation is carried out to investigate the performance of the corrected tests in the context of a confirmatory factor model, a panel autoregressive model, and a cross-lagged panel (panel vector autoregressive) model. The simulation results reveal that the corrected tests overcome the overrejection problem and outperform existing tests in most cases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Lee, Dong-Gwi; Park, Hyun-Joo; Heppner, Mary J
2009-12-01
Using Heppner, et al.'s data from 2004, this study tested career counseling clients in the United States on problem-solving appraisal scores and career-related variables. A cross-lagged panel design with structural equation modeling was used. Results supported the link between clients' precounseling problem-solving appraisal scores and career outcome. This finding held for career decision-making, but not for vocational identity. The study provided further support for Heppner, et al.'s findings, highlighting the influential role of clients' problem-solving appraisals in advancing their career decision-making processes.
The Sharma-Parthasarathy stochastic two-body problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cresson, J.; SYRTE/Observatoire de Paris, 75014 Paris; Pierret, F.
2015-03-15
We study the Sharma-Parthasarathy stochastic two-body problem introduced by Sharma and Parthasarathy in [“Dynamics of a stochastically perturbed two-body problem,” Proc. R. Soc. A 463, 979-1003 (2007)]. In particular, we focus on the preservation of some fundamental features of the classical two-body problem like the Hamiltonian structure and first integrals in the stochastic case. Numerical simulations are performed which illustrate the dynamical behaviour of the osculating elements as the semi-major axis, the eccentricity, and the pericenter. We also derive a stochastic version of Gauss’s equations in the planar case.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei
2013-04-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.
Validation of optimization strategies using the linear structured production chains
NASA Astrophysics Data System (ADS)
Kusiak, Jan; Morkisz, Paweł; Oprocha, Piotr; Pietrucha, Wojciech; Sztangret, Łukasz
2017-06-01
Different optimization strategies applied to sequence of several stages of production chains were validated in this paper. Two benchmark problems described by ordinary differential equations (ODEs) were considered. A water tank and a passive CR-RC filter were used as the exemplary objects described by the first and the second order differential equations, respectively. Considered in the work optimization problems serve as the validators of strategies elaborated by the Authors. However, the main goal of research is selection of the best strategy for optimization of two real metallurgical processes which will be investigated in an on-going projects. The first problem will be the oxidizing roasting process of zinc sulphide concentrate where the sulphur from the input concentrate should be eliminated and the minimal concentration of sulphide sulphur in the roasted products has to be achieved. Second problem will be the lead refining process consisting of three stages: roasting to the oxide, oxide reduction to metal and the oxidizing refining. Strategies, which appear the most effective in considered benchmark problems will be candidates for optimization of the mentioned above industrial processes.
NASA Astrophysics Data System (ADS)
Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.
2018-05-01
A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
NASA Technical Reports Server (NTRS)
Mei, Chuh; Shi, Yacheng
1997-01-01
A coupled finite element (FE) and boundary element (BE) approach is presented to model full coupled structural/acoustic/piezoelectric systems. The dual reciprocity boundary element method is used so that the natural frequencies and mode shapes of the coupled system can be obtained, and to extend this approach to time dependent problems. The boundary element method is applied to interior acoustic domains, and the results are very accurate when compared with limited exact solutions. Structural-acoustic problems are then analyzed with the coupled finite element/boundary element method, where the finite element method models the structural domain and the boundary element method models the acoustic domain. Results for a system consisting of an isotropic panel and a cubic cavity are in good agreement with exact solutions and experiment data. The response of a composite panel backed cavity is then obtained. The results show that the mass and stiffness of piezoelectric layers have to be considered. The coupled finite element and boundary element equations are transformed into modal coordinates, which is more convenient for transient excitation. Several transient problems are solved based on this formulation. Two control designs, a linear quadratic regulator (LQR) and a feedforward controller, are applied to reduce the acoustic pressure inside the cavity based on the equations in modal coordinates. The results indicate that both controllers can reduce the interior acoustic pressure and the plate deflection.
Structural identifiability of cyclic graphical models of biological networks with latent variables.
Wang, Yulin; Lu, Na; Miao, Hongyu
2016-06-13
Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.
NASA Astrophysics Data System (ADS)
Arora, Shitij; Fourment, Lionel
2018-05-01
In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.
Identification of time-varying structural dynamic systems - An artificial intelligence approach
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1992-01-01
An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.
On the mechanics of stress analysis of fiber-reinforced composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, V.G.
A general mathematical formulation is developed for the three-dimensional inclusion and inhomogeneity problems, which are practically important in many engineering applications such as fiber pullout of reinforced composites, load transfer behavior in the stiffened structural components, and material defects and impurities existing in engineering materials. First, the displacement field (Green's function) for an elastic solid subjected to various distributions of ring loading is derived in closed form using the Papkovich-Neuber displacement potentials and the Hankel transforms. The Green's functions are used to derive the displacement and stress fields due to a finite cylindrical inclusion of prescribed dilatational eigenstrain such asmore » thermal expansion caused by an internal heat source. Unlike an elliptical inclusion, the interior stress field in the cylindrical inclusion is not uniform. Next, the three-dimensional inhomogeneity problem of a cylindrical fiber embedded in an infinite matrix of different material properties is considered to study load transfer of a finite fiber to an elastic medium. By using the equivalent inclusion method, the fiber is modeled as an inclusion with distributed eigenstrains of unknown strength, and the inhomogeneity problem can be treated as an equivalent inclusion problem. The eigenstrains are determined to simulate the disturbance due to the existing fiber. The equivalency of elastic field between inhomogeneity and inclusion problems leads to a set of integral equations. To solve the integral equations, the inclusion domain is discretized into a finite number of sub-inclusions with uniform eigenstrains, and the integral equations are reduced to a set of algebraic equations. The distributions of eigenstrains, interior stress field and axial force along the fiber are presented for various fiber lengths and the ratio of material properties of the fiber relative to the matrix.« less
Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khamlichi, A.; Jezequel, L.; Jacques, Y.
1995-11-01
Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less
The Problems of Contemporary Education
ERIC Educational Resources Information Center
Akar, Hüseyin; Dogan, Yildiz Burcu; Üstüner, Mehmet
2018-01-01
This research aimed to investigate the relationships between positive and negative perfectionisms, self-handicapping, self-efficacy and academic achievement. For this purpose, an extensive literature review was conducted and a model was suggested. Structural equation model was employed to test the model. The study group of the research consisted…
Stencils and problem partitionings: Their influence on the performance of multiple processor systems
NASA Technical Reports Server (NTRS)
Reed, D. A.; Adams, L. M.; Patrick, M. L.
1986-01-01
Given a discretization stencil, partitioning the problem domain is an important first step for the efficient solution of partial differential equations on multiple processor systems. Partitions are derived that minimize interprocessor communication when the number of processors is known a priori and each domain partition is assigned to a different processor. This partitioning technique uses the stencil structure to select appropriate partition shapes. For square problem domains, it is shown that non-standard partitions (e.g., hexagons) are frequently preferable to the standard square partitions for a variety of commonly used stencils. This investigation is concluded with a formalization of the relationship between partition shape, stencil structure, and architecture, allowing selection of optimal partitions for a variety of parallel systems.
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria
2010-02-15
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less
Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations
NASA Astrophysics Data System (ADS)
Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav
2018-01-01
Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2013-12-01
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.
Equilibrium theory for braided elastic filaments
NASA Astrophysics Data System (ADS)
van der Heijden, Gert
Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.
Theory of equilibria of elastic braids with applications to DNA supercoiling
NASA Astrophysics Data System (ADS)
van der Heijden, Gert; Starostin, Eugene
2014-03-01
Motivated by supercoiling of DNA and other filamentous structures, we formulate a new theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is solved for. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Both open braid and closed braid solutions (links and knots) are computed and current applications to DNA supercoiling are discussed. Research supported by EPSRC and HFSP.
Randomly Sampled-Data Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Han, Kuoruey
1990-01-01
The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.
NASA Astrophysics Data System (ADS)
Shul'man, A. Ya; Posvyanskii, D. V.
2014-05-01
The density functional approach in the Kohn-Sham approximation is widely used to study properties of many-electron systems. Due to the nonlinearity of the Kohn-Sham equations, the general self-consistent solution method for infinite systems involves iterations with alternate solutions of the Poisson and Schrödinger equations. One of problems with such an approach is that the charge distribution, updated by solving the Schrodinger equation, may be incompatible with the boundary conditions of the Poisson equation for Coulomb potential. The resulting instability or divergence manifests itself most appreciably in the case of infinitely extended systems because the corresponding boundary-value problem becomes singular. In this work the stable iterative scheme for solving the Kohn-Sham equations for infinite systems with inhomogeneous electron gas is described based on eliminating the long-range character of the Coulomb interaction, which causes the tight coupling of the charge distribution with the boundary conditions. This algorithm has been previously successfully implemented in the calculation of work function and surface energy of simple metals in the jellium model. Here it is used to calculate the energy spectrum of quasi-two-dimensional electron gas in the accumulation layer at the semiconductor surface n-InAs. The electrons in such a structure occupy states that belong to both discrete and continuous parts of the energy spectrum. This causes the problems of convergence in the usually used approaches, which do not exist in our case. Because of the narrow bandgap of InAs, it is necessary to take the nonparabolicity of the conduction band into account; this is done by means of a new effective mass method. The calculated quasi-two-dimensional energy bands correspond well to experimental data measured by the angle resolved photoelectron spectroscopy technique.
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
Textbook Forum: The Nernst Equation in High School Textbooks.
ERIC Educational Resources Information Center
Perrine, Daniel M.
1984-01-01
Presents a problem on nonstandard concentrations at nonstandard temperature modeled after an example problem on the Nernst equation found in a high school chemistry textbook. Discusses why the problem is incorrect, offering a second problem which is correctly solved. Implications for teaching the Nernst equation are considered. (JN)
A Mathematical Formulation of the SCOLE Control Problem. Part 2: Optimal Compensator Design
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1988-01-01
The study initiated in Part 1 of this report is concluded and optimal feedback control (compensator) design for stability augmentation is considered, following the mathematical formulation developed in Part 1. Co-located (rate) sensors and (force and moment) actuators are assumed, and allowing for both sensor and actuator noise, stabilization is formulated as a stochastic regulator problem. Specializing the general theory developed by the author, a complete, closed form solution (believed to be new with this report) is obtained, taking advantage of the fact that the inherent structural damping is light. In particular, it is possible to solve in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE model involves associated partial differential equations in a single space variable, but the compensator design theory developed is far more general since it is given in the abstract wave equation formulation. The results thus hold for any multibody system so long as the basic model is linear.
On the Milankovitch orbital elements for perturbed Keplerian motion
NASA Astrophysics Data System (ADS)
Rosengren, Aaron J.; Scheeres, Daniel J.
2014-03-01
We consider sets of natural vectorial orbital elements of the Milankovitch type for perturbed Keplerian motion. These elements are closely related to the two vectorial first integrals of the unperturbed two-body problem; namely, the angular momentum vector and the Laplace-Runge-Lenz vector. After a detailed historical discussion of the origin and development of such elements, nonsingular equations for the time variations of these sets of elements under perturbations are established, both in Lagrangian and Gaussian form. After averaging, a compact, elegant, and symmetrical form of secular Milankovitch-like equations is obtained, which reminds of the structure of canonical systems of equations in Hamiltonian mechanics. As an application of this vectorial formulation, we analyze the motion of an object orbiting about a planet (idealized as a point mass moving in a heliocentric elliptical orbit) and subject to solar radiation pressure acceleration (obeying an inverse-square law). We show that the corresponding secular problem is integrable and we give an explicit closed-form solution.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
NASA Astrophysics Data System (ADS)
Wang, Y. B.; Zhu, X. W.; Dai, H. H.
2016-08-01
Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less
A stable partitioned FSI algorithm for incompressible flow and deforming beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu
2016-05-01
An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less
Solutions to an advanced functional partial differential equation of the pantograph type
Zaidi, Ali A.; Van Brunt, B.; Wake, G. C.
2015-01-01
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained. PMID:26345391
Solutions to an advanced functional partial differential equation of the pantograph type.
Zaidi, Ali A; Van Brunt, B; Wake, G C
2015-07-08
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
Tenth NASTRAN User's Colloquium
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the NASTRAN computer program, a general purpose finite element computer code for structural analysis, was discussed. The application and development of NASTRAN is presented in the following topics: improvements and enhancements; developments of pre and postprocessors; interactive review system; the use of harmonic expansions in magnetic field problems; improving a dynamic model with test data using Linwood; solution of axisymmetric fluid structure interaction problems; large displacements and stability analysis of nonlinear propeller structures; prediction of bead area contact load at the tire wheel interface; elastic plastic analysis of an overloaded breech ring; finite element solution of torsion and other 2-D Poisson equations; new capability for elastic aircraft airloads; usage of substructuring analysis in the get away special program; solving symmetric structures with nonsymmetric loads; evaluation and reduction of errors induced by Guyan transformation.
Equivalent formulations of “the equation of life”
NASA Astrophysics Data System (ADS)
Ao, Ping
2014-07-01
Motivated by progress in theoretical biology a recent proposal on a general and quantitative dynamical framework for nonequilibrium processes and dynamics of complex systems is briefly reviewed. It is nothing but the evolutionary process discovered by Charles Darwin and Alfred Wallace. Such general and structured dynamics may be tentatively named “the equation of life”. Three equivalent formulations are discussed, and it is also pointed out that such a quantitative dynamical framework leads naturally to the powerful Boltzmann-Gibbs distribution and the second law in physics. In this way, the equation of life provides a logically consistent foundation for thermodynamics. This view clarifies a particular outstanding problem and further suggests a unifying principle for physics and biology.
Aeroelasticity of wing and wing-body configurations on parallel computers
NASA Technical Reports Server (NTRS)
Byun, Chansup
1995-01-01
The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Level set immersed boundary method for gas-liquid-solid interactions with phase-change
NASA Astrophysics Data System (ADS)
Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho
2017-11-01
We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.
Rosen, Lisa H.; Underwood, Marion K.; Beron, Kurt J.
2011-01-01
This study examined the relations between facial attractiveness, peer victimization, and internalizing problems in early adolescence. We hypothesized that experiences of peer victimization would partially mediate the relationship between attractiveness and internalizing problems. Ratings of attractiveness were obtained from standardized photographs of participants (93 girls, 82 boys). Teachers provided information regarding peer victimization experiences in sixth grade, and seventh grade teachers assessed internalizing problems. Attractiveness was negatively correlated with victimization and internalizing problems. Experiences of peer victimization were positively correlated with internalizing problems. Structural equation modeling provided support for the hypothesized model of peer victimization partially mediating the relationship between attractiveness and internalizing problems. Implications for intervention programs and future research directions are discussed. PMID:21984861
Molecular Mechanics: The Method and Its Underlying Philosophy.
ERIC Educational Resources Information Center
Boyd, Donald B.; Lipkowitz, Kenny B.
1982-01-01
Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…
Solution to the Boltzmann equation for layered systems for current perpendicular to the planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, W. H.; Zhang, X.-G.; MacLaren, J. M.
2000-05-01
Present theories of giant magnetoresistance (GMR) for current perpendicular to the planes (CPP) are based on an extremely restricted solution to the Boltzmann equation that assumes a single free electron band structure for all layers and all spin channels. Within this model only the scattering rate changes from one layer to the next. This model leads to the remarkable result that the resistance of a layered material is simply the sum of the resistances of each layer. We present a solution to the Boltzmann equation for CPP for the case in which the electronic structure can be different for differentmore » layers. The problem of matching boundary conditions between layers is much more complicated than in the current in the planes (CIP) geometry because it is necessary to include the scattering-in term of the Boltzmann equation even for the case of isotropic scattering. This term couples different values of the momentum parallel to the planes. When the electronic structure is different in different layers there is an interface resistance even in the absence of intermixing of the layers. The size of this interface resistance is affected by the electronic structure, scattering rates, and thicknesses of nearby layers. For Co-Cu, the calculated interface resistance and its spin asymmetry is comparable to that measured at low temperature in sputtered samples. (c) 2000 American Institute of Physics.« less
Estimation of health effects of prenatal methylmercury exposure using structural equation models.
Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe; Weihe, Pal
2002-10-14
Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.
Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu
2017-01-01
Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants' sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model's fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the "start of relationships" subscales. Structural equation modeling revealed that the values for "start of relationships" had a direct effect on VAS values (path coefficient =0.32, p <0.01). In addition, the "start of relationships" had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition.
SPH modeling of fluid-structure interaction
NASA Astrophysics Data System (ADS)
Han, Luhui; Hu, Xiangyu
2018-02-01
This work concerns numerical modeling of fluid-structure interaction (FSI) problems in a uniform smoothed particle hydrodynamics (SPH) framework. It combines a transport-velocity SPH scheme, advancing fluid motions, with a total Lagrangian SPH formulation dealing with the structure deformations. Since both fluid and solid governing equations are solved in SPH framework, while coupling becomes straightforward, the momentum conservation of the FSI system is satisfied strictly. A well-known FSI benchmark test case has been performed to validate the modeling and to demonstrate its potential.
The Multiple-Minima Problem in Protein Folding
NASA Astrophysics Data System (ADS)
Scheraga, Harold A.
1991-10-01
The conformational energy surface of a polypeptide or protein has many local minima, and conventional energy minimization procedures reach only a local minimum (near the starting point of the optimization algorithm) instead of the global minimum (the multiple-minima problem). Several procedures have been developed to surmount this problem, the most promising of which are: (a) build up procedure, (b) optimization of electrostatics, (c) Monte Carlo-plus-energy minimization, (d) electrostatically-driven Monte Carlo, (e) inclusion of distance restraints, (f) adaptive importance-sampling Monte Carlo, (g) relaxation of dimensionality, (h) pattern-recognition, and (i) diffusion equation method. These procedures have been applied to a variety of polypeptide structural problems, and the results of such computations are presented. These include the computation of the structures of open-chain and cyclic peptides, fibrous proteins and globular proteins. Present efforts are being devoted to scaling up these procedures from small polypeptides to proteins, to try to compute the three-dimensional structure of a protein from its amino sequence.
On the stability of equilibrium for a reformulated foreign trade model of three countries
NASA Astrophysics Data System (ADS)
Dassios, Ioannis K.; Kalogeropoulos, Grigoris
2014-06-01
In this paper, we study the stability of equilibrium for a foreign trade model consisting of three countries. As the gravity equation has been proven an excellent tool of analysis and adequately stable over time and space all over the world, we further enhance the problem to three masses. We use the basic Structure of Heckscher-Ohlin-Samuelson model. The national income equals consumption outlays plus investment plus exports minus imports. The proposed reformulation of the problem focus on two basic concepts: (1) the delay inherited in our economic variables and (2) the interaction effect along the three economies involved. Stability and stabilizability conditions are investigated while numerical examples provide further insight and better understanding. Finally, a generalization of the gravity equation is somehow obtained for the model.
Design of Flight Vehicle Management Systems
NASA Technical Reports Server (NTRS)
Meyer, George; Aiken, Edwin W. (Technical Monitor)
1994-01-01
As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possess much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
Nonlinear Control and Discrete Event Systems
NASA Technical Reports Server (NTRS)
Meyer, George; Null, Cynthia H. (Technical Monitor)
1995-01-01
As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.
Large gyres as a shallow-water asymptotic solution of Euler's equation in spherical coordinates
NASA Astrophysics Data System (ADS)
Constantin, A.; Johnson, R. S.
2017-04-01
Starting from the Euler equation expressed in a rotating frame in spherical coordinates, coupled with the equation of mass conservation and the appropriate boundary conditions, a thin-layer (i.e. shallow water) asymptotic approximation is developed. The analysis is driven by a single, overarching assumption based on the smallness of one parameter: the ratio of the average depth of the oceans to the radius of the Earth. Consistent with this, the magnitude of the vertical velocity component through the layer is necessarily much smaller than the horizontal components along the layer. A choice of the size of this speed ratio is made, which corresponds, roughly, to the observational data for gyres; thus the problem is characterized by, and reduced to an analysis based on, a single small parameter. The nonlinear leading-order problem retains all the rotational contributions of the moving frame, describing motion in a thin spherical shell. There are many solutions of this system, corresponding to different vorticities, all described by a novel vorticity equation: this couples the vorticity generated by the spin of the Earth with the underlying vorticity due to the movement of the oceans. Some explicit solutions are obtained, which exhibit gyre-like flows of any size; indeed, the technique developed here allows for many different choices of the flow field and of any suitable free-surface profile. We comment briefly on the next order problem, which provides the structure through the layer. Some observations about the new vorticity equation are given, and a brief indication of how these results can be extended is offered.
A superlinear convergence estimate for an iterative method for the biharmonic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, M.A.
In [CDH] a method for the solution of boundary value problems for the biharmonic equation using conformal mapping was investigated. The method is an implementation of the classical method of Muskhelishvili. In [CDH] it was shown, using the Hankel structure, that the linear system in [Musk] is the discretization of the identify plus a compact operator, and therefore the conjugate gradient method will converge superlinearly. The purpose of this paper is to give an estimate of the superlinear convergence in the case when the boundary curve is in a Hoelder class.
NASA Astrophysics Data System (ADS)
Raeli, Alice; Bergmann, Michel; Iollo, Angelo
2018-02-01
We consider problems governed by a linear elliptic equation with varying coefficients across internal interfaces. The solution and its normal derivative can undergo significant variations through these internal boundaries. We present a compact finite-difference scheme on a tree-based adaptive grid that can be efficiently solved using a natively parallel data structure. The main idea is to optimize the truncation error of the discretization scheme as a function of the local grid configuration to achieve second-order accuracy. Numerical illustrations are presented in two and three-dimensional configurations.
Efficient dynamic modeling of manipulators containing closed kinematic loops
NASA Astrophysics Data System (ADS)
Ferretti, Gianni; Rocco, Paolo
An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.
Anomalous sea surface structures as an object of statistical topography
NASA Astrophysics Data System (ADS)
Klyatskin, V. I.; Koshel, K. V.
2015-06-01
By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.
Bogg, Tim; Finn, Peter R.
2011-01-01
Two samples with heterogeneous prevalence of externalizing psychopathology were used to investigate the structure of self-regulatory models of behavioral disinhibition and cognitive capacity. Consistent with expectations, structural equation modeling in the first sample (N = 541) showed a hierarchical model with three lower-order factors of impulsive sensation-seeking, anti-sociality/unconventionality, and lifetime externalizing problem counts, with a behavioral disinhibition superfactor best accounted for the pattern of covariation among six disinhibited personality trait indicators and four externalizing problem indicators. The structure was replicated in a second sample (N = 463) and showed that the behavioral disinhibition superfactor, and not the lower-order impulsive sensation-seeking, anti-sociality/unconventionality, and externalizing problem factors, was associated with lower IQ, reduced short-term memory capacity, and reduced working memory capacity. The results provide a systemic and meaningful integration of major self-regulatory influences during a developmentally important stage of life. PMID:20433626
Remote sensing image stitch using modified structure deformation
NASA Astrophysics Data System (ADS)
Pan, Ke-cheng; Chen, Jin-wei; Chen, Yueting; Feng, Huajun
2012-10-01
To stitch remote sensing images seamlessly without producing visual artifact which is caused by severe intensity discrepancy and structure misalignment, we modify the original structure deformation based stitching algorithm which have two main problems: Firstly, using Poisson equation to propagate deformation vectors leads to the change of the topological relationship between the key points and their surrounding pixels, which may bring in wrong image characteristics. Secondly, the diffusion area of the sparse matrix is too limited to rectify the global intensity discrepancy. To solve the first problem, we adopt Spring-Mass model and bring in external force to keep the topological relationship between key points and their surrounding pixels. We also apply tensor voting algorithm to achieve the global intensity corresponding curve of the two images to solve the second problem. Both simulated and experimental results show that our algorithm is faster and can reach better result than the original algorithm.
Error analysis and correction of discrete solutions from finite element codes
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.
1984-01-01
Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.
NASA Astrophysics Data System (ADS)
Gavva, L. M.; Endogur, A. I.
2018-02-01
The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.
Algorithm For Optimal Control Of Large Structures
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Garba, John A..; Utku, Senol
1989-01-01
Cost of computation appears competitive with other methods. Problem to compute optimal control of forced response of structure with n degrees of freedom identified in terms of smaller number, r, of vibrational modes. Article begins with Hamilton-Jacobi formulation of mechanics and use of quadratic cost functional. Complexity reduced by alternative approach in which quadratic cost functional expressed in terms of control variables only. Leads to iterative solution of second-order time-integral matrix Volterra equation of second kind containing optimal control vector. Cost of algorithm, measured in terms of number of computations required, is of order of, or less than, cost of prior algoritms applied to similar problems.
Homogenization models for 2-D grid structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Cioranescu, D.; Rebnord, D. A.
1992-01-01
In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.
The instanton method and its numerical implementation in fluid mechanics
NASA Astrophysics Data System (ADS)
Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias
2015-08-01
A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.
Off-policy reinforcement learning for H∞ control design.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen
2015-01-01
The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.
NASA Astrophysics Data System (ADS)
Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.
2015-10-01
We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
NASA Technical Reports Server (NTRS)
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
The Distortion of a Body's Visible Shape at Relativistic Speeds
ERIC Educational Resources Information Center
Arkadiy, Leonov
2009-01-01
The problem of obtaining the apparent equation of motion and shape of a moving body from its arbitrary given equation of motion in special relativity is considered. Also the inverse problem of obtaining the body's equation of motion from a known equation of motion of its image is discussed. Some examples of this problem solution are considered. As…
NASA Astrophysics Data System (ADS)
Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.
2018-04-01
We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.
Courtney, Kelly E.; Arellano, Ryan; Barkley-Levenson, Emily; Gálvan, Adriana; Poldrack, Russell A.; MacKillop, James; Jentsch, J. David; Ray, Lara A.
2011-01-01
Background Higher levels of impulsivity have been implicated in the development of alcohol use disorders. Recent findings suggest that impulsivity is not a unitary construct, highlighted by the diverse ways in which the various measures of impulsivity relate to alcohol use outcomes. This study simultaneously tested the following dimensions of impulsivity as determinants of alcohol use and alcohol problems: risky decision-making, self-reported risk attitudes, response inhibition, and impulsive decision-making. Method Participants were a community sample of non-treatment seeking problem drinkers (N = 158). Structural Equation Modeling (SEM) analyses employed behavioral measures of impulsive decision-making (Delay Discounting Task, DDT), response inhibition (Stop Signal Task, SST), and risky decision-making (Balloon Analogue Risk Task, BART), and a self-report measure of risk attitudes (Domain-specific Risk-attitude Scale, DOSPERT), as predictors of alcohol use and of alcohol-related problems in this sample. Results The model fit well, accounting for 38% of the variance in alcohol problems, and identified two impulsivity dimensions that significantly loaded onto alcohol outcomes: (1) impulsive decision-making, indexed by the DDT; and (2) risky decision-making, measured by the BART. Conclusions The impulsive decision-making dimension of impulsivity, indexed by the DDT, was the strongest predictor of alcohol use and alcohol pathology in this sample of problem drinkers. Unexpectedly, a negative relationship was found between risky decision-making and alcohol problems. The results highlight the importance of considering the distinct facets of impulsivity in order to elucidate their individual and combined effects on alcohol use initiation, escalation, and dependence. PMID:22091877
NASA Astrophysics Data System (ADS)
Court, Sébastien; Fournié, Michel
2015-05-01
The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.
On numerical reconstructions of lithographic masks in DUV scatterometry
NASA Astrophysics Data System (ADS)
Henn, M.-A.; Model, R.; Bär, M.; Wurm, M.; Bodermann, B.; Rathsfeld, A.; Gross, H.
2009-06-01
The solution of the inverse problem in scatterometry employing deep ultraviolet light (DUV) is discussed, i.e. we consider the determination of periodic surface structures from light diffraction patterns. With decreasing dimensions of the structures on photo lithography masks and wafers, increasing demands on the required metrology techniques arise. Scatterometry as a non-imaging indirect optical method is applied to periodic line structures in order to determine the sidewall angles, heights, and critical dimensions (CD), i.e., the top and bottom widths. The latter quantities are typically in the range of tens of nanometers. All these angles, heights, and CDs are the fundamental figures in order to evaluate the quality of the manufacturing process. To measure those quantities a DUV scatterometer is used, which typically operates at a wavelength of 193 nm. The diffraction of light by periodic 2D structures can be simulated using the finite element method for the Helmholtz equation. The corresponding inverse problem seeks to reconstruct the grating geometry from measured diffraction patterns. Fixing the class of gratings and the set of measurements, this inverse problem reduces to a finite dimensional nonlinear operator equation. Reformulating the problem as an optimization problem, a vast number of numerical schemes can be applied. Our tool is a sequential quadratic programing (SQP) variant of the Gauss-Newton iteration. In a first step, in which we use a simulated data set, we investigate how accurate the geometrical parameters of an EUV mask can be reconstructed, using light in the DUV range. We then determine the expected uncertainties of geometric parameters by reconstructing from simulated input data perturbed by noise representing the estimated uncertainties of input data. In the last step, we use the measurement data obtained from the new DUV scatterometer at PTB to determine the geometrical parameters of a typical EUV mask with our reconstruction algorithm. The results are compared to the outcome of investigations with two alternative methods namely EUV scatterometry and SEM measurements.
GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan
2018-04-15
Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
ERIC Educational Resources Information Center
Savoye, Philippe
2009-01-01
In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.
Evolutionary optimization with data collocation for reverse engineering of biological networks.
Tsai, Kuan-Yao; Wang, Feng-Sheng
2005-04-01
Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.
Diagrams benefit symbolic problem-solving.
Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R
2017-06-01
The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.
An efficient numerical algorithm for transverse impact problems
NASA Technical Reports Server (NTRS)
Sankar, B. V.; Sun, C. T.
1985-01-01
Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.
A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type,
NONLINEAR DIFFERENTIAL EQUATIONS, INTEGRATION), (*PARTIAL DIFFERENTIAL EQUATIONS, BOUNDARY VALUE PROBLEMS), BANACH SPACE , MAPPING (TRANSFORMATIONS), SET THEORY, TOPOLOGY, ITERATIONS, STABILITY, THEOREMS
Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions
NASA Astrophysics Data System (ADS)
Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.
2018-04-01
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Ilhan, O. A.; Bulut, H.; Sulaiman, T. A.; Baskonus, H. M.
2018-02-01
In this study, the modified exp ( - Φ (η )) -expansion function method is used in constructing some solitary wave solutions to the Oskolkov-Benjamin-Bona-Mahony-Burgers, one-dimensional Oskolkov equations and the Dodd-Bullough-Mikhailov equation. We successfully construct some singular solitons and singular periodic waves solutions with the hyperbolic, trigonometric and exponential function structures to these three nonlinear models. Under the choice of some suitable values of the parameters involved, we plot the 2D and 3D graphics to some of the obtained solutions in this study. All the obtained solutions in this study verify their corresponding equation. We perform all the computations in this study with the help of the Wolfram Mathematica software. The obtained solutions in this study may be helpful in explaining some practical physical problems.
Buckling Modes of Structural Elements of Off-Axis Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Polyakova, N. V.; Kholmogorov, S. A.; Shishov, M. A.
2018-05-01
The structures of two types of unidirectional fiber-reinforced composites — with an ELUR-P carbon fiber tape, an XT-118 cold-cure binder with an HSE 180 REM prepreg, and a hot-cure binder — were investigated. The diameters of fibers and fiber bundles (threads) of both the types of composites were measured, and their mutual arrangement was examined both in the semifinished products (in the uncured state) and in the finished composites. The defects characteristic of both the types of binder and manufacturing technique were detected in the cured composites. Based on an analysis of the results obtained, linearized problems on the internal multiscale buckling modes of an individual fiber (with and without account of its interaction with the surrounding matrix) or of a fiber bundle are formulated. In the initial atate, these structural elements of the fibrous composites are in a subcritical (unperturbed) state under the action of shear stresses and tension (compression) in the transverse direction. Such an initial stress state is formed in them in tension and compression tests on flat specimens made of off-axis-reinforced composites with straight fibers. To formulate the problems, the equations derived earlier from a consistent variant of geometrically nonlinear equations of elasticity theory by reducing them to the one-dimensional equations of the theory of straight rods on the basis of a refined Timoshenko shear model with account of tensile-compressive strains in the transverse direction are used. It is shown that, in loading test specimens, a continuous rearrangement of composite structure can occur due to the realization and continuous change of internal buckling modes as the wave-formation parameter varies continuously, which apparently explain the decrease revealed in the tangential shear modulus of the fibrous composites with increasing shear strains.
Perspectives on the mathematics of biological patterning and morphogenesis
NASA Astrophysics Data System (ADS)
Garikipati, Krishna
2017-02-01
A central question in developmental biology is how size and position are determined. The genetic code carries instructions on how to control these properties in order to regulate the pattern and morphology of structures in the developing organism. Transcription and protein translation mechanisms implement these instructions. However, this cannot happen without some manner of sampling of epigenetic information on the current patterns and morphological forms of structures in the organism. Any rigorous description of space- and time-varying patterns and morphological forms reduces to one among various classes of spatio-temporal partial differential equations. Reaction-transport equations represent one such class. Starting from simple Fickian diffusion, the incorporation of reaction, phase segregation and advection terms can represent many of the patterns seen in the animal and plant kingdoms. Morphological form, requiring the development of three-dimensional structure, also can be represented by these equations of mass transport, albeit to a limited degree. The recognition that physical forces play controlling roles in shaping tissues leads to the conclusion that (nonlinear) elasticity governs the development of morphological form. In this setting, inhomogeneous growth drives the elasticity problem. The combination of reaction-transport equations with those of elasto-growth makes accessible a potentially unlimited spectrum of patterning and morphogenetic phenomena in developmental biology. This perspective communication is a survey of the partial differential equations of mathematical physics that have been proposed to govern patterning and morphogenesis in developmental biology. Several numerical examples are included to illustrate these equations and the corresponding physics, with the intention of providing physical insight wherever possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Jakeman, John; Gittelson, Claude
2015-01-08
In this paper we present a localized polynomial chaos expansion for partial differential equations (PDE) with random inputs. In particular, we focus on time independent linear stochastic problems with high dimensional random inputs, where the traditional polynomial chaos methods, and most of the existing methods, incur prohibitively high simulation cost. Furthermore, the local polynomial chaos method employs a domain decomposition technique to approximate the stochastic solution locally. In each subdomain, a subdomain problem is solved independently and, more importantly, in a much lower dimensional random space. In a postprocesing stage, accurate samples of the original stochastic problems are obtained frommore » the samples of the local solutions by enforcing the correct stochastic structure of the random inputs and the coupling conditions at the interfaces of the subdomains. Overall, the method is able to solve stochastic PDEs in very large dimensions by solving a collection of low dimensional local problems and can be highly efficient. In our paper we present the general mathematical framework of the methodology and use numerical examples to demonstrate the properties of the method.« less
Identification and feedback control in structures with piezoceramic actuators
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.; Wang, Y.
1992-01-01
In this lecture we give fundamental well-posedness results for a variational formulation of a class of damped second order partial differential equations with unbounded input or control coefficients. Included as special cases in this class are structures with piezoceramic actuators. We consider approximation techniques leading to computational methods in the context of both parameter estimation and feedback control problems for these systems. Rigorous convergence results for parameter estimates and feedback gains are discussed.
The Davey-Stewartson Equation on the Half-Plane
NASA Astrophysics Data System (ADS)
Fokas, A. S.
2009-08-01
The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.
Characterization of seismic hazard and structural response by energy flux
Afak, E.
2000-01-01
Seismic safety of structures depends on the structure's ability to absorb the seismic energy that is transmitted from ground to structure. One parameter that can be used to characterize seismic energy is the energy flux. Energy flux is defined as the amount of energy transmitted per unit time through a cross-section of a medium, and is equal to kinetic energy multiplied by the propagation velocity of seismic waves. The peak or the integral of energy flux can be used to characterize ground motions. By definition, energy flux automatically accounts for site amplification. Energy flux in a structure can be studied by formulating the problem as a wave propagation problem. For buildings founded on layered soil media and subjected to vertically incident plane shear waves, energy flux equations are derived by modeling the buildings as an extension of the layered soil medium, and considering each story as another layer. The propagation of energy flux in the layers is described in terms of the upgoing and downgoing energy flux in each layer, and the energy reflection and transmission coefficients at each interface. The formulation results in a pair of simple finite-difference equations for each layer, which can be solved recursively starting from the bedrock. The upgoing and downgoing energy flux in the layers allows calculation of the energy demand and energy dissipation in each layer. The methodology is applicable to linear, as well as nonlinear structures. ?? 2000 Published by Elsevier Science Ltd.
ERIC Educational Resources Information Center
Khotimah, Rita Pramujiyanti; Masduki
2016-01-01
Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…
NASA Technical Reports Server (NTRS)
Kwak, Moon K.; Meirovitch, Leonard
1991-01-01
Interest lies in a mathematical formulation capable of accommodating the problem of maneuvering a space structure consisting of a chain of articulated flexible substructures. Simultaneously, any perturbations from the 'rigid body' maneuvering and any elastic vibration must be suppressed. The equations of motion for flexible bodies undergoing rigid body motions and elastic vibrations can be obtained conveniently by means of Lagrange's equations in terms of quasi-coordinates. The advantage of this approach is that it yields equations in terms of body axes, which are the same axes that are used to express the control forces and torques. The equations of motion are nonlinear hybrid differential quations. The partial differential equations can be discretized (in space) by means of the finite element method or the classical Rayleigh-Ritz method. The result is a set of nonlinear ordinary differential equations of high order. The nonlinearity can be traced to the rigid body motions and the high order to the elastic vibration. Elastic motions tend to be small when compared with rigid body motions.
Overview of Krylov subspace methods with applications to control problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.
NASA Astrophysics Data System (ADS)
Gu, Yongzhen; Duan, Baoyan; Du, Jingli
2018-05-01
The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2002-01-01
Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
An automatic multigrid method for the solution of sparse linear systems
NASA Technical Reports Server (NTRS)
Shapira, Yair; Israeli, Moshe; Sidi, Avram
1993-01-01
An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.
NASA Astrophysics Data System (ADS)
Khairnasov, K. Z.
2018-04-01
The paper presents a mathematical model for solving the problem of behavior of shell configurations under the action of static and dynamic impacts. The problem is solved in geometrically nonlinear statement with regard to the finite element method. The composite structures with different material layers are considered. The obtained equations are used to study the behavior of shell configurations under the action of dynamic loads. The results agree well with the experimental data.
A Structural Equation Model Explaining 8th Grade Students' Mathematics Achievements
ERIC Educational Resources Information Center
Yurt, Eyüp; Sünbül, Ali Murat
2014-01-01
The purpose of this study is to investigate, via a model, the explanatory and predictive relationships among the following variables: Mathematical Problem Solving and Reasoning Skills, Sources of Mathematics Self-Efficacy, Spatial Ability, and Mathematics Achievements of Secondary School 8th Grade Students. The sample group of the study, itself…
Parental Monitoring Behaviors: A Model of Rules, Supervision, and Conflict
ERIC Educational Resources Information Center
Hayes, Louise; Hudson, Alan; Matthews, Jan
2004-01-01
A model of parental monitoring behaviors, comprising rule setting and supervision, was proposed. The hypothesized relationship between rules, supervision, conflict, and adolescent problem behavior was tested using structured equation modeling on self-report data from 1,285 adolescents aged 14 to 15 years. The model was an adequate fit of the data,…
ERIC Educational Resources Information Center
Tagay, Özlem
2015-01-01
Problem Statement: A literature analysis revealed that contact disturbances, self-esteem and life satisfaction have been examined in different studies separately. In particular, the researchers observed that the studies conducted on Gestalt contact disturbances are limited in number. In this study, the variables of contact disturbances,…
ERIC Educational Resources Information Center
Ridenour, Ty A.; Caldwell, Linda L.; Coatsworth, J. Douglas; Gold, Melanie A.
2011-01-01
Problem behavior theory posits that tolerance of deviance is an antecedent to antisocial behavior and substance use. In contrast, cognitive dissonance theory implies that acceptability of a behavior may increase after experiencing the behavior. Using structural equation modeling, this investigation tested whether changes in tolerance of deviance…
Mathematical form models of tree trunks
Rudolfs Ozolins
2000-01-01
Assortment structure analysis of tree trunks is a characteristic and proper problem that can be solved by using mathematical modeling and standard computer programs. Mathematical form model of tree trunks consists of tapering curve equations and their parameters. Parameters for nine species were obtained by processing measurements of 2,794 model trees and studying the...
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION
HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG
2011-01-01
We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541
NASA Technical Reports Server (NTRS)
Jones, William H.
1985-01-01
The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.
Resolvent analysis of shear flows using One-Way Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2017-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
NASA Astrophysics Data System (ADS)
Tisdell, Christopher C.
2017-07-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.
Relational Priming Based on a Multiplicative Schema for Whole Numbers and Fractions.
DeWolf, Melissa; Son, Ji Y; Bassok, Miriam; Holyoak, Keith J
2017-11-01
Why might it be (at least sometimes) beneficial for adults to process fractions componentially? Recent research has shown that college-educated adults can capitalize on the bipartite structure of the fraction notation, performing more successfully with fractions than with decimals in relational tasks, notably analogical reasoning. This study examined patterns of relational priming for problems with fractions in a task that required arithmetic computations. College students were asked to judge whether or not multiplication equations involving fractions were correct. Some equations served as structurally inverse primes for the equation that immediately followed it (e.g., 4 × 3/4 = 3 followed by 3 × 8/6 = 4). Students with relatively high math ability showed relational priming (speeded solution times to the second of two successive relationally related fraction equations) both with and without high perceptual similarity (Experiment 2). Students with relatively low math ability also showed priming, but only when the structurally inverse equation pairs were supported by high perceptual similarity between numbers (e.g., 4 × 3/4 = 3 followed by 3 × 4/3 = 4). Several additional experiments established boundary conditions on relational priming with fractions. These findings are interpreted in terms of componential processing of fractions in a relational multiplication context that takes advantage of their inherent connections to a multiplicative schema for whole numbers. Copyright © 2017 Cognitive Science Society, Inc.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Ψ-model of micro- and macrosystems
NASA Astrophysics Data System (ADS)
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.
2017-08-01
A mathematical model (referred as Ψ-model for convenience) has been developed, which allows describing certain class of micro- and macrosystems. Ψ-model is based on quantum mechanics and classical mechanics of continuous media. Ψ-model describes micro- and macrosystems, in which vector field of velocities of probability flows, charge, mass has specific spiral structure. The field of velocities has spiral structure on concentric spherical surfaces. The velocity field is not defined and has a characteristic property on the poles of sphere and on the axis and tends to zero at infinity. The behavior of Ψ-model can be described in the general case with time-dependent periodic singular solution of the Schrödinger equation. The goal of this paper is to choose a particular probability flux in the continuity equation which we solve in this paper and deduce from it the solution of the Schrödinger equation. For example, in the frame of approach the problem with modified Coulomb potential was considered.
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
1988-02-01
in Multi- dimensions II, P.M. Santini and A.S. Fokas, preprint INS#67, 1986. The Recursion Operator of the Kadomtsev - Petviashvili Equation and the...solitons, multidimensional inverse problems, Painleve equations , direct linearizations of certain nonlinear wave equations , DBAR problems, Riemann...the Navy is (a) the recent discovery that many of the equations describing ship hydrodynamics in channels of finite depth obey nonlinear equations
Existence of solution for a general fractional advection-dispersion equation
NASA Astrophysics Data System (ADS)
Torres Ledesma, César E.
2018-05-01
In this work, we consider the existence of solution to the following fractional advection-dispersion equation -d/dt ( p {_{-∞}}It^{β }(u'(t)) + q {t}I_{∞}^{β }(u'(t))) + b(t)u = f(t, u(t)),t\\in R where β \\in (0,1) , _{-∞}It^{β } and tI_{∞}^{β } denote left and right Liouville-Weyl fractional integrals of order β respectively, 0
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
Landau quantization in the spinning cosmic string spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B.; Cunha, M.S.
2014-11-15
We analyze the quantum phenomenon arising from the interaction of a spinless charged particle with a rotating cosmic string, under the action of a static and uniform magnetic field parallel to the string. We calculate the energy levels of the particle in the non-relativistic approach, showing how these energies depend on the parameters involved in the problem. In order to do this, we solve the time independent Schrödinger equation in the geometry of the spinning cosmic string, taking into account that the coupling between the rotation of the spacetime and the angular momentum of the particle is very weak, suchmore » that makes sense to apply the Schrödinger equation in a curved background whose metric has an off diagonal term which involves time and space. It is also assumed that the particle orbits sufficiently far from the boundary of the region of closed timelike curves which exist around this topological defect. Finally, we find the Landau levels of the particle in the presence of a spinning cosmic string endowed with internal structure, i.e., having a finite width and uniformly filled with both material and vacuum energies. - Highlights: • Solution of the wave equation characterizing the problem. • Energy levels of the particle in spacetime of the structureless string. • Expression for an analogous of the quadratic Zeeman effect. • Energy levels of the particle in spacetime of the string with internal structure. • Evidence of the string structure by the internal existence of the vacuum energy.« less
Geometric multigrid for an implicit-time immersed boundary method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.
2014-10-12
The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less
Connectivity as an alternative to boundary integral equations: Construction of bases
Herrera, Ismael; Sabina, Federico J.
1978-01-01
In previous papers Herrera developed a theory of connectivity that is applicable to the problem of connecting solutions defined in different regions, which occurs when solving partial differential equations and many problems of mechanics. In this paper we explain how complete connectivity conditions can be used to replace boundary integral equations in many situations. We show that completeness is satisfied not only in steady-state problems such as potential, reduced wave equation and static and quasi-static elasticity, but also in time-dependent problems such as heat and wave equations and dynamical elasticity. A method to obtain bases of connectivity conditions, which are independent of the regions considered, is also presented. PMID:16592522
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu
2017-01-01
Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants’ sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model’s fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the “start of relationships” subscales. Structural equation modeling revealed that the values for “start of relationships” had a direct effect on VAS values (path coefficient =0.32, p<0.01). In addition, the “start of relationships” had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition. PMID:28979161
NASA Technical Reports Server (NTRS)
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
NASA Astrophysics Data System (ADS)
Tang, Qiangang; Sun, Shixian
1992-03-01
In this paper, the perturbation technique is introduced into the method of harmonic balance. A new method used for analyzing nonlinear free vibration of multidegree-of-freedom systems and structures is obtained. The form of solution is expanded into a series of small parameters and harmonics, so no term will be lost in the solution and the algebraic equations are linear. With the linear transformations, the matrices of the equations become diagonal. As soon as the modes related to linear vibration are found, the solution can be obtained. This method is superior to the method of linearized iteration. The examples show that the method has high accuracy for small-amplitude problems and the results for rather large amplitudes are satisfactory.
Structure-preserving operators for thermal-nonequilibrium hydrodynamics
NASA Astrophysics Data System (ADS)
Shiroto, Takashi; Kawai, Soshi; Ohnishi, Naofumi
2018-07-01
Radiation hydrodynamics simulations based on a single fluid two-temperature model may violate the law of energy conservation, because the governing equations are expressed in a nonconservative formulation. In this study, we maintain the important physical requirements by employing a strategy based on the key concept that mathematical structures associated with conservative and nonconservative equations are preserved, even at the discrete level. To this end, we discretize the conservation laws and transform them using exact algebraic operations. The proposed scheme maintains global conservation errors within the round-off level. In addition, a numerical experiment concerning the shock tube problem suggests that the proposed scheme agrees well with the jump conditions at the discontinuities regulated by the Rankine-Hugoniot relationship. The generalized derivation allows us to employ arbitrary central difference, artificial dissipation, and Runge-Kutta methods.
2006-08-01
2005). 7. " Dependence of the interband transitions on the In mole-fraction and the applied electric field in InxGaj_xAs/In0. 52Al0.48As multiple... tunneling boundary conditions for open structures. The boundary conditions at interfaces require the maintenance of derivative operator ordering...computational methods for the solution of Schr6dinger’s equations for scattering/ tunneling structures as well as for the eigenvalue problems that arise for
Radiatively driven winds from magnetic, fast-rotating stars
NASA Technical Reports Server (NTRS)
Nerney, S.
1986-01-01
An analytical procedure is developed to solve the magnetohydrodynamic equations for the stellar wind problem in the strong-magnetic field, optically thick limit for hot stars. The slow-mode, Alfven, and fast-mode critical points are modified by the radiation terms in the force equation but in a manner that can be treated relatively easily. Once the velocities at the critical points and the distances to the points are known, the streamline constants are determined in a straight-forward manner. This allows the structure of the wind to be elucidated without recourse to complicated computational schemes.
The intergenerational transmission of conduct problems.
Raudino, Alessandra; Fergusson, David M; Woodward, Lianne J; Horwood, L John
2013-03-01
Drawing on prospective longitudinal data, this paper examines the intergenerational transmission of childhood conduct problems in a sample of 209 parents and their 331 biological offspring studied as part of the Christchurch Health and Developmental Study. The aims were to estimate the association between parental and offspring conduct problems and to examine the extent to which this association could be explained by (a) confounding social/family factors from the parent's childhood and (b) intervening factors reflecting parental behaviours and family functioning. The same item set was used to assess childhood conduct problems in parents and offspring. Two approaches to data analysis (generalised estimating equation regression methods and latent variable structural equation modelling) were used to examine possible explanations of the intergenerational continuity in behaviour. Regression analysis suggested that there was moderate intergenerational continuity (r = 0.23, p < 0.001) between parental and offspring conduct problems. This continuity was not explained by confounding factors but was partially mediated by parenting behaviours, particularly parental over-reactivity. Latent variable modelling designed to take account of non-observed common genetic and environmental factors underlying the continuities in problem behaviours across generations also suggested that parenting behaviour played a role in mediating the intergenerational transmission of conduct problems. There is clear evidence of intergenerational continuity in conduct problems. In part this association reflects a causal chain process in which parental conduct problems are associated (directly or indirectly) with impaired parenting behaviours that in turn influence risks of conduct problems in offspring.
Guidance law development for aeroassisted transfer vehicles using matched asymptotic expansions
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Melamed, Nahum
1993-01-01
This report addresses and clarifies a number of issues related to the Matched Asymptotic Expansion (MAE) analysis of skip trajectories, or any class of problems that give rise to inner layers that are not associated directly with satisfying boundary conditions. The procedure for matching inner and outer solutions, and using the composite solution to satisfy boundary conditions is developed and rigorously followed to obtain a set of algebraic equations for the problem of inclination change with minimum energy loss. A detailed evaluation of the zeroth order guidance algorithm for aeroassisted orbit transfer is performed. It is shown that by exploiting the structure of the MAE solution procedure, the original problem, which requires the solution of a set of 20 implicit algebraic equations, can be reduced to a problem of 6 implicit equations in 6 unknowns. A solution that is near optimal, requires a minimum of computation, and thus can be implemented in real time and on-board the vehicle, has been obtained. Guidance law implementation entails treating the current state as a new initial state and repetitively solving the zeroth order MAE problem to obtain the feedback controls. Finally, a general procedure is developed for constructing a MAE solution up to first order, of the Hamilton-Jacobi-Bellman equation based on the method of characteristics. The development is valid for a class of perturbation problems whose solution exhibits two-time-scale behavior. A regular expansion for problems of this type is shown to be inappropriate since it is not valid over a narrow range of the independent variable. That is, it is not uniformly valid. Of particular interest here is the manner in which matching and boundary conditions are enforced when the expansion is carried out to first order. Two cases are distinguished-one where the left boundary condition coincides with, or lies to the right of, the singular region, and another one where the left boundary condition lies to the left of the singular region. A simple example is used to illustrate the procedure where the obtained solution is uniformly valid to O(Epsilon(exp 2)). The potential application of this procedure to aeroassisted plane change is also described and partially evaluated.
A new mathematical approach for shock-wave solution in a dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G.C.; Dwivedi, C.B.; Talukdar, M.
1997-12-01
The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less
New displacement-based methods for optimal truss topology design
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.
1991-01-01
Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.
NASA Technical Reports Server (NTRS)
Paine, D. A.; Zack, J. W.; Kaplan, M. L.
1979-01-01
The progress and problems associated with the dynamical forecast system which was developed to predict severe storms are examined. The meteorological problem of severe convective storm forecasting is reviewed. The cascade hypothesis which forms the theoretical core of the nested grid dynamical numerical modelling system is described. The dynamical and numerical structure of the model used during the 1978 test period is presented and a preliminary description of a proposed multigrid system for future experiments and tests is provided. Six cases from the spring of 1978 are discussed to illustrate the model's performance and its problems. Potential solutions to the problems are examined.
When mothers have serious mental health problems: parenting as a proximal mediator.
Oyserman, Daphna; Bybee, Deborah; Mowbray, Carol; Hart-Johnson, Tamera
2005-08-01
Maternal mental health (MMH) problems are associated with lack of confidence in one's parenting, overly lax or too harsh discipline, and child academic underperformance. We asked if parenting mediates the effect of MMH problems on academic outcomes even among mothers with serious mental illness (n=164). Structural equation analyses show a significant association between MMH problems and permissive (lack of parenting confidence, lack of follow through) parenting and verbal hostility as well as worse academic outcomes (school recorded grades, teacher reported behaviour). Permissive parenting completely mediated the direct effect of MMH on academic outcomes. Further analyses showed that the mediation effect was attributed to a single component of permissive parenting-lack of parenting confidence.
Thermo-elasto-viscoplastic analysis of problems in extension and shear
NASA Technical Reports Server (NTRS)
Riff, R.; Simitses, G. J.
1987-01-01
The problems of extension and shear behavior of structural elements made of carbon steel and subjected to large thermomechanical loads are investigated. The analysis is based on nonlinear geometric and constitutive relations, and is expressed in a rate form. The material constitutive equations are capable of reproducing all nonisothermal, elasto-viscoplastic characteristics. The results of the test problems show that: (1) the formulation can accommodate very large strains and rotations; (2) the model incorporates the simplification associated with rate-insensitive elastic response without losing the ability to model a rate-temperature dependent yield strength and plasticity; and (3) the formulation does not display oscillatory behavior in the stresses for the simple shear problem.
Sectional methods for aggregation problems: application to volcanic eruptions
NASA Astrophysics Data System (ADS)
Rossi, E.
2016-12-01
Particle aggregation is a general problem that is common to several scientific disciplines such as planetary formation, food industry and aerosol sciences. So far the ordinary approach to this class of problems relies on the solution of the Smoluchowski Coagulation Equations (SCE), a set of Ordinary Differential Equations (ODEs) derived from the Population Balance Equations (PBE), which basically describe the change in time of an initial grain-size distribution due to the interaction of "single" particles. The frequency of particles collisions and their sticking efficiencies depend on the specific problem under analysis, but the mathematical framework and the possible solutions to the ODEs seem to be somehow discipline-independent and very general. In this work we will focus on the problem of volcanic ash aggregation, since it represents an extreme case of complexity that can be relevant also to other disciplines. In fact volcanic ash aggregates observed during the fallouts are characterized by relevant porosities and they do not fit with simplified descriptions based on monomer-like structures or fractal geometries. In this work we propose a bidimensional approach to the PBEs which uses additive (mass) and non-additive (volume) internal descriptors in order to better characterize the evolution of volcanic ash aggregation. In particular we used sectional methods (fixed-pivot) to discretize the internal parameters space. This algorithm has been applied to a one dimensional volcanic plume model in order to investigate how the Total Grain Size Distribution (TGSD) changes throughout the erupted column in real scenarios (i.e. Eyjafjallajokull 2010, Sakurajima 2013 and Mt. Saint Helens 1980).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addona, Davide, E-mail: d.addona@campus.unimib.it
2015-08-15
We obtain weighted uniform estimates for the gradient of the solutions to a class of linear parabolic Cauchy problems with unbounded coefficients. Such estimates are then used to prove existence and uniqueness of the mild solution to a semi-linear backward parabolic Cauchy problem, where the differential equation is the Hamilton–Jacobi–Bellman equation of a suitable optimal control problem. Via backward stochastic differential equations, we show that the mild solution is indeed the value function of the controlled equation and that the feedback law is verified.
Adequate mathematical modelling of environmental processes
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.
2012-04-01
In environmental observations and laboratory visualization both large scale flow components like currents, jets, vortices, waves and a fine structure are registered (different examples are given). The conventional mathematical modeling both analytical and numerical is directed mostly on description of energetically important flow components. The role of a fine structures is still remains obscured. A variety of existing models makes it difficult to choose the most adequate and to estimate mutual assessment of their degree of correspondence. The goal of the talk is to give scrutiny analysis of kinematics and dynamics of flows. A difference between the concept of "motion" as transformation of vector space into itself with a distance conservation and the concept of "flow" as displacement and rotation of deformable "fluid particles" is underlined. Basic physical quantities of the flow that are density, momentum, energy (entropy) and admixture concentration are selected as physical parameters defined by the fundamental set which includes differential D'Alembert, Navier-Stokes, Fourier's and/or Fick's equations and closing equation of state. All of them are observable and independent. Calculations of continuous Lie groups shown that only the fundamental set is characterized by the ten-parametric Galilelian groups reflecting based principles of mechanics. Presented analysis demonstrates that conventionally used approximations dramatically change the symmetries of the governing equations sets which leads to their incompatibility or even degeneration. The fundamental set is analyzed taking into account condition of compatibility. A high order of the set indicated on complex structure of complete solutions corresponding to physical structure of real flows. Analytical solutions of a number problems including flows induced by diffusion on topography, generation of the periodic internal waves a compact sources in week-dissipative media as well as numerical solutions of the same problems are constructed. They include regular perturbed function describing large scale component and a rich family of singular perturbed function corresponding to fine flow components. Solutions are compared with data of laboratory experiments performed on facilities USU "HPC IPMec RAS" under support of Ministry of Education and Science RF (Goscontract No. 16.518.11.7059). Related problems of completeness and accuracy of laboratory and environmental measurements are discussed.
On the solution of the generalized wave and generalized sine-Gordon equations
NASA Technical Reports Server (NTRS)
Ablowitz, M. J.; Beals, R.; Tenenblat, K.
1986-01-01
The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.
Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method
NASA Astrophysics Data System (ADS)
Seydel, Julia; Schuster, Thomas
2017-12-01
We consider the nonlinear inverse problem of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field as well as from surface sensor measurements. The displacement field is represented as a solution of Cauchy’s equation of motion, which is a nonlinear elastic wave equation. Hyperelasticity means that the first Piola-Kirchhoff stress tensor is given as the gradient of the stored energy function. We assume that a dictionary of suitable functions is available. The aim is to recover the stored energy with respect to this dictionary. The considered inverse problem is of vital interest for the development of structural health monitoring systems which are constructed to detect defects in elastic materials from boundary measurements of the displacement field, since the stored energy encodes the mechanical properties of the underlying structure. In this article we develop a numerical solver using the attenuated Landweber method. We show that the parameter-to-solution map satisfies the local tangential cone condition. This result can be used to prove local convergence of the attenuated Landweber method in the case that the full displacement field is measured. In our numerical experiments we demonstrate how to construct an appropriate dictionary and show that our method is well suited to localize damages in various situations.
Sullivan, Tami P; Cavanaugh, Courtenay E; Buckner, Julia D; Edmondson, Donald
2009-12-01
This study examined whether posttraumatic stress specifically resulting from intimate partner violence (IPV-related posttraumatic stress) mediated relationships between types of IPV and drug and alcohol problems among 212 women currently experiencing IPV. Six-month prevalence was high for drug use (48%) and alcohol use (59%). Structural equation modeling revealed that the frequency of physical, sexual, and psychological IPV were significantly and positively related to greater IPV-related posttraumatic stress, and IPV-related posttraumatic stress was significantly and positively related to drug problems. Further, IPV-related posttraumatic stress mediated the relationships between physical IPV and drug problems and psychological IPV and drug problems. Findings suggest that prevention and intervention efforts targeting posttraumatic stress among IPV-exposed women may reduce drug problems in this population.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics
Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul
2015-03-11
Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less
Preserving Lagrangian Structure in Nonlinear Model Reduction with Application to Structural Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, Kevin; Tuminaro, Ray; Boggs, Paul
Our work proposes a model-reduction methodology that preserves Lagrangian structure and achieves computational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to nonlinear structural dynamics. To preserve structure, the method first approximates the system's “Lagrangian ingredients''---the Riemannian metric, the potential-energy function, the dissipation function, and the external force---and subsequently derives reduced-order equations of motion by applying the (forced) Euler--Lagrange equation with thesemore » quantities. Moreover, from the algebraic perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserving symmetry and positive definiteness: matrix gappy proper orthogonal decomposition and reduced-basis sparsification. Our results for a parameterized truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed method's merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear model-reduction techniques that do not preserve structure.« less
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Liu, Huan
2018-04-01
The Riemann-Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding 3× 3 matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.
A Boundary Value Problem for Introductory Physics?
ERIC Educational Resources Information Center
Grundberg, Johan
2008-01-01
The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1992-01-01
A general optimization-based method for the design of large space platforms through integration of the disciplines of structural dynamics and control is presented. The method uses the global sensitivity equations approach and is especially appropriate for preliminary design problems in which the structural and control analyses are tightly coupled. The method is capable of coordinating general purpose structural analysis, multivariable control, and optimization codes, and thus, can be adapted to a variety of controls-structures integrated design projects. The method is used to minimize the total weight of a space platform while maintaining a specified vibration decay rate after slewing maneuvers.
Individualized Math Problems in Simple Equations. Oregon Vo-Tech Mathematics Problem Sets.
ERIC Educational Resources Information Center
Cosler, Norma, Ed.
This is one of eighteen sets of individualized mathematics problems developed by the Oregon Vo-Tech Math Project. Each of these problem packages is organized around a mathematical topic and contains problems related to diverse vocations. Solutions are provided for all problems. Problems in this volume require solution of linear equations, systems…
Automated analysis of biological oscillator models using mode decomposition.
Konopka, Tomasz
2011-04-01
Oscillating signals produced by biological systems have shapes, described by their Fourier spectra, that can potentially reveal the mechanisms that generate them. Extracting this information from measured signals is interesting for the validation of theoretical models, discovery and classification of interaction types, and for optimal experiment design. An automated workflow is described for the analysis of oscillating signals. A software package is developed to match signal shapes to hundreds of a priori viable model structures defined by a class of first-order differential equations. The package computes parameter values for each model by exploiting the mode decomposition of oscillating signals and formulating the matching problem in terms of systems of simultaneous polynomial equations. On the basis of the computed parameter values, the software returns a list of models consistent with the data. In validation tests with synthetic datasets, it not only shortlists those model structures used to generate the data but also shows that excellent fits can sometimes be achieved with alternative equations. The listing of all consistent equations is indicative of how further invalidation might be achieved with additional information. When applied to data from a microarray experiment on mice, the procedure finds several candidate model structures to describe interactions related to the circadian rhythm. This shows that experimental data on oscillators is indeed rich in information about gene regulation mechanisms. The software package is available at http://babylone.ulb.ac.be/autoosc/.
Sorokin, Sergey V
2011-03-01
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Joshi, Vaibhav; Jaiman, Rajeev K.
2018-05-01
We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase-field solver for a practical offshore engineering application of wave-structure interaction.
Apollo Photograph Evaluation (APE) programming manual
NASA Technical Reports Server (NTRS)
Kim, I. J.
1974-01-01
This document describes the programming techniques used to implement the equations of the Apollo Photograph Evaluation (APE) program on the UNIVAC 1108 computer and contains detailed descriptions of the program structure, a User's Guide section to provide the necessary information for proper operation of the program, and information for the assessment of the program's adaptability to future problems.
ERIC Educational Resources Information Center
Charalambous, Charalambos Y.; Philippou, George N.
2010-01-01
This study brings together two lines of research on teachers' affective responses toward mathematics curriculum reforms: their concerns and their efficacy beliefs. Using structural equation modeling to analyze data on 151 elementary mathematics teachers' concerns and efficacy beliefs 5 years into a mandated curriculum reform on problem solving,…
ERIC Educational Resources Information Center
Bulcock, J. W.; And Others
Multicollinearity refers to the presence of highly intercorrelated independent variables in structural equation models, that is, models estimated by using techniques such as least squares regression and maximum likelihood. There is a problem of multicollinearity in both the natural and social sciences where theory formulation and estimation is in…
ERIC Educational Resources Information Center
Baker, Claire; Kuhn, Laura
2018-01-01
Structural equation models were used to examine pathways from maternal depression and early parenting to children's executive function (EF) and externalizing behaviours in the first nationally representative study to obtain direct assessments of children's kindergarten EF skills (i.e., the Early Childhood Longitudinal Study Kindergarten Class of…
Construct DTPB Model by Using DEMATEL: A Study of a University Library Website
ERIC Educational Resources Information Center
Lee, Yu-Cheng; Hsieh, Yi-Fang; Guo, Yau-Bin
2013-01-01
Purpose: Traditional studies on a decomposed theory of planned behavior (DTPB) analyze the relationship of variables through a structural equation model. If certain variables do not fully comply with the independent hypothesis, it is not possible to conduct proper analysis, which leads to false conclusions. To solve these problems, the aim of this…
ERIC Educational Resources Information Center
Cirik, Ilker
2015-01-01
Problem Statement: In order to provide equal educational opportunities for students, teachers should encourage their students to have an effective voice concerning social justice. Studies reveal that teachers face trouble when transferring from the concept of social justice as theory to social justice as practice. A scale which will be developed…
Economic Crisis and Marital Problems in Turkey: Testing the Family Stress Model
ERIC Educational Resources Information Center
Aytac, Isik A.; Rankin, Bruce H.
2009-01-01
This paper applied the family stress model to the case of Turkey in the wake of the 2001 economic crisis. Using structural equation modeling and a nationally representative urban sample of 711 married women and 490 married men, we tested whether economic hardship and the associated family economic strain on families resulted in greater marital…
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
NASA Astrophysics Data System (ADS)
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael
Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/ormore » line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.« less
A revised version of the transfer matrix method to analyze one-dimensional structures
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1983-01-01
A new and general method to analyze both free and forced vibration characteristics of one-dimensional structures is discussed in this paper. This scheme links for the first time the classical transfer matrix method with the recently developed integrating matrix technique to integrate systems of differential equations. Two alternative approaches to the problem are presented. The first is based upon the lumped parameter model to account for the inertia properties of the structure. The second releases that constraint allowing a more precise description of the physical system. The free vibration of a straight uniform beam under different support conditions is analyzed to test the accuracy of the two models. Finally some results for the free vibration of a 12th order system representing a curved, rotating beam prove that the present method is conveniently extended to more complicated structural dynamics problems.
Theory of equilibria of elastic 2-braids with interstrand interaction
NASA Astrophysics Data System (ADS)
Starostin, E. L.; van der Heijden, G. H. M.
2014-03-01
Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.
Students’ difficulties in solving linear equation problems
NASA Astrophysics Data System (ADS)
Wati, S.; Fitriana, L.; Mardiyana
2018-03-01
A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.
Hybrid multicore/vectorisation technique applied to the elastic wave equation on a staggered grid
NASA Astrophysics Data System (ADS)
Titarenko, Sofya; Hildyard, Mark
2017-07-01
In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Crowley, Kay; Saltz, Joel; Mirchandaney, Ravi; Berryman, Harry
1989-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
Run-time scheduling and execution of loops on message passing machines
NASA Technical Reports Server (NTRS)
Saltz, Joel; Crowley, Kathleen; Mirchandaney, Ravi; Berryman, Harry
1990-01-01
Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent.
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
On the characteristic exponents of the general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
The stability issues in problems of mathematical modeling
NASA Astrophysics Data System (ADS)
Mokin, A. Yu.; Savenkova, N. P.; Udovichenko, N. S.
2018-03-01
In the paper it is briefly considered various aspects of stability concepts, which are used in physics, mathematics and numerical methods of solution. The interrelation between these concepts is described, the questions of preliminary stability research before the numerical solution of the problem and the correctness of the mathematical statement of the physical problem are discussed. Examples of concrete mathematical statements of individual physical problems are given: a nonlocal problem for the heat equation, the Korteweg-de Fries equation with boundary conditions at infinity, the sine-Gordon equation, the problem of propagation of femtosecond light pulses in an area with a cubic nonlinearity.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
Mathematical Analysis and Optimization of Infiltration Processes
NASA Technical Reports Server (NTRS)
Chang, H.-C.; Gottlieb, D.; Marion, M.; Sheldon, B. W.
1997-01-01
A variety of infiltration techniques can be used to fabricate solid materials, particularly composites. In general these processes can be described with at least one time dependent partial differential equation describing the evolution of the solid phase, coupled to one or more partial differential equations describing mass transport through a porous structure. This paper presents a detailed mathematical analysis of a relatively simple set of equations which is used to describe chemical vapor infiltration. The results demonstrate that the process is controlled by only two parameters, alpha and beta. The optimization problem associated with minimizing the infiltration time is also considered. Allowing alpha and beta to vary with time leads to significant reductions in the infiltration time, compared with the conventional case where alpha and beta are treated as constants.
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
Renormalization group procedure for potential -g/r2
NASA Astrophysics Data System (ADS)
Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.
2018-02-01
Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.
Multiloop functional renormalization group for general models
NASA Astrophysics Data System (ADS)
Kugler, Fabian B.; von Delft, Jan
2018-02-01
We present multiloop flow equations in the functional renormalization group (fRG) framework for the four-point vertex and self-energy, formulated for a general fermionic many-body problem. This generalizes the previously introduced vertex flow [F. B. Kugler and J. von Delft, Phys. Rev. Lett. 120, 057403 (2018), 10.1103/PhysRevLett.120.057403] and provides the necessary corrections to the self-energy flow in order to complete the derivative of all diagrams involved in the truncated fRG flow. Due to its iterative one-loop structure, the multiloop flow is well suited for numerical algorithms, enabling improvement of many fRG computations. We demonstrate its equivalence to a solution of the (first-order) parquet equations in conjunction with the Schwinger-Dyson equation for the self-energy.
Computational fluid dynamics in a marine environment
NASA Technical Reports Server (NTRS)
Carlson, Arthur D.
1987-01-01
The introduction of the supercomputer and recent advances in both Reynolds averaged, and large eddy simulation fluid flow approximation techniques to the Navier-Stokes equations, have created a robust environment for the exploration of problems of interest to the Navy in general, and the Naval Underwater Systems Center in particular. The nature of problems that are of interest, and the type of resources needed for their solution are addressed. The goal is to achieve a good engineering solution to the fluid-structure interaction problem. It is appropriate to indicate that a paper by D. Champman played a major role in developing the interest in the approach discussed.
A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S.; Klang, Eric C.
2001-01-01
The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.
Numerical solution of system of boundary value problems using B-spline with free parameter
NASA Astrophysics Data System (ADS)
Gupta, Yogesh
2017-01-01
This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
1985-03-01
economically justified. For main lines, access tracks, heavy traffic tracks, and tracks where the de- sign train speed is greater than 40 mph, TM 5... analysis 35. The beam-on-elastic-foundation model is the key to the AREA design procedure. Kerr in "Problems and Needs in Track Structure Design and... Analysis " (Kerr 1977) presents an outline of the development of this model for analysis of track structures. The fundamental differential equation which
Assessment of Threshold Visibility - T56 Turboprop Engines
1981-06-01
thus negligible in Equation (3-4). The cross-section for absorption, on the other hand, is a volume effect and thus decreases with the third power of the...little structure exists--it has been damped out. Wittig et al. (Reference 14) have examined the effect of adding an abosrbing component to the refractive...knowledge on tne structure and composition of the exhaust particulates presents two problems. The t ¾rst is how to accourt for shape factors and their effect
1990-08-01
corneal structure for both normal and swollen corneas. Other problems of future interest are the understanding of the structure of scarred and dystrophied ...METHOD AND RESULTS The system of equations is solved numerically on a Cray X-MP by a finite element method with 9-node Lagrange quadrilaterals ( Becker ...Appl. Math., 42, 430. Becker , E. B., G. F. Carey, and J. T. Oden, 1981. Finite Elements: An Introduction (Vol. 1), Prentice- Hall, Englewood Cliffs, New
The Analysis of the Problems the Pre-Service Teachers Experience in Posing Problems about Equations
ERIC Educational Resources Information Center
Isik, Cemalettin; Kar, Tugrul
2012-01-01
The present study aimed to analyse the potential difficulties in the problems posed by pre-service teachers about first degree equations with one unknown and equation pairs with two unknowns. It was carried out with 20 pre-service teachers studying in the Department of Elementary Mathematics Educations at a university in Eastern Turkey. The…
ERIC Educational Resources Information Center
Tisdell, Christopher C.
2017-01-01
Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…
Efficient numerical method for solving Cauchy problem for the Gamma equation
NASA Astrophysics Data System (ADS)
Koleva, Miglena N.
2011-12-01
In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.
NASA Technical Reports Server (NTRS)
Brand, J. C.
1985-01-01
Contraction theory is applied to an iterative formulation of electromagnetic scattering from periodic structures and a computational method for insuring convergence is developed. A short history of spectral (or k-space) formulation is presented with an emphasis on application to periodic surfaces. The mathematical background for formulating an iterative equation is covered using straightforward single variable examples including an extension to vector spaces. To insure a convergent solution of the iterative equation, a process called the contraction corrector method is developed. Convergence properties of previously presented iterative solutions to one-dimensional problems are examined utilizing contraction theory and the general conditions for achieving a convergent solution are explored. The contraction corrector method is then applied to several scattering problems including an infinite grating of thin wires with the solution data compared to previous works.
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2016-05-01
At the 2015 AAPT Summer Meeting, I presented four derivations of the formula for motional emf. Such physics derivations involve the construction of explanatory frameworks involving diagrams and mathematical models. Although textbooks devote considerable space to such explanations, many teachers and students spend their time on worksheets, end-of-chapter problems, and the like. The book is reduced to a bank of solved (i.e., example) and unsolved (i.e., homework) questions, along with equations in colored boxes that presumably are to be used to answer those questions. Such an approach encourages fragmentation of knowledge, the view that there is only one right answer to a problem with the goal of physics being to find that answer (neatly boxed of course), and the inability to reason about even a slightly different (much less a novel) situation. If we are to develop scientific literacy, significant course time must be devoted to explaining the structure of and support for the models and equations we use.
Infinite horizon problems on stratifiable state-constraints sets
NASA Astrophysics Data System (ADS)
Hermosilla, C.; Zidani, H.
2015-02-01
This paper deals with a state-constrained control problem. It is well known that, unless some compatibility condition between constraints and dynamics holds, the Value Function has not enough regularity, or can fail to be the unique constrained viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation. Here, we consider the case of a set of constraints having a stratified structure. Under this circumstance, the interior of this set may be empty or disconnected, and the admissible trajectories may have the only option to stay on the boundary without possible approximation in the interior of the constraints. In such situations, the classical pointing qualification hypothesis is not relevant. The discontinuous Value Function is then characterized by means of a system of HJB equations on each stratum that composes the state-constraints. This result is obtained under a local controllability assumption which is required only on the strata where some chattering phenomena could occur.
Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.
2008-01-01
A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
Pattern formations and optimal packing.
Mityushev, Vladimir
2016-04-01
Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered.
NASA Astrophysics Data System (ADS)
Shahani, Amir Reza; Sharifi Torki, Hamid
2018-01-01
The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.
Linear static structural and vibration analysis on high-performance computers
NASA Technical Reports Server (NTRS)
Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.
1993-01-01
Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.