DOE Office of Scientific and Technical Information (OSTI.GOV)
Kieffer, B.; Singer, Kelly; Abrahamson, Twa-le
1999-07-01
The purpose of this Habitat Evaluation Procedures (HEP) study was to determine baseline habitat units and to estimate future habitat units for Bonneville Power Administration (BPA) mitigation projects on the Spokane Indian Reservation. The mitigation between BPA and the Spokane Tribe of Indians (STOI) is for wildlife habitat losses on account of the construction of Grand Coulee Dam. Analysis of the HEP survey data will assist in mitigation crediting and appropriate management of the mitigation lands.
Service Request Password Help New Users Back to HEP Computing Mail-Migration Procedure on Linux Mail -Migration Procedure on Windows How to Migrate a Folder to GMail using Pine U.S. Department of Energy The
Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul; Muse, Anthony
A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppemore » with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).« less
Habitat Evaluation Procedures (HEP) Report Wanaket Wildlife Area, Techical Report 2005-2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul
2006-02-01
The Regional HEP Team (RHT) and Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Wildlife Program staff conducted a follow-up habitat evaluation procedures (HEP) analysis on the Wanaket Wildlife Management Area in June 2005. The 2005 HEP investigation generated 3,084.48 habitat units (HUs) for a net increase of 752.18 HUs above 1990/1995 baseline survey results. The HU to acre ratio also increased from 0.84:1.0 to 1.16:1.0. The largest increase in habitat units occurred in the shrubsteppe/grassland cover type (California quail and western meadowlark models), which increased from 1,544 HUs to 2,777 HUs (+43%), while agriculture cover type HUs were eliminatedmore » because agricultural lands (managed pasture) were converted to shrubsteppe/grassland. In addition to the agriculture cover type, major changes in habitat structure occurred in the shrubsteppe/grassland cover type due to the 2001 wildfire which removed the shrub component from well over 95% of its former range. The number of acres of all other cover types remained relatively stable; however, habitat quality improved in the riparian herb and riparian shrub cover types. The number and type of HEP species models used during the 2005 HEP analysis were identical to those used in the 1990/1995 baseline HEP surveys. The number of species models employed to evaluate the shrubsteppe/grassland, sand/gravel/mud/cobble, and riparian herb cover types, however, were fewer than reported in the McNary Dam Loss Assessment (Rassmussen and Wright 1989) for the same cover types.« less
West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs permore » acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.« less
Beta-Endorphin: dissociation of receptor binding activity from analgesic potency.
Li, C H; Tseng, L F; Ferrara, P; Yamashiro, D
1980-04-01
Biological activities of synthetic camel beta-endorphin and human beta-endorphin (beta h-EP) have been measured by the radioreceptor binding assay, using [Tyr27-3H]-beta h-EP as the primary ligand and by the tail-flick test for analgesic potency. Four synthetic analogs of beta h-EP, namely [Gly31]-beta h-EP-Gly-NH2, [Gly31]-beta h-EP-Gly-Gly-NH2, [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2, and [CH3(CH2)4NH231]-beta h-EP, have also been assayed by the same procedures. Results indicate a clear dissociation of radioreceptor binding activity from analgesic potency.
Beta-Endorphin: dissociation of receptor binding activity from analgesic potency.
Li, C H; Tseng, L F; Ferrara, P; Yamashiro, D
1980-01-01
Biological activities of synthetic camel beta-endorphin and human beta-endorphin (beta h-EP) have been measured by the radioreceptor binding assay, using [Tyr27-3H]-beta h-EP as the primary ligand and by the tail-flick test for analgesic potency. Four synthetic analogs of beta h-EP, namely [Gly31]-beta h-EP-Gly-NH2, [Gly31]-beta h-EP-Gly-Gly-NH2, [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2, and [CH3(CH2)4NH231]-beta h-EP, have also been assayed by the same procedures. Results indicate a clear dissociation of radioreceptor binding activity from analgesic potency. PMID:6246537
Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...
Buzzega, Dania; Maccari, Francesca; Volpi, Nicola
2008-11-01
We report the use of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine the molecular mass (M) values of heparins (Heps) and low-molecular-weight (LMW)-Hep derivatives. Hep are labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid and FACE is able to resolve each fraction as a discrete band depending on their M. After densitometric acquisition, the migration distance of each Hep standard is acquired and the third-grade polynomial calibration standard curve is determined by plotting the logarithms of the M values as a function of migration ratio. Purified Hep samples having different properties, pharmaceutical Heps and various LMW-Heps were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw and polydispersity (Mw/Mn) were examined by both techniques and found to be similar. This approach offers certain advantages over the HPSEC method. The derivatization process with 8-aminonaphthalene-1,3,6-trisulfonic acid is complete after 4 h so that many samples may be analyzed in a day also considering that multiple samples can be run simultaneously and in parallel and that a single FACE analysis requires approx. 15 min. Furthermore, FACE is a very sensitive method as it requires approx. 5-10 microg of Heps, about 10-100-fold lower than samples and standards used in HPSEC evaluation. Finally, the utilization of mini-gels allows the use of very low amounts of reagents with neither expensive equipment nor any complicated procedures having to be applied. This study demonstrates that FACE analysis is a sensitive method for the determination of the M values of Heps and LMW-Heps with possible utilization in virtually any kind of research and development such as quality control laboratories due to its rapid, parallel analysis of multiple samples by means of common and simple largely used analytical laboratory equipment.
West Foster Creek Expansion Project 2007 HEP Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus),more » western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.« less
Bhattacharjee, Jashdeep; Das, Barun; Sharma, Disha; Sahay, Preeti; Jain, Kshama; Mishra, Alaknanda; Iyer, Srikanth; Nagpal, Puja; Scaria, Vinod; Nagarajan, Perumal; Khanduri, Prakash; Mukhopadhyay, Asok
2016-01-01
Abstract In view of the escalating need for autologous cell‐based therapy for treatment of liver diseases, a novel candidate has been explored in the present study. The monocytes isolated from hepatitis B surface antigen (HBsAg) nucleic acid test (NAT)‐positive (HNP) blood were differentiated to hepatocyte‐like cells (NeoHep) in vitro by a two‐step culture procedure. The excess neutrophils present in HNP blood were removed before setting up the culture. In the first step of culture, apoptotic cells were depleted and genes involved in hypoxia were induced, which was followed by the upregulation of genes involved in the c‐MET signaling pathway in the second step. The NeoHep were void of hepatitis B virus and showed expression of albumin, connexin 32, hepatocyte nuclear factor 4‐α, and functions such as albumin secretion and cytochrome P450 enzyme‐mediated detoxification of xenobiotics. The engraftment of NeoHep derived from HBsAg‐NAT‐positive blood monocytes in partially hepatectomized NOD.CB17‐Prkdcscid/J mice liver and the subsequent secretion of human albumin and clotting factor VII activity in serum make NeoHep a promising candidate for cell‐based therapy. Stem Cells Translational Medicine 2017;6:174–186 PMID:28170202
Ruiz-Aracama, Ainhoa; Peijnenburg, Ad; Kleinjans, Jos; Jennen, Danyel; van Delft, Joost; Hellfrisch, Caroline; Lommen, Arjen
2011-05-20
In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively. The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.
Jurj, Ancuta; Tomuleasa, Ciprian; Tat, Tiberiu T; Berindan-Neagoe, Ioana; Vesa, Stefan V; Ionescu, Daniela C
2017-03-01
It is now well documented that certain anesthetic techniques may influence long term outcome in cancer patients undergoing surgery. More recently, local anesthetics proved certain antiproliferative effects in cancer cells. In our study, we aimed to investigate if lidocaine has antiproliferative effects in human hepatocarcinoma cells and to identify possible mechanisms of these effects. We investigated the inhibitory effect of different concentrations of lidocaine on the proliferation of cultured HepG2 human hepatocarcinoma cells and LX2 normal liver fibroblasts. Cells were exposed to nine different concentrations of lidocaine for 72h. MTT assay was used to investigate HepG2 and LX2 proliferation while Western blotting was used for detection of p53 expression level. Our data showed that lidocaine inhibited cell proliferation in a concentration-dependent manner in both HepG2 and LX2. The antiproliferative effects of lidocaine in LX2 were significantly diminished as compared with those in HepG2 (p< 0.001). Similarly, the expression level of p53 was significant decreased in HepG2 lines treated with lidocaine as compared with control and LX2 (p = 0.0241). In clinically relevant concentrations, lidocaine had significant antiproliferative effects on human hepatocarcinoma cells. These effects were time and dose-dependent. One of the possible mechanisms of these effects is by modifying the P53 expression level. The relevance of these findings in clinical practice is limited; clinical impact of these effects on the outcome of patients with hepatocarcinoma undergoing surgery or minimal invasive procedures needs to be demonstrated in future animal models and clinical studies.
Habitat Evaluation Procedures (HEP) Report : Oxbow Conservation Area, 2002-2005 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Brian
2005-02-01
This Habitat Evaluation Procedure (HEP) study was performed to determine baseline habitat units on the Oxbow Conservation Area in Grant County, Oregon. The evaluation is a required part of the Memorandum of Agreement between the Confederated Tribes of the Warm Springs and Bonneville Power Administration (BPA) relating to the acquisition and management of the Oxbow Conservation Area. The HEP team was comprised of individuals from the Washington Department of Fish and Wildlife and the Confederated Tribes of the Warm Springs Reservation of Oregon. The survey was conducted using the following HEP evaluation models for key species: black-capped chickadee (Poecile atricapilla),more » mallard (Anas platyrhynchos), mink (Mustela vison), western meadowlark (Sturnella neglecta), white-tailed deer (Odocoileus virginiana), and yellow warbler (Dendroica petechia). Cover types used in this survey were conifer forest, irrigated meadow, riparian meadow, upland meadow, riparian shrub, upland shrub, and mine tailings. The project generated 701.3 habitat units for mitigation crediting purposes. Results for each HEP species are: (1) Black-capped chickadee habitat was good, with only isolated areas lacking snags or having low tree canopy cover. (2) Mallard habitat was poor in upland meadows and marginal elsewhere due to a lack of herbaceous/shrub cover and low herbaceous height. (3) Mink habitat was good, limited only by the lack of the shrub component. (4) Western meadowlark habitat was marginal in upland meadow and mine tailing cover types and good in irrigated meadow. Percent cover of grass and height of herbaceous variables were limiting factors. (5) White-tailed deer habitat was marginal due to relatively low tree canopy cover, reduced shrub cover, and limited browse diversity. (6) Yellow Warbler habitat was marginal due to less than optimum shrub height and the lack of hydrophytic shrubs. General ratings (poor, marginal, etc.) are described in the introduction section.« less
ANATOMIC VARIATIONS OF HEPATIC ARTERY: A STUDY IN 479 LIVER TRANSPLANTATIONS.
Fonseca-Neto, Olival Cirilo Lucena da; Lima, Heloise Caroline de Souza; Rabelo, Priscylla; Melo, Paulo Sérgio Vieira de; Amorim, Américo Gusmão; Lacerda, Cláudio Moura
2017-01-01
The incidence of anatomic variations of hepatic artery ranges from 20-50% in different series. Variations are especially important in the context of liver orthotopic transplantation, since, besides being an ideal opportunity for surgical anatomical study, their precise identification is crucial to the success of the procedure. To identify the anatomical variations in the hepatic arterial system in hepatic transplantation. 479 medical records of transplanted adult patients in the 13-year period were retrospectively analyzed, and collected data on hepatic arterial anatomy of the deceased donor. It was identified normal hepatic arterial anatomy in 416 donors (86.84%). The other 63 patients (13.15%) showed some variation. According to the Michels classification, the most frequently observed abnormalities were: right hepatic artery branch of superior mesenteric artery (Type III, n=27, 5.63%); left hepatic artery branch of the left gastric artery (Type II, n=13, 2.71%); right hepatic artery arising from the superior mesenteric artery associated with the left hepatic artery arising from the left gastric artery (Type IV, n=4, 0.83%). Similarly, in relation to Hiatt classification, the most prevalent changes were: right hepatic accessory artery or substitute of the superior mesenteric artery (Type III, n=28, 6.05%)), followed by liver ancillary left artery or replacement of gastric artery left (Type II, n=16, 3.34. Fourteen donors (2.92%) showed no anatomical abnormalities defined in classifications, the highest frequency being hepatomesenteric trunk identified in five (01.04%). Detailed knowledge of the variations of hepatic arterial anatomy is of utmost importance to surgeons who perform approaches in this area, particularly in liver transplantation, since their identification and proper management are critical to the success of the procedure. A incidência das variações anatômicas da artéria hepática varia de 20-50% em diferentes casuísticas. Elas são especialmente importantes no contexto do transplante ortotópico hepático, visto que, além de representar oportunidade ideal para seu estudo anatômico cirúrgico, a sua precisa identificação é determinante para o sucesso do procedimento. Identificar as variações anatômicas no sistema arterial hepático em transplantes hepáticos. Foram analisados retrospectivamente, no período de 13 anos, 479 prontuários de pacientes adultos transplantados, sendo coletados dados referentes à anatomia arterial hepática do doador falecido. Identificou-se anatomia arterial hepática normal em 416 doadores (86,84%). Os outros 63 indivíduos (13,15%) apresentaram alguma variação. De acordo com a classificação de Michels, as anomalias mais frequentes foram: artéria hepática direita ramo da artéria mesentérica superior (Tipo III, n=27, 5,63%); artéria hepática esquerda ramo da artéria gástrica esquerda (Tipo II, n=13, 2,71%); artéria hepática direita ramo da artéria mesentérica superior associada à artéria hepática esquerda ramo da artéria gástrica esquerda (Tipo IV, n=4, 0,83%). Do mesmo modo, em relação à Classificação de Hiatt, as variações mais prevalentes foram: artéria hepática direita acessória ou substituta da artéria mesentérica superior (Tipo III, n=28, 6,05%), seguida da artéria hepática esquerda acessória ou substituta da artéria gástrica esquerda (Tipo II, n=16, 3,34%). Quatorze pessoas (2,92%) apresentaram alterações anatômicas sem classificação definida, sendo a de maior frequência o tronco hepatomesentérico, identificado em cinco (1,04%). O conhecimento detalhado das variações da anatomia arterial hepática é de grande importância aos cirurgiões que realizam abordagens nessa região, em especial no transplante hepático, visto que sua identificação e correto manejo são fundamentais para o êxito do procedimento.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Darren
The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 164-acre Pend Oreille Wetlands Wildlife II Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be credited to Bonneville Power Administration (BPA) for protection of habitats within the project area. The HSI models used were identical to those modified for use in 1991 (Appendix 2). The objective of using HEP as an assessment tool is two-fold. First, it provides an unbiased and measured assessment of wildlife habitats within the mitigation parcel. This data is used to offset the Albeni Falls Dam HU loss ledger. That ledger accounts for the loss of wildlife habitat that resulted from the construction and inundation of Albeni Falls hydroelectric project and the extent to which those losses have been mitigated. Additionally, the baseline HEP evaluation describes existing habitat conditions on the property and will be used, along with other tools, to determine initial management, restoration, and enhancement activities. HEP analyses will be completed every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional HU crediting to BPA for enhanced habitat values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Darren
The Habitat Evaluation Procedure (HEP), developed in 1980 by the U.S. Fish and Wildlife Service (USFWS 1980a, USFWS 1980b), uses a habitat/species based approach to assessing project impacts, and is a convenient tool to document the predicted effects of proposed management actions. The Northwest Power Planning Council (NPPC) endorsed the use of HEP in its Columbia River Basin Fish and Wildlife Program to evaluate wildlife benefits and impacts associated with the development and operation of the federal Columbia River Basin hydroelectric system (NPPC 1994). The Albeni Falls Interagency Work Group (AFIWG) used HEP in 1987 to evaluate wildlife habitat lossesmore » attributed to the Albeni Falls hydroelectric facility (Martin et al. 1988). In 1992, the AFIWG (Idaho Department of Fish and Game; Kalispel, Coeur d'Alene, and Kootenai Tribes) began implementing activities to mitigate these losses. Implementation activities include protecting, restoring and enhancing wildlife habitat. HEPs are used extensively within the NPPC's Columbia River Basin Fish and Wildlife Program. Wildlife managers use HEP to determine habitat lost from the construction of the federal hydroelectric projects and habitat gained through NPPC mitigation program. Habitat Suitability Index (HSI) models for each of the seven target species are used to determine habitat quality and quantity losses for representative habitat cover types for this project. Target species include Bald Eagle, black-capped chickadee, Canada goose, mallard, muskrat, white-tailed deer and yellow warbler. In 2002, a HEP team determined the habitat condition of the 436-acre Pend Oreille Wetlands Wildlife Project (Figure 1). The HEP team consisted of the following members and agencies: Roy Finley, Kalispel Natural Resource Department (KNRD); Neil Lockwood, KNRD; Brian Merson, KNRD; Sonny Finley, KNRD; Darren Holmes, KNRD; Anna, Washington Dept. of Fish and Game (WDFW); and Scott, WDFW. Baseline Habitat Units (HU) will be credited to Bonneville Power Administration (BPA) for protection of habitats within the project area. The HSI models used were identical to those modified for use in 1991 (Attachment A). The objective of using HEP as an assessment tool is two-fold. First, it provides an unbiased and measured assessment of wildlife habitats within the mitigation parcel. This data is used to offset the Albeni Falls Dam HU loss ledger. That ledger accounts for the loss of wildlife habitat that resulted from the construction and inundation of Albeni Falls hydroelectric project and the extent to which those losses have been mitigated. Additionally, the baseline HEP evaluation describes existing habitat conditions on the property and will be used, along with other tools, to determine initial management, restoration, and enhancement activities. HEP analyses will be completed every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional HU crediting to BPA for enhanced habitat values.« less
2013-07-01
endangered species and their associated habitats as an important goal of ecosystem restoration and management. There is no doubt the determination of...accounting process developed to appraise habitat suitability for fish and wildlife species in response to potential change (USFWS 1980a-c). HEP is an... habitat to a species is likely to exhibit strong thresholds below which the habitat is usually unsuitable and above which further changes in habitat
NASA Astrophysics Data System (ADS)
Chowdhury, Borun D.
2015-11-01
By studying global AdS using different foliations, global and Rindler-AdS, we show that there are two different asymptotic Fefferman-Graham expansions possible and thus two different definitions of "boundaries". We demonstrate that imposing boundary conditions on the two boundaries is not mutually compatible even when these boundaries are pushed to infinity. Thus, these two procedures define two genuinely distinct theories that we call global-CFT and Rindler-CFT. We show that the Rindler-CFT is not the same as the theory one gets by "Rindlerizing the global-CFT" described in hep-th/9804085. We conjecture that the Rindler theory is incapable of capturing the dynamics inside the horizon and discuss its implications for the BTZ-CFT duality proposed in hep-th/0106112.
Yan, Jing-Kun; Ding, Zhi-Chao; Gao, Xianli; Wang, Yao-Yao; Yang, Yan; Wu, Di; Zhang, He-Nan
2018-08-01
In this study, hot water, 0.9% NaCl, citric acid, and 1.25 M NaOH/0.05% NaBH 4 were separately used for the extraction of water-soluble H. erinaceus polysaccharides (HEPs; HEP-W, HEP-S, HEP-C, and HEP-A) from the fruit body of Hericium erinaceus. The physicochemical properties and biological activities were then investigated and compared. Results showed that the extraction solvents exhibited significant effects on the extraction yields, molecular weights, monosaccharide compositions, preliminary structural characteristics, microstructures of HEPs and on their contents, such as neutral sugar, uronic acid, protein, and β-(1 → 3)-glucan. In vitro antioxidant activity assays indicated that HEP-C extracted with citric acid solution showed stronger scavenging abilities on hydroxyl and DPPH radicals and antioxidant capacities than HEP-W and HEP-S. Moreover, HEP-C exhibited the strongest inhibitory effects on α-glycosidase and α-amylase activities. Therefore, HEP-C extracted with citric acid can be developed as a potential bioactive ingredient for applications in food, medicine, and cosmetics industries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shillapoo Wildlife Area 2007 Follow-up HEP Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
In April and May 2007 the Regional HEP Team (RHT) conducted a follow-up HEP analysis on the Egger (612 acres) and Herzog (210 acres) parcels located at the north end of the Shillapoo Wildlife Area. The Egger and Herzog parcels have been managed with Bonneville Power Administration funds since acquired in 1998 and 2001 respectively. Slightly more than 936 habitat units (936.47) or 1.14 HUs per acre was generated as an outcome of the 2007 follow-up HEP surveys. Results included 1.65 black-capped chickadee HUs, 280.57 great blue heron HUs, 581.45 Canada goose HUs, 40 mallard HUs, and 32.80 mink HUs.more » Introduction A follow-up Habitat Evaluation Procedures (HEP) (USFWS 1980) analysis was conducted by the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) during April and May 2007 to document changes in habitat quality and to determine the number of habitat units (HUs) to credit Bonneville Power Administration (BPA) for providing operation and maintenance (O&M) funds since WDFW acquired the parcels. The 2007 follow-up HEP evaluation was limited to Shillapoo Wildlife Area (SWA) parcels purchased with Bonneville Power Administration funds. D. Budd (pers. comm.) reported WDFW purchased the 612 acre Egger Farms parcel on November 2, 1998 for $1,737,0001 and the 210 acre Herzog acquisition on June 21, 2001 for $500,000 with Memorandum of Agreement funds (BPA and WDFW 1996) as partial fulfillment of BPA's wildlife mitigation obligation for construction of Bonneville and John Day Dams (Rasmussen and Wright 1989). Anticipating the eventual acquisition of the Egger and Herzog properties, WDFW conducted HEP surveys on these lands in 1994 to determine the potential number of habitat units to be credited to BPA. As a result, HEP surveys and habitat unit calculations were completed as much as seven years prior to acquiring the sites. The term 'Shillapoo Wildlife Area' will be used to describe only the Herzog and Egger parcels in this document. Details and results of the HEP analysis are included in this report.« less
Ren, Zhe; Qin, Tao; Qiu, Fuan; Song, Yulong; Lin, Dandan; Ma, Yufang; Li, Jian; Huang, Yifan
2017-12-01
Hericium erinaceus polysaccharide (HEP) has been shown to possess a variety of biological activities. In present study, HEP was successfully modified to obtain its hydroxyethylated derivative hHEP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the hHEP were significantly stronger than that of the corresponding unmodified polysaccharide, HEP. Meanwhile, the NO, IL-6 and TNF-α production activities of macrophages were enhanced in the RAW264.7 macrophages by stimulation of hHEP. In addition, the hHEP increase significantly higher iNOS expression than HEP. These results indicated that the hydroxyethylated derivative hHEP could enhance the activation of peritoneal macrophages, and hydroxyethylation modification can enhance the immunomodulation function of HEP. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
1997-01-01
This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mulemore » deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.« less
Qin, Tao; Ren, Zhe; Huang, Yifan; Song, Yulong; Lin, Dandan; Li, Jian; Ma, Yufang; Wu, Xiuqin; Qiu, Fuan; Xiao, Qi
2017-04-01
In this study, polysaccharides extracted from Hericium erinaceus were modified to obtain its nine selenium derivatives, sHEP 1 -sHEP 9 . Their structures were identified, yields and selenium contents were determined, the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms were compared taking unmodified HEP as control. The results revealed that the selenylation were successful. sHEP 1 , sHEP 2 and sHEP 8 treatment of DCs increased their surface expression of MHC-II and CD86 and indicated that sHEP 1 , sHEP 2 and sHEP 8 induced DC maturation. Furthermore, sHEP 2 and sHEP 8 also significantly decreased DCs endocytosis and significantly enhanced cytokine (IL-12 and IFN-γ) production. In line with TLR4 activation, sHEP 2 increased the phosphorylation of ERK, p38, and JNK, and the nuclear translocation of p-c-Jun, p-CREB, and c-Fos. sHEP 2 also activated NF-κB signaling, as evidenced by degradation of IκBα/β and nuclear translocation of p65 and p50. Together, these results suggest that sHEP is a strong immunostimulant. Copyright © 2017 Elsevier B.V. All rights reserved.
A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro.
Luo, Jun; Zhao, Jing; Tian, Qin; Mo, Weiyu; Wang, Yifei; Chen, Hao; Guo, Xiaofeng
2016-06-01
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
A Simplified Decision Support Approach for Evaluating Wetlands Ecosystem Services NABS11
State-level managers and environmental advocates often must justify their restoration actions in terms of tangible beneficial outcomes. Wetlands functional assessment tools (e.g, Wetland Evaluation Technique (WET), Habitat Evaluation Procedures (HEP), Hydrogeomorphic Method (HGM)...
Roy, Karnati R; Arunasree, Kalle M; Reddy, Nishant P; Dheeraj, Bhavanasi; Reddy, Gorla Venkateswara; Reddanna, Pallu
2007-07-01
C-PC (C-phycocyanin) is a water-soluble biliprotein from the filamentous cyanobacterium Spirulina platensis with potent antioxidant, anti-inflammatory and anticancerous properties. In the present study, the effect of C-PC was tested on the proliferation of doxorubicin-sensitive (S-HepG2) and -resistant (R-HepG2) HCC (hepatocellular carcinoma) cell lines. These studies indicate a 50% decrease in the proliferation of S- and R-HepG2 cells treated with 40 and 50 microM C-PC for 24 h respectively. C-PC also enhanced the sensitivity of R-HepG2 cells to doxorubicin. R-HepG2 cells treated with C-PC showed typical apoptotic features such as membrane blebbing and DNA fragmentation. Flow-cytometric analysis of R-HepG2 cells treated with 10, 25 and 50 microM C-PC for 24 h showed 18.8, 39.72 and 65.64% cells in sub-G(0)/G(1)-phase respectively. Cytochrome c release, decrease in membrane potential, caspase 3 activation and PARP [poly(ADP-ribose) polymerase] cleavage were observed in C-PC-treated R-HepG2 cells. These studies also showed down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of the pro-apoptotic Bax (Bcl2-associated X-protein) protein in the R-HepG2 cells treated with C-PC. The present study thus demonstrates that C-PC induces apoptosis in R-HepG2 cells and its potential as an anti-HCC agent.
Walensi, Mikolaj; de Groot, Herbert; Schulz, Rainer; Hartmann, Matthias; Petrat, Frank
2013-01-01
Tissue protection against ischemia (I)/reperfusion (R) injury by heparins can be due to their anticoagulant and/or non-anticoagulant properties. Here we studied the protective potential of the anticoagulant and the non-anticoagulant features of heparin sodium (HepSo) and enoxaparin (Enox) against mesenteric I/R injury in a rat model. Mesenteric I/R was induced in rats (n = 6 per group) by superior mesenteric artery occlusion (SMAO; 90 min) and reopening (120 min). Therapeutic/clinical and subtherapeutic/non-anticoagulant doses of HepSo (0.25 mg/kg bolus + 0.25 mg/kg × h; 0.05 mg/kg bolus + 0.1 mg/kg × h) or Enox (0.5 mg/kg bolus + 0.5 mg/kg × h; 0.05 mg/kg bolus + 0.1 mg/kg × h) were administered intravenously starting 30 min before SMAO to the end of reperfusion. Systemic/vital and intestinal microcirculatory parameters were measured during the whole experimental procedure, those of small intestine injury at the end. During intestinal reperfusion, mean arterial blood pressure and heart rates were significantly increased by HepSo and, less effectively, by Enox, in a dose-dependent manner. Intestinal microcirculation was only affected by the therapeutic HepSo dose, which decreased the microvascular flow and S(O2) during reperfusion. The subtherapeutic Enox treatment, as opposed to any HepSo dose, most effectively diminished I/R-induced intestinal hemorrhages, myeloperoxidase activity (as a measure of neutrophil invasion), and histopathological changes. Therapeutic but, to a lesser extent, also the subtherapeutic doses of both HepSo and Enox clearly improve hemodynamics during mesenteric reperfusion, while intestinal protection is exclusively provided by Enox, especially at its subtherapeutic dose. Alterations in intestinal microcirculation are not responsible for these effects. Thus, non-anticoagulant Enox doses and, preferably, heparin(oid)s unable to affect coagulation, could diminish clinical risks of I/R-induced gastrointestinal complications. Copyright © 2013 Elsevier Inc. All rights reserved.
Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng
2016-08-17
Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus.
Liu, Jianqing; DU, Congxin; Wang, Yifei; Yu, Zhihua
2015-02-01
Hericium erinaceus (HEP) is a notable medicinal fungus grown in China and other oriental countries. Polysaccharides from HEP have recently attracted considerable attention due to their numerous physiological activities. The objective of this study was to evaluate the anti-fatigue activity of HEP in a mouse model. After one week of acclimation, mice were randomly divided into four groups: a control group, a low-dose HEP-treated group, a moderate-dose HEP-treated group, and a high-dose HEP-treated group. The treated groups received HEP (50, 100 and 200 mg/kg, ig), while the control group received saline solution. Following treatment for 28 days, the mice performed a forced swimming test until they were exhausted, then the exhaustive swimming time was recorded along with certain biochemical parameters related to fatigue, including blood lactic acid (BLA), serum urea nitrogen (SUN), tissue glycogen, superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). These results suggested that HEP has significant anti-fatigue activity by decreasing BLA, SUN and MDA content, as well as increasing tissue glycogen content and antioxidant enzyme activity. Based on these results, this study provided theoretical support for the application of HEP in the field of sports nutrition.
Anti-fatigue activities of polysaccharides extracted from Hericium erinaceus
LIU, JIANQING; DU, CONGXIN; WANG, YIFEI; YU, ZHIHUA
2015-01-01
Hericium erinaceus (HEP) is a notable medicinal fungus grown in China and other oriental countries. Polysaccharides from HEP have recently attracted considerable attention due to their numerous physiological activities. The objective of this study was to evaluate the anti-fatigue activity of HEP in a mouse model. After one week of acclimation, mice were randomly divided into four groups: a control group, a low-dose HEP-treated group, a moderate-dose HEP-treated group, and a high-dose HEP-treated group. The treated groups received HEP (50, 100 and 200 mg/kg, ig), while the control group received saline solution. Following treatment for 28 days, the mice performed a forced swimming test until they were exhausted, then the exhaustive swimming time was recorded along with certain biochemical parameters related to fatigue, including blood lactic acid (BLA), serum urea nitrogen (SUN), tissue glycogen, superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). These results suggested that HEP has significant anti-fatigue activity by decreasing BLA, SUN and MDA content, as well as increasing tissue glycogen content and antioxidant enzyme activity. Based on these results, this study provided theoretical support for the application of HEP in the field of sports nutrition. PMID:25574220
Eder Acquisition 2007 Habitat Evaluation Procedures Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, Paul R.
A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover,more » the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.« less
Janjic, Milka; Pappa, Foteini; Karagkiozaki, Varvara; Gitas, Christakis; Ktenidis, Kiriakos; Logothetidis, Stergios
2017-01-01
This study describes the development of drug-loaded nanofibrous scaffolds as a nanocoating for endovascular stents for the local and sustained delivery of rosuvastatin (Ros) and heparin (Hep) to injured artery walls after endovascular procedures via the electrospinning process. The proposed hybrid covered stents can promote re-endothelialization; improve endothelial function; reduce inflammatory reaction; inhibit neointimal hyperplasia of the injured artery wall, due to well-known pleiotropic actions of Ros; and prevent adverse events such as in-stent restenosis (ISR) and stent thrombosis (ST), through the antithrombotic action of Hep. Biodegradable nanofibers were prepared by dissolving cellulose acetate (AC) and Ros in N , N -dimethylacetamide (DMAc) and acetone-based solvents. The polymeric solution was electrospun (e-spun) into drug-loaded AC nanofibers onto three different commercially available stents (Co-Cr stent, Ni-Ti stent, and stainless steel stent), resulting in nonwoven matrices of submicron-sized fibers. Accordingly, Hep solution was further used for fibrous coating onto the engineered Ros-loaded stent. The functional encapsulation of Ros and Hep drugs into polymeric scaffolds further underwent physicochemical analysis. Morphological characterization took place via scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, while scaffolds' wettability properties were obtained by contact angle (CA) measurements. The morphology of the drug-loaded AC nanofibers was smooth, with an average diameter of 200-800 nm, and after CA measurement, we concluded to the superhydrophobic nature of the engineered scaffolds. In vitro release rates of the pharmaceutical drugs were determined using a high-performance liquid chromatography assay, which showed that after the initial burst, drug release was controlled slowly by the degradation of the polymeric materials. These results imply that AC nanofibers encapsulated with Ros and Hep drugs have great potential in the development of endovascular grafts with anti-thrombogenic properties that can accelerate the re-endothelialization, reduce the neointimal hyperplasia and inflammatory reaction, and improve the endothelial function.
Randomized controlled trial of concurrent hepatitis A and B vaccination.
Bryan, J P; McCardle, P; South-Paul, J E; Fogarty, J P; Legters, L J; Perine, P L
2001-02-01
Hepatitis A and B viruses are threats to deployed military forces. The objective of this study was to determine the feasibility of concurrent vaccination against hepatitis A and B viruses. One hundred five healthy persons, 20 to 49 years of age and without serologic markers to hepatitis A or B viruses, were randomized to receive an inactivated hepatitis A vaccine (HEP A; 25 units in 0.5 mL), recombinant hepatitis B vaccine (HEP B; 10 micrograms in 1.0 mL), or both (HEP A & B) concurrently in separate arms. Vaccines were administered intramuscularly at 0, 1, and 6 months. Sera obtained at 1, 2, 6, 7, and 12 months after the first dose were tested for quantitative antibody to hepatitis A virus (anti-HAV) and antibody to hepatitis B surface antigen. Local reactions (e.g., pain) were reported by less than half of the volunteers and were similar at the site of HEP A, whether given alone or concurrently. However, more persons complained of pain (usually mild) at the HEP B site when HEP B was given concurrently with HEP A compared with HEP B alone (43% vs. 15%, 34% vs. 9%, and 42% vs. 15% for doses 1, 2, and 3, respectively; p < 0.05 for each dose). Among persons immunized with HEP A alone or HEP A & B, the proportion with > or = 10 mIU/mL anti-HAV was 83% in both groups 1 month after dose 1 and 100% at months 2, 7, and 12. The geometric mean concentrations of anti-HAV increased from 21 mIU/mL at month 1 to 2,649 and 2,312 mIU/mL in the HEP A and HEP A & B groups, respectively, at month 7. The response to HEP B was similar whether administered alone or concurrently. Antibody responses were similar in those receiving HEP A or HEP B concurrently or alone, but more subjects reported pain (usually mild) at the HEP B site after concurrent vaccination than after HEP B alone. Further work should be conducted to approve HEP A for patients younger than 2 years of age and to develop combined HEP A and HEP B vaccines in the United States.
The status of hepatitis B control in the African region
Breakwell, Lucy; Tevi-Benissan, Carol; Childs, Lana; Mihigo, Richard; Tohme, Rania
2017-01-01
The World Health Organization (WHO) African Region has approximately 100 million people with chronic hepatitis B virus (HBV) infection. This review describes the status of hepatitis B control in the Region. We present hepatitis B vaccine (HepB) coverage data and from available data in the published literature, the impact of HepB vaccination on hepatitis B surface antigen (HBsAg) prevalence, a marker of chronic infection, among children, HBsAg prevalence in pregnant women, and risk of perinatal transmission. Lastly, we describe challenges with HepB birth dose (HepB-BD) introduction reported in the Region, and propose strategies to increase coverage. In 2015, regional three dose HepB coverage was 76%, and 16(34%) of 47 countries reported ≥ 90% coverage. Overall, 11 countries introduced HepB-BD; only nine provide universal HepB-BD, and of these, five reported ≥ 80% coverage. From non-nationally representative serosurveys among children, HBsAg prevalence was lower among children born after HepB introduction compared to those born before HepB introduction. However, some studies still found HBsAg prevalence to be above 2%. From limited surveys among pregnant women, the median HBsAg prevalence varied by country, ranging from 1.9% (Madagascar) to 16.1% (Niger); hepatitis B e antigen (HBeAg) prevalence among HBsAg-positive women ranged from 3.3% (Zimbabwe) to 28.5% (Nigeria). Studies in three countries indicated that the risk of perinatal HBV transmission was associated with HBeAg expression or high HBV DNA viral load. Major challenges for timely HepB-BD administration were poor knowledge of or lack of national HepB-BD vaccination guidelines, high prevalence of home births, and unreliable vaccine supply. Overall, substantial progress has been made in the region. However, countries need to improve HepB3 coverage and some countries might need to consider introducing the HepB-BD to help achieve the regional hepatitis B control goal of < 2% HBsAg prevalence among children < 5 years old by 2020. To facilitate HepB-BD introduction and improve timely coverage, strategies are needed to reach both facility-based and home births. Strong political commitment, clear policy recommendations and staff training on HepB-BD administration are also required. Furthermore, high quality nationally representative serosurveys among children are needed to inform decision makers about progress towards the regional control goal. PMID:29296152
NASA Astrophysics Data System (ADS)
Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang
2015-03-01
Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07248k
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
Exercise after Stroke: Patient Adherence and Beliefs after Discharge from Rehabilitation.
Miller, Kristine K; Porter, Rebecca E; DeBaun-Sprague, Erin; Van Puymbroeck, Marieke; Schmid, Arlene A
2017-03-01
Most people complete post-stroke rehabilitation within the first 6 months after stroke even though benefits from exercise are believed to persist well beyond 6 months. Physical and Occupational therapists provide home exercise programs (HEP) to instruct patients on exercises to continue after discharge from rehabilitation. Unfortunately, there is little known about HEP adherence rates in adults with stroke. The objectives of this project were to (1) determine the adherence rate with post-rehabilitation HEP and reasons for non-adherence, (2) assess for interactions between HEP adherence and self-report of depression and fatigue, and (3) determine patient beliefs about the benefit of exercise during stroke recovery. This was a cross-sectional, survey study. A survey was developed and distributed during stroke support group meetings to determine adherence rates with post rehabilitation HEP, reasons for non-adherence, and patient beliefs about the benefit of exercise. Eighty-nine percent of participants reported receiving a HEP and 65.3% of those reported being adherent with at least part of the HEP. Several reasons for non-adherence were identified, including 'doing different exercises than the ones given by the physical therapist', as the most frequently given reason. Study participants identified positive roles of exercise in their recovery from stroke. Patient adherence with HEP after discharge from rehabilitation is less than ideal. Reasons for non-adherence are varied. Rehabilitation therapists need to be able to identify and help patients manage barriers to HEP adherence to promote management of residual deficits.
2012-08-01
habitat to a greater number of wildlife species than any other ecological community in the region and serve as a critical travel corridor for many... species , especially migratory birds moving with the change of seasons. Yet although these riparian ecosystems are considered to be the most... habitat for many key wildlife species . Estimates of riparian habitat loss in the South- west range from 40% to 90% (Dahl 1990), and desert riparian
Tolosa, Laia; Donato, M Teresa; Pérez-Cataldo, Gabriela; Castell, José Vicente; Gómez-Lechón, M José
2012-12-01
In a number of adverse drug reactions leading to hepatotoxicity, drug metabolism is thought to be involved by the generation of reactive metabolites from non-toxic drugs. The use of hepatoma cell lines, such as HepG2 cell line, for the evaluation of drug-induced hepatotoxicity is hampered by their low cytochrome P450 expression which makes impossible the study of the toxicity produced by bioactivable compounds. Genetically manipulated cells constitute promising tools for hepatotoxicity applications. HepG2 cells were simultaneously transfected with recombinant adenoviruses encoding CYP1A2, CYP2C9 and CYP3A4 to confer them drug-metabolic competence. Upgraded cells (Adv-HepG2) were highly able to metabolize the toxin studied in contrast to the reduced metabolic capacity of HepG2 cells. Aflatoxin B1-induced hepatotoxicity was studied as a proof of concept in metabolically competent and non-competent HepG2 cells by using high content screening technology. Significant differences in mitochondrial membrane potential, intracellular calcium concentration, nuclear morphology and cell viability after treatment with aflatoxin B1 were observed in Adv-HepG2 when compared to HepG2 cells. Rotenone (non bioactivable) and citrate (non hepatotoxic) were analysed as negative controls. This cell model showed to be a suitable hepatic model to test hepatotoxicity of bioactivable drugs and constitutes a valuable alternative for hepatotoxicity testing. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jin, Ye; Liang, Zhi-Yong; Zhou, Wei-Xun; Zhou, Li
2017-07-31
Hepatocyte Paraffin 1 (Hep Par 1) and cytokeratin 19 (CK19) were shown to be associated with post-surgical prognosis of hepatocellular carcinoma (HCC). However, further validation might be needed. Besides, their combined evaluation has not been reported. The present study was designed to address the issues. Expressions of Hep Par 1 and CK19 were detected using tissue microarray-based immunohistochemical staining in 79 patients with HCC underwent curative hepatectomy. Their associations with cliniopathologic variables, overall and recurrence-free survival were analyzed. Hep Par 1 was highly expressed in 61 patients (77.2%), whereas CK19 was positive in 8 patients (10.1%). Moreover, expressions of these two proteins were all associated with tumor-node-metastasis (TNM) stage and vascular invasion. It was found that high Hep Par 1 expression was univariately associated with good overall and recurrence-free survival, while CK19 was marginally prognostic. Also in univariate analyses, combination of the two markers more effectively predicted for long-term prognosis in HCC than Hep Par 1 did. However, neither Hep Par 1 nor Hep Par 1/CK19 was multivariately significant. Finally, Hep Par 1/CK19 combined with TNM stage might obtain more satisfactory outcome prediction, especially for overall survival. Combination of CK19 with Hep Par 1 might have higher prognostic power, which might be further improved by adding TNM stage, than Hep Par 1 alone, in resected HCC. Of course, subsequent confirmation is necessary.
Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes.
Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao
2015-01-01
Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed "spinoculation") significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro.
Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes
Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao
2015-01-01
Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed “spinoculation”) significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro. PMID:26070202
Hydroxyethyl Pachyman as a novel excipient for sustained-release matrix tablets.
Zhou, Xiaoju; Wang, Pengyu; Wang, Jiong; Liu, Zhi; Hong, Xuechuan; Xiao, Yuling; Liu, Peng; Hu, Xianming
2016-12-10
This paper addressed the application of hydroxyethyl pachyman (HEP) as a novel matrix for sustained - release tablets, using diclofenac sodium (DS) as a model drug. The studies showed the HEP tablets prepared by wet granulation had much slower drug release as compared to those prepared by direct compression. Meanwhile, increasing the percentage of HEP in the formulations caused a decrease in drug release rates. Moreover, DS release from the HEP tablets was much higher at high pH (6.8) than that at low pH (1.2). Morphology studies proved the HEP tablet formed a continuous gel layer with porous inner structure in the dissolution media. Analysis of DS release profiles revealed that diffusion and matrix erosion occurred in simulated intestinal fluid(SIF, pH=6.8) for all the tablets. The experimental results predict HEP has a potential as a hydrophilic matrix in tablets to prolong drug release. Copyright © 2016 Elsevier Ltd. All rights reserved.
NTCP-Reconstituted In Vitro HBV Infection System.
Sun, Yinyan; Qi, Yonghe; Peng, Bo; Li, Wenhui
2017-01-01
Sodium taurocholate cotransporting polypeptide (NTCP) has been identified as a functional receptor for hepatitis B virus (HBV). Expressing human NTCP in human hepatoma HepG2 cells (HepG2-NTCP) renders these cells susceptible for HBV infection. The HepG2-NTCP stably transfected cell line provides a much-needed and easily accessible platform for studying the virus. HepG2-NTCP cells could also be used to identify chemicals targeting key steps of the virus life cycle including HBV covalent closed circular (ccc) DNA, and enable the development of novel antivirals against the infection.Many factors may contribute to the efficiency of HBV infection on HepG2-NTCP cells, with clonal differences among cell line isolates, the source of viral inoculum, and infection medium among the most critical ones. Here, we provide detailed protocols for efficient HBV infection of HepG2-NTCP cells in culture; generation and selection of single cell clones of HepG2-NTCP; production of infectious HBV virion stock through DNA transfection of recombinant plasmid that enables studying primary clinical HBV isolates; and assessing the infection with immunostaining of HBV antigens and Southern blot analysis of HBV cccDNA.
Enabling Research Network Connectivity to Clouds with Virtual Router Technology
NASA Astrophysics Data System (ADS)
Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ
2017-10-01
The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.
Ramirez-Tagle, Rodrigo; Escobar, Carlos A; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar
2016-02-22
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4'-trimethoxy-2'-hydroxy-chalcone (CH1) and 3'-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas.
Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew
2000-05-01
A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribesmore » have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types evaluated for this study were grasslands, shrub-steppe, rock, conifer forest and woodland, and riparian. These same cover types were evaluated for other Hellsgate Project acquisitions within the same geographic area. Mule deer habitat on the Sand Hills unit rated good overall for winter food and cover in the shrub-steppe and conifer woodland cover types. Sharp-tailed grouse habitat on the former Hinman property and special management area rated good for nesting and brood rearing in the grassland cover type. Mink habitat on the Friedlander parcel rated poor due to lack of food and cover in and along the riparian cover type. The Downy woodpecker rated poor for food and cover on the Friedlander parcel in the conifer forest cover type. This species also rated poor on the conifer woodland habitat on the Hinman parcel. Yellow warbler habitat on the Agency Butte Special Management area rated very poor due to lack of shrubs for cover and reproduction around the scattered semi/permanent ponds that occur on the area. Bobcat habitat on this same area rated poor due to lack of cover and food. Fragmentation of existing quality habitat is also a problem for both these species. This report is an analysis of baseline habitat conditions on mitigation and managed lands, and provides estimated habitat units for mitigation crediting purposes. In addition, this information will be used to manage these lands for the benefit of wildlife.« less
Wu, Chih-Hsiung; Ho, Yuan-Soon; Tsai, Chia-Yi; Wang, Ying-Jan; Tseng, How; Wei, Po-Li; Lee, Chia-Hwa; Liu, Ren-Shyan; Lin, Shyr-Yi
2009-05-01
Phloretin (Ph), a natural product found in apples and pears with glucose transporter (GLUT) inhibitory activity, exerts antitumor effects. However, little is known about its effects on human liver cancer. The purpose of this study is to test the cytotoxic effects of Ph on HepG2 cells and to identify the underlying molecular pathways. Human hepatocellular carcinoma specimens and HepG2 show a high level of GLUT2 transporter activity in the cell membrane. Real-time PCR and MTT assays demonstrate that Ph-induced cytotoxicity correlates with the expression of GLUT2. Flow cytometry and DNA fragmentation studies show that 200 microM Ph induces apoptosis in HepG2, which was reversed by glucose pretreatment. GLUT2 siRNA knockdown induced HepG2 apoptosis, which was not reversed by glucose. Western blot analysis demonstrates that both intrinsic and extrinsic apoptotic pathways in addition to Akt and Bcl-2 family signaling pathways are involved in Ph-induced cell death in HepG2 cells. Furthermore, using flow cytometry analysis, a mitochondrial membrane potential assay and Western blot analysis, we show that cytochalasin B, a glucose transport inhibitor, enhances the Ph-induced apoptotic effect on HepG2 cells, which was reversed by pretreatment with glucose. Furthermore, we found significant antitumor effects in vivo by administering Ph at 10 mg/kg intraperitoneally to severe combined immune deficiency mice carrying a HepG2 xenograft. A microPET study in the HepG2 tumor-bearing mice showed a 10-fold decrease in (18)F-FDG uptake in Ph-treated tumors compared to controls. Taken together, these results suggest that Ph-induced apoptosis in HepG2 cells involves inhibition of GLUT2 glucose transport mechanisms. (c) 2008 Wiley-Liss, Inc.
Luft, Caroline Di Bernardi; Bhattacharya, Joydeep
2015-01-01
Recent studies showed that the visceral information is constantly processed by the brain, thereby potentially influencing cognition. One index of such process is the heartbeat evoked potential (HEP), an ERP component related to the cortical processing of the heartbeat. The HEP is sensitive to a number of factors such as motivation, attention, pain, which are associated with higher levels of arousal. However, the role of arousal and its associated brain oscillations on the HEP has not been characterized, yet it could underlie the previous findings. Here we analysed the effects of high- (HA) and low-arousal (LA) induction on the HEP. Further, we investigated the brain oscillations and their role in the HEP in response to HA and LA inductions. As compared to LA, HA was associated with a higher HEP and lower alpha oscillations. Interestingly, individual differences in the HEP modulation by arousal induction were correlated with alpha oscillations. In particular, participants with higher alpha power during the arousal inductions showed a larger HEP in response to HA compared to LA. In summary, we demonstrated that arousal induction affects the cortical processing of heartbeats; and that the alpha oscillations may modulate this effect. PMID:26503014
Ramirez-Tagle, Rodrigo; Escobar, Carlos A.; Romero, Valentina; Montorfano, Ignacio; Armisén, Ricardo; Borgna, Vincenzo; Jeldes, Emanuel; Pizarro, Luis; Simon, Felipe; Echeverria, Cesar
2016-01-01
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide. Chemoprevention of HCC can be achieved through the use of natural or synthetic compounds that reverse, suppress or prevent the development of cancer progression. In this study, we investigated the antiproliferative effects and the mechanism of action of two compounds, 2,3,4′-trimethoxy-2′-hydroxy-chalcone (CH1) and 3′-bromo-3,4-dimethoxy-chalcone (CH2), over human hepatoma cells (HepG2 and Huh-7) and cultured mouse hepatocytes (HepM). Cytotoxic effects were observed over the HepG2 and Huh-7, and no effects were observed over the HepM. For HepG2 cells, treated separately with each chalcone, typical apoptotic laddering and nuclear condensation were observed. Additionally, the caspases and Bcl-2 family proteins activation by using Western blotting and immunocytochemistry were studied. Caspase-8 was not activated, but caspase-3 and -9 were both activated by chalcones in HepG2 cells. Chalcones also induced reactive oxygen species (ROS) accumulation after 4, 8 and 24 h of treatment in HepG2 cells. These results suggest that apoptosis in HepG2 was induced through: (i) a caspase-dependent intrinsic pathway; and (ii) by alterations in the cellular levels of Bcl-2 family proteins, and also, that the chalcone moiety could be a potent candidate as novel anticancer agents acting on human hepatomas. PMID:26907262
Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J
2008-09-19
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.
Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J.
2008-01-01
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8 ± 0.2 × 10-4 s-1) at 25 °C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain. PMID:18632665
Luo, Jun; Zhang, Boyue; Wu, Yuting; Tian, Qin; Zhao, Jing; Lyu, Ziyu; Zhang, Qiong; Mei, Mingzhu; Luo, Yongwen; Guo, Xiaofeng
2017-02-07
Several studies have confirmed that interleukin-6 (IL6) mediates multiple biological effects that enhance immune responses when used as an adjuvant. In the present study, recombinant rabies virus (RABV) expressing canine IL6 (rHEP-CaIL6) was rescued and its pathogenicity and immunogenicity were investigated in mice. We demonstrated that mice received a single intramuscular immunization with rHEP-CaIL6 showed an earlier increase and higher maximum titres of virus-neutralizing antibody (VNA) as well as anti-RABV antibodies compared with mice immunized with the parent strain. Moreover, survival rates of mice immunized with rHEP-CaIL6 were higher compared with mice immunized with parent HEP-Flury according to the challenge assay. Flow cytometry further confirmed that immunization with rHEP-CaIL6 induced the strong recruitment of mature B cells and CD8 + T cells to lymph nodes, which may partially explain the high levels of VNA and enhanced cellular immunity. Quantitative real-time PCR indicated that rHEP-CaIL6 induced stronger inflammatory and immune responses in the central nervous system, which might have allowed virus clearance in the early infection phase. Furthermore, mice infected intranasally with rHEP-CaIL6 developed no clinical symptoms while mice infected with HEP-Flury showed piloerection. In summary, these data indicate that rHEP-CaIL6 induces a strong, protective immune response with a good safety profile. Therefore, a recombinant RABV strain expressing canine IL6 may aid the development of an effective, safe attenuated rabies vaccine. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Anti-proliferation Effect of Taraxacum mongolicum Extract in HepG2 Cells and Its Mechanism].
Guo, Jun-bin; Ye, Hai-hong; Chen, Jian-feng
2015-10-01
To study the anti-proliferation effect of Taraxacum mongolicum extract in HepG2 cells and its mechanism. The total proteins of HepG2 cells treated with Taraxacum mongolicum extract were. extracted and mitochondria-mediated apoptosis-related proteins (Survivin, Mcl-1, BCL-xL, BCL-2, Smac, BAX, Bad, Cytochrome c and Caspase-3/7/9) were detected by Western blot. Taraxacum mongolicum extract obviously inhibited the proliferation of HepG2 cells and the expression of anti-apoptotic proteins (Survivin, BCL-xL and BCL-2), increased the expression of pro-apoptotic proteins (Smac and Caspase-3/7/9), and promoted the release of Cytochrome c from mitochondria to cytoplasm in HepG2 cells. The effects were in a dose-independent mode. Taraxacum mongolicum extract can inhibit the proliferation of HepG2 cells and the anti-proliferation mechanism is related to mitochondria-mediated apoptosis.
Berger, Dustin R; Ware, Brenton R; Davidson, Matthew D; Allsup, Samuel R; Khetani, Salman R
2015-04-01
Induced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e., personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECMs) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned coculture (iMPCC) platform in a multiwell format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for at least 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel). We assessed iHep maturity by global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal cytochrome P450 (CYP450) activities, phase II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multiorgan responses to compounds. © 2014 by the American Association for the Study of Liver Diseases.
Van Sweringen, Heather L; Sakai, Nozomu; Quillin, Ralph C; Bailey, Jeff; Schuster, Rebecca; Blanchard, John; Goetzman, Holly; Caldwell, Charles C; Edwards, Michael J; Lentsch, Alex B
2013-01-01
Previous studies have demonstrated the significance of signaling through the CXC chemokine receptor-2 (CXCR2) receptor in the process of recovery and regeneration of functional liver mass after hepatic ischemia/reperfusion (I/R). CXCR2 is constitutively expressed on both neutrophils and hepatocytes; however, the cell-specific roles of this receptor are unknown. In the present study, chimeric mice were created through bone marrow transplantation (BMT) using wild-type and CXCR2-knockout mice, yielding selective expression of CXCR2 on hepatocytes (Hep) and/or myeloid cells (My) in the following combinations: Hep+/My+; Hep-/My+; Hep+/My-; and Hep-/My-. These tools allowed us to assess the contributions of myeloid and hepatocyte CXCR2 in the recovery of the liver after I/R injury. Flow cytometry confirmed the adoption of the donor phenotype in neutrophils. Interestingly, Kupffer cells from all chimeras lacked CXCR2 expression. Recovery/regeneration of hepatic parenchyma was assessed by histologic assessment and measurement of hepatocyte proliferation. CXCR2(Hep+/My+) mice showed the least amount of liver recovery and hepatocyte proliferation, whereas CXCR2(Hep-/My-) mice had the greatest liver recovery and hepatocyte proliferation. CXCR2(Hep+/My-) mice had enhanced liver recovery, with hepatocyte proliferation similar to CXCR2(Hep-/My-) mice. Myeloid expression of CXCR2 directly regulated CXC chemokine expression levels after hepatic I/R, such that mice lacking myeloid CXCR2 had markedly increased chemokine expression, compared with mice expressing CXCR2 on myeloid cells. The data suggest that CXCR2 on myeloid cells is the predominant regulator of liver recovery and regeneration after I/R injury, whereas hepatocyte CXCR2 plays a minor, secondary role. These findings suggest that myeloid cell-directed therapy may significantly affect liver regeneration after liver resection or transplantation. Copyright © 2012 American Association for the Study of Liver Diseases.
Weng, Mao-Chi; Wang, Mei-Hui; Tsai, Jai-Jen; Kuo, Yu-Cheng; Liu, Yu-Chang; Hsu, Fei-Ting; Wang, Hsin-Ell
2018-06-29
Regorafenib has been demonstrated in our previous study to trigger apoptosis through suppression of extracellular signal-regulated kinase (ERK)/nuclear factor-κB (NF-κB) activation in hepatocellular carcinoma (HCC) SK-Hep1 cells in vitro However, the effect of regorafenib on NF-κB-modulated tumor progression in HCC in vivo is ambiguous. The aim of the present study is to investigate the effect of regorafenib on NF-κB-modulated tumor progression in HCC bearing mouse model. pGL4.50 luciferase reporter vector transfected SK-Hep1 (SK-Hep1/ luc2 ) and Hep3B 2.1-7 tumor bearing mice were established and used for the present study. Mice were treated with vehicle or regorafenib (20 mg/kg/day by gavage) for 14 days. Effects of regorafenib on tumor growth and protein expression together with toxicity of regorafenib were evaluated with digital caliper and bioluminescence imaging (BLI), ex vivo Western blotting immunohistochemistry (IHC) staining, and measurement of body weight and pathological examination of liver tissue, respectively, in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. The results indicated regorafenib significantly reduced tumor growth and expression of phosphorylated ERK, NF-κB p65 (Ser536), phosphorylated AKT, and tumor progression-associated proteins. In addition, we found regorafenib induced both extrinsic and intrinsic apoptotic pathways. Body weight and liver morphology were not affected by regorafenib treatment. Our findings present the mechanism of tumor progression inhibition by regorafenib is linked to suppression of ERK/NF-κB signaling in SK-Hep1/ luc2 and Hep3B 2.1-7 tumor bearing mice. © 2018 The Author(s).
Propagation of Human Hepatocytes in uPA/SCID Mice: Producing Chimeric Mice with Humanized Liver.
Ohshita, Hiroki; Tateno, Chise
2017-01-01
Primary or cryopreserved human hepatocytes (h-heps) have been used as the gold standard for in vitro metabolism and hepatotoxicity studies; however, the supply of h-heps is limited and they cannot grow in vitro. We achieved approximately 1000-fold propagation of h-heps in the liver of albumin promoter/enhancer-driven urokinase-type plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) mice with genetically induced liver disease and immunodeficiency. When h-heps are transplanted into the uPA/SCID mouse liver via the spleen, the h-heps engraft in the mouse liver, resulting in its repopulation with h-heps. We have named this model "chimeric mouse with humanized liver, PXB-mouse ® ." Fresh h-heps can be isolated from the chimeric mice (PXB-cells ® ) and have been used for in vitro studies.The efficacy and safety of chemical entities for use in humans are estimated using experimental animals such as rats and mice. The drug development of many chemical entities has been halted because of metabolic differences between humans and animals during clinical studies. Therefore, chimeric mice with humanized liver have been used to predict human-type metabolism and safety conditions for h-heps. In addition, until recently there were no suitable hepatitis B or C virus (HBV or HCV) susceptible animal models aside from chimpanzees. Chimeric mice are the sole persistent infectious small animal model for HBV and HCV and they have been used to investigate the efficacy of new anti-HBV or HCV agents.In this chapter, we describe a method for producing chimeric mice with humanized liver using uPA/SCID mice.
External validation of the HIT Expert Probability (HEP) score.
Joseph, Lee; Gomes, Marcelo P V; Al Solaiman, Firas; St John, Julie; Ozaki, Asuka; Raju, Manjunath; Dhariwal, Manoj; Kim, Esther S H
2015-03-01
The diagnosis of heparin-induced thrombocytopenia (HIT) can be challenging. The HIT Expert Probability (HEP) Score has recently been proposed to aid in the diagnosis of HIT. We sought to externally and prospectively validate the HEP score. We prospectively assessed pre-test probability of HIT for 51 consecutive patients referred to our Consultative Service for evaluation of possible HIT between August 1, 2012 and February 1, 2013. Two Vascular Medicine fellows independently applied the 4T and HEP scores for each patient. Two independent HIT expert adjudicators rendered a diagnosis of HIT likely or unlikely. The median (interquartile range) of 4T and HEP scores were 4.5 (3.0, 6.0) and 5 (3.0, 8.5), respectively. There were no significant differences between area under receiver-operating characteristic curves of 4T and HEP scores against the gold standard, confirmed HIT [defined as positive serotonin release assay and positive anti-PF4/heparin ELISA] (0.74 vs 0.73, p = 0.97). HEP score ≥ 2 was 100 % sensitive and 16 % specific for determining the presence of confirmed HIT while a 4T score > 3 was 93 % sensitive and 35 % specific. In conclusion, the HEP and 4T scores are excellent screening pre-test probability models for HIT, however, in this prospective validation study, test characteristics for the diagnosis of HIT based on confirmatory laboratory testing and expert opinion are similar. Given the complexity of the HEP scoring model compared to that of the 4T score, further validation of the HEP score is warranted prior to widespread clinical acceptance.
People's perception on impacts of hydro-power projects in Bhagirathi river valley, India.
Negi, G C S; Punetha, Disha
2017-04-01
The people's perception on environmental and socio-economic impacts due to three hydro-electric projects (HEPs; commissioned and under construction) were studied in the north-west Indian Himalaya. Surveys among 140 project-affected people (PAPs) using a checklist of impacts indicate that among the negative impacts, decrease in flora/fauna, agriculture, flow of river, aesthetic beauty; and increase in water pollution, river bed quarrying for sand/stone, human settlement on river banks and social evils; and among the positive impacts, increase in standard of living, road connectivity, means of transport, public amenities, tourism and environmental awareness were related with HEPs. The PAPs tend to forget the negative impacts with the age of the HEPs after it becomes functional, and the positive impacts seem to outweigh the negative impacts. Study concludes that it is difficult to separate the compounding impacts due to HEP construction and other anthropogenic and natural factors, and in the absence of cause-and-effect analyses, it is hard to dispel the prevailing notion that HEPs are undesirable in the study area that led to agitations by the environmentalists and stopped construction of one of these HEPs. To overcome the situation, multi-disciplinary scientific studies involving the PAPs need to be carried out in planning and decision-making to make HEPs environment friendly and sustainable in this region. There is also a need to adopt low carbon electric power technologies and promote a decentralized energy strategy through joint ventures between public and private companies utilizing locally available renewable energy resources.
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon—Salmo salar, number of >1 year old Atlantic salmon, number of brown trout—Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies. PMID:27191717
Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Matthew T.; Judd, Steven L.
This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.
Cytostatic and genotoxic effect of temephos in human lymphocytes and HepG2 cells.
Benitez-Trinidad, A B; Herrera-Moreno, J F; Vázquez-Estrada, G; Verdín-Betancourt, F A; Sordo, M; Ostrosky-Wegman, P; Bernal-Hernández, Y Y; Medina-Díaz, I M; Barrón-Vivanco, B S; Robledo-Marenco, M L; Salazar, A M; Rojas-García, A E
2015-06-01
Temephos is an organophosphorus pesticide that is used in control campaigns against Aedes aegypti mosquitoes, which transmit dengue. In spite of the widespread use of temephos, few studies have examined its genotoxic potential. The aim of this study was to evaluate the cytotoxic, cytostatic and genotoxic effects of temephos in human lymphocytes and hepatoma cells (HepG2). The cytotoxicity was evaluated with simultaneous staining (FDA/EtBr). The cytostatic and genotoxic effects were evaluated using comet assays and the micronucleus technique. We found that temephos was not cytotoxic in either lymphocytes or HepG2 cells. Regarding the cytostatic effect in human lymphocytes, temephos (10 μM) caused a significant decrease in the percentage of binucleated cells and in the nuclear division index as well as an increase in the apoptotic cell frequency, which was not the case for HepG2 cells. The comet assay showed that temephos increased the DNA damage levels in human lymphocytes, but it did not increase the MN frequency. In contrast, in HepG2 cells, temephos increased the tail length, tail moment and MN frequency in HepG2 cells compared to control cells. In conclusion, temephos causes stable DNA damage in HepG2 cells but not in human lymphocytes. These findings suggest the importance of temephos biotransformation in its genotoxic effect. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, Shailly; Shrivastav, Anuraag; Health Research Division, Saskatchewan Cancer Agency, Saskatoon, SK S7N 4H4
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3{beta} (GSK-3{beta}) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-{alpha} (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parentalmore » HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.« less
Argonne HEP Lunch Seminar Schedule ANL home | HEP Division | Theory group | HEP Division seminars | HEP Theory seminars | Chicago seminars The ANL HEP Lunchtime Seminar is held regularly on Tuesdays at Phenomena in Astrophysics and Cosmology November 15, 2005 Harry Lipkin Update on Pentaquark theory and
Choi, Eun-Jeong; Kim, Gun-Hee
2013-10-01
The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines.
Cai, Xiao-Ling; Gao, Jun-Ping; Li, Qing; Wen, Lu; She, Zhi-Gang; Lin, Yong-Cheng
2008-06-01
To study the cytotoxicity of the secondary metabolites of Marine Mangrove Fungus Paecilomyces sp. Tree 1-7 on human hepatoma cell line HepG2 cultured in vitro. Three groups were divided: compounds group, 5-Fu group and control group. The cytotoxicity was measured by MTT method when HepG2 cells were treated by different concentration of the secondary metabolites of Paecilomyces sp. Tree 1-7. Secalonic acid A, tenellic acid A and alternin inhibited the growth of human hepatoma cell line HepG2, the IC50 separately were 2.0, 62.1 and 7.0 microg/ml. Secalonic acid A and alternin have strong cytotoxicity on HepG2 cultured in vitro.
Li, Min; Zhang, Mao; Zhang, Zhi-Lang; Liu, Ning; Han, Xiao-Yu; Liu, Qin-Cheng; Deng, Wei-Jun; Liao, Cai-Xian
2017-01-26
Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.
Fabrication of doxorubicin and heparin co-loaded microcapsules for synergistic cancer therapy.
Chen, Jing-Xiao; Liang, Yan; Liu, Wen; Huang, Jin; Chen, Jing-Hua
2014-08-01
In this study, a layer-by-layer (LbL) assembly (HEP/CHI)5 microcapsule with doxorubicin hydrochloride (DOX) encapsulating inside was fabricated via alternatively depositing heparin (HEP) and chitosan (CHI) onto DOX-loaded CaCO3 templates. The microcapsules were of stable architecture and had good dispersity in aqueous medium. Fluorescence observation showed that DOX distributed both in the wall and in the cavity of microcapsules, while HEP presented in the capsule wall. The release rate of DOX increased at acidic pH as compared with that at basic pH, suggesting a pH-responsive drug release behavior. The microcapsules with positively charged CHI lying on the outer layer could protect HEP from heparanase degradation and achieve intracellular co-delivery of both DOX and HEP. Thus, the DOX-loaded microcapsules could have improved inhibition activity against A549 cells by combining pharmacological actions of DOX and HEP. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Yang; Chen, Yao; Li, Qian; Zhao, Ting; Zhang, Ming; Feng, Weiwei; Takase, Mohammed; Wu, Xueshan; Zhou, Zhaoxiang; Yang, Liuqing; Wu, Xiangyang
2014-09-22
Two new Bi3+-Hericium erinaceus polysaccharide (BiHEP) complexes were prepared using Bi3+ and two purified polysaccharides from H. erinaceus (HEPs), respectively. The complexes were characterized by elemental analysis, FT-IR, CD, SEM, AFM, XRD, and TG. The anti-Helicobacter pylori (Hp) activities in vitro by agar dilution assay of the complexes were evaluated. The molecular weights of HEPs were 197 and 20 kDa, respectively. All the analyses confirmed the formation of new BiHEP complexes with lower content of Bi3+ compared with colloidal bismuth subcitrate (CBS), the most utilized bismuth preparation clinically. Furthermore, HEPs themselves have definite inhibition effects on Hp, and BiHEP complexes have lower content of Bi exhibited strong inhibition effects on Hp (MIC=20 μg/mL), similar to that of CBS with higher content of Bi. The study provides a basis for further development of multiple treatments of Hp infection or new medicines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valenzuela, R; Li, C H; Huidobro-Toro, J P
1991-08-01
The inhibitory opioid activities of beta h-endorphin (beta h-EP), its structurally related peptide analogues [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 (Gly-Gly-beta h-EP), [Arg9,19,24,28,29]-beta h-EP (Arg-beta h-EP) and methionine enkephalin have been examined in the electrically stimulated mouse vas deferens bioassay. All four peptides behaved as full agonists; methionine enkephalin was the most potent followed by Arg-beta h-EP, beta h-EP and Gly-Gly-beta h-EP. Neither Gly-Gly-beta h-EP nor Arg-beta h-EP antagonized the inhibitory action of beta h-EP or methionine enkephalin. An hour of tissue exposure to 30 nM beta-funaltrexamine followed by thorough washing, displaced to the right, in a parallel fashion, the concentration-response curves of beta h-EP and analogues. Whereas the displacement of the concentration response curves was 8 to 10-fold for beta h-EP and Arg-beta h-EP, it was only about 3-fold for Gly-Gly-beta h-EP and methionine enkephalin. Naltrindole was the most potent antagonist of methionine enkephalin with an apparent pA2 of 9.4; its potency as an antagonist of beta h-EP and related analogues was approximately one-tenth of this with pA2 values approximately 8.5. Norbinaltorphimine also antagonized the action of the opioid peptides with pA2 values close to 7.8.
MicroRNA expression in the vildagliptin-treated two- and three-dimensional HepG2 cells.
Yamashita, Yasunari; Asakura, Mitsutoshi; Mitsugi, Ryo; Fujii, Hideaki; Nagai, Kenichiro; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi
2016-06-01
Vildagliptin is an inhibitor of dipeptidyl peptidase-4 that is used for the treatment of type 2 diabetes mellitus. While vildagliptin can induce hepatic dysfunction in humans, the molecular mechanism has not been determined yet. Recent studies indicated that certain types of microRNA (miRNA) were linking to the development of drug-induced hepatotoxicity. In the present study, therefore, we identified hepatic miRNAs that were highly induced or reduced by the vildagliptin treatment in mice. MiR-222 and miR-877, toxicity-associated miRNAs, were induced 31- and 53-fold, respectively, by vildagliptin in the liver. While a number of miRNAs were significantly regulated by the orally treated vildagliptin in vivo, such regulation was not observed in the vildagliptin-treated HepG2 cells. In addition to the regular two-dimensional (2D) culture, we carried out the three-dimensional (3D) culturing of HepG2 cells. In the 3D-HepG2 cells, a significant reduction of miR-222 was observed compared to the expression level in 2D-HepG2 cells. A slight induction of miR-222 by vildagliptin was observed in the 3D-HepG2 cells, although miR-877 was not induced by vildagliptin even in the 3D-HepG2 cells. Further investigations are needed to overcome the discrepancy in the responsiveness of the miRNA expressions to vildagliptin between in vivo and in vitro. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessa, Maria João, E-mail: mjbessa8@gmail.com
Immobilization of nanoparticles on inorganic supports has been recently developed, resulting in the creation of nanocomposites. Concerning titanium dioxide nanoparticles (TiO{sub 2} NPs), these have already been developed in conjugation with clays, but so far there are no available toxicological studies on these nanocomposites. The present work intended to evaluate the hepatic toxicity of nanocomposites (C-TiO{sub 2}), constituted by rutile TiO{sub 2} NPs immobilized in nanokaolin (NK) clay, and its individual components. These nanomaterials were analysed by means of FE-SEM and DLS analysis for physicochemical characterization. HepG2 cells were exposed to rutile TiO{sub 2} NPs, NK clay and C-TiO{sub 2}more » nanocomposite, in the presence and absence of serum for different exposure periods. Possible interferences with the methodological procedures were determined for MTT, neutral red uptake, alamar blue (AB), LDH, and comet assays, for all studied nanomaterials. Results showed that MTT, AB and alkaline comet assay were suitable for toxicity analysis of the present materials after slight modifications to the protocol. Significant decreases in cell viability were observed after exposure to all studied nanomaterials. Furthermore, an increase in HepG2 DNA damage was observed after shorter periods of exposure in the absence of serum proteins and longer periods of exposure in their presence. Although the immobilization of nanoparticles in micron-sized supports could, in theory, decrease the toxicity of single nanoparticles, the selection of a suitable support is essential. The present results suggest that NK clay is not the appropriate substrate to decrease TiO{sub 2} NPs toxicity. Therefore, for future studies, it is critical to select a more appropriate substrate for the immobilization of TiO{sub 2} NPs. - Highlights: • Only the MTT and AB assays were found to be suitable for cytotoxicity assessment. • Alkaline comet assay was also appropriate for genotoxicity evaluation. • All nanomaterials decreased the HepG2 cell viability and caused DNA damage. • Nanokaolin is not a suitable clay substrate for the immobilization of TiO{sub 2} NPs. • Further toxicity studies must be performed in other clays to support nanoparticles.« less
Zou, Wei-Jie; Huang, Zhi; Jiang, Tian-Peng; Shen, Ya-Ping; Zhao, An-Su; Zhou, Shi; Zhang, Shuai
2017-12-25
BACKGROUND Hepatocellular carcinoma (HCC) is the most important cause of cancer-related deaths worldwide. Pirfenidone is an orally available small molecule with therapeutic potential for fibrotic diseases. MATERIAL AND METHODS In this study, we analyzed the effects of different pirfenidone concentrations on the proliferation of HepG2 HCC cells using Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was performed to measure the apoptotic effects of pirfenidone on HepG2 cells. Western blot analysis was performed to detect the expression of β-catenin and p-β-catenin. RESULTS Pirfenidone inhibited proliferation and promoted HepG2 cell apoptosis. In addition, Western blot results indicated that pirfenidone suppressed b-catenin expression in HepG2 cells. To assess the mechanism, we treated HepG2 cells with pirfenidone, and pirfenidone plus the β-catenin activator, SB-216763. The results revealed that SB-216763 accelerated proliferation and inhibited apoptosis in HepG2 cells treated with pirfenidone. Western blot results showed that SB-216763 upregulated β-catenin expression in HepG2 cells treated with pirfenidone. CONCLUSIONS In conclusions, pirfenidone may be a potential drug for HCC treatment.
Younossi, Zobair M; Stepanova, Maria
2011-10-01
Professional societies recommend hepatitis A and hepatitis B immunization for individuals with chronic liver disease (CLD), but the degree of implementation is unknown. Data were obtained from the National Health and Nutrition Examination Surveys (NHANES) conducted in 1999-2008. For the entire study population and for those with CLD and diabetes, we determined the rates and independent predictors of history of hepatitis A and hepatitis B (HepA and HepB) vaccinations, of their effectiveness, and of seroprevalence of hepatitis A antibody and anti-HB surface antibody. In total, 24,871 participants from NHANES were included: 14,886 (1999-2004) and 9,985 (2005-2008). Of these individuals, 14.0% had CLD and 8.6% had diabetes. During the study period, HepA vaccination in CLD increased from 13.3% ± 1.0% to 20.0% ± 1.5%, HepB vaccination increased from 23.4% ± 1.2% to 32.1% ± 1.5%. Of subtypes of CLD, HepA vaccination rates increased only in nonalcoholic fatty liver disease (NAFLD), whereas HepB vaccination increased for patients with hepatitis C and nonalcoholic fatty liver disease. In the diabetic cohort, HepA vaccination rates increased from 9.3% ± 1.1% to 15.4% ± 1.7% and HepB rates increased from 15.2% ± 1.5% to 22.4% ± 1.7%. All changes were similar to those observed in the general population. The quality measure (QM) for HepA in the general population decreased from 44.4% ± 1.2% in 1999-2004 to 41.7% ± 1.9% in 2005-2008, and similar changes were noted for all subcohorts. On the other hand, QM for HepB increased from 31.7% ± 0.9% to 40.7% ± 1.0% in the population, whereas no changes in QM were noted in any diagnostic cohort except for NAFLD. Although vaccination rates in CLD and diabetic cohorts are increasing, they remain low. Given the public health implications of acute hepatitis A and hepatitis B in patients with CLD, better implementation of the vaccination recommendations for these populations is warranted. Copyright © 2011 American Association for the Study of Liver Diseases.
HEP Division Argonne National Laboratory
Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP Theory administrators theory users trice users HEP webmaster U.S. Department of Energy Office of Science | UChicago
Yoneyama, Masami; Nakamura, Masanobu; Obara, Makoto; Okuaki, Tomoyuki; Sashi, Ryuji; Sawano, Seishi; Tatsuno, Satoshi; Van Cauteren, Marc
2017-02-01
To demonstrate the usefulness of hyperecho and PROPELLER (HEP) for carotid arterial vessel wall imaging by using a quantitative comparison with conventional methods. PROPELLER is a motion-insensitive turbo spin-echo (TSE) sequence and has recently been utilized in magnetic resonance (MR) plaque imaging instead of double inversion recovery TSE (DIR-TSE). Wider blade-width, higher k-space density, and an improved blood suppression effect result in better image quality. In this study we introduce a new combination of HEP. A total of 17 subjects were examined on a 3.0T system. We conducted quantitative comparisons for signal-to-noise ratio (SNR), contrast-to-noise-ratio, and image sharpness among HEP, DIR-TSE, and conventional PROPELLER (c-PROPELLER). Subsequently, images obtained with DIR-TSE, c-PROPELLER, and HEP were visually evaluated using a three-point scale by two board-certified radiologists. HEP showed high SNR similar to c-PROPELLER, good T 2 contrast approximating DIR-TSE, and better blood suppression compared with the other two methods (P < 0.05). The image sharpness of HEP (2.55 ± 0.53) was higher than that of DIR-TSE (1.89 ± 0.33) and the absence of ghost or streak artifacts in HEP (2.89 ± 0.33) was better than that in both other methods (2.22 ± 0.83 for DIR-TSE and 2.00 ± 0.50 for c-PROPELLER) (P < 0.05). Furthermore, the degree of blood suppression, particularly in cases of slow or turbulent flow close to the atherosclerotic plaque, was identical for HEP (2.80 ± 0.45) and DIR-TSE (2.80 ± 0.45) but was significantly better than for c-PROPELLER (1.60 ± 0.55) (P < 0.05). This study demonstrates the usefulness of HEP in the carotid arteries. HEP can provide higher-resolution T 2 -weighted black-blood imaging without flow- and/or motion-related artifacts, compared to conventional techniques. 3 J. Magn. Reson. Imaging 2017;45:515-524. © 2016 International Society for Magnetic Resonance in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chunlan; Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Oh, Joon Seok
Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantlymore » inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis. Highlights: ► G-TPP binds to mitochondrial Hsp90. ► G-TPP induces apoptosis in U937 human leukemia cancer cells. ► G-TPP induces combination of death pathways in Hep3B cell. ► G-TPP overcomes the resistance conferred by Bcl-2 in Hep3B cells via necroptosis. ► G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells.« less
Hsiao, Chih-Cheng; Chen, Po-Han; Cheng, Cheng-I; Tsai, Ming-Shian; Chang, Chih-Yang; Lu, Shang-Chieh; Hsieh, Ming-Chu; Lin, Yu-Chun; Lee, Po-Huang; Kao, Ying-Hsien
2015-11-01
Toll-like receptor-4 (TLR4) is known to influence growth and migration of hepatocellular tumors; however, its role in hepatoblastoma remains poorly understood. This study investigated the regulatory role of TLR4 in proliferation and chemoresistance of HepG2 hepatoblastoma cells. Treatment with lipopolysaccharide (LPS), a TLR4 agonist, was found to significantly upregulate TLR4 expression in HepG2 cells, but not in malignant Huh-7 and Sk-Hep1 hepatocellular carcinoma cells. Additionally, IL-6 enhanced LPS-induced TLR4 upregulation. LPS-stimulated TLR4 activation increased proliferation, nitric oxide synthase (NOS) expression, and NO production in HepG2 cells. Chemotherapeutic agents, cisplatin and doxorubicin, effectively inhibited TLR4 expression in HepG2 cells. Characterization of LPS-induced signaling activation and blockade with kinase inhibitors revealed the involvement of Akt and MAPK pathways in LPS-enhanced NO release from, and proliferation of HepG2 cells. Mechanistically, gene modifications as a result of TLR4 transfection and siRNA-mediated knockdown further demonstrated a crucial role for TLR4 in the regulation of NOS expression, cell proliferation, and chemoresistance in HepG2 cells. These findings suggest that targeting TLR4 expression and its cognate signaling may modulate proliferation and chemosensitivity in hepatoblastoma cells and serve as a potential therapeutic target. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Subramaniyan, Sri Devi; Natarajan, Ashok Kumar
2017-08-01
Diabetes mellitus, a major metabolic disorder associated with hyperglycaemia is one of the leading cause of death in many developed countries. However, use of natural phytochemicals have been proved to have a protective effect against oxidative damage. To investigate the effect of citral, a monoterpene on high glucose induced cytotoxicity and oxidative stress in human hepatocellular liver carcinoma (Hep G2) cell line. Cells were treated with 50 mM concentration of glucose for 24 hours incubation following citral (30 μM) was added to confluent HepG2 cells. Cell viability, Reactive Oxygen Species (ROS) generation, DNA damage, lipid peroxidation, antioxidants and Mitogen Activated Protein Kinases (MAPKs) signaling were assessed in citral and/or high glucose induced HepG2 cells. Cells treated with glucose (50 mM), resulted in increased cytotoxicity, ROS generation, DNA damage, lipid peroxidation and depletion of enzymatic and non enzymatic antioxidants. In contrast, treatment with citral (30 μM) significantly decreased cell cytotoxicity, ROS generation, DNA damage, lipid peroxidation and increased antioxidants enzymes in high glucose induced HepG2 cells. In addition, the present study highlighted that high glucose treated cells showed increased expression of Extracellular Signal Regulated Protein Kinase-1 (ERK-1), c-Jun N-terminal Kinase (JNK) and p38 in HepG2 cells. On the other hand treatment with citral significantly suppressed the expression of ERK-1, JNK and p38 in high glucose induced HepG2 cells. Citral protects against high glucose induced oxidative stress through inhibiting ROS activated MAPK signaling pathway in HepG2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Kun; Sun, Peisheng; Yue, Zhongyi
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Previous studies have reported that the oxidored-nitro domain containing protein 1 (NOR1) is a novel tumor suppressor in several tumors. Recent evidence suggests that NOR1 is strongly expressed in HCC cells. However, its role and mechanism in HCC are unclear. In the current study, Western blot and qPCR detected strong NOR1 mRNA and protein expression in HepG2 and Hep3B cells. After transfection with NOR1 siRNA or pcDNA3.1-myc-his-NOR1, the proliferation and migration of HepG2 and Hep3B cells were analyzed in vitro. HepG2 or Hep3B cells overexpressing NOR1 showed anmore » increased proliferation and migration, whereas siRNA-mediated silencing of NOR1 showed the opposite effect. Furthermore, NOR1 activated the Notch signaling pathway, indicated by increased levels of Notch1, NICD, Hes1, and Hey1 in protein. Importantly, the Notch inhibitor DAPT downregulated Notch activation and further enhanced siNOR1-induced reduction of cell proliferation and migration in HepG2 and Hep3B cells, whereas DAPT reversed the effect of NOR1 overexpression on cell proliferation and migration. In conclusion, these results indicate that NOR1 may be involved in the progression of HCC and thus may be a potential target for the treatment of liver cancer. - Highlights: • NOR1 expression is up-regulated in HCC cells. • NOR1 promotes the proliferation and migration of HCC cells. • NOR1 promotes the progression of HCC cells by activating Notch pathway.« less
de Oliveira, Edson R A; Lima, Bruna M M P; de Moura, Wlamir C; Nogueira, Ana Cristina M de A
2013-12-31
Type I interferons (IFNs) exert an array of important biological functions on the innate immune response and has become a useful tool in the treatment of various diseases. An increasing demand in the usage of recombinant IFNs, mainly due to the treatment of chronic hepatitis C infection, augmented the need of quality control for this biopharmaceutical. A traditional bioassay for IFN potency assessment is the cytopathic effect reduction antiviral assay where a given cell line is preserved by IFN from a lytic virus activity using the cell viability as a frequent measure of end point. However, type I IFNs induce other biological effects such as cell-cycle arrest and apoptosis that can influence directly on viability of many cell lines. Here, we standardized a cytopathic effect reduction antiviral assay using Hep-2C cell/mengovirus combination and studied a possible impact of cell viability variations caused by IFN-alpha 2b on responses generated on the antiviral assay. Using the four-parameter logistic model, we observed less correlation and less linearity on antiviral assay when responses from IFN-alpha 2b 1000 IU/ml were considered in the analysis. Cell viability tests with MTT revealed a clear cell growth inhibition of Hep-2C cells under stimulation with IFN-alpha 2b. Flow cytometric cell-cycle analysis and apoptosis assessment showed an increase of S+G2 phase and higher levels of apoptotic cells after treatment with IFN-alpha 2b 1000 IU/ml under our standardized antiviral assay procedure. Considering our studied dose range, we also observed strong STAT1 activation on Hep-2C cells after stimulation with the higher doses of IFN-alpha 2b. Our findings showed that the reduction of cell viability driven by IFN-alpha can cause a negative impact on antiviral assays. We assume that the cell death induction and the cell growth inhibition effect of IFNs should also be considered while employing antiviral assay protocols in a quality control routine and emphasizes the importance of new approaches for IFN potency determination. Copyright © 2013 Elsevier B.V. All rights reserved.
Medina-Mirapeix, Francesc; Lillo-Navarro, Carmen; Montilla-Herrador, Joaquina; Gacto-Sánchez, Mariano; Franco-Sierra, María Á; Escolar-Reina, Pilar
2017-08-01
Many families have problems adhering to home exercise programs (HEP) for children with developmental disabilities. However, parental participation in HEP is known to have a positive effect on child-related outcome variables, as well as on parental functioning. This study examined whether the different behaviours of health professionals, and the behaviour and social characteristics of parents determine rates of parental adherence to both the frequency per week, and duration per session, of HEP for children with developmental disabilities attending paediatric services in early intervention centres. In this study, developmental disabilities include those caused by developmental delay or specific health conditions such as cerebral palsy, congenital illness, or others. Survey. Eighteen early intervention centers. Parents of children with developmental disabilities receiving HEP. A self-reported questionnaire was used to examine: whether frequency and duration of weekly exercise sessions was prescribed by physiotherapists; whether the child had received the HEP according to what was prescribed; and items related to the individual, social support, illnesses and the involvement of the health professional. Multiple logistic regression analyses examined their relative relevance. In this study 219 parents participated. The rate of adherence to the prescribed frequency and duration of the HEP was similar (61.4-57.2%). The probability of adherence to both components increased for parents who had a low perception of the existence of barriers for integrating the exercises into their daily routine (OR=2.62 and 4.83). Furthermore, other cognitive factors of parents had a variable influence. The involvement of the professional had a significant impact regarding the frequency of the HEP. Professional involvement increased the probability of exercises being followed accurately by adopting strategies such as: providing information about the progress and evolution of the exercises (OR=3.75); justifying their usefulness (OR=2.17); giving advice on how to include them into the daily routine (OR=2.54); checking skills during follow-up (OR=2.21) and asking about home adherence (OR=2.20). Providing information during clinical encounters, advising how to include exercises into the daily routine, and checking skills and adherence during follow-up represent practical targets for clinicians aiming to improve the frequency of HEP for children with developmental disabilities. This study contributes to the knowledge of physicians and therapists regarding how their interventions (in particular, information, instructions for HEP and follow-up) influence parents regarding their adherence to HEP.
Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies. PMID:28158282
Isolation and characterization of HepP: a virulence-related Pseudomonas aeruginosa heparinase.
Dzvova, Nyaradzo; Colmer-Hamood, Jane A; Griswold, John A; Hamood, Abdul N
2017-12-16
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. In burn patients, P. aeruginosa infection often leads to septic shock and death. Despite numerous studies, the influence of severe thermal injuries on the pathogenesis of P. aeruginosa during systemic infection is not known. Through RNA-seq analysis, we recently showed that the growth of P. aeruginosa strain UCBPP-PA14 (PA14) in whole blood obtained from severely burned patients significantly altered the expression of the PA14 transcriptome when compared with its growth in blood from healthy volunteers. The expression of PA14_23430 and the adjacent gene, PA14_23420, was enhanced by seven- to eightfold under these conditions. Quantitative real-time PCR analysis confirmed the enhancement of expression of both PA14_23420 and PA14_23430 by growth of PA14 in blood from severely burned patients. Computer analysis revealed that PA14_23430 (hepP) encodes a potential heparinase while PA14_23420 (zbdP) codes for a putative zinc-binding dehydrogenase. This analysis further suggested that the two genes form an operon with zbdP first. Presence of the operon was confirmed by RT-PCR experiments. We characterized hepP and its protein product HepP. hepP was cloned from PA14 by PCR and overexpressed in E. coli. The recombinant protein (rHepP) was purified using nickel column chromatography. Heparinase assays using commercially available heparinase as a positive control, revealed that rHepP exhibits heparinase activity. Mutation of hepP resulted in delay of pellicle formation at the air-liquid interface by PA14 under static growth conditions. Biofilm formation by PA14ΔhepP was also significantly reduced. In the Caenorhabditis elegans model of slow killing, mutation of hepP resulted in a significantly lower rate of killing than that of the parent strain PA14. Changes within the blood of severely burned patients significantly induced expression of hepP in PA14. The heparinase encoded by hepP is a potential virulence factor for PA14 as HepP influences pellicle formation as well as biofilm development by PA14 and the protein is required for full virulence in the C. elegans model of slow killing.
Yang, Qiaoli; Wang, Shuyue; Wang, Yuan; Qu, Yane; Xue, Jun; Mi, Yang; Wang, Yanhong; Luo, Xuguang; Deng, Zhihua; Wang, Guiqin
2017-06-01
Decorin (DCN) is a negative regulatory factor for the growth of cancer cells and can inhibit the proliferation, metastasis of cancer cells and angiogenesis in cancer tissues. The aims of this study were to prepare the nanoparticles consisting of DCN and poly lactic-co-glycolic acid (PLGA) modified by anti-alpha fetoprotein (AFP) monoclonal antibody (mAb) and to examine the conventional physical properties, the in-vitro release of DCN and the targeting effect of these nanoparticles on HepG2 cells. The encapsulated plasmid was slowly and steadily released from the nanoparticles. The targeted PLGA nanoparticles were initiatively taken in HepG2 cells high-efficiently. According to the results of RT-PCR, DCN gene in AFPmAb-PLGA-rhDCN nanoparticles can be expressed in HepG2 cells successfully. These nanoparticles significantly inhibited the proliferation of HepG2 cells and induced apoptosis. The mRNA expression of Bcl-2 gene in the AFPmAb-PLGA-rhDCN-treated groups appeared significantly to decrease and the caspase-3 gene had the opposite trend as compared with that of control group (P < 0.01). These studies revealed that these nanoparticles were capable of specifically targeting the HepG2 cells and inhibiting the proliferation and they induce apoptosis of HepG2 cells in vitro, which was in a dose- and time-dependent manner. © 2017 Royal Pharmaceutical Society.
Subban, Kamalraj; Singh, Satpal; Subramani, Ramesh; Johnpaul, Muthumary; Chelliah, Jayabaskaran
2017-11-28
Paclitaxel (taxol) is a potent anticancer drug that is used in the treatment of a wide variety of cancerous. In the present study, we identified a taxol derivative named 7-epi-10-deacetyltaxol (EDT) from the culture of an endophytic fungus Pestalotiopsis microspora isolated from the bark of Taxodium mucronatum. This study was carried out to investigate the effects of fungal EDT on cell proliferation, the induction of apoptosis and the molecular mechanisms of apoptosis in human hepatoma HepG2 cells in vitro. The endophytic fungus was identified by traditional and molecular taxonomical characterization and the fungal EDT was purified using column chromatography and confirmed by various spectroscopic and chromatographic comparisons with authentic paclitaxel. We studied the in vitro effects of EDT on HepG2 cells for parameters such as cell cycle distribution, DNA fragmentation, reactive oxygen species (ROS) generation and nuclear morphology. Further, western blot analysis was used to evaluate Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), p38-mitogen activated protein kinase (MAPK) and poly [ADP-ribose] polymerase (PARP) expression. We demonstrate that the fungal EDT exhibited significant in vitro cytotoxicity in HepG2 cells. We investigated cytotoxicity mechanism of EDT in HepG2 cells. The results showed nuclear condensation and DNA fragmentation were observed in cells treated with fungal EDT. Besides, the fungal EDT arrested HepG2 cells at G2/M phase of cell cycle. Furthermore, fungal EDT induced apoptosis in HepG2 cells in a dose-dependent manner associated with ROS generation and increased Bax/Bcl-2 ratio, p38 MAPKs and PARP cleavage. Our data show that EDT induced apoptotic cell death in HepG2 cells occurs through intrinsic pathway by generation of ROS mediated and activation of MAPK pathway. This is the first report for 7-epi-10-deacetyltaxol (EDT) isolated from a microbial source.
Data Preservation in High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, Richard; Brooks, Travis; /SLAC
2012-04-03
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. At the same time, HEP has no coherent strategy for data preservation and re-use. An inter-experimental Study Group on HEP data preservation and long-term analysis was convened at the end of 2008 and held two workshops, at DESY (January 2009) and SLAC (May 2009). This document is an intermediate report to the International Committee for Future Accelerators (ICFA) of the reflections of this Study Group. Large data sets accumulated during many years of detector operation at particle accelerators are the heritage ofmore » experimental HEP. These data sets offer unique opportunities for future scientific studies, sometimes long after the shut-down of the actual experiments: new theoretical input; new experimental results and analysis techniques; the quest for high-sensitivity combined analyses; the necessity of cross checks. In many cases, HEP data sets are unique; they cannot and most likely will not be superseded by data from newer generations of experiments. Once lost, or in an unusable state, HEP data samples cannot be reasonably recovered. The cost of conserving this heritage through a collaborative, target-oriented long-term data preservation program would be small, compared to the costs of past experimental projects or to the efforts to re-do experiments. However, this cost is not negligible, especially for collaborations close or past their end-date. The preservation of HEP data would provide today's collaborations with a secure way to complete their data analysis and enable them to seize new scientific opportunities in the coming years. The HEP community will benefit from preserved data samples through reanalysis, combination, education and outreach. Funding agencies would receive more scientific return, and a positive image, from their initial investment leading to the production and the first analysis of preserved data.« less
Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping
2016-01-01
Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786
Comparative analysis of 3D culture methods on human HepG2 cells.
Luckert, Claudia; Schulz, Christina; Lehmann, Nadja; Thomas, Maria; Hofmann, Ute; Hammad, Seddik; Hengstler, Jan G; Braeuning, Albert; Lampen, Alfonso; Hessel, Stefanie
2017-01-01
Human primary hepatocytes represent a gold standard in in vitro liver research. Due to their low availability and high costs alternative liver cell models with comparable morphological and biochemical characteristics have come into focus. The human hepatocarcinoma cell line HepG2 is often used as a liver model for toxicity studies. However, under two-dimensional (2D) cultivation conditions the expression of xenobiotic-metabolizing enzymes and typical liver markers such as albumin is very low. Cultivation for 21 days in a three-dimensional (3D) Matrigel culture system has been reported to strongly increase the metabolic competence of HepG2 cells. In our present study we further compared HepG2 cell cultivation in three different 3D systems: collagen, Matrigel and Alvetex culture. Cell morphology, albumin secretion, cytochrome P450 monooxygenase enzyme activities, as well as gene expression of xenobiotic-metabolizing and liver-specific enzymes were analyzed after 3, 7, 14, and 21 days of cultivation. Our results show that the previously reported increase of metabolic competence of HepG2 cells is not primarily the result of 3D culture but a consequence of the duration of cultivation. HepG2 cells grown for 21 days in 2D monolayer exhibit comparable biochemical characteristics, CYP activities and gene expression patterns as all 3D culture systems used in our study. However, CYP activities did not reach the level of HepaRG cells. In conclusion, the increase of metabolic competence of the hepatocarcinoma cell line HepG2 is not due to 3D cultivation but rather a result of prolonged cultivation time.
VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Zhitao; Lu, Xiao; Zhu, Ping
Highlights: Black-Right-Pointing-Pointer VCC-1 is hypothesized to be associated with carcinogenesis. Black-Right-Pointing-Pointer Levels of VCC-1 are increased significantly in HCC. Black-Right-Pointing-Pointer Over-expression of VCC-1 could promotes cellular proliferation rate. Black-Right-Pointing-Pointer Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. Black-Right-Pointing-Pointer VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellularmore » carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.« less
NASA Astrophysics Data System (ADS)
Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen
2015-01-01
Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05843g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yanxin; Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Guangdong Province, Shenzhen 518036; Yue, Xupeng
Highlights: •miR-124 is down-regulated in hepatocellular carcinoma HepG2 cells. •Over-expression of miR-124 suppresses proliferation and induces apoptosis in HepG2 cells. •miR-124 inhibits xenograft tumor growth in nude mice implanted with HepG2 cells by reducing STAT3 expression. •STATs function as a novel target of miR-124 in HCC HepG2 cells. -- Abstract: The aberrant expression of microRNAs is associated with development and progression of cancers. Down-regulation of miR-124 has been demonstrated in the hepatocellular carcinoma (HCC), but the underlying mechanism by which miR-124 suppresses tumorigenesis in HCC remains elusive. In this study, we found that miR-124 suppresses the tumor growth of HCCmore » through targeting the signal transducers and activators of transcription 3 (STAT3). Overexpression of miR-124 suppressed proliferation and induced apoptosis in HepG-2 cells. Luciferase assay confirmed that miR-124 binding to the 3′-UTR region of STAT3 inhibited the expression of STAT3 and phosphorylated STAT3 proteins in HepG-2 cells. Knockdown of STAT3 by siRNA in HepG-2 cells mimicked the effect induced by miR-124. Overexpression of STAT3 in miR-124-transfected HepG-2 cells effectively rescued the inhibition of cell proliferation caused by miR-124. Furthermore, miR-124 suppressed xenograft tumor growth in nude mice implanted with HepG-2 cells by reducing STAT3 expression. Taken together, our findings show that miR-124 functions as tumor suppressor in HCC by targeting STAT3, and miR-124 may therefore serve as a biomarker for diagnosis and therapeutics in HCC.« less
Liu, Hongjun; Wang, Yiru; Chen, Bing
2018-01-01
Lidocaine displays antitumor activity by inducing apoptosis and suppressing tumor growth in human hepatocellular carcinoma (HepG2) cells in vitro. However, the molecular mechanism underlying lidocaine-mediated antitumor activity is unclear. In this study, HepG2 cells were treated with lidocaine, and cell proliferation and colony-forming ability were assessed. The expression level of cytoplasmic polyadenylation element binding protein 3 (CPEB3) was detected by real-time quantitative PCR and western blot. Lidocaine treatment resulted in decreased HepG2 cell viability and colony formation in a dose-dependent manner. In hepatocellular carcinoma patient samples, CPEB3 was downregulated and was associated with poor prognosis and high-grade malignancy. Additionally, CPEB3 was a critical mediator of lidocaine-induced repression of HepG2 cell proliferation. These results demonstrated that lidocaine decreased cell viability and colony-forming ability of HepG2 cells by upregulating CPEB3 expression.
NASA Astrophysics Data System (ADS)
Yang, Sun; Shi-Sheng, Sun; Ying-Yong, Zhao; Jun, Fan
2012-07-01
In this study, we compared different binding interactions of TBMS2 with proteins both in hepatocarcinoma HepG2 cells and in normal embryo hepatic L02 cells by using fluorescence, absorption, and CD spectroscopy. The fluorescence data revealed that the fluorescence intensity of proteins in the HepG2 and L02 cells decreased in the presence of TBMS2 by 30.79% and 12.01%, respectively. Binding constants and thermodynamic parameters were obtained for systems of TBMS2 with the two kinds of cell proteins. The results indicated that HepG2 cell proteins had a higher TBMS2 binding activity than those in the L02 cells. Analysis of the TBMS2 cytotoxic activities showed that TBMS2 could selectively induce apoptosis of HepG2 cells by binding to them, while its apoptotic effect on L02 cells was relatively weaker.
Linoleic acid-menthyl ester reduces the secretion of apolipoprotein B100 in HepG2 cells.
Inoue, Nao; Yamano, Naomi; Sakata, Kotaro; Arao, Keisuke; Kobayashi, Takashi; Nagao, Toshihiro; Shimada, Yuji; Nagao, Koji; Yanagita, Teruyoshi
2009-01-01
The effect of linoleic acid-menthyl ester (LAME) on lipid metabolism were assessed in HepG2 cells. It is well known that high level of apolipoprotein (apo) B100 in the serum is risk for atherosclerosis. Although linoleic acid (LA) treatment and LA plus L-mentol treatment increased apo B100 secretion, LAME treatment significantly decreased apo B100 secretion in HepG2 cells compared with control medium. The hypolipidemic effect of LAME was attributable to the suppression of triglyceride synthesis in HepG2 cells. It is also known that the risk of coronary heart disease is negatively related to the concentration of serum apo A-1. In the present study, LAME treatment increased apo A-1 secretion as compared with LA treatment in HepG2 cells. These results suggest that mentyl-esterification of fatty acids may be beneficial in anti-atherogenic dietary therapy.
Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong
2017-03-22
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang
2015-01-01
Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their own CAFs via EMT in this model.
Choi, Eun-Jeong
2013-01-01
Objective The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. Methods To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. Results APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. Conclusions These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines. PMID:24255577
Characterizing the Role of Hep27 in Liver and Colorectal Cancer Stress Tolerance
2018-01-01
hepatocellular carcinoma, and its high expression correlates with decreased survival in colon cancers. It was hypothesized that Hep27 overexpression is a...Hep27, is overexpressed in hepatocellular carcinoma, and its high expression correlates with decreased survival in colon cancers. I hypothesize that...text. Examples include original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys , etc. 15 Nothing to report.
NASA Astrophysics Data System (ADS)
Blessington, Dana M.; Zhang, Zhihong; Li, Hui; Zhang, Min; Zhou, Lanlan; Glickson, Jerry D.; Zheng, Gang; Chance, Britton
2003-07-01
We utilized the nude mouse model bearing the human hepatoblastoma G2 (HepG2) tumor and B-16 Murine Melanoma tumor to study the delivery and detection of the reconstituted Pyropheophorbide Cholesterol Oleate (r-pyroCE) molecular beacon. The delivery vehicle, low-density lipoprotein (LDL), labeled with the porphyrin derivative, was employed in response of the overexpression of LDL receptors in the HepG2 tumor. The B-16 melanoma tumor was also observed in this study for its overexpression of the LDL receptors. The tumors were imaged using the 3D low temperature scanner to produce images throughout several sliced sections of each tumor. The fluorescence signal of the pyropheophorbide was detected at 720nm when excited at 670nm in the tumor tissue. The uniform distribution of the signal in the HepG2 tumor shows extravasation of the beacon from the blood vessels. The B-16 tumor did not exhibit strong fluorescent signals and successful delivery as the HepG2 tumor outside the blood vessels and into the tumor tissue.
Valenzuela, R; Li, C H; Huidobro-Toro, J P
1989-02-01
The 1-27 truncated fragment of beta h-endorphin (beta h-EP) as well as [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 or [Arg9,19,24,28,29]-beta h-EP exhibited opiate agonist activity in the rat vas deferens bioassay; the potency of these peptides was 3 to 6 times less than that of beta h-EP. None of these compounds exhibited any degree of antagonism towards the inhibitory action of beta h-EP. Naloxone antagonized and reversed the inhibitory action of beta h-EP and its analogues though with varying potencies. The apparent naloxone-pA2 value for beta h-EP was 8.94; that for [Gln8-Gly31]-beta h-EP-Gly-Gly-NH2 was 8.08 and that for [Arg9,19,24,28,29]-beta h-EP was 8.38. beta-Funaltrexamine (beta-FNA) potently antagonized the inhibitory action of beta h-EP following non-equilibrium kinetics. Tissue preincubation with 10 nM beta-FNA for 60 min followed by extensive washing caused a 10-fold increase in the beta h-EP IC50. However, 10 nM beta-FNA caused only a 1.2 increase in the IC50 of [Gln8,Gly31]-beta h-EP-Gly-Gly-NH2 and a 4.1-fold increase in the IC50 of [Arg9,19,24,28,29]-beta h-EP. In contrast, preincubation of the tissue with 3 microM ICI 174,864 did not modify the potency of beta h-EP or its structural analogues. However, a 60 min pretreatment with 10 microM beta-FNA followed by the addition of 3 microM ICI 174,864 revealed a further decrease in the potency of the opiopeptins compared with tissues exposed to beta-FNA alone or ICI 174,864 alone. In conclusion, the inhibitory action of these peptides is remarkably sensitive to beta-FNA antagonism; in addition the peptides act as pure opiate agonists in marked contrast with the agonist-antagonist properties described in the CNS.
``High energy Electron exPeriment (HEP)'' onboard the ERG satellite
NASA Astrophysics Data System (ADS)
Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.
2017-12-01
The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.
Yokobori, Kosuke; Kobayashi, Kaoru; Azuma, Ikuko; Akita, Hidetaka; Chiba, Kan
2017-10-01
Pregnane X receptor (PXR) is localized in the cytoplasm of liver cells, whereas it is localized in the nucleus of monolayer-cultured HepG2 cells. Since cultured cells are affected by the microenvironment in which they are grown, we studied the effect of three-dimensional (3D) culture on the localization of PXR in HepG2 cells using the hanging drop method. The results showed that PXR was retained in the cytoplasm of HepG2 cells and other human hepatocarcinoma cell lines (FLC5, FLC7 and Huh7) when they were cultured by the hanging drop method. Treatment with rifampicin, a ligand of PXR, translocated PXR from the cytoplasm to nucleus and increased expression levels of CYP3A4 mRNA in HepG2 cells cultured by the hanging drop method. These findings suggest that 3D culture is a key factor determining the intracellular localization of PXR in human hepatocarcinoma cells and that PXR that becomes retained in the cytoplasm of HepG2 cells with 3D culture has functions of nuclear translocation and regulation of target genes in response to human PXR ligands. Three-dimensionally cultured hepatocarcinoma cells would be a useful tool to evaluate induction potency of drug candidates and also to study mechanisms of nuclear translocation of PXR by human PXR ligands. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Lin, Jing-Wen; Shaw, Tovah N.; Annoura, Takeshi; Fougère, Aurélie; Bouchier, Pascale; Chevalley-Maurel, Séverine; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J.; Couper, Kevin N.
2014-01-01
Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8+ T cells (OT-I) and CD4+ T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection. PMID:25156724
IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.
Li, Hui; Li, Bing; Larose, Louise
2017-08-01
PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Fangfang; Zhou, Chunhui; Zhou, Dandan; Ou, Shiyi; Zhang, Xiaoai; Huang, Huihua
2018-01-24
A novel polysaccharide fraction (HEP-S) was extracted and isolated from the fruiting bodies of Hericium erinaceus. Structural characterization revealed that HEP-S had an average molecular weight of 1.83 × 10 4 Da and consisted of rhamnose, fucose, mannose, glucose and galactose at a molar ratio of 1.47 : 0.93 : 1.36 : 8.68 : 4.08. Periodate oxidation-Smith degradation and NMR analysis showed that the main linkage types of HEP-S were composed of (1→)-α-d-Glc, (1→3,4)-α-d-Glc, (1→6)-α-d-Gal, (1→3,4)-β-d-Man, (1→3,6)-α-Rha and (1→2)-β-l-Fuc. The immunomodulatory assay indicated that HEP-S could significantly enhance the pinocytic and phagocytic capacity and promote the secretion of nitric oxide and pro-inflammatory cytokines by activating the corresponding mRNA and protein expression in RAW 264.7 cells involving a toll-like receptor 2 membrane receptor. Besides, HEP-S was also found to improve the adaptive immune function by enhancing T and B lymphocyte proliferation and increasing the interleukin-2, interleukin-4 and interferon-γ secretion in spleen lymphocytes. These results suggested that HEP-S could be used as a potential immunoregulatory agent in functional foods.
Lu, Zheng; Cao, Shengbo; Zhou, Hongbo; Hua, Ling; Zhang, Shishuo; Cao, Jiyue
2015-01-01
Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment. PMID:25933104
Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati
2013-01-01
BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.
Xu, Ying-Ying; Wu, Ting-Ting; Zhou, Shui-Hong; Bao, Yang-Yang; Wang, Qin-Ying; Fan, Jun; Huang, Ya-Ping
2014-01-01
Glucose transporter-1 (GLUT-1) and PI3K/Akt are known to be closely involved in resistance to chemotherapy. Co-targeted therapy reducing GLUT-1 expression and PI3K/Akt pathway activity may overcome the chemoresistance of human cancers. Apigenin may inhibit the expression of GLUT-1 and the PI3K/Akt pathway. We hypothesized that over-expression of GLUT-1 and p-Akt was associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. We explored whether apigenin inhibited GLUT-1 and p-Akt, resulting in sensitization of laryngeal carcinoma Hep-2 cells to cisplatin. Real-time RT-PCR and Western blotting confirmed the presence of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins in Hep-2 cells. We found that resistance or insensitivity of Hep-2 cells to cisplatin might be associated with such expression. Apigenin markedly enhanced the cisplatin-induced suppression of Hep-2 cell growth. This effect was concentration- and time-dependent. Thus apigenin may significantly reduce the levels of GLUT-1 mRNA, and GLUT-1 and p-Akt proteins, in cisplatin-treated Hep-2 cells, in a concentration- and time-dependent manner. To conclude, overexpression of GLUT-1 mRNA may be associated with the resistance to cisplatin of laryngeal carcinoma Hep-2 cells. Apigenin may enhance the sensitivity to cisplatin of laryngeal carcinoma cells via inhibition of GLUT-1 and p-Akt expression. PMID:25120770
Production of coagulation factor VII in human cell lines Sk-Hep-1 and HKB-11.
Corrêa de Freitas, Marcela Cristina; Bomfim, Aline de Sousa; Mizukami, Amanda; Picanço-Castro, Virgínia; Swiech, Kamilla; Covas, Dimas Tadeu
2017-09-01
Recombinant factor VII (rFVII) is the main therapeutic choice for hemophilia patients who have developed inhibitory antibodies against conventional treatments (FVIII and FIX). Because of the post-translational modifications, rFVII needs to be produced in mammalian cell lines. In this study, for the first time, we have shown efficient rFVII production in HepG2, Sk-Hep-1, and HKB-11 cell lines. Experiments in static conditions for a period of 96 h showed that HepG2-FVII produced the highest amounts of rhFVII, with an average of 1843 ng/mL. Sk-hep-1-FVII cells reached a maximum protein production of 1432 ng/mL and HKB-11-FVII cells reached 1468 ng/mL. Sk-Hep-1-rFVII and HKB-11-rFVII were selected for the first step of scale-up. Over 10 days of spinner flask culture, HKB-11 and SK-Hep-1 cells showed a cumulative production of rFVII of 152 μg and 202.6 μg in 50 mL, respectively. Thus, these human cell lines can be used for an efficient production of recombinant FVII. With more investment in basic research, human cell lines can be optimized for the commercial production of different bio therapeutic proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com; Cheah, Yew-Hoong; Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur
Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action ofmore » xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.« less
Cunha de Padua, Monique Meyenberg; Suter Correia Cadena, Silvia Maria; de Oliveira Petkowicz, Carmen Lucia; Martinez, Glaucia Regina; Rodrigues Noleto, Guilhermina
2017-08-01
This study evaluated the effects of native galactomannan from Schizolobium amazonicum seeds and its sulfated forms on certain metabolic parameters of HepG2 cells. Aqueous extraction from S. amazonicum seeds furnished galactomannan with 3.2:1 Man:Gal ratio (SAGM) and molar mass of 4.34×10 5 g/mol. The SAGM fraction was subjected to sulfation using chlorosulfonic acid to obtain SAGMS1 and SAGMS2 with DS of 0.4 and 0.6, respectively. Cytotoxicity of SAGM, SAGMS1, and SAGMS2 was evaluated in human hepatocellular carcinoma cells (HepG2). After 72h, SAGM decreased the viability of HepG2 cells by 50% at 250μg/mL, while SAGMS1 reduced it by 30% at the same concentration. SAGM, SAGMS1, and SAGMS2 promoted a reduction in oxygen consumption and an increase in lactate production in non-permeabilized HepG2 cells after 72h of treatment. These results suggest that SAGM, SAGMS1, and SAGMS2 could be recognized by HepG2 cells and might trigger alterations that impair its survival. These effects could be implicated in the modification of the oxidative phosphorylation process in HepG2 cells and activation of the glycolytic pathway. Copyright © 2017 Elsevier B.V. All rights reserved.
Umbilical cord-derived mesenchymal stem cells inhibit growth and promote apoptosis of HepG2 cells.
Tang, Ying-Mei; Bao, Wei-Min; Yang, Jin-Hui; Ma, Lin-Kun; Yang, Jing; Xu, Ying; Yang, Li-Hong; Sha, Feng; Xu, Zhi-Yuan; Wu, Hua-Mei; Zhou, Wei; Li, Yan; Li, Yu-Hua
2016-09-01
Hepatocellular carcinoma is the fifth most common type of cancer worldwide and remains difficult to treat. The aim of this study was to investigate the effects of mesenchymal stem cells (MSCs) derived from the umbilical cord (UC‑MSCs) on HepG2 hepatocellular carcinoma cells. UC‑MSCs were co‑cultured with HepG2 cells and biomarkers of UC‑MSCs were analyzed by flow cytometry. mRNA and protein expression of genes were determined by reverse transcription‑polymerase chain reaction and flow cytometry, respectively. Passage three and seven UC‑MSCs expressed CD29, CD44, CD90 and CD105, whereas CD34 and CD45 were absent on these cells. Co‑culture with UC‑MSCs inhibited proliferation and promoted apoptosis of HepG2 cells in a time‑dependent manner. The initial seeding density of UC‑MSCs also influenced the proliferation and apoptosis of HepG2 cells, with an increased number of UC‑MSCs causing enhanced proliferation inhibition and cell apoptosis. Co‑culture with UC‑MSCs downregulated mRNA and protein expression of α‑fetoprotein (AFP), Bcl‑2 and Survivin in HepG2 cells. Thus, UC‑MSCs may inhibit growth and promote apoptosis of HepG2 cells through downregulation of AFP, Bcl‑2 and Survivin. US-MSCs may be used as a novel therapy for treating hepatocellular carcinoma in the future.
Pizzuto, Roberto; Paventi, Gianluca; Porcile, Carola; Sarnataro, Daniela; Daniele, Aurora; Passarella, Salvatore
2012-09-01
As part of an ongoing study of l-lactate metabolism both in normal and in cancer cells, we investigated whether and how l-lactate metabolism occurs in mitochondria of human hepatocellular carcinoma (Hep G2) cells. We found that Hep G2 cell mitochondria (Hep G2-M) possess an l-lactate dehydrogenase (ml-LDH) restricted to the inner mitochondrial compartments as shown by immunological analysis, confocal microscopy and by assaying ml-LDH activity in solubilized mitochondria. Cytosolic and mitochondrial l-LDHs were found to differ from one another in their saturation kinetics. Having shown that l-lactate itself can enter Hep G2 cells, we found that Hep G2-M swell in ammonium l-lactate, but not in ammonium pyruvate solutions, in a manner inhibited by mersalyl, this showing the occurrence of a carrier-mediated l-lactate transport in these mitochondria. Occurrence of the l-lactate/pyruvate shuttle and the appearance outside mitochondria of oxaloacetate, malate and citrate arising from l-lactate uptake and metabolism together with the low oxygen consumption and membrane potential generation are in favor of an anaplerotic role for l-LAC in Hep G2-M. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Zhenzhen; Kuang, Wenhua; Xu, Xi; Li, Dandan; Zhu, Wufu; Lan, Zhou; Zhang, Xu
2018-01-15
Zengye Decoction (ZYD) is a well-known traditional medicine in China used for treating diseases associated with "Yin deficiency" such as diabetes. However, little information is available on its components, pharmacological effects and underlying mechanisms. This study was designed to identify its active components and evaluate the effects and mechanisms of ZYD on glucose consumption and lipogenesis in insulin-induced insulin-resistant (IR)-HepG2 cells. In this study, 45 compounds of ZYD were putatively identified, in which the iridoid glycosides such as catalpol, aucubin and harpagide were identified as the main components. The insulin-resistant (IR)-HepG2 cell model was established and the effect of ZYD at three doses (0.17, 0.5 and 1.5 μg/mL) on cell growth was evaluated with an IncuCyte™ live-cell imaging system. The effects of ZYD on glucose consumption and uptake were evaluated by glucose consumption and uptake assay. Meanwhile, the effect of ZYD on lipogenesis was investigated in IR-HepG2 cells by oil red O (ORO) staining. Western blot was applied to observe the changes in some of the key factors involved in glucose metabolism and lipogenesis. It was found that the ZYD at a dose of 1.5 μg/mL exhibited an inhibitory activity on IR-HepG2 cell growth. Besides, ZYD at doses of 0.5 and 1.5 μg/mL accelerated the glucose consumption, glucose uptake and reduced the lipogenesis in the IR-HepG2 cells. Western blot studies revealed that ZYD phosphorylated AMP-activated protein kinase α subunits (AMPKα), upregulated hexokinase (HK), phosphorylated acetyl-CoA carboxylase alpha (pACC1) and carnitine palmitoyltransferase 1A (CPT1A) in the IR-HepG2 cells. These results indicate ZYD promotes glucose consumption and uptake, and attenuates lipogenesis in IR-HepG2 cells, which may be involved in activating AMPK and regulating its downstream factors including HK, pACC1 and CPT1A. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tian-tian, E-mail: matthewwu1979@hotmail.com; Li, Wei-min, E-mail: weimin-li-surgery@126.com; Li, Hu-cheng, E-mail: hucheng-li-surgery@126.com
PurposeThe clinical efficacy of intraductal radiofrequency ablation (RFA) with Habib™ EndoHPB catheter, a newly developed intervention for malignant extrahepatic biliary obstruction, remains uncertain. The aim of this study was to investigate the clinical efficacy of intraductal RFA.MethodsData from 71 patients with extrahepatic distal cholangiocarcinoma were retrospectively analyzed. The study patients were divided into RFA and control groups. The RFA group had undergone percutaneous transhepatic intraductal RFA with a Habib™ EndoHPB catheter, followed by placement of covered or uncovered biliary self-expandable metallic stents (SEMs) whereas the control group had undergone percutaneous transhepatic covered or uncovered SEMs placement. Procedure-related complications, stent patency,more » patient survival, and postoperative serum bilirubin concentrations were compared between the two groups. The Functional Assessment of Cancer Therapy-Hepatobiliary (FACT-Hep) questionnaire was administered to evaluate functional status, improvement in clinical manifestations, and quality of life.ResultsThe RFA group had a longer median stent patency than the control group (p = 0.001 for uncovered SEMs placement). Higher functional well-being, hepatobiliary-specific cancer subscale, Trial Outcome Index, and total FACT-Hep scores were observed during post-procedure follow-up in the RFA group. However, median survival did not differ significantly between the two groups (p > 0.05).ConclusionsProlongation of stent patency and better functional status and quality of life, which are all important clinical endpoints, were observed in patients treated with intraductal RFA. Prospective randomized controlled clinical trials are necessary to further investigate the clinical efficacy and long-term benefits of intraductal RFA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akopov, Zaven; Amerio, Silvia; Asner, David
2013-03-27
Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailedmore » description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics.« less
NASA Astrophysics Data System (ADS)
Piret, Jean-Pascal; Vankoningsloo, Sébastien; Noël, Florence; Mejia Mendoza, Jorge; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier
2011-07-01
Poor information are currently available about the biological effects of multi-walled carbon nanotubes (MWCNT) on the liver. In this study, we evaluated the effects of MWCNT at the transcriptional level on the classical in vitro model of HepG2 hepatocarcinoma cells. The expression levels of 96 transcript species implicated in the inflammatory and immune responses was studied after a 24h incubation of HepG2 cells in presence of raw MWCNT dispersed in water by stirring. Among the 46 transcript species detected, only a few transcripts including mRNA coding for interleukine-7, chemokines receptor of the C-C families CCR7, as well as Endothelin-1, were statistically more abundant after treatment with MWCNT. Altogether, these data indicate that MWCNT can only induce a weak inflammatory response in HepG2 cells.
Bae, Seong Kyeong; Kim, Munki; Pyo, Min Jung; Kim, Minkyung; Yang, Sujeoung; Yoon, Won Duk; Han, Chang Hoon
2017-01-01
Various kinds of animal venoms and their components have been widely studied for potential therapeutic applications. This study evaluated whether Nemopilema nomurai jellyfish venom (NnV) has anticancer activity. NnV strongly induced cytotoxicity of HepG2 cells through apoptotic cell death, as demonstrated by alterations of chromatic morphology, activation of procaspase-3, and an increase in the Bax/Bcl-2 ratio. Furthermore, NnV inhibited the phosphorylation of PI3K, PDK1, Akt, mTOR, p70S6K, and 4EBP1, whereas it enhanced the expression of p-PTEN. Interestingly, NnV also inactivated the negative feedback loops associated with Akt activation, as demonstrated by downregulation of Akt at Ser473 and mTOR at Ser2481. The anticancer effect of NnV was significant in a HepG2 xenograft mouse model, with no obvious toxicity. HepG2 cell death by NnV was inhibited by tetracycline, metalloprotease inhibitor, suggesting that metalloprotease component in NnV is closely related to the anticancer effects. This study demonstrates, for the first time, that NnV exerts highly selective cytotoxicity in HepG2 cells via dual inhibition of the Akt and mTOR signaling pathways, but not in normal cells. PMID:28785288
Ho, C L; Li, C H
1985-03-01
Three synthetic analogs of human beta-endorphin (beta h-EP) (I, [Gln8, Gly31]-beta h-EP-Gly-Gly-NH2; II, [Arg9,12,24,28,29]-beta h-EP and III, [Cys11,26, Phe27, Gly31]-beta h-EP), which have been shown to possess potent inhibiting activity to beta h-EP-induced analgesia, were assayed in rat vas deferens and guinea pig ileum bioassay systems. In the rat vas deferens assay, relative potencies of these analogs were beta h-EP, 100; I, 30; II, 40; III, 1, whereas in the guinea pig ileum assay: beta h-EP, 100; I, 184; II, 81; III, 163. From previous studies on their analgesia potency in mice and opiate receptor-binding activity in rat brain membranes, their activity in rat vas deferens correlates well with the analgesic potency and the activity from guinea pig ileum assay shows good correlations with that from the opiate receptor-binding assay.
AlKahtane, Abdullah A.; Alarifi, Saud; Al-Qahtani, Ahmed A.; Ali, Daoud; Alomar, Suliman Y.; Aleissia, Mohammed S.; Alkahtani, Saad
2018-01-01
Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual’s health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells. PMID:29686591
Cao, Liyan; Cheng, Shan; Du, Juan; Guo, Yanhai; Huang, Xiaofeng
2017-04-01
Objective To investigate the uracil glycosidic enzyme activity of uracil DNA glycosylase 2 (UNG2) and study the role of UNG2 in the resistance of antioxidant stress of HepG2 cells. Methods The UNG2-expressing vector was built. Western blotting was used to detect the expression of UNG2. Immunofluorescence staining was performed to observe the cellular location of UNG2. Oligonucleotide was used as substrate for the determination of the UNG2 glycosidic enzyme activity. H 2 O 2 toxicity assay was done to study the function of UNG2 in the antioxidant resistance of hepatocellular carcinoma HepG2 cells. Results UNG2 was successfully over-expressed in HEK293FT cells, and UNG2 was found to be mainly located in nucleus. Enzyme activity assay showed that UNG2 had significant oligonucleotide dU glycosidic enzyme activity. H 2 O 2 toxicity assay showed that over-expressed UNG2 could remarkably increase the survival of HepG2 cells after exposed to H 2 O 2 . Conclusion UNG2 possesses specific DNA glycosidic enzyme activity, and it can protect HepG2 cells against oxidative stress damage.
AlKahtane, Abdullah A; Alarifi, Saud; Al-Qahtani, Ahmed A; Ali, Daoud; Alomar, Suliman Y; Aleissia, Mohammed S; Alkahtani, Saad
2018-01-01
Most of the agricultural workers are potentially exposed to pesticides through different routes. Inhalation exposures may result in numerous diseases that can adversely affect an individual's health and capacity to perform at work. The aim of this study was to determine the cytotoxic potential of cypermethrin pesticide on cultured human hepatocarcinoma (HepG2) cells. The HepG2 cells were exposed to cypermethrin (0, 5, 15, 40 ng/mL) for 24 and 48 hours. We observed that cypermethrin caused cell death of HepG2 cells using 3-(4, 5-dimethylthiozolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase tests. Furthermore, cypermethrin reduced HepG2 cells viability in a time and dose dependent basis, that was probably mediated through the induction of reactive oxygen species (ROS) and apoptosis. An increase in ROS generation with a concomitant increase in expression of the proapoptotic protein Bcl-2 and cytochrome c and decrease in the antiapoptosis protein Bax suggested that a mitochondria-mediated pathway was involved in cypermethrin-induced apoptosis. These findings provide insights into the underlying mechanisms involved in cytotoxicity of cypermethrin in HepG2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Joseph
2003-07-10
HepRep is a generic, hierarchical format for description of graphics representables that can be augmented by physics information and relational properties. It was developed for high energy physics event display applications and is especially suited to client/server or component frameworks. The GLAST experiment, an international effort led by NASA for a gamma-ray telescope to launch in 2006, chose HepRep to provide a flexible, extensible and maintainable framework for their event display without tying their users to any one graphics application. To support HepRep in their GUADI infrastructure, GLAST developed a HepRep filler and builder architecture. The architecture hides the detailsmore » of XML and CORBA in a set of base and helper classes allowing physics experts to focus on what data they want to represent. GLAST has two GAUDI services: HepRepSvc, which registers HepRep fillers in a global registry and allows the HepRep to be exported to XML, and CorbaSvc, which allows the HepRep to be published through a CORBA interface and which allows the client application to feed commands back to GAUDI (such as start next event, or run some GAUDI algorithm). GLAST's HepRep solution gives users a choice of client applications, WIRED (written in Java) or FRED (written in C++ and Ruby), and leaves them free to move to any future HepRep-compliant event display.« less
Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang
2015-01-01
Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their own CAFs via EMT in this model. PMID:25658113
Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li
2017-01-01
The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.
HappyFace as a generic monitoring tool for HEP experiments
NASA Astrophysics Data System (ADS)
Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Quadt, Arnulf; Rzehorz, Gerhard
2015-12-01
The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the information and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are always under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the different HEP grid systems. To cope with this issue, we use a reliable HEP software repository, the CernVM File System. We propose a new implementation and an architecture of HappyFace, the so-called grid-enabled HappyFace. It allows its basic framework to connect directly to the grid user applications and the grid collective services, without involving the monitoring resources in the HEP grid systems. This approach gives HappyFace several advantages: Portability, to provide an independent and generic monitoring system among the HEP grid systems. Eunctionality, to allow users to perform various diagnostic tools in the individual HEP grid systems and grid sites. Elexibility, to make HappyFace beneficial and open for the various distributed grid computing environments. Different grid-enabled modules, to connect to the Ganga job monitoring system and to check the performance of grid transfers among the grid sites, have been implemented. The new HappyFace system has been successfully integrated and now it displays the information and the status of both the monitoring resources and the direct access to the grid user applications and the grid collective services.
Impact of Duality Violations on Spectral Sum Rule analyses
NASA Astrophysics Data System (ADS)
Catà, Oscar
2007-02-01
Recent sum rule analyses on the
von Mackensen, S; Czepa, D; Herbsleb, M; Hilberg, T
2010-01-01
Specific research studies for the investigation of physical performance in haemophilic patients are rare. However, these instruments become increasingly more important to evaluate therapeutic treatments. Within the frame of the Haemophilia & Exercise Project (HEP), a new questionnaire, namely HEP-Test-Q, has been developed for the assessment of subjective physical performance in haemophilic adults. In this article, the development and validation of the HEP-Test-Q is described. The development consisted of different phases including item collection, pilot testing and field testing. The preliminary version was pilot-tested in 24 German HEP-participants. Following evaluation and preliminary psychometric analysis, the HEP-Test-Q was revised. The final version consists of 25 items pertaining to the domains 'mobility', 'strength & coordination', 'endurance' and 'body perception', which was administered to 43 German haemophilic patients (43.8 +/- 11.2 years). Psychometric analysis included reliability and validity testing. Convergent validity was tested correlating the HEP-Test-Q with SF-36, Haem-A-QoL, HAL and the Orthopaedic Joint Score. Discriminant validity tested different clinical subgroups. Patients accepted the questionnaire and found it easy to fill in. Psychometric testing revealed good values for reliability in terms of internal consistency (Cronbach's alpha = 0.96) and test-retest reliability (r = 0.90) as well as for convergent validity correlating highly with Haem-A-QoL, HAL and SF-36. Discriminant validity testing showed significant differences for age, hepatitis A and hepatitis B and the number of target joints. HEP-Test-Q is a short and well-accepted questionnaire, assessing subjective physical performance of haemophiliacs, which might be combined with objective assessments to reveal aspects, which cannot be measured objectively, such as body perception.
Yan, Li-Bo; Yu, You-Jia; Zhang, Qing-Bo; Tang, Xiao-Qiong; Bai, Lang; Huang, FeiJun; Tang, Hong
2018-05-01
The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication. © 2018 The Authors. Proteomics - Clinical Application Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Allen
The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens),more » black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.« less
HEP data analysis using jHepWork and Java.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S.; High Energy Physics
2009-03-23
A role of Java in high-energy physics (HEP) and recent progress in development of a platform-independent data-analysis framework, jHepWork, is discussed. The framework produces professional graphics and has many libraries for data manipulation.
Iwamoto, Masashi; Watashi, Koichi; Tsukuda, Senko; Aly, Hussein Hassan; Fukasawa, Masayoshi; Fujimoto, Akira; Suzuki, Ryosuke; Aizaki, Hideki; Ito, Takayoshi; Koiwai, Osamu; Kusuhara, Hiroyuki; Wakita, Takaji
2014-01-17
Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Abbate, Valeria; Marcantoni, Margherita; Giuliante, Felice; Vecchio, Fabio M.; Gatto, Ilaria; Mele, Caterina; Saviano, Antonio; Arciuolo, Damiano; Gaetani, Eleonora; Ferrari, Maria C.; Giarretta, Igor; Ardito, Francesco; Riccardi, Laura; Nicoletti, Alberto; Ponziani, Francesca R.; Gasbarrini, Antonio; Pompili, Maurizio; Pola, Roberto
2017-01-01
Circulating microparticles (MPs) are novel potential biomarkers in cancer patients. Their role in hepatocellular carcinoma (HCC) is under intensive investigation. In this study, we tested the hypothesis that MPs expressing the antigen HepPar1 are increased in the blood of subjects with HCC and may serve as markers of early recurrence after liver resection (LR). We studied 15 patients affected by HCC undergoing LR, and used flow cytometry to assess the number of circulating HepPar1+ MPs. Ten subjects without HCC (five with liver cirrhosis and five with healthy livers) were used as controls. After LR, HCC patients underwent a follow-up to check for early recurrence, which occurred in seven cases. The number of circulating HepPar1+ MPs was significantly higher in subjects affected by HCC, compared to individuals without cancer (p < 0.01). We also found that, among HCC patients, the number of circulating HepPar1+ MPs, measured before LR, was significantly higher in those who displayed early recurrence compared to those without recurrence (p = 0.02). Of note, other types of circulating MPs, such as those derived from endothelial cells (CD144+) or those produced by the activated endothelium (CD144+/CD62+), were not associated with HCC, nor could they predict HCC recurrence. HepPar1+ MPs deserve further investigation as novel biomarkers of disease and prognosis in HCC patients. PMID:28498353
Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines.
Sa, Fei; Gao, Jian-Li; Fung, Kwok-Pui; Zheng, Ying; Lee, Simon Ming-Yuen; Wang, Yi-Tao
2008-01-10
Smilax glabra Roxb. (SGR) is the root of a traditional Chinese herb, referred to as tu fu ling in Chinese medicine. It is an inexpensive traditional Chinese medicine commonly used for the treatment of liver diseases, and a few studies have indicated that SGR has anti-hepatocarcinogenic and anti-cancer growth activities. In the current study, raw SGR plant was extracted with Accelerate Solvent Extractor, and the molecular mechanism by which S. glabra Roxb. extract (SGRE) has an anti-proliferative effect on the human hepatoma cell lines, HepG2 and Hep3B, was determined. We showed that SGRE inhibited HepG2 and Hep3B cell growth by causing cell-cycle arrest at either S phase or S/G2 transition and induced apoptosis, as evidenced by a DNA fragmentation assay. SGRE-induced apoptosis by alternation of mitochondrial transmembrane depolarization, release of mitochondrial cytochrome c, activation of caspase-3, and cleavage of poly(ADP-ribose) polymerase. The SGRE-mediated mitochondria-caspase dependent apoptotic pathway also involved activation of p38, JNK, and ERK mitogen-activated protein kinase signaling. Isometric compounds of astilbin (flavonoids) and smilagenin (saponin) have been identified as the main chemical constituents in SGRE by HPLC-MS/MS. These results have identified, for the first time, the biological activity of SGRE in HepG2 and Hep3B cells and should lead to further development of SGR for liver disease therapy.
Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan
2016-02-01
Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100 μg/ml) or its major metabolites (0, 40, 100, 250 or 500 μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500 mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N → O groups could contribute to DNA damage in murine hepatocytes in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco
2015-04-01
Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and total amounts at the catchment scale, thus impacting heavily the deterministic QDFs. In contrast, early warnings would have been possible within a HEPS context for the Milano area, proving the suitability of such system for civil protection purposes.
Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole
NASA Astrophysics Data System (ADS)
Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio
2014-08-01
We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.
Autophagy in anti-apoptotic effect of augmenter of liver regeneration in HepG2 cells.
Shi, Hong-Bo; Sun, Hai-Qing; Shi, Hong-Lin; Ren, Feng; Chen, Yu; Chen, De-Xi; Lou, Jin-Li; Duan, Zhong-Ping
2015-05-07
To investigate the role of autophagy in the anti-apoptotic effect of augmenter of liver regeneration (ALR). Autophagy was induced through serum deprivation. An ALR-expressing plasmid was transfected into HepG2 cells, and autophagic flux was determined using fluorescence microscopy, electron microscopy, Western blot and quantitative polymerase chain reaction (qPCR) assays. After ALR-expressing plasmid transfection, an autophagy inhibitor [3-methyladenine (3-MA)] was added to HepG2 cells, and apoptosis was observed using fluorescence microscopy and flow cytometry. Autophagy was activated in HepG2 cells, peaking at 24 h after serum deprivation. Microtubule-associated protein light chain three-II levels were higher in HepG2 cells treated with ALR than in control cells, fluorescence microscopy, electron microscopy and qPCR studies showed the similar trend, and p62 levels showed the opposite trend, which indicated that ALR may play an important role in increasing autophagy flux. The numbers of apoptotic cells were substantially higher in HepG2 cells treated with both ALR and 3-MA than in cells treated with ALR alone. Therefore, the protective effect of ALR was significantly attenuated or abolished when autophagy was inhibited, indicating that the anti-apoptotic effect of ALR may be related to autophagy. ALR protects cells from apoptosis partly through increased autophagy in HepG2 cells and may be valuable as a new therapeutic treatment for liver disease.
Moro, Pedro L; Museru, Oidda I; Niu, Manette; Lewis, Paige; Broder, Karen
2014-06-01
To characterize adverse events (AEs) after hepatitis A vaccines (Hep A) and hepatitis A and hepatitis B combination vaccine (Hep AB) in pregnant women reported to the Vaccine Adverse Event Reporting System (VAERS), a spontaneous reporting surveillance system. We searched VAERS for AEs reports in pregnant women who received Hep A or Hep AB from Jan. 1, 1996-April 5, 2013. Clinicians reviewed all reports and available medical records. VAERS received 139 reports of AEs in pregnant women; 7 (5.0%) were serious; no maternal or infant deaths were identified. Sixty-five (46.8%) did not describe any AEs. For those women whose gestational age was available, most were vaccinated during the first trimester, 50/60 (83.3%) for Hep A and 18/21 (85.7%) for Hep AB. The most common pregnancy-specific outcomes following Hep A or Hep AB vaccinations were spontaneous abortion in 15 (10.8%) reports, elective termination in 10 (7.2%), and preterm delivery in 7 (5.0%) reports. The most common nonpregnancy specific outcome was urinary tract infection and nausea/vomiting with 3 (2.2%) reports each. One case of amelia of the lower extremities was reported in an infant following maternal Hep A immunization. This review of VAERS reports did not identify any concerning pattern of AEs in pregnant women or their infants following maternal Hep A or Hep AB immunizations during pregnancy. Published by Mosby, Inc.
Li, Shuai; Guo, Lianyi
2018-01-01
Objective To investigate the mechanisms of pseudolaric acid B (PAB) blocks cell cycle and inhibits invasion and migration in human hepatoma HepG2 cells. Methods The proliferation effect of PAB on HepG2 cells was evaluated by MTT assay. The effect of PAB on the cell cycle of HepG2 cells was analyzed by flow cytometry. Immunofluorescence cytochemical staining was applied to observe the effect of PAB on the α-tubulin polymerization and expression in HepG2 cells. Transwell TM chamber invasion assay and wound healing assay were performed to detect the influence of PAB on the migration and invasion ability of HepG2 cells. Western blotting was used to determine the expressions of α-tubulin, E-cadherin and MMP-9 in HepG2 cells after treated with PAB. Results PAB inhibited the proliferation of HepG2 cells in a dose-dependent manner and blocked the cell cycle in G2/M phase. PAB significantly changed the polymerization and decreased the expression of α-tubulin. The capacities of invasion and migration of HepG2 cells treated by PAB were significantly depressed. The protein levels of α-tubulin and MMP-9 decreased while the E-cadherin protein level increased. Conclusion PAB can inhibits the proliferation of HepG2 cells by down-regulating the expression of α-tubulin and influencing its polymerization, arresting HepG2 cells in G2/M phase. Meanwhile, PAB also can inhibit the invasion and migration of HepG2 cells by lowering cytoskeleton α-tubulin and MMP-9, and increasing E-cadherin.
NF-κB mediates the antiproliferative and proapoptotic effects of bergamot juice in HepG2 cells.
Ferlazzo, Nadia; Cirmi, Santa; Russo, Marina; Trapasso, Elena; Ursino, Maria Rita; Lombardo, Giovanni Enrico; Gangemi, Sebastiano; Calapai, Gioacchino; Navarra, Michele
2016-02-01
Among cancers, hepatocellular carcinoma is one of the commonest worldwide, and its incidence is increasing around the world. A lot of evidence underlines that natural substances usually consumed in the diet can have an important role in the prevention of cancer. In this study we investigated the molecular mechanisms underlying the antiproliferative activity of Citrus bergamia (bergamot) juice (BJ) in human hepatocellular carcinoma HepG2 cells. HepG2 cells were exposed to BJ and then cell proliferation, cell cycle progression, apoptosis and NF-κB nuclear translocation were evaluated. Here we present results demonstrating that BJ reduced the growth rate of human hepatocellular carcinoma HepG2 cells in a time- and concentration-dependent manner, by a mechanism involving the activation of apoptotic machinery via both intrinsic and extrinsic pathways. Moreover, BJ increased expression of P53 and P21 proteins that may be responsible for the HepG2 cell cycle arrest in G2 phase. In addition, BJ reduced NF-κB nuclear translocation. Our data demonstrate the ability of BJ in reducing the growth of HepG2 cells, revealing its mechanism of action and suggesting a promising role as anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph
2012-01-01
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541
Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Lee, Won-Sup; Kim, Eun-Hee; Kim, Gon Sup
2016-06-01
Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells. © 2015 Wiley Periodicals, Inc.
Annamalai, Govindhan; Kathiresan, Suresh; Kannappan, Nagappan
2016-08-01
Ginger (Zingiber officinale) is a well-known herb used in ethnomedicine. [6]-shogaol, a phenolic nature is a major constituent of ginger. In this study, we investigated the anticancer activity of [6]-shogaol in Laryngeal cancer (Hep-2) cells. We demonstrated the effects of [6]-shogaol on the cell growth and apoptosis in Hep-2 cells were analyzed by the generation of reactive oxygen species (ROS), the level of mitochondrial membrane potential (ΔYm), DNA damage and apoptotic morphological changes were analyzed by AO/EtBr, AO and Hoechst staining. Further, apoptotic protein expressions were analyzed by western blot analysis. Our results indicated that [6]-shogaol induces apoptosis as evidenced by loss of cell viability, enhanced ROS, lipid peroxidation results in altered mitochondrial membrane potential, increased DNA damage in Hep-2 cells. Further, the prooxidant role of [6]-shogaol inhibit Bcl-2 expression with the simultaneous up-regulation of Bax, Cytochrome c, Caspase-9 and -3 protein expressions were observed in Hep-2 cells. Thus, [6]-shogaol induces apoptosis in Hep-2 cells through inducing oxidative damage and modulate apoptotic marker expressions. Therefore, [6]-shogaol might be used as a therapeutic agent for the treatment of laryngeal cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL
2014-01-01
Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338
The Evaluation of Health Education Program (HEP) of 9th Graders
ERIC Educational Resources Information Center
Erdogan, Polat; Gürol, Mehmet
2016-01-01
The main purpose of evaluation is to improve the quality of program. So, the purpose of this study was to evaluate the Health Education Program of 9th graders (HEP) with Educational Criticism Model of Eisner. The study was conducted with the qualitative research method. A holistic single case design was employed in this study. The typical case…
Hepatitis A and Hepatitis B vaccination coverage among adults with chronic liver disease
Yue, Xin; Black, Carla L.; O’Halloran, Alissa; Lu, Peng-Jun; Williams, Walter W.; Nelson, Noele P.
2018-01-01
Background Infection with hepatitis A and hepatitis B virus can increase the risk of morbidity and mortality in persons with chronic liver disease (CLD). The Advisory Committee on Immunization Practices recommends hepatitis A (HepA) and hepatitis B (HepB) vaccination for persons with CLD. Methods Data from the 2014 and 2015 National Health Interview Surveys (NHIS), nationally representative, in-person interview surveys of the non-institutionalized US civilian population, were used to assess self-reported HepA (≥1 and ≥2 doses) and HepB vaccination (≥1 and ≥3 doses) coverage among adults who reported a chronic or long-term liver condition. Multivariable logistic regression was used to identify factors independently associated with HepA and HepB vaccination among adults with CLD. Results Overall, 19.4% and 11.5% of adults aged ≥18 years with CLD reported receiving ≥1 dose and ≥2 doses of HepA vaccine, respectively, compared with 14.7% and 9.1% of adults without CLD (p<0.05 comparing those with and without CLD, ≥1dose). Age, education, geographic region, and international travel were associated with receipt of ≥2 doses HepA vaccine among adults with CLD. Overall, 35.7% and 29.1% of adults with CLD reported receiving ≥1 dose and ≥3 doses of HepB vaccine, respectively, compared with 30.2% and 24.7% of adults without CLD (p<0.05 comparing those with and without CLD, ≥1 dose). Age, education, and receipt of influenza vaccination in the past 12 months were associated with receipt of ≥3 doses HepB vaccine among adults with CLD. Among adults with CLD and ≥10 provider visits, only 13.8% and 35.3% had received ≥2 doses HepA and ≥3 doses HepB vaccine, respectively. Conclusions HepA and HepB vaccination among adults with CLD is suboptimal and missed opportunities to vaccinate occurred. Providers should adhere to recommendations to vaccinate persons with CLD to increase vaccination among this population. PMID:29395521
Hepatitis A and hepatitis B vaccination coverage among adults with chronic liver disease.
Yue, Xin; Black, Carla L; O'Halloran, Alissa; Lu, Peng-Jun; Williams, Walter W; Nelson, Noele P
2018-02-21
Infection with hepatitis A and hepatitis B virus can increase the risk of morbidity and mortality in persons with chronic liver disease (CLD). The Advisory Committee on Immunization Practices recommends hepatitis A (HepA) and hepatitis B (HepB) vaccination for persons with CLD. Data from the 2014 and 2015 National Health Interview Surveys (NHIS), nationally representative, in-person interview surveys of the non-institutionalized US civilian population, were used to assess self-reported HepA (≥1 and ≥2 doses) and HepB vaccination (≥1 and ≥3 doses) coverage among adults who reported a chronic or long-term liver condition. Multivariable logistic regression was used to identify factors independently associated with HepA and HepB vaccination among adults with CLD. Overall, 19.4% and 11.5% of adults aged ≥ 18 years with CLD reported receiving ≥1 dose and ≥2 doses of HepA vaccine, respectively, compared with 14.7% and 9.1% of adults without CLD (p < .05 comparing those with and without CLD, ≥1dose). Age, education, geographic region, and international travel were associated with receipt of ≥2 doses HepA vaccine among adults with CLD. Overall, 35.7% and 29.1% of adults with CLD reported receiving ≥1 dose and ≥3 doses of HepB vaccine, respectively, compared with 30.2% and 24.7% of adults without CLD (p < .05 comparing those with and without CLD, ≥1 dose). Age, education, and receipt of influenza vaccination in the past 12 months were associated with receipt of ≥3 doses HepB vaccine among adults with CLD. Among adults with CLD and ≥10 provider visits, only 13.8% and 35.3% had received ≥2 doses HepA and ≥3 doses HepB vaccine, respectively. HepA and HepB vaccination among adults with CLD is suboptimal and missed opportunities to vaccinate occurred. Providers should adhere to recommendations to vaccinate persons with CLD to increase vaccination among this population. Copyright © 2018 Elsevier Ltd. All rights reserved.
Haber, Penina; Moro, Pedro L; Ng, Carmen; Lewis, Paige W; Hibbs, Beth; Schillie, Sarah F; Nelson, Noele P; Li, Rongxia; Stewart, Brock; Cano, Maria V
2018-01-25
Currently four recombinant hepatitis B (HepB) vaccines are in use in the United States. HepB vaccines are recommended for infants, children and adults. We assessed adverse events (AEs) following HepB vaccines reported to the Vaccine Adverse Event Reporting System (VAERS), a national spontaneous reporting system. We searched VAERS for reports of AEs following single antigen HepB vaccine and HepB-containing vaccines (either given alone or with other vaccines), from January 2005 - December 2015. We conducted descriptive analyses and performed empirical Bayesian data mining to assess disproportionate reporting. We reviewed serious reports including reports of special interest. VAERS received 20,231 reports following HepB or HepB-containing vaccines: 10,291 (51%) in persons <2 years of age; 2588 (13%) in persons 2-18 years and 5867 (29%) in persons >18 years; for 1485 (7.3%) age was missing. Dizziness and nausea (8.4% each) were the most frequently reported AEs following a single antigen HepB vaccine: fever (23%) and injection site erythema (11%) were most frequent following Hep-containing vaccines. Of the 4444 (22%) reports after single antigen HepB vaccine, 303 (6.8%) were serious, including 45 deaths. Most commonly reported cause of death was Sudden Infant Death Syndrome (197). Most common non-death serious reports following single antigen HepB vaccines among infants aged <1 month, were nervous system disorders (15) among children aged 1-23 months; infections and infestation (8) among persons age 2-18 years blood and lymphatic systemic disorders; and general disorders and administration site conditions among persons age >18 years. Most common vaccination error following single antigen HepB was incorrect product storage. Review current U.S.-licensed HepB vaccines administered alone or in combination with other vaccines did not reveal new or unexpected safety concerns. Vaccination errors were identified which indicate the need for training and education of providers on HepB vaccine indications and recommendations. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pukhov, A.
2003-04-01
CalcHEP is a clone of the CompHEP project which is developed by the author outside of the CompHEP group. CompHEP/CalcHEP are packages for automatic calculations of elementary particle decay and collision properties in the lowest order of perturbation theory. The main idea prescribed into the packages is to make available passing on from the Lagrangian to the final distributions effectively with a high level of automation. According to this, the packages were created as a menu driven user friendly programs for calculations in the interactive mode. From the other side, long-time calculations should be done in the non-interactive regime. Thus, from the beginning CompHEP has a problem of batch calculations. In CompHEP 33.23 the batch session was realized by mean of interactive menu which allows to the user to formulate the task for batch. After that the not-interactive session was launched. This way is too restricted, not flexible, and leads to doubling in programming. In this article I discuss another approach how one can force an interactive program to work in non-interactive mode. This approach was realized in CalcHEP 2.1 disposed on http://theory.sinp.msu.ru/~pukhov/calchep.html.
Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed
2014-01-01
The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with 5-500 μg/ml of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and 500 μg/ml of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and 500 μg/ml of PO, respectively by NRU assay. PS exposed HepG2 cells with 100 μg/ml and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and 500 μg/ml of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with 50 μg/ml and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.
Diversity in computing technologies and strategies for dynamic resource allocation
Garzoglio, G.; Gutsche, O.
2015-12-23
Here, High Energy Physics (HEP) is a very data intensive and trivially parallelizable science discipline. HEP is probing nature at increasingly finer details requiring ever increasing computational resources to process and analyze experimental data. In this paper, we discuss how HEP provisioned resources so far using Grid technologies, how HEP is starting to include new resource providers like commercial Clouds and HPC installations, and how HEP is transparently provisioning resources at these diverse providers.
Airborne Sensor Potential for Habitat Evaluation Procedures (HEP).
1986-02-01
group is called a "guild" ( Root 1967)). Thus, the value of an area as habitat for one species in a guild is likely to be positively and closely...cribed in subparagraph b are considered to be unique and re- quire independent measurement (e.g., while the hairy woodpecker, Carolina chickadee... HAIRY FOX SQUIRREL WOODPECKER GRAY SQUIRREL PILEATED TREE BOLES HAIRY WOODPECKER WOODPECKER CAROLINA CHICKADEE WHITE-TAILED DEER IN-, SHRUB LAYER EASTERN
Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee
2013-03-01
Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Xiujun; Qu, Yinbo; Qin, Yuqi
2016-01-01
Heterochromatin protein 1 (HP1, homologue HepA in Penicillium oxalicum ) binding is associated with a highly compact chromatin state accompanied by gene silencing or repression. HP1 loss leads to the derepression of gene expression. We investigated HepA roles in regulating cellulolytic enzyme gene expression, as an increasingly number of studies have suggested that cellulolytic enzyme gene expression is not only regulated by transcription factors, but is also affected by the chromatin status. Among the genes that exhibited significant differences between the hepA deletion strain (Δ hepA ) and the wild type (WT), most (95.0 %) were upregulated in Δ hepA compared with WT. The expression of the key transcription factor for cellulolytic enzyme gene (e.g., repressor CreA and activator ClrB) increased significantly. However, the deletion of hepA led to downregulation of prominent extracellular cellulolytic enzyme genes. Among the top 10 extracellular glycoside hydrolases (Amy15A, Amy13A, Cel7A/CBHI, Cel61A, Chi18A, Cel3A/BGLI, Xyn10A, Cel7B/EGI, Cel5B/EGII, and Cel6A/CBHII), in which secretion amount is from the highest to the tenth in P . oxalicum secretome, eight genes, including two amylase genes ( amy15A and amy13A ), all five cellulase genes ( cel7A / cbh1 , cel6A / cbh2 , cel7B / eg1 , cel5B / eg2 , and cel3A / bgl1 ), and the cellulose-active LPMO gene ( cel61A ) expression were downregulated. Results of chromatin accessibility real-time PCR (CHART-PCR) showed that the chromatin of all three tested upstream regions opened specifically because of the deletion of hepA in the case of two prominent cellulase genes cel7A/cbh1 and cel7B/eg1 . However, the open chromatin status did not occur along with the activation of cellulolytic enzyme gene expression. The overexpression of hepA upregulated the cellulolytic enzyme gene expression without chromatin modification. The overexpression of hepA remarkably activated the cellulolytic enzyme synthesis, not only in WT (~150 % filter paper activity (FPA) increase), but also in the industry strain RE-10 (~20-30 % FPA increase). HepA is required for chromatin condensation of prominent cellulase genes. However, the opening of chromatin mediated by the deletion of hepA was not positively correlated with cellulolytic enzyme gene activation. HepA is actually a positive regulator for cellulolytic enzyme gene expression and could be a promising target for genetic modification to improve cellulolytic enzyme synthesis.
Effect of baicalin-copper on the induction of apoptosis in human hepatoblastoma cancer HepG2 cells.
Li, Xiaoli; Zou, Kaili; Gou, Jing; Du, Qin; Li, Dejuan; He, Xiaoyan; Li, Zhubo
2015-03-01
The medical properties of baicalin have been well known for many years. However, the discovery that baicalin in the presence of metal ions is more effective than baicalin alone changed the course of drug research. The present study was designed to investigate the effect and possible mechanism of apoptosis induced by baicalin-copper in a human hepatoblastoma cancer cell line (HepG2) and in vivo. This study demonstrated that baicalin-copper suppresses the proliferation of HepG2 cells in a dose-dependent manner. Intraperitoneal injection of baicalin-copper resulted in a significant decrease in tumor growth in xenografts in nude mice. Acridine orange staining and flow cytometry analysis demonstrated that baicalin-copper induced apoptosis in HepG2 cells and caused cells to arrest in G2-M phase of the cell cycle. Furthermore, baicalin-copper treatment significantly increased the Bax/Bcl-2 ratio and p38 levels, as well as decreased the expression of caspase-3, p-PI3K, p-Akt and p-mTOR (P < 0.01). All of the evidences above indicate that baicalin-copper induces apoptosis in HepG2 cells by down-regulating the PI3K/Akt/mTOR signaling pathway.
García-Vilas, Javier A; Quesada, Ana R; Medina, Miguel A
2015-01-26
Damnacanthal, an anthraquinone present in noni plants, targets several tyrosine kinases and has antitumoral effects. This study aims at getting additional insight on the potential of damnacanthal as a natural antitumor compound. The direct effect of damnacanthal on c-Met was tested by in vitro activity assays. Additionally, Western blots of c-Met phosphorylation in human hepatocellular carcinoma Hep G2 cells were performed. The antitumor effects of damnacanthal were tested by using cell growth, soft agar clonogenic, migration and invasion assays. Their mechanisms were studied by Western blot, and cell cycle, apoptosis and zymographic assays. Results show that damnacanthal targets c-Met both in vitro and in cell culture. On the other hand, damnacanthal also decreases the phosphorylation levels of Akt and targets matrix metalloproteinase-2 secretion in Hep G2 cells. These molecular effects are accompanied by inhibition of the growth and clonogenic potential of Hep G2 hepatocellular carcinoma cells, as well as induction of Hep G2 apoptosis. Since c-Met has been identified as a new potential therapeutical target for personalized treatment of hepatocellular carcinoma, damnacanthal and noni extract supplements containing it could be potentially interesting for the treatment and/or chemoprevention of hepatocellular carcinoma through its inhibitory effects on the HGF/c-Met axis.
Effect of Tumor Microenvironment on Selective Uptake of Boric Acid in HepG2 Human Hepatoma Cells.
Bai, Yu-Chi; Hsia, Yu-Chun; Lin, Yu-Ting; Chen, Kuan-Hao; Chou, Fong-In; Yang, Chia-Min; Chuang, Yung-Jen
2017-11-01
Feasibility and efficacy of boric acid (BA)-mediated boron neutron capture therapy (BNCT) was first demonstrated by eliminating hepatocellular carcinoma (HCC) in a rat model. Furthermore, selective uptake of BA by liver tumor cells was shown in a rabbit model. To gain further insight, this study aimed to investigate the mechanisms of transportation and selective uptake of BA in HepG2 liver tumor cells. Transportation of BA in HepG2 cells was analyzed by time-course assays and by analyzing the rate of diffusion versus the concentration of BA. The effect of different tumor conditions on BA uptake was studied by treating HepG2 cells with 25 μg 10 B/ml BA under different concentrations of glucose, at different pH and in the presence of water-soluble cholesterol. HepG2 cells mainly uptake BA by simple diffusion. Cell membrane permeability may also contribute to tumor-specific uptake of BA. The selective uptake of BA was achieved primarily by diffusion, while other factors, such as low pH and increased membrane fluidity, which are hallmarks of HCC, might further enhance BA uptake. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Sun, Haidong; Shao, Wentao; Liu, Hui; Jiang, Zhaoyan
2018-04-09
2,4-Dichlorophenoxyacetic acid is one of the most widely used herbicides. Its impact on health is increasingly attracting great attentions. This study aimed to investigate the effect of 2,4-dichlorophenoxyacetic acid on glucose metabolism in HepG2 cells and the underlying mechanism. After 24 h exposure to 2,4-dichlorophenoxyacetic acid, glycogen was measured by PAS staining and glucose by ELISA in HepG2 cells. The expression of genes involved in glucose metabolism was measured by real-time PCR, Western blotting, and immunofluorescence. HepG2 cells presented more extracellular glucose consumption and glycogen content after exposed to 2,4-dichlorophenoxyacetic acid. Expression of gluconeogenesis-related genes, FoxO1, and CREB is significantly elevated. Moreover, PPARβ was up-regulated dose-dependently. SiRNA knockdown of PPARβ completely rescued the increase of glycogen accumulation and glucose uptake, and the up-regulation of FOXO1 and CREB expression. Our findings propose novel mechanisms that 2,4-dichlorophenoxyacetic acid causes glucose metabolism dysfunction through PPARβ in HepG2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hengwen; Yang, Shana; Li, Jianhua
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less
Li, Guicai; Yang, Ping; Liao, Yuzhen; Huang, Nan
2011-04-11
To improve the blood compatibility and endothelialization simultaneously and to ensure the long-term effectiveness of the cardiovascular implants, we developed a surface modification method, enabling the coimmobilization of biomolecules to metal surfaces. In the present study, a heparin and fibronectin mixture (Hep/Fn) covalently immobilized on a titanium (Ti) substrate for biocompatibility was investigated. Different systems [N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide, electrostatic] were used for the formation of Hep/Fn layers. Atomic force microscopy (AFM) showed that the roughness of the silanized Ti surface decreased after the immobilization of Hep/Fn. Fourier transform infrared spectroscopy (FTIR), Toluidine Blue O (TBO) test, and immunochemistry assay showed that Hep/Fn mixture was successfully immobilized on Ti surface. Blood compatibility tests (hemolysis rate, APTT, platelet adhesion, fibrinogen conformational change) showed that the coimmobilized films of Hep/Fn mixture reduced blood hemolysis rate, prolonged blood coagulation time, reduced platelets activation and aggregation, and induced less fibrinogen conformational change compared with a bare Ti surface. Endothelial cell (EC) seeding showed more EC with better morphology on pH 4 samples than on pH 7 and EDC/NHS samples, which showed rounded and aggregated cells. Systematic evaluation showed that the pH 4 samples also had much better blood compatibility. All results suggest that the coimmobilized films of Hep/Fn can confer excellent antithrombotic properties and with good endothelialization. We envisage that this method will provide a potential and effective solution for the surface modification of cardiovascular implant materials.
Apoptosis in HEp-2 cells infected with Ureaplasma diversum.
Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge
2014-09-04
Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.
Ahn, Sang Hoon; Chun, Ji-Yong; Shin, Soo-Kyung; Park, Jun Yong; Yoo, Wangdon; Hong, Sun Pyo; Kim, Soo-Ok; Han, Kwang-Hyub
2013-12-01
Molecular diagnostic methods have enabled the rapid diagnosis of drug-resistant mutations in hepatitis B virus (HBV) and have reduced both unnecessary therapeutic interventions and medical costs. In this study we evaluated the analytical and clinical performances of the HepB Typer-Entecavir kit (GeneMatrix, Korea) in detecting entecavir-resistance-associated mutations. The HepB Typer-Entecavir kit was evaluated for its limit of detection, interference, cross-reactivity, and precision using HBV reference standards made by diluting high-titer viral stocks in HBV-negative human serum. The performance of the HepB Typer-Entecavir kit for detecting mutations related to entecavir resistance was compared with direct sequencing for 396 clinical samples from 108 patients. Using the reference standards, the detection limit of the HepB Typer-Entecavir kit was found to be as low as 500 copies/mL. No cross-reactivity was observed, and elevated levels of various interfering substances did not adversely affect its analytical performance. The precision test conducted by repetitive analysis of 2,400 replicates with reference standards at various concentrations showed 99.9% agreement (2398/2400). The overall concordance rate between the HepB Typer-Entecavir kit and direct sequencing assays in 396 clinical samples was 99.5%. The HepB Typer-Entecavir kit showed high reliability and precision, and comparable sensitivity and specificity for detecting mutant virus populations in reference and clinical samples in comparison with direct sequencing. Therefore, this assay would be clinically useful in the diagnosis of entecavir-resistance-associated mutations in chronic hepatitis B.
Improving birth dose coverage of hepatitis B vaccine.
Hipgrave, David B.; Maynard, James E.; Biggs, Beverley-Ann
2006-01-01
Administration of a birth dose of hepatitis B vaccine (HepB vaccine) to neonates is recommended to prevent mother-to-infant transmission and chronic infection with the hepatitis B virus (HBV). Although manufacturers recommend HepB vaccine distribution and storage at 2-8 degrees C, recognition of the heat stability of hepatitis B surface antigen stimulated research into its use after storage at, or exposure to, ambient or high temperatures. Storage of HepB vaccine at ambient temperatures would enable birth dosing for neonates delivered at home in remote areas or at health posts lacking refrigeration. This article reviews the current evidence on the thermostability of HepB vaccine when stored outside the cold chain (OCC). The reports reviewed show that the vaccines studied were safe and effective whether stored cold or OCC. Field and laboratory data also verifies the retained potency of the vaccine after exposure to heat. The attachment of a highly stable variety of a vaccine vial monitor (measuring cumulative exposure to heat) on many HepB vaccines strongly supports policies allowing their storage OCC, when this will benefit birth dose coverage. We recommend that this strategy be introduced to improve birth dose coverage, especially in rural and remote areas. Concurrent monitoring and evaluation should be undertaken to affirm the safe implementation of this strategy, and assess its cost, feasibility and effect on reducing HBV infection rates. Meanwhile, release of manufacturer data verifying the potency of currently available HepB vaccines after exposure to heat will increase confidence in the use of vaccine vial monitors as a managerial tool during storage of HepB vaccine OCC. PMID:16501717
Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism.
Metlakunta, Anantha; Huang, Wan; Stefanovic-Racic, Maja; Dedousis, Nikolaos; Sipula, Ian; O'Doherty, Robert M
2017-01-01
Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin. Copyright © 2017 the American Physiological Society.
Schuster, Susanne; Penke, Melanie; Gorski, Theresa; Petzold-Quinque, Stefanie; Damm, Georg; Gebhardt, Rolf; Kiess, Wieland; Garten, Antje
2014-01-01
Resveratrol is reported to possess chemotherapeutic properties in several cancers. In this study, we wanted to investigate the molecular mechanisms of resveratrol-induced cell cycle arrest and apoptosis as well as the impact of resveratrol on NAMPT and SIRT1 protein function and asked whether there are differences in hepatocarcinoma cells (HepG2, Hep3B cells) and non-cancerous primary human hepatocytes. We found a lower basal NAMPT mRNA and protein expression in hepatocarcinoma cells compared to primary hepatocytes. In contrast, SIRT1 was significantly higher expressed in hepatocarcinoma cells than in primary hepatocytes. Resveratrol induced cell cycle arrest in the S- and G2/M- phase and apoptosis was mediated by activation of p53 and caspase-3 in HepG2 cells. In contrast to primary hepatocytes, resveratrol treated HepG2 cells showed a reduction of NAMPT enzymatic activity and increased p53 acetylation (K382). Resveratrol induced NAMPT release from HepG2 cells which was associated with increased NAMPT mRNA expression. This effect was absent in primary hepatocytes where resveratrol was shown to function as NAMPT and SIRT1 activator. SIRT1 inhibition by EX527 resembled resveratrol effects on HepG2 cells. Furthermore, a SIRT1 overexpression significantly decreased both p53 hyperacetylation and resveratrol-induced NAMPT release as well as S-phase arrest in HepG2 cells. We could show that NAMPT and SIRT1 are differentially regulated by resveratrol in hepatocarcinoma cells and primary hepatocytes and that resveratrol did not act as a SIRT1 activator in hepatocarcinoma cells. PMID:24603648
Sun, Ying; Tan, Yu-jun; Lu, Zhan-zhao; Li, Bing-bing; Sun, Cheng-hong; Li, Tao; Zhao, Li-li; Liu, Zhong; Zhang, Gui-min; Yao, Jing-chun; Li, Jie
2018-01-01
Burdock (Arctium lappa) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro. Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography–mass spectrometry (LC–MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα, and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth. PMID:29636686
Sun, Ying; Tan, Yu-Jun; Lu, Zhan-Zhao; Li, Bing-Bing; Sun, Cheng-Hong; Li, Tao; Zhao, Li-Li; Liu, Zhong; Zhang, Gui-Min; Yao, Jing-Chun; Li, Jie
2018-01-01
Burdock ( Arctium lappa ) is a popular vegetable in China and Japan that is consumed for its general health benefits. The principal active component of burdock is arctigenin, which shows a range of bioactivities in vivo and in vitro . Here, we investigated the potential anti-tumor effects of arctigenin using two human hepatocellular carcinoma (HCC) cell lines, HepG2 and Hep3B, and sought to elucidate its potential mechanisms of action. Our results showed that arctigenin treatment inhibited cell growth in both HepG2 and Hep3B cell lines (IC 50 of 4.74 nM for HepG2 cells, and of 59.27 nM for Hep3B cells). In addition, migration, invasion, and colony formation by HepG2 cells were significantly inhibited by arctigenin. By contrast, treatment of Hep3B cells with arctigenin did not alter these parameters. Arctigenin also significantly reduced the levels of gankyrin mRNA and protein in HepG2 cells, but not in Hep3B cells. A luciferase assay indicated that arctigenin targeted the -450 to -400 region of the gankyrin promoter. This region is also the potential binding site for both C/EBPα and PPARα, as predicted and confirmed by an online software analysis and ChIP assay. Additionally, a co-immunoprecipitation (Co-IP) assay showed that binding between C/EBPα and PPARα was increased in the presence of arctigenin. However, arctigenin did not increase the expression of C/EBPα or PPARα protein. A binding screening assay and liquid chromatography-mass spectrometry (LC-MS) were performed to identify the mechanisms by which arctigenin regulates gankyrin expression. The results suggested that arctigenin could directly increase C/EBPα binding to the gankyrin promoter (-432 to -422 region), but did not affect PPARα binding. Expression of gankyrin, C/EBPα , and PPARα were analyzed in tumor tissues of patients using real-time PCR. Both C/EBPα and PPARα showed negative correlations with gankyrin. In tumor-bearing mice, arctigenin had a significant inhibitory effect on HCC growth. In conclusion, our results suggested that arctigenin could inhibit liver cancer growth by directly recruiting C/EBPα to the gankyrin promoter. PPARα subsequently bound to C/EBPα, and both had a negative regulatory effect on gankyrin expression. This study has identified a new mechanism of action of arctigenin against liver cancer growth.
Zhu, Qiaohua; Yu, Xinfa; Zhou, Zhi-Wei; Zhou, Chengyu; Chen, Xiao-Wu; Zhou, Shu-Feng
2017-01-01
Aurora A kinase represent a feasible target in cancer therapy. To evaluate the proteomic response of human liver carcinoma cells to alisertib (ALS) and identify the molecular targets of ALS, we examined the effects of ALS on the proliferation, cell cycle, autophagy, apoptosis, and chemosensitivity in HepG2 cells. The stable-isotope labeling by amino acids in cell culture (SILAC) based quantitative proteomic study was performed to evaluate the proteomic response to ALS. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. Our SILAC proteomic study showed that ALS regulated the expression of 914 proteins, with 407 molecules being up-regulated and 507 molecules being down-regulated in HepG2 cells. Ingenuity pathway analysis (IPA) and KEGG pathway analysis identified 146 and 32 signaling pathways were regulated by ALS, respectively, which were associated with cell survival, programmed cell death, and nutrition-energy metabolism. Subsequently, the verification experiments showed that ALS remarkably arrested HepG2 cells in G2/M phase and led to an accumulation of aneuploidy via regulating the expression of key cell cycle regulators. ALS induced a marked autophagy in a concentration- and time-dependent manner via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Autophagy inhibition promoted the pro-apoptotic effect of ALS, indicating a cyto-protective role of ALS-induced autophagy. ALS increased the chemosensitivity of HepG2 cells to cisplatin and doxorubicin. Taken together, ALS induces autophagy and cell cycle arrest in HepG2 cells via PI3K/Akt/mTOR-mediated pathway. Autophagy inhibition may promote the anticancer effect of ALS and sensitize the chemotherapy in HepG2 cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hosseini, Farzaneh Sadat; Falahati-Pour, Soudeh Khanamani; Hajizadeh, Mohammad Reza; Khoshdel, Alireza; Mirzaei, Mohammad Reza; Ahmadirad, Hadis; Behroozi, Reza; Jafari, Nesa; Mahmoodi, Mehdi
2017-08-01
This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC 50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumal, NaveenKumar; Perumal, MadanKumar; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390
Recent clinical and experimental evidences strongly acclaim Yes-associated protein (Yap), a key oncogenic driver in liver carcinogenesis, as a therapeutic target. Of the known multiple schemes to inhibit Yap activity, activation of Mammalian Sterile 20-like Kinase 1 (Mst1), an upstream regulator of Yap, appears to be a promising one. In this study, we hypothesize that morin, a bioflavonoid, mediates its anti-cancer effect through the activation of Mst1/hippo signaling in liver cancer cells. To test this hypothesis, both full length Mst1 (F-Mst1) and kinase active N-terminal Mst1 (N-Mst1)-overexpressed HepG2 cells were used. Exposure of F-Mst1 overexpressed HepG2 cells to morin activatedmore » Mst1 by caspase-3 cleavage and thereby inhibited Yap nuclear translocation and fostered apoptosis. Morin suppressed NF-κB p65 and Wnt/β-catenin signaling through Mst1 activation via cleavage and phosphorylation, leading to cell death. Annexin-V/PI staining further confirmed the induction of apoptosis in morin treated F-Mst1 overexpressed cells. The present study shows that morin targets cell survival molecules such as NF-κB p65 and β-catenin through activation of hippo signaling. Therefore, morin could be considered as a potential anti-cancer agent against liver cancer. - Highlights: • Morin induced cytotoxicity in cultured HepG2 cells. • Morin activated hippo pathway via Mst1 activation in transfected HepG2 cells. • Morin suppressed Wnt/β-catenin signaling and induced G0/G1 cell cycle arrest. • Morin inhibited NF-κB signaling through Mst1 activation in transfected HepG2 cells. • Morin potentiates apoptosis through Mst1-JNK-caspase mediated mechanism in HepG2 cells.« less
Sui, Zhefeng; Shi, Ying; Gao, Zhiling; Yang, Deguang; Wang, Zhihao
2017-06-01
The present study aimed to investigate the distribution of T follicular helper (Tfh)-cell subsets in patients with hepatitis B virus (HBV) and determine the underlying mechanism of HBV regulation of Tfh cells. The frequency of peripheral blood Tfh subsets was analyzed using flow cytometry. The expression level of programmed cell death‑1 (PD‑1) and prostaglandin E2 (PGE2) was quantified using reverse transcription‑quantitative polymerase chain reaction and western blotting. The PGE2 level in culture supernatant was detected using enzyme‑linked immunosorbent assay. A Transwell chamber was used to co‑culture Tfh cells with HepG2 and HepG2.2.1.5. The percentage of inducible T‑cell costimulator (ICOS)+ and total Tfh cells was high at the immune activation (IA) group; however, it was reduced in the immune tolerance (IT), responders with HBsAg seroconversion (RP) and healthy control (HC) groups. The percentage of PD‑1+ Tfh cells was significantly higher in IA and IT compared with RP and HC. The ratio of PD‑1+/total Tfh cells was positively correlated with the load of HBV DNA; therefore, this ratio may act as an indicator for HBV replication. The expression level of PD‑1 in Tfh cells was higher in the HepG2.2.1.5 co‑cultured group compared with the HepG2 group, this may be due to the high PGE2 expression level in HBV‑infected HepG2.2.1.5 cells. The findings of the present study revealed an imbalanced distribution of PD‑1+ Tfh cells in patients with HBV at different immune phases. Additionally, HBV may upregulate the expression of PD‑1 in Tfh cells by promoting HepG2.2.1.5 to secret PGE2. Identifying the effect of HBV on Tfh‑cell subsets is crucial for improving immuno-based therapy for HBV.
Zheng, Yingjuan; Zhao, Chao; Zhang, Naijian; Kang, Wenqin; Lu, Rongrong; Wu, Huadong; Geng, Yingxue; Zhao, Yaping; Xu, Xiaoyan
2018-04-01
The actions of thyroid hormone (TH) on lipid metabolism in the liver are associated with a number of genes involved in lipogenesis and lipid metabolism; however, the underlying mechanisms through which TH impacts on lipid metabolism remain to be elucidated. The present study aimed to investigate the effects of hyperthyroidism on the serum levels of the microRNA (miR) miR‑206 and the role of miR‑206 on TH‑regulated lipid metabolism in liver cells. Serum was obtained from 12 patients diagnosed with hyperthyroidism and 10 healthy control subjects. Human hepatoblastoma (HepG2) cells were used to study the effects of triiodothyronine (T3) and miR‑206 on lipid metabolism. Expression of miR‑206 in serum and cells was determined by reverse transcription‑quantitative polymerase chain reaction analysis. Lipid accumulation in HepG2 cells was assessed with Oil Red O staining. Suppression or overexpression of miR‑206 was performed via transfection with a miR‑206 mimic or miR‑206 inhibitor. Serum miR‑206 was significantly decreased in patients with hyperthyroidism compared with euthyroid controls. Treatment of HepG2 cells with T3 led to reduced total cholesterol (TC) and triglyceride (TG) content, accompanied by reduced miR‑206 expression. Inhibition of endogenous miR‑206 expression decreased intracellular TG and TC content in HepG2 cells. By contrast, overexpression of miR‑206 in HepG2 partially prevented the reduction in TG content induced by treatment with T3. In conclusion, serum miR‑206 expression is reduced in patients with hyperthyroidism. In addition, miR‑206 is involved in T3‑mediated regulation of lipid metabolism in HepG2 cells, indicating a role for miR‑206 in thyroid hormone‑induced disorders of lipid metabolism in the liver.
Chammas, Oliver; Bonass, William A; Thomson, Neil H
2017-05-01
The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RP o ) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ 70 RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ 70 RNAP and RNAP after RP o formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RP o formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RP o formation detected by AFM, for a simple tandem gene model containing two λ PR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP>Heparin or HepS>DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RP o s for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F.; Niu, Xuefeng; Guo, Xiaofeng
2014-01-01
The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines PMID:24498294
High-energy electron experiments (HEP) aboard the ERG (Arase) satellite
NASA Astrophysics Data System (ADS)
Mitani, Takefumi; Takashima, Takeshi; Kasahara, Satoshi; Miyake, Wataru; Hirahara, Masafumi
2018-05-01
This paper reports the design, calibration, and operation of high-energy electron experiments (HEP) aboard the exploration of energization and radiation in geospace (ERG) satellite. HEP detects 70 keV-2 MeV electrons and generates a three-dimensional velocity distribution for these electrons in every period of the satellite's rotation. Electrons are detected by two instruments, namely HEP-L and HEP-H, which differ in their geometric factor (G-factor) and range of energies they detect. HEP-L detects 70 keV-1 MeV electrons and its G-factor is 9.3 × 10-4 cm2 sr at maximum, while HEP-H observes 0.7-2 MeV electrons and its G-factor is 9.3 × 10-3 cm2 sr at maximum. The instruments utilize silicon strip detectors and application-specific integrated circuits to readout the incident charge signal from each strip. Before the launch, we calibrated the detectors by measuring the energy spectra of all strips using γ-ray sources. To evaluate the overall performance of the HEP instruments, we measured the energy spectra and angular responses with electron beams. After HEP was first put into operation, on February 2, 2017, it was demonstrated that the instruments performed normally. HEP began its exploratory observations with regard to energization and radiation in geospace in late March 2017. The initial results of the in-orbit observations are introduced briefly in this paper.[Figure not available: see fulltext.
Su, Zheng-Yuan; Tung, Yen-Chen; Hwang, Lucy Sun; Sheen, Lee-Yan
2011-05-11
Currently, liver cancer is a leading cause of cancer-related death in the world. Hepatocellular carcinoma is the most common type of liver cancer. Previously, it was reported that blazeispirol A (BA) is the most active antihepatoma compound in an ethanolic extract of Agaricus blazei fermentation product. The aim of this study was to understand the antihepatoma mechanism of BA in human liver cancer Hep 3B cells. The results showed that BA inhibited the growth of Hep 3B cells and increased the percentage of cells in sub-G1 phase in a concentration- and time-dependent manner. In addition, BA treatment resulted in DNA fragmentation, caspase-9 and caspase-3 activations, poly(ADP-ribose)polymerase (PARP) degradation, down-regulation of Bcl-2 and Bcl-xL expressions, up-regulation of Bax expression, and disruption of the mitochondrial membrane potential (MMP) in Hep 3B cells. Furthermore, z-VAD-fmk, a caspase inhibitor, did not enhance the viability of BA-treated Hep 3B cells, and BA induced the release of HtrA2/Omi and apoptosis-inducing factor (AIF) from mitochondria into the cytosol. These findings suggested that BA with novel chemopreventive and chemotherapeutic potentials causes both caspase-dependent and caspase-independent cell death in Hep 3B cells.
Li, Guicai; Yang, Ping; Qin, Wei; Maitz, Manfred F; Zhou, Shuo; Huang, Nan
2011-07-01
Currently available cardiovascular implants, such as heart valves and stents, exhibit suboptimal biocompatibility because of the incomplete endothelialization and sequential thrombosis formation especially after a long-term implantation. To improve the blood compatibility and endothelialization simultaneously and ensure the long-term effect of the cardiovascular implants, a technique of combining electrostatic interaction and coimmobilization was developed to form heparin and fibronectin (Hep/Fn) films on aminosilanized titanium (Ti) surfaces. The Hep/Fn coimmobilized films were stable after immersion in PBS for five days, probed by wettability studies and by the release kinetics of heparin and fibronectin. Blood compatibility tests showed that the coimmobilized Hep/Fn films displayed lower hemolysis rate, prolonged blood coagulation time, higher AT III binding density, less platelets activation and aggregation, and less fibrinogen conformational change compared with Ti surface. Endothelial cells (ECs) seeding and fibronectin bioactivity results showed more attached and proliferated ECs and exposed cell-binding sites on the Hep/Fn immobilized samples than that on Ti surfaces. Thus, the Hep/Fn coimmobilized films kept excellent bioactivity even after immersion in PBS for five days. Systemic evaluation suggests that the coimmobilization of Hep/Fn complex improves the blood compatibility and promotes the endothelialization simultaneously. We envisage that this method will provide a potential and effective selection for biomaterials surface modification of cardiovascular implants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wu, Yijian; Jiang, Huihui; Zhu, Erpeng; Li, Jian; Wang, Quanxi; Zhou, Wuduo; Qin, Tao; Wu, Xiaoping; Wu, Baocheng; Huang, Yifan
2018-02-01
To elucidate the effect of Hericium erinaceus polysaccharide (HEP) on the intestinal mucosal immunity in normal and Muscovy duck reovirus (MDRV)-infected Muscovy ducklings, 1-day-old healthy Muscovy ducklings were pretreated with 0.2g/L HEP and/or following by MDRV infection in this study, duodenal samples were respectively collected at 1, 3, 6, 10, 15 and 21day post-infection, tissue sections were prepared for observation of morphological structure and determination of intestinal parameters (villus height/crypt depth ratio, villus surface area) as well as counts of intraepithelial lymphocytes (IELs), goblet cells, mast cells. Additionally, dynamics of secretory immunoglobin A (sIgA), interferon-γ (IFN-γ) and interleukin-4 (IL-4) productions in intestinal mucosa were measured with radioimmunoassay. Results showed that HEP significantly improved intestinal morphological structure and related indexes, and significantly inhibited the reduction of intestinal mucosal IELs, goblet cells and mast cells caused by MDRV infection. Furthermore, HEP significantly increased the secretion of sIgA, IFN-γ and IL-4 to enhance intestinal mucosal immune functions. Our findings indicate that HEP treatment can effectively repair MDRV-caused injures of small intestinal mucosal immune barrier, and improve mucosal immune function in sick Muscovy ducklings, which will provide valuable help for further application of HEP in prevention and treatment of MDRV infection. Copyright © 2017. Published by Elsevier B.V.
HepML, an XML-based format for describing simulated data in high energy physics
NASA Astrophysics Data System (ADS)
Belov, S.; Dudko, L.; Kekelidze, D.; Sherstnev, A.
2010-10-01
In this paper we describe a HepML format and a corresponding C++ library developed for keeping complete description of parton level events in a unified and flexible form. HepML tags contain enough information to understand what kind of physics the simulated events describe and how the events have been prepared. A HepML block can be included into event files in the LHEF format. The structure of the HepML block is described by means of several XML Schemas. The Schemas define necessary information for the HepML block and how this information should be located within the block. The library libhepml is a C++ library intended for parsing and serialization of HepML tags, and representing the HepML block in computer memory. The library is an API for external software. For example, Matrix Element Monte Carlo event generators can use the library for preparing and writing a header of an LHEF file in the form of HepML tags. In turn, Showering and Hadronization event generators can parse the HepML header and get the information in the form of C++ classes. libhepml can be used in C++, C, and Fortran programs. All necessary parts of HepML have been prepared and we present the project to the HEP community. Program summaryProgram title: libhepml Catalogue identifier: AEGL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPLv3 No. of lines in distributed program, including test data, etc.: 138 866 No. of bytes in distributed program, including test data, etc.: 613 122 Distribution format: tar.gz Programming language: C++, C Computer: PCs and workstations Operating system: Scientific Linux CERN 4/5, Ubuntu 9.10 RAM: 1 073 741 824 bytes (1 Gb) Classification: 6.2, 11.1, 11.2 External routines: Xerces XML library ( http://xerces.apache.org/xerces-c/), Expat XML Parser ( http://expat.sourceforge.net/) Nature of problem: Monte Carlo simulation in high energy physics is divided into several stages. Various programs exist for these stages. In this article we are interested in interfacing different Monte Carlo event generators via data files, in particular, Matrix Element (ME) generators and Showering and Hadronization (SH) generators. There is a widely accepted format for data files for such interfaces - Les Houches Event Format (LHEF). Although information kept in an LHEF file is enough for proper working of SH generators, it is insufficient for understanding how events in the LHEF file have been prepared and which physical model has been applied. In this paper we propose an extension of the format for keeping additional information available in generators. We propose to add a new information block, marked up with XML tags, to the LHEF file. This block describes events in the file in more detail. In particular, it stores information about a physical model, kinematical cuts, generator, etc. This helps to make LHEF files self-documented. Certainly, HepML can be applied in more general context, not in LHEF files only. Solution method: In order to overcome drawbacks of the original LHEF accord we propose to add a new information block of HepML tags. HepML is an XML-based markup language. We designed several XML Schemas for all tags in the language. Any HepML document should follow rules of the Schemas. The language is equipped with a library for operation with HepML tags and documents. This C++ library, called libhepml, consists of classes for HepML objects, which represent a HepML document in computer memory, parsing classes, serializating classes, and some auxiliary classes. Restrictions: The software is adapted for solving problems, described in the article. There are no additional restrictions. Running time: Tests have been done on a computer with Intel(R) Core(TM)2 Solo, 1.4 GHz. Parsing of a HepML file: 6 ms (size of the HepML files is 12.5 Kb) Writing of a HepML block to file: 14 ms (file size 12.5 Kb) Merging of two HepML blocks and writing to file: 18 ms (file size - 25.0 Kb).
coating of nanoporous materials March 27, 2007 Wei Wang (Boston University) Studies of non-standard - The first experimental demonstration of wakefield transformer ratio enhancement June 19, 2007 Room F Avenue, to obtain a gate pass. Non-US citizens should contact the HEP office at (630) 252-6270 in advance
Zhang, Tong; Wu, Xiaoai; Cai, Huawei; Liang, Meng; Fan, Chengzhong
2017-04-01
[ 18 F]HX-01, a Fluorine-18 labeled berberine derivative, is a potential positron emission tomography (PET) tumor imaging agent, while [ 19 F]HX-01 is a nonradioactive reference substance with different energy state and has the same physical and chemical properties. In order to collect data for further study of [ 18 F]HX-01 PET imaging of hepatocellular carcinoma in vivo , this study compared the uptake of [ 19 F]HX-01 by human hepatocellular carcinoma and normal hepatocytes in vitro . The target compound, [ 19 F]HX-01, was synthesized in one step using berberrubine and 3-fluoropropyl 4-methylbenzenesulfonate. Cellular uptake and localization of [ 19 F]HX-01 were performed by a fluorescence microscope in human hepatocellular carcinoma HepG2, SMMC-7721 and human normal hepatocyte HL-7702. Cellular proliferation inhibition and cell cytotoxicity assay of the [ 19 F]HX-01 were conducted using cell counting kit-8 (CCK-8) on HepG2, SMMC-7721 and HL-7702 cells. Fluorescent microscopy showed that the combining ability of [ 19 F]HX-01 to the carcinoma SMMC-7721 and HepG2 was higher than that to the normal HL-7702. Cellular proliferation inhibition assay demonstrated that [ 19 F]HX-01 leaded to a dose-dependent inhibition on SMMC-7721, HepG2, and HL-7702 proliferation. Cell cytotoxicity assay presented that the cytotoxicity of [ 19 F]HX-01 to SMMC-7721 and HepG2 was obviously higher than that to HL-7702. This in vitro study showed that [ 19 F]HX-01 had a higher selectivity on human hepatocellular carcinoma cells (SMMC-7721, HepG2) but has less toxicity to normal hepatocytes (HL-7702). This could set up the idea that the radioactive reference substance [ 18 F]HX-01 may be worthy of further development as a potential molecular probe targeting human hepatocellular carcinoma using PET.
HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Yongsheng, E-mail: yongshengtanwhu@126.com; Li, Yan, E-mail: liyansd2@163.com
This study investigated the effect of HCV core protein on the proliferation of hepatocytes and hepatocellular carcinoma cells (HCC), the influence of HCV core protein on HCC apoptosis induced by the chemotherapeutic agent cisplatin, and the mechanism through which HCV core protein acts as a potential oncoprotein in HCV-related HCC by measuring the levels of NR4A1 and Runt-related transcription factor 3 (RUNX3), which are associated with tumor suppression and chemotherapy resistance. In the present study, PcDNA3.1-core and RUNX3 siRNA were transfected into LO2 and HepG2 cells using Lipofectamine 2000. LO2-core, HepG2-core, LO2-RUNX3 {sup low} and control cells were treated withmore » different concentrations of cisplatin for 72 h, and cell proliferation and apoptosis were assayed using the CellTiter 96{sup ®}Aqueous Non-Radioactive Cell Proliferation Assay Kit. Western blot and real time PCR analyses were used to detect NR4A1, RUNX3, smad7, Cyclin D1 and BAX. Confocal microscopy was used to determine the levels of NR4A1 in HepG2 and HepG2-core cells. The growth rate of HepG2-core cells was considerably greater than that of HepG2 cells. HCV core protein increased the expression of cyclin D1 and decreased the expressions of NR4A1 and RUNX3. In LO2 – RUNX3 {sup low}, the rate of cell proliferation and the level of cisplatin resistance were the same as in the LO2 -core. These results suggest that HCV core protein decreases the sensitivity of hepatocytes to cisplatin by inhibiting the expression of NR4A1 and promoting the expression of smad7, which negatively regulates the TGF-β pathway. This effect results in down regulation of RUNX3, a target of the TGF-β pathway. Taken together, these findings indicate that in hepatocytes, HCV core protein increases drug resistance and inhibits cell apoptosis by inhibiting the expressions of NR4A1 and RUNX3. - Highlights: • HCV core protein inhibits HepG2 cell sensitivity to cisplatin. • Core expression in HepG2 decreases expression of NR4A1. • Core protein increases the expression of smad7 in hepatocytes. • Core protein inhibits HepG2 cells apoptosis induced by cisplatin.« less
Hernández-Bule, María Luisa; Cid, María Antonia; Trillo, María Angeles; Leal, Jocelyne; Ubeda, Alejandro
2010-12-01
The capacitive-resistive electric transfer (CRet) therapy is a non-invasive technique that applies electrical currents of 0.4-0.6 MHz to the treatment of musculoskeletal injuries. Although this therapy has proved effective in clinical studies, its interaction mechanisms at the cellular level still are insufficiently investigated. Results from previous studies have shown that the application of CRet currents at subthermal doses causes alterations in cell cycle progression and decreased proliferation in hepatocarcinoma (HepG2) and neuroblastoma (NB69) human cell lines. The aim of the present study was to investigate the antiproliferative response of HepG2 to CRet currents. The results showed that 24-h intermittent treatment with 50 µA/mm(2) current density induced in HepG2 statistically significant changes in expression and activation of cell cycle control proteins p27Kip1 and cyclins D1, A and B1. The chronology of these changes is coherent with that of the alterations reported in the cell cycle of HepG2 when exposed to the same electric treatment. We propose that the antiproliferative effect exerted by the electric stimulus would be primarily mediated by changes in the expression and activation of proteins intervening in cell cycle regulation, which are among the targets of emerging chemical therapies. The capability to arrest the cell cycle through electrically-induced changes in cell cycle control proteins might open new possibilities in the field of oncology.
Brito, Antonio Rafael de Oliveira; Nishinari, Kenji; Saad, Paulo Fernandes; Saad, Karen Ruggeri; Pereira, Monica Aparecida Tomé; Emídio, Suellen Cristina Dias; Yazbek, Guilherme; Bomfim, Guilherme Andre Zottele; Cavalcante, Rafael Noronha; Krutman, Mariana; Teivelis, Marcelo Passos; Pignataro, Bruno Soriano; Fonseca, Igor Yoshio Imagawa; Centofanti, Guilherme; Soares, Bruno Leonardo Freitas
2018-02-01
There are only 3 studies comparing the efficacy of 2 different types of lock used in totally implantable catheters regarding occlusion or reflux dysfunction. The present study contains the largest published casuistry (862 patients) and is the only one that analyzes 3 parameters: occlusion, reflux dysfunction, and flow dysfunction. This was a retrospective study of patients operated at a large oncology center and followed up in the outpatient clinic between 2007 and 2015. The patients were divided into 2 groups according to the type of lock: the Hep group (heparine), whose lock was composed of saline solution 0.9% with heparin (100 IU/mL) and the SS group (saline solution), whose lock was composed of saline solution 0.9%. The Hep group was composed of 270 patients (31%) and the SS group of 592 patients (69%). Regarding occlusion, there were 8 cases in the Hep group (2.96%) and 8 in the SS group (1.35%; P = 0.11); in relation to reflux dysfunction, there were 8 cases in the Hep group (2.96%) and 8 in the SS group (1.35%; P = 0.11); in relation to flow dysfunction, there was 1 case in the Hep group (0.37%) and 4 cases in the SS group (0.68%; P = 1). There was no statistically significant difference between the groups regarding occlusion, reflux dysfunction, and flow dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.
Xiang, Kui; Kusov, Yuri; Ying, Guan; Yan, Wang; Shan, Yi; Jinyuan, Wu; Na, Yin; Yan, Zhou; Hongjun, Li; Maosheng, Sun
2017-09-15
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal-oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459-606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.
Kui, Xiang; Yuri, Kusov; Guan, Ying; Wang, Yan; Yi, Shan; Wu, Jinyuan; Yin, Na; Zhou, Yan; Li, Hongjun; Sun, Maosheng
2017-01-01
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal–oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459–606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine. PMID:28914805
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaempts, Eric
U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapusmore » obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species, and the allowance of normative processes such as fire occurrence. Implementation of these alternatives could generate an estimated minimum of 393 enhancement credits in 10 years. Longer-term benefits of protection and enhancement activities include increases in native species diversity and structural complexity in all cover types. While such benefits are not readily recognized by HEP models and reflected in the number of habitat units generated, they also provide dual benefits for fisheries resources. Implementation of the alternatives will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.« less
Nelson, Noele P; Allison, Mandy A; Lindley, Megan C; Brtnikova, Michaela; Crane, Lori A; Beaty, Brenda L; Hurley, Laura P; Kempe, Allison
2017-07-01
To assess physicians': 1) knowledge and attitudes about hepatitis A disease and hepatitis A (HepA) vaccine, 2) child care and school HepA vaccine mandates, 3) practices related to HepA vaccine delivery, 4) factors associated with strongly recommending HepA vaccine to all 1- to 2-year-olds, and 5) feasibility of implementing HepA catch-up vaccination at health maintenance visits. A national survey was conducted among representative networks of pediatricians and family medicine physicians (FMs) from March to June, 2014 via e-mail or mail on the basis of provider preference. Response rates were 81% (356 of 440) among pediatricians and 75% (348 of 464) among FMs. Less than 50% correctly identified that hepatitis A virus (HAV) infection is usually asymptomatic in young children and that morbidity from HAV disease increases with age. Ninety-two percent of pediatricians and 59% of FMs strongly recommend HepA vaccine for all 1- to 2-year-olds. In addition to practice specialty, belief that HepA vaccine is required for kindergarten enrollment was the most robust predictor of strong physician recommendation. Gaps in knowledge regarding HAV infection and hepatitis A recommendations and lack of a strong recommendation for routine HepA vaccination of young children among FMs likely contribute to suboptimal coverage. Closing knowledge gaps and addressing barriers that prevent all physicians from strongly recommending HepA vaccine to 1- to 2-year-olds could help increase HepA vaccine coverage and ultimately improve population protection against HAV infection. Published by Elsevier Inc.
Prieto-Domínguez, Néstor; Ordóñez, Raquel; Fernández, Anna; Méndez-Blanco, Carolina; Baulies, Anna; Garcia-Ruiz, Carmen; Fernández-Checa, José C.; Mauriz, José L.; González-Gallego, Javier
2016-01-01
Effects of sorafenib in hepatocellular carcinoma (HCC) are frequently transient due to tumor-acquired resistance, a phenotype that could be targeted by other molecules to reduce this adaptive response. Because melatonin is known to exert antitumor effects in HCC cells, this study investigated whether and how melatonin reduces resistance to sorafenib. Susceptibility to sorafenib (10 nM to 50 μM) in the presence of melatonin (1 and 2 mM) was assessed in HCC cell lines HepG2, HuH7 and Hep3B. Cell viability was reduced by sorafenib from 1 μM in HepG2 or HuH7 cells, and 2.5 μM in Hep3B cells. Co-administration of melatonin and sorafenib exhibited a synergistic cytotoxic effect on HepG2 and HuH7 cells, while Hep3B cells displayed susceptibility to doses of sorafenib that had no effect when administrated alone. Co-administration of 2.5 μM sorafenib and 1 mM melatonin induced apoptosis in Hep3B cells, increasing PARP hydrolysis and BAX expression. We also observed an early colocalization of mitochondria with lysosomes, correlating with the expression of mitophagy markers PINK1 and Parkin and a reduction of mitofusin-2 and mtDNA compared with sorafenib administration alone. Moreover, increased reactive oxygen species production and mitochondrial membrane depolarization were elicited by drug combination, suggesting their contribution to mitophagy induction. Interestingly, Parkin silencing by siRNA to impair mitophagy significantly reduced cell killing, PARP cleavage and BAX expression. These results demonstrate that the pro-oxidant capacity of melatonin and its impact on mitochondria stability and turnover via mitophagy increase sensitivity to the cytotoxic effect of sorafenib. PMID:27484637
Ahn, Sang Hoon; Chun, Ji-Yong; Shin, Soo-Kyung; Park, Jun Yong; Yoo, Wangdon; Hong, Sun Pyo; Han, Kwang-Hyub
2013-01-01
Background/Aims Molecular diagnostic methods have enabled the rapid diagnosis of drug-resistant mutations in hepatitis B virus (HBV) and have reduced both unnecessary therapeutic interventions and medical costs. In this study we evaluated the analytical and clinical performances of the HepB Typer-Entecavir kit (GeneMatrix, Korea) in detecting entecavir-resistance-associated mutations. Methods The HepB Typer-Entecavir kit was evaluated for its limit of detection, interference, cross-reactivity, and precision using HBV reference standards made by diluting high-titer viral stocks in HBV-negative human serum. The performance of the HepB Typer-Entecavir kit for detecting mutations related to entecavir resistance was compared with direct sequencing for 396 clinical samples from 108 patients. Results Using the reference standards, the detection limit of the HepB Typer-Entecavir kit was found to be as low as 500 copies/mL. No cross-reactivity was observed, and elevated levels of various interfering substances did not adversely affect its analytical performance. The precision test conducted by repetitive analysis of 2,400 replicates with reference standards at various concentrations showed 99.9% agreement (2398/2400). The overall concordance rate between the HepB Typer-Entecavir kit and direct sequencing assays in 396 clinical samples was 99.5%. Conclusions The HepB Typer-Entecavir kit showed high reliability and precision, and comparable sensitivity and specificity for detecting mutant virus populations in reference and clinical samples in comparison with direct sequencing. Therefore, this assay would be clinically useful in the diagnosis of entecavir-resistance-associated mutations in chronic hepatitis B. PMID:24459645
Lu, Zeyuan; Xu, Huali; Yu, Xiaofeng; Wang, Yuchen; Huang, Long; Jin, Xin; Sui, Dayun
2018-02-01
Hepatoblastoma is the most common primary liver tumor for children aged <5 years old. 20(S)-Protopanaxadiol (PPD) is a ginsenoside extracted from Pananx quinquefolium L ., which inhibits tumor growth in several cancer cell lines. The purpose of the present study was to assess the anticancer activities of 20(S)-PPD in human hepatoblastoma HepG2 cells. The cytotoxicity of 20(S)-PPD on HepG2 cells was evaluated using an MTT assay. Apoptosis was detected using DAPI staining and flow cytometry. The expression of apoptosis-associated proteins was identified by western blotting. The results demonstrated that 20(S)-PPD inhibited the viability of HepG2 cell in a dose and time-dependent manner. The IC 50 values were 81.35, 73.5, 48.79 µM at 24, 48 and 72 h, respectively. Topical morphological changes of apoptotic body formation following 20(S)-PPD treatment were detected by DAPI staining. The percentage of Annexin V-fluoroscein isothyiocyanate positive cells were 3.73, 17.61, 23.44 and 65.43% in HepG2 cells treated with 0, 40, 50 and 60 µM of 20(S)-PPD, respectively. Furthermore, 20(S)-PPD upregulated the expression of Bax and downregulated the expression of Bcl-2 and also activated caspases-3 and -9, and Poly [ADP-ribose] polymerase cleavage. In addition, 20(S)-PPD inhibited the phosphorylation of protein kinase B (Akt; Ser473). The results indicate that 20(S)-PPD inhibits the viability of HepG2 cells and induces apoptosis in HepG2 cells by inhibiting the phosphoinositide-3-kinase/Akt pathway.
Mavri-Damelin, Demetra; Eaton, Simon; Damelin, Leonard H; Rees, Myrddin; Hodgson, Humphrey J F; Selden, Clare
2007-01-01
A possible cell source for a bio-artificial liver is the human hepatblastoma-derived cell line HepG2 as it confers many hepatocyte functions, however, the urea cycle is not maintained resulting in the lack of ammonia detoxification via this cycle. We investigated urea cycle activity in HepG2 cells at both a molecular and biochemical level to determine the causes for the lack of urea cycle expression, and subsequently addressed reinstatement of the cycle by gene transfer. Metabolic labelling studies showed that urea production from 15N-ammonium chloride was not detectable in HepG2 conditioned medium, nor could 14C-labelled urea cycle intermediates be detected. Gene expression data from HepG2 cells revealed that although expression of three urea cycle genes Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase was evident, Ornithine Transcarbamylase and Arginase I expression were completely absent. These results were confirmed by Western blot for arginase I, where no protein was detected. Radiolabelled enzyme assays showed that Ornithine Transcarbamylase functional activity was missing but that Carbamoyl Phosphate Synthase I, Arginosuccinate Synthetase and Arginosuccinate Lyase were functionally expressed at levels comparable to cultured primary human hepatocytes. To restore the urea cycle, HepG2 cells were transfected with full length Ornithine Transcarbamylase and Arginase I cDNA constructs under a CMV promoter. Co-transfected HepG2 cells displayed complete urea cycle activity, producing both labelled urea and urea cycle intermediates. This strategy could provide a cell source capable of urea synthesis, and hence ammonia detoxificatory function, which would be useful in a bio-artificial liver.
Nanbo, A; Nishimura, H; Muta, T; Nagasawa, S
1999-02-01
Lipopolysaccharide (LPS)-binding protein (LBP), an opsonin for activation of macrophages by bacterial LPS, is synthesized in hepatocytes and is known to be an acute phase protein. Recently, cytokine-induced production of LBP was reported to increase 10-fold in hepatocytes isolated from LPS-treated rats, compared with those from normal rats. However, the mechanism by which the LPS treatment enhances the effect of cytokines remains to be clarified. In the present study, we examined whether LPS alone or an LPS/LBP complex directly stimulates the hepatocytes, leading to acceleration of the cytokine-induced LBP production. HepG2 cells (a human hepatoma cell line) were shown to express CD14, a glycosylphosphatidylinositol-anchored LPS receptor, by both RT/PCR and flow cytometric analyses. An LPS/LBP complex was an effective stimulator for LBP and CD14 production in HepG2 cells, but stimulation of the cells with either LPS or LBP alone did not significantly accelerate the production of these proteins. The findings were confirmed by semiquantitative RT/PCR analysis of mRNA levels of LBP and CD14 in HepG2 cells after stimulation with LPS alone and an LPS/LBP complex. In addition, two monoclonal antibodies (mAbs) to CD14 (3C10 and MEM-18) inhibited LPS/LBP-induced cellular responses of HepG2 cells. Furthermore, prestimulation of HepG2 cells with LPS/LBP augmented cytokine-induced production and gene expression of LBP and CD14. All these findings suggest that an LPS/LBP complex, but not free LPS, stimulates HepG2 cells via CD14 leading to increased basal and cytokine-induced LBP and CD14 production.
Evaluation of NGAL TestTM on Cobas 6000.
Hansen, Young B L; Damgaard, Anette; Poulsen, Jørgen H
2014-01-01
Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a promising biomarker for acute kidney injury (AKI). Our objectives were to evaluate the NGAL Test(TM) from Bioporto for both urine NGAL and plasma NGAL on the Cobas 6000 c501 (Roche Diagnostics, Rotkreuz, Switzerland) with matched measurements run on Hitachi 917, the method's linearity on the Cobas 6000 in urine, EDTA and Lithium-Heparin (Li-Hep), the influence of using EDTA or Li-Hep tubes and, finally, the impact of freezing and thawing on the sample. Forty matched samples of Li-Hep and EDTA plasma and 40 urine samples were analyzed for method, anticoagulant, and freeze-thaw comparisons. Linearity was assessed using high NGAL samples diluted in urine, EDTA, and Li-Hep plasma. Commercial internal controls were used for the imprecision study. The Cobas 6000 measured identically with the Hitachi 917, however, not in EDTA plasma (Median Difference = 17.50 μg/L, p < 0.0001). Freeze-thaw process reduced NGAL ((EDTA: Mean Difference = = 15.13 μg/L, p = 0.0014)(Li-Hep: Median Difference = = 6.5 μg/L, p = 0.0129)). NGAL results were higher in Li-Hep plasma than in EDTA plasma ((Non-thawed: Median Difference = = 14.5 μg/L, p < 0.0001), (Thawed: Median Difference = = 21.5 μg/L, p = 0.0003)). Linearity agreements were observed in all three specimens. Imprecision (CV%) was below 3%. The NGAL Test(TM) can be applied on the Cobas 6000 with acceptable performance, although the Cobas 6000 measured higher than the Hitachi 917 in EDTA plasma. Though clinically insignificant, we found that the freeze-thaw process had a reduced effect. NGAL results were higher in Li-Hep tubes than in EDTA tubes. Thus, for blood samples we recommend use of EDTA tubes for NGAL measurements.
Li, Yue-Hui; Liu, Yan; Li, Yan-Dong; Liu, Yan-Hong; Li, Feng; Ju, Qiang; Xie, Ping-Li; Li, Guan-Cheng
2012-01-01
AIM: To investigate the function of gamma-aminobutyric acid (GABA) and gamma-aminobutyric acid A receptor θ subunit (GABRQ) in hepatocellular carcinoma (HCC). METHODS: Semiquantitative polymerase chain reaction was used for detecting the expression of GABRQ receptor among HCC cell line HepG2, normal liver cell line L-02, non-malignant Chang’s liver cells, 8 samples of HCC tissues and paired non-cancerous tissues. HepG2 cells were treated with GABA at serial concentrations (0, 1, 10, 20, 40 and 60 μmol/L), and their proliferating abilities were analyzed with the methyl thiazolyl tetrazolium assay, cell cycle analysis and tumor implanted in nude mice. Small interfering RNA was used for knocking down the endogenous GABRQ in HepG2. Proliferating abilities of these cells treated with or without GABA were analyzed. RESULTS: We identified the overexpression of GABRQ in HCC cell lines and half of the tested HCC tissues. Knockdown of endogenous GABRQ expression in HepG2 attenuated HCC cell growth, suggesting its role in HCC cell viability. We studied the effect of GABA in the proliferation of GABRQ-positive cell lines in vitro and in vivo, and found that GABA increased HCC growth in a dose-dependent manner. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRQ-expressing HepG2 cells, but not GABRQ-knockdown HepG2 cells, which means that GABA stimulates HepG2 cell growth through GABRQ. CONCLUSION: GABRQ play important roles in HCC development and progression and could be a promising molecular target for the development of new diagnostic and therapeutic strategies of HCC. PMID:22690081
Kunte, Mugdha; Desai, Krutika
2017-06-01
Spirulina platensis :have been studied for several biological activities. In the current study C-phycocyanin containing protein extract (C-PC extract) of Spirulina platensis have been studied for its effect on human matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and tissue inhibitors of MMPs (TIMP-1 and TIMP-2). In the present study, breast cancer cell line (MDA-MB 231) and hepatocellular cancer cell line (HepG2) were examined for inhibition of MMPs at different levels of expression after C-PC extract treatment. Herein, we have demonstrated that C-PC extract significantly reduced activity of MMP-2 by 55.13% and MMP-9 by 57.9% in HepG2 cells at 15 μg concentration. Additionally, the treatment has reduced mRNA expression of MMP-2 and MMP-9 at 20 μg concentration by 1.65-folds and 1.66-folds respectively. The C-PC extract treatment have also downregulated a mRNA expression of TIMP-2 by 1.12 folds at 20 μg concentration in HepG2 cells. Together, these results indicate that C-PC, extract successfully inhibited MMP-2 and -9 at different levels of expression and TIMP-2 at a mRNA expression level; however, extract did not have any effect on MMP-1 expressed in MDA-MB231 and TIMP-1 expressed in HepG2 cells as well as the exact mechanism of inhibition of MMP-2, MMP-9 and TIMP-2 remained unclear.
Galeotti, Fabio; Volpi, Nicola
2011-09-01
A high-resolution online reverse-phase-high-performance liquid chromatography (RP-HPLC)-fluorescence detector (Fd)-electrospray ionization-mass spectrometry (ESI-MS) separation and structural characterization of disaccharides prepared from heparin (Hep), heparan sulfate (HS), and various low-molecular-weight (LMW)-Hep using heparin lyases and derivatization with 2-aminoacridone (AMAC) are described. A total of 12 commercially available Hep/HS-derived unsaturated disaccharides were separated and unambiguously identified on the basis of their retention times and mass spectra. The constituent disaccharides of various samples, including unfractionated Hep/HS, fast-moving and slow-moving Hep components, and several marketed products, were characterized. Furthermore, for the first time, the saturated trisulfated disaccharide belonging to the nonreducing end of Heps was detected as being approximately 2% in unfractionated samples and ~15-21% in LMW-Heps prepared by nitrous acid depolymerization. No desalting of the commercial products prior to enzymatic digestion or prepurification steps to eliminate any excess of AMAC reagent or interference from proteins, peptides, and other sample impurities before RP-HPLC-Fd-ESI-MS injection were necessary. This method has applicability for the rapid differentiation of pharmaceutical Heps and LMW-Heps prepared by means of different depolymerization processes and for compositional analysis of small amounts of samples derived from biological sources by using the highly sensitive fluorescence detector.
Liu, Tao; Liu, Yang; Chen, Yuan; Liu, Shihui; Maitz, Manfred F; Wang, Xue; Zhang, Kun; Wang, Jian; Wang, Yuan; Chen, Junying; Huang, Nan
2014-05-01
Restenosis, thrombosis formation and delayed endothelium regeneration continue to be problematic for coronary artery stent therapy. To improve the hemocompatibility of the cardiovascular implants and selectively direct vascular cell behavior, a novel kind of heparin/poly-l-lysine (Hep/PLL) nanoparticle was developed and immobilized on a dopamine-coated surface. The stability and structural characteristics of the nanoparticles changed with the Hep:PLL concentration ratio. A Hep density gradient was created on a surface by immobilizing nanoparticles with various Hep:PLL ratios on a dopamine-coated surface. Antithrombin III binding quantity was significantly enhanced, and in plasma the APTT and TT times as coagulation tests were prolonged, depending on the Hep density. A low Hep density is sufficient to prevent platelet adhesion and activation. The sensitivity of vascular cells to the Hep density is very different: high Hep density inhibits the growth of all vascular cells, while low Hep density could selectively inhibit smooth muscle cell hyperplasia but promote endothelial progenitor cells and endothelial cell proliferation. These observations provide important guidance for modification of surface heparinization. We suggest that this method will provide a potential means to construct a suitable platform on a stent surface for selective direction of vascular cell behavior with low side effects. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Study on alkaloids of Corydalis ochotensis and their antitumor bioactivity].
Yu, Jia-jia; Cong, Deng-li; Jiang, Ying; Zhou, Yuan; Wang, Yan; Zhao, Chun-fang
2014-10-01
To investigate the chemical constituents of Corydalis ochotensis and their antitumor bioactivity. The compounds were isolated by silica gel column chromatography and recrystallization. Their structures were identified by spectroscopic analysis (NMR) and physicochemical properties. Their cytotoxic activity was studied by MTT. Six compounds were elucidated as protopine (1), ochotensimine (2), fumariline (3), sanguinarine (4), tetrahydroberberine (5) and berberine (6). Compound 1 had excellent inhibitory activity on HepG2, SW480 and A549 cells, and compound 4 had excellent inhibitory activity on Hep2, HepG2, SW480 and A549 cells. Compounds 3, 4 and 5 are isolated from this plant for the first time; In the MTT antitumor experiments,compounds 1 and 4 show an antitumor activity.
Tung, Yen-Chen; Su, Zheng-Yuan; Kuo, Min-Liang; Sheen, Lee-Yan
2012-01-01
Hepatoma is a leading cause of death in the world. SK-Hep-1 and HA22T/VGH cells are poorly differentiated human hepatocellular carcinoma cell lines with invasive and migratory abilities. Agaricus blazei (AB) is a mushroom with many biological effects and active ingredients, and the ethanolic extract of AB fermentation product (AB-pE) was demonstrated to inhibit the growth of hepatoma Hep3B and HepG2 cells in our previous study. In this study, we further investigated the anticancer and anti-invasive abctivities of the AB-pE. Results showed that the AB-pE inhibited the growth of SK-Hep1 and HA22T/VGH cells (with IC50 values of 26.8 and 28.7 μg/mL, respectively) and led cells toward apoptosis after 48 h of treatment. Activation of caspase-3 by AB-pE (12.5~200 μg/mL) in a dose-dependent manner was observed in both cell lines using fluorescence microscopy and flow cytometry. The apoptosis triggered by the AB-pE was regulated by the increased expression of Bax, the activation of caspase-3, caspase-9, and PARP, and the decreased expression of Bcl-2. Additionally, the AB-pE showed the potential ability to inhibit invasion of SK-Hep1 and HA22T/VGH cells according to the results of a Matrigel invasion assay. Our results suggested that the AB-pE may be a further developed for its potential against hepatoma due to its antiproliferative (via apoptosis) and anti-invasive activities in hepatoma cells. PMID:24716127
Epigallocatechin-3-gallate ameliorates insulin resistance in hepatocytes.
Ma, Shan-Bo; Zhang, Rui; Miao, Shan; Gao, Bin; Lu, Yang; Hui, Sen; Li, Long; Shi, Xiao-Peng; Wen, Ai-Dong
2017-06-01
Hyperglycemia is a typical pathogenic factor in a series of complications among patients with type II diabetes. Epigallocatechin-3-gallate (EGCG) is the major polyphenol extracted from green tea and is reported to be an antioxidant. The aim of the present study was to examine the effect of EGCG on insulin resistance in human HepG2 cells pretreated with high concentrations of glucose. The protein kinase B (AKT)/glycogen synthase kinase (GSK) pathways were analyzed using western blot analysis in HepG2 cells and primary mouse hepatocytes treated with high glucose and/or EGCG. Cellular glycogen content was determined using a glycogen assay kit. Reactive oxygen species (ROS) production was determined using dihydroethidium staining and flow cytometry. c‑JUN N‑terminal kinase (JNK)/insulin receptor substrate 1 (IRS1)/AKT/GSK signaling was explored using western blot analysis in HepG2 cells treated with high glucose and/or EGCG or N-acetyl-cysteine. High glucose significantly decreased the levels of phosphorylated AKT and GSK in HepG2 cells and mouse primary hepatocytes. Pretreatment with EGCG significantly restored the activation of AKT and GSK in HepG2 cells and primary hepatocytes exposed to high glucose. In HepG2 cells and primary hepatocytes, glycogen synthesis was improved by EGCG treatment in a dose‑dependent manner. High glucose significantly stimulated the production of ROS while EGCG protected high glucose‑induced ROS production. ROS is known to serve a major role in high glucose induced‑insulin resistance by increasing JNK and IRS1 serine phosphorylation. In the present study, EGCG was observed to enhance the insulin‑signaling pathway. EGCG ameliorated high glucose‑induced insulin resistance in the hepatocytes by potentially decreasing ROS‑induced JNK/IRS1/AKT/GSK signaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Yong Pil; Department of Pharmaceutical Engineering, International University of Korea, Jinju; Choi, Jae Ho
AMP-activated protein kinase (AMPK) plays a central role in controlling hepatic lipid metabolism through modulating the downstream acetyl CoA carboxylase (ACC) and sterol regulatory element-binding protein-1c (SREBP-1c) pathway. Saponins, particularly platycodin D, from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have a variety of pharmacological properties, including antioxidant and hepatoprotective properties. The aim of this study was to investigate the effects of CKS on hepatic lipogenesis and on the expression of genes involved in lipogenesis, and the mechanisms involved. CKS attenuated fat accumulation and the induction of the lipogenic genes encoding SREBP-1c and fatty acid synthase in the liversmore » of HFD-fed rats and in steatotic HepG2 cells. Blood biochemical analyses and histopathological examinations showed that CKS prevented liver injury. CKS and platycodin D each increased the phosphorylation of AMPK and acetyl-CoA carboxylase in HFD-fed rats and HepG2 cells. The use of specific inhibitors showed that platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells. This study demonstrates that CKS or platycodin D alone can regulate hepatic lipogenesis via an AMPK-dependent signalling pathway. - Highlights: ► CKS attenuated fat accumulation in HFD-fed rats and in steatotic HepG2 cells. ► CKS and its major component, platycodin D, inhibited the levels of SREBP-1 and FAS. ► CKS and platycodin D increased the phosphorylation of AMPK and ACC. ► Platycodin D activated AMPK via SIRT1/CaMKKβ in HepG2 cells.« less
Honey Extracted Polyphenolics Reduce Experimental Hypoxia in Human Keratinocytes Culture.
Chaudhary, Amrita; Bag, Swarnendu; Banerjee, Provas; Chatterjee, Jyotirmoy
2017-05-03
Hypoxic assault affects fundamental cellular processes and generates oxidative stress on healthy cells/molecules. Honey extracted polyphenolics (HEP) as a natural antioxidant reduced hypoxic cytotoxicity in this study. Different honey samples were physicochemically characterized to identify preferred (jamun) honey [pH 3.55 ± 0.04, conductivity (μs/cm) = 6.66 ± 0.14, water content % (w/w) = 14.70 ± 0.35, total solid content % (w/w) = 85.30 ± 0.35, phenol content (mg GAE/100 g) = 403.55 ± 0.35, flavonoid content (mg QE/100 g) = 276.76 ± 4.10, radical scavenging activity (% 500 μL) = 147.75 ± 3.13, catalase activity (absorbance at 620 nm) = 0.226 ± 0.01]. HEP was tested in different doses on hypoxic and normoxic cells (HaCaT) using viability and antioxidant assays. Cardinal molecular expressions such as cadherin-catenin-cytoskeleton complex (namely, E-cadherin, β-catenin, and F-actin), hypoxia marker (Hif 1 α), proliferation marker (Ki67), and epithelial master regulator (p63) were studied by immuno-cytochemisty (ICC) and qRT-PCR. The 0.063 mg/mL HEP demonstrated better vitality and functionality of HaCaT cells as per viability assay (*, P < 0.01) even under hypoxia. ICC and qRT-PCR observations indicated restoration of cellular survival and homeostasis under 0.063 mg/mL HEP after hypoxic assault. Furthermore, major spectral changes for nucleic acid and membrane phospholipid reorganizations by Fourier transform infrared spectroscopy illustrated a positive impact of 0.063 mg/mL HEP on hypoxic cells considering proliferation and cellular integrity. It was concluded that a specific dose of jamun HEP reduces hypoxic cytotoxicity.
Agarose-gel electrophoresis for the quality assurance and purity of heparin formulations.
Volpi, Nicola; Buzzega, Dania
2012-01-01
The adulteration of raw heparin (Hep) with a synthetic oversulfated chondroitin sulfate (OSCS) not found in nature produced in 2007-2008 a global crisis giving rise to the development of additional, new and specific methods for its quality assurance and purity. In this study, a simple and sensitive agarose-gel electrophoresis method has been developed for the visualization of OSCS in Hep samples along with other natural glycosaminoglycans possibly present as "process-related impurities", in particular dermatan sulfate (DS) and chondroitin sulfate (CS). Agarose-gel electrophoresis under non-conventional conditions is able to separate OSCS from Hep with its two components, the slow-moving and fast-moving species, DS and CS by performing separation for 15 h (overnight) and under high voltage (100 mA, ∼200 V). Densitometric scanning enabled us to calculate a limit of detection of ∼0.5 μg OSCS with a linear behaviour from 0.1 to 5 μg, comparable to CS/DS. Contaminated samples from Hep manufacturers were analyzed and quantitative data were found comparable to previous studies. Due to its capacity to process many samples in a single run and to the equipment commonly available in laboratories, this analytical method would be suitable for the identification and quantification of contamination by other polysaccharides, in particular OSCS and DS, within Hep preparations and formulations. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Yinghua; Guo, Min; Lin, Zhengfang; Zhao, Mingqi; Xiao, Misi; Wang, Changbing; Xu, Tiantian; Chen, Tianfeng; Zhu, Bing
2016-01-01
Hepatocarcinoma is the third leading cause of cancer-related deaths around the world. Recently, a novel emerging nanosystem as anticancer therapeutic agents with intrinsic therapeutic properties has been widely used in various medical applications. In this study, surface decoration of functionalized silver nanoparticles (AgNPs) by polyethylenimine (PEI) and paclitaxel (PTX) was synthesized. The purpose of this study was to evaluate the effect of Ag@ PEI@PTX on cytotoxic and anticancer mechanism on HepG2 cells. The transmission electron microscope image and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that Ag@PEI@PTX had satisfactory size distribution and high stability and selectivity between cancer and normal cells. Ag@PEI@PTX-induced HepG2 cell apoptosis was confirmed by accumulation of the sub-G1 cells population, translocation of phosphatidylserine, depletion of mitochondrial membrane potential, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Furthermore, Ag@PEI@PTX enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of AKT, p53, and MAPK were activated to advance cell apoptosis. In conclusion, the results reveal that Ag@ PEI@PTX may provide useful information on Ag@PEI@PTX-induced HepG2 cell apoptosis and as appropriate candidate for chemotherapy of cancer. PMID:27994465
Scholarly literature and the press: scientific impact and social perception of physics computing
NASA Astrophysics Data System (ADS)
Pia, M. G.; Basaglia, T.; Bell, Z. W.; Dressendorfer, P. V.
2014-06-01
The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results of a scientometric analysis of HEP computing in scientific literature, institutional media and the press, and a comparative overview of similar metrics concerning representative particle physics measurements. The picture emerging from these scientometric data documents the relationship between the scientific impact and the social perception of HEP physics research versus that of HEP computing. The results of this analysis suggest that improved communication of the scientific and social role of HEP computing via press releases from the major HEP laboratories would be beneficial to the high energy physics community.
Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi
2008-08-01
To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.
Lipotoxicity in HepG2 cells triggered by free fatty acids
Yao, Hong-Rui; Liu, Jun; Plumeri, Daniel; Cao, Yong-Bing; He, Ting; Lin, Ling; Li, Yu; Jiang, Yuan-Ying; Li, Ji; Shang, Jing
2011-01-01
The goal of this study was to investigate the lipid accumulation and lipotoxicity of free fatty acids (FFAs) induced in HepG2 cells. HepG2 cells were co-incubated with various concentrations of FFAs for 24h and the intracellular lipid contents were observed by Oil Red O and Nile Red staining methods. The lipotoxicity of HepG2 cells were then detected by Hoechest 33342/PI, Annexin V-FITC/PI double-staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-di phenyltetrazolium bromide (MTT) experiment tests. The experiments showed a lipid accumulation and lipotoxicity by increasing FFA concentration gradients. Through cell morphological observation and quantitative analysis, FFAs have shown to increase in a dose-dependent manner compared with the control group. The data collected from hoechst 33342/PI, annexin V-FITC/PI double staining and also MTT experiments showed that cell apoptosis and necrosis significantly increased with increasing FFA concentrations. Apoptosis was not obvious in the 1 mM FFAs-treated group compared to the other two groups. In a certain concentration range, FFAs induced intracellular lipid accumulation and lipotoxicity of HepG2 cells in a dose-dependent manner. PMID:21654881
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Joo-Hee; Kim, Jung-Woong; Jang, Sang-Min
Highlights: {yields} The actin binding protein Gelsolin (GSN) interacts with transcription factor p53. {yields} GSN interacts with transactivation- and DNA binding domains of p53. {yields} GSN represses transactivity of p53 via inhibition of nuclear translocation of p53. {yields} GSN inhibits the p53-mediated apoptosis in hepatocarcinoma HepG2 cells. -- Abstract: As a transcription factor, p53 modulates several cellular responses including cell-cycle control, apoptosis, and differentiation. In this study, we have shown that an actin regulatory protein, gelsolin (GSN), can physically interact with p53. The nuclear localization of p53 is inhibited by GSN overexpression in hepatocarcinoma HepG2 cells. Additionally, we demonstrate thatmore » GSN negatively regulates p53-dependent transcriptional activity of a reporter construct, driven by the p21-promoter. Furthermore, p53-mediated apoptosis was repressed in GSN-transfected HepG2 cells. Taken together, these results suggest that GSN binds to p53 and this interaction leads to the inhibition of p53-induced apoptosis by anchoring of p53 in the cytoplasm in HepG2 cells.« less
Darroudi, F; Meijers, C M; Hadjidekova, V; Natarajan, A T
1996-09-01
In human hepatoma (Hep G2) cells and peripheral blood lymphocytes (HPBL) the cytokinesis-blocked micronuclei (MN) and fluorescent in situ hybridization (FISH) assays were applied to study aneugenic and clastogenic potentials of X-rays, directly and indirectly acting chemicals. Induction of MN was studied in vitro following treatment with X-rays, directly acting chemicals, such as methylmeth-anesulphonate (MMS), colchicine (COL), vincristine sulphate (VCS) and vinblastine sulphate (VBS), and indirectly acting agents, such as cyclophosphamide (CP), hexamethylphosphoramide (HMPA), 2-acetylaminofluorene (2-AAF) and 4-acetylaminofluorene (4-AAF). Depending on the presence of the fluorescent signal in the MN following FISH with a human DNA centromeric probe, MN in the binucleated Hep G2 cells and lymphocytes were scored as centromere-positive or centromere-negative, representing an aneugenic and clastogenic event respectively. In the controls approximately 50% of spontaneously occurring MN were centromere-positive. Treatment of human hepatoma cells and HPBL (in vitro) with potent aneugens such as COL, VCS and VBS increased the number of MN in a dose-dependent manner; of these 75-93% were centromere-positive. X-irradiation induced MN in a dose-related manner in binucleated Hep G2 cells and HPBL, of which 33-40% were centromere-positive, which demonstrates the significant aneugenic potentials of X-rays. Strong clastogenic activity was observed with MMS and frequency of centromere-positive MN was low: approximately 20 and 30% for HPBL and Hep G2 cells respectively. In Hep G2 cells significant aneugenic activity was found with indirectly acting promutagens/procarcinogens such as HMPA and 2-AAF, in contrast to CP, which came out as a potent clastogen. The non-carcinogen 4-AAF was not able to induce an increase in the frequency of MN in Hep G2 cells. All indirectly acting chemicals tested came out negative when HPBL were used as targets for DNA damage. The results presented correlate positively with data from in vivo assays and indicate that the Hep G2 cell system is a suitable bioactivation system (in vitro) for evaluating the clastogenic and aneugenic potentials of chemicals which require exogenous metabolic activations in order to exert their mutagenic potential.
Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M.
2016-01-01
Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122 regulated hepatic gluconeogenesis and lipid metabolism as promising therapeutic targets for the treatment of T2D. PMID:27011261
Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M
2016-01-01
Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122 regulated hepatic gluconeogenesis and lipid metabolism as promising therapeutic targets for the treatment of T2D.
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
Biochemical Effects of six Ti02 and four Ce02 Nanomaterials in HepG2 cells
Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Var...
There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...
Yeung, H W; Yamashiro, D; Tseng, L F; Chang, W C; Li, C H
1981-02-01
Four analogs of the opioid peptide human beta-endorphin (Bh-EP) have been synthesized: [D-Lys9, Phe27, Gly31]-beta h-EP, [D-PHe18,Phe27,Gly31]-beta h-EP, [D-Thr2,D-Lys9,Phe27,Gly31]-beta h-EP, and [D-Thr2,D-Phe18,Phe27,Gly31]-beta h-EP. All are practically indistinguishable from beta h-EP in the guinea pig ileum assay. All show diminished analgesic potency in the mouse tail-flick assay.
Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui
2018-01-01
Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells. PMID:29507591
Kwon, Eun-Bin; Kang, Myung-Ji; Kim, Soo-Yeon; Lee, Yong-Moon; Lee, Mi-Kyeong; Yuk, Heung Joo; Ryu, Hyung Won; Lee, Su Ui; Oh, Sei-Ryang; Moon, Dong-Oh; Lee, Hyun-Sun; Kim, Mun-Ock
2018-01-01
Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF- α , suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.
GAVI and hepatitis B immunisation in India.
Kolås, A
2011-01-01
In cooperation with Indian health authorities, the GAVI Alliance (GAVI) is introducing Hepatitis B (HepB) vaccination into the immunisation programmes of 11 'better-performing' Indian states. This article describes the concerns and interests of major stakeholders in the programme, including GAVI partners and the Indian government, and summarises Indian debates that have emerged in response to the project, especially on the issue of selective vs. universal immunisation. The article suggests that programme planning should be based on a good knowledge of disease prevalence and the relative importance of perinatal HepB transmission, which would require a comprehensive cross-country study of the epidemiology of HepB among different populations, the relative importance of different transmission routes and the degree of geographical variation in India. Based on this research, further studies could address the feasibility and cost-effectiveness of routine birth-dose administration and selective birth-dose immunisation of infants born to mothers who are chronic HepB virus carriers. The GAVI 'formula' could be strengthened by supporting the basic epidemiological research that is essential to effective programme planning in recipient countries, which are by definition among the world's poorest countries.
Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway.
Qiu, Tianming; Chen, Min; Sun, Xiance; Cao, Jun; Feng, Chang; Li, Dandan; Wu, Wei; Jiang, Liping; Yao, Xiaofeng
2016-09-02
Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is blamed to be associated with the incidence of insulin resistance in the general human population. In this study, we found that PFOS inhibited the phosphorylation and activation of protein kinase B (AKT), a key mediator of cellular insulin sensitivity, in human hepatoma HepG2 cells. The mRNA level of the gluconeogenic gene PEPCK, a downstream target gene of AKT, was increased in PFOS-treated cells. Due to stimulated gluconeogenesis, insulin-stimulated glucose uptake was decreased in HepG2 cells. In our previous study, we found that PFOS disturbed autophagy in HepG2 cells. We proposed that PFOS could inhibit the activation of AKT through inhibiting mTORC2, a key regulator of autophagy. In this study, we found that the levels of triglyceride were increased in HepG2 cells. PFOS-induced accumulation of hepatic lipids also contributed to the inhibition of AKT. Eventually, the inhibition of AKT led to insulin resistance in PFOS-treated cells. Our data would provide new mechanistic insights into PFOS-induced hepatic insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh
2017-01-01
A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.
[Stimulation of human hepatic stellate cells by cytochrome P4502E1-mediated oxidative stress].
Li, Jing; Liu, Tian-hui; You, Hong; Xu, You-qing; Wang, Chen
2010-08-01
To explore the stimulation of human hepatic stellate cells by Cytochrome P4502E1-mediated oxidative stress. HepG2-line was transfected with human CYP2E1 plasmid (HepG2/CYP2E1) and empty plasmid (HepG2/PCI) respectively. The CYP2E1 expression was evaluated with RT-PCR and Western blot. MDA was measured in culture medium of HepG2 cell lines. LX2 was co-incubated with HepG2/CYP2E1, HepG2/PCI and HepG2 respectively. The level of hydroxyproline in culture medium was examined in 48 hours and the cells were lysated and total RNA and protein were extracted. COL-1 and MMP2 mRNA levels were detected by RT-PCR and analyzed semi-quantitatively. PICP proteins were measured by ELISA. Zymography was performed to investigate MMP2 enzymatic activities. (1) MDA from the HepG2 which (HepG2/CYP2E1)express human CYP2E1 (6.51+/-0.25) was significantly higher than that from the HepG2 which do not (HepG2/PCI) express human CYP2E1 (3.07+/-0.29) and HepG2 alone (2.57+/-0.29). (F=22.66, all P<0.01). (2) After co-incubated for 48 hours,the level of hydroxyproline in culture medium (35.24+/-3.52) excreted from CYP2E1/LX2 could significantly increase (F=58.89, P is less than 0.01). PICP protein (540.01+/-11.38) excreted from CYP2E1/LX2 was significantly increased (F=124.97, P<0.01). Zymography showed MMP2 gene expression and enzymatic activities of MMP2 had no difference among the groups (F=0.29, P>0.05) (F=0.33, P>0.05). CYP2E1 derived oxidative stress mediated stimulation of collagen I synthesis by hepatic stellate cells. Hydroxyproline excreted by LX2 was increased by CYP2E1. COL-1mRNA had no difference among the groups (F=0.73, P>0.05).
FOX, J P; KOPROWSKI, H; CONWELL, D P; BLACK, J; GELFAND, H M
1957-01-01
Detailed results are presented of primary immunizations of 387 persons with various courses of HEP Flury vaccine and of 54 persons with Harris- or Semple-type vaccines. Antibody response to HEP Flury vaccine was at least as rapid as that to the conventional type, but fell short in uniformity and level of response. The most promising course involved a 4-dose schedule, intradermal alone or combined with intramuscular, at 5-day intervals. A similar subcutaneous course of Semple vaccine yielded results completely equivalent to those of a 14-dose course of Harris vaccine. It is concluded that, although living, the HEP Flury virus does not multiply in man and that its lesser antigenic potency, as compared with Semple or Harris vaccines, is due to its relatively small content of viral antigen.Further evidence has been obtained that hyperimmune serum may exert a slight suppressive effect on active response, but the opinion is expressed that, with vaccines of full potency, this will not be of practical significance.Restimulation of immunity by a booster dose of HEP Flury vaccine was studied in 64 experimentally immunized persons and in 136 persons with history of previous Pasteur treatment. In both instances small intradermal inocula were as effective as larger intramuscular inocula in recalling pre-existing immunity.Study of recipients of Pasteur treatment indicated that antibody commonly persists for at least 5 years after a single course and for 15 or more years after re-treatment. It was also observed that the ability to respond to a booster of HEP Flury vaccine persists for at least 25 years. The response elicited by the booster is prompt and is usually at least equal to that resulting from a full primary course. The suggested conclusion is that previously treated persons need not receive more than a single booster on re-exposure, and that Pasteur treatment provides a solid basis for long-sustained immunity.
Abdel-Hamid, Nagwa I; El-Azab, Mona F; Moustafa, Yasser M
2017-04-01
This study was designed to examine the potential antitumor effect of some macrolides: clarithromycin, azithromycin, and erythromycin on chemically induced hepatocellular carcinoma (HCC) in rats and on human hepatoma cells (HepG2) as well. The possible underlying antiapoptotic mechanisms were investigated. Antiproliferative activity was assessed in HepG2 using Sulforhodamine-B staining method. In vivo, HCC was induced in rats by initiation-selection-promotion protocol using diethylnitrosamine (200 mg/kg, single i.p. injection)/2-acetylaminofluorene (0.03% w/w supplemented-diet for 2 weeks)/carbon tetrachloride (2 ml/kg diluted in corn oil 1:1, single intra-gastric dose)/phenobarbitone sodium (0.05% w/w supplemented-diet for 28 weeks). Macrolides were administered once daily starting from the 3rd week until the 17th week at a dose of 100 mg/kg in the current 33-week study period. Clarithromycin showed a higher efficacy in the suppression of HepG2 proliferation with lower IC50 value than doxorubicin. In vivo, chemically-induced HCC rat model proved that clarithromycin suppressed HCC via induction of apoptosis through up-regulation of both extrinsic/intrinsic apoptotic pathways' proteins (TNFR1, cleaved caspase-3, and Bax with an increased Bax/Bcl-2 ratio) along with MMP-9 normalization. Similarly, azithromycin demonstrated antitumorigenic effect through both apoptotic pathways, however, to a lesser extent compared to clarithromycin. Moreover, azithromycin suppressed the proliferation of HepG2, however, at a higher IC50 than doxorubicin. Surprisingly, erythromycin increased HepG2 proliferation in vitro, along with worsened tumorigenic effect of the carcinogenic agents in the in vivo study with ineffective apoptotic outcome. Some macrolides represent potential antitumor agents; however, this evident anticancer activity is an individual effect rather than a group effect and involves modulation of both intrinsic and extrinsic apoptotic pathways.
The anti-hepatocellular carcinoma cell activity by a novel mTOR kinase inhibitor CZ415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Research Center of Blood Transfusion Medicine, Education Ministry Key Laboratory of Laboratory Medicine, Zhejiang Provincial People's Hospital, People’s Hospital of Hangzhou medical College, Hangzhou; Chen, Bingyu
Dysregulation of mammalian target of rapamycin (mTOR) in hepatocellular carcinoma (HCC) represents a valuable treatment target. Recent studies have developed a highly-selective and potent mTOR kinase inhibitor, CZ415. Here, we showed that nM concentrations of CZ415 efficiently inhibited survival and induced apoptosis in HCC cell lines (HepG2 and Huh-7) and primary-cultured human HCC cells. Meanwhile, CZ415 inhibited proliferation of HCC cells, more potently than mTORC1 inhibitors (rapamycin and RAD001). CZ415 was yet non-cytotoxic to the L02 human hepatocytes. Mechanistic studies showed that CZ415 disrupted assembly of mTOR complex 1 (mTORC1) and mTORC2 in HepG2 cells. Meanwhile, activation of mTORC1 (p-S6K1)more » and mTORC2 (p-AKT, Ser-473) was almost blocked by CZ415. In vivo studies revealed that oral administration of CZ415 significantly suppressed HepG2 xenograft tumor growth in severe combined immuno-deficient (SCID) mice. Activation of mTORC1/2 was also largely inhibited in CZ415-treated HepG2 tumor tissue. Together, these results show that CZ415 blocks mTORC1/2 activation and efficiently inhibits HCC cell growth in vitro and in vivo. - Highlights: • CZ415 is anti-survival and pro-apoptotic to hepatocellular carcinoma (HCC) cells. • CZ415 inhibits HCC cell proliferation, more efficiently than mTORC1 inhibitors. • CZ415 blocks assembly and activation of both mTORC1 and mTORC2 in HCC cells. • CZ415 oral administration inhibits HepG2 tumor growth in SCID mice. • mTORC1/2 activation in HepG2 tumor is inhibited with CZ415 administration.« less
Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis
Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan
2010-01-01
OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229
5-aminolevulinic acid-mediated photodynamic therapy on Hep-2 and MCF-7c3 cells.
Alvarez, María Gabriela; Lacelli, M S; Rivarola, Viviana; Batlle, Alcira; Fukuda, Haydée
2007-01-01
The cytotoxic effect of 5-aminolevulinic acid (ALA) induced protoporphyrin IX (PPIX) on two human carcinoma cell lines, MCF-7c3 cells and Hep 2 cells, was studied. In both cell lines, PPIX content depends on the ALA concentration and incubation time. The maximal PPIX content was higher in the MCF-7c3 cells, reaching a value of 8 microg/10(6) cells, compared to the Hep-2 cells, which accumulated 3.2 microg/10(6) cells. Treatment of cells with the iron chelator desferrioxamine prior to ALA exposure enhances the amount of PPIX, consequently diminishing enzymatic activity of ferroquelatase. Photo sensitization of the cells was in correlation with the PPIX content; therefore, conditions leading to 80% cell death in the MCF-7c3 cells provoke a 50% cell death in the Hep 2 cells. Using fluorescence microscopy, cell morphology was analyzed after incubation with 1 mM ALA during 5 hr and irradiation with 54 Jcm(-2); 24 hr post-PDT, MCF-7c3 cells revealed the typical morphological changes of necrosis. Under the same conditions, Hep-2 cells produced chromatine fragmentation characteristic of apoptosis. PPIX accumulation was observed to occur in a perinuclear region in the MCF-7c3 cells; while in Hep-2 cells, it was localized in lysosomes. Different mechanisms of cell death were observed in both cell lines, depending on the different intracellular localization of PPIX.
Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.
Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu
2014-01-01
Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.
Computing Visitors who do not need a HEP linux account Visitors with laptops can use wireless network HEP linux account Step 1: Click Here for New Account Application After submitting the application, you
HEP Community White Paper on Software Trigger and Event Reconstruction: Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Johannes; et al.
Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less
HEP Community White Paper on Software Trigger and Event Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Johannes; et al.
Realizing the physics programs of the planned and upgraded high-energy physics (HEP) experiments over the next 10 years will require the HEP community to address a number of challenges in the area of software and computing. For this reason, the HEP software community has engaged in a planning process over the past two years, with the objective of identifying and prioritizing the research and development required to enable the next generation of HEP detectors to fulfill their full physics potential. The aim is to produce a Community White Paper which will describe the community strategy and a roadmap for softwaremore » and computing research and development in HEP for the 2020s. The topics of event reconstruction and software triggers were considered by a joint working group and are summarized together in this document.« less
Zhao, Jinyan; Chen, Xuzheng; Lin, Wei; Wu, Guangwen; Zhuang, Qunchuan; Zhong, Xiaoyong; Hong, Zhenfeng; Peng, Jun
2013-03-01
The aim of this study was to evaluate the therapeutic efficacy of Rubus aleaefolius Poir total alkaloids (TARAP) against hepatocellular carcinoma growth in vivo and in vitro, and to investigate the possible molecular mechanisms mediating its biological activity. Nude mice were implanted with HepG2 human hepatocellular carcinoma cells and fed with vehicle (physiological saline) or 3 g/kg/d dose of TARAP, 5 days per week, for 21 days. The in vivo efficacy of TARAP against tumor growth was investigated by evaluating its effect on tumor volume and tumor weight in mice with HCC xenografts and its adverse effect was determined by measuring the body weight gain. The in vitro effect of TARAP on the viability of HepG2 cells was determined by MTT assay. HepG2 cell morphology was observed via phase-contrast microscopy. Apoptosis in tumor tissues or in HepG2 cells was analyzed by TUNEL assay or FACS analysis with Annexin V/PI, respectively. The loss of mitochondrial membrane potential in HepG2 cells was determined via JC-1 staining followed by FACS analysis. Activation of caspase-9 and -3 in HepG2 cells was examined by a colorimetric assay. The mRNA and protein expression of Bcl-2 and Bax in tumor tissues were measured by RT-PCR and immunohistochemistry. TARAP reduced tumor volume and tumor weight, but had no effect on the body weight gain in HCC mice. TARAP decreased the viability of HepG2 cells and induced cell morphological changes in vitro in a dose- and time-dependent manner. In addition, TARAP induced apoptosis both in tumor tissues and in HepG2 cells. Moreover, TARAP treatment resulted in the collapse of mitochondrial membrane potential in HepG2 cells, as well as the activation of caspase-9 and -3. Furthermore, administration of TARAP increased the pro-apoptotic Bax/Bcl-2 ratio in HCC mouse tumors, at both transcriptional and translational levels. TARAP inhibits hepatocellular carcinoma growth both in vivo and in vitro probably through the activation of mitochondrial-dependent apoptosis, which may, in part, explain its anticancer activity. These results suggest that total alkaloids in Rubus aleaefolius Poir may be a potential novel therapeutic agent for the treatment of hepatocellular carcinoma and other cancers.
Li, Yu; Luo, Xin-Xin; Yan, Feng-Dong; Wei, Zhang-Bin; Tu, Jun
2017-05-01
To observe the anti-hyperglycemic effect of Puerariae Lobatae Radix in hepatocyte insulin resistance(IR) models, and investigate its preliminary molecular mechanism. IR-HepG2 cell model was stably established with 1×10-9 mol•L⁻¹ insulin plus 3.75×10-6 mol•L-1 dexamethasone treatment for 48 h according to optimized protocol in our research group. After IR-HepG2 cells were treated with different concentrations(5%,10% and 15%) of Puerariae Lobatae Radix-containing serum, cell viability was detected by CCK-8 assay; the glucose consumptions in IR-HepG2 cells were separately detected at different time points (12, 15, 18, 21, 24, 30, 36 h) by using glucose oxidase method; intracellular glycogen content was detected by anthrone method; and the protein expression levels of leptin receptor (Ob-R), insulin receptor substrate-2 (IRS2), glucose transporter 1(GLUT1) and GLUT2 were detected by Western blot assay. The results showed that Puerariae Lobatae Radix-containing serum (5%, 10% and 15%) had no significant effect on IR-HepG2 cell viability; 5% and 10% Puerariae Lobatae Radix-containing serum significantly increased glucose consumption of IR-HepG2 cells (P<0.01) at 18, 21 and 24 h; 15% Puerariae Lobatae Radix-containing serum elevated the glucose consumption of IR-HepG2 cells at 15 h (P<0.05), and significantly elevated the glucose consumption at 18, 21, 24 and 30 h (P<0.01) in a dose-dependent manner. The optimized time of anti-hyperglycemic effect was defined as 24 h, and further study showed that Puerariae Lobatae Radix-containing serum could increase intracellular glycogen content after 24 h treatment (P<0.01), and up-regulate IRS2, Ob-R, GLUT1 and GLUT2 protein expression levels. Our results indicated that Puerariae Lobatae Radix-containing serum could achieve the anti-hyperglycemic effect through important PI3K/PDK signaling pathway partially by up-regulating the expression levels of Ob-R and IRS2, GLUT1 and GLUT2 in IR-HepG2 cells, accelerating the glucose transport into hepatocytes and increasing hepatic glycogen synthesis to enhance the anti-hyperglycemic effect of IR-HepG2 cells. Copyright© by the Chinese Pharmaceutical Association.
Shao, Fangyu; Lv, Mei; Zheng, Yuanyuan; Jiang, Junshu; Wang, Yue; Lv, Li; Wang, Jihong
2015-12-01
The objective of this study is to investigate the antiproliferative activity and mechanism of integrin-binding rLj-RGD4 in a Hep-2 human laryngeal carcinoma-bearing nude mouse model. Human laryngeal squamous carcinoma cells (Hep-2) were inoculated subcutaneously into the axilla of nude mice to generate a Hep-2 human laryngeal carcinoma-bearing nude mouse model. When the Hep-2 xenograft model was successfully established, the animals were randomly separated into five groups. Three groups were treated with different dosages of rLj-RGD4. Cisplatin was administered to the positive control group, and normal saline (NaCl) was administered to the negative control group for 3 weeks. The body weights and the survival of the nude mice were evaluated, and the volumes and weights of the solid tumours were measured. The mechanism underlying rLj-RGD4 inhibition of tumour growth in transplanted Hep-2 human laryngeal carcinoma-bearing nude mice was evaluated by haematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL), measurement of intratumoural microvessel density (MVD), Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The tumour volumes and weights of the treatment groups were reduced compared with the model group, and survival times were improved by rLj-RGD4 treatment in Hep-2 human laryngeal carcinoma-bearing nude mice. The number of apoptotic Hep-2 human cells and intratumoural MVD significantly decreased after the administration of rLj-RGD4. In the xenograft tissue of animals treated with rLj-RGD4, FAK, PI3K, and Akt expression was unaltered, whereas P-FAK, P-PI3K, Bcl-2, P-Akt, and VEGF levels were down-regulated. In addition, activated caspase-3, activated caspase-9, and Bax levels were up-regulated. rLj-RGD4 exhibits potent in vivo activity and inhibits the growth of transplanted Hep-2 human laryngeal carcinoma cells in a nude mouse model. Thus, these results indicate that the recombinant RGD toxin protein rLj-RGD4 may serve as a potent clinical therapy for human laryngeal squamous carcinoma. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
USDA-ARS?s Scientific Manuscript database
In vitro cancer models have been used to study the effect of relatively high concentrations (>200 ug/ml) of phenolic plant extracts upon cell proliferation. In this study we report that the treatment of human hepatocarcinoma HepG2 cells with lower concentrations of blueberry phenolic extract (6.5-10...
Xiang, Jianfeng; Xiang, Yanjie; Lin, Shengming; Xin, Dongwei; Liu, Xiaoyu; Weng, Lingling; Chen, Tao; Zhang, Minguang
2014-04-01
Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies in the world whose chemoprevention became increasingly important in HCC treatment. Although the anticancer effects of asparagus constituents have been investigated in several cancers, its effects on hepatocellular carcinoma have not been fully studied. In this study, we investigated the anticancer effects of the deproteinized asparagus polysaccharide on the hepatocellular carcinoma cells using the in vitro and in vivo experimental model. Our data showed that deproteinized asparagus polysaccharide might act as an effective inhibitor on cell growth in vitro and in vivo and exert potent selective cytotoxicity against human hepatocellular carcinoma Hep3B and HepG2 cells. Further study showed that it could potently induce cell apoptosis and G2/M cell cycle arrest in the more sensitive Hep3B and HepG2 cell lines. Moreover, deproteinized asparagus polysaccharide potentiated the effects of mitomycin both in vitro and in vivo. Mechanistic studies revealed that deproteinized asparagus polysaccharide might exert its activity through an apoptosis-associated pathway by modulating the expression of Bax, Bcl-2, and caspase-3. In conclusion, deproteinized asparagus polysaccharide exhibited significant anticancer activity against hepatocellular carcinoma cells and could sensitize the tumoricidal effects of mitomycin, indicating that it is a potential therapeutic agent (or chemosensitizer) for liver cancer therapy.
Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe
2006-05-01
Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.
Wu, Shu-Jing; Ng, Lean-Teik; Lin, Doung-Liang; Huang, Shan-Ney; Wang, Shyh-Shyan; Lin, Chun-Ching
2004-11-25
Physalis species is a popular folk medicine used for treating cancer, leukemia, hepatitis and other diseases. Studies have shown that the ethanol extract of Physalis peruviana (EEPP) inhibits growth and induces apoptotic death of human Hep G2 cells in culture, whereas proliferation of the mouse BALB/C normal liver cells was not affected. In this study, we performed detailed studies to define the molecular mechanism of EEPP-induced apoptosis in Hep G2 cells. The results further confirmed that EEPP inhibited cell proliferation in a dose- and time-dependent manner. At 50 microg/ml, EEPP significantly increased the accumulation of the sub-G1 peak (hypoploid) and the portion of apoptotic annexin V positive cells. EEPP was found to trigger apoptosis through the release of cytochrome c, Smac/DIABLO and Omi/HtrA2 from mitochondria to cytosol and consequently resulted in caspase-3 activation. Pre-treatment with a general caspase inhibitor (z-VAD-fmk) prevented cytochrome c release. After 48 h of EEPP treatment, the apoptosis of Hep G2 cells was found to associate with an elevated p53, and CD95 and CD95L proteins expression. Furthermore, a marked down-regulation of the expression of the Bcl-2, Bcl-XL and XIAP, and up-regulation of the Bax and Bad proteins were noted. Taken together, the present results suggest that EEPP-induced Hep G2 cell apoptosis was possibly mediated through the CD95/CD95L system and the mitochondrial signaling transduction pathway.
Hong, Heeok; An, Jeong Cheol; de La Cruz, Joseph F.; Hwang, Seong-Gu
2017-01-01
A number of diverse studies have reported the anticancer properties of Cnidium officinale Makino (CO). However, the apoptotic effect of this traditional medicinal herb in human hepatocellular carcinoma cells (HepG2) remains to be elucidated. Therefore, the present study investigated the ability of CO to reduce cell viability through apoptotic pathways. Cell viability was determined using the 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay. CO extract-induced apoptosis in HepG2 cells was assessed by Hoechst 33258 staining. The cell cycle was monitored using fluorescence-activated cell sorting analysis with propidium iodide staining. Furthermore, the present study explored whether various signaling molecules associated with HepG2 cell death were affected by CO treatment, including caspase-3, B-cell lymphoma 2 (Bcl-2), tumor protein p53 (p53), cyclin-dependent kinase 4 (CDK4) and cyclin D. The expression levels of these genes were examined by reverse-transcription polymerase chain reaction and western blotting. The expression levels of caspase-3 and p53 were upregulated with CO extract treatment, whereas those of Bcl-2, CDK4 and cyclin D were significantly downregulated. Cleaved caspase-3 expression was upregulated following treatment with CO extract in a dose-dependent manner. Collectively, the data suggest that CO extract has the potential to induce apoptosis of HepG2 cells and may act by suppressing the cell cycle, which leads to caspase-3 cleavage and p53 signaling. PMID:28966688
Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo.
Jiang, Zhengyu; Zhang, Hongxia; Wang, Ye; Yu, Bin; Wang, Chen; Liu, Changcheng; Lu, Juan; Chen, Fei; Wang, Minjun; Yu, Xinlu; Lin, Jiahao; Pan, Xinghua; Wang, Pin; Zhu, Haiying
2016-02-23
Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1-6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.
Shin, Jeong-Hun; Jun, Seung-lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun
2012-01-01
Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle. PMID:25780653
Park, See-Hyoung; Phuc, Nguyen Minh; Lee, Jongsung; Wu, Zhexue; Kim, Jieun; Kim, Hyunkyoung; Kim, Nam Doo; Lee, Taeho; Song, Kyung-Sik; Liu, Kwang-Hyeon
2017-01-15
Acetylshikonin is one of the biologically active compounds derived from the root of Lithospermum erythrorhizon, a medicinal plant with anti-cancer and anti-inflammation activity. Although there have been a few previous reports demonstrating that acetylshikonin exerts anti-cancer activity in vitro and in vivo, it is still not clear what is the exact molecular target protein of acetylshikonin in cancer cells. The purpose of this study is to evaluate the inhibitory effect of acetylshikonin against CYP2J2 enzyme which is predominantly expressed in human tumor tissues and carcinoma cell lines. The inhibitory effect of acetylshikonin on the activities of CYP2J2-mediated metabolism were investigated using human liver microsomes (HLMs), and its cytotoxicity against human hepatoma HepG2 cells was also evaluated. Astemizole, a representative CYP2J2 probe substrate, was incubated in HLMs in the presence or absence of acetylshikonin. After incubation, the samples were analyzed by liquid chromatography and triple quadrupole mass spectrometry. The anti-cancer activity of acetylshikonin was evaluated on human hepatocellular carcinoma HepG2 cells. WST-1, cell counting, and colony formation assays were further adopted for the estimation of the growth rate of HepG2 cells treated with acetylshikonin. Acetylshikonin inhibited CYP2J2-mediated astemizole O-demethylation activity (K i = 2.1µM) in a noncompetitive manner. The noncompetitive inhibitory effect of acetylshikonin on CYP2J2 enzyme was also demonstrated using this 3D structure, which showed different binding location of astemizole and acetylshikonin in CYP2J2 model. It showed cytotoxic effects against human hepatoma HepG2 cells (IC 50 = 2μM). In addition, acetylshikonin treatment inhibited growth of human hepatocellular carcinoma HepG2 cells leading to apoptosis accompanied with p53, bax, and caspase3 activation as well as bcl2 down-regulation. Taken together, our present study elucidates acetylshikonin displays the inhibitory effects against CYP2J2 in HLMs and anti-cancer activity in human hepatocellular carcinoma HepG2 cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Shin, Jeong-Hun; Jun, Seung-Lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun
2012-12-01
This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle () to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. In the sovereign, minister, assistant and courier principle (), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.
The Impact of a Caregiver Health Education Program on Health Care Costs
ERIC Educational Resources Information Center
Toseland, Ronald W.; Smith, Tamara L.
2006-01-01
Objectives: This study examined health care cost outcomes resulting from a health education program (HEP), a social work intervention for spouse caregivers of frail older adults. Method: One-hundred five spouses were recruited and randomly assigned to HEP or usual care (UC). Health care utilization and cost data were collected from the HMO's…
NASA Astrophysics Data System (ADS)
Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier
2012-10-01
The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells. Electronic supplementary information (ESI) available: Additional tables and figures supporting the information presented in the manuscript. See DOI: 10.1039/c2nr31785k
Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang
2015-11-01
Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2 cells. Notch signalling pathway is a potentially important mechanism in the regulation of metformin on macrophage polarization and the subsequent change of hepatoma cells. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, Alba, E-mail: amota@iib.uam.es; Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es; Herránz, Sandra, E-mail: sherranz@isciii.es
Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H hadmore » no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced TRAIL-induced apoptosis through upregulation of death receptors.« less
Evaluation of protective effect of amifostine on dacarbazine induced genotoxicity.
Etebari, M; Jafarian-Dehkordi, A; Lame, V
2015-01-01
Anticancer therapy with alkylating agents has been used for many years. Dacarbazine (DTIC) as an alkylating agent is used alone or in combination with other chemotherapy drugs. In order to inhibit the formation of secondary cancers resulting from chemotherapy with DTIC, preventional strategies is necessary. The present study was undertaken to evaluate the genoprotective effect of amifostine on the genotoxic effects of DTIC in cell culture condition. To determine the optimum genotoxic concentration of DTIC, HepG2 cells were incubated with various DTIC concentrations including 5, 10 and 20 μg/ml for 2 h and the genotoxic effects were evaluated by the comet assay. The result of this part of the study showed that incubation of HepG2 cells with DTIC at 5 μg/ml was sufficient to produce genotoxic effect. In order to determine the protective effects of amifostine on genotoxicity induced by DTIC, HepG2 cells were incubated with different concentrations of amifostine (2, 3 and 5 mg/ml) for 1 h which was followed by incubation with DTIC at 5 μg/ml for 2 h. One hour incubation of cells with different concentrations of amifostine before incubation with DITC indicated that at least 5 mg/ml concentration of amifostine can prevent genotoxic effects induced by DTIC on HepG2 cells under described condition. In conclusion amifostine could prevent DNA damage induced by DTIC on HepG2 cells.
Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus
2006-12-21
We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.
Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus
2007-01-01
We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498
Wolf, Steven L; Sahu, Komal; Bay, R Curtis; Buchanan, Sharon; Reiss, Aimee; Linder, Susan; Rosenfeldt, Anson; Alberts, Jay
2015-01-01
Geographical location, socioeconomic status, and logistics surrounding transportation impede access of poststroke individuals to comprehensive rehabilitative services. Robotic therapy may enhance telerehabilitation by delivering consistent and state-of-the art therapy while allowing remote monitoring and adjusting therapy for underserved populations. The Hand Mentor Pro (HMP) was incorporated within a home exercise program (HEP) to improve upper-extremity (UE) functional capabilities poststroke. To determine the efficacy of a home-based telemonitored robotic-assisted therapy as part of a HEP compared with a dose-matched HEP-only intervention among individuals less than 6 months poststroke and characterized as underserved. In this prospective, single-blinded, multisite, randomized controlled trial, 99 hemiparetic participants with limited access to UE rehabilitation were randomized to either (1) the experimental group, which received combined HEP and HMP for 3 h/d ×5 days ×8 weeks, or (2) the control group, which received HEP only at an identical dosage. Weekly communication between the supervising therapist and participant promoted compliance and progression of the HEP and HMP prescription. The Action Research Arm Test and Wolf Motor Function Test along with the Fugl-Meyer Assessment (UE) were primary and secondary outcome measures, respectively, undertaken before and after the interventions. Both groups demonstrated improvement across all UE outcomes. Robotic + HEP and HEP only were both effectively delivered remotely. There was no difference between groups in change in motor function over time. Additional research is necessary to determine the appropriate dosage of HMP and HEP. © The Author(s) 2015.
Wolf, Steven L.; Sahu, Komal; Bay, R. Curtis; Buchanan, Sharon; Reiss, Aimee; Linder, Susan; Rosenfeldt, Anson; Alberts, Jay
2015-01-01
Background Geographical location, socioeconomic status and logistics surrounding transportation impede access of post-stroke individuals to comprehensive rehabilitative services. Robotic therapy may enhance telerehabilitation by delivering consistent and state-of-the art therapy while allowing for the remote monitoring and adjusting therapy for underserved populations. The Hand Mentor Pro (HMP), was incorporated within a home exercise program (HEP) to improve upper extremity functional capabilities post-stroke. Objective To determine the efficacy of a home-based telemonitored robotic-assisted therapy as part of a HEP compared with a dose-matched HEP-only intervention among individuals less than 6 months post-stroke and characterized as underserved. Methods In this prospective, single-blinded, multisite, randomized controlled trial, 99 hemiparetic participants with limited access to upper extremity rehabilitation were randomized to the: 1) experimental group which received combined HEP and HMP for 3 hrs/day x 5 days x 8 weeks; or 2) control group which received HEP only at an identical dosage. Weekly communication between the supervising therapist and participant promoted compliance and progression of the HEP and HMP prescription. The Action Research Arm Test and Wolf Motor Function Test along with the Fugl Meyer Assessment (upper extremity) were primary and secondary outcome measures respectively, undertaken before and after the interventions. Results Both groups demonstrated improvement across all upper extremity outcomes. Conclusions Robotic+HEP and HEP only were both effectively delivered remotely. There was no difference between groups in change in motor function over time, additional research is necessary to determine appropriate dosage of HMP and HEP. PMID:25782693
Nho, Kyoung Jin; Chun, Jin Mi; Kim, Ho Kyoung
2012-01-01
Dianthus chinensis L. is used to treat various diseases including cancer; however, the molecular mechanism by which the ethanol extract of Dianthus chinensis L. (EDCL) induces apoptosis is unknown. In this study, the apoptotic effects of EDCL were investigated in human HepG2 hepatocellular carcinoma cells. Treatment with EDCL significantly inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. This induction was associated with chromatin condensation, activation of caspases, and cleavage of poly (ADP-ribose) polymerase protein. However, apoptosis induced by EDCL was attenuated by caspase inhibitor, indicating an important role for caspases in EDCL responses. Furthermore, EDCL did not alter the expression of bax in HepG2 cells but did selectively downregulate the expression of bcl-2 and bcl-xl, resulting in an increase in the ratio of bax:bcl-2 and bax:bcl-xl. These results support a mechanism whereby EDCL induces apoptosis through the mitochondrial pathway and caspase activation in HepG2 cells. PMID:22645629
Gao, Jing; Ruan, Xinyong; Pan, Xinliang; Xu, Fenglei; Lei, Dapeng; Liu, Dayu
2005-08-01
To study the effect of sodium phenylbutyrate when it combined with agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro. MTT were used to examine the growth inhibition of Hep-2 cells treated by the combination of PB with 5-FU or CDDP in vitro. When 5-FU or CDDP combined with PB respectively, there was significantly difference between every two dose groups of the two agents or every dose group and control group ( P < 0.05). When the dosage of 5-FU or CDDP was definition,there was significantly difference between every two dose groups of PB ( P < 0.05). PB could enhance the cytotoxic effects of agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro, which showed the possibility in reinforcement the treatment effect and reduction the occurrence of the complication and toxic reaction of induction chemotherapy on laryngeal carcinoma.
Tripterygium regelii decreases the biosynthesis of triacylglycerol and cholesterol in HepG2 cells.
Kang, Myung-Ji; Kwon, Eun-Bin; Yuk, Heung Joo; Ryu, Hyung Won; Kim, Soo-Yeon; Lee, Mi-Kyeong; Moon, Dong-Oh; Lee, Su Ui; Oh, Sei-Ryang; Lee, Hyun-Sun; Kim, Mun-Ock
2017-12-01
In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.
Jia, Xiaofang; Chen, Jieliang; Megger, Dominik A.; Zhang, Xiaonan; Kozlowski, Maya; Zhang, Lijun; Fang, Zhong; Li, Jin; Chu, Qiaofang; Wu, Min; Li, Yaming; Sitek, Barbara; Yuan, Zhenghong
2017-01-01
Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30–150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox−)-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox+)-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox−)-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox−)-exo had enhanced proteolytic activity compared with HepAD38 (dox+)-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox−)-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox+)-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome subunit proteins by HepAD38 (dox−)-exo might modulate the production of pro-inflammatory molecules in the recipient monocytes. These results revealed the composition and potential function of exosomes produced during HBV replication, thus providing a new perspective on the role of exosomes in HBV-host interaction. PMID:28242843
Jia, Xiaofang; Chen, Jieliang; Megger, Dominik A; Zhang, Xiaonan; Kozlowski, Maya; Zhang, Lijun; Fang, Zhong; Li, Jin; Chu, Qiaofang; Wu, Min; Li, Yaming; Sitek, Barbara; Yuan, Zhenghong
2017-04-01
Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30-150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox - )-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox + )-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox - )-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox - )-exo had enhanced proteolytic activity compared with HepAD38 (dox + )-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox - )-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox + )-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome subunit proteins by HepAD38 (dox - )-exo might modulate the production of pro-inflammatory molecules in the recipient monocytes. These results revealed the composition and potential function of exosomes produced during HBV replication, thus providing a new perspective on the role of exosomes in HBV-host interaction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Dexamethasone impairs hypoxia-inducible factor-1 function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, A.E.; Huck, G.; Stiehl, D.P.
2008-07-25
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of {alpha}- and {beta}-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1{alpha} levels in the cytosol of HepG2 cells, while nuclear HIF-1{alpha} levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in amore » reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients.« less
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.
2011-12-01
The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.
Anti-hepatocarcinoma effects of resveratrol nanoethosomes against human HepG2 cells
NASA Astrophysics Data System (ADS)
Meng, Xiang-Ping; Zhang, Zhen; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping
2017-02-01
Hepatocarcinoma, a malignant cancer, threaten human life badly. It is a current issue to seek the effective natural remedy from plant to treat cancer due to the resistance of the advanced hepatocarcinoma to chemotherapy. Resveratrol (Res) has been widely investigated with its strong anti-tumor activity. However, its low oral bioavailability restricts its wide application. In this study, we prepared resveratrol nanoethosomes (ResN) via ethanol injection method. The in vitro anti-hepatocarcinoma effects of ResN relative to efficacy of bulk Res were evaluated on proliferation and apoptosis of human HepG2 cells. ResN were spherical vesicles and its particle diameter, zeta potential were (115.8 +/- 1.3) nm and (-12.8 +/- 1.9) mV, respectively. ResN exhibited significant inhibitory effects against human HepG2 cells by MTT assay, and the IC50 value was 49.2 μg/ml (105.4 μg/ml of Res bulk solution). By flow cytometry assay, there was an increase in G2/M phase cells treated with ResN. The results demonstrated ResN could effectively block the G2/M phase of HepG2 cells, which can also enhance the inhibitory effect of Res against HepG2 cells.
Role of 6-shogaol in tert -butyl hydroperoxide-induced apoptosis of HepG2 cells.
Kim, Sang Chan; Lee, Jong Rok; Park, Sook Jahr
2014-01-01
The aim of this study was to investigate the protective effects of 6-shogaol on tert-butyl hydroperoxide (tBHP)-induced oxidative stress leading to apoptosis in human hepatoma cell line HepG2. The cells were exposed to tBHP (100 μmol/l) after pretreatment with 6-shogaol (2.5 and 5 μmol/l), and then cell viability was measured. 6-Shogaol fully prevented HepG2 cell death caused by tBHP. Treatment of tBHP resulted in apoptotic cell death as assessed by TUNEL assay and the expression of apoptosis regulator proteins, Bcl-2 family, caspases and cytochrome c. Cells treated with 6-shogaol showed rapid reduction of apoptosis by restoring these markers of apoptotic cells. In addition, 6-shogaol significantly recovered disruption of mitochondrial membrane potential as a start sign of hepatic apoptosis induced by oxidative stress. In line with this observation, antioxidative 6-shogaol inhibited generation of reactive oxygen species and depletion of reduced glutathione in tBHP-stimulated HepG2 cells. Taken together, these results for the first time showed antioxidative and antiapoptotic activities of 6-shogaol in tBHP-treated hepatoma HepG2 cells, suggesting that 6-shogaol could be beneficial in hepatic disorders caused by oxidative stress. © 2014 S. Karger AG, Basel.
Performance of GeantV EM Physics Models
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2017-10-01
The recent progress in parallel hardware architectures with deeper vector pipelines or many-cores technologies brings opportunities for HEP experiments to take advantage of SIMD and SIMT computing models. Launched in 2013, the GeantV project studies performance gains in propagating multiple particles in parallel, improving instruction throughput and data locality in HEP event simulation on modern parallel hardware architecture. Due to the complexity of geometry description and physics algorithms of a typical HEP application, performance analysis is indispensable in identifying factors limiting parallel execution. In this report, we will present design considerations and preliminary computing performance of GeantV physics models on coprocessors (Intel Xeon Phi and NVidia GPUs) as well as on mainstream CPUs.
Yu, Wenzhou; Liu, Dawei; Zheng, Jingshan; Liu, Yanmin; An, Zhijie; Rodewald, Lance; Zhang, Guomin; Su, Qiru; Li, Keli; Xu, Disha; Wang, Fuzhen; Yuan, Ping; Xia, Wei; Ning, Guijun; Zheng, Hui; Chu, Yaozhu; Cui, Jian; Duan, Mengjuan; Hao, Lixin; Zhou, Yuqing; Wu, Zhenhua; Zhang, Xuan; Cui, Fuqiang; Li, Li; Wang, Huaqing
2016-04-01
China reduced hepatitis B virus (HBV) infection by 90% among children under 5 years old with safe and effective hepatitis B vaccines (HepB). In December 2013, this success was threatened by widespread media reports of infant deaths following HepB administration. Seventeen deaths and one case of anaphylactic shock following HBV vaccination had been reported. We conducted a telephone survey to measure parental confidence in HepB in eleven provinces at four points in time; reviewed maternal HBV status and use of HepB for newborns in birth hospitals in eight provinces before and after the event; and monitored coverage with hepatitis B vaccine and other programme vaccines in ten provinces. HepB from the implicated company was suspended during the investigation, which showed that the deaths were not caused by HepB vaccination. Before the event, 85% respondents regarded domestic vaccines as safe, decreasing to 26.7% during the event. During the height of the crisis, 30% of parents reported being hesitant to vaccinate and 18.4% reported they would refuse HepB. Use of HepB in the monitored provinces decreased by 18.6%, from 53 653 doses the week before the event to 43 688 doses during the week that Biokangtai HepB was suspended. Use of HepB within the first day of life decreased by 10% among infants born to HBsAg-negative mothers, and by 6% among infants born to HBsAg-positive mothers. Vaccine refusal and HepB birth dose rates returned to baseline within 2 months; confidence increased, but remained below baseline. The HBV vaccine event resulted in the suspension of a safe vaccine, which was associated with a decline of parental confidence, and refusal of vaccination. Suspension of a vaccine can lead to loss of confidence that is difficult to recover. Timely and credible investigation, accompanied by proactive outreach to stakeholders and the media, may help mitigate negative impact of future coincidental adverse events following immunization. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing
2016-03-01
Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.
Novel Interconnections in Lipid Metabolism Revealed by Overexpression of Sphingomyelin Synthase-1*
Deevska, Gergana M.; Dotson, Patrick P.; Karakashian, Alexander A.; Isaac, Giorgis; Wrona, Mark; Kelly, Samuel B.; Merrill, Alfred H.; Nikolova-Karakashian, Mariana N.
2017-01-01
This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids. PMID:28087695
Weng, Chia-Jui; Wu, Cheng-Feng; Huang, Hsiao-Wen; Ho, Chi-Tang; Yen, Gow-Chin
2010-11-01
Hepatocellular carcinoma is the most common type of liver cancer and is highly metastatic. Metastasis is considered to be the major cause of death in cancer patients. Ginger is a natural dietary rhizome with anti-oxidative, anti-inflammatory, and anti-carcinogenic activities. The aims of this study were to evaluate the anti-invasion activity of 6-shogaol and 6-gingerol, two compounds found in ginger, on hepatoma cells. The migratory and invasive abilities of phorbol 12-myristate 13-acetate (PMA)-treated HepG2 and PMA-untreated Hep3B cells were both reduced in a dose-dependent manner by treatment with 6-shogaol and 6-gingerol. Upon incubation of PMA-treated HepG2 cells and PMA-untreated Hep3B cells with 6-shogaol and 6-gingerol, matrix metalloproteinase (MMP)-9 activity decreased, whereas the expression of tissue inhibitor metalloproteinase protein (TIMP)-1 increased in both cell types. Additionally, urokinase-type plasminogen activator activity was dose-dependently decreased in Hep3B cells after incubation with 6-shogaol for 24 h. Analysis with semi-quantitative reverse transcription-PCR showed that the regulation of MMP-9 by 6-shogaol and 6-gingerol and the regulation of TIMP-1 by 6-shogaol in Hep3B cells may on the transcriptional level. These results suggest that 6-shogaol and 6-gingerol might both exert anti-invasive activity against hepatoma cells through regulation of MMP-9 and TIMP-1 and that 6-shogaol could further regulate urokinase-type plasminogen activity.
TLR3 dsRNA agonist inhibits growth and invasion of HepG2.2.15 HCC cells.
Chen, Li; Xu, Yu-Yin; Zhou, Jia-Ming; Wu, Yuan-Yuan; E, Qun; Zhu, Yuan-Yuan
2012-07-01
Toll-like receptor 3 (TLR3) is a pattern-recognizing receptor that is involved in immune signaling and plays a crucial role in survival by being able to recognize various viral components including double-stranded RNA (dsRNA). TLR3 expression and function in cancer cells are not well understood. In this study, we investigated whether TLR3 agonist dsRNA (BM-06) can inhibit proliferation and invasion, and promote apoptosis in HepG2.2.15 cells. HepG2.2.15 cells secreting hepatitis B virus (HBV) were treated with BM-06 and poly(I:C). Western blot analysis and PCR were employed to determine pharmacodynamic changes in biomarkers relevant to TLR3 signaling. Cell proliferation, invasion and apoptosis were analyzed by CCK-8 assay, transwell assay and flow cytometry. The expression of HBsAg, and HBcAg was observed by immunohistochemistry. Compared with untreated cells, pharmacological NF-κB activity of the TLR3 pathway by BM-06 (1.734-fold) or poly(I:C) (1.377-fold) was induced. By western blot analysis, we found that dsRNA induced TLR3-activated HepG2.2.15 cells which expressed NF-κB levels predominantly in the cytoplasmic fraction but fewer signals in the nucleus. BM-06 inhibited the proliferation, invasion and secretion of HBV, and induced apoptosis in HepG2.2.15 cells. In addition, the antitumor effects of BM-06 were superior to poly(I:C). Pharmacological activation of the TLR3 pathway by BM-06 can inhibit HepG2.2.15 cell growth.
Choi, Yoon-Hee; Lee, Hyun Sook; Chung, Cha-Kwon
2017-01-01
BACKGROUND/OBJECTIVE Although Angelica keiskei (AK) has widely been utilized for the purpose of general health improvement among Asian, its functionality and mechanism of action. The aim of this study was to determine the protective effect of ethanol extract of AK (AK-Ex) on acute hepatotoxicity induced by acetaminophen (AAP) in HepG2 human hepatocellular liver carcinoma cells and HepaRG human hepatic progenitor cells. MATERIALS/METHODS AK-Ex was prepared HepG2 and HepaRG cells were cultured with various concentrations and 30 mM AAP. The protective effects of AK-Ex against AAP-induced hepatotoxicity in HepG2 and HepaRG cells were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, lactate dehydrogenase (LDH) assay, flow cytometry, and Western blotting. RESULTS AK-Ex, when administered prior to AAP, increased cell growth and decreased leakage of LDH in a dose-dependent manner in HepG2 and HepaRG cells against AAP-induced hepatotoxicity. AK-Ex increased the level of Bcl-2 and decreased the levels of Bax, Bok and Bik decreased the permeability of the mitochondrial membrane in HepG2 cells intoxicated with AAP. AK-Ex decreased the cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of caspase-9, -7, and -3. CONCLUSIONS These results demonstrate that AK-Ex downregulates apoptosis via intrinsic and extrinsic pathways against AAP-induced hepatotoxicity. We suggest that AK could be a useful preventive agent against AAP-induced apoptosis in hepatocytes. PMID:28386382
Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying
2015-01-01
AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718
Future HEP Accelerators: The US Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pushpalatha; Shiltsev, Vladimir
2015-11-02
Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN throughmore » its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.« less
Dynamic provisioning of a HEP computing infrastructure on a shared hybrid HPC system
NASA Astrophysics Data System (ADS)
Meier, Konrad; Fleig, Georg; Hauth, Thomas; Janczyk, Michael; Quast, Günter; von Suchodoletz, Dirk; Wiebelt, Bernd
2016-10-01
Experiments in high-energy physics (HEP) rely on elaborate hardware, software and computing systems to sustain the high data rates necessary to study rare physics processes. The Institut fr Experimentelle Kernphysik (EKP) at KIT is a member of the CMS and Belle II experiments, located at the LHC and the Super-KEKB accelerators, respectively. These detectors share the requirement, that enormous amounts of measurement data must be processed and analyzed and a comparable amount of simulated events is required to compare experimental results with theoretical predictions. Classical HEP computing centers are dedicated sites which support multiple experiments and have the required software pre-installed. Nowadays, funding agencies encourage research groups to participate in shared HPC cluster models, where scientist from different domains use the same hardware to increase synergies. This shared usage proves to be challenging for HEP groups, due to their specialized software setup which includes a custom OS (often Scientific Linux), libraries and applications. To overcome this hurdle, the EKP and data center team of the University of Freiburg have developed a system to enable the HEP use case on a shared HPC cluster. To achieve this, an OpenStack-based virtualization layer is installed on top of a bare-metal cluster. While other user groups can run their batch jobs via the Moab workload manager directly on bare-metal, HEP users can request virtual machines with a specialized machine image which contains a dedicated operating system and software stack. In contrast to similar installations, in this hybrid setup, no static partitioning of the cluster into a physical and virtualized segment is required. As a unique feature, the placement of the virtual machine on the cluster nodes is scheduled by Moab and the job lifetime is coupled to the lifetime of the virtual machine. This allows for a seamless integration with the jobs sent by other user groups and honors the fairshare policies of the cluster. The developed thin integration layer between OpenStack and Moab can be adapted to other batch servers and virtualization systems, making the concept also applicable for other cluster operators. This contribution will report on the concept and implementation of an OpenStack-virtualized cluster used for HEP workflows. While the full cluster will be installed in spring 2016, a test-bed setup with 800 cores has been used to study the overall system performance and dedicated HEP jobs were run in a virtualized environment over many weeks. Furthermore, the dynamic integration of the virtualized worker nodes, depending on the workload at the institute's computing system, will be described.
Patel, Minal K; Capeding, Rosario Z; Ducusin, Joyce U; de Quiroz Castro, Maricel; Garcia, Luzviminda C; Hennessey, Karen
2014-09-03
Hepatitis B vaccination in the Philippines was introduced in 1992 to reduce the high burden of chronic hepatitis B virus (HBV) infection in the population; in 2007, a birth dose (HepB-BD) was introduced to decrease perinatal HBV transmission. Timely HepB-BD coverage, defined as doses given within 24h of birth, was 40% nationally in 2011. A first step in improving timely HepB-BD coverage is to ensure that all newborns born in health facilities are vaccinated. In order to assess ways of improving the Philippines' HepB-BD program, we evaluated knowledge, attitudes, and practices surrounding HepB-BD administration in health facilities. Teams visited selected government clinics, government hospitals, and private hospitals in regions with low reported HepB-BD coverage and interviewed immunization and maternity staff. HepB-BD coverage was calculated in each facility for a 3-month period in 2011. Of the 142 health facilities visited, 12 (8%) did not provide HepB-BD; seven were private hospitals and five were government hospitals. Median timely HepB-BD coverage was 90% (IQR 80%-100%) among government clinics, 87% (IQR 50%-97%) among government hospitals, and 50% (IQR 0%-90%) among private hospitals (p=0.02). The private hospitals were least likely to receive supervision (53% vs. 6%-31%, p=0.0005) and to report vaccination data to the national Expanded Programme on Immunization (36% vs. 96%-100%, p<0.0001). Private sector hospitals in the Philippines, which deliver 18% of newborns, had the lowest timely HepB-BD coverage. Multiple avenues exist to engage the private sector in hepatitis B prevention including through existing laws, newborn health initiatives, hospital accreditation processes, and raising awareness of the government's free vaccine program. Copyright © 2013 World Health Organization (WHO). Published by Elsevier Ltd.. All rights reserved.
Chen, Yongdi; Lv, Huakun; Gu, Hua; Cui, Fujiang; Wang, Fuzhen; Yao, Jun; Xia, Shichang; Liang, Xiaofeng
2014-01-01
The changes in lgG antibody levels to hepatitis B surface antigen (HBsAg) and in antibody to HBsAg (anti-HBs) seroconversion rates due to different dosages of hepatitis B vaccine (HepB) were compared in 2106 children. Children who had been previously vaccinated as infants with HepB were revaccinated at 5–15 y of age, after which the antibody titers were determined. After the first booster dose, the anti-HBs seroconversion rate (defined as an anti-HBs ≥10 mIU/ml) with 10 μg of HepB (93.6%) was significantly greater than the rate with 5 µg of HepB (90.3%) (P < 0.05); the anti-HBs seroconversion rate in 10–15-y-old boys vaccinated with 10 μg of HepB (90.9%) was significantly greater than the rate with 5 µg of HepB (84.3%) (P < 0.05). The anti-HBs seroconversion rates after the third booster dose with 5 or 10 μg of HepB were greater than those after the first booster dose (99.6% and 99.7%, vs. 90.3% and 93.6%, P < 0.05); as was the corresponding GMTs (658 ± 4 mIU/ml and 2599 ± 3 mIU/ml, vs. 255 ± 11 mIU/ml and 877 ± 11 mIU/ml [P < 0.05]). The immunization effects of booster vaccination with 3 doses of HepB with 5 or 10 µg are effective; a single booster dose with 10 µg of HepB for 10–15-y-old boys and with 5 or 10 µg of HepB for 5–9 y old boys and for 5–15-y-old girls are effective in generating protective antibody against HBV; however, for anti-HBs-negative children after a single dose of booster, 3 doses are needed. PMID:24192508
Chen, Yongdi; Lv, Huakun; Gu, Hua; Cui, Fujiang; Wang, Fuzhen; Yao, Jun; Xia, Shichang; Liang, Xiaofeng
2014-01-01
The changes in lgG antibody levels to hepatitis B surface antigen (HBsAg) and in antibody to HBsAg (anti-HBs) seroconversion rates due to different dosages of hepatitis B vaccine (HepB) were compared in 2106 children. Children who had been previously vaccinated as infants with HepB were revaccinated at 5-15 y of age, after which the antibody titers were determined. After the first booster dose, the anti-HBs seroconversion rate (defined as an anti-HBs ≥10 mIU/ml) with 10 μg of HepB (93.6%) was significantly greater than the rate with 5 µg of HepB (90.3%) (P<0.05); the anti-HBs seroconversion rate in 10-15-y-old boys vaccinated with 10 μg of HepB (90.9%) was significantly greater than the rate with 5 µg of HepB (84.3%) (P<0.05). The anti-HBs seroconversion rates after the third booster dose with 5 or 10 μg of HepB were greater than those after the first booster dose (99.6% and 99.7%, vs. 90.3% and 93.6%, P<0.05); as was the corresponding GMTs (658 ± 4 mIU/ml and 2599 ± 3 mIU/ml, vs. 255 ± 11 mIU/ml and 877 ± 11 mIU/ml [P<0.05]). The immunization effects of booster vaccination with 3 doses of HepB with 5 or 10 µg are effective; a single booster dose with 10 µg of HepB for 10-15-y-old boys and with 5 or 10 µg of HepB for 5-9 y old boys and for 5-15-y-old girls are effective in generating protective antibody against HBV; however, for anti-HBs-negative children after a single dose of booster, 3 doses are needed.
[The role of epidemiologic surveillance of migrants in the system of poliomyelitis control].
Romanenkova, N I; Bichurina, M A; Rozaeva, N R; Pogrebnaia, T N
2012-01-01
Analysis of results of virological study of material from children of migrants and evaluation of intensity of immunity against polioviruses in these children. 1668 feces samples from patients with acute flaccid paralysis and contact individuals and 479 feces samples from healthy children from families of migrants, as well as 1012 blood sera of children aged 3 - 4 and 14 - 15 years living in the same territory of Russia, and 169 blood sera of children of migrants were studied. Polioviruses and non-polio enteroviruses were isolated by standard procedures recommended by WHO in 3 cell cultures - RD, L20B and Hep-2. Virus identification was carried out by microneutralization test with rabbit antisera against poliomyelitisvirus, RIVM (Bilthoven, Netherlands). For intra-type differentiation EIA and PCRwere used. Antibody titers were determined in microneutralization reaction with reference poliovirus vaccines strains in Hep-2 cell culture. The frequency of detection of polioviruses in children of migrants was significantly higher than in patients with acute flaccid paralysis. In a larger percent of cases children of migrants did not have protective antibody titers against polioviruses of all the 3 serotypes. Migrants as a significant source of poliovirus detection may be an indicator group for detection of signs of unfavorable epidemic situation. Based on the results of epidemiologic surveillance of migrants the fact of import of wild poliovirus into North-West of Russia with the absence of poliomyelitis was proven, which confirms an important role of this form of monitoring in the system of poliomyelitis control.
Liu, Feng; Du, JinTao; Xian, Junming; Liu, Yafeng; Liu, Shixi; Lin, Yan
2015-01-01
The tumor suppressor p14(ARF) and proto-oncogene epidermal growth factor receptor (EGFR) play important roles in the development of laryngeal squamous cell carcinoma (LSCC). This study was aimed to determine whether combining recombinant p14(ARF) with antisense complementary DNA of EGFR could improve the therapeutic effectiveness in LSCC. After human larynx cancer cells (Hep-2) were infected with recombinant adenoviruses (Ad-p14(ARF) and Ad-antisense EGFR) together or alone in vitro, the proliferation and cell cycle distribution of Hep-2 cells were detected by MTT assay and flow cytometer analysis, respectively. Furthermore, the antitumor effects of recombinant adenoviruses together or alone on Hep-2 xenografts were examined in vivo. The levels of p14(ARF) and EGFR expressed in Hep-2 cells and xenografts were determined by western blot assay. Ad-p14(ARF) combining with Ad-antisense EGFR markedly inhibited the Hep-2 proliferation compared with alone (P=0.001, P=0.002 respectively). Combination of Ad-p14(ARF) and Ad-antisense EGFR led to the proportion of Hep-2 cells in G0/G1 phases increased by up to 86.9%. The down-expression of EGFR protein and overexpression of p14(ARF) protein were observed in vitro and in vivo, and this effect was preserved when Ad-p14(ARF) was combined with Ad-antisense EGFR. Besides, Ad-p14(ARF) plus Ad-antisense EGFR significantly (P<0.05) increased the antitumor activity against Hep-2 tumor xenografts comparing with Ad-p14(ARF) or Ad-antisense EGFR alone. Combination Ad-p14(ARF) with Ad-antisense EGFR significantly increased the antitumor responses in LSCC. An effectively potential gene therapy to prevent proliferation of LSCC was provided. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Huihui; Fan, Yichang; Yang, Fan; Zhao, Lei; Cao, Bangwei
2018-07-01
As a novel vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor, Apatinib has exhibited antitumor effects in a variety of solid tumors. Extracts of Chinese herbal medicines have emerged as a promising alternative option to increase the sensitivity of patients to chemotherapeutics while alleviating side effects. The present study aimed to investigate the effects of Apatinib and the traditional Chinese herb Tripterine on the proliferation, invasion and apoptosis of human hepatoma Hep3B cells. The expression of VEGFR-2 in Hep3B cells was detected by western blotting and immunofluorescence assays. Hep3B cells were then divided into four different groups: Control group, Apatinib group, Tripterine group and Apatinib plus Tripterine group. The proliferation, invasion and apoptosis of these four groups of Hep3B cells were assessed by MTS, wound healing and Transwell assays, and flow cytometry, respectively. Finally, the levels of the proliferation-associated proteins phosphorylated protein kinase B (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) and the apoptosis-associated proteins cleaved Caspase-3 and B-cell lymphoma-associated X protein (Bax) were detected by western blotting. The proliferation, migration and invasion of Hep3B cells were significantly inhibited by Apatinib and Tripterine, compared with the control group (P<0.01). The inhibitory effect of the combination group was markedly stronger than that of the Apatinib and Tripterine groups. The downregulation of p-Akt and p-ERK induced by Apatinib and Tripterine was further inhibited in the combination group (P<0.05), and the expression levels of Caspase-3 and Bax were also significantly increased in the combination group (P<0.05). The combination of Apatinib and Tripterine significantly inhibited the proliferation, migration and invasion ability and promoted the apoptosis of Hep3B cells by downregulating the expression of p-Akt and p-ERK, and upregulating the expression of Caspase-3 and Bax.
Zinc affects miR-548n, SMAD4, SMAD5 expression in HepG2 hepatocyte and HEp-2 lung cell lines.
Grider, Arthur; Lewis, Richard D; Laing, Emma M; Bakre, Abhijeet A; Tripp, Ralph A
2015-12-01
MicroRNAs affect disease progression and nutrient status. miR-548n increased 57 % in Zn supplemented plasma from adolescent females (ages 9 to 13 years). The purpose of this study was to determine the effects of Zn concentration in cell culture on the expression of miR-548n, SMAD4 and SMAD5 in hepatocyte (HepG2) and lung epithelium (HEp-2) cell lines. Cells were incubated for 48 h in media containing 10 % Chelex 100-treated FBS (0 μM Zn), or with 15 or 50 μM Zn, before isolation of total RNA and cDNA. Expression of miR-548n, SMAD4 and SMAD5 was measured by qPCR. The ΔΔCT method was used to calculate the fold-change, and 15 µM expression levels were used as reference values. HepG2 miR-548n expression decreased 5-fold, and SMAD4 expression increased 4-fold in the absence of Zn, while HEp-2 miR-548n expression increased 10.5-fold, and SMAD5 expression increased 20-fold in the absence of Zn. HEp-2 miR-548n expression increased 23-fold, while SMAD4 expression decreased twofold, in 50 μM Zn-treated cells. However, SMAD4 and SMAD5 expression was not correlated. These data indicate that miR-548n expression is in part regulated by Zn in a cell-specific manner. SMAD4 and SMAD5 are genes in the TGF-β/BMP signaling pathway, and SMAD5 is a putative target for miR-548n; Zn participates in regulating this pathway through controlling SMAD4 and SMAD5 expression. However, SMAD5 expression may be more sensitive to Zn than to miR-548n since SMAD5 expression was not inversely correlated with miR-548n expression.
ASCR/HEP Exascale Requirements Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Roser, Robert; Gerber, Richard
This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, tomore » store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less
Cheng, Jai-Hong; Tsai, Chia-Ling; Lien, Yi-Yang; Lee, Meng-Shiou; Sheu, Shyang-Chwen
2016-06-07
Hericium erinaceus (HE) is a well-known mushroom in traditional Chinese food and medicine. HE extracts from the fruiting body and mycelia not only exhibit immunomodulatory, antimutagenic and antitumor activity but also have neuroprotective properties. Here, we purified HE polysaccharides (HEPS), composed of two high molecular weight polysaccharides (1.7 × 10(5) Da and 1.1 × 10(5) Da), and evaluated their protective effects on amyloid beta (Aβ)-induced neurotoxicity in rat pheochromocytoma PC12 cells. HEPS were prepared and purified using a 95 % ethanol extraction method. The components of HEPS were analyzed and the molecular weights of the polysaccharides were determined using high-pressure liquid chromatography (HPLC). The neuroprotective effects of the polysaccharides were evaluated through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and an MTT assay and by quantifying reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) of Aβ-induced neurotoxicity in cells. Our results showed that 250 μg/ml HEPS was harmless and promoted cell viability with 1.2 μM Aβ treatment. We observed that the free radical scavenging rate exceeded 90 % when the concentration of HEPS was higher than 1 mg/mL in cells. The HEPS decreased the production of ROS from 80 to 58 % in a dose-dependent manner. Cell pretreatment with 250 μg/mL HEPS significantly reduced Aβ-induced high MMPs from 74 to 51 % and 94 to 62 % at 24 and 48 h, respectively. Finally, 250 μg/mL of HEPS prevented Aβ-induced cell shrinkage and nuclear degradation of PC12 cells. Our results demonstrate that HEPS exhibit antioxidant and neuroprotective effects on Aβ-induced neurotoxicity in neurons.
ASCR/HEP Exascale Requirements Review Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; et al.
2016-03-30
This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, tomore » store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less
Tisher, Kristen; Mann, Kimberly; VanDyke, Sarah; Johansson, Charity; Vallabhajosula, Srikant
2018-03-05
Supervised balance training shows immediate benefit for older adults at fall risk. The long-term effectiveness of such training can be enhanced by implementing a safe and simple home exercise program (HEP). We investigated the effects of a12-week unsupervised HEP following supervised clinic-based balance training on functional mobility, balance, fall risk, and gait. Six older adults with an elevated fall risk obtained an HEP and comprised the HEP group (HEPG) and five older adults who were not given an HEP comprised the no HEP group (NoHEPG). The HEP consisted of three static balance exercises: feet-together, single-leg stance, and tandem. Each exercise was to be performed twice for 30-60 s, once per day, 3 days per week for 12 weeks. Participants were educated on proper form, safety, and progression of exercises. Pre- and post-HEP testing included Berg Balance Scale (BBS), Timed Up and Go, Short Physical Performance Battery (SPPB) assessments, Activities-Balance Confidence, Late-Life Functional Disability Instrument and instrumented assessments of balance and gait (Limits of Stability, modified Clinical Test of Sensory Interaction on Balance, Gait). A healthy control group (HCG; n = 11) was also tested. For most of the measures, the HEPG improved to the level of HCG. Though task-specific improvements like BBS and SPPB components were seen, the results did not carry over to more dynamic assessments. Results provide proof of concept that a simple HEP can be independently implemented and effective for sustaining and/or improving balance in older adults at elevated fall-risk after they have undergone a clinic-based balance intervention.
Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia
2014-11-01
High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered. © 2014 International Federation for Cell Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiling; Li, Ridong; Li, Li
In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{submore » 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.« less
Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus.
Ma, Yan; Yu, Jun; Chan, Henry L Y; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y Y; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H M; He, Qing-Yu; Sung, Joseph J Y; Kung, Hsiang-fu; Cheng, Christopher H K; He, Ming-liang
2009-11-01
Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection.
SLC6A19 is a novel putative gene, induced by dioxins via AhR in human hepatoma HepG2 cells.
Tian, Wenjing; Fu, Hualing; Xu, Tuan; Xu, Sherry Li; Guo, Zhiling; Tian, Jijing; Tao, Wuqun; Xie, Heidi Qunhui; Zhao, Bin
2018-06-01
The aryl hydrocarbon receptor (AhR) plays an important role in mediating dioxins toxicity. Currently, genes of P450 families are major research interests in studies on AhR-mediated gene alterations caused by dioxins. Genes related to other metabolic pathways or processes may be also responsive to dioxin exposures. Amino acid transporter B0AT1 (encoded by SLC6A19) plays a decisive role in neutral amino acid transport which is present in kidney, intestine and liver. However, effects of dioxins on its expression are still unknown. In the present study, we focused on the effects of dioxin and dioxin-like compounds on SLC6A19 expression in HepG2 cells. We identified SLC6A19 as a novel putative target gene of AhR activation in HepG2 cells. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) increased the expression of SLC6A19 in time- and concentration-dependent manners. Using AhR antagonist CH223191 and/or siRNA assays, we demonstrated that certain AhR agonists upregulated SLC6A19 expression via AhR, including TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (1,2,3,7,8-PeCDD), 2,3,4,7,8- pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and PCB126. In addition, the expression of B0AT1 was also significantly induced by TCDD in HepG2 cells. Our study suggested that dioxins might affect the transcription and translation of SLC6A19 in HepG2 cells, which might be a novel putative gene to assess dioxins' toxicity in amino acid transport and metabolism in liver. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Sijia; Zhang, Lin; Zhang, Zhao; Qian, Gang; Liu, Zongjian; Cui, Qun; Wang, Haiyan
2018-06-06
UiO-66 (UiO for University of Oslo), is a zirconium-based MOF with reverse shape selectivity, gives an alternative way to produce high purity n-heptane used for the manufacture of high-purity pharmaceuticals. Couple of studies have shown that UiO-66 gives a high selectivity on the separation of n-/iso-alkanes. However, the microporous structure of UiO-66 causes poor mass transport during the desorption process. In this work, hierarchical-pore UiO-66 (H-UiO-66) was synthesized and utilized as an adsorbent of n-heptane (nHEP) and methyl cyclohexane (MCH) for systematically studying the desorption process of n/iso-alkanes. A suite of physical methods, including XRD patterns verified the UiO-66 structures and HRTEM showed the existence of hierarchical pores. N2 adsorption-desorption isotherms further confirmed the size distribution of hierarchical pores in H-UiO-66. Of particular note, the MCH/nHEP selectivity of H-UiO-66 is similar with UiO-66 in the same adsorption conditions, the desorption process of nHEP/MCH from H-UiO-66 is dramatically enhanced, viz, the desorption rates for nHEP/MCH from H-UiO-66 is enhanced by 30%/23% as comparing to UiO-66 at most. Moreover, desorption activation energy (Ed) derived from temperature-programmed desorption (TPD) experiments indicate that the Ed for nHEP/MCH is lower on H-UiO-66, i.e., the Ed of MCH on H-UiO-66 is ~37% lower than that on UiO-66 at most, leading to a milder condition for the desorption process. The introduction of hierarchical structures will be applicable for the optimization of desorption process during separation on porous materials.
Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells.
Chernyy, Sergey; Jensen, Bettina E B; Shimizu, Kyoko; Ceccato, Marcel; Pedersen, Steen Uttrup; Zelikin, Alexander N; Daasbjerg, Kim; Iruthayaraj, Joseph
2013-08-15
This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery. Copyright © 2013 Elsevier Inc. All rights reserved.
beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.
Nicolas, P; Hammonds, R G; Li, C H
1984-05-01
Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone.
Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Roser, Robert
Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Roser, Robert; LeCompte, Tom
2015-10-29
Computing plays an essential role in all aspects of high energy physics. As computational technology evolves rapidly in new directions, and data throughput and volume continue to follow a steep trend-line, it is important for the HEP community to develop an effective response to a series of expected challenges. In order to help shape the desired response, the HEP Forum for Computational Excellence (HEP-FCE) initiated a roadmap planning activity with two key overlapping drivers -- 1) software effectiveness, and 2) infrastructure and expertise advancement. The HEP-FCE formed three working groups, 1) Applications Software, 2) Software Libraries and Tools, and 3)more » Systems (including systems software), to provide an overview of the current status of HEP computing and to present findings and opportunities for the desired HEP computational roadmap. The final versions of the reports are combined in this document, and are presented along with introductory material.« less
The HEP Software and Computing Knowledge Base
NASA Astrophysics Data System (ADS)
Wenaus, T.
2017-10-01
HEP software today is a rich and diverse domain in itself and exists within the mushrooming world of open source software. As HEP software developers and users we can be more productive and effective if our work and our choices are informed by a good knowledge of what others in our community have created or found useful. The HEP Software and Computing Knowledge Base, hepsoftware.org, was created to facilitate this by serving as a collection point and information exchange on software projects and products, services, training, computing facilities, and relating them to the projects, experiments, organizations and science domains that offer them or use them. It was created as a contribution to the HEP Software Foundation, for which a HEP S&C knowledge base was a much requested early deliverable. This contribution will motivate and describe the system, what it offers, its content and contributions both existing and needed, and its implementation (node.js based web service and javascript client app) which has emphasized ease of use for both users and contributors.
Lu, Peng-Jun; Byrd, Kathy K; Murphy, Trudy V
2013-05-01
Since 1996, hepatitis A vaccine (HepA) has been recommended for adults at increased risk for infection including travelers to high or intermediate hepatitis A endemic countries. In 2009, travel outside the United States and Canada was the most common exposure nationally reported for persons with hepatitis A virus (HAV) infection. To assess HepA vaccination coverage among adults 18-49 years traveling to a country of high or intermediate endemicity in the United States. We analyzed data from the 2010 National Health Interview Survey (NHIS), to determine self-reported HepA vaccination coverage (≥1 dose) and series completion (≥2 dose) among persons 18-49 years who traveled, since 1995, to a country of high or intermediate HAV endemicity. Multivariable logistic regression and predictive marginal analyses were conducted to identify factors independently associated with HepA vaccine receipt. In 2010, approximately 36.6% of adults 18-49 years reported traveling to high or intermediate hepatitis A endemic countries; among this group unadjusted HepA vaccination coverage was 26.6% compared to 12.7% among non-travelers (P-values<0.001) and series completion were 16.9% and 7.6%, respectively (P-values<0.001). On multivariable analysis among all respondents, travel status was an independent predictor of HepA coverage and series completion (both P-values<0.001). Among travelers, HepA coverage and series completion (≥2 doses) were higher for travelers 18-25 years (prevalence ratios 2.3, 2.8, respectively, P-values<0.001) and for travelers 26-39 years (prevalence ratios 1.5, 1.5, respectively, P-value<0.001, P-value=0.002, respectively) compared to travelers 40-49 years. Other characteristics independently associated with a higher likelihood of HepA receipt among travelers included Asian race/ethnicity, male sex, never having been married, having a high school or higher education, living in the western United States, having greater number of physician contacts or receipt of influenza vaccination in the previous year. HepB vaccination was excluded from the model because of the significant correlation between receipt of HepA vaccination and HepB vaccination could distort the model. Although travel to a country of high or intermediate hepatitis A endemicity was associated with higher likelihood of HepA vaccination in 2010 among adults 18-49 years, self-reported HepA vaccination coverage was low among adult travelers to these areas. Healthcare providers should ask their patients' upcoming travel plans and recommend and offer travel related vaccinations to their patients. Published by Elsevier Ltd.
Lu, Peng-jun; Byrd, Kathy K.; Murphy, Trudy V.
2018-01-01
Background Since 1996, hepatitis A vaccine (HepA) has been recommended for adults at increased risk for infection including travelers to high or intermediate hepatitis A endemic countries. In 2009, travel outside the United States and Canada was the most common exposure nationally reported for persons with hepatitis A virus (HAV) infection. Objective To assess HepA vaccination coverage among adults 18–49 years traveling to a country of high or intermediate endemicity in the United States. Methods We analyzed data from the 2010 National Health Interview Survey (NHIS), to determine self-reported HepA vaccination coverage (≥1 dose) and series completion (≥2 dose) among persons 18–49 years who traveled, since 1995, to a country of high or intermediate HAV endemicity. Multivariable logistic regression and predictive marginal analyses were conducted to identify factors independently associated with HepA vaccine receipt. Results In 2010, approximately 36.6% of adults 18–49 years reported traveling to high or intermediate hepatitis A endemic countries; among this group unadjusted HepA vaccination coverage was 26.6% compared to 12.7% among non-travelers (P-values < 0.001) and series completion were 16.9% and 7.6%, respectively (P-values < 0.001). On multivariable analysis among all respondents, travel status was an independent predictor of HepA coverage and series completion (both P-values < 0.001). Among travelers, HepA coverage and series completion (≥2 doses) were higher for travelers 18–25 years (prevalence ratios 2.3, 2.8, respectively, P-values < 0.001) and for travelers 26–39 years (prevalence ratios 1.5, 1.5, respectively, P-value < 0.001, P-value = 0.002, respectively) compared to travelers 40–49 years. Other characteristics independently associated with a higher likelihood of HepA receipt among travelers included Asian race/ethnicity, male sex, never having been married, having a high school or higher education, living in the western United States, having greater number of physician contacts or receipt of influenza vaccination in the previous year. HepB vaccination was excluded from the model because of the significant correlation between receipt of HepA vaccination and HepB vaccination could distort the model. Conclusions Although travel to a country of high or intermediate hepatitis A endemicity was associated with higher likelihood of HepA vaccination in 2010 among adults 18–49 years, self-reported HepA vaccination coverage was low among adult travelers to these areas. Healthcare providers should ask their patients’ upcoming travel plans and recommend and offer travel related vaccinations to their patients. PMID:23523408
Expression and characterization of an enhanced recombinant heparinase I with chitin binding domain.
Xu, Shuqin; Qiu, Meiling; Zhang, Xuanyue; Chen, Jinghua
2017-12-01
Heparinase I (Hep I) can efficiently depolymerize heparin and heparin sulfate to oligosaccharides or unsaturated disaccharides, which resulted in loss of physiological function such as blood coagulation. In order to realize the immobilization of Hep I on chitin carriers, we cloned Hep I with the chitin binding domain (ChBD) as a chitin-affinity tag, and the Small Ubiquitin-like MOdifier (SUMO) linker as a solvation enhancer in different fusion sequence. DNA and protein gels suggested that 4 kinds of recombinants were successfully constructed and expressed in Escherichia coli (E. coli). And the triple functional heparinases isolated from cell lysate could be efficiently purified by chitin beads. After optimizing fermentation conditions, it gave the specific enzyme activities of 1.88±0.11, 3.69±0.45, 3.44±0.38, and 2.73±0.29IU/mg total proteins for ChBD-Hep I, ChBD-SUMO-Hep I, SUMO-ChBD-Hep I, and ChBD-Hep I-SUMO, respectively, with unfractionated heparin as substrate. The optimal reaction temperature and pH were determined to be 30°C and 7.0 for all the fusion enzymes. ChBD-SUMO-Hep I exhibited the maximum half-life (48min) at 30°C and best thermo-stability under 15-50°C. All the fusion enzymes showed broad pH-stability in the range of 5.4-9.0. Copyright © 2017 Elsevier B.V. All rights reserved.
Satyavani, K; Gurudeeban, S; Ramanathan, T; Balasubramanian, T
2011-09-26
An increasingly common application is the use of silver nanoparticles for antimicrobial coatings, wound dressings, and biomedical devices. In this present investigation, we report, biomedical potential of silver nanopaticles synthesized from calli extract of Citrullus colocynthis on Human epidermoid larynx carcinoma (HEp -2) cell line. The callus extract react with silver nitrate solution confirmed silver nanoparticles synthesis through the steady change of greenish colour to reddish brown and characterized by using FT-IR, AFM. Toxicity on HEp 2 cell line assessed using MTT assay, caspase -3 assay, Lactate dehydrogenase leakage assay and DNA fragmentation assay. The synthesized silver nanoparticles were generally found to be spherical in shape with size 31 nm by AFM. The molar concentration of the silver nanoparticles solution in our present study is 1100 nM/10 mL. The results exhibit that silver nanoparticles mediate a dose-dependent toxicity for the cell tested, and the silver nanoparticles at 500 nM decreased the viability of HEp 2 cells to 50% of the initial level. LDH activities found to be significantly elevated after 48 h of exposure in the medium containing silver nanoparticles when compared to the control and Caspase 3 activation suggested that silver nanoparticles caused cell death through apoptosis, which was further supported by cellular DNA fragmentation, showed that the silver nanoparticles treated HEp2 cells exhibited extensive double strand breaks, thereby yielding a ladder appearance (Lane 2), while the DNA of control HEp2 cells supplemented with 10% serum exhibited minimum breakage (Lane 1). This study revealed completely would eliminate the use of expensive drug for cancer treatment.
Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.
Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon
2018-03-01
Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Czepa, D; Von Mackensen, S; Hilberg, T
2012-01-01
Recurrent musculoskeletal haemorrhages in people with haemophilia (PWH) lead to restrictions in the locomotor system and consequently in physical performance. Patients' perceptions of their health status have gained an important role in the last few years. The assessment of subjective physical performance in PWH is a new approach. This study aimed to compare the subjective physical performance of PWH with healthy controls and to correlate the results with objective data. Subjective physical performance was assessed via the new questionnaire HEP-Test-Q, which consists of 25 items pertaining to four subscales 'mobility', 'strength & coordination', 'endurance' and 'body perception'. HEP-Test-Q subscales were compared with objective data in terms of range of motion, one-leg-stand and 12-minute walk test. Forty-eight patients (44 ± 11 years) with haemophilia A (43 severe, three moderate) or B (two severe) and 43 controls without haemophilia (42 ± 11 years) were enrolled. PWH showed an impaired subjective physical performance in all HEP-Test-Q subscales and in the total score (52 ± 20) compared with controls (77 ± 10; P ≤ 0.001). Correlation analyses for the total score of the HEP-Test-Q and objective data revealed values ranging from r = 0.403 (one-leg-stand) to r = 0.757 (12-minute walk test) (P ≤ 0.001). PWH evaluated their physical performance poorer in comparison with healthy people. As self-assessment did not always correlate highly with objective data, objective examinations of physical performance in PWH should be complemented with subjective perceptions. © 2011 Blackwell Publishing Ltd.
Zhong, Sheng; Yeo, Winnie; Tang, Mandy W; Wong, Nathalie; Lai, Paul B S; Johnson, Phillip J
2003-08-15
The human Ras association domain family 1A gene (RASSF1A) is a newly isolated tumor suppressor gene. In this study, we analyzed the methylation status of the promoter region of RASSF1A using bisulfite sequencing and PCR-RFLP in four liver cancer cell lines (Hep3B, HepG(2), SK-HEP-1, and Huh-7) and a cohort of 43 hepatitis B virus-associated hepatocellular carcinoma (HCC) tissues and their corresponding nontumor tissue specimens. The methylation of the CpG islands in the RASSF1A promoter was not detected in 4 samples of normal liver tissue or 10 samples of peripheral blood mononuclear cells from normal subjects. However, the CpG islands were completely methylated, and transcription of the RASSF1A was silenced in the four cell lines. Treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine reactivated the expression of RASSF1A in the Hep3B and HepG2 cells. In 41 of 43 (95%) HCC specimens studied, the promoter region of RASSF1A was intensively methylated at its CpG sites. Although heterogeneous methylation was also detected in 16 of the 23 (70%) corresponding nontumorous tissues analyzed, the level of methylation was significantly lower than in the corresponding tumor tissues. HCC has the highest incidence of promoter methylation of RASSF1A among all malignancies yet reported suggesting that hypermethylation of the CpG island promoter of RASSF1A may play an important pathological role in this tumor.
Unusual Features of Sodium Taurocholate Cotransporting Polypeptide as a Hepatitis B Virus Receptor
Zong, Li; Sureau, Camille; Barker, Luke; Wands, Jack R.; Tong, Shuping
2016-01-01
ABSTRACT Cell culture (cc)-derived hepatitis B virus (HBV) can infect differentiated HepaRG cells, but efficient infection requires addition of polyethylene glycol (PEG) during inoculation. Identification of sodium taurocholate cotransporting polypeptide (NTCP) as an HBV receptor enabled ccHBV infection of NTCP reconstituted HepG2 cells, although very little hepatitis B surface antigen (HBsAg) is produced. We found infection by patient serum-derived HBV (sHBV), which required purification of viral particles through ultracentrifugation or PEG precipitation, was PEG independent and much more efficient in HepaRG cells than in HepG2/NTCP cells. In contrast to hepatitis B e antigen (HBeAg), HBsAg was not a reliable marker of productive sHBV infection at early time points. A low HBsAg/HBeAg ratio by ccHBV-infected HepG2/NTCP cells was attributable to dimethyl sulfoxide (DMSO) in culture medium, NTCP overexpression, and HBV genotype D. HepG2/NTCP cells released more viral antigens than HepG2 cells after HBV genome delivery by adeno-associated virus, and stable expression of NTCP in a ccHBV producing cell line increased viral mRNAs, proteins, replicative DNA, and covalently closed circular DNA. NTCP protein expression in HepG2/NTCP cells, despite being driven by the cytomegalovirus promoter, was markedly increased by DMSO treatment. This at least partly explains ability of DMSO to promote ccHBV infection in such cell lines. In conclusion, NTCP appeared inefficient to mediate infection by serum-derived HBV. It could promote HBV RNA transcription while inhibiting HBsAg secretion. Efficient PEG-independent sHBV infection of HepaRG cells permits comparative studies of diverse clinical HBV isolates and will help identify additional factors on virion surface promoting attachment to hepatocytes. IMPORTANCE Currently in vitro infection with hepatitis B virus (HBV) depends on cell culture-derived HBV inoculated in the presence of polyethylene glycol. We found patient serum-derived HBV could efficiently infect differentiated HepaRG cells independent of polyethylene glycol, which represents a more physiological infection system. Serum-derived HBV has poor infectivity in HepG2 cells reconstituted with sodium taurocholate cotransporting polypeptide (NTCP), the currently accepted HBV receptor. Moreover, HepG2/NTCP cells secreted very little hepatitis B surface antigen after infection with cell culture-derived HBV, which was attributed to NTCP overexpression, genotype D virus, and dimethyl sulfoxide added to culture medium. NTCP could promote HBV RNA transcription, protein expression, and DNA replication in HepG2 cells stably transfected with HBV DNA, while dimethyl sulfoxide could increase NTCP protein level despite transcriptional control by a cytomegalovirus promoter. Therefore, this study revealed several unusual features of NTCP as an HBV receptor and established conditions for efficient serum virus infection in vitro. PMID:27384660
Modified technique for preparation of venous circulation resin casts in the cirrhotic liver.
Vasconcelos, José Olímpio Maia DE; Batista, Laécio Leitão; Pitta, Guilherme Benjamin Brandão; Lacerda, Cláudio Moura
2016-01-01
This study describes two major adaptations for the preparation of resin casts in human cirrhotic liver, harvested at the time of transplantation. The first is the way of fixing the catheter in the ostia of the hepatic and portal veins through a cerclage, so as to prevent displacement of the catheter and / or leakage of the resin during its injection. The second is the extension of corrosion time in the NaOH solution, averaging 6.8 days, with daily replacement the solution until complete removal of parenchymal tissue. We applied the method in 14 cirrhotic livers, with good filling and coloring of the portal and hepatic vein territories, using different colors. This allows an anatomical study of these vessels, able to complement the knowledge of the histopathology in research work, and the planning of therapeutic procedures, such as the Trans-Jugular Intrahepatic Port-Systemic Shunt (TIPS). RESUMO Este estudo descreve duas importantes adaptações para o preparo de moldes de resina em fígado humano cirrótico, captado no momento do transplante: a primeira, é a maneira de fixação dos cateteres nos "óstios" das veias hepáticas e porta, através de uma "cerclagem" dos mesmos, de modo a evitar o deslocamento do cateter e/ou extravasamento da resina durante sua injeção, e a segunda, é o prolongamento do tempo de corrosão na solução de NaOH, atingindo a média de 6,8 dias, com a substituição diária da solução, até a remoção completa do tecido parenquimatoso. O método foi empregado em 14 fígados cirróticos com bom preenchimento e coloração dos territórios das veias porta e hepáticas, utilizando cores distintas. Isto permite um estudo anatômico desses vasos, capaz de complementar os conhecimentos da histopatologia em trabalhos de pesquisa, e planejar procedimentos terapêuticos como a derivação porto-sistêmica intra-hepática transjugular (TIPS - Transjugular Intrahepatic Postosystemic Shunt).
Green, Dan
2016-12-14
The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.
beta-Endorphin: synthesis of analogs modified at the carboxyl terminus with increased activites.
Li, C H; Yamashiro, D; Tseng, L F; Chang, W C; Ferrara, P
1979-01-01
Three analogs of human beta-endorphin (beta h-EP) have been synthesized: [Gly31]beta h-EP, [Gly31]beta h-endorphinamide, and [Gly31]beta h-endorphinylglycine. All are more active than beta h-EP in both the guinea pig ileum bioassay and the opiate receptor binding assay. The last two analogs are about twice as active as beta h-EP in an assay for analgesia. Modification at position 31 and extension at the COOH terminus may afford a route toward analogs with even greater biological activity. PMID:226965
beta-Endorphin: synthesis of analogs modified at the carboxyl terminus with increased activites.
Li, C H; Yamashiro, D; Tseng, L F; Chang, W C; Ferrara, P
1979-07-01
Three analogs of human beta-endorphin (beta h-EP) have been synthesized: [Gly31]beta h-EP, [Gly31]beta h-endorphinamide, and [Gly31]beta h-endorphinylglycine. All are more active than beta h-EP in both the guinea pig ileum bioassay and the opiate receptor binding assay. The last two analogs are about twice as active as beta h-EP in an assay for analgesia. Modification at position 31 and extension at the COOH terminus may afford a route toward analogs with even greater biological activity.
Medical Surveillance Monthly Report (MSMR). Volume 13, Number 2, February/March 2007
2007-03-01
13/No. 2 1 10 100 1,000 10,000 100,000 Influenza Varicella Hep B Pertussis Hep A Mumps Meningococcal disease Vaccine-preventable disease R ep or te... pertussis (ICD- 9: 033), mumps (ICD-9: 072), influenza (ICD-9: 487), hepatitis B (ICD-9: 070.2, 070.3), and hepatitis A (ICD- 9: 070.0, 070.1) were defined by...Influenza Varicella Hep B w/o coma Pertussis Hep A w/o coma MSMR 17Vol. 13/No. 2 conditions should account for potential changes in case ascertainment and
beta-Endorphin-induced analgesia is inhibited by synthetic analogs of beta-endorphin.
Nicolas, P; Hammonds, R G; Li, C H
1984-01-01
Competitive antagonism of human beta-endorphin (beta h-EP)-induced analgesia by synthetic beta h-EP analogs with high in vitro opiate receptor binding to in vivo analgesic potency ratio has been demonstrated. A parallel shift of the dose-response curve for analgesia to the right was observed when either beta h-EP or [ Trp27 ] -beta h-EP was coinjected with various doses of [Gln8, Gly31 ]-beta h-EP-Gly-Gly-NH2, [Arg9,19,24,28,29]-beta h-EP, or [ Cys11 ,26, Phe27 , Gly31 ]-beta h-EP. It was estimated that the most potent antagonist, [Gln8, Gly31 ]-beta h-EP-Gly-NH2, is at least 200 times more potent than naloxone. PMID:6328494
Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.
Chao, Xu; Zhou, Xiaojun; Zheng, Gang; Dong, Changhu; Zhang, Wei; Song, Xiaomei; Jin, Tianbo
2014-05-01
Osthole [7-methoxy-8-(3-methyl-2-butenyl) coumarin] isolated from the fruit of Cnidium monnieri (L.) Cuss, one of the commonly used Chinese medicines listed in the Shennong's Classic of Materia Medica in the Han Dynasty, had remarkable antiproliferative activity against human hepatocellular carcinoma HepG2 cells in culture. This study evaluated the effects of osthole on cell growth, nuclear morphology, cell cycle distribution, and expression of apoptosis-related proteins in HepG2 cells. Cytotoxic activity of osthole was determined by the MTT assay at various concentrations ranging from 0.004 to 1.0 µmol/ml in HepG2 cells. Cell morphology was assessed by Hoechst staining and fluorescence microscopy. Apoptosis and cell-cycle distribution was determined by annexin V staining and flow cytometry. Apoptotic protein levels were assessed by Western blot. Osthole exhibited significant inhibition of the survival of HepG2 cells and the half inhibitory concentration (IC₅₀) values were 0.186, 0.158 and 0.123 µmol/ml at 24, 48 and 72 h, respectively. Cells treated with osthole at concentrations of 0, 0.004, 0.02, 0.1 and 0.5 μmol/ml showed a statistically significant increase in the G2/M fraction accompanied by a decrease in the G0/G1 fraction. The increase of apoptosis induced by osthole was correlated with down-regulation expression of anti-apoptotic Bcl-2 protein and up-regulation expression of pro-apoptotic Bax and p53 proteins. Osthole had significant growth inhibitory activity and the pro-apoptotic effect of osthole is mediated through the activation of caspases and mitochondria in HepG2 cells. Results suggest that osthole has promising therapeutic potential against hepatocellular carcinoma.
Cleland, Joshua A; Mintken, Paul E; McDevitt, Amy; Bieniek, Melanie L; Carpenter, Kristin J; Kulp, Katherine; Whitman, Julie M
2013-01-01
Randomized clinical trial. To compare the effectiveness of manual therapy and exercise (MTEX) to a home exercise program (HEP) in the management of individuals with an inversion ankle sprain. An in-clinic exercise program has been found to yield similar outcomes as an HEP for individuals with an inversion ankle sprain. However, no studies have compared an MTEX approach to an HEP. Patients with an inversion ankle sprain completed the Foot and Ankle Ability Measure (FAAM) activities of daily living subscale, the FAAM sports subscale, the Lower Extremity Functional Scale, and the numeric pain rating scale. Patients were randomly assigned to either an MTEX or an HEP treatment group. Outcomes were collected at baseline, 4 weeks, and 6 months. The primary aim (effects of treatment on pain and disability) was examined with a mixed-model analysis of variance. The hypothesis of interest was the 2-way interaction (group by time). Seventy-four patients (mean ± SD age, 35.1 ± 11.0 years; 48.6% female) were randomized into the MTEX group (n = 37) or the HEP group (n = 37). The overall group-by-time interaction for the mixed-model analysis of variance was statistically significant for the FAAM activities of daily living subscale (P<.001), FAAM sports subscale (P<.001), Lower Extremity Functional Scale (P<.001), and pain (P ≤.001). Improvements in all functional outcome measures and pain were significantly greater at both the 4-week and 6-month follow-up periods in favor of the MTEX group. The results suggest that an MTEX approach is superior to an HEP in the treatment of inversion ankle sprains. Registered at clinicaltrials.gov (NCT00797368). Therapy, level 1b-.
Heterogeneous catalysis on the phage surface: Display of active human enteropeptidase.
Gasparian, Marine E; Bobik, Tatyana V; Kim, Yana V; Ponomarenko, Natalia A; Dolgikh, Dmitry A; Gabibov, Alexander G; Kirpichnikov, Mikhail P
2013-11-01
Enteropeptidase (EC 3.4.21.9) plays a key role in mammalian digestion as the enzyme that physiologically activates trypsinogen by highly specific cleavage of the trypsinogen activation peptide following the recognition sequence D4K. The high specificity of enteropeptidase makes it a powerful tool in modern biotechnology. Here we describe the application of phage display technology to express active human enteropeptidase catalytic subunits (L-HEP) on M13 filamentous bacteriophage. The L-HEP/C122S gene was cloned in the g3p-based phagemid vector pHEN2m upstream of the sequence encoding the phage g3p protein and downstream of the signal peptide-encoding sequence. Heterogeneous catalysis of the synthetic peptide substrate (GDDDDK-β-naphthylamide) cleavage by phage-bound L-HEP was shown to have kinetic parameters similar to those of soluble enzyme, with the respective Km values of 19 μM and 20 μM and kcat of 115 and 92 s(-1). Fusion proteins containing a D4K cleavage site were cleaved with phage-bound L-HEP/C122S as well as by soluble L-HEP/C122S, and proteolysis was inhibited by soybean trypsin inhibitor. Rapid large-scale phage production, one-step purification of phage-bound L-HEP, and easy removal of enzyme activity from reaction samples by PEG precipitation make our approach suitable for the efficient removal of various tag sequences fused to the target proteins. The functional phage display technology developed in this study can be instrumental in constructing libraries of mutants to analyze the effect of structural changes on the activity and specificity of the enzyme or generate its desired variants for biotechnological applications. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
2012-01-01
Background Edible plants such as Cratoxylum formosum (Jack) Dyer, Curcumin longa Lin, Momordica charantia Lin and Moringa oleifera Lam have long been believed in Thai culture to relieve ulcers and the symptoms of liver disease. However, little is known about their anti-liver cancer properties and antiviral activity against hepatitis B virus (HBV). The aim of this study was to investigate the anti-liver cancer and anti-HBV activities of crude extracts from these edible plants on human liver cancer cells. Methods Plant samples were prepared and extracted using buffer and hydro-alcoholic solvents. The MTT assay was performed to investigate the effects of the plant extracts on the cell viability of HepG2 cells. The inhibitory effect on replication of HBV was analysed by determining the level of HBV covalently closed circular DNA (cccDNA) in transiently transfected HepG2 cells with the DNA expression plasmid of the HBV genome using a quantitative real-time PCR. Results Buffer and hydroalcoholic extracts from C. formosum (leaf) reduced cell viability of HepG2 cells and they also inhibited HBV cccDNA. Crude extracts from C. longa (bulb) in both solvents did not have any cytotoxic effects on the HepG2 cells, but they significantly decreased the level of HBV cccDNA. Buffer extracts from the leaves of M. charantia and the fruits of M. oleifera showed to have anti-HBV activity and also a mild cytotoxicity effect on the HepG2 cells. In addition, leaves of M. Oleifera extracted by hydroalcoholic solvent drastically decreased the level of cccDNA in transiently transfected HepG2 cells. Conclusion Some crude extracts of edible plants contain compounds that demonstrate anti-liver cancer and anti-HBV activities. PMID:23216691
Measurement of Antinuclear Antibodies: Assessment of Different Test Systems
Kern, P.; Kron, M.; Hiesche, K.
2000-01-01
The performance of rat liver and HEp-2 in the detection of antinuclear antibodies (ANA) was studied by two independent sites and compared against an ANA enzyme immunoassay (EIA) screen and EIA systems for the measurement of antibodies to double-stranded DNA (dsDNA) and ENA. Sixty-two sera from patients with connective tissue disease (CTD) and 398 from controls suffering from other disorders were included. The level of agreement was, for HEp-2 and rat liver (within one site), 82.0% (ANA positive/ANA negative) and 51.0% (ANA pattern); and for HEp2- and HEp-2 (between sites), 71.8 and 86.5%. On sera with the ANA homogeneous pattern, the measurement of anti-ENA EIA added little to the detection rate with anti-dsDNA EIA alone. On ANA speckled sera, the EIA reactivity depended on the reaction of the mitotic cells: while sera with positive mitoses reacted similarly to ANA homogeneous sera, in those with negative mitoses the measurement of anti-ENA added about 10% to the detection rate achieved with anti-dsDNA alone. The measurement of anti-Scl-70 and anti-Jo-1 did not markedly improve the positive rate with classical ENA (anti-SSA, -SSB, -Sm, and -RNP) alone, raising doubts about the cost efficiency of including these measurements in unselected sera. The ANA EIA identified patients with CTD at a rate similar to that for rat liver and HEp-2. However, up to 98% of the sera found to be negative by ANA EIA but positive by use of rat liver and HEp-2 were from controls. Thus, the ANA EIA may possible be used as an alternative screen, particularly in laboratories with a high frequency of sera from patients not suffering from CTD. PMID:10618281
Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo
2011-01-01
Background Soy protein and soy peptides have attracted considerable attention because of their potentially beneficial biological properties, including antihypertensive, anticarcinogenic, and hypolipidemic effects. Although soy protein isolate contains several bioactive peptides that have distinct physiological activities in lipid metabolism, it is not clear which peptide sequences are responsible for the triglyceride (TG)-lowering effects. In the present study, we investigated the effects of soy protein-derived peptides on lipid metabolism, especially TG metabolism, in HepG2 cells and obese Otsuka Long-Evans Tokushima fatty (OLETF) rats. Results In the first experiment, we found that soy crude peptide (SCP)-LD3, which was prepared by hydrolyze of soy protein isolate with endo-type protease, showed hypolipidemic effects in HepG2 cells and OLETF rats. In the second experiment, we found that hydrophilic fraction, separated from SCP-LD3 with hydrophobic synthetic absorbent, revealed lipid-lowering effects in HepG2 cells and OLETF rats. In the third experiment, we found that Fraction-C (Frc-C) peptides, fractionated from hydrophilic peptides by gel permeation chromatography-high performance liquid chromatography, significantly reduced TG synthesis and apolipoprotein B (apoB) secretion in HepG2 cells. In the fourth experiment, we found that the fraction with 0.1% trifluoroacetic acid, isolated from Frc-C peptides by octadecylsilyl column chromatography, showed hypolipidemic effects in HepG2 cells. In the final experiment, we found that 3 di-peptides, Lys-Ala, Val-Lys, and Ser-Tyr, reduced TG synthesis, and Ser-Tyr additionally reduced apoB secretion in HepG2 cells. Conclusion Novel active peptides with TG-lowering effects from soy protein have been isolated. PMID:21600040
Jin, Soojung; Park, Hyun-Jin; Oh, You Na; Kwon, Hyun Ju; Kim, Jeong-Hwan; Choi, Yung Hyun; Kim, Byung Woo
2015-01-01
Background: Osmanthus matsumuranus, a species of Oleaceae, is found in East Asia and Southeast Asia. The bioactivities of O. matsumuranus have not yet been fully understood. Here, we studied on the molecular mechanisms underlying anti-cancer effect of ethanol extract of O. matsumuranus (EEOM). Methods: Inhibitory effect of EEOM on cell growth and proliferation was determined by WST assay in various cancer cells. To investigate the mechanisms of EEOM-mediated cytotoxicity, HepG2 cells were treated with various concentration of EEOM and analyzed the cell cycle arrest and apoptosis induction by flow cytometry, Western blot analysis, 4,6-diamidino-2-phenylindole (DAPI) staining and DNA fragmentation. Results: EEOM showed the cytotoxic activities in a dose-dependent manner in various cancer cell lines but not in normal cells, and HepG2 cells were most susceptible to EEOM-induced cytotoxicity. EEOM induced G2/M arrest in HepG2 cells associated with decreased expression of cyclin-dependent kinase 1 (CDK1), cyclin A and cylcin B, and increased expression of phospho-checkpoint kinase 2, p53 and CDK inhibitor p21. Immunofluorescence staining showed that EEOM-treated HepG2 increased doublet nuclei and condensed actin, resulting in cell rounding. Furthermore, EEOM-mediated apoptosis was determined by Annexin V staining, chromatin condensation and DNA fragmentation. EEOM caused upregulation of FAS and Bax, activation of caspase-3, -8, -9, and fragmentation of poly ADP ribose polymerase. Conclusions: These results suggest that EEOM efficiently inhibits proliferation of HepG2 cells by inducing both G2/M arrest and apoptosis via intrinsic and extrinsic pathways, and EEOM may be used as a cancer chemopreventive agent in the food or nutraceutical industry. PMID:26734586
Liu, Ying; Cheng, Yajun; Li, Jinwei; Wang, Yuanpeng; Liu, Yuanfa
2018-05-23
In the present study, effects of cis-9,10-epoxy stearic acid (ESA) generated by the thermal oxidation of oleic acid on HepG2 cells, including cytotoxicity, apoptosis, and oxidative stress, were investigated. Our results revealed that ESA decreased the cell viability and induced cell death. Cell cycle analysis with propidium iodide staining showed that ESA induced cell cycle arrest at the G0/G1 phase in HepG2 cells. Cell apoptosis analysis with annexin V and propidium iodide staining demonstrated that ESA induced HepG2 cell apoptotic events in a dose- and time-dependent manner; the apoptosis of cells after treated with 500 μM ESA for 12, 24, and 48 h was 32.16, 38.70, and 65.80%, respectively. Furthermore, ESA treatment to HepG2 cells resulted in an increase in reactive oxygen species and malondialdehyde (from 0.84 ± 0.02 to 8.90 ± 0.50 nmol/mg of protein) levels and a reduction in antioxidant enzyme activity, including superoxide dismutase (from 1.34 ± 0.27 to 0.10 ± 0.007 units/mg of protein), catalase (from 100.04 ± 5.05 to 20.09 ± 3.00 units/mg of protein), and glutathione peroxidase (from 120.44 ± 7.62 to 35.84 ± 5.99 milliunits/mg of protein). These findings provide critical information on the effects of ESA on HepG2 cells, particularly cytotoxicity and oxidative stress, which is important for the evaluation of the biosafety of the oxidative product of oleic acid.
Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng
2017-08-16
NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P < 0.05) at 2.5 μM lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.
Miranda, Sonia R; Meyer, Sharon A
2007-05-01
Alachlor is cytotoxic to human hepatoblastoma HepG2s, a cell line that expresses constitutive CYP3A7 and dexamethasone (DEX)-inducible CYP3A4 and CYP3A7. CYP3A4 catalyzes alachlor N-dealkylation to 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA), precursor of 2,6-diethylbenzoquinoneimine, putative reactive metabolite for rat nasal carcinogenicity. We hypothesized that HepG2 alachlor cytotoxicity would be mediated by CYP3A4/7 and increased with DEX. Here, we report time-dependent alachlor cytotoxicity (EC(50) approximately 500 microM and 264+/-17 microM at 6 and 24h, respectively) as assessed by lactate dehydrogenase leakage. DEX pretreatment (25 microM, 48 h) significantly increased CYP3A7-catalyzed luciferin 6' benzylether O-debenzylation, but had no effect on alachlor toxicity. Further, CYP3A4/7 inhibitor triacetyloleandomycin did not prevent, but rather potentiated, alachlor cytotoxicity. In agreement, CDEPA was less toxic than parent alachlor. HepG2 CYP3A4 activity was unaffected by 48 h DEX pretreatment; therefore, studies were done in DPX-2 cells, a HepG2 derivative engineered to overexpress pregnane-X receptor (PXR) that exhibits rifampicin (RIF)-inducible endogenous CYP3A4. Alachlor cytotoxicity in DPX-2 cells occurred over a concentration range equivalent to that in HepG2. CYP3A4 activity of DPX-2 cells treated with RIF (10 microM, 48 h) was twice that of untreated cells, but RIF did not increase alachlor toxicity. These results demonstrate that neither CYP3A4 nor CYP3A7 initiate a pathway leading to a toxic alachlor metabolite.
Jenkins, Claire; Tembo, Mathias; Chart, Henrik; Cheasty, Tom; Willshaw, Geraldine A; Phillips, Alan D; Tompkins, David; Smith, Henry
2006-11-01
The aim of this study was to assess the usefulness of a multiplex PCR assay targeting the aat, aaiA and astA genes for the detection of typical and atypical enteroaggregative Escherichia coli (EAEC) in bacterial cultures from faecal samples from patients with community-acquired diarrhoea. The isolates harbouring these genes were also tested using the HEp-2 cell-adhesion assay to clarify their EAEC status. aat, aai or astA was found in E. coli faecal isolates from 39 (7.8 %) of 500 patients, and 20 of these strains adhered to HEp-2 cells in a pattern characteristic of EAEC. Eight isolates carrying the aai or astA gene but not the aat gene were shown to be HEp-2 cell test positive, although 12 strains with this genotype were HEp-2 cell test negative. Using the HEp-2 adhesion assay as the gold standard, the addition of primers detecting aaiA and astA to the aat PCR increased the number of EAEC isolates detected, but identified strains of E. coli that were not EAEC. The variety of genotypes exhibiting aggregative adherence highlights the problems associated with developing a molecular diagnostic test for EAEC. This PCR assay detects a variety of strains exhibiting characteristics of the EAEC group, making it a useful tool for identifying both typical and atypical EAEC.
Exogenous regucalcin suppresses the growth of human liver cancer HepG2 cells in vitro.
Yamaguchi, Masayoshi; Murata, Tomiyasu
2018-04-05
Regucalcin, which its gene is localized on the X chromosome, plays a pivotal role as a suppressor protein in signal transduction in various types of cells and tissues. Regucalcin gene expression has been demonstrated to be suppressed in various tumor tissues of animal and human subjects, suggesting a potential role of regucalcin in carcinogenesis. Regucalcin, which is produced from the tissues including liver, is found to be present in the serum of human subjects and animals. This study was undertaken to determine the effects of exogenous regucalcin on the proliferation in cloned human hepatoma HepG2 cells in vitro. Proliferation of HepG2 cells was suppressed after culture with addition of regucalcin (0.01 – 10 nM) into culture medium. Exogenous regucalcin did not reveal apoptotic cell death in HepG2 cells in vitro. Suppressive effects of regucalcin on cell proliferation were not enhanced in the presence of various signaling inhibitors including tumor necrosis factor-α (TNF-α), Bay K 8644, PD98059, staurosporine, worthomannin, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) or gemcitabine, which were found to suppress the proliferation. In addition, exogenous regucalcin suppressed the formation of colonies of cultured hepatoma cells in vitro. These findings demonstrated that exogenous regucalcin exhibits a suppressive effect on the growth of human hepatoma HepG2 cells, proposing a strategy with the gene therapy for cancer treatment.
Zhou, Yan; Zhang, Shen; Deng, Sijun; Dai, Chongshan; Tang, Shusheng; Yang, Xiayun; Li, Daowen; Zhao, Kena; Xiao, Xilong
2016-01-01
The study aims at evaluating the combination of the quinocetone and the ML-7 in preclinical hepatocellular carcinoma models. To this end, the effect of quinocetone and ML-7 on apoptosis induction and signaling pathways was analyzed on HepG2 cell lines. Here, we report that ML-7, in a nontoxic concentration, sensitized the HepG2 cells to quinocetone-induced cytotoxicity. Also, ML-7 profoundly enhances quinocetone-induced apoptosis in HepG2 cell line. Mechanistic investigations revealed that ML-7 and quinocetone act in concert to trigger the cleavage of caspase-8 as well as Bax/Bcl-2 ratio up-regulation and subsequent cleavage of Bid, capsases-9 and -3. Importantly, ML-7 weakened the quinocetone-induced Akt pathway activation, but strengthened the phosphorylation of p-38, ERK and JNK. Further treatment of Akt activator and p-38 inhibitor almost completely abolished the ML-7/quinocetone-induced apoptosis. In contrast, the ERK and JNK inhibitor aggravated the ML-7/quinocetone-induced apoptosis, indicating that the synergism critically depended on p-38 phosphorylation and HepG2 cells provoke Akt, ERK and JNK signaling pathways to against apoptosis. In conclusion, the rational combination of quinocetone and ML-7 presents a promising approach to trigger apoptosis in hepatocellular carcinoma, which warrants further investigation.
Keshavarz-Pakseresht, Behta; Shandiz, Seyed Ataollah Sadat; Baghbani-arani, Fahimeh
2017-01-01
Aim: The present study investigated the anti-tumor activity of Imatinib mesylate through modulation of NM23 gene expression in human hepatocellular carcinoma (HepG2) cell line. Background: Hepatocellular carcinoma (HCC) is considered to be the third leading cause of cancer related death worldwide. Down regulation of NM23, a metastasis suppressor gene, has been associated with several types of malignant cancer. Recently, effects of Imatinib mesylate, a first member of tyrosine kinases inhibitors, were indicated in research and treatment of different malignant tumors. Methods: Cell viability was quantitated by MTT assay after HepG2 cells exposure to Imatinib mesylate at various concentrations of 0, 1.56, 3.125, 6.25, 12.5, 25,50μM for 24 hours. Also, quantitative real time PCR technique was applied for the detection of NM23 gene expression in HepG2 cell line. Results: There was a dose dependent increase in the cytotoxicity effect of imatinib. The real time PCR results demonstrated that inhibitory effect of Imatinib mesylate on viability via up regulation of NM23 gene expression compared to GAPDH gene (internal control gene) in cancer cells. Conclusion: According to our findings, imatinib can modulate metastasis by enhancing Nm23 gene expression in human hepatocellular carcinoma (HepG2) cell line. PMID:28331561
Selective insulin resistance in hepatocyte senescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas
Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied inmore » three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.« less
[Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].
Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong
2014-07-01
Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.
[Efficacy of HSV-tk/GCV system on human laryngeal squamous cell cancer in vitro].
Ding, Xiu-yong; Qin, Yong; Li, Fu-ying; Cong, Tie-chuan
2006-05-01
Efficacy of HSV-tk/GCV system antitumor effects was assessed on human laryngeal cancer cell line Hep-2 in vitro. To assess the HSV-tk/CGV system whether has an antitumour effect on human laryngeal squamous cell cancer Hep-2 in vitro. The mechanisms of cytotoxity were also assessed. Hep-2 cells were transfected with HSV-tk gene by lipofection. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the HSV-tk gene expression. MTT was utilized to test for the cytotoxicity of this system. The cell-circle arrest and apoptosis were analyzed by flowcytometry assay. HSV-tk gene transfected cells demonstrated obvious cytoreductivity followed by ganciclovir (GCV) administration and this cytoreductivity showed partial GCV dose-independent. HSV-tk gene transfected cells demonstrated obvious s-phase arrest, no apoptosis and necrosis occurred. The HSV-tk/GCV system can inhabit the growth of Hep-2 cells effectively. S-phase arrest perhaps is the main reason that leads to the cell inhibition in our study. HSV-tk/GCV system has potential antitumor effects for the future clinical practice.
Liu, Benguo; Liu, Feng; Chen, Chungang; Gao, Han
2010-12-01
In this study, supercritical carbon dioxide extraction of ethyl p-methoxycinnamate from Kaempferia galanga L. rhizome and its apoptotic induction in human HepG2 cells are reported for the first time. By using supercritical carbon dioxide extraction, the yield of ethyl p-methoxycinnamate identified by gas chromatography mass spectrometry (GC-MS) was as high as 2.5% with respect to the raw materials. In the anticancer assay, it was found that ethyl p-methoxycinnamate could inhibit the proliferation of the human hepatocellular liver carcinoma HepG2 cell line in a dose-dependent manner and induce the significant increase of the subG0 cell population. After treatment with ethyl p-methoxycinnamate, phosphatidylserine of HepG2 cells could significantly translocate to the surface of the membrane. The increase of an early apoptotic population was observed by both annexin-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining. It was concluded that ethyl p-methoxycinnamate not only induced cells to enter into apoptosis, but also affected the progress of the cell cycle.
Kim, Ji Yeon; Ok, Elly; Kim, You Jin; Choi, Kyoung-Sook; Kwon, Oran
2013-06-01
We investigated whether the combination of phytochemicals and acetic acid in the form of fruit vinegar provides an additive effect on changes of mRNA levels related to fatty acid oxidation in human hepatocyte (HepG2). Among the seven fruit vinegars (Rubuscoreanus, Opuntia, blueberry, cherry, red ginseng, mulberry, and pomegranate) studied, treatment of HepG2 with pomegranate vinegar (PV) at concentrations containing 1 mM acetic acid showed the highest in vitro potentiating effect on the mRNA expression levels of peroxisome proliferator-activated receptor α, carnitinepalmitoyl transferase-1, and acyl-CoA oxidase compared to the control group (P < 0.05). Reversed-phase liquid chromatography in combination with quadrupole time-of-flight mass spectrometry analysis revealed four potential compounds (punicalagin B, ellagic acid, and two unidentified compounds) responsible for altered gene expression in HepG2 cells treated with PV as compared with the others. Further investigations are warranted to determine if drinking PV beverages may help to maintain a healthy body weight in overweight subjects.
Petit, Dörte; Tevi-Benissan, Carole; Woodring, Joseph; Hennessey, Karen; Kahn, Anna-Lea
2017-12-14
Chronic hepatitis B infection can be prevented by hepatitis B vaccine birth dose (hepB-BD) given within 24 h after birth, followed by two hepatitis B vaccinations within the first year of life. Yet nearly half of World Health Organization (WHO) Member States do not provide a hepB-BD. Barriers are primarily attributed to vaccine storage and transportation, as well as high rates of home births. Delivering the vaccine outside the cold chain could potentially increase coverage. To do this, WHO recommends vaccines be licensed for use in a "controlled temperature chain" (CTC), which requires a given product to tolerate temperature excursions up to at least 40 °C for a minimum of three days. To date, no hepB vaccine is labelled for CTC. To inform dialogue with manufacturers, WHO conducted a survey among countries in the African and Western Pacific Regions (AFR and WPR) to assess demand for a hepatitis B product licensed for use in a CTC. Twenty-five (44%) countries responded, with 8 of 11 (73%) from the WPR and 17 of 46 (37%) from the AFR. Of these responding countries, 5 in AFR and all 8 in WPR have introduced universal hepB-BD. Seventy-two percent indicated that CTC would facilitate the provision of hepB-BD. While no overall difference in responses was detected between countries either providing or not providing hepB-BD, countries that already introduced hepB-BD but had low hepB-BD coverage were particularly interested in CTC. Irrespective of hepB-BD policy, responding countries suggested that a CTC-licenced product would be beneficial, though the price of such a vaccine would influence procurement decisions. This survey was beneficial to inform the CTC agenda. However, countries' lack of experience with HepB-BD as well as with CTC and the fact that countries were commenting on a product that is not yet on the market should be acknowledged. Copyright © 2017. Published by Elsevier Ltd.
Tan, Xiang-Wen; Xia, Hong; Xu, Jin-Hua; Cao, Jian-Guo
2009-05-14
To investigate the effect of 5-allyl-7-gen-difluoromethylenechrysin (ADFMChR) on apoptosis of human liver carcinoma HepG2 cell line and the molecular mechanisms involved. HepG2 cells and L-02 cells were cultured in vitro and the inhibitory effect of ADFMChR on their proliferation was measured by MTT assay. The apoptosis of HepG2 cells was determined by flow cytometry (FCM) using propidium iodide (PI) fluorescence staining. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of ADFMChR on the proxisome proliferator-activated receptor gamma (PPARgamma), NF-kappaB, Bcl-2 and Bax protein expression of HepG2 cells were analyzed by Western blotting. MTT assay showed that ADFMChR significantly inhibited proliferation of HepG2 cells in a dose-dependent manner, with little effect on growth of L-02 cells, and when IC(50) was measured as 8.45 micromol/L and 191.55 micromol/L respectively, the potency of ADFMChR to HepG2 cells, was found to be similar to 5-fluorouracil (5-FU, IC(50) was 9.27 micromol/L). The selective index of ADFMChR cytotoxicity to HepG2 cells was 22.67 (191.55/8.45), higher than 5-FU (SI was 7.05 (65.37/9.27). FCM with PI staining demonstrated that the apoptosis rates of HepG2 cells treated with 3.0, 10.0 and 30.0 micromol/L ADFMChR for 48 h were 5.79%, 9.29% and 37.8%, respectively, and were significantly higher when treated with 30.0 micromol/L ADFMChR than when treated with 30.0 micromol/L ChR (16.0%) (P < 0.05) and were similar to those obtained with 30.0 micromol/L 5-FU (41.0%). DNA agarose gel electrophoresis showed that treatment of HepG2 cells with 10.0 micromol/L ADFMChR for 48 h and 72 h resulted in typical DNA ladders which could be reversed by 10.00 micromol/L GW9662, a blocker of PPARgamma. Western blotting analysis revealed that after 24 h of treatment with 3.0, 10.0, 30.0 micromol/L ADFMChR, PPARgamma and Bax protein expression in HepG2 cells increased but Bcl-2 and NF-kappaB expression decreased; however, pre-incubation with 10.0 micromol/L GW9662 could efficiently antagonize and weaken the regulatory effect of 3.0, 30.0 micromol/L ADFMChR on PPARgamma and NF-kappaB protein expression in HepG2 cells. ADFMChR induces apoptosis of HepG2 cell lines by activating PPARgamma, inhibiting protein expression of Bcl-2 and NF-kappaB, and increasing Bax expression.
Yan, Guokai; Lestari, Retno; Long, Baisheng; Fan, Qiwen; Wang, Zhichang; Guo, Xiaozhen; Yu, Jie; Hu, Jun; Yang, Xingya; Chen, Changqing; Liu, Lu; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua
2016-03-17
L-Arginine (Arg) is a versatile amino acid that plays crucial roles in a wide range of physiological and pathological processes. In this study, to investigate the alteration induced by Arg supplementation in proteome scale, isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach was employed to comparatively characterize the differentially expressed proteins between Arg deprivation (Ctrl) and Arg supplementation (+Arg) treated human liver hepatocellular carcinoma (HepG2) cells. A total of 21 proteins were identified as differentially expressed proteins and these 21 proteins were all up-regulated by Arg supplementation. Six amino acid metabolism-related proteins, mostly metabolic enzymes, showed differential expressions. Intriguingly, Ingenuity Pathway Analysis (IPA) based pathway analysis suggested that the three ethanol degradation pathways were significantly altered between Ctrl and +Arg. Western blotting and enzymatic activity assays validated that the key enzymes ADH1C, ALDH1A1, and ALDH2, which are mainly involved in ethanol degradation pathways, were highly differentially expressed, and activated between Ctrl and +Arg in HepG2 cells. Furthermore, 10 mM Arg significantly attenuated the cytotoxicity induced by 100 mM ethanol treatment (P < 0.0001). This study is the first time to reveal that Arg activates ethanol degradation pathways in HepG2 cells.
NASA Astrophysics Data System (ADS)
Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian
2010-05-01
Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.
Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L
2017-09-27
Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.
Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat
2015-01-01
The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation.
ERIC Educational Resources Information Center
Vogt, Brandon J.; Skop, Emily
2017-01-01
High-Impact Educational Practices (HEPs) are a set of specific teaching and learning approaches proven effective in university education. This paper focuses on the benefits derived from utilizing three particular HEPs (inquiry-based collaborative activities, undergraduate research, and experiential learning) while teaching a snow and ice field…
Robertson, L.S.; Iwanowicz, L.R.; Marranca, J.M.
2009-01-01
Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17β-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.
Robertson, Laura S; Iwanowicz, Luke R; Marranca, Jamie Marie
2009-06-01
Hepcidin is a highly conserved antimicrobial peptide and iron-regulatory hormone. Here, we identify two hepcidin genes (hep-1 and hep-2) in largemouth bass (Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Hepcidin-1 contains a putative ATCUN metal-binding site in the amino-terminus that is missing in hepcidin-2, suggesting that hepcidin-1 may function as an iron-regulatory hormone. Both hepcidins are predominately expressed in the liver of largemouth bass, similar to other fish and mammals. Experimental exposure of pond-raised largemouth bass to 17beta-estradiol and/or the bacteria Edwardsiella ictaluri led to distinct changes in expression of hep-1 and hep-2. Estradiol reduced the constitutive expression of hep-1 in the liver. Bacterial exposure induced expression of hep-2, suggesting that hepcidin-2 may have an antimicrobial function, and this induction was abolished by estradiol. To our knowledge, this is the first report of the regulation of hepcidin expression by estradiol in either fish or mammals.
Breakwell, Lucy; Anga, Jenniffer; Dadari, Ibrahim; Sadr-Azodi, Nahad; Ogaoga, Divinal; Patel, Minal
2017-05-15
Monovalent Hepatitis B vaccine (HepB) is heat stable, making it suitable for storage outside cold chain (OCC) at 37°C for 1month. We conducted an OCC project in the Solomon Islands to determine the feasibility of and barriers to national implementation and to evaluate impact on coverage. Healthcare workers at 13 facilities maintained monovalent HepB birth dose (HepB-BD) OCC for up to 28days over 7months. Vaccination data were recorded for children born during the project and those born during 7months before the project. Timely HepB-BD coverage among facility and home births increased from 30% to 68% and from 4% to 24%, respectively. Temperature excursions above 37°C were rare, but vaccine wastage was high and shortages common. Storing HepB OCC can increase HepB-BD coverage in countries with insufficient cold chain capacity or numerous home births. High vaccine wastage and unreliable vaccine supply must be addressed for successful implementation. Published by Elsevier Ltd.
Liu, Zhengyun; Li, Guangmin; Gou, Ying; Xiao, Dongyan; Luo, Guo; Saavedra, Joseph E; Liu, Jie; Wang, Huan
2017-08-01
Hepatocellular carcinoma (HCC) is the most important cause of cancer-related death, and 85% of HCC is caused by chronic HBV infection, the prognosis of patients and the reduction of HBV DNA levels remain unsatisfactory. JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors, but little is known on its effects on HBV positive HCC. We found that JS-K reduced the expression of HBsAg and HBeAg in HBV-positive HepG2.2.15 cells. This study aimed to further examine anti-tumor effects of JS-K on HepG2.2.15 cells. The MTT assay and colony forming assay were used to study the cell growth inhibition of JS-K; scratch assay and transwell assay were performed to detect cell migration. The cell cycle was detected by flow cytometry. The immunofluorescence, flow cytometry analysis, and western blot were used to study DNA damage and cell apoptosis. JS-K inhibited HepG2.2.15 cell growth in a dose-dependent manner, suppressed cell colony formation and migration, arrested cells gather in the G2 phase. JS-K (1-20μM) increased the expression of DNA damage-associated protein phosphorylation H 2 AX (γH 2 AX), phosphorylation of checkpoint kinase 1 (p-Chk1), phosphorylation of checkpoint kinase 2 (p-Chk2), ataxia-telangiectasia mutated (ATM), phosphorylation of ataxia-telangiectasia mutated rad3-related (p-ATR) and apoptotic-associated proteins cleaved caspase-3, cleaved caspase-7, cleaved poly ADP-ribose polymerase (cleaved PARP). The study demonstrated JS-K is effective against HBV-positive HepG2.2.15 cells, the mechanisms are not only related to inhibition of HBsAg and HBeAg secretion, but also related with induction of DNA damage and apoptosis. JS-K is a promising anti-cancer candidate against HBV-positive HCC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Quick assessment of the influence of the Hepatitis B vaccine event on children's vaccination.
Yue, Chenyan; Sun, Xiaojin; Wei, Ning; Yu, Wenzhou; Cui, Fuqiang; Wang, Huaqing; Li, Li; Zhang, Lijie; Shi, Guoqing; An, Zhijie
2016-10-02
From December 2013 to January 2014, a large number of medias in China reported negative information about Hepatitis B vaccine (HepB) safety issues using eye-catching titles, such as "3 infants in Hunan inoculated with HepB occurred adverse event, and 2 died," and that caused crisis of confidence in vaccination, which we called "HepB event." The progress of "HepB event" could be divided into 3 stages which were initiation, peak and ending stages. In order to evaluate the influence of "HepB event" on the attitudes of participants toward Hepatitis B vaccine safety and their intention of vaccinating their children in different stages, and provide evidence for authority departments as soon as possible to take measures to prevent decrease of HepB coverage rate, a quick field investigation was carried out. Using convenience sampling methods during the initiation, peak and ending stages of the "HepB event." In the 3 stages of the "HepB event," the awareness rate of the event among participants was rapidly rising, showing that the participants paid great attention to the event, and the information was spread very quickly. The proportion of participants who knew the event but thought that the Hepatitis B vaccine was unsafe were 31%, 37% and 26% respectively in 3 stages. In addition, the acceptance of vaccination by the participants was influenced, the proportion of participants who would like to delay or reject vaccinating their children was up to 43% in the peak stage of the event. The "HepB event" had impacted on the participants' confidence in the safety of Hepatitis B vaccine. For such event, relevant authority departments need effectively communicate with the media and the public, and promptly issue positive information and the investigation result, thereby reducing the negative impact of the event, and improve the vaccine confidence among the public.
Affleck, Authur; Lyman, William B; Jacobs, W Carl; Livasy, Chad A; Martinie, John B; Iannitti, David A; Vrochides, Dionisios
2018-05-09
The hepatocyte paraffin 1 antibody (Hep Par 1) has a high positive predictive value for differentiating hepatocellular carcinoma from cholangiocarcinoma and metastatic carcinoma. 1 We report a case of metastatic breast cancer to the liver with hepatoid histology and strong positive staining for Hep Par 1 mimicking hepatocellular carcinoma. To our knowledge, primary breast carcinoma staining Hep Par 1 positive has not been reported in the setting of hepatic metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Shi, Jian; Wang, Xinwen; Lyu, Lingyun; Jiang, Hui; Zhu, Hao-Jie
2018-04-01
Human hepatic cell lines are widely used as an in vitro model for the study of drug metabolism and liver toxicity. However, the validity of this model is still a subject of debate because the expressions of various proteins in the cell lines, including drug-metabolizing enzymes (DMEs), can differ significantly from those in human livers. In the present study, we first conducted an untargeted proteomics analysis of the microsomes of the cell lines HepG2, Hep3B, and Huh7, and compared them to human livers using a sequential window acquisition of all theoretical mass spectra (SWATH) method. Furthermore, high-resolution multiple reaction monitoring (MRM-HR), a targeted proteomic approach, was utilized to compare the expressions of pre-selected DMEs between human livers and the cell lines. In general, the SWATH quantifications were in good agreement with the MRM-HR analysis. Over 3000 protein groups were quantified in the cells and human livers, and the proteome profiles of human livers significantly differed from the cell lines. Among the 101 DMEs quantified with MRM-HR, most were expressed at substantially lower levels in the cell lines. Thus, appropriate caution must be exercised when using these cell lines for the study of hepatic drug metabolism and toxicity. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Fujita, H; Sassa, S; Toback, A C; Kappas, A
1987-01-01
Hepatoerythropoietic porphyria (HEP) is due to a marked deficiency of uroporphyrinogen (URO) decarboxylase, a cytosolic enzyme in the heme biosynthetic pathway. Using a radioimmunoassay method, we determined the concentration of URO decarboxylase protein in erythrocytes from a patient with mild HEP and found that the enzyme protein concentration had markedly decreased to less than 7% of the normal controls. This finding, however, was in contrast to the enzyme activity in the patient's erythrocytes, which was 16% of normal control levels and different from previously reported HEP cases in that erythrocytes in our patient contained disproportionately elevated URO decarboxylase activity in comparison to its immunoreactive material. Our findings suggests the possibility of a mutant isozyme in this patient that is not immunoreactive with an antibody raised against the normal enzyme. PMID:3571497
Chen, Ao; Chen, Xiaodong; Cheng, Shiqiang; Shu, Le; Yan, Meiping; Yao, Lun; Wang, Binyu; Huang, Shuguang; Zhou, Lei; Yang, Zaiqing; Liu, Guoquan
2018-05-01
The fat mass and obesity-associated (FTO) gene is tightly related to body weight and fat mass, and plays a pivotal role in regulating lipid accumulation in hepatocytes. However, the mechanisms underlying its function are poorly understood. Sterol regulatory element binding protein-1c (SREBP1c) is a transcription factor that regulates lipogenesis. Cell death-inducing DFFA (DNA fragmentation factor-α)-like effector c (CIDEC) plays a crucial role in lipid droplets (LDs) size controlling and lipid accumulation. In this report, we first observed that FTO overexpression in HepG2 cells resulted in an increase of lipogenesis and up-regulation of SREBP1c and CIDEC, two key regulatory factors in lipogenesis. In contrast, FTO knockdown in HepG2 cells resulted in a decrease of lipogenesis and down-regulation of SREBP1c and CIDEC expression. Moreover, SREBP1c knockdown resulted in a decrease of lipogenesis in HepG2 cells with FTO overexpression. In addition, FTO demethylation defect mutant presented less transcription of the key genes, and less nuclear translocation and maturation of SREBP1c. Further investigation demonstrated that overexpression of SREBP1c in HepG2 cells also promoted high CIDEC expression. Luciferase reporter assays showed that SREBP1c significantly stimulated CIDEC gene promoter activity. Finally, CIDEC knockdown reduced SREBP1c-induced lipogenesis. In conclusion, our studies suggest that FTO increased the lipid accumulation in hepatocytes by increasing nuclear translocation of SREBP1c and SREBP1c maturation, thus improving the transcriptional activity of LD-associated protein CIDEC. Our studies may provide new mechanistic insight into nonalcoholic fatty liver disease (NAFLD) mediated by FTO. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Yu, Jian-Qing; Yin, Yan; Lei, Jia-Chuan; Zhang, Xiu-Qiao; Chen, Wei; Ding, Cheng-Li; Wu, Shan; He, Xiao-Yu; Liu, Yan-Wen; Zou, Guo-Lin
2012-02-01
Dianthus superbus L. is commonly used as a traditional Chinese medicine. We recently showed that ethyl acetate fraction (EE-DS) from ethanol extract of D. superbus exhibited the strongest antioxidant and cytotoxic activities. In this study, we examined apoptosis of HepG2 cells induced by EE-DS, and the mechanism underlying apoptosis was also investigated. Treatment of HepG2 cells with EE-DS (20-80 μg/ml) for 48 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a large number of apoptotic bodies containing nuclear fragments were observed in cells treated with 80 μg/ml of EE-DS for 24 h by using Hoechst 33258 staining. These data show that EE-DS can induce apoptosis of HepG2 cells. Immunoblot analysis showed that EE-DS significantly suppressed the expressions of Bcl-2 and NF-κB. Treatment of cells with EE-DS (80 μg/ml) for 48 h resulted in significant increase of cytochrome c in the cytosol, which indicated cytochrome c release from mitochondria. Activation of caspase-9 and -3 were also determined when the cells treated with EE-DS. The results suggest that apoptosis of HepG2 cells induced by EE-DS could be through the mitochondrial intrinsic pathway. High performance liquid chromatography (HPLC) data showed that the composition of EE-DS is complicated. Further studies are needed to find the effective constituents of EE-DS. Copyright © 2011 Elsevier Ltd. All rights reserved.
Oroxylin A reverses CAM-DR of HepG2 cells by suppressing Integrinβ1 and its related pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Binbin; Zhao, Li; Zhu, Litao
Oroxylin A, a naturally occurring monoflavonoid extracted from Scutellariae radix, shows effective anticancer activities and low toxicities both in vivo and in vitro in previous studies. In this study, we investigated whether the CAM-DR model of HepG2 cells showed resistance to cytotoxic agents compared with normally cultured HepG2 cells. Furthermore, after the treatment of Paclitaxel, less inhibitory effects and decreased apoptosis rate were detected in the model. Data also revealed increased expression of Integrinβ1 might be responsible for the resistance ability. Moreover, Integrinβ1-siRNA-transfected CAM-DR HepG2 cells exhibited more inhibitory effects and higher levels of apoptosis than the non-transfected CAM-DR cells.more » The data corroborated that Integrinβ1 played a significant role in CAM-DR. After the treatment of weakly-toxic concentrations of Oroxylin A, the apoptosis induced by Paclitaxel in the CAM-DR model increased dramatically. Western blot assay revealed Oroxylin A markedly down-regulated the expression of Integrinβ1 and the activity of related pathway. As a conclusion, Oroxylin A can reverse the resistance of CAM-DR via inhibition of Integrinβ1 and its related pathway. Oroxylin A may be a potential candidate of a CAM-DR reversal agent. Highlights: ► Adhesion of HepG2 cells to fibronectin exhibited resistance to Paclitaxel. ► The resistance was associated with the increased expression of Integrinβ1. ► Knocking down Integrinβ1 can increase the toxicity of Paclitaxel on CAM-DR model. ► Oroxylin A reversed the resistance by suppressing Integrinβ1 and related pathway.« less
ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype.
Miglionico, Rocchina; Ostuni, Angela; Armentano, Maria Francesca; Milella, Luigi; Crescenzi, Elvira; Carmosino, Monica; Bisaccia, Faustino
2017-01-01
Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21 Cip p53 independent; and 4) downregulation of lamin A/C. These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.
Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesterdal, Lise K.; Danielsen, Pernille H.; Folkmann, Janne K.
Exposure to particles has been suggested to generate hepatosteatosis by oxidative stress mechanisms. We investigated lipid accumulation in cultured human hepatocytes (HepG2) and rat liver after exposure to four different carbon-based particles. HepG2 cells were exposed to particles for 3 h and subsequently incubated for another 18 h to manifest lipid accumulation. In an animal model of metabolic syndrome we investigated the association between intake of carbon black (CB, 14 nm) particles and hepatic lipid accumulation, inflammation and gene expression of Srebp-1, Fasn and Scd-1 involved in lipid synthesis. There was a concentration-dependent increase in intracellular lipid content after exposuremore » to CB in HepG2 cells, which was only observed after co-exposure to oleic/palmitic acid. Similar results were observed in HepG2 cells after exposure to diesel exhaust particles, fullerenes C{sub 60} or pristine single-walled carbon nanotubes. All four types of particles also generated oxidatively damaged DNA, assessed as formamidopyrimidine DNA glycosylase (FPG) sensitive sites, in HepG2 cells after 3 h exposure. The animal model of metabolic syndrome showed increased lipid load in the liver after one oral exposure to 6.4 mg/kg of CB in lean Zucker rats. This was not associated with increased iNOS staining in the liver, indicating that the oral CB exposure was associated with hepatic steatosis rather than steatohepatitis. The lipid accumulation did not seem to be related to increased lipogenesis because there were unaltered gene expression levels in both the HepG2 cells and rat livers. Collectively, exposure to particles is associated with oxidative stress and steatosis in hepatocytes. - Highlights: • Oral exposure to nanosized carbon black was associated with hepatosteatosis in rats. • In vitro studies included carbon black, C{sub 60}, diesel exhaust particles and SWCNTs. • Exposure to particles and free fatty acids increased lipid load in HepG2 cells. • Unaltered expression of lipogenesis genes despite oxidative stress in hepatocytes • Particles evoke hepatosteatosis by increased uptake rather than synthesis of lipids.« less
Hu, Yu; Chen, Yaping; Guo, Jing; Tang, Xuewen; Shen, Lingzhi
2014-01-01
Background: We studied completeness and timeliness of vaccination and determinants for low and delayed uptake in children born between 2008 and 2009 in Zhejiang province in eastern China. Methods: We used data from a cross-sectional cluster survey conducted in 2011, which included 1146 children born from 1 Jan 2008 to 31 Dec 2009. Various vaccination history, social-demographic factors, attitude and satisfaction toward immunization from caregivers were collected by a standard questionnaire. We restricted to the third dose of HepB, PV, and DPT (HepB3, PV3, and DPT3) as outcome variables for completeness of vaccination and restricted to the first dose of HepB, PV, DPT, and MCV(HepB1, PV1, DPT1, and MCV1) as outcome variables for timeliness of vaccination. The χ2 test and logistic regression analysis were applied to identify the determinants of completeness and timeliness of vaccination. Survival analysis by the Kaplan–Meier method was performed to present the timeliness vaccination. Results: Coverage for HepB1, HepB3, PV1, PV3, DPT1, DPT3, and MCV1 was 93.22%, 90.15%, 96.42%, 91.63%, 95.80%, 90.16%, and 92.70%, respectively. Timely vaccination occurred in 501/1146(43.72%) children for HepB1, 520/1146(45.38%) for PV1, 511/1146(44.59%) for DPT1, and 679/1146(59.25%) for MCV1. Completeness of specific vaccines was associated with mother’ age, immigration status, birth place of child, maternal education level, maternal occupation status, socio-economic development level of surveyed areas, satisfaction toward immunization service and distance of the house to immunization clinic. Timeliness of vaccination for specific vaccines was associated with mother’ age, maternal education level, immigration status, siblings, birth place, and distance of the house to immunization clinic. Conclusion: Despite reasonably high vaccination coverage, we observed substantial vaccination delays. We found specific factors associated with low and/or delayed vaccine uptake. These findings can help to improve strategies such as Reaching Every District (RED), out-reach vaccination services and health education to reach children who remain inadequately protected. PMID:24584000
Ji, Y.; Ji, C.; Yue, L.; Xu, H.
2012-01-01
Objective Many scientific studies have shown that Asparagus officinalis has an antitumour effect and enhances human immunity, but the active components and the antitumour mechanisms are unclear. We investigated the effects of saponins isolated from Asparagus on proliferation and apoptosis in the human hepatoma cell line HepG2. Methods HepG2 cells were treated with varying concentrations of Asparagus saponins at various times. Using mtt and flow cytometry assays, we evaluated the effects of Asparagus saponins on the growth and apoptosis of HepG2 cells. Transmission electron microscopy was used to observe the morphology of cell apoptosis. Confocal laser scanning microscopy was used to analyze intracellular calcium ion concentration, mitochondrial permeability transition pore (mptp), and mitochondrial membrane potential (mmp). Spectrophotometry was applied to quantify the activity of caspase-9 and caspase-3. Flow cytometry was used to investigate the levels of reactive oxygen species (ros) and pH, and the expressions of Bcl2, Bax, CytC, and caspase-3, in HepG2 cells. Results Asparagus saponins inhibited the growth of HepG2 cells in a dose-dependent manner. The median inhibitory concentration (IC50) was 101.15 mg/L at 72 hours. The apoptosis morphology at 72 hours of treatment was obvious, showing cell protuberance, concentrated cytoplasm, and apoptotic bodies. The apoptotic rates at 72 hours were 30.9%, 51.7%, and 62.1% (for saponin concentrations of 50 mg/L, 100 mg/L, 200 mg/L). Treatment with Asparagus saponins for 24 hours increased the intracellular level of ros and Ca2+, lowered the pH, activated intracellular mptp, and decreased mmp in a dose-dependent manner. Treatment also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl2, upregulated the expression of Bax, and induced release of CytC and activation of caspase-3. Conclusions Asparagus saponins induce apoptosis in HepG2 cells through a mitochondrial-mediated and caspase-dependent pathway, suggesting that they may be a potent agent for the treatment of hepatocellular carcinoma. PMID:22876162
Zhou, Xiao-Na; Li, Guang-Ming; Xu, Ying-Chen; Zhao, Tuan-Jie; Wu, Ji-Xiang
2016-11-05
Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis. The receptor is overexpressed in hepatocellular carcinoma (HCC), and it is associated with the growth and metastatic spread of tumors. DcR3 holds promises as a new target for the treatment of HCC, but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3. The present work, therefore, examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2. HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3. After the knockdown of DcR3 was confirmed, cell proliferation, clone formation, ability of migrating across transwell membrane, and wound healing were assessed in vitro. Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied. Comparisons between multiple groups were done using one-way analysis of variance (ANOVA), while pairwise comparisons were performed using Student's t test. P< 0.05 was regarded statistically significant. DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2. Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05). The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05). In addition, the messenger RNA levels of MMP 9, VEGF-C, and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05). Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2. Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC.
Zhou, Xiao-Na; Li, Guang-Ming; Xu, Ying-Chen; Zhao, Tuan-Jie; Wu, Ji-Xiang
2016-01-01
Background: Decoy receptor 3 (DcR3) binds to Fas ligand (FasL) and inhibits FasL-induced apoptosis. The receptor is overexpressed in hepatocellular carcinoma (HCC), and it is associated with the growth and metastatic spread of tumors. DcR3 holds promises as a new target for the treatment of HCC, but little is known regarding the molecular mechanisms underlying the oncogenic properties of DcR3. The present work, therefore, examined the role of DcR3 in regulating the growth and invasive property of liver cancer cell HepG2. Methods: HepG2 cells were stably transfected with lentivirus-based short hairpin RNA vector targeting DcR3. After the knockdown of DcR3 was confirmed, cell proliferation, clone formation, ability of migrating across transwell membrane, and wound healing were assessed in vitro. Matrix metalloproteinase-9 (MMP 9) and vascular epithelial growth factor (VEGF)-C and D expressions of the DcR3 knockdown were also studied. Comparisons between multiple groups were done using one-way analysis of variance (ANOVA), while pairwise comparisons were performed using Student's t test. P < 0.05 was regarded statistically significant. Results: DcR3 was overexpressed in HepG2 compared to other HCC cell lines and normal hepatocyte Lo-2. Stable knockdown of DcR3 slowed down the growth of HepG2 (P < 0.05) and reduced the number of clones formed by 50% compared to those without DcR3 knockdown (P < 0.05). The knockdown also reduced the migration of HepG2 across transwell matrix membrane by five folds compared to the control (P < 0.05) and suppressed the closure of scratch wound (P < 0.05). In addition, the messenger RNA levels of MMP 9, VEGF-C, and VEGF-D were significantly suppressed by DcR3 knockdown by 90% when compared with the mock control (P < 0.05). Conclusions: Loss of DcR3 impaired the growth and invasive property of HCC cell line of HepG2. Targeting DcR3 may be a potential therapeutic approach for the treatment of HCC. PMID:27779171
Teklehaimanot, Hailay D; Teklehaimanot, Awash
2013-08-20
Ethiopia is one of the sub-Saharan countries most affected by high disease burden, aggravated by a shortage and imbalance of human resources, geographical distance, and socioeconomic factors. In 2004, the government introduced the Health Extension Program (HEP), a primary care delivery strategy, to address the challenges and achieve the World Health Organization Millennium Development Goals (MDGs) within a context of limited resources. The health system was reformed to create a platform for integration and institutionalization of the HEP with appropriate human capacity, infrastructure, and management structures. Human resources were developed through training of female health workers recruited from their prospective villages, designed to limit the high staff turnover and address gender, social and cultural factors in order to provide services acceptable to each community. The service delivery modalities include household, community and health facility care. Thus, the most basic health post infrastructure, designed to rapidly and cost-effectively scale up HEP, was built in each village. In line with the country's decentralized management system, the HEP service delivery is under the jurisdiction of the district authorities. The nationwide implementation of HEP progressed in line with its target goals. In all, 40 training institutions were established, and over 30,000 Health Extension Workers have been trained and deployed to approximately 15,000 villages. The potential health service coverage reached 92.1% in 2011, up from 64% in 2004. While most health indicators have improved, performance in skilled delivery and postnatal care has not been satisfactory. While HEP is considered the most important institutional framework for achieving the health MDGs in Ethiopia, quality of service, utilization rate, access and referral linkage to emergency obstetric care, management, and evaluation of the program are the key challenges that need immediate attention. This article describes the strategies, human resource developments, service delivery modalities, progress in service coverage, and the challenges in the implementation of the HEP. The Ethiopian approach of revitalization of primary care through innovative, locally appropriate and acceptable strategies will provide important lessons to other poorly resourced countries. It is hoped that the approaches and strategies described in this paper will aid in that process.
Liu, Shuqiang; Tan, Zhibin; Li, Pingting; Gao, Xiaoling; Zeng, Yuaner; Wang, Shuling
2016-03-20
HepG2 cells biospecific extraction method and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis was proposed for screening of potential antiatherosclerotic active components in Bupeuri radix, a well-known Traditional Chinese Medicine (TCM). The hypothesis suggested that when cells are incubated together with the extracts of TCM, the potential bioactive components in the TCM should selectively combine with the receptor or channel of HepG2 cells, then the eluate which contained biospecific component binding to HepG2 cells was identified using HPLC-ESI-MS analysis. The potential bioactive components of Bupeuri radix were investigated using the proposed approach. Five compounds in the saikosaponins of Bupeuri radix were detected as these components selectively combined with HepG2 cells, among these compounds, two potentially bioactive compounds namely saikosaponin b1 and saikosaponin b2 (SSb2) were identified by comparing with the chromatography of the standard sample and analysis of the structural clearance characterization of MS. Then SSb2 was used to assess the uptake of DiI-high density lipoprotein (HDL) in HepG2 cells for antiatherosclerotic activity. The results have showed that SSb2, with indicated concentrations (5, 15, 25, and 40 μM) could remarkably uptake dioctadecylindocarbocyanine labeled- (DiI) -HDL in HepG2 cells (Vs control group, *P<0.01). In conclusion, the application of HepG2 biospecific extraction coupled with HPLC-ESI-MS analysis is a rapid, convenient, and reliable method for screening potential bioactive components in TCM and SSb2 may be a valuable novel drug agent for the treatment of atherosclerosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Abramsky, Hillary; Kaur, Puneet; Robitaille, Mikale; Taggio, Leanna; Kosemetzky, Paul K; Foster, Hillary; Gibson Bmr Pt MSc PhD, Barbara E; Bergeron, Maggie; Jachyra, Patrick
2018-01-01
Purpose: We explored patients' perspectives on home exercise programmes (HEPs) and their experiences using a mobile application designed to facilitate home exercise. Method: Data were generated using qualitative, semi-structured, face-to-face interviews with 10 participants who were receiving outpatient physiotherapy. Results: Establishing a therapeutic partnership between physiotherapists and patients enabled therapists to customize the HEPs to the patients' lifestyles and preferences. Analysis suggests that using the mobile application improved participants' ability to integrate the HEP into their daily life and was overwhelmingly preferred to traditional paper handouts. Conclusions: The results suggest that efforts to engage patients in HEPs need to take their daily lives into account. To move in this direction, sample exercise prescription questions are offered. Mobile applications do not replace the clinical encounter, but they can be an effective tool and an extension of delivering personalized HEPs in an existing therapeutic partnership.
NASA Astrophysics Data System (ADS)
McKee, Shawn
2017-10-01
Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. National and global-scale collaborations that characterize HEP would not be feasible without ubiquitous capable networks. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. This paper will briefly discuss the history of networking in HEP, the current activities and challenges we are facing, and try to provide some understanding of where networking may be going in the next 5 to 10 years.
Cytotoxic effects of 2-methoxyestradiol in the hepatocellular carcinoma cell line HepG2.
El Naga, Reem N Abou; El-Demerdash, Ebtehal; Youssef, Samar S; Abdel-Naim, Ashraf B; El-Merzabani, Mahmoud
2009-01-01
The study was designed to examine the potential cytotoxicity of 2-methoxyestradiol (2ME2), a natural 17beta-estradiol metabolite, in hepatocellular carcinoma and the possible underlying mechanisms for this cytotoxicity. The cell line HepG2 was treated with different concentrations of 2ME2 for 48 and 72 h. Using the sulforhodamine B assay, HepG2 was sensitive to the cytotoxic effect of 2ME2. 2ME2 induced cell arrest at the G(2)/M phase and a significant high percentage of apoptotic cells compared to the control group. Also, 2ME2 induced a significant increase in caspase 9 enzymatic activity after 48 and 72 h of treatment compared with control values. The DNA laddering was observed only in cells treated for 72 h. Furthermore, 2ME2 induced a significant decrease in the expression levels of vascular endothelial growth factor (VEGF) gene compared to the control values. 2ME2 exerts cytotoxic activity in the HepG2 cell line by preferential cell blocking at the G(2)/M phase as well as induction of apoptosis as evidenced by increased caspase 9 enzymatic activity and observed DNA laddering in 2ME2-treated HepG2 cells. In addition, a reduction in hypervascularity is an important postulated mechanism as indicated by the significant reduction in the expression of VGEF, one of the most important angiogenic factors.
Liu, Xiaomin; Zhang, Yingjian; Wang, Ping; Wang, Hongyun; Su, Huanhuan; Zhou, Xin; Zhang, Lamei
2016-07-16
BACKGROUND This study was designed to improve our understanding of the role of miR-18a and its target (connective tissue growth factor (CTGF), which are mediators in HBX-induced hepatocellular carcinoma (HCC). MATERIAL AND METHODS We first investigated the expression of several candidate microRNAs (miRNAs) reported to have been aberrantly expressed between HepG2 and HepG2.2.15, which is characterized by stable HBV infection, while the CTGF is identified as a target of miR-18a. Furthermore, the expression of CTGF evaluated in HepG2 was transfected with HBX, while the HepG2.2.15 was transfected with miR-18a and CTGF siRNA. We examined the cell cycle at the same time. RESULTS We found that the expression of miR-18a was abnormally reduced in the HBV-positive HCC tissue samples compared with HBV-negative HCC samples. Through the use of a luciferase reporter system, we also identified CTGF 3'UTR (1046-1052 bp) as the exact binding site for miR-18a. We also observed a clear increase in CTGF mRNA and protein expression levels in HBV-positive HCC human tissue samples in comparison with the HBV-negative controls, indicating a possible negatively associated relationship between miR-18a and CTGF. Furthermore, we investigated the effect of HBX overexpression on miR-18a and CTGF, as well as the viability and cell cycle status of HepG2 cells. In addition, we found that HBX introduction downregulated miR-18a, upregulated CTGF, elevated the viability, and promoted cell cycle progression. We transfected HepG2.2.15 with miR-18a mimics and CTGF siRNA, finding that upregulated miR-18a and downregulated CTGF suppress the viability and cause cell cycle arrest. CONCLUSIONS Our study shows the role of the CTGF gene as a target of miR-18a, and identifies the function of HBV/HBX/miR-18a/CTGF as a key signaling pathway mediating HBV infection-induced HCC.
Clerc, T.; Sbarra, V.; Domingo, N.; Rault, J. P.; Diaconescu, N.; Moutardier, V.; Hasselot, N.; Lafont, H.; Jadot, G.; Laruelle, C.; Chanussot, F.
1996-01-01
1. The objective of this study was to compare in cultured human hepatocytes or Hep G2 cells, changes in the fate of unesterified low density lipoprotein (LDL)-cholesterol induced by crilvastatin, a new cholesterol lowering drug and a reference statin, simvastatin. 2. The experiments were carried out for 20 h, each well contained 4.2 x 10(5)/cm2 Hep G2 cells or 0.5 x 10(5)/Cm2 human hepatocytes, 130 microM ursodeoxycholate, 0.68 microCi or 1.59 microCi unesterified human [14C]-LDL-cholesterol, crilvastatin or simvastatin at 0 or 50 microM (both cell types) or 300 microM (Hep-G2 cells). Incubation with the two drugs resulted in increased amounts of unesterified [14C]-LDL-cholesterol taken by the two cell types, compared to control. 3. Crilvastatin 50 microM led to significantly higher quantities of [14C]-glyco-tauro-conjugated bile salts, compared to simvastatin. Statins reduced the apo B100 level secreted by the two cell types (simvastatin) or human hepatocytes (crilvastatin). Crilvastatin enhanced both the level of apo A1 secreted by the Hep G2 cells and the level of APF, a high density lipoprotein (HDL) and biliary apoprotein. 4. Crilvastatin not only acts by stimulating LDL-cholesterol uptake by hepatocytes, but also by enhancing the catabolism of LDL-cholesterol in bile salts and probably by stimulating HDL and/or bile component secretion. Such a mechanism was not previously described for HMG CoA reductase inhibitors. Our results on APF show that this apoprotein could be considered also as an indicator of changes in bile and/or HDL compartments. 5. The human hepatocyte model appeared to be a suitable and relevant model in the pharmacological-metabolic experiments carried out in this study. It led to more consistent data than those obtained with Hep G2 cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8842455
Glucose-regulated Protein 78 Is an Intracellular Antiviral Factor against Hepatitis B Virus*
Ma, Yan; Yu, Jun; Chan, Henry L. Y.; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y. Y.; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H. M.; He, Qing-Yu; Sung, Joseph J. Y.; Kung, Hsiang-fu; Cheng, Christopher H. K.; He, Ming-liang
2009-01-01
Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic approach in treating HBV infection. PMID:19671925
Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A
2015-08-01
The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. © The Author(s) 2013.
Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells
Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...
Does the Intel Xeon Phi processor fit HEP workloads?
NASA Astrophysics Data System (ADS)
Nowak, A.; Bitzes, G.; Dotti, A.; Lazzaro, A.; Jarp, S.; Szostek, P.; Valsan, L.; Botezatu, M.; Leduc, J.
2014-06-01
This paper summarizes the five years of CERN openlab's efforts focused on the Intel Xeon Phi co-processor, from the time of its inception to public release. We consider the architecture of the device vis a vis the characteristics of HEP software and identify key opportunities for HEP processing, as well as scaling limitations. We report on improvements and speedups linked to parallelization and vectorization on benchmarks involving software frameworks such as Geant4 and ROOT. Finally, we extrapolate current software and hardware trends and project them onto accelerators of the future, with the specifics of offline and online HEP processing in mind.
HEP Software Foundation Community White Paper Working Group - Detector Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostolakis, J.
A working group on detector simulation was formed as part of the high-energy physics (HEP) Software Foundation's initiative to prepare a Community White Paper that describes the main software challenges and opportunities to be faced in the HEP field over the next decade. The working group met over a period of several months in order to review the current status of the Full and Fast simulation applications of HEP experiments and the improvements that will need to be made in order to meet the goals of future HEP experimental programmes. The scope of the topics covered includes the main componentsmore » of a HEP simulation application, such as MC truth handling, geometry modeling, particle propagation in materials and fields, physics modeling of the interactions of particles with matter, the treatment of pileup and other backgrounds, as well as signal processing and digitisation. The resulting work programme described in this document focuses on the need to improve both the software performance and the physics of detector simulation. The goals are to increase the accuracy of the physics models and expand their applicability to future physics programmes, while achieving large factors in computing performance gains consistent with projections on available computing resources.« less
Li, Xiaoting; Chen, Beibei; He, Man; Wang, Han; Xiao, Guangyang; Yang, Bin; Hu, Bin
2017-04-15
In this work, we demonstrate a novel method based on inductively coupled plasma mass spectrometry (ICP-MS) detection with gold nanoparticles (Au NPs) and quantum dots (QDs) labeling for the simultaneous counting of two circulating tumor cell lines (MCF-7 and HepG2 cells) in human blood. MCF-7 and HepG2 cells were captured by magnetic beads coupled with anti-EpCAM and then specifically labeled by CdSe QDs-anti-ASGPR and Au NPs-anti-MUC1, respectively, which were used as signal probes for ICP-MS measurement. Under the optimal experimental conditions, the limits of detection of 50 MCF-7, 89 HepG2 cells and the linear ranges of 200-40000 MCF-7, 300-30000 HepG2 cells were obtained, and the relative standard deviations for seven replicate detections of 800 MCF-7 and HepG2 cells were 4.6% and 5.7%, respectively. This method has the advantages of high sensitivity, low sample consumption, wide linear range and can be extended to the simultaneous detection of multiple CTC lines in human peripheral blood. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Chong; Han, Rui; Liu, Limin
Studies demonstrated that perfluorooctane sulfonate (PFOS) tends to accumulate in the liver and is capable to cause hepatomegaly. In the present study, we investigated the roles of miR-155 in PFOS-induced hepatotoxicity in SD rats and HepG2 cells. Male SD rats were orally administrated with PFOS at 1 or 10 mg/kg/day for 28 days while HepG2 cells were treated with 0–50 μM of PFOS for 24 h or 50 μM of PFOS for 1, 3, 6, 12 or 24 h, respectively. We found that PFOS significantly increased the liver weight and serum alanine transaminase (ALT) and aspartate amino transferase (AST) levelsmore » in rats. Morphologically, PFOS caused actin filament remodeling and endothelial permeability changes in the liver. Moreover, PFOS triggered reactive oxygen species (ROS) generation and induced apoptosis in both in vivo and in vitro assays. Immunoblotting data showed that NF-E2-related factor-2 (Nrf2) expression and activation and its target genes were all suppressed by PFOS in the liver and HepG2 cells. However, PFOS significantly increased miR-155 expression. Further studies showed that pretreatment of HepG2 cells with catalase significantly decreased miR-155 expression and substantially increased Nrf2 expression and activation, resulting in reduction of PFOS-induced cytotoxicity and oxidative stress. Taken together, these results indicated that miR-155 plays an important role in the PFOS-induced hepatotoxicity by disrupting Nrf2/ARE signaling pathway. - Highlights: • PFOS is capable to cause hepatotoxicity. • PFOS triggers ROS generation and induces apoptosis both in vivo and in vitro assays. • PFOS-induced ROS inhibits Nrf2 expression and its transactivation function. • PFOS promotes miR155 expression in liver and HepG2 cells. • miR-155 is involved in PFOS-induced hepatotoxicity by disrupting Nrf2/ARE pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed
Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less
Ochi, Mohammad Mahdi; Amoabediny, Ghasem; Rezayat, Seyed Mahdi; Akbarzadeh, Azim; Ebrahimi, Bahman
2016-01-01
Objective This study aimed to evaluate a co-encapsulated pegylated nano-liposome system based on two herbal anti-tumor drugs, silibinin and glycyrrhizic acid, for delivery to a hepatocellular carcinoma (HCC) cell line (HepG2). Materials and Methods In this experimental study, co-encapsulated nano-liposomes by the thin layer film hydration method with HEPES buffer and sonication at 60% amplitude. Liposomes that co-encapsulated silibinin and glycyrrhizic acid were prepared with a specified molar ratio of dipalmitoylphosphatidylcholine (DPPC), cholesterol (CHOL), and methoxy-polyethylene glycol 2000 (PEG2000)–derived distearoyl phosphatidylethanolamine (mPEG2000-DSPE). We used the MTT technique to assess cytotoxicity for various concentrations of co-encapsulated nano-liposomes, free silibinin (25% w/v) and glycyrrhizic acid (75% w/v) on HepG2 and fibroblast cell lines over a 48-hour period. Results Formulation of pegylated nano-liposomes showed a narrow size distribution with an average diameter of 46.3 nm. The encapsulation efficiency (EE) for silibinin was 24.37%, whereas for glycyrrhizic acid it was 68.78%. Results of in vitro cytotoxicity showed significantly greater co-encapsulated nano-liposomes on the HepG2 cell line compared to the fibroblast cell line. The half maximal inhibitory concentration (IC50) for co-encapsulated pegylated nanoliposomal herbal drugs was 48.68 µg/ml and free silibinin with glycyrrhizic acid was 485.45 µg/ml on the HepG2 cell line. Conclusion This in vitro study showed that nano-liposome encapsulation of silibinin with glycyrrhizic acid increased the biological activity of free drugs, increased the stability of silibinin, and synergized the therapeutic effect of silibinin with glycyrrhizic acid. The IC50 of the co-encapsulated nano-liposomes was lower than the combination of free silibinin and glycyrrhizic acid on the HepG2 cell line. PMID:27540518
I Keep a Close Watch on This Heart of Mine: Increased Interoception in Insomnia
Wei, Yishul; Ramautar, Jennifer R.; Colombo, Michele A.; Stoffers, Diederick; Gómez-Herrero, Germán; van der Meijden, Wisse P.; te Lindert, Bart H.W.; van der Werf, Ysbrand D.; Van Someren, Eus J.W.
2016-01-01
Study Objectives: Whereas both insomnia and altered interoception are core symptoms in affective disorders, their neural mechanisms remain insufficiently understood and have not previously been linked. Insomnia Disorder (ID) is characterized by sensory hypersensitivity during wakefulness and sleep. Previous studies on sensory processing in ID addressed external stimuli only, but not interoception. Interoceptive sensitivity can be studied quantitatively by measuring the cerebral cortical response to one's heartbeat (heartbeat-evoked potential, HEP). We here investigated whether insomnia is associated with increased interoceptive sensitivity as indexed by the HEP amplitude. Methods: Sixty-four participants aged 21–70 years were recruited through www.sleepregistry.nl including 32 people suffering from ID and 32 age- and sex-matched controls without sleep complaints. HEPs were obtained from resting-state high-density electroencephalography (HD-EEG) recorded during evening wakeful rest in eyes-open (EO) and eyes-closed (EC) conditions of 5-minute duration each. Significance of group differences in HEP amplitude and their topographical distribution over the scalp were assessed by means of cluster-based permutation tests. Results: In particular during EC, and to a lesser extent during EO, people with ID had a larger amplitude late HEP component than controls at frontal electrodes 376–500 ms after the R-wave peak. Source localization suggested increased neural activity time-locked to heartbeats in people with ID mainly in anterior cingulate/medial frontal cortices. Conclusions: People with insomnia show insufficient adaptation of their brain responses to the ever-present heartbeats. Abnormalities in the neural circuits involved in interoceptive awareness including the salience network may be of key importance to the pathophysiology of insomnia. Citation: Wei Y, Ramautar JR, Colombo MA, Stoffers D, Gómez-Herrero G, van der Meijden WP, te Lindert BHW, van der Werf YD, Van Someren EJW. I keep a close watch on this heart of mine: increased interoception in insomnia. SLEEP 2016;39(12):2113–2124. PMID:27634787
Das, Dipanwita; Sengupta, Isha; Sarkar, Neelakshi; Pal, Ananya; Saha, Debraj; Bandopadhyay, Manikankana; Das, Chandrima; Narayan, Jimmy; Singh, Shivaram Prasad; Chakrabarti, Sekhar; Chakravarty, Runu
2017-01-14
Toll like receptors (TLRs) play an important role in innate immunity and various studies suggest that TLRs play a crucial role in pathogenesis of hepatitis B virus (HBV) infection. The present study aims in looking into the status of crucial host and viral gene expression on inciting TLR7. The transcription of TLR7 pathway signaling molecules and HBV DNA viral load were quantified by Real Time-PCR after stimulation of TLR7 with its imiquimod based ligand, R837. Cell cycle analysis was performed using flow-cytometry. Expression of TLR7 and chief cell cycle regulator governing G1/S transition, p53 was also seen in liver biopsysss samples of CHB patients. HBV induced alteration in histone modifications in HepG2 cells and its restoration on TLR7 activation was determined using western blot. The TLR7 expression remains downregulated in HepG2.2.15 cells and in liver biopsy samples from CHB patients. Interestingly HBV DNA viral load showed an inverse relationship with the TLR7 expression in the biopsy samples. We also evaluated the anti-viral activity of R837, an agonist of TLR7. It was observed that there was a suppression of HBV replication and viral protein production upon TLR7 stimulation. R837 triggers the anti-viral action probably through the Jun N-terminal Kinase (JNK) pathway. We also observed a downregulation of histone H3K9Me3 repression mark upon R837 treatment in HBV replicating HepG2.2.15 cells, mimicking that of un-infected HepG2 cells. Additionally, the G1/S cell cycle arrest introduced by HBV in HepG2.2.15 cells was released upon ligand treatment. The study thus holds a close insight into the changes in hepatocyte micro-environment on TLR7 stimulation in HBV infection.
Fang, Evandro Fei; Bah, Clara Shui Fern; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Ye, Xiu Juan; Ng, Tzi Bun
2012-02-01
A 20-kDa Kunitz-type trypsin-chymotrypsin inhibitor, Bauhinia purpurea trypsin inhibitor (BPLTI), has been isolated from the seeds of B. purpurea L. by using liquid chromatography procedures that involved ion exchange chromatography on Sp-Sepharose and Mono S and gel filtration on Superdex 75. BPLTI demonstrated protease inhibitory activities of 7226 BAEE units/mg and 65 BTEE units/mg toward trypsin and α-chymotrypsin, respectively. BPLTI was relatively thermal (0-60°C) and pH (3-10) stable and its activity could be decreased by dithiothreitol treatment. BPLTI exhibited a wide spectrum of anti-proliferative and pro-apoptotic activities especially on human hepatocellular carcinoma Hep G2 cells. However, it was devoid of a significant antiproliferative effect on immortal human hepatic WRL 68 cells. We show here that BPLTI stimulates apoptosis in Hep G2 cells, including (1) evoking DNA damage including the production of chromatin condensation and apoptotic bodies; (2) induction of cell apoptosis/necrosis; (3) mitochondrial membrane depolarization; and (4) increasing the production of cytokines. Taken together, our findings show for the first time that purified protease inhibitor from B. purpurea L. seeds is a promising candidate for the treatment of human hepatocellular carcinoma.
[Arginase inhibitor nor-NOHA induces apoptosis and inhibits invasion and migration of HepG2 cells].
Li, Xiangnan; Zhu, Fangyu; He, Yongsong; Luo, Fang
2017-04-01
Objective To investigate the cell inhibitory effect of arginase inhibitor nor-NOHA on HepG2 hepatocellular carcinoma cells and related mechanism. Methods CCK-8 assay was used to detect the cell proliferation and flow cytometry to detect the apoptosis of HepG2 cells treated with (0, 0.5, 1.0, 2.0, 3.0) ng/μL nor-NOHA. The protein levels of arginase 1 (Arg1), P53, matrix metalloproteinase-2 (MMP-2), E-cadherin (ECD) were determined by Western blotting. Real time quantitative PCR was employed to examine the changes in the mRNA level of inducible nitric oxide synthase (iNOS). Griess assay was used to measure the concentration of nitric oxide (NO) in HepG2 cells. Transwell TM assay and wound-healing assay were performed to evaluate the changes of the cell invasion and migration ability, respectively. Results nor-NOHA inhibited the proliferation and induced the apoptosis of HepG2 cells. It also decreased the expression levels of Arg1 and MMP-2, increased the expression levels of P53 and ECD as well as the production of NO; in addition, nor-NOHA inhibited the invasion and migration of HepG2 cells. Conclusion Nor-NOHA can induce cell apoptosis and inhibit the ability of invasion and migration of HepG2 cells by inhibiting Arg1, which is related with the increase of iNOS expression and the high concentration of NO.
Lipopolysaccharide Structure and Biosynthesis in Helicobacter pylori.
Li, Hong; Liao, Tingting; Debowski, Aleksandra W; Tang, Hong; Nilsson, Hans-Olof; Stubbs, Keith A; Marshall, Barry J; Benghezal, Mohammed
2016-12-01
This review covers the current knowledge and gaps in Helicobacter pylori lipopolysaccharide (LPS) structure and biosynthesis. H. pylori is a Gram-negative bacterium which colonizes the luminal surface of the human gastric epithelium. Both a constitutive alteration of the lipid A preventing TLR4 elicitation and host mimicry of the Lewis antigen decorated O-antigen of H. pylori LPS promote immune escape and chronic infection. To date, the complete structure of H. pylori LPS is not available, and the proposed model is a linear arrangement composed of the inner core defined as the hexa-saccharide (Kdo-LD-Hep-LD-Hep-DD-Hep-Gal-Glc), the outer core composed of a conserved trisaccharide (-GlcNAc-Fuc-DD-Hep-) linked to the third heptose of the inner core, the glucan, the heptan and a variable O-antigen, generally consisting of a poly-LacNAc decorated with Lewis antigens. Although the glycosyltransferases (GTs) responsible for the biosynthesis of the H. pylori O-antigen chains have been identified and characterized, there are many gaps in regard to the biosynthesis of the core LPS. These limitations warrant additional mutagenesis and structural studies to obtain the complete LPS structure and corresponding biosynthetic pathway of this important gastric bacterium. © 2016 John Wiley & Sons Ltd.
Ayed-Boussema, Imen; Abassi, Haila; Bouaziz, Chayma; Hlima, Wiem Ben; Ayed, Yosra; Bacha, Hassen
2013-06-01
Patulin (PAT) is a mycotoxin produced in fruits, mainly in apples, by certain species of Penicillium, Aspergillus, and Byssochlamys. It has been shown that PAT is cytotoxic, genotoxic, and mutagenic in different cell types. Several studies incriminate the oxidative stress as a mechanism of PAT-mediated toxicity. In this context, our aim was to investigate the protective role of Vitamin E (Vit E), an antioxidant agent, against PAT induced cytotoxicity and genotoxicity in cultured HepG2 cells. The obtained results showed that addition of Vit E in cells treated with PAT significantly reduce cell mortality induced by this toxin. In the same conditions, Vit E decreased the intracellular level of ROS, reduced PAT induced p53 expression, and reversed PAT induced DNA damage. In addition, Vit E prevented significantly the percentage of chromosome aberrations induced by PAT in HepG2 cells in a concentration dependant manner. These results suggest that Vit E, an exogenous antioxidant agent, plays an important role in defense against PAT-induced cytotoxicity and genotoxicity, which confirms the involvement of oxidative stress in the induction of DNA damage by PAT in HepG2 cells. Copyright © 2011 Wiley Periodicals, Inc.
Shi, Chunli; Zhou, Xue; Zhang, Jiayu; Wang, Jiachun; Xie, Hong; Wu, Zhigang
2016-07-01
α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway. Copyright © 2016. Published by Elsevier B.V.
Hepatoprotective effects of raspberry (Rubus coreanus Miq.) seed oil and its major constituents.
Teng, Hui; Lin, Qiyang; Li, Kang; Yuan, Benyao; Song, Hongbo; Peng, Hongquan; Yi, Lunzhao; Wei, Ming-Chi; Yang, Yu-Chiao; Battino, Maurizio; Cespedes Acuña, Carlos L; Chen, Lei; Xiao, Jianbo
2017-12-01
Raspberry seed is a massive byproduct of raspberry juice and wine but usually discarded. The present study employed a microwave-assisted method for extraction of raspberry seed oil (RSO). The results revealed that omega-6 fatty acids (linoleic acid and γ-linolenic acid) were the major constituents in RSO. Cellular antioxidant enzyme activity such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were investigated in HepG2 cells treated with RSO. Induction of the synthesis of several antioxidants in H 2 O 2 -exposed HepG2 cells was found. RSO increased the enzyme activity of SOD, CAT, and GPx in H 2 O 2 -exposed HepG2. Furthermore, RSO inhibited the phosphorylation of upstream mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (c-JNK) and extracellular signal-regulated kinase (ERK). Taken together, the possible mechanisms to increase antioxidant enzyme activities in HepG2 may through the suppression of ERK and JNK phosphorylation. Raspberry seed oil exhibited good effects on the activities of the intracellular antioxidant enzymes and seems to protect the liver from oxidative stress through the inhibition of MAPKs. Copyright © 2017. Published by Elsevier Ltd.
Şenyildiz, Mine; Kilinc, Adem; Ozden, Sibel
2018-06-01
Neonicotinoids are a relatively new type of insecticide to control a variety of pests. Although they are generally considered to be safe, they can lead to harmful effects on human and environmental health. We aimed to investigate possible effects of common neonicotinoid insecticides (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) on cytotoxicity and DNA damage in human neuroblastoma (SH-SY5Y) and human hepatocellular carcinoma (HepG2) cells. Our results indicated that 50% of inhibitory concentration values of neonicotinoids are in the range of 0.96 to >4 mM in SH-SY5Y cells and 0.53 to >4 mM in HepG2 cells by the methyl tetrazolium and neutral red uptake tests after 24 and 48 h exposure. We observed significant DNA damage at 500 µM of five neonicotinoids in SHSY-5Y cells, while only imidacloprid, thiametoxam, and thiacloprid showed some alterations in HepG2 cells after 24 h exposure using the alkaline comet assay. In conclusion, neonicotinoid insecticides may induce cytotoxicity and DNA damage in cell cultures; therefore, further studies are needed to better understand the toxicity of neonicotinoids.
Jung, T.W.; Lee, K.T.; Lee, M.W.; Ka, K.H.
2012-01-01
Endoplasmic reticulum (ER) stress has been implicated in the pathology of type 2 diabetes mellitus (T2DM). Although SIRT1 has a therapeutic effect on T2DM, the mechanisms by which SIRT1 ameliorates insulin resistance (IR) remain unclear. In this study, we investigated the impact of SIRT1 on palmitate-induced ER stress in HepG2 cells and its underlying signal pathway. Treatment with resveratrol, a SIRT1 activator significantly inhibited palmitate-induced ER stress, leading to the protection against palmitate-induced ER stress and insulin resistance. Resveratrol and SIRT1 overexpression induced the expression of oxygen-regulated protein (ORP) 150 in HepG2 cells. Forkhead box O1 (FOXO1) was involved in the regulation of ORP150 expression because suppression of FOXO1 inhibited the induction of ORP150 by SIRT1. Our results indicate a novel mechanism by which SIRT1 regulates ER stress by overexpression of ORP150, and suggest that SIRT1 ameliorates palmitate-induced insulin resistance in HepG2 cells via regulation of ER stress.
Pattern of (Multi)strange (Anti)baryon Production and Search for Deconfinement
NASA Astrophysics Data System (ADS)
Rafelski, Johann
1998-04-01
We study (multi)strange particle abundances obtained recently in relativistic heavy ion collisions and determine thermal and chemical source parameters(J. Letessier et al., Phys. Lett. B410 (1997) 315--322 hep-ph/9710310 and: Acta Physica Polonica in press, hep- ph/9710340). These are primarily constrained by (multi)strange (anti)baryon relative abundances, which have been measured for Pb--Pb 158 A GeV interactions(I. Kralik, for WA97 collaboration, QM97 Tsukuba, to appear in Nucl. Phys. A) and S-S/W/Pb 200 A GeV interactions(See: proceedings of S'96-Budapest, APH N.S., Heavy Ion Physics 4 (1996) vii--x). We have extended our analysis and have now determined the properties of the particle source using the fitted macro canonical parameters, allowing as required for non-equilibrium dynamics of the locally thermal fireball. We find that in the 158 A GeV Pb--Pb collisions the entropy per baryon, energy per baryon, strangeness per baryon implied by particle spectra are all in the range of values associated commonly with the deconfined QGP phase.
MiR-300 suppresses laryngeal squamous cell carcinoma proliferation and metastasis by targeting ROS1.
Ge, Wensheng; Han, Chaodong; Wang, Jing; Zhang, Yunping
2016-01-01
Laryngeal squamous cell carcinoma (LSCC) is a common aggressive head and neck cancer with high mortality and incidence. MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that posttranscriptionally inhibit gene expression. In this study, we showed that miR-300 expression was downregulated in LSCC tissues compared with adjacent no-tumor tissues. MiR-300 overexpression inhibited Hep-2 cell proliferation, as well as the expression of ki-67 and PCNA. Moreover, overexpression of miR-300 repressed the cell invasion in Hep-2 cells. We identified c-ros oncogene 1 receptor tyrosine kinase (ROS1) as a direct target gene of miR-300 in Hep-2 cell. Furthermore, ROS1 expression was upregulated in LSCC tissues compared with adjacent no-tumor tissues. Interesting, there were an inverse correlation between ROS1 and miR-300 expression in the LSCC tissues. Overexpression of ROS1 increased the Hep-2 cells proliferation and invasion. Overexpression of ROS1 abrogated miR-300 induced cell growth and invasion inhibition. Therefore, our data suggested that miR-300 acted as a tumor suppressive gene in LSCC.
MiR-300 suppresses laryngeal squamous cell carcinoma proliferation and metastasis by targeting ROS1
Ge, Wensheng; Han, Chaodong; Wang, Jing; Zhang, Yunping
2016-01-01
Laryngeal squamous cell carcinoma (LSCC) is a common aggressive head and neck cancer with high mortality and incidence. MicroRNAs (miRNAs) are short, non-coding and endogenous RNAs that posttranscriptionally inhibit gene expression. In this study, we showed that miR-300 expression was downregulated in LSCC tissues compared with adjacent no-tumor tissues. MiR-300 overexpression inhibited Hep-2 cell proliferation, as well as the expression of ki-67 and PCNA. Moreover, overexpression of miR-300 repressed the cell invasion in Hep-2 cells. We identified c-ros oncogene 1 receptor tyrosine kinase (ROS1) as a direct target gene of miR-300 in Hep-2 cell. Furthermore, ROS1 expression was upregulated in LSCC tissues compared with adjacent no-tumor tissues. Interesting, there were an inverse correlation between ROS1 and miR-300 expression in the LSCC tissues. Overexpression of ROS1 increased the Hep-2 cells proliferation and invasion. Overexpression of ROS1 abrogated miR-300 induced cell growth and invasion inhibition. Therefore, our data suggested that miR-300 acted as a tumor suppressive gene in LSCC. PMID:27725869
Steroids from the rhizome of Anemarrhena asphodeloides and their cytotoxic activities.
Sun, Yu; Wu, Jie; Sun, Xue; Huang, Xiaoxiao; Li, Lingzhi; Liu, Qingbo; Song, ShaoJiang
2016-07-01
Cancer remains a major killer worldwide. To search for novel naturally occurring compounds that are cytotoxic to cancer cells to be used as lead structures for drug development, five new steroids (1-5) along with seven known ones (6-12) were isolated from the rhizome of Anemarrhena asphodeloides Bge. Their structures were established by detailed spectral studies, including 1D-NMR, 2D-NMR, HR-ESI-MS and by comparison with literature data. These compounds exhibited different levels of growth inhibition against A549, HepG2, Hep3B, Bcap37 and MCF7 cell lines in vitro. Compounds 9, 10 and 11 showed potent inhibitory against all the tested cell lines with IC50 values ranging from 0.35±0.15 to 25.53±0.31μM. The three compounds displayed stronger inhibitory activities against A549, HepG2 and Hep3B cell lines compared with the positive control 5-fluorouracil. The experimental data obtained permit us to identify the roles of the sugar moieties, hydroxyl group, double bond and F-ring with regard to their cytotoxic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Dandan; Chen, Xin; Wang, Hong; Liu, Jie; Zheng, Meiling; Fu, Yang; Yu, Yuan; Zhi, Jinfang
2017-12-01
In this study, a multicomponent nanodiamonds (NDs)-based targeting drug delivery system, cetuximab-NDs-cisplatin bioconjugate, combining both specific targeting and enhanced therapeutic efficacy capabilities, is developed and characterized. The specific targeting ability of cetuximab-NDs-cisplatin system on human liver hepatocellular carcinoma (HepG2) cells is evaluated through epidermal growth factor receptor (EGFR) blocking experiments, since EGFR is over-expressed on HepG2 cell membrane. Besides, cytotoxic evaluation confirms that cetuximab-NDs-cisplatin system could significantly inhibit the growth of HepG2 cells, and the therapeutic activity of this system is proven to be better than that of both nonspecific NDs-cisplatin conjugate and specific EGF-NDs-cisplatin conjugate. Furthermore, a 3-dimensional (3D) Raman imaging technique is utilized to visualize the targeting efficacy and enhanced internalization of cetuximab-NDs-cisplatin system in HepG2 cells, using the NDs existing in the bioconjugate as Raman probes, based on the characteristic Raman signal of NDs at 1332 cm -1 . These advantageous properties of cetuximab-NDs-cisplatin system propose a prospective imaging and treatment tool for further diagnostic and therapeutic purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells.
Huang, Hongyan; Zhu, Yueyong; Li, Shaoyang
2015-11-01
There is currently a requirement for effective treatment strategies for human hepatocellular carcinoma (HCC), a leading cause of cancer‑associated mortality. MicroRNA-122 (miR-122), a repressor of the endogenous apoptosis regulator Bcl‑w, is frequently downregulated in HCC. Thus, it is hypothesized that the activation of miR‑122 may induce selective hepatocellular apoptosis via caspase activation in a model of HCC. In the present study, an miR‑122 mimic transfection was performed in HepG2 cells, and used to investigate the role and therapeutic potential of miR‑122 in the regulation of HCC‑derived cell lines. The apoptotic rates of HepG2 cells were significantly increased following miR‑122 mimic transfection. Reverse transcription‑polymerase chain reaction analysis revealed that Bcl‑w mRNA was significantly reduced, while the mRNA levels of caspase‑9 and caspase‑3 were markedly increased. The immunocytochemistry results supported the mRNA trends. Collectively, the present results suggest that endogenous miR‑122 contributes to HepG2 apoptosis and that transfection of mimic miR‑122 normalizes apoptotic levels in a model of HCC.
Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel
2011-01-01
Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg−1·day−1, n = 30), Clo (50 mg·kg−1·day−1, n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (−4,5% with Clo, −19.5% with ASA, −19,9% with Hep, and −29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin generation, have no protective effect on DCS incidence. Clo, a specific ADP-receptor antagonist, reduces post-decompression platelet consumption. These results point to the predominant involvement of the ADP release in BIPA but cannot differentiate definitively between bubble-induced vessel wall injury and bubble-blood component interactions in DCS. PMID:21212250
Enhancement of antibacterial properties of polyurethanes by chitosan and heparin immobilization
NASA Astrophysics Data System (ADS)
Kara, Filiz; Aksoy, E. Ayse; Yuksekdag, Zehranur; Aksoy, Serpil; Hasirci, Nesrin
2015-12-01
Being antibacterial is a required property for the materials used in medical devices and instruments. Polyurethanes (PUs) are one class of polymers widely used in the production of devices that especially come in contact with blood (e.g. heart valves, blood vessels, vascular grafts and catheters). In this study, hexamethylene diisocyanate based polyurethanes (PUh) were synthesized and antibacterial and anti-adhesive properties were added by immobilizing chitosan (CH) and heparin (Hep) on the samples of PUh via a stepwise process. Chemistry and topography of the modified film samples (PUh-CH and PUh-CH-Hep) were examined by Fourier Transform Infrared Spectrophotometry-Attenuated Total Reflectance (FTIR-ATR), Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM), and surface free energy (SFE) values after each step were determined by goniometer. PUh-CH and PUh-CH-Hep samples were found to be antibacterial against Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis) (both Gram positive) and Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) (both Gram negative) bacteria, and bacterial adhesion results showed a significant decrease in the number of viable bacteria on both modified samples where PUh-CH-Hep was the most effective. The findings of this study show that polymeric surfaces can be effectively modified and converted to be antibacterial by chitosan and heparin immobilization, and presence of both chemicals enhance efficacy against bacteria.
Won, Sae Bom; Jung, Ga-young; Kim, Juhae; Chung, Young Shin; Hong, Eun Kyung
2013-01-01
Abstract Needles of pine species are rich in polyphenols, which may exert beneficial effects on human health. The present study was conducted to evaluate the in vitro and in vivo antioxidant effects of Pinus koraiensis needle water extracts (PKW). HepG2 cells were pretreated with various concentrations of PKW (from 10−3 to 1 mg/mL) and oxidative stress was induced by tert-butyl hydroperoxide (t-BOOH). In the animal model, male ICR mice were fed a high-fat diet for 6 weeks to induce obesity, and then mice were continually fed a high-fat diet with or without orally administered PKW (400 mg/kg body weight) for 5 weeks. Pretreatment with PKW prevented significant increases in cytotoxicity and catalase activity induced by t-BOOH in HepG2 cells. Similarly, the catalase protein expression levels elevated by t-BOOH were abrogated in cells pretreated with PKW. In mice fed a high-fat diet, PKW significantly increased hepatic activities of catalase and glutathione reductase and lower lipid peroxidation levels were observed in the liver and kidney of mice with PKW supplementation. The present study demonstrates that PKW protects against oxidative stress in HepG2 cells treated with t-BOOH and in mice fed a high-fat diet. PMID:23822143
Korashy, Hesham M; Maayah, Zaid H; Abd-Allah, Adel R; El-Kadi, Ayman O S; Alhaider, Abdulqader A
2012-01-01
Few published studies have reported the use of crude camel milk in the treatment of stomach infections, tuberculosis and cancer. Yet, little research was conducted on the effect of camel milk on the apoptosis and oxidative stress associated with human cancer. The present study investigated the effect and the underlying mechanisms of camel milk on the proliferation of human cancer cells using an in vitro model of human hepatoma (HepG2) and human breast (MCF7) cancer cells. Our results showed that camel milk, but not bovine milk, significantly inhibited HepG2 and MCF7 cells proliferation through the activation of caspase-3 mRNA and activity levels, and the induction of death receptors in both cell lines. In addition, Camel milk enhanced the expression of oxidative stress markers, heme oxygenase-1 and reactive oxygen species production in both cells. Mechanistically, the increase in caspase-3 mRNA levels by camel milk was completely blocked by the transcriptional inhibitor, actinomycin D; implying that camel milk increased de novo RNA synthesis. Furthermore, Inhibition of the mitogen activated protein kinases differentially modulated the camel milk-induced caspase-3 mRNA levels. Taken together, camel milk inhibited HepG2 and MCF7 cells survival and proliferation through the activation of both the extrinsic and intrinsic apoptotic pathways.
Downregulation of human paraoxonase 1 (PON1) by organophosphate pesticides in HepG2 cells.
Medina-Díaz, Irma Martha; Ponce-Ruiz, Néstor; Ramírez-Chávez, Bryana; Rojas-García, Aurora Elizabeth; Barrón-Vivanco, Briscia S; Elizondo, Guillermo; Bernal-Hernández, Yael Y
2017-02-01
Paraoxonase 1 (PON1) is a calcium-dependent esterase synthesized primarily in the liver and secreted into the plasma where it is associated with high-density lipoproteins (HDL). PON1 hydrolyzes and detoxifies some toxic metabolites of organophosphorus compounds (OPs) such as methyl parathion and chlorpyrifos. Thus, PON1 activity and expression levels are important for determining susceptibility against OPs poisoning. Some studies have demonstrated that OPs can modulate gene expression through interactions with nuclear receptors. In this study, we evaluated the effects of methyl parathion and chlorpyrifos on the modulation of PON1 in Human Hepatocellular Carcinoma (HepG2) cells by real-time PCR, PON1 activity assay, and western blot. The results showed that the treatments with methyl parathion and chlorpyrifos decreased PON1 mRNA and immunoreactive protein and increased inflammatory cytokines in HepG2 cells. The effects of methyl parathion and chlorpyrifos on the downregulation of PON1 gene expression in HepG2 cells may provide evidence of OPs cytotoxicity related to oxidative stress and an inflammatory response. A decrease in the expression of the PON1 gene may increase the susceptibility to OPs intoxication and the risk of diseases related to inflammation and oxidative stress. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 490-500, 2017. © 2016 Wiley Periodicals, Inc.
Wu, F; Hu, Y; Long, J; Zhou, Y J; Zhong, Y H; Liao, Z K; Liu, S Q; Zhou, F X; Zhou, Y F; Xie, C H
2009-02-01
TRAIL induces apoptosis in a variety of tumorigenic and transformed cell lines, but not in many normal cells. Recent studies have demonstrated that death receptor 5 (DR5), one of the two death receptors bound by TRAIL, showed expression in most malignantly transformed cells. This study evaluated effects of a monoclonal antibody (TRA-8) to human death receptor 5, combined with ionizing radiation, on radioresistant human larynx squamous carcinoma cell line (Hep-2R). Cells were treated with TRA-8 alone or in combination with radiation, cell viability inhibition was measured by MTT assay, and the induction of apoptosis was determined by Annexin V staining. Radionsensitivity of Hep-2R cells treated with TRA-8 were investigated with long-term clonogenic assays. Regulation of DR5 expression in cells after radiation was analyzed by indirect immunofluorescence using murine TRA-8 in combination with flow cytometry. The results suggested that TRA-8 enhanced radionsensitivity of Hep-2R cells, and that TRA-8 regulated Hep-2R cell cycle arrest at G2/M phase. Irradiation up-regulated the expression of DR5, and when combined with TRA-8 yielded optimal survival benefit. Therefore, TRA-8 can be used in combination with irradiation in radioresistant human larynx squamous carcinoma cells. Monoclonal antibodies such as TRA-8 may play an important role in the development of an effective treatment strategy for patients with radioresistant cancers.
Lee, Jin; Lim, Kye-Taek
2013-06-01
Macrophage type 2 (M2) is closely associated with tumor progression and metastasis. Thus, in this study, the antitumor effect of Styrax japonica Siebold et al. Zuccarini (SJSZ) glycoprotein on HepG2 cell proliferation through modulating M2 was investigated by measuring [³H]-thymidine incorporation and proliferating cell nuclear antigen (PCNA), nitric oxide (NO), reactive oxygen species (ROS), mitogen-activated protein kinases, signal transducer and activator of transcription (STAT) 6, cytokines [interleukin (IL)-4, IL-10, IL-12, and interferon (IFN)-γ], and CD163-positive cells using biochemical analysis, radioactivity, Western blot, ELISA, quantitative real-time polymerase chain reaction, and flow cytometry in coculture system. RAW 264.7 cells were found to be cytotoxic to HepG2 cells but [³H]-thymidine incorporation and expression of PCNA was suppressed in the presence of the SJSZ glycoprotein (20 μg/ml). The SJSZ glycoprotein normalized production of NO and ROS and expression of inducible nitric oxide synthase, IFN-γ, and IL-12 but suppressed expression of pSTAT6, IL-4, IL-10, and CD163-positive cells. Thus, the results of this study suggest that the SJSZ glycoprotein suppresses proliferation of HepG2 cells by modulating M2.
Shoji, Motomu; Nakagawa, Kiyotaka; Watanabe, Akio; Tsuduki, Tsuyoshi; Yamada, Teiko; Kuwahara, Shigefumi; Kimura, Fumiko; Miyazawa, Teruo
2014-05-15
Curcumin is a yellow pigment found in turmeric (Curcuma Longa L.), and is reported, in recent studies, to have several pharmacological effects, including anti-oxidant, anti-inflammatory, anti-tumour and lipid-lowering properties. However, as most curcumin is conjugated when absorbed through the intestine, free curcumin is present at extremely low levels inside the body. Therefore, curcumin metabolites have been presumed to be responsible for the curcumin bioactivity. In this study, we first confirmed that curcumin glucuronide is the major metabolite of curcumin found in the plasma after oral administration of curcumin in rats. Next, we synthesised curcumin glucuronide and compared the effects of curcumin and curcumin glucuronide on gene expression in a human hepatoma cell line (HepG2). We found that the effects of curcumin glucuronide are weaker than those of curcumin and that this difference is related to relative absorption rates of curcumin and curcumin glucuronide into HepG2 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Zhuangwei; Zhang, Huiqin; Chen, Shiyong; Xu, Yan; Yao, Anjun; Liao, Qi; Han, Liyuan; Zou, Zuquan; Zhang, Xiaohong
2017-02-01
The plant flavonol dihydromyricetin (DHM) was reported to induce apoptosis in human hepatocarcinoma HepG2 cells. This study was undertaken to elucidate the underlying molecular mechanism of action of DHM. In the study, DHM down-regulated Akt expression and its phosphorylation at Ser473, up-regulated the levels of mitochondrial proapoptotic proteins Bax and Bad, and inhibited the phosphorylation of Bad at Ser136 and Ser112. It also inhibited the expression of the antiapoptotic protein Bcl-2 and enhanced the cleavage and activation of caspase-3 as well as the degradation of its downstream target poly(ADP-ribose) polymerase. Our results for the first time suggest that DHM-induced apoptosis in HepG2 cells may come about by the inhibition of the Akt/Bad signaling pathway and stimulation of the mitochondrial apoptotic pathway. Dihydromyricetin may be a promising therapeutic medication for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.
Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction
Roel, María; Rubiolo, Juan A.; Ternon, Eva; Thomas, Olivier P.; Vieytes, Mercedes R.; Botana, Luis M.
2015-01-01
The Mediterranean marine sponge Crambe crambe is the source of two families of guanidine alkaloids known as crambescins and crambescidins. Some of the biological effects of crambescidins have been previously reported while crambescins have undergone little study. Taking this into account, we performed comparative transcriptome analysis to examine the effect of crambescin-C1 (CC1) on human tumor hepatocarcinoma cells HepG2 followed by validation experiments to confirm its predicted biological activities. We report herein that, while crambescin-A1 has a minor effect on these cells, CC1 protects them against oxidative injury by means of metallothionein induction even at low concentrations. Additionally, at high doses, CC1 arrests the HepG2 cell cycle in G0/G1 and thus inhibits tumor cell proliferation. The findings presented here provide the first detailed approach regarding the different effects of crambescins on tumor cells and provide a basis for future studies on other possible cellular mechanisms related to these bioactivities. PMID:26225985
Ke, Ming; Cai, Shaoxi; Zou, Misha; Zhao, Yi; Li, Bo; Chen, Sijia; Chen, Longcong
2018-01-29
To build a microfluidic device with various morphological features of the tumor vasculature for study of the effects of tumor vascular structures on the flow field and tumor cellular flow behaviors. The designed microfluidic device was able to approximatively simulate the in vivo structures of tumor vessels and the flow within it. In this models, the influences of the angle of bifurcation, the number of branches, and the narrow channels on the flow field and the influence of vorticity on the retention of HepG2 cells were significant. Additionally, shear stress below physiological conditions of blood circulation has considerable effect on the formation of the lumen-like structures (LLSs) of HepG2 cells. These results can provide some data and reference in the understanding of the interaction between hemorheological properties and tumor vascular structures in solid tumors. Copyright © 2018. Published by Elsevier Inc.
[Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].
Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan
2018-02-01
Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.
Chan, Siu-Lung; Yeung, John H K
2006-05-01
Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been shown to restore the immunological effects against cyclophosphamide-induced immuno-suppression, although the mechanism(s) involved remain uncertain. This study investigated the PSP-cyclophosphamide interaction by studying the effects of PSP on the pharmacokinetic of cyclophosphamide in the rat and the effect of PSP on the cytotoxic effects of cyclophosphamide on a cancer cell line (HepG2 cells). In the pharmacokinetic studies in the rat, acute pre-treatment of PSP (4 micromol/kg/day, i.p.) decreased the clearance (CL) of cyclophosphamide by 31%, with a concomitant increase in the area under concentration-time curve (AUC) by 44%, and prolongation of the plasma half-life (T(1/2)) by 43%. Sub-chronic pre-treatment of PSP (2 micromol/kg/day, i.p., 3 days) decreased the CL of cyclophosphamide by 33%, with a concomitant increase in the AUC by 50%, and prolongation of the plasma T(1/2) by 34%. In cytotoxicity studies using HepG2 cells, non-toxic dose of PSP (1-10 microM) enhanced the cytotoxicity of cyclophosphamide. PSP at 10 microM further decreased HepG2 cell viability by 22% compared to when cyclophosphamide was present alone. In summary, PSP enhanced the cytotoxic effect of cyclophosphamide on a cancer cell line in vitro and altered the pharmacokinetics of cyclophosphamide in vivo in the rat. Both of these effects may be beneficial in the use of PSP as an adjunct to cyclophosphamide treatment.
Zhang, Qiao; Cui, Can; Chen, Cong-Qin; Hu, Xiao-Long; Liu, Ya-Hui; Fan, Yan-Hua; Meng, Wei-Hong; Zhao, Qing-Chun
2015-07-01
Fructus Alpiniae oxyphyllae (A. oxyphylla) is a traditional herb which is widely used in East Asian for the treatment of dyspepsia, diarrhea, abdominal pain, poor memory, inflammatory conditions and cancer. The cytotoxic activities of ethanol extract (EE) and five extract layers including petroleum ether (PE), dichloromethane (DCLM), acetoacetate (EtOAc), n-Butanol (n-Bu) and water fractions (WF) of A. oxyphylla were tested on HepG2, SW480, MCF-7, K562 and HUVEC cell lines using MTT assay and LDH release assay. The component analysis was performed on HPLC with gradient elution. Hoechst 33342 staining, DCFH-DA fluorescence microscopy, flow cytometry analysis, western blot and migration assays were carried out to determine the anti-cancer mechanisms of PE. MTT analysis showed that EE, PE and DCLM could inhibit cell proliferation on HepG2, SW480, MCF-7, K562 and HUVEC cell lines, especially PE fraction. HPLC analysis pointed out five main components which may contribute to the anti-proliferative activity of PE. Further study showed that PE increased LDH release, induced apoptosis, disrupted mitochondrial membrane potential and elevated intracellular reactive oxygen species (ROS) in HepG2 cells, whereas the antioxidant N-acetyl-l-cysteine (NAC) prevented PE-induced ROS generation. The results of western blot revealed that PE induced apoptosis in HepG2 cells by enhancing Bax/Bcl-2 ratio, increasing cytochrome c in cytosol and activating caspase-3/9. Meanwhile, high levels of ROS could induce DNA damage-mediated protein expression, AKT, ERK inactivation and SAPKs activation. Furthermore, PE conspicuously blocked the migration of HUVEC cells. The present results demonstrated that PE induced apoptosis in HepG2 cells may be via a ROS-mediated signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yang, Xiaoye; Cai, Xiaoqing; Yu, Aihua; Xi, Yanwei; Zhai, Guangxi
2017-06-15
To remedy the problems riddled in cancer chemotherapy, such as poor solubility, low selectivity, and insufficient intra-cellular release of drugs, novel heparin-based redox-sensitive polymeric nanoparticles were developed. The amphiphilic polymer, heparin-alpha-tocopherol succinate (Hep-cys-TOS) was synthesized by grafting hydrophobic TOS to heparin using cystamine as the redox-sensitive linker, which could self-assemble into nanoparticles in phosphate buffer saline (PBS) with low critical aggregation concentration (CAC) values ranging from 0.026 to 0.093mg/mL. Paclitaxel (PTX)-loaded Hep-cys-TOS nanoparticles were prepared via a dialysis method, exhibiting a high drug-loading efficiency of 18.99%. Physicochemical properties of the optimized formulation were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM) and differential scanning calorimetry (DSC). Subsequently, the redox-sensitivity of Hep-cys-TOS nanoparticles was confirmed by the changes in size distribution, morphology and appearance after dithiothreitol (DTT) treatment. Besides, the in vitro release of PTX from Hep-cys-TOS nanoparticles also exhibited a redox-triggered profile. Also, the uptake behavior and pathways of coumarin 6-loaded Hep-cys-TOS nanoparticles were investigated, suggesting the nanoparticles could be taken into MCF-7 cells in energy-dependent, caveolae-mediated and cholesterol-dependent endocytosis manners. Later, MTT assays of different PTX-free and PTX-loaded formulations revealed the desirable safety of PTX-free nanoparticles and the enhanced anti-cancer activity of PTX-loaded Hep-cys-TOS nanoparticles (IC 50 =0.79μg/mL). Apoptosis study indicated the redox-sensitive formulation could induce more apoptosis of MCF-7 cells than insensitive one (55.2% vs. 41.7%), showing the importance of intracellular burst release of PTX. Subsequently, the hemolytic toxicity confirmed the safety of the nanoparticles for intravenous administration. The results indicated the developed redox-sensitive nanoparticles were promising as intracellular drug delivery vehicles for cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.
Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less
Czepa, D; von Mackensen, S; Hilberg, T
2013-03-01
Episodes of bleeding in people with haemophilia (PWH) are associated with reduced activity and limitations in physical performance. Within the scope of the 'Haemophilia & Exercise Project' (HEP) PWH were trained in a sports therapy programme. Aim of this study was to investigate subjective and objective physical performance in HEP-participants after 1 year training. Physical performance of 48 adult PWH was compared before and after sports therapy subjectively (HEP-Test-Q) and objectively regarding mobility (range of motion), strength and coordination (one-leg-stand) and endurance (12-min walk test). Sports therapy included an independent home training that had previously been trained in several collective sports camps. Forty-three controls without haemophilia and without training were compared to PWH. Of 48 PWH, 13 performed a regular training (active PWH); 12 HEP-participants were constantly passive (passive PWH). Twenty-three PWH and 24 controls dropped out because of incomplete data. The activity level increased by 100% in active PWH and remained constant in passive PWH, and in controls (P ≤ 0.05). Only mobility of the right knee was significantly improved in active PWH (+5.8 ± 5.3°) compared to passive PWH (-1.3 ± 8.6°). The 12-min walk test proved a longer walking distance for active PWH (+217 ± 199 m) compared to controls (-32 ± 217 m). Active PWH reported a better subjective physical performance in the HEP-Test-Q domains 'strength & coordination', 'endurance' and in the total score (+9.4 ± 13.8) compared to passive PWH (-5.3 ± 13.5) and controls (+3.7 ± 7.5). The 'mobility'-scale and one-leg-stand remained unchanged. Sports therapy increases the activity level and physical performance of PWH, whereby objective effects do not always correspond with subjective assessments. © 2012 Blackwell Publishing Ltd.
Human Papillomavirus Type 18 E6 and E7 Genes Integrate into Human Hepatoma Derived Cell Line Hep G2
Ma, Tianzhong; Su, Zhongjing; Chen, Ling; Liu, Shuyan; Zhu, Ningxia; Wen, Lifeng; Yuan, Yan; Lv, Leili; Chen, Xiancai; Huang, Jianmin; Chen, Haibin
2012-01-01
Background and Objectives Human papillomaviruses have been linked causally to some human cancers such as cervical carcinoma, but there is very little research addressing the effect of HPV infection on human liver cells. We chose the human hepatoma derived cell line Hep G2 to investigate whether HPV gene integration took place in liver cells as well. Methods We applied PCR to detect the possible integration of HPV genes in Hep G2 cells. We also investigated the expression of the integrated E6 and E7 genes by using RT-PCR and Western blotting. Then, we silenced E6 and E7 expression and checked the cell proliferation and apoptosis in Hep G2 cells. Furthermore, we analyzed the potential genes involved in cell cycle and apoptosis regulatory pathways. Finally, we used in situ hybridization to detect HPV 16/18 in hepatocellular carcinoma samples. Results Hep G2 cell line contains integrated HPV 18 DNA, leading to the expression of the E6 and E7 oncogenic proteins. Knockdown of the E7 and E6 genes expression reduced cell proliferation, caused the cell cycle arrest at the S phase, and increased apoptosis. The human cell cycle and apoptosis real-time PCR arrays analysis demonstrated E6 and E7-mediated regulation of some genes such as Cyclin H, UBA1, E2F4, p53, p107, FASLG, NOL3 and CASP14. HPV16/18 was found in only 9% (9/100) of patients with hepatocellular carcinoma. Conclusion Our investigations showed that HPV 18 E6 and E7 genes can be integrated into the Hep G2, and we observed a low prevalence of HPV 16/18 in hepatocellular carcinoma samples. However, the precise risk of HPV as causative agent of hepatocellular carcinoma needs further study. PMID:22655088
Evaluation results of xTCA equipment for HEP experiments at CERN
NASA Astrophysics Data System (ADS)
Di Cosmo, M.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.; Vichoudis, P.
2013-12-01
The MicroTCA and AdvancedTCA industry standards are candidate modular electronic platforms for the upgrade of the current generation of high energy physics experiments. The PH-ESE group at CERN launched in 2011 the xTCA evaluation project with the aim of performing technical evaluations and eventually providing support for commercially available components. Different devices from different vendors have been acquired, evaluated and interoperability tests have been performed. This paper presents the test procedures and facilities that have been developed and focuses on the evaluation results including electrical, thermal and interoperability aspects.
Yamashiro, D; Ferrara, P; Li, C H
1980-07-01
Four analogs of human beta-endorphin (beta h-EP) have been synthesized: [Gly31]-Beta h-EP-Gly-NH2, [CH3(CH2)4NH231]-beta h-EP, [Gly31]-beta h-EP-Gly-Gly-NH2, and [Gln8, Gly31]-betah-EP-Gly-Gly-NH2. All are more active than beta h-EP in an opiate receptor binding assay. Stepwise extension at the COOH-terminus shows a progressive increase in binding activity. The last analog, which combines extension at the COOH-terminus with elimination of the remaining anionic charge in beta h-EP, is nine times more active than the parent molecule.
Liang, Chengyuan; Pei, Shaomeng; Ju, Weihui; Jia, Minyi; Tian, Danni; Tang, Yonghong; Mao, Gennian
2017-06-16
Fourteen bergenin/cinnamic acid hybrids were synthesized, characterized and evaluated for their antitumour activity both in vitro and in vivo. The most potent compound, 5c, arrested HepG2 cells (IC 50 = 4.23 ± 0.79 μM) in the G2/M phase and induced cellular apoptosis. Moreover, compound 5c was also found to suppress the tumour growth in Heps xenograft-bearing mice with low toxicity. In the mechanistic study, 5c administration ignited a mitochondria-mediated apoptosis pathway of HepG2 cell death. Furthermore, 5c activated Akt-dependent pathways and further decreased the expression of the Bcl-2 family of proteins. The downstream mitochondrial p53 translocation was also significantly activated, accompanied by an increase of the caspase-9, caspase-3 activation. These data imply that bergenin/cinnamic acid hybrids could serve as novel Akt/Bcl-2 inhibitors for further preclinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
HEP Software Foundation Community White Paper Working Group - Data Analysis and Interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauerdick, Lothar
At the heart of experimental high energy physics (HEP) is the development of facilities and instrumentation that provide sensitivity to new phenomena. Our understanding of nature at its most fundamental level is advanced through the analysis and interpretation of data from sophisticated detectors in HEP experiments. The goal of data analysis systems is to realize the maximum possible scientific potential of the data within the constraints of computing and human resources in the least time. To achieve this goal, future analysis systems should empower physicists to access the data with a high level of interactivity, reproducibility and throughput capability. Asmore » part of the HEP Software Foundation Community White Paper process, a working group on Data Analysis and Interpretation was formed to assess the challenges and opportunities in HEP data analysis and develop a roadmap for activities in this area over the next decade. In this report, the key findings and recommendations of the Data Analysis and Interpretation Working Group are presented.« less
Wen, Bin; Sun, Hai-Tao; He, Song-Qi; LA, Lei; An, Hai-Yan; Pang, Jie
2016-02-01
To explore the molecular mechanism by which Biejiajian pills inhibit hepatocellular carcinoma in a nude mouse model bearing HepG2 cell xenograft. The inhibitory effect of Biejiajian pills on the growth of HepG2 cell xenograft in nude mice was observed. Immunohistochemical method was used to examine proliferating cell nuclear antigen (PCNA) expression in HepG2 cell xenograft, and TUNEL method was employed to detect the cell apoptosis; the expression levels of β-catenin and Tbx3 were measured by Western blotting. Biejiajian pills significantly suppressed the growth of HepG2 cell xenograft in nude mice. The tumor-bearing mice treated with a high and a moderate dose of Biejiajian pills showed significantly increased apoptosis rate of the tumor cells [(22.9±1.220)% and (14.7±0.50)%, respectively] compared with the control group [(5.5±0.90)%, P<0.05]. Treatment with Biejiajian pills significantly decreased the expressions of PNCA, β-catenin, and Tbx3 in the cell xenograft (P<0.05). Biejiajian pills can inhibit the growth of HepG2 cell xenograft in nude mice and promote tumor cell apoptosis possibly by inhibiting PNCA expression and the Wnt/β-catenin signaling pathway.
Liu, Tao; Song, Hong-Li; Zheng, Wei-Ping; Shen, Zhong-Yang
2015-01-01
Anti-HBV therapy is essential for patients awaiting liver transplantation. This study aimed to explore the effects of dendritic cells (DCs) derived from the peripheral blood of hepatitis B patients on the replication of HBV in vivo and to evaluate the biosafety of DCs in clinical therapy. Peripheral blood mononuclear cells (PBMCs) were isolated from HBV-infected patients and maturation-promoting factors and both HBsAg and HBcAg were used to induce DC maturation. Mature DCs and lymphocytes were co-cultured with human hepatocyte cell HL-7702 or HBV-producing human hepatocellular carcinoma cell HepG2.2.15. We found that mature lymphocytes exposed to DCs in vitro did not influence morphology or activities of HL-7702 and HepG2.2.15 cells. Liver function indexes and endotoxin levels in the cell supernatants did not change in these co-cultures. Additionally, supernatant and intracellular HBV DNA levels were reduced when HepG2.2.15 cells were co-cultured with mature lymphocytes that had been cultured with DCs, and HBV covalently closed circular DNA (cccDNA) levels in HepG2.2.15 cells also decreased. Importantly, DC-mediated immunotherapy had no mutagenic effect on HBV genomic DNA by gene sequencing of the P, S, X, and C regions of HBV genomic DNA. We conclude that PBMC-derived DCs from HBV-infected patients act on autologous lymphocytes to suppress HBV replication and these DC clusters showed favorable biosafety. © 2015 by the Association of Clinical Scientists, Inc.
Cheng, Chiung-Chi; Chao, Wei-Ting; Liao, Chen-Chun; Tseng, Yu-Hui; Lai, Yen-Chang Clark; Lai, Yih-Shyong; Hsu, Yung-Hsiang; Liu, Yi-Hsiang
2018-01-02
Plectin involved in activation of kinases in cell signaling pathway and plays important role in cell morphology and migration. Plectin knockdown promotes cell migration by activating focal adhesion kinase and Rac1-GTPase activity in liver cells. Sorafenib is a multi-targeting tyrosine kinase inhibitor that improves patient survival on hepatocellular carcinoma. The aim of this study is to investigate the correlation between the expression of plectin and cell migration as well as the sensitivity of hepatoma cell lines exposing to sorafenib. Hepatoma cell lines PLC/PRF/5 and HepG2 were used to examine the level of plectin expression and cell migration in comparison with Chang liver cell line. In addition, sensitivity of the 3 cell lines to sorafenib treatment was also measured. Expression of plectin was lower in PLC/PRF/5 and HepG2 hepatoma cells than that of Chang liver cells whereas HepG2 and PLC/PRF/5 cells exhibit higher rate of cell migration in trans-well migration assay. Immunohistofluorecent staining on E-cadherin revealed the highest rate of collective cell migration in HepG2 cells and the lowest was found in Chang liver cells. Likewise, HepG2 cell line was most sensitive to sorafenib treatment and Chang liver cells exhibited the least sensitivity. The drug sensitivity to sorafenib treatment showed inverse correlation with the expression of plectin. We suggest that plectin deficiency and increased E-cadherin in hepatoma cells were associated with higher rates of cell motility, collective cell migration as well as higher drug sensitivity to sorafenib treatment.
Avallone, G; Helmbold, P; Caniatti, M; Stefanello, D; Nayak, R C; Roccabianca, P
2007-09-01
Perivascular wall tumors (PWTs) are defined as neoplasms deriving from mural cells of blood vessels, excluding the endothelial lining. The spectrum of human cutaneous PWT includes glomus tumor, hemangiopericytoma (HEP), myopericytoma, angioleiomyoma/sarcoma, angiomyofibroblastoma, and angiofibroma. The purpose of this study was to revise clinical presentation, cytology, histopathology, and immunohistology of canine cutaneous PWT with cytology typical of canine HEP. Diagnosis was established on the basis of vascular growth patterns (staghorn, placentoid, perivascular whorling, bundles from media) and immunohistology, including 7 smooth muscle markers and the cell membrane ganglioside of unknown origin recognized by the antibody 3G5 (CMG-3G5). Twenty cases were included. Ages ranged from 6 to 13 years; 12 dogs were males and 8 were females, and there was a prevalence of crossbreeds. Tumors arose from a single site with preferential acral location (10/20). Cytology revealed moderate to high cellularity in all cases, cohesive groups of cells (19/20), capillaries (18/20), and bi- to multinucleated cells (18/20). Six myopericytomas, 5 angioleiomyomas, 2 angioleiomyosarcomas, 2 HEP, 1 angiofibroma, and 1 adventitial tumor were identified. A definitive diagnosis was not possible in 3 cases. Smoothelin, heavy caldesmon, desmin, myosin, calponin, and CMG-3G5 were the most valuable markers to differentially diagnose canine PWT. Similar to reports in humans, canine HEP embodied a spectrum of neoplastic entities arising from different vascular mural cells. Before canine PWTs are assimilated into one prognostic category, a consistent classification and characterization of their biology is necessary. As proposed in humans, HEP should also be considered a diagnosis of exclusion in dogs.
Marcos, Ricardo; Correia-Gomes, Carla
2016-12-01
Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.
Hossain, Zakir; Sugawara, Tatsuya; Hirata, Takashi
2013-03-01
Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.
Cabaton, Nicolas; Dumont, Coralie; Severin, Isabelle; Perdu, Elisabeth; Zalko, Daniel; Cherkaoui-Malki, Mustapha; Chagnon, Marie-Christine
2009-01-08
Human can be exposed to bis(hydroxyphenyl)methane (bisphenol F or BPF) and its derivatives as environment and food's contaminants. This study was investigated to identify and to compare toxic potency of BPF, BFDGE, and two of BPF metabolites using in vitro methods. BPF did not induce any genic mutation in bacteria when the Ames test was performed according to the OECD guideline. In contrast, using Human cell lines and Comet assay, we demonstrated that BPF and Bisphenol F Diglycidyl Ether (BFDGE) were effective on HepG2 cell DNA fragmentation at non-cytotoxic concentrations. DHB was also positive but at higher concentrations, near its limit of solubility. Neither BPF, nor DHB induced a positive response in the micronucleus assay. The increase of micronuclei observed when cells were exposed to BFDGE was mostly due to a cytotoxic effect. Concerning endocrine activities, BPF increased the luciferase activity in HepG2 cells transiently transfected with a concentration dependant pattern, DHB also induced a positive response but at highest concentrations. Estrogenic responses in the HepG2 cells differed with the estrogen receptor (ER) involved. Using MDA-kb2 cell line stably transfected with pMMTV-neo-Luc, only BPF was anti-androgenic at the highest concentration (10(-5)M). Then, we demonstrated using human cell lines, especially HepG2, BPF was the most toxic compound in term of genotoxicity and endocrine activities compared to DHB and BPF-OH, the free metabolites identified in rat urine when BPF was administrated to rats.
Kang, Hyun; Koppula, Sushruta
2014-01-01
Houttuynia cordata (H. cordata) from the family Saururaceae is a perennial herb native to Southeast Asia. It possesses a range of medicinal properties to treat several disease symptoms including allergic inflammation and anaphylaxis. In the present investigation, we provided the molecular mechanisms underlying the role of H. cordata extract (HCE) in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. HepG2 cells were pre-treated with various concentrations of HCE (0, 10, 20, 40, and 80 μg/mL) and treated with serum-free medium with normal glucose (5 mM) for 1 h, followed by exposure to high glucose (25 mM D-glucose) for 24 h. HCE significantly and dose-dependently attenuated lipid accumulation in human HepG2 hepatocytes when exposed to high glucose (25 mM D-glucose) (p < 0.05, p < 0.01 and p < 0.001 at 20, 40, and 80 μg/mL concentrations, respectively). Further, HCE attenuated the expression of fatty acid synthase (FAS), sterol regulatory element-binding protein-1 and glycerol 3-phosphate acyltransferases (GPATs). The adenosine monophosphate-activated protein kinase (AMPK) was also activated by HCE treatment when exposed to high glucose (25 mM D-glucose) in human HepG2 hepatocytes. This study suggests the hypolipidemic effects of HCE by the inhibition of lipid biosynthesis mediated through AMPK signaling, which may play an active role and can be developed as an anti-obesity agent.
Hepatoerythropoietic porphyria due to a novel mutation in the uroporphyrinogen decarboxylase gene
To-Figueras, J.; Phillips, J.; Gonzalez-López, J.M.; Badenas, C.; Madrigal, I.; González-Romarís, E.M.; Ramos, C.; Aguirre, J.M.; Herrero, C.
2013-01-01
Summary Background Hepatoerythropoietic porphyria (HEP) is a rare form of porphyria that results from a deficiency of uroporphyrinogen decarboxylase (UROD). The disease is caused by homoallelism or heteroallelism for mutations in the UROD gene. Objective To study a 19 year-old woman from Equatorial Guinea, one of the few cases of HEP of African descent and to characterize a new mutation causing HEP. Methods Excretion of porphyrins and residual UROD activity in erythrocytes were measured and compared to other HEP patients. UROD gene of the proband was sequenced and a new mutation identified. The recombinant UROD protein was purified and assayed for enzymatic activity. The aminoacid change mapped to the UROD protein and the functional consequences were predicted. Results The patient presented a novel G170D missense mutation in homozygosity. Porphyrin excretion showed an atypical pattern in stool with a high pentaporphyrin III to isocoproporphyrin ratio. Erythrocyte UROD activity was 42 % of normal and higher than the activity found in HEP patients with a G281E mutation. The recombinant UROD protein showed a relative activity of 17 % and 60 % of wild-type towards uroporphyrinogen I and III respectively. Molecular modelling showed that glycine 170 is located on the dimer interface of UROD, in a loop containing residues 167-172 that are critical for optimal enzymatic activity and that carboxyl side chain from aspartic acid is predicted to cause negative interactions between the protein and the substrate. Conclusions The results emphasize the complex relationship between the genetic defects and the biochemical phenotype in homozygous porphyria. PMID:21668429
NASA Astrophysics Data System (ADS)
Jin, Kai; Li, Bo; Lou, Lixia; Xu, Yufeng; Ye, Xin; Yao, Ke; Ye, Juan; Gao, Changyou
2016-01-01
Rapid and adequate vascularization is vital to the long-term success of porous orbital enucleation implants. In this study, porous hydroxyapatite (HA) scaffolds coated with vascular endothelial growth factor (VEGF)-functionalized collagen (COL)/heparin (HEP) multilayers (porosity 75%, pore size 316.8 ± 77.1 μm, VEGF dose 3.39 ng/mm3) were fabricated to enhance vascularization by inducing the differentiation of mesenchymal stem cells (MSCs) to endothelial cells. The in vitro immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting results demonstrated that the expression of the endothelial differentiation markers CD31, Flk-1, and von Willebrand factor (vWF) was significantly increased in the HA/(COL/HEP)5/VEGF/MSCs group compared with the HA/VEGF/MSCs group. Moreover, the HA/(COL/HEP)5 scaffolds showed a better entrapment of the MSCs and accelerated cell proliferation. The in vivo assays showed that the number of newly formed vessels within the constructs after 28 d was significantly higher in the HA/(COL/HEP)5/VEGF/MSCs group (51.9 ± 6.3/mm2) than in the HA (26.7 ± 2.3/mm2) and HA/VEGF/MSCs (38.2 ± 2.4/mm2) groups. The qRT-PCR and western blotting results demonstrated that the HA/(COL/HEP)5/VEGF/MSCs group also had the highest expression of CD31, Flk-1, and vWF at both the mRNA and protein levels.
Susceptibility of Hep3B cells in different phases of cell cycle to tBid.
Ma, Shi-Hong; Chen, George G; Ye, Caiguo; Leung, Billy C S; Ho, Rocky L K; Lai, Paul B S
2011-01-01
tBid is a pro-apoptotic molecule. Apoptosis inducers usually act in a cell cycle-specific fashion. The aim of this study was to elucidate whether effect of tBid on hepatocellular carcinoma (HCC) Hep3B cells was cell cycle phase specific. We synchronized Hep3B cells at G0/G1, S or G2/M phases by chemicals or flow sorting and tested the susceptibility of the cells to recombinant tBid. Cell viability was measured by MTT assay and apoptosis by TUNEL. The results revealed that tBid primarily targeted the cells at G0/G1 phase of cell cycle, and it also increased the cells at the G2/M phase. 5-Fluorouracil (5-FU), on the other hand, arrested Hep3B cells at the G0/G1 phase, but significantly reduced cells at G2/M phase. The levels of cell cycle-related proteins and caspases were altered in line with the change in the cell cycle. The combination of tBid with 5-FU caused more cells to be apoptotic than either agent alone. Therefore, the complementary effect of tBid and 5-FU on different phases of the cell cycle may explain their synergistric effect on Hep3B cells. The elucidation of the phase-specific effect of tBid points to a possible therapeutic option that combines different phase specific agents to overcome resistance of HCC. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozusko, Shana
The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR.more » The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of Engineers and the Washington Department of fish and Wildlife subsequently purchased numerous properties to mitigate for the identified Snake River losses. These projects, however, were not sufficient to mitigate for all the HU's lost. The Northwest Power Planning Council amended the remaining 26,774 HU's into their 1994-1995 Fish and Wildlife Program as being unmitigated (NPPC 2000), which allowed the Nez Perce Tribe to contract with BPA to provide HU's through the Precious Lands Project. The Precious Lands project contains a different composition of cover types than those assessed during the lower Snake loss assessment. For example, no mallard or Canada goose habitat exists on Precious Lands but the area does contain conifer forest, which was not present on the area inundated by dam construction. These cover type differences have resulted in a slightly different suite of species for the current HEP assessment. Target species for Precious Lands are downy woodpecker, yellow warbler, song sparrow, California Quail, mule deer, sharp-tailed grouse (brood rearing), west em meadowlark, beaver, and black-capped chickadee. This list is a reflection of the available cover types and the management objectives of the Nez Perce Tribe. For example, chukar was not used in the present assessment because it is an introduced Eurasian game bird that does not provide an accurate representation of the ecological health of the native grasslands it was supposed to represent. Initial model runs using the chukar confirmed this suspicion so the brood-rearing section of the sharp-tailed grouse model was used instead. Additionally, the beaver model was used in place of the river otter model because the otter model used in the loss assessment was not a published model, was overly simplistic, and did not provide an accurate assessment of riparian condition. The beaver model, however, provides a detailed evaluation of overstory class structure that the NPT felt was a good compliment to the yellow warbler and song sparrow models that evaluated understory shrub layers. Overall, such substitutions should result in a more accurate evaluation of the ecological conditions on Precious Lands, and provide better information for decision making. A baseline HEP analysis was initiated on the Precious Lands in 2000, and data collection continued throughout the 2001 and 2002 field seasons. In the future, HEP analysis will be used to evaluate habitat changes resulting from management activities. Repeat surveys will be useful in assessing long-term trends in plant community health, weed encroachment, wildlife limiting factors, habitat degradation, and establishing desired future condition guidelines for the management program.« less
Su, Chun-Li; Huang, Lynn L H; Huang, Li-Min; Lee, Jenq-Chang; Lin, Chun-Nan; Won, Shen-Jeu
2006-05-29
Justicia procumbens is a traditional Taiwanese herbal remedy used to treat fever, pain, and cancer. Justicidin A, isolated from Justicia procumbens, has been reported to suppress in vitro growth of several tumor cell lines as well as hepatoma cells. In this study, justicidin A activated caspase-8 to increase tBid, disrupted mitochondrial membrane potential (Delta psi(m)), and caused the release of cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells. Justicidin A also reduced Bcl-x(L) and increased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-IETD) attenuated the justicidin A-induced disruption of Delta psi(m). Growth of Hep 3B implanted in NOD-SCID mice was suppressed significantly by oral justicidin A (20 mg/kg/day). These results indicate that justicidin A-induced apoptosis in these cells proceeds via caspase-8 and is followed by mitochondrial disruption.
Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo.
Yan, Yuan; Liu, Na; Hou, Ni; Dong, Lei; Li, Jie
2017-08-01
Curative treatment of patients with hepatocellular carcinoma (HCC) is poor. There is an urgent need to develop more effective strategies for the chemoprevention of HCC. Chlorogenic acid (CGA), a type of polyphenol present in the diet, especially from coffee, has many biological activities. Patients with viral hepatitis who drank coffee everyday experienced a reduction in the incidence of HCC. In the present study, we evaluated the effects of CGA on HCC. CGA inhibited the proliferation of HepG2 cells in vitro and the progression of HepG2 xenograft in vivo. CGA induced the inactivation of ERK1/2 and suppressed the expression of MMP-2 and MMP-9 in HepG2 xenograft tissue. These data demonstrate that CGA can prevent the progression of HCC through multiple pathways. CGA appears to be an effective chemopreventive agent for hepatocellular carcinoma. Copyright © 2017 Elsevier Inc. All rights reserved.
FV peptide induces apoptosis in HEp 2 and HeLa cells: an insight into the mechanism of induction
Sri Balasubashini, M; Karthigayan, S; Somasundaram, ST; Balasubramanian, T; Rukkumani, R; Menon, Venugopal P
2006-01-01
The present study is an attempt to evaluate the antiproliferative potential of peptide (7.6 kDa) from lionfish (Pterios volitans) venom on cultured HEp2 and HeLa cells. Different dose of purified peptide (1, 2 and 4 μg/ml) at different time points (12, 24 and 36 hrs) were tested for antiproliferative index of the peptide. Among them, 2 μg/ml at 24 hrs was found to effectively inhibit cancer cell growth in vitro and did not cause any adverse effect on normal human lymphocytes. Apoptosis was examined by propidium iodide staining, confirmed by the expression of caspase-8 and caspase-3, down regulation of Bcl-2 expression and DNA fragmentation in treated cells, when compared to untreated HEp2 and HeLa cells. Thus fish venom peptide was found to selectively induce apoptosis in cancer cell. PMID:17137521
Cytotoxic activity of interferon alpha induced dendritic cells as a biomarker of glioblastoma
NASA Astrophysics Data System (ADS)
Mishinov, S. V.; Stupak, V. V.; Tyrinova, T. V.; Leplina, O. Yu.; Ostanin, A. A.; Chernykh, E. R.
2016-08-01
Dendritic cells (DCs) are the most potent antigen presenting cells that can play direct role in anti-tumor immune response as killer cells. DC tumoricidal activity can be stimulated greatly by type I IFN (IFNα and IFNβ). In the present study, we examined cytostatic and cytotoxic activity of monocyte-derived IFNα-induced DCs generated from patients with brain glioma and evaluated the potential use of these parameters in diagnostics of high-grade gliomas. Herein, we demonstrated that patient DCs do not possess the ability to inhibit the growth of tumor HEp-2 cell line but low-grade and high-grade glioma patients do not differ significantly in DC cytostatic activity. However, glioma patient DCs are characterized by reduced cytotoxic activity against HEp-2 cells. The impairment of DC cytotoxic function is observed mainly in glioblastoma patients. The cytotoxic activity of DCs against HEp-2 cells below 9% is an informative marker for glioblastomas.
Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo
2010-07-01
It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.
Balashanmugam, Pannerselvam; Durai, Prabhu; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudupalayam Thangavelu
2016-12-01
Gold nanoparticles are considered of great importance compared to other noble metal nanoparticles and its wide range of applications like pharmaceutics, therapeutics and diagnostics etc. During the past decade, phytosynthesized gold nanoparticles (AuNPs) are more focused in in vitro and in vivo study. The present study was focused on the gold chloride and phytosynthesized gold nanoparticles from aqueous leaf extract of Cassia roxburghii and their toxic effects on African green monkey normal kidney Vero cell line and three different cancer cell lines such as HepG2, MCF7 and HeLa. Phytosynthesized AuNPs were characterized by HRTEM, EDX, XRD and FTIR analysis. The particles size range of 25-35nm was confirmed by HRTEM. The elemental gold and the crystalline nature of AuNPs were confirmed by EDX and XRD, respectively. The reduction of functional groups was confirmed by FTIR. In in vitro study, the IC 50 of HepG2 cells was found to be 30μg/ml compared to other cell lines, HeLa and MCF7 cell line showing IC 50 of 50μg/ml and normal Vero cell line also nontoxic up to 75μg/ml confirmed by MTT assay. Further, apoptosis in HepG2 was analyzed by fluorescence microscope and DNA fragmentation was observed in HepG2 treated cells. These results suggested that phytosynthesized AuNPs of C. roxburghii extract clearly limited toxic on normal cells but toxic in cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying
Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less
Andrographis paniculata Leaf Extract Prevents Thioacetamide-Induced Liver Cirrhosis in Rats
Bardi, Daleya Abdulaziz; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen
2014-01-01
This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson’s Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells. PMID:25280007
Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.
Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen
2014-01-01
This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorgani-Firuzjaee, Sattar; Adeli, Khosrow; Meshkani, Reza, E-mail: rmeshkani@tums.ac.ir
The serine–threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome cmore » and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients. - Highlights: • Lipoapoptosis is the major contributor to the development of NAFLD. • The PI3-K/Akt pathway regulates apoptosis in different cells. • The role of negative regulator of this pathway, SHIP2 in lipoapoptosis is unknown. • SHIP2 inhibition significantly reduces palmitate-induced apoptosis in HepG2 cells. • SHIP2 inhibition prevents palmitate induced-apoptosis by regulating Akt/FOXO1 pathway.« less
Deng, Xukun; Zhao, Xiangpei; Lan, Zhou; Jiang, Jie; Yin, Wu; Chen, Lvyi
2014-07-01
This study investigated the active components and the anti-tumor efficacy and mechanisms of the flavonoids from Docynia delavayi (Franch.) Schneid. (DDS). MTT assay was used to examine the growth inhibitory effects of the four flavonoids, including chrysin, quercetin, naringenin, and avicularin that were isolated from the rhizome of DDS, on human hematomas cell (HepG2), esophageal carcinoma cell (EC109), human cervical adenocarcinoma cell (Hela), human colon adenocarcinoma cell (SW480), and African green monkey kidney cell (Vero cells). The anti-tumor mechanism of chrysin on HepG2 was further investigated by the methods of fluorescence staining, flow cytometry, and immunoblotting. The results showed that the inhibitory activity of chrysin was much stronger than the other three flavonoids on HepG2, EC109, Hela, and SW480 cells for 48 h treatment in vitro. Moreover, no inhibiting effect of chrysin on the proliferation of normal cells (Vero cells) was observed. Further study revealed that chrysin caused HepG2 cell shrinkage, membrane blebbing, and apoptotic body formation, all of which were typical characteristics of apoptosis programmed cell death. Flow cytometric analysis demonstrated that chrysin increased the sub G0/G1 population, which indicated the increased cell apoptosis, thus preventing cells from entering the S phase as the population in G2/M or S phase declined; whereas in G0/G1 phase, it increased. In addition, immunoblot results showed that chrysin significantly increased the expression levels of caspase-3 and Bax proteins, and it decreased the expression level of B-cell lymphoma/leukemia-2 (Bcl-2) protein. These findings indicate that chrysin is the major flavonoid present in DDS, and it induces HepG2 cell death via apoptosis, probably through the participation of caspase-3, Bax, and Bcl-2 proteins.
Micronutrient Synergy in the Fight against Hepatocellular Carcinoma.
Roomi, M Waheed; Roomi, Nusrath W; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias
2012-03-23
The incidence of hepatocellular carcinoma (HCC), once thought to be a rare tumor in North America, has rapidly increased in recent years in the United States. Current treatment modalities to halt the progression of this disease are only marginally effective. The mainstay treatment is liver transplantation, which is often confronted with donor shortage. Invasion, metastasis and recurrence contribute to the high mortality rate of this disease. Matrix metalloproteinases (MMPs) that degrade the extracellular matrix (ECM) have been associated with the progression, invasion and metastasis of the disease. We have developed strategies to strengthen the ECM collagen and inhibit MMPs through micronutrients such as lysine, proline and ascorbic acid. Addition of epigallocatechin gallate or green tea extract to these micronutrients synergistically enhanced anti-carcinogenic activity in HepG2 cells. Addition of certain other micronutrients, such as N-acetylcysteine, selenium, copper and zinc (NM) synergistically enhanced the anticancer activity of the mixture in a model of hepatocellular carcinoma using HepG2 cells. In vitro studies using HepG2 demonstrated that NM was very effective in inhibiting cell proliferation (by MTT assay), MMPs secretion (by gelatinase zymography), cell invasion (through Matrigel) and induction of apoptosis (by live green caspase). In addition, NM was shown to down-regulate urokinase plasminogen activator (by fibrin zymography) and up-regulate tissue inhibitors of metalloproteinases (by reverse zymography) in another HCC cell line, SK-Hep-1. MMP-2 and MMP-9 activities were further modulated by phorbol 12-myristate 13-acetate (PMA) induction and inhibited by NM. In previous studies, NM inhibited Sk-Hep-1 xenografts in nude mice and also inhibited hepatic metastasis of B16FO melanoma cells. Our results suggest that NM is an excellent candidate for therapeutic use in the treatment HCC by inhibiting critical parameters in cancer development and progression, such as proliferation, invasion and metastasis, and by inducing apoptosis.
Cheng, Tain-Junn; Lin, Shu-Wen; Chen, Chih-Wei; Guo, How-Ran; Wang, Ying-Jang
2016-10-25
Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dallio, M; Masarone, M; Errico, S; Gravina, A G; Nicolucci, C; Di Sarno, R; Gionti, L; Tuccillo, C; Persico, M; Stiuso, P; Diano, N; Loguercio, C; Federico, A
2018-03-01
Bisphenol A is an endocrine disrupting chemical associated with type 2 diabetes mellitus (T2DM), cardiovascular disease and liver enzyme abnormalities. To evaluate bisphenol A plasma and urine levels in non-alcoholic fatty liver disease (NAFLD) patients compared to healthy subjects. Furthermore, we evaluated, in human HepG2 cells, the effects of exposure to different concentrations of bisphenol A on both oxidative stress induction and cell proliferation. We enrolled 60 patients with histological diagnosis of NAFLD with or without T2DM and sixty healthy subjects. In vitro, the proliferation of bisphenol A-exposed HepG2 cells at two different concentrations (0.025 and 0.05 μM) was evaluated, both at high (H-HepG2) and at low (L-HepG2) glucose concentrations for 48 h. Lipoperoxidation was assessed by thiobarbituric acid reactive substances (TBARS) assay. Bisphenol A levels were significantly higher in 60 NAFLD subjects, both in urine and in plasma (P < 0.0001) when compared to controls and, in this group, it appeared to be higher in 30 non-alcoholic steatohepatitis patients compared to 30 simple steatosis subjects (P < 0.05), independently from the presence of T2DM. After a bisphenol A-free diet for 1 month, NAFLD patients showed a significant reduction in bisphenol A circulating levels (P < 0.05), without a significant reduction in urine levels. H-HepG2 cells treated with bisphenol A (0.05 μM) increased proliferation compared to controls at 48 h (P < 0.0001). Bisphenol A increased TBARS levels at 48 h versus controls. Our study reveals a possible role of bisphenol A as an environmental factor involved in the promotion of NAFLD, particularly in T2DM patients. © 2018 John Wiley & Sons Ltd.
Yook, Jin-Seon; Kim, Mina; Pichiah, Pichiah BalasubramanianTirupathi; Jung, Su-Jin; Chae, Soo-Wan; Cha, Youn-Soo
2015-07-01
The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using the MTT assay. The antioxidant properties of chicory were found to increase when cultivated with chemical fertilizer in the absence of pesticides. On the other hand, antioxidant capacity was higher in chicory cultivated with eco-developed fertilizer even in the presence of pesticides. Chicory grown using eco-developed or organic fertilizer was more effective in suppressing the proliferation of HepG2 cells when compared to chicory grown with chemical fertilizer. This effect was time dependent, regardless of treatment with or without pesticides. In conclusion, the antioxidant activity of chicory were affected by the presence or absence of pesticides. However, developed and organic fertilizers showed a strong anti-proliferative effect against HepG2 cells, regardless of the presence or absence of pesticides.
Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine
2010-02-01
5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.
Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B.; Valentão, Patrícia; Diop, Moussoukhoye Sissokho
2015-01-01
The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death. PMID:26075245
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium–tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants. PMID:24109183
Xu, Peipei; Li, Jingyuan; Shi, Lixin; Selke, Matthias; Chen, Baoan; Wang, Xuemei
2013-01-01
We prepared and studied novel fluorescent nanocomposites based on gambogic acid (GA) and cadmium-tellurium (CdTe) quantum dots (CdTe QDs) modified with cysteamine for purpose of cancer cell labeling and combined treatment. The nanocomposites were denoted as GA-CdTe. Characterization results indicated that the CdTe QDs can readily bind onto cell plasma membranes and then be internalized into cancer cells for real-time labeling and tracing of human liver hepatocellular carcinoma cell line (HepG2) cells. GA-CdTe significantly enhanced drug accumulation in HepG2 cells and inhibited cancer cell proliferation. GA-CdTe nanocomposites also improved the drug action of GA molecules in HepG2 cells and induced the G2/M phase arrest of the cancer cell cycle, promoting cell apoptosis. Given the sensitive, pH-triggered release of GA-CdTe, the side effects of GA anticancer agents on normal cells/tissues in the blood circulation markedly decreased. Efficient drug release and accumulation in target tumor cells were also facilitated. Thus, the fluorescent GA-CdTe offered a new strategy for potential multimode cancer therapy and provided new channels for research into naturally-active compounds extracted from traditional Chinese medicinal plants.
Liu, Ling; Wang, Dongmei; Wang, Jiangang; Wang, Shuying
2016-04-01
Hepatocellular carcinoma is one of the most common and deadly forms of human malignancies. JS-K, O(2)-(2, 4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1, 2-diolate, has the ability to induce apoptosis of tumor cell lines. In the present study, JS-K inhibited the proliferation of HepG2 cells in a time- and concentration-dependent manner and significantly induced apoptosis. JS-K enhanced the ratio of Bax-to-Bcl-2, released of cytochrome c (Cyt c) from mitochondria and the activated caspase-9/3. JS-K caused an increasing cytosolic Ca(2+) and the loss of mitochondrial membrane potential. Carboxy-PTIO (a NO scavenger) and BAPTA-AM (an intracellular Ca(2+) chelator) significantly blocked an increasing cytosolic Ca(2+) in JS-K-induced HepG2 cells apoptosis, especially Carboxy-PTIO. Meanwhile, Carboxy-PTIO and BAPTA-AM treatment both attenuate JS-K-induced apoptosis through upregulation of Bcl-2, downregulation of Bax, reduction of Cyt c release from mitochondria to cytoplasm and inactivation of caspase-9/3. In summary, JS-K induced HepG2 cells apoptosis via Ca(2+)/caspase-3-mediated mitochondrial pathway. © 2015 Wiley Periodicals, Inc.
Armentano, Maria Francesca; Bisaccia, Faustino; Miglionico, Rocchina; Russo, Daniela; Nolfi, Nicoletta; Carmosino, Monica; Andrade, Paula B; Valentão, Patrícia; Diop, Moussoukhoye Sissokho; Milella, Luigi
2015-01-01
The main goal of this study was to characterize the in vitro antioxidant activity and the apoptotic potential of S. birrea methanolic root extract (MRE). Among four tested extracts, obtained with different solvents, MRE showed the highest content of polyphenols, flavonoids, and tannins together with antioxidant activities tested with superoxide, nitric oxide, ABTS, and beta-carotene bleaching assays. Moreover, the cytotoxic effect of MRE was evaluated on the hepatocarcinoma cell line HepG2. In these cells, MRE treatment induced apoptosis and generated reactive oxygen species (ROS) in dose-dependent manner. The cytotoxic effect promoted by MRE was prevented by pretreatment of HepG2 cells with N-acetyl-L-cysteine (NAC), suggesting that oxidative stress was pivotal in MRE-mediated cell death. Moreover, we showed that the MRE treatment induced the mitochondrial membrane depolarization and the cytochrome c release from mitochondria into the cytosol. It suggests that the apoptosis occurred in a mitochondrial-dependent pathway. Interestingly, MRE showed a sensibly lower cytotoxicity, associated with a low increase of ROS, in normal human dermal fibroblasts compared to HepG2 cells. It is suggested that the methanolic root extract of S. Birrea is able to selectively increase intracellular ROS levels in cancer cells, promoting cell death.
Amoebal Endosymbiont Protochlamydia Induces Apoptosis to Human Immortal HEp-2 Cells
Ito, Atsushi; Matsuo, Junji; Nakamura, Shinji; Yoshida, Asahi; Okude, Miho; Hayashi, Yasuhiro; Sakai, Haruna; Yoshida, Mitsutaka; Takahashi, Kaori; Yamaguchi, Hiroyuki
2012-01-01
Protochlamydia, an environmental chlamydia and obligate amoebal endosymbiotic bacterium, evolved to survive within protist hosts, such as Acanthamobae, 700 million years ago. However, these bacteria do not live in vertebrates, including humans. This raises the possibility that interactions between Protochlamydia and human cells could induce a novel cytopathic effect, leading to new insights into host-parasite relationships. Therefore, we studied the effect of Protochlamydia on the survival of human immortal cell line, HEp-2 cells and primary peripheral blood mononuclear cells (PBMC). Using mainly 4′,6-diamidino-2-phenylindole staining, fluorescent in situ hybridization, transmission electron microscopy, and also TUNEL and Transwell assays, we demonstrated that the Protochlamydia induced apoptosis in HEp-2 cells. The attachment of viable bacterial cells, but not an increase of bacterial infectious progenies within the cells, was required for the apoptosis. Other chlamydiae [Parachlamydia acanthamoebae and Chlamydia trachomatis (serovars D and L2)] did not induce the same phenomena, indicating that the observed apoptosis may be specific to the Protochlamydia. Furthermore, the bacteria had no effect on the survival of primary PBMCs collected from five volunteers, regardless of activation. We concluded that Protochlamydia induces apoptosis in human-immortal HEp-2 cells and that this endosymbiont could potentially be used as a biological tool for the elucidation of novel host-parasite relationships. PMID:22276171
Amoebal endosymbiont Protochlamydia induces apoptosis to human immortal HEp-2 cells.
Ito, Atsushi; Matsuo, Junji; Nakamura, Shinji; Yoshida, Asahi; Okude, Miho; Hayashi, Yasuhiro; Sakai, Haruna; Yoshida, Mitsutaka; Takahashi, Kaori; Yamaguchi, Hiroyuki
2012-01-01
Protochlamydia, an environmental chlamydia and obligate amoebal endosymbiotic bacterium, evolved to survive within protist hosts, such as Acanthamobae, 700 million years ago. However, these bacteria do not live in vertebrates, including humans. This raises the possibility that interactions between Protochlamydia and human cells could induce a novel cytopathic effect, leading to new insights into host-parasite relationships. Therefore, we studied the effect of Protochlamydia on the survival of human immortal cell line, HEp-2 cells and primary peripheral blood mononuclear cells (PBMC). Using mainly 4',6-diamidino-2-phenylindole staining, fluorescent in situ hybridization, transmission electron microscopy, and also TUNEL and Transwell assays, we demonstrated that the Protochlamydia induced apoptosis in HEp-2 cells. The attachment of viable bacterial cells, but not an increase of bacterial infectious progenies within the cells, was required for the apoptosis. Other chlamydiae [Parachlamydia acanthamoebae and Chlamydia trachomatis (serovars D and L2)] did not induce the same phenomena, indicating that the observed apoptosis may be specific to the Protochlamydia. Furthermore, the bacteria had no effect on the survival of primary PBMCs collected from five volunteers, regardless of activation. We concluded that Protochlamydia induces apoptosis in human-immortal HEp-2 cells and that this endosymbiont could potentially be used as a biological tool for the elucidation of novel host-parasite relationships.
HEP Computing Tools, Grid and Supercomputers for Genome Sequencing Studies
NASA Astrophysics Data System (ADS)
De, K.; Klimentov, A.; Maeno, T.; Mashinistov, R.; Novikov, A.; Poyda, A.; Tertychnyy, I.; Wenaus, T.
2017-10-01
PanDA - Production and Distributed Analysis Workload Management System has been developed to address ATLAS experiment at LHC data processing and analysis challenges. Recently PanDA has been extended to run HEP scientific applications on Leadership Class Facilities and supercomputers. The success of the projects to use PanDA beyond HEP and Grid has drawn attention from other compute intensive sciences such as bioinformatics. Recent advances of Next Generation Genome Sequencing (NGS) technology led to increasing streams of sequencing data that need to be processed, analysed and made available for bioinformaticians worldwide. Analysis of genomes sequencing data using popular software pipeline PALEOMIX can take a month even running it on the powerful computer resource. In this paper we will describe the adaptation the PALEOMIX pipeline to run it on a distributed computing environment powered by PanDA. To run pipeline we split input files into chunks which are run separately on different nodes as separate inputs for PALEOMIX and finally merge output file, it is very similar to what it done by ATLAS to process and to simulate data. We dramatically decreased the total walltime because of jobs (re)submission automation and brokering within PanDA. Using software tools developed initially for HEP and Grid can reduce payload execution time for Mammoths DNA samples from weeks to days.
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB
Zhang, Linlin; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF-κB activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF-κB inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF-α-induced NF-κB activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF-κB. PMID:28409156
Curcumin Analogue CA15 Exhibits Anticancer Effects on HEp-2 Cells via Targeting NF-κB.
Chen, Jian; Zhang, Linlin; Shu, Yilai; Chen, Liping; Zhu, Min; Yao, Song; Wang, Jiabing; Wu, Jianzhang; Liang, Guang; Wu, Haitao; Li, Wulan
2017-01-01
Laryngeal carcinoma remains one of the most common malignancies, and curcumin has been proven to be effective against head and neck cancers in vitro. However, it has not yet been applied in clinical settings due to its low stability. In the current study, we synthesized 34 monocarbonyl analogues of curcumin with stable structures. CA15, which exhibited a stronger inhibited effect on laryngeal cancer cells HEp-2 but a lower toxicity on hepatic cells HL-7702 in MTT assay, was selected for further analysis. The effects of CA15 on cell viability, proliferation, migration, apoptosis, and NF- κ B activation were measured using MTT, Transwell migration, flow cytometry, Western blot, and immunofluorescence assays in HEp-2 cells. An NF- κ B inhibitor, BMS-345541, as well as curcumin was also tested. Results showed that CA15 induced decreased toxicity towards HL-7702 cells compared to curcumin and BMS-345541. However, similar to BMS-345541 and curcumin, CA15 not only significantly inhibited proliferation and migration and induced caspase-3-dependent apoptosis but also attenuated TNF- α -induced NF- κ B activation in HEp-2 cells. These results demonstrated that curcumin analogue CA15 exhibited anticancer effects on laryngeal cancer cells via targeting of NF- κ B.
Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhu, Mingming; Wu, Rui; Huang, Cong; Zhong, Caiyun
2017-04-15
Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemicals. Accumulating evidence indicates that exposure to BPA contributes to insulin resistance through diverse mechanism including inflammation and oxidative stress. Previous studies have suggested curcumin as a safe phytochemical which can improve obesity-related insulin resistance, inflammation and oxidative stress. The present study aimed to investigate the ability of curcumin to prevent BPA-induced insulin resistance in vitro and the underlying mechanism. Following the establishmet of in vitro insulin resistance via BPA treatment in human liver HepG2 cells, the protective effects of curcumin were determiend. We showed that treatment of HepG2 cells with 100nM BPA for 5days induced significantly decreased glucose consumption, impaired insulin signaling, elevation of pro-inflammatory cytokines and oxidative stress, and activation of signaling pathways; inhibition of JNK and p38 pathways, but not ERK nor NF-κB pathways, improved glucose consumption and insulin signaling in BPA-treated HepG2 cells. Moreover, we revealed that curcumin effectively attenuated the spectrum of effects of BPA-triggered insulin resistance, whereas pretreatment with JNK and p38 agonist anisomycin could significantly compensate the effects caused by curcumin. These data illustrated the role of JNK/p38 activation in BPA-induced insulin resistance and suggested curcumin as a promising candidate for the intervention of BPA-induced insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.
Jung, Hyun Ah; Bhakta, Himanshu Kumar; Min, Byung-Sun; Choi, Jae Sue
2016-10-01
Insulin resistance is a characteristic feature of type 2 diabetes mellitus (T2DM) and is characterized by defects in insulin signaling. This study investigated the modulatory effects of fucosterol on the insulin signaling pathway in insulin-resistant HepG2 cells by inhibiting protein tyrosine phosphatase 1B (PTP1B). In addition, molecular docking simulation studies were performed to predict binding energies, the specific binding site of fucosterol to PTP1B, and to identify interacting residues using Autodock 4.2 software. Glucose uptake was determined using a fluorescent D-glucose analogue and the glucose tracer 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxyglucose, and the signaling pathway was detected by Western blot analysis. We found that fucosterol enhanced insulin-provoked glucose uptake and conjointly decreased PTP1B expression level in insulin-resistant HepG2 cells. Moreover, fucosterol significantly reduced insulin-stimulated serine (Ser307) phosphorylation of insulin receptor substrate 1 (IRS1) and increased phosphorylation of Akt, phosphatidylinositol-3-kinase, and extracellular signal- regulated kinase 1 at concentrations of 12.5, 25, and 50 µM in insulin-resistant HepG2 cells. Fucosterol inhibited caspase-3 activation and nuclear factor kappa B in insulin-resistant hepatocytes. These results suggest that fucosterol stimulates glucose uptake and improves insulin resistance by downregulating expression of PTP1B and activating the insulin signaling pathway. Thus, fucosterol has potential for development as an anti-diabetic agent.
[Comparison of antibody persistence between live attenuated and inactivated hepatitis A vaccines].
Liu, Huai-Feng; Zhang, Xin-Jiang; Zhang, Jian-Li
2009-08-01
To study the antibody persistence of live attenuated hepatitits A vaccine, and to compare the antibody between with inactivated vaccine. 211 HAV susceptible children were divided randomly into three groups, Group A was injected three doses HepA-L at 0, 6 and 12 monthes; Group B was administrated two dose HepA-L at 0 and 6 months, and group C was immunized with inactivated vaccine at month 0 and 6. Serum samples were detected for Anti-HAV at 1, 6, 7, 12, 13, 24, 84 months after vaccination in each group. The seroconversion rates reached 100% after 2nd dose in all groups. The highest GMC was 2938.1 mlU/ml, founded in group C, and it was 1315.6 mlU/ml and 1586 mlU/ml in group A and B respectively. After the 3rd dose at month 12 in group A, the antibody increased dramatic, which reached 1945.3 mlU/ml. 84 months after first dose in each group, the antibody can be detected from all subjects. Though the GMC in group A declined to 336.8 mlU/ml, it was significant higher than that in group B and C. The good booster effect with HepA-L was well observed in a short-term. The immune response induced by 2 to 3 doses HepA-L could compete with inactivated hepatitis A vaccine. However, long-term effects of both vaccines need further study.
Young, Shun-Chieh; Wang, Chau-Jong; Hsu, Jeng-Dong; Hsu, Jui-Ling; Chou, Fen-Pi
2006-06-01
Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of de-toxication, anti-oxidation and anti-mutation. In this study we first examined the effect of PBL extract on the activity of Glutathione S-transferase (GST) isoforms, and found that it inhibited total GST and the alpha class of GST (GSTA), but not the pi class of GST (GSTP), and the mu class of GST (GSTM), activity in Hep G2 cells. RT-PCR results verified a reduction in the expression of GSTA1. Next, we examined whether PBL extract could increase the sensitivity of Hep G2 cells to anti-cancer drugs. The data showed that the cytotoxicity of cisplatin was significantly enhanced by the presence of PBL extract, accompanied by a reduction in the expression of multidrug resistance protein 2 (MRP2). These effects of PBL extract were compared to its major constitute, eugenol. Although eugenol decreased MRP2 level more effectively than PBL extract, it exhibited less sensitizing effect. In conclusion, we demonstrated that PBL extract was able to increase the sensitivity of Hep G2 cells to cisplatin via at least two mechanisms, reducing the expression of MRP2 and inhibiting the activity of total GST and the expression of GSTA. The data of this study support an application of PBL as an additive to reduce drug resistance.
Song, Ya-Nan; Zhang, Gui-Biao; Hu, Xue-Qing; Lu, Yi-Yu; Zhao, Yu; Yang, Yang; Yang, Yi-Fu; Zhang, Yong-Yu; Hu, Yi-Yang; Su, Shi-Bing
2015-12-01
Chronic hepatitis B (CHB) is a kind of chronic liver disease caused by persistent hepatitis B virus (HBV) infection. The study aims to seek the factors of host resistance to HBV and investigate their roles. Protein profiles of 58 healthy controls and 121 CHB patients were obtained by SELDI-TOF/MS. Predicted protein was validated by ELISA. Protein expression was evaluated by Western blot in the persistently HBV expressing cell line HepG2.2.15 and non-HBV expressing cell line HepG2. The level of HBV DNA was subsequently detected by quantitative real-time PCR in HepG2.2.15 cells with complement C4a treatment. Significantly altered protein peaks were found through statistical analysis, and m/z 4300 was predicted by databases and successfully matched with the fragment of complement C4a. According to ELISA, serum complement C4a was found to be significantly lower in CHB patients compared with healthy controls (p < 0.001) and the area under receiver operating characteristics curve is 0.78. Furthermore, complement C4a showed lower expression in HepG2.2.5 cells and the secretion of HBV DNA was inhibited by complement C4a. The present study implied the important role of complement C4a in inhibiting the HBV DNA secretion in CHB. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Chia-Jung; Huang, Shang-Yu; Wu, Meng-Yu; Chen, Yu-Ching; Tsang, Shih-Fang; Chyuan, Jong-Ho; Hsu, Hsue-Yin
2012-08-03
Corchorus olitorius L.,is a culinary and medicinal herb, widely used as a vegetable in several countries in Asia. Many studies have shown that C. olitorius contains several antioxidants and exhibits anti-inflammatory and anti-proliferative activities in various in vitro and in vivo settings. Recently, C. olitorius has been approved for its antitumor activity; however, the underlying molecular mechanisms remain unclear. The goal of this study was to investigate the effects of ethanol extract of C. olitorius (ECO) on the growth of human hepatocellular carcinoma (HepG2) cells and gain some insights into the underlying mechanisms of its action. We found that HepG2 cells, treated with ECO for 24 h at a concentration higher than 12.5 μg/mL, displayed a strong reduction in cell viability, whereas normal FL83B hepatocytes were not affected. DNA fragmentation and nuclear condensation were evidenced by the increased subG1 population of ECO-treated HepG2 cells. ECO triggered the activation of procaspases-3 and -9 and caused the cleavage of downstream substrate, poly ADP-ribose polymerase (PARP), followed by down-regulation of the inhibitor of caspase-activated DNase (ICAD) signaling. Moreover, the increased release of cytochrome c from mitochondria with decreased membrane potential demonstrated the apoptosis induced through the caspases cascade. Our findings indicated that ECO might be effective against hepatocellular carcinoma through induction of apoptosis via mitochondria-dependent pathway.
Argonne National Laboratory HEP Laptop Computing Problem Report Service Request Password Help New on ANL Exchange: See section for your OS Printing Available Software for Download VPN: Virtual
Xin, Li-li; Li, Xiao-hai; Deng, Hua-xin; Kuang, Dan; Dai, Xia-yun; Huang, Su-Li; Wang, Feng; He, Mei-an; Currie, R William; Wu, Tang-chun
2012-12-01
Using the stable HSPA1A (HSP70-1) promoter-driven luciferase reporter HepG2 cells (HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven emissions (COEs) collected from the top, side, and bottom of a coke oven battery for 24 h. After the treatments, luciferase activity, cell viability, malondialdehyde (MDA) concentration, Olive tail moment, and micronuclei frequency were determined, respectively. The bottom COEs induced significant increases (P < 0.01) in relative luciferase activity up to 1.4 times the control level at 0.15 µg/L. The low dose of side COEs (0.02 µg/L) led to a significant increase (P < 0.01) in relative luciferase activity that progressively increased to 2.1 times the control level at 65.4 µg/L. The top COEs produced a strong dose-dependent induction of relative luciferase activity up to over 5 times the control level at the highest concentration tested (202 µg/L). In HepG2/HSPA1A cells treated with the bottom COEs, relative luciferase activity was positively correlated with MDA concentration (r = 0.404, P < 0.05). For the three COEs samples, positive correlations were observed between relative luciferase activity and Olive tail moment and micronuclei frequency. The relative luciferase activity in HepG2/HSPA1A cells can sensitively reflect the overall toxicity of COEs. The stable HepG2/HSPA1A cells can be used for rapid screening of the overall toxicity of complex air pollutants in the workplace.
Malyavantham, Kishore S.; Suresh, Lakshmanan
2018-01-01
Systemic autoimmune connective tissue disorders are characterized by circulating antinuclear antibodies (ANA). Although there are several technologies available for ANA screening, indirect immunofluorescence (IIF) using Human epithelial cells-2 (HEp-2) substrate remains the primary and recommended method because of its superior sensitivity. HEp-2 substrates can detect a multitude of patterns resulting from autoantibody binding to various protein and nucleic acid autoantigens distributed throughout the nucleus and cytoplasm of the cells. The great diversity of monospecific and mixed patterns resulting from positive reactions on HEp-2 substrate also complicate the interpretation and accuracy of reporting. One specific example which received utmost attention recently is the dense fine speckled 70 (DFS70) pattern resulting from autoantibodies that specifically bind to a protein called lens epithelium derived growth factor (LEDGF). Lack of clear association with a specific systemic autoimmune disease and high prevalence in healthy populations have made accurate interpretation of DFS70 pattern important. Accurate distinction of DFS70 pattern from disease-associated patterns using conventional HEp-2 substrate is challenging. Moreover, frequent co-occurrence of DFS70 pattern along with disease-associated patterns such as homogeneous, speckled, and mixed homogeneous-speckled patterns complicate the IIF interpretation. The goal of this paper is to demonstrate the utility of a novel engineered HEp-2 IIF substrate that retains all advantages of conventional HEp-2 substrate while simultaneously providing the ability to distinguish DFS70 pattern with high confidence in both monospecific and mixed ANA positive examples. The new substrate is further able to unmask disease-associated ANA patterns previously concealed by DFS70 pattern. PMID:29364249
Judson, G J; Babidge, P J
2002-10-01
To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. Field experiments with flocks of mature Merino wethers and crossbred weaners. Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiting; Tu, Qunfei; Yan, Wei
Highlights: • CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. • CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells. • CXC195 regulated TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway in LPS-induced HepG2 cells. - Abstract: CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-inducedmore » HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.« less
Li, Dan-Dan; Tang, Xiang-Lin; Tan, Hong-Ling; Liang, Qian-de; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Gao, Yue
2016-04-01
3D in vitro toxicity testing model was developed by magnetic levitation method for culture of the human hepatoma cell line HepG2 and applied to evaluate the drug hepatotoxicity. After formation of stable 3D structure for HepG2 cells, their glycogen storage capacity under 2D and 3D culture conditions were detected by immunohistochemistry technology, and the mRNA expression levels of phase Ⅰ and Ⅱ drug metabolism enzymes, drug transporters, nuclear receptors and liver-specific marker albumin(ALB) were compared between 2D and 3D culture conditions by using RT-PCR method. Immunohistochemistry results showed that HepG2 cells had abundant glycogen storage capacity under 3D culture conditions, which was similar to human liver tissues. The mRNA expression levels of major drug metabolism enzymes, drug transporters, nuclear receptors and ALB in HepG2 cells under 3D culture conditions were up-regulated as compared with 2D culture conditions. For drug hepatotoxicity evaluation, the typical hepatotoxic drug acetaminophen(APAP), and most reported drugs Polygonum multiflorum Thunb.(Chinese name He-shou-wu) and Psoraleae corylifolia L.(Chinese name Bu-gu-zhi) were selected for single dose and repeated dose(7 d) exposure. In the repeated dose exposure test, 3D HepG2 cells showed higher sensitivity. This established 3D HepG2 cells model with magnetic levitation 3D culture techniques was more close to the human liver tissues both in morphology and functions, so it was a better 3D hepatotoxicity evaluation model. Copyright© by the Chinese Pharmaceutical Association.
Yang, Jin-ting; Tang, Li-hui; Liu, Yun-qing; Wang, Yin; Wang, Lie-ju; Zhang, Feng-jiang; Yan, Min
2015-05-01
The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 μg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 μg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 μg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 μg/ml) (P<0.05), but not by hyperthermia plus 50 μg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 μg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.
Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai
2010-02-12
The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.
Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai
2010-01-01
The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Δhep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer. PMID:20007714
Hyperglycemia and Anthocyanin Inhibit Quercetin Metabolism in HepG2 Cells.
Hashimoto, Naoto; Blumberg, Jeffrey B; Chen, C-Y Oliver
2016-02-01
A high glucose (Glu) milieu promotes generation of reactive oxygen species, which may not only cause cellular damage, but also modulate phase II enzymes that are responsible for the metabolism of flavonoids. Thus, we examined the effect of a high Glu milieu on quercetin (Q) metabolism in HepG2 cells. HepG2 cells were grown for 3 days in Glu ranging from 5.5 to 50 mmol/L and/or cyanidin-3-glucoside (C3G) ranging from 0 to 25 μmol/L. Subsequently, the capacity of HepG2 cells to metabolize Q was assessed for up to 16 h. Q metabolites were analyzed by high-performance liquid chromatography. Four major Q metabolites were observed in the culture medium and inside the HepG2 cells. Three of these metabolites appear to be sulfated forms of Q or methylated Q, and one was a methylated Q. These metabolites and Q itself were reduced or tended to be reduced in cells grown in a high Glu compared to a normal Glu medium. Addition of C3G or superoxide dismutase plus catalase did not prevent or enhance reduction of Q metabolites. In vitro, a hyperglycemic milieu decreases the production of the principal Q metabolites in HepG2 cells, mediated through mechanisms independent of oxidative stress.
Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta
2016-12-13
Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-01-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis. PMID:28789364
Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa
2017-02-01
Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.
Tellier, Liane E; Treviño, Elda A; Brimeyer, Alexandra L; Reece, David S; Willett, Nick J; Guldberg, Robert E; Temenoff, Johnna S
2018-05-01
As a potential treatment for osteoarthritis (OA), we have developed injectable and hydrolytically degradable heparin-based biomaterials with tunable sulfation for the intra-articular delivery of tumor necrosis factor-alpha stimulated gene-6 (TSG-6), a protein known to inhibit plasmin which may degrade extracellular matrix within OA joints. We first assessed the effect of heparin sulfation on TSG-6 anti-plasmin activity and found that while fully sulfated (Hep) and heparin desulfated at only the N position (Hep-N) significantly enhanced TSG-6 bioactivity in vitro, fully desulfated heparin (Hep-) had no effect, indicating that heparin sulfation plays a significant role in modulating TSG-6 bioactivity. Next, TSG-6 loaded, degradable 10 wt% Hep-N microparticles (MPs) were delivered via intra-articular injection into the knee at 1, 7, and 15 days following medial meniscal transection (MMT) injury in a rat model. After 21 days, cartilage thickness, volume, and attenuation were significantly increased with soluble TSG-6, indicating degenerative changes. In contrast, no significant differences were observed with TSG-6 loaded MP treatment, demonstrating that TSG-6 loaded MPs reduced cartilage damage following MMT injury. Ultimately, our results indicate that Hep-N can enhance TSG-6 anti-plasmin activity and that Hep-N-based biomaterials may be an effective method for TSG-6 delivery to treat OA.
Xu, Tingting; Chi, Bo; Gao, Jian; Chu, Meilin; Fan, Wenlu; Yi, Meihui; Xu, Hong; Mao, Chun
2017-07-18
A simple and accurate immune sensor for quantitative detection of α-Fetoprotein (AFP) was developed based on the immobilization of antigen on the surface of Hep-PGA-PPy nanoparticles modified glassy carbon electrodes (GCE). The obtained Hep-PGA-PPy nanoparticles were characterized by fourier transform infrared (FT-IR) spectra and transmission electron microscopy (TEM). And the blood compatibility of Hep-PGA-PPy nanoparticles was investigated by in vitro coagulation tests, hemolysis assay and whole blood adhesion tests. Combining the conductive property of polypyrrole (PPy) and the biocompatibility of heparin (Hep), the Hep-PGA-PPy nanoparticles could improve not only the anti-biofouling effect the electrode, but also improved the electrochemical properties of the immune sensor. Under optimal conditions, the proposed immune sensor could detect AFP in a linear range from 0.1 to 100 ng mL -1 with a detection limit of 0.099 ng mL -1 at the signal-to-noise ratio of 3, and it also possessed good reproducibility and storage stability. Furthermore, the detection of AFP in five human blood samples also showed satisfactory accuracy with low relative errors. Thus, the developed immune sensor which showed acceptable reproducibility, selectivity, stability and accuracy could be potentially used for the detection of whole blood samples directly. Copyright © 2017. Published by Elsevier B.V.
Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui
2017-08-01
The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis.
Choi, Y J; Choi, S-E; Ha, E S; Kang, Y; Han, S J; Kim, D J; Lee, K W; Kim, H J
2014-04-01
Adipokines reportedly affect hepatic gluconeogenesis, and the adipokine visfatin is known to be related to insulin resistance and type 2 diabetes. However, whether visfatin contributes to hepatic gluconeogenesis remains unclear. Visfatin, also known as nicotinamide phosphoribosyltransferase (NAMPT), modulates sirtuin1 (SIRT1) through the regulation of nicotinamide adenine dinucleotide (NAD). Therefore, we investigated the effect of extracellular visfatin on glucose production in HepG2 cells, and evaluated whether extracellular visfatin affects hepatic gluconeogenesis via an NAD+-SIRT1-dependent pathway. Treatment with visfatin significantly increased glucose production and the mRNA expression and protein levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in HepG2 cells in a time- and concentration-dependent manner. Knockdown of SIRT1 had no remarkable effect on the induction of gluconeogenesis by visfatin. Subsequently, we evaluated if extracellular visfatin stimulates the production of gluconeogenic enzymes through the classical protein kinase A (PKA)/cyclic AMP-responsive element (CRE)-binding protein (CREB)-dependent process. The phosphorylation of CREB and PKA increased significantly in HepG2 cells treated with visfatin. Additionally, knockdown of CREB and PKA inhibited visfatin-induced gluconeogenesis in HepG2 cells. In summary, extracellular visfatin modulates glucose production in HepG2 cells through the PKA/CREB pathway, rather than via SIRT1 signaling. © Georg Thieme Verlag KG Stuttgart · New York.
Hepatocyte Paraffin 1 Antigen as a Biomarker for Early Diagnosis of Barrett Esophagus
Jeung, Jennifer A.; Coran, Justin J.; Liu, Chen; Cardona, Diana M.
2013-01-01
We evaluated hepatocyte paraffin 1 (HepPar1) antigen expression, a sensitive marker of small intestinal differentiation, in combination with morphologic features to demonstrate intestinal differentiation in cases equivocal for Barrett esophagus (BE). Clinicopathologic features and HepPar1 expression were recorded for 54 BE cases, 45 consistent with reflux esophagitis (RE) cases, and 65 “suspicious” for BE (SBE) cases. The SBE category included RE cases with 2 or more morphologic changes associated with BE or metaplastic reaction to injury (eg, multilayered epithelium, squamous islands, goblet cell mimickers, pancreatic metaplasia). HepPar1 was expressed in all 54 BE cases, 4 of 45 RE cases, and 24 of 65 SBE cases. In SBE cases, 2 or more morphologic changes were associated with HepPar1 expression in 37% of cases (24/65), 3 or more features in 59% (13/22), and 4 or more features in 100% (4/4) (P ≤ .004). The combination of certain morphologic changes and HepPar1 expression in clinically suspicious distal esophageal biopsy cases without goblet cells supports the presence of evolving intestinal metaplasia. PMID:22180484
Wang, Qin; Gao, Lina; Han, Feng; Lu, Jiaxi; Liu, Yiqun; Sun, Licui; Huang, Zhenwu
2016-03-01
To compare the effect of several selenocompounds on the productions of SEPP and GPx in HepG2 and Hela cells. The cultured HepG2 and Hela cells were divided into the control, Na2SeO3, SeMet and MeSeCys groups. After adding the selected selenocompounds (with the respective concentration 0.01 and 0.1 μmol/L), the experimental groups were then incubated for 48 h and 72 h. Finally, the cell culture supernatants and homogenates were collected for the SEPP and GPx concentrations detection by a double-antibody sandwich enyme-linked immuno-sorbent-assay (ELISA). The SEPP and GPx concentrations in Hela cells treated with 0.1 μmol/L SeMet and MeSeCys were significantly higher than that in the control group (P < 0.05). The SEPP and GPx concentrations in HepG2 cell treated with 0.1 μmol/L selenocompounds were significantly higher than that in Hela cells (P < 0.05). HepG2 cells are more beneficial to the production of selenoproteins than Hela cells.
Drucker, Claudia; Parzefall, Wolfram; Teufelhofer, Olga; Grusch, Michael; Ellinger, Adolf; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina
2006-01-01
Hepatocellular carcinoma almost always arises in chronically inflamed livers. We developed a culture model to study the role of non-parenchymal cells (NPCs) for inflammation-driven hepatocarcinogenesis. Rats were treated with the carcinogen N-nitrosomorpholine, which induced initiated hepatocytes expressing the marker placental glutathione-S-transferase (GSTp). After 21 days two preparations of hepatocytes were made: (i) conventional ones (Hep-conv) containing NPCs and (ii) hepatocytes purified of NPCs (Hep-pur). Initiated hepatocytes, being positive for GSTp (GSTp-pos) were present in both preparations and were cultured along with normal hepatocytes, being negative for GSTp (GSTp-neg). Under any culture condition DNA synthesis was approximately 4-fold higher in GSTp-pos than in GSTp-neg hepatocytes demonstrating the inherent growth advantage of the first stages of hepatocarcinogenesis. Hepatocytes showed approximately 3-fold lower rates of DNA synthesis in Hep-pur than in Hep-conv, which was elevated above Hep-conv levels by addition of NPC or NPC-supernatant. Pretreatment of NPCs with proinflammatory lipopolysaccharide (LPS) further increased DNA synthesis. Thus, NPCs release soluble growth stimulators. Next we investigated the effect of specific cytokines produced by NPCs. Tumour necrosis factor alpha and interleukin 6 barely altered DNA synthesis, whereas hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and the heparin-binding epidermal growth factor-like growth factor (HB-EGF) were potent inducers of DNA replication in both, GSTp-neg and GSTp-pos cells. In conclusion, DNA synthesis of hepatocytes is increased by factors released from NPCs, an effect augmented by LPS-stimulation. NPC-derived cytokines, such as KGF, HGF and HB-EGF, stimulate DNA synthesis preferentially in initiated hepatocytes, presumably resulting in tumour promotion. Similar mechanisms may contribute to carcinogenesis in human inflammatory liver diseases.
Kou, Shuming; Han, Bing; Wang, Yue; Huang, Tao; He, Kai; Han, Yulong; Zhou, Xia; Ye, Xiaoli; Li, Xuegang
2016-04-15
Hyperlipidemia contributes to the progression of cardiovascular diseases. Main alkaloids from Rhizoma Coptidis including berberine (BBR), coptisine (COP), palmatine (PAL), epiberberine (EPI) and jatrorrhizine (JAT), improved dyslipidemia in hypercholesterolemic hamsters to a different degree. In this study, HepG2 cells and hypercholesterolemic hamsters were used to investigate the synergetic cholesterol-lowering efficacy of these five main alkaloids. The cellular lipid and cholesterol accumulation and in HepG2 cells were evaluated by Oil Red O staining and HPLC analysis. LDL receptor, 3-Hydroxy-3-methylglutaryl CoA reductase (HMGCR) and cholesterol 7-alpha-hydroxylase (CYP7A1) that involving cholesterol metabolism in HepG2 cells were measured by qRT-PCR, western blot and immunofluorescence analysis. The serum profiles including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c), as well as TC and total bile acids (TBA) of feces in hypercholesterolemic hamsters were also measured. As compared to single alkaloids, the combination of five main alkaloids (COM) reduced the lipid and cholesterol accumulation in HepG2 cells more effectively and performed an advantageous effect on controlling TC, TG, LDL-c and HDL-c in hypercholesterolemic hamsters. More effective reduction of TBA and TC levels in feces of hamsters were achieved after the administration of COM. These effects were derived from the up-regulation of LDL receptor and CYP7A1, as well as HMGCR downregulation. Our results demonstrated that COM showed a synergetic cholesterol-lowering efficacy, which was better than single alkaloids and it might be considered as a potential therapy for hypercholesterolemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B.; Kipman, Ulrike; Felder, Thomas K.; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M.; Haschke-Becher, Elisabeth
2017-01-01
Introduction Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. Materials and methods We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. Results High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to < 0.001) and lower bicarbonate values (P = 0.049 to 0.008) in the latter. Conclusions Serum and heparin samples may be centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed. PMID:29187797
Chatto, Charlotte A; York, Paul T; Slade, Catherine P; Hasson, Scott M
2018-01-01
This case addresses feasibility of a home-based telehealth system to enhance home exercise program (HEP) adherence for a patient with Parkinson disease (PD). We describe START-System for Technology-Augmented Rehabilitation and Training-and discuss outcomes after integrating START into the HEP component of an established therapy protocol, Lee Silverman Voice Technique BIG (LSVT BIG). The participant was a 67-year-old woman with PD at Hoehn and Yahr Stage II. During the first 4 weeks of a 4-month intervention, a physical therapist guided the participant through the LSVT BIG protocol. START was introduced at week 3; the participant was encouraged to complement her daily HEP through the end of the fourth month with START. Improvements in gait, endurance, balance confidence, and quality of life were observed from the start of the assessment to the end of month 1. By month 4, the participant maintained or improved with respect to these outcomes. Monitored by START, the rate of adherence to her twice-daily HEP prescription was 24%, but her daily participation rate was 78%. The participant's satisfaction with the START system was high, although autonomous feedback provided by START was a limiting concern. There were no technical issues or adverse events reported. This case supports START as a feasible HEP telehealth solution for physical therapy, given that increased long-term exercise adherence may improve health outcomes for people with PD. The outcomes of this case study support further investigation into the use of START for people with PD.Video Abstract available for more insights from the authors (see Video; Supplemental Digital Content 1, http://links.lww.com/JNPT/A192).
Rizo, Walace Fraga; Ferreira, Luis Eduardo; Colnaghi, Vanessa; Martins, Juliana Simões; Franchi, Leonardo Pereira; Takahashi, Catarina Satie; Beleboni, Rene Oliveira; Marins, Mozart; Pereira, Paulo Sérgio; Fachin, Ana Lúcia
2013-01-01
Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor), 3T3 (normal mouse embryo fibroblasts), Hep-2 (human laryngeal epithelial carcinoma) and B-16 (murine skin) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 μg/mL) than the other alkaloids tested (voacangine IC50 = 159.33 g/mL, and heyneanine IC50 = 689.45 μg/mL). Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit. PMID:23569415
Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B; Kipman, Ulrike; Felder, Thomas K; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M; Haschke-Becher, Elisabeth
2018-02-15
Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to < 0.001) and lower bicarbonate values (P = 0.049 to 0.008) in the latter. Serum and heparin samples may be centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.
The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation,more » and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.« less
Wu, Shouhai; Zhang, Tianpeng; Du, Jingsheng
2016-01-01
Background Combinations of adjuvant sensitizers with anticancer drugs is a promising new strategy to reverse chemoresistance. Ursolic acid (UA) is one of the natural pentacyclic triterpene compounds known to have many pharmacological characteristics such as anti-inflammatory and anticancer properties. This study investigates whether UA can sensitize hepatocellular carcinoma cells to cisplatin. Materials and methods Cells were transfected with nuclear factor erythroid-2-related factor 2 (Nrf2) small interfering RNA and Nrf2 complementary DNA by using Lipofectin 2000. The cytotoxicity of cells was investigated by Cell Counting Kit 8 assay. Cell apoptosis, cell cycle, reactive oxygen species, and mitochondrial membrane potential were detected by flow cytometry fluorescence-activated cell sorting. The protein level of Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST), and heme oxygenase-1 (HO-1) was detected by Western blot analysis. Results The results showed that the reverse index was 2.9- and 9.69-fold by UA of 1.125 μg/mL and 2.25 μg/mL, respectively, for cisplatin to HepG2/DDP cells. UA–cisplatin combination induced cell apoptosis and reactive oxygen species, blocked the cell cycle in G0/G1 phase, and reduced the mitochondrial membrane potential. Mechanistically, UA–cisplatin dramatically decreased the expression of Nrf2 and its downstream genes. The sensibilization of UA–cisplatin combination was diminished in Nrf2 small interfering RNA-transfected HepG2/DDP cells, as well as in Nrf2 complementary DNA-transfected HepG2/DDP cells. Conclusion The results confirmed the sensibilization of UA on HepG2/DDP cells to cisplatin, which was possibly mediated via the Nrf2/antioxidant response element pathway. PMID:27822011
Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4
Jiang, Hongwei; Ma, Yujin; Yan, Junqiang; Liu, Jie; Li, Liping
2017-01-01
Insulin resistance (IR) is known to be an important factor, which can lead to the onset of type 2 diabetes. Autophagy is a cellular process, which sequesters senescent or damaged proteins in autophagosomes for recycling of their products. Insulin and intracellular molecules, including mammalian target of rapamycin (mTOR), are well-known inhibitors of autophagy. In patients with type 2 diabetes, the expression levels of glucose transporter 4 (GLUT-4) in skeletal muscles are significantly decreased, indicating decreased glucose-processing ability. Geniposide is an iridoid compound isolated from Gardenia jasminoides Ellis. Previously, it was reported that geniposide significantly promoted glucose uptake. In the present study, a HepG2 cell model of IR was constructed to determine whether geniposide can promote autophagy to inhibit insulin resistance in HepG2 cells via P62/nuclear factor (NF)-κB/GLUT-4. Cell proliferation was analyzed by performing an MTT assay, and the mRNA expression levels of NF-κB and GLUT-4 were assessed using semi-quantitative polymerase chain reaction and immunohistochemical staining. In addition, the protein levels of GLUT-4, P62 and phosphorylated-P65 were assessed by western blotting. The expression of GLUT-4 was initially increased following geniposide treatment, decreasing in time to its lowest level at 8 h. The expression levels of NF-κB and GLUT-4 in the IR cells treated with and without geniposide were significantly different, compared with those in the control group. Geniposide promoted autophagy in the IR HepG2 cells and significantly improved IR in the HepG2 cells, which may be associated with the dynamic regulation of the P62/NF-κB/GLUT-4 pathway. PMID:28944847
Discovery of Novel Inhibitors and Fluorescent Probe Targeting NAMPT.
Wang, Xia; Xu, Tian-Ying; Liu, Xin-Zhu; Zhang, Sai-Long; Wang, Pei; Li, Zhi-Yong; Guan, Yun-Feng; Wang, Shu-Na; Dong, Guo-Qiang; Zhuo, Shu; Le, Ying-Ying; Sheng, Chun-Quan; Miao, Chao-Yu
2015-07-31
Nicotinamide phosphoribosyltransferase (NAMPT) is a promising antitumor target. Novel NAMPT inhibitors with diverse chemotypes are highly desirable for development of antitumor agents. Using high throughput screening system targeting NAMPT on a chemical library of 30000 small-molecules, we found a non-fluorescent compound F671-0003 and a fluorescent compound M049-0244 with excellent in vitro activity (IC50: 85 nM and 170 nM respectively) and anti-proliferative activity against HepG2 cells. These two compounds significantly depleted cellular NAD levels. Exogenous NMN rescued their anti-proliferative activity against HepG2 cells. Structure-activity relationship study proposed a binding mode for NAMPT inhibitor F671-0003 and highlighted the importance of hydrogen bonding, hydrophobic and π-π interactions in inhibitor binding. Imaging study provided the evidence that fluorescent compound M049-0244 (3 μM) significantly stained living HepG2 cells. Cellular fluorescence was further verified to be NAMPT dependent by using RNA interference and NAMPT over expression transgenic mice. Our findings provide novel antitumor lead compounds and a "first-in-class" fluorescent probe for imaging NAMPT.
An Unusual Carbon-Carbon Bond Cleavage Reaction During Phosphinothricin Biosynthesis
Cicchillo, Robert M.; Zhang, Houjin; Blodgett, Joshua A.V.; Whitteck, John T.; Li, Gongyong; Nair, Satish K.; van der Donk, Wilfred A.; Metcalf, William W.
2010-01-01
Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture1. One such compound, phosphinothricin tripeptide (PTT), contains the unusual amino acid phosphinothricin (PT) attached to two alanine residues (Fig. 1). Synthetic PT (glufosinate) is a component of two top-selling herbicides (Basta® and Liberty®), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during PTT biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP) (Fig. 1)2. Reported here are the in vitro reconstitution of this unprecedented C(sp3)-C(sp3) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-heme iron(II)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalyzed by the 2-His-1-carboxylate mononuclear non-heme iron family of enzymes. PMID:19516340
NASA Astrophysics Data System (ADS)
Lee, Hyun Young; Hae Choi, Jeong; Hong, Jin Woo; Kim, Gyoo Cheon; Lee, Hae June
2018-05-01
The effects of argon plasma (ArP) and helium plasma (HeP) jets on E-cadherin protein function have been tested in order to choose the working gas for a better plasma-mediated transdermal drug delivery. The plasma-mediated changes of the E-cadherin function and the skin penetration efficacies of epidermal growth factor (EGF) were monitored in vitro using HaCaT human keratinocytes and in vivo using hairless mice. The ArP showed higher efficacy for E-cadherin regulation and EGF absorption than HeP under the same applied voltage and the same gas flow rate. The ArP generates higher volume power density, higher discharge current peak, and more reactive species than HeP, especially for OH with the same operating parameters. Moreover, the effect of ArP on E-cadherin function was blocked by the use of a grounded metal mesh. Taken together, this study presents the possibility that the synergetic effect of negative charges with radicals plays an important role in plasma-mediated E-cadherin regulation, which leads to enhanced transdermal drug delivery.
Big Data in HEP: A comprehensive use case study
NASA Astrophysics Data System (ADS)
Gutsche, Oliver; Cremonesi, Matteo; Elmer, Peter; Jayatilaka, Bo; Kowalkowski, Jim; Pivarski, Jim; Sehrish, Saba; Mantilla Surez, Cristina; Svyatkovskiy, Alexey; Tran, Nhan
2017-10-01
Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems collectively called Big Data technologies have emerged to support the analysis of Petabyte and Exabyte datasets in industry. While the principles of data analysis in HEP have not changed (filtering and transforming experiment-specific data formats), these new technologies use different approaches and promise a fresh look at analysis of very large datasets and could potentially reduce the time-to-physics with increased interactivity. In this talk, we present an active LHC Run 2 analysis, searching for dark matter with the CMS detector, as a testbed for Big Data technologies. We directly compare the traditional NTuple-based analysis with an equivalent analysis using Apache Spark on the Hadoop ecosystem and beyond. In both cases, we start the analysis with the official experiment data formats and produce publication physics plots. We will discuss advantages and disadvantages of each approach and give an outlook on further studies needed.
Su, Zheng-Yuan; Hwang, Lucy Sun; Kuo, Yueh-Hsiung; Shu, Chin-Hang; Sheen, Lee-Yan
2008-10-22
The antihepatoma activity and related active components in the fermentation products of Agaricus blazei (AB) cultured in the medium containing soybean (S) or black soybean (BS) were investigated. AB(BS)-pE and AB(S)-pE were the ethanolic extracts from the fermentation products of AB(BS) and AB(S), respectively. According to the IC 50 values, AB(BS)-pE (161.1 and 24.0 microg/mL for Hep 3B and Hep G2 cells, respectively) exhibited stronger cytotoxicities against hepatoma cells than AB(S)-pE (>200 and 99.9 microg/mL for Hep 3B and Hep G2 cells, respectively). AB(BS)-pE was separated by silica gel column chromatography and eluted with n-hexane/ethyl acetate/methanol gradient solvent system into 21 fractions. Fraction 3 [AB(BS)-pE-F3], eluted with n-hexane/ethyl acetate (97:3 and 19:1, v/v), was the most active fraction having inhibitory activity on the proliferation of Hep 3B and Hep G2 cells (IC 50 of 3.6 and 1.9 microg/mL, respectively). Three major compounds, compounds 1- 3, were further isolated from the AB(BS)-pE-F3 fraction by reversed-phase semipreparative high-performance liquid chromatography. Compounds 2 and 3 gave better antihepatoma activity than that of compound 1. The IC 50 values of compounds 2 and 3 were 2.8 and 4.5 microg/mL for Hep 3B cells and 1.4 and 2.0 microg/mL for Hep G2 cells, respectively. The structures of compounds 2 and 3 were identified by UV, IR, electron impact mass spectrometry, and (1)H and (13)C NMR to be blazeispirols A and C, respectively. Blazeispirols A and C existed in the mycelia but not in the broth and were more in AB(BS)-pE (49.9 +/- 8.9 and 14.2 +/- 2.4 mg/g, respectively) than AB(S)-pE (15.9 +/- 1.7 and 3.9 +/- 0.6 mg/g, respectively). Additionally, the result shows that the production of blazeispirols A and C was increased after cultivation in the medium containing black soybean on day 6 and reached the maximum on day 12, and the contents of blazeispirols A and C were negatively correlated with Hep 3B and Hep G2 cell viabilities ( r = -0.84 to -0.93, P < 0.01). It suggests that blazeispirols A and C could be used as biomarkers to produce the fermentation product of A. blazei with antihepatoma activity.
Multi-particle phase space integration with arbitrary set of singularities in CompHEP
NASA Astrophysics Data System (ADS)
Kovalenko, D. N.; Pukhov, A. E.
1997-02-01
We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep.html
CompHEP: developments and applications
NASA Astrophysics Data System (ADS)
Boos, E. E.; Bunichev, V. E.; Dubinin, M. N.; Ilyin, V. A.; Savrin, V. I.; CompHEP Collaboration
2017-11-01
New developments of the CompHEP package and its applications to the top quark and the Higgs boson physics at the LHC collider are reviewed. These developments were motivated mainly by the needs of experimental searches of DO (Tevatron) and CMS (LHC) collaborations where identification of the top quark and the Higgs boson in the framework of the Standard Model (SM) or possible extensions of the SM played an important role. New useful features of the CompHEP Graphics User Interface (GUI) are described.
[Secondary metabolites of a marine mangrove fungus (Penicillium sp. no. 2556) from South China Sea].
Li, Chun-Yuan; Ding, Wei-Jia; Shao, Chang-Lun; She, Zhi-Gang; Lin, Yong-Cheng
2008-07-01
The metabolites of a marine mangrove fungus (Penicillium sp. No. 2556) were studied in this paper and six compounds were isolated from the fermentation liquid. Their structures were elucidated by spectroscopy methods as Sch54796 (1), Sch54794 (2), 4-hydroxybenzoic acid (3), urail (4), succinic acid (5), Vermopyrone (6). Among them, compounds 1, 2 and 6 were firstly isolated from Penicillium sp., Coumpounds 1 and 2 remarkably inhibited the growth of cancer cell lines hep2 and hepG2.
Kellett, Mary E; Greenspan, Phillip; Pegg, Ronald B
2018-04-01
In vitro assays are widely used to analyze the antioxidant potential of compounds, but they cannot accurately predict antioxidant behavior in living systems. Cell-based assays, like the cellular antioxidant activity (CAA) assay, are gaining importance as they provide a biological perspective. When the CAA assay was employed to study phenolic antioxidants using hepatocarcinoma (HepG2) cells, quercetin showed antioxidant activity in HepG2 cells; 25 and 250μM quercetin reduced fluorescence by 17.1±0.9% and 58.6±2.4%, respectively. (+)-Catechin, a phenolic antioxidant present in many foods, bestowed virtually no CAA in HepG2 cells. When Caco-2 cells were employed, more robust antioxidant activity was observed; 50μM (+)-catechin and quercetin reduced fluorescence by 54.1±1.4% and 63.6±0.9%, respectively. Based on these results, likely due to differences in active membrane transport between the cell types, the Caco-2-based CAA assay appears to be a more appropriate method for the study of certain dietary phenolics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yuan, Jing; Wu, Xin-Jiang; Lu, Wen-Qing; Cheng, Xiao-Li; Chen, Dan; Li, Xiao-Yan; Liu, Ai-Lin; Wu, Jian-Jun; Xie, Hong; Stahl, Thorsten; Mersch-Sundermann, Volker
2005-01-01
Consumption of chlorinated drinking water is suspected to be associated with adverse health effects, including mutations and cancer. In the present study, the genotoxic potential of water from Donghu lake, Yangtze river and Hanjiang river in Wuhan, an 8-million metropolis in China, was investigated using HepG2 cells and the alkaline version of the comet assay. It could be shown that all water extracts caused dose-dependent DNA migration in concentrations corresponding to dried extracts of 0.167-167 ml chlorinated drinking water per ml medium. To explore whether the intracellular redox status is regulated by chlorinated drinking water, we determined lipid peroxidation (LPO) and depletion of reduced glutathione (GSH). The malondialdehyde (thiobarbituric acid (TBA)-reactive aldehydes) concentration increased after chlorinated drinking water treatment of HepG2 cells in a dose-dependent manner, the GSH content decreased. The activity of lactate dehydrogenase (LDH) increased in chlorinated drinking water treated HepG2 cells indicating cytotoxicity. In accordance with former studies which dealt with in vivo and in vitro micronucleus induction the present study shows that chlorinated drinking water from polluted raw water may entail genetic risks.
TRAF1 knockdown alleviates palmitate-induced insulin resistance in HepG2 cells through NF-κB pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wanlu; Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu Province; Tang, Zhuqi
High-fat diet (HFD) and inflammation are key contributors to insulin resistance (IR) and Type 2 diabetes mellitus (T2DM). With HFD, plasma free fatty acids (FFAs) can activate the nuclear factor-κB (NF-κB) in target tissues, then initiate negative crosstalk between FFAs and insulin signaling. However, the molecular link between IR and inflammation remains to be identified. We here reported that tumor necrosis factor receptor-associated factor 1 (TRAF1), an adapter in signal transduction, was involved in the onset of IR in hepatocytes. TRAF1 was significantly up-regulated in insulin-resistant liver tissues and palmitate (PA)-treated HepG2 cells. In addition, we showed that depletion ofmore » TRAF1 led to inhibition of the activity of NF-κB. Given the fact that the activation of NF-κB played a facilitating role in IR, the phosphorylation of Akt and GSK3β was also analyzed. We found that depletion of TRAF1 markedly reversed PA-induced attenuation of the phosphorylation of Akt and GSK3β in the cells. The accumulation of lipid droplets in hepatocyte and expression of two key gluconeogenic enzymes, PEPCK and G6Pase, were also determined and found to display a similar tendency with the phosphorylation of Akt and GSK3β. Glucose uptake assay indicated that knocking down TRAF1 blocked the effect of PA on the suppression of glucose uptake. These data implicated that TRAF1 knockdown might alleviate PA-induced IR in HepG2 cells through NF-κB pathway. - Highlights: • TRAF1 accelerated PA-induced IR in HepG2 cells mediated through NF-κB signaling. • Knockdown of TRAF1 alleviated PA-induced IR in HepG2 cells. • Knockdown of TRAF1 alleviated PA-induced lipid accumulation in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced suppression of glucose uptake in HepG2 cells. • Knockdown of TRAF1 reversed PA-induced gluconeogenesis in HepG2 cells.« less
Fan, Lin; Owusu-Edusei, Kwame; Schillie, Sarah F; Murphy, Trudy V
2016-05-01
In an era of antiviral treatment, reexamination of the cost-effectiveness of strategies to prevent perinatal hepatitis B virus (HBV) transmission in the United States is needed. We used a decision tree and Markov model to estimate the cost-effectiveness of the current U.S. strategy and two alternatives: (1) Universal hepatitis B vaccination (HepB) strategy: No pregnant women are screened for hepatitis B surface antigen (HBsAg). All infants receive HepB before hospital discharge; no infants receive hepatitis B immunoglobulin (HBIG). (2) Current strategy: All pregnant women are screened for HBsAg. Infants of HBsAg-positive women receive HepB and HBIG ≤12 hours of birth. All other infants receive HepB before hospital discharge. (3) Antiviral prophylaxis strategy: All pregnant women are screened for HBsAg. HBsAg-positive women have HBV-DNA load measured. Antiviral prophylaxis is offered for 4 months starting in the third trimester to women with DNA load ≥10(6) copies/mL. HepB and HBIG are administered at birth to infants of HBsAg-positive women, and HepB is administered before hospital discharge to infants of HBsAg-negative women. Effects were measured in quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios (ICER). Compared to the universal HepB strategy, the current strategy prevented 1,006 chronic HBV infections and saved 13,600 QALYs (ICER: $6,957/QALY saved). Antiviral prophylaxis dominated the current strategy, preventing an additional 489 chronic infections, and saving 800 QALYs and $2.8 million. The results remained robust over a wide range of assumptions. The current U.S. strategy for preventing perinatal HBV remains cost-effective compared to the universal HepB strategy. An antiviral prophylaxis strategy was cost saving compared to the current strategy and should be considered to continue to decrease the burden of perinatal hepatitis B in the United States. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Zainal Ariffin, Shahrul Hisham; Wan Omar, Wan Haifa Haryani; Zainal Ariffin, Zaidah; Safian, Muhd Fauzi; Senafi, Sahidan; Megat Abdul Wahab, Rohaya
2009-01-01
Background Piper sarmentosum, locally known as kaduk is belonging to the family of Piperaceae. It is our interest to evaluate their effect on human hepatoma cell line (HepG2) for the potential of anticarcinogenic activity. Results The anticarcinogenic activity of an ethanolic extract from Piper sarmentosum in HepG2 and non-malignant Chang's liver cell lines has been previously determined using (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) (MTT) assays, where the IC50 value was used as a parameter for cytotoxicity. The ethanolic extract that showed anticarcinogenic properties in HepG2 cells had an IC50 of 12.5 μg mL-1, while IC50 values in the non-malignant Chang's liver cell line were greater than 30 μg mL-1. Apoptotic morphological changes in HepG2 cells were observed using an inverted microscope and showed chromatin condensation, cell shrinkage and apoptotic bodies following May-Grunwald-Giemsa's staining. The percentage of apoptotic cells in the overall population (apoptotic index) showed a continuously significant increase (p < 0.05) in 12.5 μg mL-1 ethanolic extract-treated cells at 24, 48 and 72 hours compared to controls (untreated cells). Following acridine orange and ethidium bromide staining, treatment with 10, 12 and 14 μg mL-1 of ethanolic extracts caused typical apoptotic morphological changes in HepG2 cells. Molecular analysis of DNA fragmentation was used to examine intrinsic apoptosis induced by the ethanolic extracts. These results showed a typical intrinsic apoptotic characterisation, which included fragmentation of nuclear DNA in ethanolic extract-treated HepG2 cells. However, the non-malignant Chang's liver cell line produced no DNA fragmentation. In addition, the DNA genome was similarly intact for both the untreated non-malignant Chang's liver and HepG2 cell lines. Conclusion Therefore, our results suggest that the ethanolic extract from P. sarmentosum induced anticarcinogenic activity through an intrinsic apoptosis pathway in HepG2 cells in vitro. PMID:19257877
Ghazi, Terisha; Nagiah, Savania; Tiloke, Charlette; Sheik Abdul, Naeem; Chuturgoon, Anil A
2017-11-01
Fusaric acid (FA), a common fungal contaminant of maize, is known to mediate toxicity in plants and animals; however, its mechanism of action is unclear. p53 is a tumor suppressor protein that is activated in response to cellular stress. The function of p53 is regulated by post-translational modifications-ubiquitination, phosphorylation, and acetylation. This study investigated a possible mechanism of FA induced toxicity in the human hepatocellular carcinoma (HepG 2 ) cell line. The effect of FA on DNA integrity and post-translational modifications of p53 were investigated. Methods included: (a) culture and treatment of HepG 2 cells with FA (IC 50 : 580.32 μM, 24 h); (b) comet assay (DNA damage); (c) Western blots (protein expression of p53, MDM2, p-Ser-15-p53, a-K382-p53, a-CBP (K1535)/p300 (K1499), HDAC1 and p-Ser-47-Sirt1); and (d) Hoechst 33342 assay (apoptosis analysis). FA caused DNA damage in HepG 2 cells relative to the control (P < 0.0001). FA decreased the protein expression of p53 (0.24-fold, P = 0.0004) and increased the expression of p-Ser-15-p53 (12.74-fold, P = 0.0126) and a-K382-p53 (2.24-fold, P = 0.0096). This occurred despite the significant decrease in the histone acetyltransferase, a-CBP (K1535)/p300 (K1499) (0.42-fold, P = 0.0023) and increase in the histone deacetylase, p-Ser-47-Sirt1 (1.22-fold, P = 0.0020). The expression of MDM2, a negative regulator of p53, was elevated in the FA treatment compared to the control (1.83-fold, P < 0.0001). FA also inhibited cell proliferation and induced apoptosis in HepG 2 cells as evidenced by the Hoechst assay. Together, these results indicate that FA is genotoxic and post-translationally modified p53 leading to HepG 2 cell death. J. Cell. Biochem. 118: 3866-3874, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Marinho, Rui Tato; Costa, António; Pires, Teodomiro; Raposo, Helena; Vasconcelos, Carlos; Polónia, Cristina; Borges, Joaquim; Soares, Mariana; Vilar, Graça; Nogueira, Ana Maria
2016-10-12
HCV treatment among people who inject drugs (PWID) is low. Education programs may be suitable strategies to improve patients' knowledge about their condition and to overcome barriers to access treatment. The Health Educational Program (HEP) consisted of patient workshops and educational videos and leaflets, and healthcare professionals' workshops. HEP was implemented at seven substance dependence treatment centers (STDC) in Portugal. The study comprised two cross-sectional evaluations conducted before and after HEP. At both evaluations, adult patients with confirmed HCV diagnosis and registered in the STDC were consecutively included. For patients that completed both evaluations, the overall knowledge score were calculated and compared with McNemar test. Linear regression modelling was used to evaluate factors associated with baseline knowledge. Rates of referral and attendance to referral specialist, treatment proposal, initiation and retention at both evaluations were also compared with McNemar test. Overall, 504 patients with chronic hepatitis C were included: 78 % male, mean age 42.3 ± 6.6 years, 14 % school education ≤ 4 years, disease duration 11.0 ± 6.0 years and 26 % HIV co-infected. A higher baseline knowledge was independently associated with educational level ≥ 10 years (regression coefficient [B] =15.13, p < 0.001), current use of intravenous drugs (B = 7.99, p = 0.038), previous referral for treatment (B = 4.26, p = 0.008) and previous HCV treatment (B = 5.40, p = 0.003). Following HEP, mean knowledge score increased from 69 % to 79 % (p < 0.001). The rate of patient referral to a liver specialist increased from 56.2 % to 67.5 % (p < 0.001). An HEP conducted at STDCs improved significantly patient knowledge about hepatitis C, even among patients with a high baseline knowledge. The HEP has also increased the rate of referral to the liver specialist and showed a great potential to support healthcare professionals in managing HCV. Education programs may promote treatment access among PWID, a population that represents the majority of HCV infected patients.
Aubert, Martine; Rice, Stephen A.; Blaho, John A.
2001-01-01
We previously reported that a recombinant ICP27-null virus stimulated, but did not prevent, apoptosis in human HEp-2 cells during infection (M. Aubert and J. A. Blaho, J. Virol. 73:2803–2813, 1999). In the present study, we used a panel of 15 recombinant ICP27 mutant viruses to determine which features of herpes simplex virus type 1 (HSV-1) replication are required for the apoptosis-inhibitory activity. Each virus was defined experimentally as either apoptotic, partially apoptotic, or nonapoptotic based on infected HEp-2 cell morphologies, percentages of infected cells with condensed chromatin, and patterns of specific cellular death factor processing. Viruses d27-1, d1-5, d1-2, M11, M15, M16, n504R, n406R, n263R, and n59R are apoptotic or partially apoptotic in HEp-2 cells and severely defective for growth in Vero cells. Viruses d2-3, d3-4, d4-5, d5-6, and d6-7 are nonapoptotic, demonstrating that ICP27 contains a large amino-terminal region, including its RGG box RNA binding domain, which is not essential for apoptosis prevention. Accumulations of viral TK, VP16, and gD but not gC, ICP22, or ICP4 proteins correlated with prevention of apoptosis during the replication of these viruses. Of the nonapoptotic viruses, d4-5 did not produce gC, indicating that accumulation of true late gene products is not necessary for the prevention process. Analyses of viral DNA synthesis in HEp-2 cells indicated that apoptosis prevention by HSV-1 requires that the infection proceeds to the stage in which viral DNA replication takes place. Infections performed in the presence of the drug phosphonoacetic acid confirmed that the process of viral DNA synthesis and the accumulation of true late (γ2) proteins are not required for apoptosis prevention. Based on our results, we conclude that the accumulation of HSV-1 early (β) and leaky-late (γ1) proteins correlates with the prevention of apoptosis in infected HEp-2 cells. PMID:11134315
Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.
Martin, K R; Failla, M L; Smith, J C
1996-09-01
Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.
Hafidh, Rand R; Hussein, Saba Z; MalAllah, Mohammed Q; Abdulamir, Ahmed S; Abu Bakar, Fatimah
2017-11-14
Citrus bioactive compounds, as active anticancer agent, have been under focus by several studies worldwide. However, the underlying genes responsible for the anticancer potential have not been sufficiently highlighted. The current study investigated the gene expression profile of hepatocellular carcinoma, HepG2, cells after treatment with Limonene. The concentration that killed 50% of HepG2 cells was used to elucidate the genetic mechanisms of limonene anticancer activity. The apoptotic induction was detected by flow cytometry and confocal fluorescence microscope. Two of pro-apoptotic events, caspase-3 activation and phosphatidylserine translocation were manifested by confocal fluorescence microscopy. High-throughput real-time PCR was used to profile 1023 cancer-related genes in 16 different gene families related to the cancer development. In comparison to untreated cells, limonene increased the percentage of apoptotic cells up to 89.61%, by flow cytometry, and 48.2% by fluorescence microscopy. There was a significant limonene-driven differential gene expression of HepG2 cells in 15 different gene families. Limonene was shown to significantly (>2log) up-regulate and down-regulate 14 and 59 genes, respectively. The affected gene families, from most to least affected, were apoptosis induction, signal transduction, cancer genes augmentation, alteration in kinases expression, inflammation, DNA damage repair, and cell cycle proteins. The current study reveals that limonene could be a promising, cheap, and effective anticancer compound. The broad spectrum of limonene anticancer activity is interesting for anticancer drug development. Further research is needed to confirm the current findings and to examine the anticancer potential of limonene along with underlying mechanisms on different cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.