Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong
2014-06-01
The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.
Kim, Ji Hyun; Hong, Ki Whan; Bae, Sun Sik; Shin, Yong-Il; Choi, Byung Tae; Shin, Hwa Kyoung
2014-09-01
Probucol, a lipid-lowering agent with anti-oxidant properties, is involved in protection against atherosclerosis, while cilostazol, an antiplatelet agent, has diverse neuroprotective properties. In this study, we investigated the anti-inflammatory effects of probucol and cilostazol on focal cerebral ischemia with hypercholesterolemia. Apolipoprotein E (ApoE) knockout (KO) mice were fed a high-fat diet (HFD) with or without 0.3% probucol and/or 0.2% cilostazol for 10 weeks. To assess the protective effects of the combined therapy of probucol and cilostazol on ischemic injury, the mice received 40 min of middle cerebral artery occlusion (MCAO). Infarct volumes, neurobehavioral deficits and neuroinflammatory mediators were subsequently evaluated 48 h after reperfusion. Probucol alone and probucol plus cilostazol significantly decreased total- and low-density lipoprotein (LDL)-cholesterol in ApoE KO with HFD. MCAO resulted in significantly larger infarct volumes in ApoE KO mice provided with HFD compared to those fed a regular diet, although these volumes were significantly reduced in the probucol plus cilostazol group. Consistent with a smaller infarct size, probucol alone and the combined treatment of probucol and cilostazol improved neurological and motor function. In addition, probucol alone and probucol plus cilostazol decreased MCP-1 expression and CD11b and GFAP immuno-reactivity in the ischemic cortex. These findings suggested that the inhibitory effects of probucol plus cilostazol in MCP-1 expression in the ischemic brain with hypercholesterolemia allowed the identification of one of the mechanisms responsible for anti-inflammatory action. Probucol plus cilostazol may therefore serve as a therapeutic strategy for reducing the impact of stroke in hypercholesterolemic subjects.
Zhou, Guangyu; Wang, Yanqiu; He, Ping; Li, Detian
2013-01-01
The present study was conducted to investigate the effects of probucol on the progression of diabetic nephropathy and the underlying mechanism in type 2 diabetic db/db mice. Eight weeks db/db mice were treated with regular diet or probucol-containing diet (1%) for 12 weeks. Non-diabetic db/m mice were used as controls. We examined body weight, blood glucose, and urinary albumin. At 20 weeks, experimental mice were sacrificed and their blood and kidneys were extracted for the analysis of blood chemistry, kidney histology, oxidative stress marker, and podocyte marker. As a result, 24 h urinary albumin excretions were reduced after probucol treatment. There were improvements of extracellular matrix accumulation and fibronectin and collagen IV deposition in glomeruli in the probucol-treated db/db mice. The reduction of nephrin and the loss of podocytes were effectively prevented by probucol in db/db mice. Furthermore, probucol significantly decreased the production of thiobarbituric acid-reactive substances (TBARS), an index of reactive oxygen species (ROS) generation and down-regulated the expression of Nox2. Taken together, our findings support that probucol may have the potential to protect against type 2 diabetic nephropathy via amelioration of podocyte injury and reduction of oxidative stress.
Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice.
Falk, Marni J; Polyak, Erzsebet; Zhang, Zhe; Peng, Min; King, Rhonda; Maltzman, Jonathan S; Okwuego, Ezinne; Horyn, Oksana; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; Xie, Letian X; Chen, Jia Yan; Marbois, Beth; Nissim, Itzhak; Clarke, Catherine F; Gasser, David L
2011-07-01
Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy-like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high-dose CoQ(10) supplementation and uniquely restores CoQ(9) content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator-activated receptor (PPAR) pathway signaling. Probucol's beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ(9) content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy. Copyright © 2011 EMBO Molecular Medicine.
Yen, Hsueh-Wei; Lee, Hsiang-Chun; Lai, Wen-Te; Sheu, Sheng-Hsiung
2007-04-01
Antioxidants such as N-acetylcysteine and probucol have been used to protect patients from contrast media-induced nephrotoxicity. The mechanisms underlying these protective effects are not well understood. We hypothesized that acetylcysteine and probucol alter the activity of endogenous antioxidant enzyme activity. Four weeks after induction of diabetes with streptozotocin, diabetic and nondiabetic rats were divided into three groups. Group 1 rats did not receive any antioxidant agents. Group 2 rats were treated with acetylcysteine and group 3 rats with probucol for 1 week before injection of the contrast medium diatrizoate (DTZ). We found that diabetic rats had higher renal glutathione peroxidase (GPx) activity than normal rats. DTZ suppressed renal GPx activity significantly in both group 1 diabetic and normal rats. Interestingly, renal GPx activity in both diabetic and normal rats pretreated with acetylcysteine or probucol was not inhibited by DTZ. Renal superoxide dismutase (SOD) increased significantly in normal rats after DTZ injection, but not in diabetic rats. Finally, acetylcysteine or probucol did not significantly influence renal SOD. These findings suggest that the renal protective effects of acetylcysteine and probucol against contrast-induced oxidative stress and nephrotoxicity may be mediated by altering endogenous GPx activity.
Zhu, Hanyu; Chen, Xiangmei; Cai, Guangyan; Zheng, Ying; Liu, Moyan; Liu, Wenhu; Yao, Hebin; Wang, Yaping; Li, Wenge; Wu, Hua; Lun, Lide; Zhang, Jianrong; Guan, Xiaohong; Yin, Shinan; Zhuang, Xiaoming; Li, Jijun; Liu, Yanjun; Zhou, Chunhua
2016-09-01
Persistent proteinuria is an important factor contributing to the progression of diabetic nephropathy. The present randomized double-blind placebo-controlled multicenter clinical study evaluated the efficacy and safety of telmisartan combined with the antioxidant probucol in reducing urinary protein levels in patients with type 2 diabetes (T2D). Patients with T2D and 24-h proteinuria 0.5-3 g were enrolled in the study and randomly assigned to one of two groups: a telmisartan or a probucol + telmisartan group. Both groups were given telmisartan 80 mg q.d. for 48 weeks. The probucol + telmisartan group was given probucol 500 mg b.i.d. for the first 24 weeks, with the dosage then reduced to 250 mg b.i.d. for the remaining 24 weeks. The telmisartan group was given probucol placebo. In all, 160 patients were enrolled in the present study. The 24-h proteinuria levels were significantly reduced in the probucol + telmisartan compared with telmisartan group. For patients with baseline 24-h proteinuria levels <1.0 g, both treatments resulted in significant reductions in 24-h proteinuria levels after 48 weeks treatment. However, in patients with baseline 24-h proteinuria levels ≥1.0 g, 24-h proteinuria levels after 48 weeks treatment were only reduced in the probucol + telmisartan group. There was no significant difference between the two groups for either adverse cardiovascular or other events. In patients with diabetic nephropathy, probucol combined with telmisartan more effectively reduces urinary protein levels than telmisartan alone. © 2015 The Authors. Journal of Diabetes published by Wiley Publishing Asia Pty Ltd and Ruijin Hospital, Shanghai Jiaotong University School of Medicine.
Jin, Sang-Man; Han, Kyung Ah; Yu, Jae Myung; Sohn, Tae Seo; Choi, Sung Hee; Chung, Choon Hee; Park, Ie Byung; Rhee, Eun Jung; Baik, Sei Hyun; Park, Tae Sun; Lee, In-Kyu; Ko, Seung-Hyun; Hwang, You-Cheol; Cha, Bong Soo; Lee, Hyoung Woo; Nam, Moon-Suk; Lee, Moon-Kyu
2016-10-01
To determine the effect of probucol on urine albumin excretion in type 2 diabetes mellitus patients with albuminuria using angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. This was a 16-week, phase II, randomized, placebo-controlled, parallel-group study in type 2 diabetes mellitus patients with a urinary albumin/creatinine ratio of ≥300 mg/g using angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, conducted in 17 tertiary referral hospitals. Eligible patients were randomized to probucol 250 mg/d (n=44), probucol 500 mg/d (n=41), and placebo (n=41) groups in a ratio of 1:1:1 after block randomization procedures, keeping the treatment assignment blinded to the investigators, patients, and study assistants. The primary end point was change in the geometric mean of urinary albumin/creatinine ratio from baseline to week 16 (ClinicalTrials.gov identifier NCT01726816). The study was started on November 8, 2012, and completed on March 24, 2014. The least squares mean change±SE from baseline in urinary albumin/creatinine ratio at week 16 was -7.2±639.5 mg/g in the probucol 250 mg/d group (n=43; P=0.2077 versus placebo group), 9.3±587.4 mg/g in the probucol 500 mg/d group (n=40; P=0.1975 versus placebo group), and 259.0±969.1 mg/g in the placebo group (n=41). Although the majority of subjects were on statins, probucol treatment significantly lowered total cholesterol and low-density lipoprotein cholesterol levels. QT prolongation occurred in one and two subjects in control and probucol 250 mg/d groups, respectively. Four months of probucol up to 500 mg/d failed to reduce urinary albumin excretion. © 2016 American Heart Association, Inc.
Yamashita, Shizuya; Masuda, Daisaku; Ohama, Tohru; Arai, Hidenori; Bujo, Hideaki; Kagimura, Tatsuo; Kita, Toru; Matsuzaki, Masunori; Saito, Yasushi; Fukushima, Masanori; Matsuzawa, Yuji
2016-06-01
Reduction of serum LDL-cholesterol by statins was shown to improve clinical outcomes in patients with coronary heart disease (CHD). Although intensive statin therapy significantly reduced cardiovascular risks, atherosclerotic cardiovascular events have not been completely prevented. Therefore, effective pharmacologic therapy is necessary to improve "residual risks" in combination with statins. Probucol has a potent antioxidative effect, inhibits the oxidation of LDL, and reduces xanthomas. Probucol Trial for Secondary Prevention of Atherosclerotic Events in Patients with Prior Coronary Heart Disease (PROSPECTIVE) is a multicenter, randomized, prospective study designed to test the hypothesis that the addition of probucol to other lipid-lowering drugs will prevent cerebro- and cardiovascular events in patients with prior coronary events and high LDL cholesterol levels. The study will recruit approximately 860 patients with a prior CHD and dyslipidemia with LDL-C level ≥140 mg/dl without any medication and those treated with any lipid-lowering drugs with LDL-C level ≥100 mg/dl. Lipid-lowering agents are continuously administered during the study period in control group, and probucol (500 mg/day, 250 mg twice daily) is added to lipid-lowering therapy in the test group. The efficacy and safety of probucol with regard to the prevention of cerebro- and cardiovascular events and the intima-media thickness of carotid arteries as a surrogate marker will be evaluated. PROSPECTIVE will determine whether the addition of probucol to other lipid-lowering drugs improves cerebro- and cardiovascular outcomes in patients with prior coronary heart disease. Furthermore, the safety of a long-term treatment with probucol will be clarified.
Add-On Effect of Probucol in Atherosclerotic, Cholesterol-Fed Rabbits Treated with Atorvastatin
Keyamura, Yuka; Nagano, Chifumi; Kohashi, Masayuki; Niimi, Manabu; Nozako, Masanori; Koyama, Takashi; Yasufuku, Reiko; Imaizumi, Ayako; Itabe, Hiroyuki; Yoshikawa, Tomohiro
2014-01-01
Objective Lowering the blood concentration of low-density lipoprotein (LDL) cholesterol is the primary strategy employed in treating atherosclerotic disorders; however, most commonly prescribed statins prevent cardiovascular events in just 30% to 40% of treated patients. Therefore, additional treatment is required for patients in whom statins have been ineffective. In this study of atherosclerosis in rabbits, we examined the effect of probucol, a lipid-lowering drug with potent antioxidative effects, added to treatment with atorvastatin. Methods and Results Atherosclerosis was induced by feeding rabbits chow containing 0.5% cholesterol for 8 weeks. Probucol 0.1%, atorvastatin 0.001%, and atorvastatin 0.003% were administered solely or in combination for 6 weeks, beginning 2 weeks after the start of atherosclerosis induction. Atorvastatin decreased the plasma concentration of non-high-density lipoprotein cholesterol (non-HDLC) dose-dependently; atorvastatin 0.003% decreased the plasma concentration of non-HDLC by 25% and the area of atherosclerotic lesions by 21%. Probucol decreased the plasma concentration of non-HDLC to the same extent as atorvastatin (i.e., by 22%) and the area of atherosclerotic lesions by 41%. Probucol with 0.003% atorvastatin decreased the plasma concentration of non-HDLC by 38% and the area of atherosclerotic lesions by 61%. Co-administration of probucol with atorvastatin did not affect the antioxidative effects of probucol, which were not evident on treatment with atorvastatin alone, such as prevention of in vitro LDL-oxidation, increase in paraoxonase-1 activity of HDL, and decreases in plasma and plaque levels of oxidized-LDL in vivo. Conclusions Probucol has significant add-on anti-atherosclerotic effects when combined with atorvastatin treatment; suggesting that this combination might be beneficial for treatment of atherosclerosis. PMID:24810608
Improved oral bioavailability of probucol by dry media-milling.
Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning
2017-09-01
The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
2011-01-01
Background Probucol, a cholesterol-lowering agent that paradoxically also lowers high-density lipoprotein cholesterol has been shown to prevent progression of atherosclerosis. The antiplatelet agent cilostazol, which has diverse antiatherogenic properties, has also been shown to reduce restenosis in previous clinical trials. Recent experimental studies have suggested potential synergy between probucol and cilostazol in preventing atherosclerosis, possibly by suppressing inflammatory reactions and promoting cholesterol efflux. Methods/design The Synergistic Effect of combination therapy with Cilostazol and probUcol on plaque stabilization and lesion REgression (SECURE) study is designed as a double-blind, randomised, controlled, multicenter clinical trial to investigate the effect of cilostazol and probucol combination therapy on plaque volume and composition in comparison with cilostazol monotherapy using intravascular ultrasound and Virtual Histology. The primary end point is the change in the plaque volume of index intermediate lesions between baseline and 9-month follow-up. Secondary endpoints include change in plaque composition, neointimal growth after implantation of stents at percutaneous coronary intervention target lesions, and serum levels of lipid components and biomarkers related to atherosclerosis and inflammation. A total of 118 patients will be included in the study. Discussion The SECURE study will deliver important information on the effects of combination therapy on lipid composition and biomarkers related to atherosclerosis, thereby providing insight into the mechanisms underlying the prevention of atherosclerosis progression by cilostazol and probucol. Trial registration number ClinicalTrials (NCT): NCT01031667 PMID:21226953
NASA Astrophysics Data System (ADS)
Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.
2013-10-01
Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.
Protective effect of co-administration of rosuvastatin and probucol on atherosclerosis in rats.
Chen, Zuoyuan; Li, Shan; Zhao, Wenna; Chen, Xiuhua; Wang, Xiaxia
2014-10-01
This study aimed to study the combined effect of rosuvastatin and probucol on atherosclerosis (AS) in rats. In total, 95 male Wistar rats were divided into 5 groups: 25 in the control group (A), 25 in the model group (B), 15 in the rosuvastatin group (C), 15 in the probucol group (D), and 15 in the rosuvastatin combined probucol group (E). A high-lipid diet and vitamin D3 were administered to establish AS rat model. Groups C, D, and E received corresponding drugs. Blood lipids, oxidized low-density lipoprotein (OX-LDL), malonaldehyde (MDA), superoxide dismutase (SOD), adiponectin (APN), and vascular endothelial cadherin (VE-cadherin) were measured. Platelet endothelial cell adhesion molecule-1 (PECAM-1) was detected by immune histochemistry. In groups B-E, AS rat models were successfully constructed. In groups C-E, blood lipids, OX-LDL, VE-cadherin, MDA, PECAM-1, and intimal thickness were decreased (p < 0.01), while SOD and APN were increased (p < 0.05), compared with that in group B. Furthermore, group E had lower levels of OX-LDL, MDA, and PECAM-1 but higher levels of SOD and APN and attenuated intimal thickening compared with groups C or D (p < 0.05). Administering rosuvastatin and probucol could attenuate AS lesions through modulation of oxidative stress, PECAM-1, and APN. Both drugs might help slow the progression of AS.
Braun, Anne; Zhang, Songwen; Miettinen, Helena E.; Ebrahim, Shamsah; Holm, Teresa M.; Vasile, Eliza; Post, Mark J.; Yoerger, Danita M.; Picard, Michael H.; Krieger, Joshua L.; Andrews, Nancy C.; Simons, Michael; Krieger, Monty
2003-01-01
Mice with homozygous null mutations in the high-density lipoprotein receptor SR-BI (scavenger receptor class B, type I) and apolipoprotein E genes fed a low-fat diet exhibit a constellation of pathologies shared with human atherosclerotic coronary heart disease (CHD): hypercholesterolemia, occlusive coronary atherosclerosis, myocardial infarctions, cardiac dysfunction (heart enlargement, reduced systolic function and ejection fraction, and ECG abnormalities), and premature death (mean age 6 weeks). They also exhibit a block in RBC maturation and abnormally high plasma unesterified-to-total cholesterol ratio (0.8) with associated abnormal lipoprotein morphology (lamellar/vesicular and stacked discoidal particles reminiscent of those in lecithin/cholesterol acyltransferase deficiency and cholestasis). Treatment with the lipid-lowering, antiatherosclerosis, and antioxidation drug probucol extended life to as long as 60 weeks (mean 36 weeks), and at 5–6 weeks of age, virtually completely reversed the cardiac and most RBC pathologies and corrected the unesterified to total cholesterol ratio (0.3) and associated distinctive abnormal lipoprotein morphologies. Manipulation of the timing of administration and withdrawal of probucol could control the onset of death and suggested that critical pathological changes usually occurred in untreated double knockout mice between ≈3 (weaning) and 5 weeks of age and that probucol delayed heart failure even after development of substantial CHD. The ability of probucol treatment to modulate pathophysiology in the double knockout mice enhances the potential of this murine system for analysis of the pathophysiology of CHD and preclinical testing of new approaches for the prevention and treatment of cardiovascular disease. PMID:12771386
Kim, Bum Joon; Lee, Eun-Jae; Kwon, Sun U; Park, Jong-Ho; Kim, Yong-Jae; Hong, Keun-Sik; Wong, Lawrence K S; Yu, Sungwook; Hwang, Yang-Ha; Lee, Ji Sung; Lee, Juneyoung; Rha, Joung-Ho; Heo, Sung Hyuk; Ahn, Sung Hwan; Seo, Woo-Keun; Park, Jong-Moo; Lee, Ju-Hun; Kwon, Jee-Hyun; Sohn, Sung-Il; Jung, Jin-Man; Navarro, Jose C; Kang, Dong-Wha
2018-06-01
The optimal treatment for patients with ischaemic stroke with a high risk of cerebral haemorrhage is unclear. We assessed the efficacy and safety of cilostazol versus aspirin, with and without probucol, in these patients. In this randomised, controlled, 2 × 2 factorial trial, we enrolled patients with ischaemic stroke with a history of or imaging findings of intracerebral haemorrhage or two or more microbleeds from 67 centres in three Asian countries. Patients were randomly assigned (1:1:1:1) to receive oral cilostazol (100 mg twice a day), aspirin (100 mg once a day), cilostazol plus probucol (250 mg twice a day), or aspirin plus probucol with centralised blocks stratified by centre. Cilostazol versus aspirin was investigated double-blinded; probucol treatment was open-label, but the outcome assessor was masked to assignment. The co-primary outcomes were incidence of the composite of stroke, myocardial infarction, or vascular death (efficacy) and incidence of haemorrhagic stroke (safety), which were assessed in intention-to-treat and modified intention-to-treat populations. Efficacy was analysed with a non-inferiority test and a superiority test if non-inferiority was satisfied. Safety was assessed with a superiority test only. This trial is registered with ClinicalTrials.gov, NCT01013532. Between Aug 1, 2009, and Aug 31, 2015, we randomly assigned 1534 patients to one of the four study groups, of whom 1512 were assessed for the co-primary endpoints. During a median follow-up of 1·9 years (IQR 1·0-3·0), the incidence of composite vascular events was 4·27 per 100 person-years in patients who received cilostazol and 5·33 per 100 person-years in patients who received aspirin (HR 0·80, 95% CI 0·57-1·11; non-inferiority p=0·0077; superiority p=0·18). Incidence of cerebral haemorrhage was 0·61 per 100 person-years in patients who received cilostazol and 1·20 per 100 person-years in those who received aspirin (HR 0·51, 97·5% CI 0·20-1·27; superiority p=0·18). The incidence of vascular events was 3·91 per 100 person-years in the probucol group compared with 5·75 per 100 person-years in the non-probucol group (HR 0·69, 95% CI 0·50-0·97; superiority p=0·0316). The incidence of cerebral haemorrhage was 0·72 per 100 person-years in the probucol group and 1·11 per 100 person-years in the non-probucol group (HR 0·65, 97·5% CI 0·27-1·57; p=0·55). Adverse events were similar across the four study groups; the most common events were dizziness, headache, diarrhoea, and constipation. In patients with ischaemic stroke at high risk of cerebral haemorrhage, cilostazol was non-inferior to aspirin for the prevention of cardiovascular events, but did not reduce the risk of haemorrhagic stroke. Addition of probucol to aspirin or cilostazol could be beneficial for reducing the incidence of cardiovascular events. Korea Otsuka Pharmaceutical. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahmad, Feroz; Leake, David S
2018-03-05
Oxidised low density lipoprotein (LDL) was considered to be important in the pathogenesis of atherosclerosis, but the large clinical trials of antioxidants, including the first one using probucol (the PQRST Trial), failed to show benefit and have cast doubt on the importance of oxidised LDL. We have shown previously that LDL oxidation can be catalysed by iron in the lysosomes of macrophages. The aim of this study was therefore to investigate the effectiveness of antioxidants in preventing LDL oxidation at lysosomal pH and also establish the possible mechanism of oxidation. Probucol did not effectively inhibit the oxidation of LDL at lysosomal pH, as measured by conjugated dienes or oxidised cholesteryl esters or tryptophan residues in isolated LDL or by ceroid formation in the lysosomes of macrophage-like cells, in marked contrast to its highly effective inhibition of LDL oxidation at pH 7.4. LDL oxidation at lysosomal pH was inhibited very effectively for long periods by N,N'-diphenyl-1,4-phenylenediamine, which is more hydrophobic than probucol and has been shown by others to inhibit atherosclerosis in rabbits, and by cysteamine, which is a hydrophilic antioxidant that accumulates in lysosomes. Iron-induced LDL oxidation might be due to the formation of the superoxide radical, which protonates at lysosomal pH to form the much more reactive, hydrophobic hydroperoxyl radical, which can enter LDL and reach its core. Probucol resides mainly in the surface monolayer of LDL and would not effectively scavenge hydroperoxyl radicals in the core of LDL. This might explain why probucol failed to protect against atherosclerosis in various clinical trials. The oxidised LDL hypothesis of atherosclerosis now needs to be re-evaluated using different and more effective antioxidants that protect against the lysosomal oxidation of LDL. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Bird, J E; Milhoan, K; Wilson, C B; Young, S G; Mundy, C A; Parthasarathy, S; Blantz, R C
1988-01-01
The effects of antioxidant therapy with probucol were evaluated in rats subjected to 1 h renal ischemia and to 24 h reperfusion. Probucol exerted significant antioxidant effects in renal cortical tubules in vitro when exposed to a catalase-resistant oxidant. At 24 h probucol treatment (IP) improved single nephron glomerular filtration rate (SNGFR) (28.1 +/- 3.3 nl/min) in comparison to untreated ischemic (I) rats (15.2 +/- 3.0), primarily as a result of improving SNGFR in a population of low SNGFR, low flow and/or obstructed nephrons. However, absolute proximal reabsorption remained abnormally low in IP rats at 24 h (5.9 +/- 0.8 nl/min), and cell necrosis was greater than in I rats. Kidney GFR remained low in IP rats due to extensive tubular backleak of inulin measured by microinjection studies. Evaluations after 2 h of reperfusion revealed a higher SNGFR in IP (36 +/- 3.1 nl/min) than I rats (20.8 +/- 2.7 nl/min). Absolute proximal reabsorption was essentially normal (11.6 +/- 1.3 nl/min) in IP rats, which was higher than IP rats at 24 h and the concurrent I rats. Administration of the lipophilic antioxidant, probucol, increased SNGFR and proximal tubular reabsorption within 2 h after ischemic renal failure. Although SNGFR remained higher than I rats at 24 h, absolute reabsorption fell below normal levels and tubular necrosis was more extensive in IP rats. Early improvement in nephron filtration with antioxidants may increase load dependent metabolic demand upon tubules and increase the extent of damage and transport dysfunction. Images PMID:2835399
Tale, Swapnil; Purchel, Anatolii A; Dalsin, Molly C; Reineke, Theresa M
2017-11-06
Synthetic polymers offer tunable platforms to create new oral drug delivery vehicles (excipients) to increase solubility, supersaturation maintenance, and bioavailability of poorly aqueous soluble pharmaceutical candidates. Five well-defined diblock terpolymers were synthesized via reversible addition-fragmentation chain transfer polymerization (RAFT) and consist of a first block of either poly(ethylene-alt-propylene) (PEP), poly(N-isopropylacrylamide) (PNIPAm), or poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and a second hydrophilic block consisting of a gradient copolymer of N,N-dimethylacrylamide (DMA) and 2-methacrylamidotrehalose (MAT). This family of diblock terpolymers offers hydrophobic, hydrophilic, or H-bonding functionalities to serve as noncovalent sites of drug binding. Drug-polymer spray dried dispersions (SDDs) were created with a model drug, probucol, and characterized by differential scanning calorimetry (DSC). These studies revealed that probucol crystallinity decreased with increasing H-bonding sites available in the polymer. The PNIPAm-b-P(DMA-grad-MAT) systems revealed the best performance at pH 6.5, where immediate probucol release and effective maintenance of 100% supersaturation was found, which is important for facilitating drug solubility in more neutral conditions (intestinal environment). However, the PDEAEMA-b-P(DMA-grad-MAT) system revealed poor probucol dissolution at pH 6.5 and 5.1. Alternatively, at an acidic pH of 3.1, a rapid and high dissolution profile and effective supersaturation maintenance of up to 90% of the drug was found, which could be useful for triggering drug release in acidic environments (stomach). The PEP-b-P(DMA-grad-MAT) system showed poor performance (only ∼20% of drug solubility at pH 6.5), which was attributed to the low solubility of the polymers in the dissolution media. This work demonstrates the utility of diblock terpolymers as a potential new excipient platform to optimize design parameters for triggered release and solubilizing hydrophobic drug candidates for oral delivery.
NASA Astrophysics Data System (ADS)
Sasaki, Tetsuo; Sakamoto, Tomoaki; Otsuka, Makoto
2018-05-01
Middle molecular weight (MMW) pharmaceuticals (MW 400 4000) are attracting attention for their possible use in new medications. Sharp absorption peaks were observed in MMW pharmaceuticals at low temperatures by measuring with a high-resolution terahertz (THz) spectrometer. As examples, high-resolution THz spectra for amoxicillin trihydrate, atorvastatin calcium trihydrate, probucol, and α,β,γ,δ-tetrakis(1-methylpyridinium-4-yl)porphyrin p-toluenesulfonate (TMPyP) were obtained at 10 K. Typically observed as peaks with full width at half-height (FWHM) values as low as 5.639 GHz at 0.96492 THz in amoxicillin trihydrate and 8.857 GHz at 1.07974 THz for probucol, many sharp peaks of MMW pharmaceuticals could be observed. Such narrow absorption peaks enable evaluation of the crystal quality of MMW pharmaceuticals and afford sensitive detection of impurities.
[Effects of three different treatments on atherosclerosis and adipose in rats].
Lan, Xiao-hong; Zhou, Yong-gang; Li, Xiang; Xu, Rui
2012-06-19
To explore the effects of three different treatments, including probucol plus aspirin (PS), lovastatin plus aspirin (AS) and probucol, lovastatin plus aspirin (PAS) on atherosclerotic plaque and adipose. A total of 31 SD rats with established atherosclerosis were randomly divided into control group (n = 7), high-fat group (n = 4), PS group (n = 8), AS group (n = 5) and PAS group (n = 7). The PS group rats were lavaged with probucol (104.4 mg×kg(-1)×d(-1)) and aspirin 10.4 mg×kg(-1)×d(-1)), AS group ones aspirin (10.4 mg×kg(-1)×d(-1)) and lovastatin (2.1 mg×kg(-1)×d(-1)) and PAS group ones probucol (104.4 mg×kg(-1)×d(-1)), aspirin (10.4 mg×kg(-1)×d(-1)) and lovastatin (2.1 mg×kg(-1)×d(-1)) for 8 weeks. At the same time, the control group received an equal volume of saline. Finally the plaque stability and adipose function of treatment groups were evaluated by the changes of body weight, serum parameters, adipose weights and pathological specimens. Body weights in PS and PAS groups significantly increased than those in AS group (251 g ± 5 g and 247 g ± 7 g vs 220 g ± 6 g, P < 0.01). The serum levels of low density lipoprotein cholesterol (LDL), glucose (Glu), total cholesterol (TC) and high density lipoprotein cholesterol (HDL) were significantly better in PS and PAS groups than those in AS group (P < 0.01). The level of tumor necrosis factor-alpha (TNF-α) was lower in PAS group than that in high-fat group (27 ± 21 vs 100 ± 34 pg/ml, P < 0.05). The stability level of atherosclerotic plaque was more in PAS group than those in PS and AS groups by oil red staining in aorta, oil red staining in different organs and hematoxylin and eosin staining in different aortal parts. Atherosclerosis improves more pronouncedly in PS and PAS groups than that in AS group. Through an analysis of the changes of fat-related indicators, adipose factor may play an important role in atherosclerotic treatment.
Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T
2017-08-01
LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Crystallization of probucol from solution and the glassy state.
Kawakami, Kohsaku; Ohba, Chie
2017-01-30
Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Gassó, S; Cristòfol, R M; Selema, G; Rosa, R; Rodríguez-Farré, E; Sanfeliu, C
2001-10-01
The effects of the environmental contaminants methylmercury (MeHg) and inorganic mercury (HgCl(2)) on cell viability, intracellular calcium concentration ([Ca(2+)](i)), and reactive oxygen species (ROS) generation were studied in rat cerebellar granule neuron cultures using fluorescent methods. MeHg exhibited an LC(50) (2.47 microM) tenfold lower than that of HgCl(2) (26.40 microM). To study the involvement of oxidative stress and Ca(2+) homeostasis disruption in mercury-induced cytotoxicity, we tested the neuroprotective effects of several agents that selectively interfere with these mechanisms. After a 24 hr exposure, the cytotoxic effect of both mercury compounds was reduced by thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase; the Ca(2+) channel blocker flunarizine; and the Na(+)/Ca(2+) exchanger blocker benzamil. All these compounds decreased the mercury-mediated [Ca(2+)](i) rise. These results indicate that Ca(2+) influx through Ca(2+) channels and the Na(+)/Ca(2+) exchanger and Ca(2+) mobilization from the endoplasmic reticulum are involved in mercury-mediated cytotoxicity. The antioxidants probucol and propyl gallate reduced the HgCl(2) toxicity. Probucol and vitamin E partially inhibited the MeHg toxicity after a 24 hr period, whereas propyl gallate completely prevented this effect. Probucol slightly reduced ROS generation in methylmercury-exposed cultures and decreased mercury-mediated rise of [Ca(2+)](i). Propyl gallate abolished ROS generation and partially inhibited the increase of [Ca(2+)](i) induced by both mercury compounds. Propyl gallate also protected human cerebral cortical neuron cultures from the MeHg effect even after 72 hr of MeHg exposure, thus showing a long-lasting effect. Our data suggest that disruption of redox equilibrium and Ca(2+) homeostasis contribute equally to HgCl(2)-mediated toxicity, whereas oxidative stress is the main cause of MeHg neurotoxicity. Copyright 2001 Wiley-Liss, Inc.
Khan, Shagufta; Khan, Faez Iqbal; Mohammad, Taj; Khan, Parvez; Hasan, Gulam Mustafa; Lobb, Kevin A; Islam, Asimul; Ahmad, Faizan; Imtaiyaz Hassan, Md
2018-05-01
Mammalian cell entry protein (Mce4A) is a member of MCE-family, and is being considered as a potential drug target of Mycobacterium tuberculosis infection because it is required for invasion and latent survival of pathogen by utilizing host's cholesterol. In the present study, we performed molecular docking followed by 100 ns MD simulation studies to understand the mechanism of interaction of Mce4A to the cholesterol derivatives and probucol. The selected ligands, cholesterol, 25-hydroxycholesterol, 5-cholesten-3β-ol-7-one and probucol bind to the predicted active site cavity of Mce4A, and complexes remain stable during entire simulation of 100 ns. In silico studies were further validated by fluorescence-binding studies to calculate actual binding affinity and number of binding site(s). The non-toxicity of all ligands was confirmed on human monocytic cell (THP1) by MTT assay. This work provides a deeper insight into the mechanism of interaction of Mce4A to cholesterol derivatives, which may be further exploited to design potential and specific inhibitors to ameliorate the Mycobacterium pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Sharma, H M; Hanna, A N; Kauffman, E M; Newman, H A
1992-12-01
In this study, we examined the effect of the Maharishi Ayur-Veda herbal mixtures (MAHMs) Maharishi Amrit Kalash-4 and -5 (M-4 and M-5), MA-631, and Maharishi Coffee Substitute (MCS) on low-density lipoprotein (LDL) oxidation and compared the potency of these mixtures to ascorbic acid, alpha-tocopherol, and probucol. LDL was incubated in 95% air and 5% CO2, with or without 3 microM Cu(+2), in the presence or absence of MAHMs, for 6 or 24 h. In a separate experiment, LDL was incubated as above except MAHMs were added at 0, 1.5, and 3.5 h after incubation started to assess their effect on initiation and propagation of LDL oxidation. Our results demonstrate that MAHMs caused concentration-dependent inhibition of LDL oxidation as assessed by thiobarbituric acid-reactive substances and electrophoretic mobility. The MAHM showed more antioxidant potency in preventing LDL oxidation than ascorbic acid, alpha-tocopherol, or probucol. Also, MAHMs inhibited both initiation and propagation of cupric ion-catalyzed LDL oxidation. These results suggest the importance of further research on these herbal mixtures in the investigation of atherosclerosis and free radical-induced injury.
Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang
2015-01-01
The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway. PMID:25950762
Hu, Wei-Syun; Ting, Wei-Jen; Chiang, Wen-Dee; Pai, Peiying; Yeh, Yu-Lan; Chang, Chung-Ho; Lin, Wan-Teng; Huang, Chih-Yang
2015-05-05
The prevalence of obesity is high in older adults. Alcalase potato protein hydrolysate (APPH), a nutraceutical food, might have greater benefits and be more economical than hypolipidemic drugs. In this study, serum lipid profiles and heart protective effects were evaluated in high fat diet (HFD) induced hyperlipidemia in aging rats treated with APPH (15, 45 and 75 mg/kg/day) and probucol (500 mg/kg/day). APPH treatments reduced serum triacylglycerol (TG), total cholesterol (TC), and low density lipoprotein (LDL) levels to the normal levels expressed in the control group. Additionally, the IGF1R-PI3K-Akt survival pathway was reactivated, and Fas-FADD (Fas-associated death domain) induced apoptosis was inhibited by APPH treatments (15 and 45 mg/kg/day) in HFD aging rat hearts. APPH (75 mg/kg/day) rather than probucol (500 mg/kg/day) treatment could reduce serum lipids without affecting HDL expression. The heart protective effect of APPH in aging rats with hyperlipidemia was through lowering serum lipids and enhancing the activation of the compensatory IGF1R-PI3K-Akt survival pathway.
Lipid Lowering Agents Aeromedical Concerns
2001-06-01
simvastatin, fluvastatin, atorvastatin ) b. family history of premature CHD (first degree d. Others (nicotinic acid, probucol) male relative ឧ, first... atorvastatin , fluvastatin, lovastatin, and simvastatin) serum liver enzyme levels associated with have been developed for clinical use and are now...Engl J Med 1993; There are unpublished data about atorvastatin and 328:1213-9. 18 10. LRCP. JAMA 1984;251:351-64. 15. Vgontzas, et al. Clin Pharm Ther
Westlund, Beth; Perier, Celine; Burnam, Lucinda; Sluder, Anne; Hoener, Marius; Rodrigues, Cecilia MP; Alfonso, Aixa; Steer, Clifford; Liu, Leo; Przedborski, Serge; Wolozin, Benjamin
2014-01-01
How genetic and environmental factors interact in Parkinson’s disease is poorly understood. We have now compared the patterns of vulnerability and rescue of C. elegans with genetic modifications of three different genetic factors implicated in PD. We observed that expressing α-synuclein, deleting parkin (K08E3.7) or knocking down DJ-1 (B0432.2) or parkin, produces similar patterns of pharmacological vulnerability and rescue. C. elegans lines with these genetic changes were more vulnerable than non-transgenic nematodes to mitochondrial complex I inhibitors, including rotenone, fenperoximate, pyridaben or stigmatellin. In contrast, the genetic manipulations did not increase sensitivity to paraquat, sodium azide, divalent metal ions (FeII or CuII) or etoposide compared to non-transgenic nematodes. Each of the PD-related lines was also partially rescued by the anti-oxidant probucol, the mitochondrial complex II activator, D-β-hydroxybutyrate (DβHB) or the anti-apoptotic bile acid tauroursodeoxycholic acid (TUDCA). Complete protection in all lines was achieved by combining DβHB with TUDCA but not with probucol. These results show that diverse PD-related genetic modifications disrupt mitochondrial function in C. elegans, and they raise the possibility that mitochondrial disruption is a pathway shared in common by many types of familial PD. PMID:16239214
Morita, Mayuko; Naito, Yuji; Yoshikawa, Toshikazu; Niki, Etsuo
2016-11-15
With increasing evidence showing the involvement of oxidative stress in the pathogenesis of various diseases, the effects of clinical drugs possessing antioxidant functions have received much attention. The unregulated oxidative modification of biological molecules leading to diseases is mediated by multiple oxidants including free radicals, peroxynitrite, hypochlorite, lipoxygenase, and singlet oxygen. The capacity of antioxidants to scavenge or quench oxidants depends on the nature of oxidants. In the present study, the antioxidant effects of several clinical drugs against plasma lipid oxidation induced by the aforementioned five kinds of oxidants were investigated from the production of lipid hydroperoxides, which have been implicated in the pathogenesis of various diseases. Troglitazone acted as a potent peroxyl radical scavenger, whereas probucol and edaravone showed only moderate reactivity and carvedilol, pentoxifylline, and ebselen did not act as radical scavenger. Probucol and edaravone suppressed plasma oxidation mediated by peroxynitrite and hypochlorite. Troglitazone and edaravone inhibited 15-lipoxygenase mediated plasma lipid oxidation, the IC 50 being 20 and 34μM respectively. None of the drugs used in this study suppressed plasma lipid oxidation by singlet oxygen. This study shows that the antioxidant effects of drugs depend on the nature of oxidants and that antioxidants against multiple oxidants are required to cope with oxidative stress in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.
Christensen, Janne Ørskov; Schultz, Kirsten; Mollgaard, Birgitte; Kristensen, Henning Gjelstrup; Mullertz, Anette
2004-11-01
The partitioning of poorly soluble drugs into an aqueous micellar phase was exploited using an in vitro lipid digestion model, simulating the events taking place during digestion of acylglycerols in the duodenum. The aqueous micellar phase was isolated after ultracentrifugation of samples obtained at different degrees of triacylglycerol hydrolysis. Flupentixol, 1'-[4-[1-(4-fluorophenyl)-1-H-indol-3-yl]-1-butyl]spiro[iso-benzofuran-1(3H), 4' piperidine] (LU 28-179) and probucol were studied. The effect of the alkyl chain length of the triacylglycerol was studied using a medium-chain triacylglycerol (MCT) and a long-chain triacylglycerol (LCT), respectively. In general, an oil solution was used as the lipid source in the model. Samples were analysed in regard to micellar size, lipid composition and drug concentration. During lipolysis, the content of lipolytic products in the aqueous micellar phase increased. The micellar size (R(H) approximately 3 nm) only increased when long-chain lipolytic products were incorporated in the mixed micelles (R(H) approximately 7.8 nm). Flupentixol was quickly transferred to the mixed micelles due to high solubility in this phase (100% released). A tendency towards higher solubilisation of LU 28-179, when it was administered in the LCT (approximately 24% released) compared to when it was administered in the MCT (approximately 15% released) at 70% hydrolysis, and a lagphase was observed. There was no difference in the solubilisation of probucol using MCT or LCT ( approximately 20% released), respectively. Differences in the physicochemical properties of the drugs resulted in differences in their distribution between the phases arising during lipolysis.
Mooranian, Armin; Negrulj, Rebecca; Arfuso, Frank; Al-Salami, Hani
2016-11-01
We have shown that the primary bile acid, cholic acid (CA), has anti-diabetic effects in vivo. Probucol (PB) is a lipophilic drug with potential applications in type 2 diabetes (T2D). This study aimed to encapsulate CA with PB and examine the formulation and surface characteristics of the microcapsules. We also tested the microcapsules' biological effects on pancreatic β-cells. Using the polymer, sodium alginate (SA), two formulations were prepared: PB-SA (control), and PB-CA-SA (test). Complete characterizations of the morphology, shape, size, chemical, thermal, and rheological properties, swelling and mechanical strength, cross-sectional imaging (Micro CT), stability, Zeta-potential, drug contents, and PB release profile were carried out, at different temperature and pH values. The microcapsules were applied to a NIT-1 cell culture and the supernatant was analyzed for insulin and TNF-α concentrations. CA incorporation optimized the PB microcapsules, which exhibited pseudoplastic-thixotropic rheological characteristics. The size of the microcapsules remained similar after CA addition, and the microcapsules showed even drug distribution and no chemical alterations of the excipients. Micro-CT imaging, differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy showed consistent microcapsules with uniform shape and morphology. PB-CA-SA microcapsules enhanced NIT-1 cell viability under hyperglycemic states and resulted in improved insulin release as well as reduced cytokine production at the physiological glucose levels. The addition of the primary bile acid, CA, improved the physical properties of the microcapsules and enhanced their pharmacological activity in vitro, suggesting potential applications in diabetes treatment.
Liang, Zhengyang; Zheng, Yuanyuan; Wang, Jing; Zhang, Quanbin; Ren, Shuang; Liu, Tiantian; Wang, Zhiqiang; Luo, Dali
2016-09-15
Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles. Therefore, LMWF can be a potential adjuvant treatment against cardiovascular complications in type 1 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.
Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R
2013-04-01
Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki
2012-11-01
A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.
Bayés, M; Rabasseda, X; Prous, J R
2002-09-01
Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Studies knowledge area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: Adalimumab, aeroDose insulin inhaler, agomelatine, alendronic acid sodium salt, aliskiren fumarate, alteplase, amlodipine, aspirin, atazanavir; Bacillus Calmette-Guérin, basiliximab, BQ-788, bupropion hydrochloride; Cabergoline, caffeine citrate, carbamazepine, carvedilol, celecoxib, cyclosporine, clopidogrel hydrogensulfate, colestyramine; Dexamethasone, diclofenac sodium, digoxin, dipyridamole, docetaxel, dutasteride; Eletriptan, enfuvirtidie, eplerenone, ergotamine tartrate, esomeprazole magnesium, estramustine phosphate sodium; Finasteride, fluticasone propionate, fosinopril sodium; Ganciclovir, GBE-761-ONC, glatiramer acetate, gliclazide, granulocyte-CSF; Heparin sodium, human isophane insulin (pyr), Hydrochlorothiazide; Ibuprofen, inhaled insulin, interferon alfa, interferon beta-1a; Laminvudine, lansoprazole, lisinopril, lonafarnib, losartan potassium, lumiracoxib; MAb G250, meloxicam methotrexate, methylprednisolone aceponate, mitomycin, mycophenolate mofetil; Naproxen sodium, natalizumab, nelfinavir mesilate, nemifitide ditriflutate, nimesulide; Omalizumab, omapatrilat, omeprazole, oxybutynin chloride; Pantoprazole sodium, paracetamol, paroxetine, pentoxifylline, pergolide mesylate, permixon, phVEGF-A165, pramipexole hydrochloride, prasterone, prednisone, probucol, propiverine hydrochloride; Rabeprazole sodium, resiniferatoxin, risedronate sodium, risperidone, rofecoxib rosiglitazone maleate, ruboxistaurin mesilate hydrate; Selegiline transdermal system, sertraline, sildenafil citrate, streptokinase; Tadalafil, tamsulosin hydrochloride, technosphere/Insulin, tegaserod maleate, tenofovir disoproxil fumarate, testosterone heptanoate, testosterone undecanoate, tipifarnib, tolterodine tartrate, topiramate, troglitazone; Ursodeoxycholic acid; Valdecoxib, valsartan, vardenafil, venlafaxine hydrochloride, VX-745.
Coffey, M D; Cole, R A; Colles, S M; Chisolm, G M
1995-01-01
Mounting evidence supports current theories linking lipoprotein oxidation to atherosclerosis. We sought the cellular biochemical mechanism by which oxidized LDL inflicts cell injury. Inhibitors of candidate pathways of cell death were used to treat human fibroblast target cells exposed to oxidized LDL.. Ebselen, which degrades lipid hydroperoxides, inhibited oxidized LDL toxicity, consistent with our recent report that 7 beta-hydroperoxycholesterol (7 beta-OOH chol) is the major cytotoxin of oxidized LDL. Intracellular chelation of metal ions inhibited, while preloading cells with iron enhanced, toxicity, Inhibition of oxidized LDL and 7 beta-OOH chol toxicity by 2-keto-4-thiolmethyl butyric acid, a putative alkoxyl radical scavenger and by vitamin E, probucol and diphenylphenylenediamine, putative scavengers of peroxyl radicals was consistent with the involvement of these radicals in the lethal sequence. Cell death was thus postulated to occur due to lipid peroxidation via a sequence involving lipid hydroperoxide-induced, iron-mediated formation of alkoxyl, lipid, and peroxyl radicals. Pathways involving other reactive oxygen species, new protein synthesis, or altered cholesterol metabolism were considered less likely, since putative inhibitors failed to lessen toxicity. Understanding the mechanism of cell injury by oxidized LDL and its toxic moiety, 7 beta-OOH chol, may indicate specific interventions in the cell injury believed to accompany vascular lesion development. PMID:7560078
Seo, Woo-Keun; Kim, Yong Jae; Lee, Juneyoung; Kwon, Sun U
2017-09-01
Atherosclerosis is one of the main mechanisms of stroke and cardiovascular diseases and is associated with increased risk of recurrent stroke and cardiovascular events. Intima-medial thickness (IMT) is a well-known surrogate marker of atherosclerosis and has been used to predict stroke and cardiovascular events. However, the clinical significance of IMT and IMT change in stroke has not been investigated in well-designed studies. The PreventIon of CArdiovascular events in iSchemic Stroke patients with high risk of cerebral hemOrrhage-Intima-Media Thickness (PICASSO-IMT) sub-study is designed to investigate the effects of cilostazol, probucol, or both on IMT in patients with stroke. PICASSO-IMT is a prospective sub-study of the PICASSO study designed to measure IMT and plaque score at 1, 13, 25, 37, and 49 months after randomization. The primary outcome is the change in mean carotid IMT, which is defined as the mean of the far-wall IMTs of the right and left common carotid arteries, between baseline and 13 months after randomization. PICASSO-IMT will provide the largest IMT data set in a stroke population and will provide valuable information about the clinical significance of IMT in patients with ischemic stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy
2017-10-05
A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Tsung-Han; Yao, Hsien-Tsung; Chiang, Meng-Tsan
2017-10-01
The purpose of this study was to investigate the effects of Gelidium amansii (GA) hot-water extracts (GHE) on lipid metabolism in hamsters. Six-week-old male Syrian hamsters were used as the experimental animals. Hamsters were divided into four groups: (1) control diet group (CON); (2) high-fat diet group (HF); (3) HF with GHE diet group (HF + GHE); (4) HF with probucol diet group (HF + PO). All groups were fed the experimental diets and drinking water ad libitum for 6 weeks. The results showed that GHE significantly decreased body weight, liver weight, and adipose tissue (perirenal and paraepididymal) weight. The HF diet induced an increase in plasma triacylglycerol (TG), total cholesterol (TC), low-density lipoprotein cholesterol and very-low-density lipoprotein cholesterol levels. However, GHE supplementation reversed the increase of plasma lipids caused by the HF diet. In addition, GHE increased fecal cholesterol, TG and bile acid excretion. Lower hepatic TC and TG levels were found with GHE treatment. GHE reduced hepatic sterol regulatory element-binding proteins (SREBP) including SREBP 1 and SREBP 2 protein expressions. The phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) protein expression in hamsters was decreased by the HF diet; however, GHE supplementation increased the phosphorylation of AMPK protein expression. Our results suggest that GHE may ameliorate lipid metabolism in hamsters fed a HF diet. Copyright © 2017. Published by Elsevier B.V.
Shah, Ankita V; Serajuddin, Abu T M
2012-10-01
To develop solid self-emulsifying drug delivery systems (SEDDS) for lipids using poloxamer 188 as both solidifying and emulsifying agents. Mixtures of various lipids with poloxamer 188 and PEG 8000 were prepared at ~75°C. The molten mixtures, with and without dissolved drugs (fenofibrate and probucol), were then cooled to room temperature. When solids formed, they were characterized by powder XRD, DSC, microscopy using cross-polarization and confocal fluorescence techniques, dispersion test in water and particle size analysis of dispersions. When mixed with poloxamer 188 or PEG 8000, lipids consisting of monoesters of fatty acids with glycerol or propylene glycol formed solid systems, but not di- and tri-esters, which showed phase separation. Added to water, the solid systems containing poloxamer 188 started to disperse in water forming oil globules of 200-600 nm. No emulsification of lipids was observed from solids containing PEG 8000, indicating that the surfactant property of poloxamer 188 was responsible for emulsification. Powder XRD, DSC and microscopic examination revealed that poloxamer 188 and PEG 8000 maintained their crystallinity in solid systems, while the lipids were interspersed in between crystalline regions. The drug remained solubilized in the lipid phase. A novel solid SEDDS is developed where the drug can be solubilized in liquid lipids and then the lipidic solution can be converted to solid mass by dispersing into the microstructure of poloxamer 188.
Madsen, Cecilie Maria; Feng, Kung-I; Leithead, Andrew; Canfield, Nicole; Jørgensen, Søren Astrup; Müllertz, Anette; Rades, Thomas
2018-01-01
The composition of the human intestinal fluids varies both intra- and inter-individually. This will influence the solubility of orally administered drug compounds, and hence, the absorption and efficacy of compounds displaying solubility limited absorption. The purpose of this study was to assess the influence of simulated intestinal fluid (SIF) composition on the solubility of poorly soluble compounds. Using a Design of Experiments (DoE) approach, a set of 24 SIF was defined within the known compositions of human fasted state intestinal fluid. The SIF were composed of phospholipid, bile salt, and different pH, buffer capacities and osmolarities. On a small scale semi-robotic system, the solubility of 6 compounds (aprepitant, carvedilol, felodipine, fenofibrate, probucol, and zafirlukast) was determined in the 24 SIF. Compound specific models, describing key factors influencing the solubility of each compound, were identified. Although all models were different, the level of phospholipid and bile salt, the pH, and the interactions between these, had the biggest influences on solubility overall. Thus, a reduction of the DoE from five to three factors was possible (11-13 media), making DoE solubility studies feasible compared to single SIF solubility studies. Applying this DoE approach will lead to a better understanding of the impact of intestinal fluid composition on the solubility of a given drug compound. Copyright © 2017 Elsevier B.V. All rights reserved.
Pallebage-Gamarallage, Menuka; Takechi, Ryusuke; Lam, Virginie; Elahy, Mina; Mamo, John
2016-01-01
An increasing body of evidence suggests that cerebrovascular dysfunction and microvessel disease precede the evolution of hallmark pathological features that characterise Alzheimer's disease (AD), consistent with a causal association for onset or progression. Recent studies, principally in genetically unmanipulated animal models, suggest that chronic ingestion of diets enriched in saturated fats and cholesterol may compromise blood-brain barrier (BBB) integrity resulting in inappropriate blood-to-brain extravasation of plasma proteins, including lipid macromolecules that may be enriched in amyloid-β (Aβ). Brain parenchymal retention of blood proteins and lipoprotein bound Aβ is associated with heightened neurovascular inflammation, altered redox homeostasis and nitric oxide (NO) metabolism. Therefore, it is a reasonable proposition that lipid-lowering agents may positively modulate BBB integrity and by extension attenuate risk or progression of AD. In addition to their robust lipid lowering properties, reported beneficial effects of lipid-lowering agents were attributed to their pleiotropic properties via modulation of inflammation, oxidative stress, NO and Aβ metabolism. The review is a contemporary consideration of a complex body of literature intended to synthesise focussed consideration of mechanisms central to regulation of BBB function and integrity. Emphasis is given to dietary fat driven significant epidemiological evidence consistent with heightened risk amongst populations consuming greater amounts of saturated fats and cholesterol. In addition, potential neurovascular benefits associated with the use of hypolipidemic statins, probucol and fenofibrate are also presented in the context of lipid-lowering and pleiotropic properties.
Leoligin, the major lignan from Edelweiss, activates cholesteryl ester transfer protein
Duwensee, Kristina; Schwaiger, Stefan; Tancevski, Ivan; Eller, Kathrin; van Eck, Miranda; Markt, Patrick; Linder, Tobias; Stanzl, Ursula; Ritsch, Andreas; Patsch, Josef R.; Schuster, Daniela; Stuppner, Hermann; Bernhard, David; Eller, Philipp
2011-01-01
Objective Cholesteryl ester transfer protein (CETP) plays a central role in the metabolism of high-density lipoprotein particles. Therefore, we searched for new drugs that bind to CETP and modulate its activity. Methods A preliminary pharmacophore-based parallel screening approach indicated that leoligin, a major lignan of Edelweiss (Leontopodium alpinum Cass.), might bind to CETP. Therefore we incubated leoligin ex vivo at different concentrations with human (n = 20) and rabbit plasma (n = 3), and quantified the CETP activity by fluorimeter. Probucol served as positive control. Furthermore, we dosed CETP transgenic mice with leoligin and vehicle control by oral gavage for 7 days and measured subsequently the in vivo modulation of CETP activity (n = 5 for each treatment group). Results In vitro, leoligin significantly activated CETP in human plasma at 100 pM (p = 0.023) and 1 nM (p = 0.042), respectively, whereas leoligin concentrations of 1 mM inhibited CETP activity (p = 0.012). The observed CETP activation was not species specific, as it was similar in magnitude for rabbit CETP. In vivo, there was also a higher CETP activity after oral dosage of CETP transgenic mice with leoligin (p = 0.015). There was no short-term toxicity apparent in mice treated with leoligin. Conclusion CETP agonism by leoligin appears to be safe and effective, and may prove to be a useful modality to alter high-density lipoprotein metabolism. PMID:21820657
Atherosclerosis. Potential targets for stabilization and regression.
Schwartz, C J; Valente, A J; Sprague, E A; Kelley, J L; Cayatte, A J; Mowery, J
1992-12-01
Reviewed are various aspects of atherosclerotic plaque stabilization and regression in humans and experimental animals. Plaque regression is a function of the dynamic balance among initiation, progression, stabilization, and removal of plaque constituents. Pseudoregression, the result of the triad thrombolysis, age- or lesion-dependent arterial dilatation, and relaxation of vasospasm, may readily give rise to angiographic misinterpretation. Although lowering of plasma cholesterol and low density lipoprotein-cholesterol has demonstrated significant clinical benefits in a number of clinical trials, the magnitude of angiographic regressive changes is relatively small despite aggressive lipid-lowering regimens. The emerging need for alternative or complementary therapeutic interventions has been emphasized. In particular, they should be targeted to pivotal cellular or molecular mechanisms in initiation, progression, or stabilization. Potentially important therapeutic targets include the use of antioxidants or free radical scavengers such as Probucol or its analogues, butylated hydroxytoluene, tocopherols, and possibly the tocotrienols. Other therapeutic targets include intimal monocyte-macrophage recruitment, macrophage cholesterol acyltransferase inhibition, stimulation of the high density lipoprotein-mediated reverse cholesterol transport system, smooth muscle cell migration to and proliferation in the arterial intima, and intimal connective tissue synthesis. Whether the isoprenylated proteins associated with the cholesterol biosynthetic pathway will give rise to compounds regulating smooth muscle cell growth has yet to be determined. Because of the importance of thrombosis in the pathogenesis and progression of lesions, the need to develop interventional strategies targeted at endothelial cell thromboresistance and thromboregulation must assume a high priority in future research and development. Other areas of therapeutic promise include the calcium channel blockers and angiotensin converting enzyme inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)
Chiang, Wen-Dee; Huang, Chih Yang; Paul, Catherine Reena; Lee, Zong-Yan; Lin, Wan-Teng
2016-01-01
Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.
ABCG1-mediated generation of extracellular cholesterol microdomains[S
Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.
2014-01-01
Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237
Shah, Ankita; Thool, Prajwal; Sorathiya, Komal; Prajapati, Hetal; Dalrymple, Damon; Serajuddin, Abu T M
2018-02-01
The primary objective of this study was to develop lipid-based self-microemulsifying drug delivery systems (SMEDDS) without using any organic cosolvents that would spontaneously form microemulsions upon dilution with water. Cosolvents were avoided to prevent possible precipitation of drug upon dilution and other stability issues. Different polysorbates, namely, Tween 20, Tween 40, Tween 60, and Tween 80, were used as surfactants, and Captex 355 EP/NF (glycerol tricaprylate/caprate) or its 1:1 mixture with Capmul MCM NF (glycerol monocaprylocaprate) were used as lipids. Captex 355-Tween-water ternary phase diagrams showed that oil-in-water microemulsions were formed only when the surfactant content was high (80-90%) and the lipid content low (10-20%). Thus, mixtures of Tweens with Captex 355 alone were not suitable to prepare SMEDDS with substantial lipid contents. However, when Captex 355 was replaced with the 1:1 mixture of Captex 355 and Capmul MCM, clear isotropic microemulsion regions in phase diagrams with sizes in the increasing order of Tween 20 < Tween 40 < Tween 60 < Tween 80 were obtained. Tween 80 had the most profound effect among all surfactants as microemulsions were formed with lipid to surfactant ratios as high as 7:3, which may be attributed to the presence of double bond in its side chain that increased the curvature of surfactant layer. Thus, lipid-surfactant mixtures containing 1:1 mixture of medium chain triglyceride (Captex 355) and monoglyceride (Capmul MCM) and as low as 30% Tween 80 were identified as organic cosolvent-free systems for the preparation of SMEDDS. Formulations with a model drug, probucol, dispersed spontaneously and rapidly upon dilution with water to form microemulsions without any drug precipitation.
Cubeddu, Luigi X.
2016-01-01
Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294
Kang, Si-Hyuck; Chae, In-Ho; Park, Jin-Joo; Lee, Hak Seung; Kang, Do-Yoon; Hwang, Seung-Sik; Youn, Tae-Jin; Kim, Hyo-Soo
2016-06-27
This study sought to perform a systematic review and network meta-analysis to compare the relative safety and efficacy of contemporary DES and BVS. To improve outcomes of patients undergoing percutaneous coronary revascularization, there have been advances in the design of drug-eluting stents (DES), including the development of drug-eluting bioresorbable vascular scaffolds (BVS). Prospective, randomized, controlled trials comparing bare-metal stents (BMS), paclitaxel-eluting stents (PES), sirolimus-eluting stents (SES), Endeavor zotarolimus-eluting stents (E-ZES), cobalt-chromium (CoCr) everolimus-eluting stents (EES), platinum-chromium (PtCr)-EES, biodegradable polymer (BP)-EES, Resolute zotarolimus-eluting stents (R-ZES), BP biolimus-eluting stents (BP-BES), hybrid sirolimus-eluting stents (H [Orsiro]-SES), polymer-free sirolimus- and probucol-eluting stents, or BVS were searched in online databases. The primary endpoint was definite or probable stent thrombosis at 1 year. A total of 147 trials including 126,526 patients were analyzed in this study. All contemporary DES were superior to BMS and PES in terms of definite or probable stent thrombosis at 1 year. CoCr-EES, PtCr-EES, and H-SES were associated with significantly lower risk than BVS. CoCr-EES and H-SES were superior to SES and BP-BES. The risk of myocardial infarction was significantly lower with H-SES than with BVS. There were no significant differences regarding all-cause or cardiac mortality. Contemporary devices including BVS showed comparably low risks of repeat revascularization. Contemporary DES, including biocompatible DP-DES, BP-DES, and polymer-free DES, showed a low risk of definite or probable stent thrombosis at 1 year. BVS had an increased risk of device thrombosis compared with CoCr-EES, PtCr-EES, and H-SES. Data from extended follow-up are warranted to confirm the long-term safety of contemporary coronary devices. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Stillhart, Cordula; Kuentz, Martin
2012-02-05
Self-emulsifying drug delivery systems (SEDDS) are complex mixtures in which drug quantification can become a challenging task. Thus, a general need exists for novel analytical methods and a particular interest lies in techniques with the potential for process monitoring. This article compares Raman spectroscopy with high-resolution ultrasonic resonator technology (URT) for drug quantification in SEDDS. The model drugs fenofibrate, indomethacin, and probucol were quantitatively assayed in different self-emulsifying formulations. We measured ultrasound velocity and attenuation in the bulk formulation containing drug at different concentrations. The formulations were also studied by Raman spectroscopy. We used both, an in-line immersion probe for the bulk formulation and a multi-fiber sensor for measuring through hard-gelatin capsules that were filled with SEDDS. Each method was assessed by calculating the relative standard error of prediction (RSEP) as well as the limit of quantification (LOQ) and the mean recovery. Raman spectroscopy led to excellent calibration models for the bulk formulation as well as the capsules. The RSEP depended on the SEDDS type with values of 1.5-3.8%, while LOQ was between 0.04 and 0.35% (w/w) for drug quantification in the bulk. Similarly, the analysis of the capsules led to RSEP of 1.9-6.5% and LOQ of 0.01-0.41% (w/w). On the other hand, ultrasound attenuation resulted in RSEP of 2.3-4.4% and LOQ of 0.1-0.6% (w/w). Moreover, ultrasound velocity provided an interesting analytical response in cases where the drug strongly affected the density or compressibility of the SEDDS. We conclude that ultrasonic resonator technology and Raman spectroscopy constitute suitable methods for drug quantification in SEDDS, which is promising for their use as process analytical technologies. Copyright © 2011 Elsevier B.V. All rights reserved.
Vitamin C Prevents Cigarette Smoke-Induced Leukocyte Aggregation and Adhesion to Endothelium in vivo
NASA Astrophysics Data System (ADS)
Lehr, Hans-Anton; Frei, Balz; Arfors, Karl-E.
1994-08-01
A common feature of cigarette-smoke (CS)-associated diseases such as atherosclerosis and pulmonary emphysema is the activation, aggregation, and adhesion of leukocytes to micro- and macrovascular endothelium. A previous study, using a skinfold chamber model for intravital fluorescence microscopy in awake hamsters, has shown that exposure of hamsters to the smoke generated by one research cigarette elicits the adhesion of fluorescently labeled leukocytes to the endothelium of arterioles and small venules. By the combined use of intravital microscopy and scanning electron microscopy, we now demonstrate in the same animal model that (i) CS-induced leukocyte adhesion is not confined to the microcirculation, but that leukocytes also adhere singly and in clusters to the aortic endothelium; (ii) CS induces the formation in the bloodstream of aggregates between leukocytes and platelets; and (iii) CS-induced leukocyte adhesion to micro- and macrovascular endothelium and leukocyte-platelet aggregate formation are almost entirely prevented by dietary or intravenous pretreatment with the water-soluble antioxidant vitamin C (venules, 21.4 ± 11.0 vs. 149.6 ± 38.7 leukocytes per mm^2, P < 0.01; arterioles, 8.5 ± 4.2 vs. 54.3 ± 21.6 leukocytes per mm^2, P < 0.01; aortas, 0.8 ± 0.4 vs. 12.4 ± 5.6 leukocytes per mm^2, P < 0.01; means ± SD of n = 7 animals, 15 min after CS exposure). No inhibitory effect was observed by pretreatment of the animals with the lipid-soluble antioxidants vitamin E or probucol. The protective effects of vitamin C on CS-induced leukocyte adhesion and aggregation were seen at vitamin C plasma levels (55.6 ± 22.2 μM, n = 7) that can easily be reached in humans by dietary means or supplementation, suggesting that vitamin C effectively contributes to protection from CS-associated cardiovascular and pulmonary diseases in humans.
Takiguchi, Shunichi; Ayaori, Makoto; Yakushiji, Emi; Nishida, Takafumi; Nakaya, Kazuhiro; Sasaki, Makoto; Iizuka, Maki; Uto-Kondo, Harumi; Terao, Yoshio; Yogo, Makiko; Komatsu, Tomohiro; Ogura, Masatsune; Ikewaki, Katsunori
2018-05-10
Reverse cholesterol transport (RCT) is a major mechanism by which HDL (high-density lipoprotein) protects against atherosclerosis. Endothelial lipase (EL) reportedly reduces HDL levels, which, in theory, would increase atherosclerosis. However, it remains unclear whether EL affects RCT in vivo. Adenoviral vectors expressing EL or luciferase were intravenously injected into mice, and a macrophage RCT assay was performed. As expected, hepatic EL overexpression markedly reduced HDL levels. In parallel, plasma 3 H-cholesterol counts from the EL-expressing mice decreased by 85% compared with control. Surprisingly, there was no difference in fecal 3 H-cholesterol excretion between the groups. Kinetic studies revealed increased catabolism/hepatic uptake of 3 HDL-cholesteryl ether, resulting in no change in fecal HDL-cholesteryl ester excretion in the mice. To explore underlying mechanisms for the preservation of RCT despite low HDL levels in the EL-expressing mice, we investigated the effects of hepatic SR-BI (scavenger receptor class B type I) knockdown. RCT assay revealed that knockdown of SR-BI alone reduced fecal excretion of macrophage-derived 3 H-cholesterol. Interestingly, hepatic EL overexpression under SR-BI inhibition further attenuated fecal tracer counts as compared with control. Finally, we observed that EL overexpression enhanced in vivo RCT under pharmacological inhibition of hepatic ABCA1 (ATP-binding cassette transporter A1) by probucol. Hepatic EL expression compensates for reduced macrophage-derived cholesterol efflux to plasma because of low HDL levels by promoting cholesterol excretion to bile/feces via an SR-BI pathway, maintaining overall RCT in vivo. In contrast, EL-modified HDL might negatively regulate RCT via hepatic ABCA1. Despite extreme hypoalphalipoproteinemia, RCT is maintained in EL-expressing mice via SR-BI/ABCA1-dependent pathways. © 2018 American Heart Association, Inc.
Goodwill, Adam G.; Frisbee, Stephanie J.; Stapleton, Phoebe A.; James, Milinda E.; Frisbee, Jefferson C.
2011-01-01
Object The obese Zucker rat (OZR) model of the metabolic syndrome is partly characterized by moderate hypercholesterolemia in addition to other contributing co-morbidities. Previous results suggest that vascular dysfunction in OZR is associated with chronic reduction in vascular nitric oxide (NO) bioavailability and chronic inflammation, both frequently associated with hypercholesterolemia. As such, we evaluated the impact of chronic cholesterol reducing therapy on the development of impaired skeletal muscle arteriolar reactivity and microvessel density in OZR and its impact on chronic inflammation and NO bioavailability. Materials and Methods Beginning at 7 weeks of age, male OZR were treated with gemfibrozil, probucol, atorvastatin or simvastatin (in chow) for 10 weeks. Subsequently, plasma and vascular samples were collected for biochemical/molecular analyses, while arteriolar reactivity and microvessel network structure were assessed using established methodologies after 3, 6 and 10 weeks of drug therapy Results All interventions were equally effective at reducing total cholesterol, although only the statins also blunted the progressive reductions to vascular NO bioavailability, evidenced by greater maintenance of acetylcholine-induced dilator responses, an attenuation of adrenergic constrictor reactivity, and an improvement in agonist-induced NO production. Comparably, while minimal improvements to arteriolar wall mechanics were identified with any of the interventions, chronic statin treatment reduced the rate of microvessel rarefaction in OZR. Associated with these improvements was a striking statin-induced reduction in inflammation in OZR, such that numerous markers of inflammation were correlated with improved microvascular reactivity and density. However, using multivariate discriminant analyses, plasma RANTES, IL-10, MCP-1 and TNF-α were determined to be the strongest contributors to differences between groups, although their relative importance varied with time. Conclusions While the positive impact of chronic statin treatment on vascular outcomes in the metabolic syndrome are independent of changes to total cholesterol, and are more strongly associated with improvements to vascular NO bioavailability and attenuated inflammation, these results provide both a spatial and temporal framework for targeted investigation into mechanistic determinants of vasculopathy in the metabolic syndrome. PMID:19905967
Navarese, Eliano P; Gurbel, Paul A; Andreotti, Felicita; Kołodziejczak, Michalina Marta; Palmer, Suetonia C; Dias, Sofia; Buffon, Antonino; Kubica, Jacek; Kowalewski, Mariusz; Jadczyk, Tomasz; Laskiewicz, Michał; Jędrzejek, Marek; Brockmeyer, Maximillian; Airoldi, Flavio; Ruospo, Marinella; De Servi, Stefano; Wojakowski, Wojciech; O' Connor, Christopher; Strippoli, Giovanni F M
2017-01-01
Interventional diagnostic and therapeutic procedures requiring intravascular iodinated contrast steadily increase patient exposure to the risks of contrast-induced acute kidney injury (CIAKI), which is associated with death, nonfatal cardiovascular events, and prolonged hospitalization. The aim of this study was to investigate the efficacy of pharmacological and non-pharmacological treatments for CIAKI prevention in patients undergoing cardiovascular invasive procedures with iodinated contrast. MEDLINE, Google Scholar, EMBASE and Cochrane databases as well as abstracts and presentations from major cardiovascular and nephrology meetings were searched, up to 22 April 2016. Eligible studies were randomized trials comparing strategies to prevent CIAKI (alone or in combination) when added to saline versus each other, saline, placebo, or no treatment in patients undergoing cardiovascular invasive procedures with administration of iodinated contrast. Two reviewers independently extracted trial-level data including number of patients, duration of follow-up, and outcomes. Eighteen strategies aimed at CIAKI prevention were identified. The primary outcome was the occurrence of CIAKI. Secondary outcomes were mortality, myocardial infarction, dialysis and heart failure. The data were pooled using network meta-analysis. Treatment estimates were calculated as odds ratios (ORs) with 95% credible intervals (CrI). 147 RCTs involving 33,463 patients were eligible. Saline plus N-acetylcysteine (OR 0.72, 95%CrI 0.57-0.88), ascorbic acid (0.59, 0.34-0.95), sodium bicarbonate plus N-acetylcysteine (0.59, 0.36-0.89), probucol (0.42, 0.15-0.91), methylxanthines (0.39, 0.20-0.66), statin (0.36, 0.21-0.59), device-guided matched hydration (0.35, 0.12-0.79), prostaglandins (0.26, 0.08-0.62) and trimetazidine (0.26, 0.09-0.59) were associated with lower odds of CIAKI compared to saline. Methylxanthines (0.12, 0.01-0.94) or left ventricular end-diastolic pressure-guided hydration (0.09, 0.01-0.59) were associated with lower mortality compared to saline. Currently recommended treatment with saline as the only measure to prevent CIAKI during cardiovascular procedures may not represent the optimal strategy. Vasodilators, when added to saline, may significantly reduce the odds of CIAKI following cardiovascular procedures.
Zhou, Zhou; Dunn, Claire; Khadra, Ibrahim; Wilson, Clive G; Halbert, Gavin W
2017-03-01
Gastrointestinal fluid is a complex milieu and it is recognised that gut drug solubility is different to that observed in simple aqueous buffers. Simulated gastrointestinal media have been developed covering fasted and fed states to facilitate in vitro prediction of gut solubility and product dissolution. However, the combination of bile salts, phospholipids, fatty acids and proteins in an aqueous buffered system creates multiple phases and drug solubility is therefore a complex interaction between these components, which may create unique environments for each API. The impact on solubility can be assessed through a statistical design of experiment (DoE) approach, to determine the influence and relationships between factors. In this paper DoE has been applied to fed simulated gastrointestinal media consisting of eight components (pH, bile salt, lecithin, sodium oleate, monoglyceride, buffer, salt and pancreatin) using a two level D-optimal design with forty-four duplicate measurements and four centre points. The equilibrium solubility of a range of poorly soluble acidic (indomethacin, ibuprofen, phenytoin, valsartan, zafirlukast), basic (aprepitant, carvedilol, tadalafil, bromocriptine) and neutral (fenofibrate, felodipine, probucol, itraconazole) drugs was investigated. Results indicate that the DoE provides equilibrium solubility values that are comparable to literature results for other simulated fed gastrointestinal media systems or human intestinal fluid samples. For acidic drugs the influence of pH predominates but other significant factors related to oleate and bile salt or interactions between them are present. For basic drugs pH, oleate and bile salt have equal significance along with interactions between pH and oleate and lecithin and oleate. Neutral drugs show diverse effects of the media components particularly with regard to oleate, bile salt, pH and lecithin but the presence of monoglyceride, pancreatin and buffer have significant but smaller effects on solubility. There are fourteen significant interactions between factors mainly related to the surfactant components and pH, indicating that the solubility of neutral drugs in fed simulated media is complex. The results also indicate that the equilibrium solubility of each drug can exhibit individualistic behaviour associated with the drug's chemical structure, physicochemical properties and interaction with media components. The utility of DoE for fed simulated media has been demonstrated providing equilibrium solubility values comparable with similar in vitro systems whilst also providing greater information on the influence of media factors and their interactions. The determination of a drug's gastrointestinal solubility envelope provides useful limits that can potentially be applied to in silico modelling and in vivo experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Khadra, Ibrahim; Zhou, Zhou; Dunn, Claire; Wilson, Clive G; Halbert, Gavin
2015-01-25
A drug's solubility and dissolution behaviour within the gastrointestinal tract is a key property for successful administration by the oral route and one of the key factors in the biopharmaceutics classification system. This property can be determined by investigating drug solubility in human intestinal fluid (HIF) but this is difficult to obtain and highly variable, which has led to the development of multiple simulated intestinal fluid (SIF) recipes. Using a statistical design of experiment (DoE) technique this paper has investigated the effects and interactions on equilibrium drug solubility of seven typical SIF components (sodium taurocholate, lecithin, sodium phosphate, sodium chloride, pH, pancreatin and sodium oleate) within concentration ranges relevant to human intestinal fluid values. A range of poorly soluble drugs with acidic (naproxen, indomethacin, phenytoin, and piroxicam), basic (aprepitant, carvedilol, zafirlukast, tadalafil) or neutral (fenofibrate, griseofulvin, felodipine and probucol) properties have been investigated. The equilibrium solubility results determined are comparable with literature studies of the drugs in either HIF or SIF indicating that the DoE is operating in the correct space. With the exception of pancreatin, all of the factors individually had a statistically significant influence on equilibrium solubility with variations in magnitude of effect between the acidic and basic or neutral compounds and drug specific interactions were evident. Interestingly for the neutral compounds pH was the factor with the second largest solubility effect. Around one third of all the possible factor combinations showed a significant influence on equilibrium solubility with variations in interaction significance and magnitude of effect between the acidic and basic or neutral compounds. The least number of significant media component interactions were noted for the acidic compounds with three and the greatest for the neutral compounds at seven, with again drug specific effects evident. This indicates that a drug's equilibrium solubility in SIF is influenced depending upon drug type by between eight to fourteen individual or combinations of media components with some of these drug specific. This illustrates the complex nature of these fluids and provides for individual drugs a visualisation of the possible solubility envelope within the gastrointestinal tract, which may be of importance for modelling in vivo behaviour. In addition the results indicate that the design of experiment approach can be employed to provide greater detail of drug solubility behaviour, possible drug specific interactions and influence of variations in gastrointestinal media components due to disease. The approach is also feasible and amenable to adaptation for high throughput screening of drug candidates. Copyright © 2014 Elsevier B.V. All rights reserved.