Sample records for process analysis tool

  1. Logistics Process Analysis ToolProcess Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2008-03-31

    LPAT is the resulting integrated system between ANL-developed Enhanced Logistics Intra Theater Support Tool (ELIST) sponsored by SDDC-TEA and the Fort Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the process Anlysis Tool (PAT) which evolved into a stand=-along tool for detailed process analysis at a location. Combined with ELIST, an inter-installation logistics component was added to enable users to define large logistical agent-based models without having to program. PAT is the evolution of an ANL-developed software system called Fortmore » Future Virtual Installation Tool (sponsored by CERL). The Fort Future Simulation Engine was an application written in the ANL Repast Simphony framework and used as the basis for the Process Analysis Tool(PAT) which evolved into a stand-alone tool for detailed process analysis at a location (sponsored by the SDDC-TEA).« less

  2. Tools for developing a quality management program: proactive tools (process mapping, value stream mapping, fault tree analysis, and failure mode and effects analysis).

    PubMed

    Rath, Frank

    2008-01-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.

  3. Structured Analysis and the Data Flow Diagram: Tools for Library Analysis.

    ERIC Educational Resources Information Center

    Carlson, David H.

    1986-01-01

    This article discusses tools developed to aid the systems analysis process (program evaluation and review technique, Gantt charts, organizational charts, decision tables, flowcharts, hierarchy plus input-process-output). Similarities and differences among techniques, library applications of analysis, structured systems analysis, and the data flow…

  4. Systemic safety project selection tool.

    DOT National Transportation Integrated Search

    2013-07-01

    "The Systemic Safety Project Selection Tool presents a process for incorporating systemic safety planning into traditional safety management processes. The Systemic Tool provides a step-by-step process for conducting systemic safety analysis; conside...

  5. A software tool to analyze clinical workflows from direct observations.

    PubMed

    Schweitzer, Marco; Lasierra, Nelia; Hoerbst, Alexander

    2015-01-01

    Observational data of clinical processes need to be managed in a convenient way, so that process information is reliable, valid and viable for further analysis. However, existing tools for allocating observations fail in systematic data collection of specific workflow recordings. We present a software tool which was developed to facilitate the analysis of clinical process observations. The tool was successfully used in the project OntoHealth, to build, store and analyze observations of diabetes routine consultations.

  6. Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool

    NASA Technical Reports Server (NTRS)

    Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian

    2011-01-01

    The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the system can evolve into a process management server for the actual process.

  7. Modes of Learning in Religious Education

    ERIC Educational Resources Information Center

    Afdal, Geir

    2015-01-01

    This article is a contribution to the discussion of learning processes in religious education (RE) classrooms. Sociocultural theories of learning, understood here as tool-mediated processes, are used in an analysis of three RE classroom conversations. The analysis focuses on the language tools that are used in conversations; how the tools mediate;…

  8. On-line Monitoring for Cutting Tool Wear Condition Based on the Parameters

    NASA Astrophysics Data System (ADS)

    Han, Fenghua; Xie, Feng

    2017-07-01

    In the process of cutting tools, it is very important to monitor the working state of the tools. On the basis of acceleration signal acquisition under the constant speed, time domain and frequency domain analysis of relevant indicators monitor the online of tool wear condition. The analysis results show that the method can effectively judge the tool wear condition in the process of machining. It has certain application value.

  9. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    PubMed

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  10. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  11. An exploration of inter-organisational partnership assessment tools in the context of Australian Aboriginal-mainstream partnerships: a scoping review of the literature.

    PubMed

    Tsou, Christina; Haynes, Emma; Warner, Wayne D; Gray, Gordon; Thompson, Sandra C

    2015-04-23

    The need for better partnerships between Aboriginal organisations and mainstream agencies demands attention on process and relational elements of these partnerships, and improving partnership functioning through transformative or iterative evaluation procedures. This paper presents the findings of a literature review which examines the usefulness of existing partnership tools to the Australian Aboriginal-mainstream partnership (AMP) context. Three sets of best practice principles for successful AMP were selected based on authors' knowledge and experience. Items in each set of principles were separated into process and relational elements and used to guide the analysis of partnership assessment tools. The review and analysis of partnership assessment tools were conducted in three distinct but related parts. Part 1- identify and select reviews of partnership tools; part 2 - identify and select partnership self-assessment tool; part 3 - analysis of selected tools using AMP principles. The focus on relational and process elements in the partnership tools reviewed is consistent with the focus of Australian AMP principles by reconciliation advocates; however, historical context, lived experience, cultural context and approaches of Australian Aboriginal people represent key deficiencies in the tools reviewed. The overall assessment indicated that the New York Partnership Self-Assessment Tool and the VicHealth Partnership Analysis Tools reflect the greatest number of AMP principles followed by the Nuffield Partnership Assessment Tool. The New York PSAT has the strongest alignment with the relational elements while VicHealth and Nuffield tools showed greatest alignment with the process elements in the chosen AMP principles. Partnership tools offer opportunities for providing evidence based support to partnership development. The multiplicity of tools in existence and the reported uniqueness of each partnership, mean the development of a generic partnership analysis for AMP may not be a viable option for future effort.

  12. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets.

    PubMed

    Carroll, Adam J; Badger, Murray R; Harvey Millar, A

    2010-07-14

    Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS) makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP) server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.). Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP) their own data to the server for online processing via a novel raw data processing pipeline. MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to assess data quality and draw their own insights from published metabolomics datasets.

  13. USER'S GUIDE: Strategic Waste Minimization Initiative (SWAMI) Version 2.0 - A Software Tool to Aid in Process Analysis for Pollution Prevention

    EPA Science Inventory

    The Strategic WAste Minimization Initiative (SWAMI) Software, Version 2.0 is a tool for using process analysis for identifying waste minimization opportunities within an industrial setting. The software requires user-supplied information for process definition, as well as materia...

  14. Research on the Intensity Analysis and Result Visualization of Construction Land in Urban Planning

    NASA Astrophysics Data System (ADS)

    Cui, J.; Dong, B.; Li, J.; Li, L.

    2017-09-01

    As a fundamental work of urban planning, the intensity analysis of construction land involves many repetitive data processing works that are prone to cause errors or data precision loss, and the lack of efficient methods and tools to visualizing the analysis results in current urban planning. In the research a portable tool is developed by using the Model Builder technique embedded in ArcGIS to provide automatic data processing and rapid result visualization for the works. A series of basic modules provided by ArcGIS are linked together to shape a whole data processing chain in the tool. Once the required data is imported, the analysis results and related maps and graphs including the intensity values and zoning map, the skyline analysis map etc. are produced automatically. Finally the tool is installation-free and can be dispatched quickly between planning teams.

  15. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool

    PubMed Central

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-01-01

    Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080

  16. SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.

    PubMed

    Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda

    2008-08-15

    It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.

  17. Implementation Analysis of Cutting Tool Carbide with Cast Iron Material S45 C on Universal Lathe

    NASA Astrophysics Data System (ADS)

    Junaidi; hestukoro, Soni; yanie, Ahmad; Jumadi; Eddy

    2017-12-01

    Cutting tool is the tools lathe. Cutting process tool CARBIDE with Cast Iron Material Universal Lathe which is commonly found at Analysiscutting Process by some aspects numely Cutting force, Cutting Speed, Cutting Power, Cutting Indication Power, Temperature Zone 1 and Temperatur Zone 2. Purpose of this Study was to determine how big the cutting Speed, Cutting Power, electromotor Power,Temperatur Zone 1 and Temperatur Zone 2 that drives the chisel cutting CARBIDE in the Process of tur ning Cast Iron Material. Cutting force obtained from image analysis relationship between the recommended Component Cuting Force with plane of the cut and Cutting Speed obtained from image analysis of relationships between the recommended Cutting Speed Feed rate.

  18. Transportation systems safety hazard analysis tool (SafetyHAT) user guide (version 1.0)

    DOT National Transportation Integrated Search

    2014-03-24

    This is a user guide for the transportation system Safety Hazard Analysis Tool (SafetyHAT) Version 1.0. SafetyHAT is a software tool that facilitates System Theoretic Process Analysis (STPA.) This user guide provides instructions on how to download, ...

  19. Designed tools for analysis of lithography patterns and nanostructures

    NASA Astrophysics Data System (ADS)

    Dervillé, Alexandre; Baderot, Julien; Bernard, Guilhem; Foucher, Johann; Grönqvist, Hanna; Labrosse, Aurélien; Martinez, Sergio; Zimmermann, Yann

    2017-03-01

    We introduce a set of designed tools for the analysis of lithography patterns and nano structures. The classical metrological analysis of these objects has the drawbacks of being time consuming, requiring manual tuning and lacking robustness and user friendliness. With the goal of improving the current situation, we propose new image processing tools at different levels: semi automatic, automatic and machine-learning enhanced tools. The complete set of tools has been integrated into a software platform designed to transform the lab into a virtual fab. The underlying idea is to master nano processes at the research and development level by accelerating the access to knowledge and hence speed up the implementation in product lines.

  20. Full Life Cycle of Data Analysis with Climate Model Diagnostic Analyzer (CMDA)

    NASA Astrophysics Data System (ADS)

    Lee, S.; Zhai, C.; Pan, L.; Tang, B.; Zhang, J.; Bao, Q.; Malarout, N.

    2017-12-01

    We have developed a system that supports the full life cycle of a data analysis process, from data discovery, to data customization, to analysis, to reanalysis, to publication, and to reproduction. The system called Climate Model Diagnostic Analyzer (CMDA) is designed to demonstrate that the full life cycle of data analysis can be supported within one integrated system for climate model diagnostic evaluation with global observational and reanalysis datasets. CMDA has four subsystems that are highly integrated to support the analysis life cycle. Data System manages datasets used by CMDA analysis tools, Analysis System manages CMDA analysis tools which are all web services, Provenance System manages the meta data of CMDA datasets and the provenance of CMDA analysis history, and Recommendation System extracts knowledge from CMDA usage history and recommends datasets/analysis tools to users. These four subsystems are not only highly integrated but also easily expandable. New datasets can be easily added to Data System and scanned to be visible to the other subsystems. New analysis tools can be easily registered to be available in the Analysis System and Provenance System. With CMDA, a user can start a data analysis process by discovering datasets of relevance to their research topic using the Recommendation System. Next, the user can customize the discovered datasets for their scientific use (e.g. anomaly calculation, regridding, etc) with tools in the Analysis System. Next, the user can do their analysis with the tools (e.g. conditional sampling, time averaging, spatial averaging) in the Analysis System. Next, the user can reanalyze the datasets based on the previously stored analysis provenance in the Provenance System. Further, they can publish their analysis process and result to the Provenance System to share with other users. Finally, any user can reproduce the published analysis process and results. By supporting the full life cycle of climate data analysis, CMDA improves the research productivity and collaboration level of its user.

  1. An Observation Analysis Tool for time-series analysis and sensor management in the FREEWAT GIS environment for water resources management

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.

  2. Supporting cognition in systems biology analysis: findings on users' processes and design implications.

    PubMed

    Mirel, Barbara

    2009-02-13

    Current usability studies of bioinformatics tools suggest that tools for exploratory analysis support some tasks related to finding relationships of interest but not the deep causal insights necessary for formulating plausible and credible hypotheses. To better understand design requirements for gaining these causal insights in systems biology analyses a longitudinal field study of 15 biomedical researchers was conducted. Researchers interacted with the same protein-protein interaction tools to discover possible disease mechanisms for further experimentation. Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that tools positively supported a number of well-structured query and analysis tasks. But for several of scientists' more complex, higher order ways of knowing and reasoning the tools did not offer adequate support. Results show that for a better fit with scientists' cognition for exploratory analysis systems biology tools need to better match scientists' processes for validating, for making a transition from classification to model-based reasoning, and for engaging in causal mental modelling. As the next great frontier in bioinformatics usability, tool designs for exploratory systems biology analysis need to move beyond the successes already achieved in supporting formulaic query and analysis tasks and now reduce current mismatches with several of scientists' higher order analytical practices. The implications of results for tool designs are discussed.

  3. Use of a Process Analysis Tool for Diagnostic Study on Fine Particulate Matter Predictions in the U.S.-Part II: Analysis and Sensitivity Simulations

    EPA Science Inventory

    Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...

  4. Managing complex research datasets using electronic tools: A meta-analysis exemplar

    PubMed Central

    Brown, Sharon A.; Martin, Ellen E.; Garcia, Theresa J.; Winter, Mary A.; García, Alexandra A.; Brown, Adama; Cuevas, Heather E.; Sumlin, Lisa L.

    2013-01-01

    Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, e.g., EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process, as well as enhancing communication among research team members. The purpose of this paper is to describe the electronic processes we designed, using commercially available software, for an extensive quantitative model-testing meta-analysis we are conducting. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to: decide on which electronic tools to use, determine how these tools would be employed, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members. PMID:23681256

  5. Managing complex research datasets using electronic tools: a meta-analysis exemplar.

    PubMed

    Brown, Sharon A; Martin, Ellen E; Garcia, Theresa J; Winter, Mary A; García, Alexandra A; Brown, Adama; Cuevas, Heather E; Sumlin, Lisa L

    2013-06-01

    Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, for example, EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process as well as enhancing communication among research team members. The purpose of this article is to describe the electronic processes designed, using commercially available software, for an extensive, quantitative model-testing meta-analysis. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to decide on which electronic tools to use, determine how these tools would be used, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members.

  6. Development of a Cost Estimation Process for Human Systems Integration Practitioners During the Analysis of Alternatives

    DTIC Science & Technology

    2010-12-01

    processes. Novice estimators must often use of these complicated cost estimation tools (e.g., ACEIT , SEER-H, SEER-S, PRICE-H, PRICE-S, etc.) until...However, the thesis will leverage the processes embedded in cost estimation tools such as the Automated Cost Estimating Integration Tool ( ACEIT ) and the

  7. An Overview of Promising Grades of Tool Materials Based on the Analysis of their Physical-Mechanical Characteristics

    NASA Astrophysics Data System (ADS)

    Kudryashov, E. A.; Smirnov, I. M.; Grishin, D. V.; Khizhnyak, N. A.

    2018-06-01

    The work is aimed at selecting a promising grade of a tool material, whose physical-mechanical characteristics would allow using it for processing the surfaces of discontinuous parts in the presence of shock loads. An analysis of the physical-mechanical characteristics of most common tool materials is performed and the data on a possible provision of the metal-working processes with promising composite grades are presented.

  8. Six sigma tools in integrating internal operations of a retail pharmacy: a case study.

    PubMed

    Kumar, Sameer; Kwong, Anthony M

    2011-01-01

    This study was initiated to integrate information and enterprise-wide healthcare delivery system issues specifically within an inpatient retail pharmacy operation in a U.S. community hospital. Six Sigma tools were used to examine the effects to an inpatient retail pharmacy service process. Some of the tools used include service blueprints, cause-effect diagram, gap analysis derived from customer and employee surveys, mistake proofing was applied in various business situations and results were analyzed to identify and propose process improvements and integration. The research indicates that the Six Sigma tools in this discussion are very applicable and quite effective in helping to streamline and integrate the pharmacy process flow. Additionally, gap analysis derived from two different surveys was used to estimate the primary areas of focus to increase customer and employee satisfaction. The results of this analysis were useful in initiating discussions of how to effectively narrow these service gaps. This retail pharmaceutical service study serves as a framework for the process that should occur for successful process improvement tool evaluation and implementation. Pharmaceutical Service operations in the U.S. that use this integration framework must tailor it to their individual situations to maximize their chances for success.

  9. Mathematical support for automated geometry analysis of lathe machining of oblique peakless round-nose tools

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2017-01-01

    Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.

  10. Application of Risk Assessment Tools in the Continuous Risk Management (CRM) Process

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.

    2002-01-01

    Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) is currently implementing the Continuous Risk Management (CRM) Program developed by the Carnegie Mellon University and recommended by NASA as the Risk Management (RM) implementation approach. The four most frequently used risk assessment tools in the center are: (a) Failure Modes and Effects Analysis (FMEA), Hazard Analysis (HA), Fault Tree Analysis (FTA), and Probabilistic Risk Analysis (PRA). There are some guidelines for selecting the type of risk assessment tools during the project formulation phase of a project, but there is not enough guidance as to how to apply these tools in the Continuous Risk Management process (CRM). But the ways the safety and risk assessment tools are used make a significant difference in the effectiveness in the risk management function. Decisions regarding, what events are to be included in the analysis, to what level of details should the analysis be continued, make significant difference in the effectiveness of risk management program. Tools of risk analysis also depends on the phase of a project e.g. at the initial phase of a project, when not much data are available on hardware, standard FMEA cannot be applied; instead a functional FMEA may be appropriate. This study attempted to provide some directives to alleviate the difficulty in applying FTA, PRA, and FMEA in the CRM process. Hazard Analysis was not included in the scope of the study due to the short duration of the summer research project.

  11. A Methodology and Software Environment for Testing Process Model’s Sequential Predictions with Protocols

    DTIC Science & Technology

    1992-12-21

    in preparation). Foundations of artificial intelligence. Cambridge, MA: MIT Press. O’Reilly, R. C. (1991). X3DNet: An X- Based Neural Network ...2.2.3 Trace based protocol analysis 19 2.2A Summary of important data features 21 2.3 Tools related to process model testing 23 2.3.1 Tools for building...algorithm 57 3. Requirements for testing process models using trace based protocol 59 analysis 3.1 Definition of trace based protocol analysis (TBPA) 59

  12. Simulation Tools for Forest Health Analysis: An Application in the Red River Watershed, Idaho

    Treesearch

    Andrew J. McMahan; Eric L. Smith

    2006-01-01

    Software tools for landscape analyses--including FVS model extensions, and a number of FVS-related pre- and post-processing “tools”--are presented, using an analysis in the Red River Watershed, Nez Perce National Forest as an example. We present (1) a discussion of pre-simulation data analysis; (2) the Physiographic Information Extraction System (PIES), a tool that can...

  13. Experience with case tools in the design of process-oriented software

    NASA Astrophysics Data System (ADS)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  14. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, volume 2, part 1. Appendix A: Software documentation

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    Documentation of the preliminary software developed as a framework for a generalized integrated robotic system simulation is presented. The program structure is composed of three major functions controlled by a program executive. The three major functions are: system definition, analysis tools, and post processing. The system definition function handles user input of system parameters and definition of the manipulator configuration. The analysis tools function handles the computational requirements of the program. The post processing function allows for more detailed study of the results of analysis tool function executions. Also documented is the manipulator joint model software to be used as the basis of the manipulator simulation which will be part of the analysis tools capability.

  15. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge.

    PubMed

    Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin

    2012-05-30

    This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13

  17. WaveNet: A Web-Based Metocean Data Access, Processing and Analysis Tool. Part 4 - GLOS/GLCFS Database

    DTIC Science & Technology

    2014-06-01

    and Coastal Data Information Program ( CDIP ). This User’s Guide includes step-by-step instructions for accessing the GLOS/GLCFS database via WaveNet...access, processing and analysis tool; part 3 – CDIP database. ERDC/CHL CHETN-xx-14. Vicksburg, MS: U.S. Army Engineer Research and Development Center

  18. WaveNet: A Web-Based Metocean Data Access, Processing and Analysis Tool; Part 5 - WW3 Database

    DTIC Science & Technology

    2015-02-01

    Program ( CDIP ); and Part 4 for the Great Lakes Observing System/Coastal Forecasting System (GLOS/GLCFS). Using step-by-step instructions, this Part 5...Demirbilek, Z., L. Lin, and D. Wilson. 2014a. WaveNet: A web-based metocean data access, processing, and analysis tool; part 3– CDIP database

  19. The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.

    PubMed

    Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A

    2010-03-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).

  20. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    PubMed Central

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  1. Air Traffic Complexity Measurement Environment (ACME): Software User's Guide

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A user's guide for the Air Traffic Complexity Measurement Environment (ACME) software is presented. The ACME consists of two major components, a complexity analysis tool and user interface. The Complexity Analysis Tool (CAT) analyzes complexity off-line, producing data files which may be examined interactively via the Complexity Data Analysis Tool (CDAT). The Complexity Analysis Tool is composed of three independently executing processes that communicate via PVM (Parallel Virtual Machine) and Unix sockets. The Runtime Data Management and Control process (RUNDMC) extracts flight plan and track information from a SAR input file, and sends the information to GARP (Generate Aircraft Routes Process) and CAT (Complexity Analysis Task). GARP in turn generates aircraft trajectories, which are utilized by CAT to calculate sector complexity. CAT writes flight plan, track and complexity data to an output file, which can be examined interactively. The Complexity Data Analysis Tool (CDAT) provides an interactive graphic environment for examining the complexity data produced by the Complexity Analysis Tool (CAT). CDAT can also play back track data extracted from System Analysis Recording (SAR) tapes. The CDAT user interface consists of a primary window, a controls window, and miscellaneous pop-ups. Aircraft track and position data is displayed in the main viewing area of the primary window. The controls window contains miscellaneous control and display items. Complexity data is displayed in pop-up windows. CDAT plays back sector complexity and aircraft track and position data as a function of time. Controls are provided to start and stop playback, adjust the playback rate, and reposition the display to a specified time.

  2. 78 FR 48912 - Agency Information Collection Activities: Submission to OMB for Reinstatement, With, of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... for analysis in the NCUA Low-Income Designation (LID) Tool. The LID Tool is a geocoding software... the member address data are obtained through the examination process and the results of the LID Tool... may send an electronic member address data file for analysis in the LID Tool. If a credit union does...

  3. 78 FR 59377 - Agency Information Collection Activities: Submission to OMB for Reinstatement, With Change, of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... analysis in the NCUA Low-Income Designation (LID) Tool. The LID Tool is a geocoding software program which... data are obtained through the examination process and the results of the LID Tool indicate the credit... electronic member address data file for analysis in the LID Tool. If a credit union does not qualify for a...

  4. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    PubMed

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with limited bioinformatics experience to analyze their data and integrate next generation sequencing (NGS) technologies into the classroom. The SPARTA software and tutorial are available at sparta.readthedocs.org.

  5. TU-AB-BRD-03: Fault Tree Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunscombe, P.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  6. TU-AB-BRD-02: Failure Modes and Effects Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, M.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  7. The Development of a Humanitarian Health Ethics Analysis Tool.

    PubMed

    Fraser, Veronique; Hunt, Matthew R; de Laat, Sonya; Schwartz, Lisa

    2015-08-01

    Introduction Health care workers (HCWs) who participate in humanitarian aid work experience a range of ethical challenges in providing care and assistance to communities affected by war, disaster, or extreme poverty. Although there is increasing discussion of ethics in humanitarian health care practice and policy, there are very few resources available for humanitarian workers seeking ethical guidance in the field. To address this knowledge gap, a Humanitarian Health Ethics Analysis Tool (HHEAT) was developed and tested as an action-oriented resource to support humanitarian workers in ethical decision making. While ethical analysis tools increasingly have become prevalent in a variety of practice contexts over the past two decades, very few of these tools have undergone a process of empirical validation to assess their usefulness for practitioners. A qualitative study consisting of a series of six case-analysis sessions with 16 humanitarian HCWs was conducted to evaluate and refine the HHEAT. Participant feedback inspired the creation of a simplified and shortened version of the tool and prompted the development of an accompanying handbook. The study generated preliminary insight into the ethical deliberation processes of humanitarian health workers and highlighted different types of ethics support that humanitarian workers might find helpful in supporting the decision-making process.

  8. Surface enhancement of cold work tool steels by friction stir processing with a pinless tool

    NASA Astrophysics Data System (ADS)

    Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.

    2014-03-01

    The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.

  9. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  10. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization.

    PubMed

    Ollion, Jean; Cochennec, Julien; Loll, François; Escudé, Christophe; Boudier, Thomas

    2013-07-15

    The cell nucleus is a highly organized cellular organelle that contains the genetic material. The study of nuclear architecture has become an important field of cellular biology. Extracting quantitative data from 3D fluorescence imaging helps understand the functions of different nuclear compartments. However, such approaches are limited by the requirement for processing and analyzing large sets of images. Here, we describe Tools for Analysis of Nuclear Genome Organization (TANGO), an image analysis tool dedicated to the study of nuclear architecture. TANGO is a coherent framework allowing biologists to perform the complete analysis process of 3D fluorescence images by combining two environments: ImageJ (http://imagej.nih.gov/ij/) for image processing and quantitative analysis and R (http://cran.r-project.org) for statistical processing of measurement results. It includes an intuitive user interface providing the means to precisely build a segmentation procedure and set-up analyses, without possessing programming skills. TANGO is a versatile tool able to process large sets of images, allowing quantitative study of nuclear organization. TANGO is composed of two programs: (i) an ImageJ plug-in and (ii) a package (rtango) for R. They are both free and open source, available (http://biophysique.mnhn.fr/tango) for Linux, Microsoft Windows and Macintosh OSX. Distribution is under the GPL v.2 licence. thomas.boudier@snv.jussieu.fr Supplementary data are available at Bioinformatics online.

  11. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  12. Neurocognitive inefficacy of the strategy process.

    PubMed

    Klein, Harold E; D'Esposito, Mark

    2007-11-01

    The most widely used (and taught) protocols for strategic analysis-Strengths, Weaknesses, Opportunities, and Threats (SWOT) and Porter's (1980) Five Force Framework for industry analysis-have been found to be insufficient as stimuli for strategy creation or even as a basis for further strategy development. We approach this problem from a neurocognitive perspective. We see profound incompatibilities between the cognitive process-deductive reasoning-channeled into the collective mind of strategists within the formal planning process through its tools of strategic analysis (i.e., rational technologies) and the essentially inductive reasoning process actually needed to address ill-defined, complex strategic situations. Thus, strategic analysis protocols that may appear to be and, indeed, are entirely rational and logical are not interpretable as such at the neuronal substrate level where thinking takes place. The analytical structure (or propositional representation) of these tools results in a mental dead end, the phenomenon known in cognitive psychology as functional fixedness. The difficulty lies with the inability of the brain to make out meaningful (i.e., strategy-provoking) stimuli from the mental images (or depictive representations) generated by strategic analysis tools. We propose decreasing dependence on these tools and conducting further research employing brain imaging technology to explore complex data handling protocols with richer mental representation and greater potential for strategy creation.

  13. New Tools in Orthology Analysis: A Brief Review of Promising Perspectives

    PubMed Central

    Nichio, Bruno T. L.; Marchaukoski, Jeroniza Nunes; Raittz, Roberto Tadeu

    2017-01-01

    Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques) and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST “all-against-all” methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm); or proteinOrtho (which improves the accuracy of ortholog groups); or ReMark (tackling the integration of the pipeline to turn the entry process automatic); or OrthAgogue (using algorithms developed to minimize processing time); and proteinOrtho (developed for dealing with large amounts of biological data). We made a comparison among the main features of four tool and tested them using four for prokaryotic genomas. We hope that our review can be useful for researchers and will help them in selecting the most appropriate tool for their work in the field of orthology. PMID:29163633

  14. New Tools in Orthology Analysis: A Brief Review of Promising Perspectives.

    PubMed

    Nichio, Bruno T L; Marchaukoski, Jeroniza Nunes; Raittz, Roberto Tadeu

    2017-01-01

    Nowadays defying homology relationships among sequences is essential for biological research. Within homology the analysis of orthologs sequences is of great importance for computational biology, annotation of genomes and for phylogenetic inference. Since 2007, with the increase in the number of new sequences being deposited in large biological databases, researchers have begun to analyse computerized methodologies and tools aimed at selecting the most promising ones in the prediction of orthologous groups. Literature in this field of research describes the problems that the majority of available tools show, such as those encountered in accuracy, time required for analysis (especially in light of the increasing volume of data being submitted, which require faster techniques) and the automatization of the process without requiring manual intervention. Conducting our search through BMC, Google Scholar, NCBI PubMed, and Expasy, we examined more than 600 articles pursuing the most recent techniques and tools developed to solve most the problems still existing in orthology detection. We listed the main computational tools created and developed between 2011 and 2017, taking into consideration the differences in the type of orthology analysis, outlining the main features of each tool and pointing to the problems that each one tries to address. We also observed that several tools still use as their main algorithm the BLAST "all-against-all" methodology, which entails some limitations, such as limited number of queries, computational cost, and high processing time to complete the analysis. However, new promising tools are being developed, like OrthoVenn (which uses the Venn diagram to show the relationship of ortholog groups generated by its algorithm); or proteinOrtho (which improves the accuracy of ortholog groups); or ReMark (tackling the integration of the pipeline to turn the entry process automatic); or OrthAgogue (using algorithms developed to minimize processing time); and proteinOrtho (developed for dealing with large amounts of biological data). We made a comparison among the main features of four tool and tested them using four for prokaryotic genomas. We hope that our review can be useful for researchers and will help them in selecting the most appropriate tool for their work in the field of orthology.

  15. TU-AB-BRD-01: Process Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palta, J.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  16. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  17. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  18. Connected component analysis of review-SEM images for sub-10nm node process verification

    NASA Astrophysics Data System (ADS)

    Halder, Sandip; Leray, Philippe; Sah, Kaushik; Cross, Andrew; Parisi, Paolo

    2017-03-01

    Analysis of hotspots is becoming more and more critical as we scale from node to node. To define true process windows at sub-14 nm technology nodes, often defect inspections are being included to weed out design weak spots (often referred to as hotspots). Defect inspection sub 28 nm nodes is a two pass process. Defect locations identified by optical inspection tools need to be reviewed by review-SEM's to understand exactly which feature is failing in the region flagged by the optical tool. The images grabbed by the review-SEM tool are used for classification but rarely for quantification. The goal of this paper is to see if the thousands of review-SEM images which are existing can be used for quantification and further analysis. More specifically we address the SEM quantification problem with connected component analysis.

  19. On the next generation of reliability analysis tools

    NASA Technical Reports Server (NTRS)

    Babcock, Philip S., IV; Leong, Frank; Gai, Eli

    1987-01-01

    The current generation of reliability analysis tools concentrates on improving the efficiency of the description and solution of the fault-handling processes and providing a solution algorithm for the full system model. The tools have improved user efficiency in these areas to the extent that the problem of constructing the fault-occurrence model is now the major analysis bottleneck. For the next generation of reliability tools, it is proposed that techniques be developed to improve the efficiency of the fault-occurrence model generation and input. Further, the goal is to provide an environment permitting a user to provide a top-down design description of the system from which a Markov reliability model is automatically constructed. Thus, the user is relieved of the tedious and error-prone process of model construction, permitting an efficient exploration of the design space, and an independent validation of the system's operation is obtained. An additional benefit of automating the model construction process is the opportunity to reduce the specialized knowledge required. Hence, the user need only be an expert in the system he is analyzing; the expertise in reliability analysis techniques is supplied.

  20. TU-AB-BRD-00: Task Group 100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  1. TU-AB-BRD-04: Development of Quality Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomadsen, B.

    2015-06-15

    Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less

  2. Evaluation of interaction dynamics of concurrent processes

    NASA Astrophysics Data System (ADS)

    Sobecki, Piotr; Białasiewicz, Jan T.; Gross, Nicholas

    2017-03-01

    The purpose of this paper is to present the wavelet tools that enable the detection of temporal interactions of concurrent processes. In particular, the determination of interaction coherence of time-varying signals is achieved using a complex continuous wavelet transform. This paper has used electrocardiogram (ECG) and seismocardiogram (SCG) data set to show multiple continuous wavelet analysis techniques based on Morlet wavelet transform. MATLAB Graphical User Interface (GUI), developed in the reported research to assist in quick and simple data analysis, is presented. These software tools can discover the interaction dynamics of time-varying signals, hence they can reveal their correlation in phase and amplitude, as well as their non-linear interconnections. The user-friendly MATLAB GUI enables effective use of the developed software what enables to load two processes under investigation, make choice of the required processing parameters, and then perform the analysis. The software developed is a useful tool for researchers who have a need for investigation of interaction dynamics of concurrent processes.

  3. Open source cardiology electronic health record development for DIGICARDIAC implementation

    NASA Astrophysics Data System (ADS)

    Dugarte, Nelson; Medina, Rubén.; Huiracocha, Lourdes; Rojas, Rubén.

    2015-12-01

    This article presents the development of a Cardiology Electronic Health Record (CEHR) system. Software consists of a structured algorithm designed under Health Level-7 (HL7) international standards. Novelty of the system is the integration of high resolution ECG (HRECG) signal acquisition and processing tools, patient information management tools and telecardiology tools. Acquisition tools are for management and control of the DIGICARDIAC electrocardiograph functions. Processing tools allow management of HRECG signal analysis searching for indicative patterns of cardiovascular pathologies. Telecardiology tools incorporation allows system communication with other health care centers decreasing access time to the patient information. CEHR system was completely developed using open source software. Preliminary results of process validation showed the system efficiency.

  4. Towards elicitation of users requirements for hospital information system: from a care process modelling technique to a web based collaborative tool.

    PubMed Central

    Staccini, Pascal M.; Joubert, Michel; Quaranta, Jean-Francois; Fieschi, Marius

    2002-01-01

    Growing attention is being given to the use of process modeling methodology for user requirements elicitation. In the analysis phase of hospital information systems, the usefulness of care-process models has been investigated to evaluate the conceptual applicability and practical understandability by clinical staff and members of users teams. Nevertheless, there still remains a gap between users and analysts in their mutual ability to share conceptual views and vocabulary, keeping the meaning of clinical context while providing elements for analysis. One of the solutions for filling this gap is to consider the process model itself in the role of a hub as a centralized means of facilitating communication between team members. Starting with a robust and descriptive technique for process modeling called IDEF0/SADT, we refined the basic data model by extracting concepts from ISO 9000 process analysis and from enterprise ontology. We defined a web-based architecture to serve as a collaborative tool and implemented it using an object-oriented database. The prospects of such a tool are discussed notably regarding to its ability to generate data dictionaries and to be used as a navigation tool through the medium of hospital-wide documentation. PMID:12463921

  5. Towards elicitation of users requirements for hospital information system: from a care process modelling technique to a web based collaborative tool.

    PubMed

    Staccini, Pascal M; Joubert, Michel; Quaranta, Jean-Francois; Fieschi, Marius

    2002-01-01

    Growing attention is being given to the use of process modeling methodology for user requirements elicitation. In the analysis phase of hospital information systems, the usefulness of care-process models has been investigated to evaluate the conceptual applicability and practical understandability by clinical staff and members of users teams. Nevertheless, there still remains a gap between users and analysts in their mutual ability to share conceptual views and vocabulary, keeping the meaning of clinical context while providing elements for analysis. One of the solutions for filling this gap is to consider the process model itself in the role of a hub as a centralized means of facilitating communication between team members. Starting with a robust and descriptive technique for process modeling called IDEF0/SADT, we refined the basic data model by extracting concepts from ISO 9000 process analysis and from enterprise ontology. We defined a web-based architecture to serve as a collaborative tool and implemented it using an object-oriented database. The prospects of such a tool are discussed notably regarding to its ability to generate data dictionaries and to be used as a navigation tool through the medium of hospital-wide documentation.

  6. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  7. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  8. Bioinformatic tools for inferring functional information from plant microarray data: tools for the first steps.

    PubMed

    Page, Grier P; Coulibaly, Issa

    2008-01-01

    Microarrays are a very powerful tool for quantifying the amount of RNA in samples; however, their ability to query essentially every gene in a genome, which can number in the tens of thousands, presents analytical and interpretative problems. As a result, a variety of software and web-based tools have been developed to help with these issues. This article highlights and reviews some of the tools for the first steps in the analysis of a microarray study. We have tried for a balance between free and commercial systems. We have organized the tools by topics including image processing tools (Section 2), power analysis tools (Section 3), image analysis tools (Section 4), database tools (Section 5), databases of functional information (Section 6), annotation tools (Section 7), statistical and data mining tools (Section 8), and dissemination tools (Section 9).

  9. MO-E-9A-01: Risk Based Quality Management: TG100 In Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq, M; Palta, J; Dunscombe, P

    2014-06-15

    One of the goals of quality management in radiation therapy is to gain high confidence that patients will receive the prescribed treatment correctly. To accomplish these goals professional societies such as the American Association of Physicists in Medicine (AAPM) has published many quality assurance (QA), quality control (QC), and quality management (QM) guidance documents. In general, the recommendations provided in these documents have emphasized on performing device-specific QA at the expense of process flow and protection of the patient against catastrophic errors. Analyses of radiation therapy incidents find that they are most often caused by flaws in the overall therapymore » process, from initial consult through final treatment, than by isolated hardware or computer failures detectable by traditional physics QA. This challenge is shared by many intrinsically hazardous industries. Risk assessment tools and analysis techniques have been developed to define, identify, and eliminate known and/or potential failures, problems, or errors, from a system, process and/or service before they reach the customer. These include, but are not limited to, process mapping, failure modes and effects analysis (FMEA), fault tree analysis (FTA), and establishment of a quality management program that best avoids the faults and risks that have been identified in the overall process. These tools can be easily adapted to radiation therapy practices because of their simplicity and effectiveness to provide efficient ways to enhance the safety and quality of treatment processes. Task group 100 (TG100) of AAPM has developed a risk-based quality management program that uses these tools. This session will be devoted to a discussion of these tools and how these tools can be used in a given radiotherapy clinic to develop a risk based QM program. Learning Objectives: Learn how to design a process map for a radiotherapy process. Learn how to perform a FMEA analysis for a given process. Learn what Fault tree analysis is all about. Learn how to design a quality management program based upon the information obtained from process mapping, FMEA and FTA.« less

  10. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  11. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  12. Quality Service Analysis and Improvement of Pharmacy Unit of XYZ Hospital Using Value Stream Analysis Methodology

    NASA Astrophysics Data System (ADS)

    Jonny; Nasution, Januar

    2013-06-01

    Value stream mapping is a tool which is needed to let the business leader of XYZ Hospital to see what is actually happening in its business process that have caused longer lead time for self-produced medicines in its pharmacy unit. This problem has triggered many complaints filed by patients. After deploying this tool, the team has come up with the fact that in processing the medicine, pharmacy unit does not have any storage and capsule packing tool and this condition has caused many wasting times in its process. Therefore, the team has proposed to the business leader to procure the required tools in order to shorten its process. This research has resulted in shortened lead time from 45 minutes to 30 minutes as required by the government through Indonesian health ministry with increased %VA (valued added activity) or Process Cycle Efficiency (PCE) from 66% to 68% (considered lean because it is upper than required 30%). This result has proved that the process effectiveness has been increase by the improvement.

  13. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  14. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools

    PubMed Central

    Dubreuil, Laure; Nadel, Dani

    2015-01-01

    In recent years, the study of percussive, pounding and grinding tools has provided new insights into human evolution, more particularly regarding the development of technology enabling the processing and exploitation of plant resources. Some of these studies focus on early evidence for flour production, an activity frequently perceived as an important step in the evolution of plant exploitation. The present paper investigates plant food preparation in mobile hunter-gatherer societies from the Southern Levant. The analysis consists of a use-wear study of 18 tools recovered from Ohalo II, a 23 000-year-old site in Israel showing an exceptional level of preservation. Our sample includes a slab previously interpreted as a lower implement used for producing flour, based on the presence of cereal starch residues. The use-wear data we have obtained provide crucial information about the function of this and other percussive tools at Ohalo II, as well as on investment in tool manufacture, discard strategies and evidence for plant processing in the Late Pleistocene. The use-wear analysis indicates that the production of flour was a sporadic activity at Ohalo II, predating by thousands of years the onset of routine processing of plant foods. PMID:26483535

  15. The development of plant food processing in the Levant: insights from use-wear analysis of Early Epipalaeolithic ground stone tools.

    PubMed

    Dubreuil, Laure; Nadel, Dani

    2015-11-19

    In recent years, the study of percussive, pounding and grinding tools has provided new insights into human evolution, more particularly regarding the development of technology enabling the processing and exploitation of plant resources. Some of these studies focus on early evidence for flour production, an activity frequently perceived as an important step in the evolution of plant exploitation. The present paper investigates plant food preparation in mobile hunter-gatherer societies from the Southern Levant. The analysis consists of a use-wear study of 18 tools recovered from Ohalo II, a 23 000-year-old site in Israel showing an exceptional level of preservation. Our sample includes a slab previously interpreted as a lower implement used for producing flour, based on the presence of cereal starch residues. The use-wear data we have obtained provide crucial information about the function of this and other percussive tools at Ohalo II, as well as on investment in tool manufacture, discard strategies and evidence for plant processing in the Late Pleistocene. The use-wear analysis indicates that the production of flour was a sporadic activity at Ohalo II, predating by thousands of years the onset of routine processing of plant foods. © 2015 The Author(s).

  16. Gene Ontology-Based Analysis of Zebrafish Omics Data Using the Web Tool Comparative Gene Ontology.

    PubMed

    Ebrahimie, Esmaeil; Fruzangohar, Mario; Moussavi Nik, Seyyed Hani; Newman, Morgan

    2017-10-01

    Gene Ontology (GO) analysis is a powerful tool in systems biology, which uses a defined nomenclature to annotate genes/proteins within three categories: "Molecular Function," "Biological Process," and "Cellular Component." GO analysis can assist in revealing functional mechanisms underlying observed patterns in transcriptomic, genomic, and proteomic data. The already extensive and increasing use of zebrafish for modeling genetic and other diseases highlights the need to develop a GO analytical tool for this organism. The web tool Comparative GO was originally developed for GO analysis of bacterial data in 2013 ( www.comparativego.com ). We have now upgraded and elaborated this web tool for analysis of zebrafish genetic data using GOs and annotations from the Gene Ontology Consortium.

  17. Engine Icing Data - An Analytics Approach

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Brooke A.; Flegel, Ashlie B.

    2017-01-01

    Engine icing researchers at the NASA Glenn Research Center use the Escort data acquisition system in the Propulsion Systems Laboratory (PSL) to generate and collect a tremendous amount of data every day. Currently these researchers spend countless hours processing and formatting their data, selecting important variables, and plotting relationships between variables, all by hand, generally analyzing data in a spreadsheet-style program (such as Microsoft Excel). Though spreadsheet-style analysis is familiar and intuitive to many, processing data in spreadsheets is often unreproducible and small mistakes are easily overlooked. Spreadsheet-style analysis is also time inefficient. The same formatting, processing, and plotting procedure has to be repeated for every dataset, which leads to researchers performing the same tedious data munging process over and over instead of making discoveries within their data. This paper documents a data analysis tool written in Python hosted in a Jupyter notebook that vastly simplifies the analysis process. From the file path of any folder containing time series datasets, this tool batch loads every dataset in the folder, processes the datasets in parallel, and ingests them into a widget where users can search for and interactively plot subsets of columns in a number of ways with a click of a button, easily and intuitively comparing their data and discovering interesting dynamics. Furthermore, comparing variables across data sets and integrating video data (while extremely difficult with spreadsheet-style programs) is quite simplified in this tool. This tool has also gathered interest outside the engine icing branch, and will be used by researchers across NASA Glenn Research Center. This project exemplifies the enormous benefit of automating data processing, analysis, and visualization, and will help researchers move from raw data to insight in a much smaller time frame.

  18. CFD Process Pre- and Post-processing Automation in Support of Space Propulsion

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne M.

    2003-01-01

    The use of Computational Fluid Dynamics or CFD has become standard practice in the design and analysis of the major components used for space propulsion. In an attempt to standardize and improve the CFD process a series of automated tools have been developed. Through the use of these automated tools the application of CFD to the design cycle has been improved and streamlined. This paper presents a series of applications in which deficiencies were identified in the CFD process and corrected through the development of automated tools.

  19. a Standardized Approach to Topographic Data Processing and Workflow Management

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Bailey, P.; Glenn, N. F.; Hensleigh, J.; Hudak, A. T.; Shrestha, R.; Spaete, L.

    2013-12-01

    An ever-increasing list of options exist for collecting high resolution topographic data, including airborne LIDAR, terrestrial laser scanners, bathymetric SONAR and structure-from-motion. An equally rich, arguably overwhelming, variety of tools exists with which to organize, quality control, filter, analyze and summarize these data. However, scientists are often left to cobble together their analysis as a series of ad hoc steps, often using custom scripts and one-time processes that are poorly documented and rarely shared with the community. Even when literature-cited software tools are used, the input and output parameters differ from tool to tool. These parameters are rarely archived and the steps performed lost, making the analysis virtually impossible to replicate precisely. What is missing is a coherent, robust, framework for combining reliable, well-documented topographic data-processing steps into a workflow that can be repeated and even shared with others. We have taken several popular topographic data processing tools - including point cloud filtering and decimation as well as DEM differencing - and defined a common protocol for passing inputs and outputs between them. This presentation describes a free, public online portal that enables scientists to create custom workflows for processing topographic data using a number of popular topographic processing tools. Users provide the inputs required for each tool and in what sequence they want to combine them. This information is then stored for future reuse (and optionally sharing with others) before the user then downloads a single package that contains all the input and output specifications together with the software tools themselves. The user then launches the included batch file that executes the workflow on their local computer against their topographic data. This ZCloudTools architecture helps standardize, automate and archive topographic data processing. It also represents a forum for discovering and sharing effective topographic processing workflows.

  20. Application of ESE Data and Tools to Air Quality Management: Services for Helping the Air Quality Community use ESE Data (SHAirED)

    NASA Technical Reports Server (NTRS)

    Falke, Stefan; Husar, Rudolf

    2011-01-01

    The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.

  1. Audio signal analysis for tool wear monitoring in sheet metal stamping

    NASA Astrophysics Data System (ADS)

    Ubhayaratne, Indivarie; Pereira, Michael P.; Xiang, Yong; Rolfe, Bernard F.

    2017-02-01

    Stamping tool wear can significantly degrade product quality, and hence, online tool condition monitoring is a timely need in many manufacturing industries. Even though a large amount of research has been conducted employing different sensor signals, there is still an unmet demand for a low-cost easy to set up condition monitoring system. Audio signal analysis is a simple method that has the potential to meet this demand, but has not been previously used for stamping process monitoring. Hence, this paper studies the existence and the significance of the correlation between emitted sound signals and the wear state of sheet metal stamping tools. The corrupting sources generated by the tooling of the stamping press and surrounding machinery have higher amplitudes compared to that of the sound emitted by the stamping operation itself. Therefore, a newly developed semi-blind signal extraction technique was employed as a pre-processing technique to mitigate the contribution of these corrupting sources. The spectral analysis results of the raw and extracted signals demonstrate a significant qualitative relationship between wear progression and the emitted sound signature. This study lays the basis for employing low-cost audio signal analysis in the development of a real-time industrial tool condition monitoring system.

  2. Negotiation Process Analysis: A Research and Training Tool.

    ERIC Educational Resources Information Center

    Williams, Timothy

    This paper proposes the use of interaction process analysis to study negotiation behaviors. Following a review of current literature in the field, the paper presents a theoretical framework for the analysis of both labor/management and social negotiation processes. Central to the framework described are two systems of activities that together…

  3. Scalable Visual Analytics of Massive Textual Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.

    2007-04-01

    This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.

  4. Setting up a proper power spectral density (PSD) and autocorrelation analysis for material and process characterization

    NASA Astrophysics Data System (ADS)

    Rutigliani, Vito; Lorusso, Gian Francesco; De Simone, Danilo; Lazzarino, Frederic; Rispens, Gijsbert; Papavieros, George; Gogolides, Evangelos; Constantoudis, Vassilios; Mack, Chris A.

    2018-03-01

    Power spectral density (PSD) analysis is playing more and more a critical role in the understanding of line-edge roughness (LER) and linewidth roughness (LWR) in a variety of applications across the industry. It is an essential step to get an unbiased LWR estimate, as well as an extremely useful tool for process and material characterization. However, PSD estimate can be affected by both random to systematic artifacts caused by image acquisition and measurement settings, which could irremediably alter its information content. In this paper, we report on the impact of various setting parameters (smoothing image processing filters, pixel size, and SEM noise levels) on the PSD estimate. We discuss also the use of PSD analysis tool in a variety of cases. Looking beyond the basic roughness estimate, we use PSD and autocorrelation analysis to characterize resist blur[1], as well as low and high frequency roughness contents and we apply this technique to guide the EUV material stack selection. Our results clearly indicate that, if properly used, PSD methodology is a very sensitive tool to investigate material and process variations

  5. Statistical quality control through overall vibration analysis

    NASA Astrophysics Data System (ADS)

    Carnero, M. a. Carmen; González-Palma, Rafael; Almorza, David; Mayorga, Pedro; López-Escobar, Carlos

    2010-05-01

    The present study introduces the concept of statistical quality control in automotive wheel bearings manufacturing processes. Defects on products under analysis can have a direct influence on passengers' safety and comfort. At present, the use of vibration analysis on machine tools for quality control purposes is not very extensive in manufacturing facilities. Noise and vibration are common quality problems in bearings. These failure modes likely occur under certain operating conditions and do not require high vibration amplitudes but relate to certain vibration frequencies. The vibration frequencies are affected by the type of surface problems (chattering) of ball races that are generated through grinding processes. The purpose of this paper is to identify grinding process variables that affect the quality of bearings by using statistical principles in the field of machine tools. In addition, an evaluation of the quality results of the finished parts under different combinations of process variables is assessed. This paper intends to establish the foundations to predict the quality of the products through the analysis of self-induced vibrations during the contact between the grinding wheel and the parts. To achieve this goal, the overall self-induced vibration readings under different combinations of process variables are analysed using statistical tools. The analysis of data and design of experiments follows a classical approach, considering all potential interactions between variables. The analysis of data is conducted through analysis of variance (ANOVA) for data sets that meet normality and homoscedasticity criteria. This paper utilizes different statistical tools to support the conclusions such as chi squared, Shapiro-Wilks, symmetry, Kurtosis, Cochran, Hartlett, and Hartley and Krushal-Wallis. The analysis presented is the starting point to extend the use of predictive techniques (vibration analysis) for quality control. This paper demonstrates the existence of predictive variables (high-frequency vibration displacements) that are sensible to the processes setup and the quality of the products obtained. Based on the result of this overall vibration analysis, a second paper will analyse self-induced vibration spectrums in order to define limit vibration bands, controllable every cycle or connected to permanent vibration-monitoring systems able to adjust sensible process variables identified by ANOVA, once the vibration readings exceed established quality limits.

  6. Prediction of Cutting Force in Turning Process-an Experimental Approach

    NASA Astrophysics Data System (ADS)

    Thangarasu, S. K.; Shankar, S.; Thomas, A. Tony; Sridhar, G.

    2018-02-01

    This Paper deals with a prediction of Cutting forces in a turning process. The turning process with advanced cutting tool has a several advantages over grinding such as short cycle time, process flexibility, compatible surface roughness, high material removal rate and less environment problems without the use of cutting fluid. In this a full bridge dynamometer has been used to measure the cutting forces over mild steel work piece and cemented carbide insert tool for different combination of cutting speed, feed rate and depth of cut. The experiments are planned based on taguchi design and measured cutting forces were compared with the predicted forces in order to validate the feasibility of the proposed design. The percentage contribution of each process parameter had been analyzed using Analysis of Variance (ANOVA). Both the experimental results taken from the lathe tool dynamometer and the designed full bridge dynamometer were analyzed using Taguchi design of experiment and Analysis of Variance.

  7. Realist Ontology and Natural Processes: A Semantic Tool to Analyze the Presentation of the Osmosis Concept in Science Texts

    ERIC Educational Resources Information Center

    Spinelli Barria, Michele; Morales, Cecilia; Merino, Cristian; Quiroz, Waldo

    2016-01-01

    In this work, we developed an ontological tool, based on the scientific realism of Mario Bunge, for the analysis of the presentation of natural processes in science textbooks. This tool was applied to analyze the presentation of the concept of osmosis in 16 chemistry and biology books at different educational levels. The results showed that more…

  8. Evaluation of the quality of the teaching-learning process in undergraduate courses in Nursing.

    PubMed

    González-Chordá, Víctor Manuel; Maciá-Soler, María Loreto

    2015-01-01

    to identify aspects of improvement of the quality of the teaching-learning process through the analysis of tools that evaluated the acquisition of skills by undergraduate students of Nursing. prospective longitudinal study conducted in a population of 60 secondyear Nursing students based on registration data, from which quality indicators that evaluate the acquisition of skills were obtained, with descriptive and inferential analysis. nine items were identified and nine learning activities included in the assessment tools that did not reach the established quality indicators (p<0.05). There are statistically significant differences depending on the hospital and clinical practices unit (p<0.05). the analysis of the evaluation tools used in the article "Nursing Care in Welfare Processes" of the analyzed university undergraduate course enabled the detection of the areas for improvement in the teachinglearning process. The challenge of education in nursing is to reach the best clinical research and educational results, in order to provide improvements to the quality of education and health care.

  9. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    PubMed Central

    Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576

  10. PlantCV v2: Image analysis software for high-throughput plant phenotyping.

    PubMed

    Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony

    2017-01-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

  11. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  12. PlantCV v2: Image analysis software for high-throughput plant phenotyping

    DOE PAGES

    Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...

    2017-12-01

    Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less

  13. HEPDOOP: High-Energy Physics Analysis using Hadoop

    NASA Astrophysics Data System (ADS)

    Bhimji, W.; Bristow, T.; Washbrook, A.

    2014-06-01

    We perform a LHC data analysis workflow using tools and data formats that are commonly used in the "Big Data" community outside High Energy Physics (HEP). These include Apache Avro for serialisation to binary files, Pig and Hadoop for mass data processing and Python Scikit-Learn for multi-variate analysis. Comparison is made with the same analysis performed with current HEP tools in ROOT.

  14. Interactive Planning under Uncertainty with Casual Modeling and Analysis

    DTIC Science & Technology

    2006-01-01

    Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans

  15. A study on using pre-forming blank in single point incremental forming process by finite element analysis

    NASA Astrophysics Data System (ADS)

    Abass, K. I.

    2016-11-01

    Single Point Incremental Forming process (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The edges of sheet material are clamped while the forming tool is moved along the tool path. The CNC milling machine is used to manufacturing the product. SPIF involves extensive plastic deformation and the description of the process is more complicated by highly nonlinear boundary conditions, namely contact and frictional effects have been accomplished. However, due to the complex nature of these models, numerical approaches dominated by Finite Element Analysis (FEA) are now in widespread use. The paper presents the data and main results of a study on effect of using preforming blank in SPIF through FEA. The considered SPIF has been studied under certain process conditions referring to the test work piece, tool, etc., applying ANSYS 11. The results show that the simulation model can predict an ideal profile of processing track, the behaviour of contact tool-workpiece, the product accuracy by evaluation its thickness, surface strain and the stress distribution along the deformed blank section during the deformation stages.

  16. A cascading failure analysis tool for post processing TRANSCARE simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This is a MATLAB-based tool to post process simulation results in the EPRI software TRANSCARE, for massive cascading failure analysis following severe disturbances. There are a few key modules available in this tool, including: 1. automatically creating a contingency list to run TRANSCARE simulations, including substation outages above a certain kV threshold, N-k (1, 2 or 3) generator outages and branche outages; 2. read in and analyze a CKO file of PCG definition, an initiating event list, and a CDN file; 3. post process all the simulation results saved in a CDN file and perform critical event corridor analysis; 4.more » provide a summary of TRANSCARE simulations; 5. Identify the most frequently occurring event corridors in the system; and 6. Rank the contingencies using a user defined security index to quantify consequences in terms of total load loss, total number of cascades, etc.« less

  17. BFPTool: a software tool for analysis of Biomembrane Force Probe experiments.

    PubMed

    Šmít, Daniel; Fouquet, Coralie; Doulazmi, Mohamed; Pincet, Frédéric; Trembleau, Alain; Zapotocky, Martin

    2017-01-01

    The Biomembrane Force Probe is an approachable experimental technique commonly used for single-molecule force spectroscopy and experiments on biological interfaces. The technique operates in the range of forces from 0.1 pN to 1000 pN. Experiments are typically repeated many times, conditions are often not optimal, the captured video can be unstable and lose focus; this makes efficient analysis challenging, while out-of-the-box non-proprietary solutions are not freely available. This dedicated tool was developed to integrate and simplify the image processing and analysis of videomicroscopy recordings from BFP experiments. A novel processing feature, allowing the tracking of the pipette, was incorporated to address a limitation of preceding methods. Emphasis was placed on versatility and comprehensible user interface implemented in a graphical form. An integrated analytical tool was implemented to provide a faster, simpler and more convenient way to process and analyse BFP experiments.

  18. Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander

    2005-09-01

    The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore the capability of the tool for characterizing multiple geometric parameters associated with the manufacturing process that are important to the yield and performance of advanced bottle DRAM devices.

  19. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  20. Rapid process development of chromatographic process using direct analysis in real time mass spectrometry as a process analytical technology tool.

    PubMed

    Yan, Binjun; Chen, Teng; Xu, Zhilin; Qu, Haibin

    2014-06-01

    The concept of quality by design (QbD) is widely applied in the process development of pharmaceuticals. However, the additional cost and time have caused some resistance about QbD implementation. To show a possible solution, this work proposed a rapid process development method, which used direct analysis in real time mass spectrometry (DART-MS) as a process analytical technology (PAT) tool for studying the chromatographic process of Ginkgo biloba L., as an example. The breakthrough curves were fast determined by DART-MS at-line. A high correlation coefficient of 0.9520 was found between the concentrations of ginkgolide A determined by DART-MS and HPLC. Based on the PAT tool, the impacts of process parameters on the adsorption capacity were discovered rapidly, which showed a decreased adsorption capacity with the increase of the flow rate. This work has shown the feasibility and advantages of integrating PAT into QbD implementation for rapid process development. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Productivity improvement through cycle time analysis

    NASA Astrophysics Data System (ADS)

    Bonal, Javier; Rios, Luis; Ortega, Carlos; Aparicio, Santiago; Fernandez, Manuel; Rosendo, Maria; Sanchez, Alejandro; Malvar, Sergio

    1996-09-01

    A cycle time (CT) reduction methodology has been developed in the Lucent Technology facility (former AT&T) in Madrid, Spain. It is based on a comparison of the contribution of each process step in each technology with a target generated by a cycle time model. These targeted cycle times are obtained using capacity data of the machines processing those steps, queuing theory and theory of constrains (TOC) principles (buffers to protect bottleneck and low cycle time/inventory everywhere else). Overall efficiency equipment (OEE) like analysis is done in the machine groups with major differences between their target cycle time and real values. Comparisons between the current value of the parameters that command their capacity (process times, availability, idles, reworks, etc.) and the engineering standards are done to detect the cause of exceeding their contribution to the cycle time. Several friendly and graphical tools have been developed to track and analyze those capacity parameters. Specially important have showed to be two tools: ASAP (analysis of scheduling, arrivals and performance) and performer which analyzes interrelation problems among machines procedures and direct labor. The performer is designed for a detailed and daily analysis of an isolate machine. The extensive use of this tool by the whole labor force has demonstrated impressive results in the elimination of multiple small inefficiencies with a direct positive implications on OEE. As for ASAP, it shows the lot in process/queue for different machines at the same time. ASAP is a powerful tool to analyze the product flow management and the assigned capacity for interdependent operations like the cleaning and the oxidation/diffusion. Additional tools have been developed to track, analyze and improve the process times and the availability.

  2. Decision support tool for diagnosing the source of variation

    NASA Astrophysics Data System (ADS)

    Masood, Ibrahim; Azrul Azhad Haizan, Mohamad; Norbaya Jumali, Siti; Ghazali, Farah Najihah Mohd; Razali, Hazlin Syafinaz Md; Shahir Yahya, Mohd; Azlan, Mohd Azwir bin

    2017-08-01

    Identifying the source of unnatural variation (SOV) in manufacturing process is essential for quality control. The Shewhart control chart patterns (CCPs) are commonly used to monitor the SOV. However, a proper interpretation of CCPs associated to its SOV requires a high skill industrial practitioner. Lack of knowledge in process engineering will lead to erroneous corrective action. The objective of this study is to design the operating procedures of computerized decision support tool (DST) for process diagnosis. The DST is an embedded tool in CCPs recognition scheme. Design methodology involves analysis of relationship between geometrical features, manufacturing process and CCPs. The DST contents information about CCPs and its possible root cause error and description on SOV phenomenon such as process deterioration in tool bluntness, offsetting tool, loading error, and changes in materials hardness. The DST will be useful for an industrial practitioner in making effective troubleshooting.

  3. Process analytical technology in the pharmaceutical industry: a toolkit for continuous improvement.

    PubMed

    Scott, Bradley; Wilcock, Anne

    2006-01-01

    Process analytical technology (PAT) refers to a series of tools used to ensure that quality is built into products while at the same time improving the understanding of processes, increasing efficiency, and decreasing costs. It has not been widely adopted by the pharmaceutical industry. As the setting for this paper, the current pharmaceutical manufacturing paradigm and PAT guidance to date are discussed prior to the review of PAT principles and tools, benefits, and challenges. The PAT toolkit contains process analyzers, multivariate analysis tools, process control tools, and continuous improvement/knowledge management/information technology systems. The integration and implementation of these tools is complex, and has resulted in uncertainty with respect to both regulation and validation. The paucity of staff knowledgeable in this area may complicate adoption. Studies to quantitate the benefits resulting from the adoption of PAT within the pharmaceutical industry would be a valuable addition to the qualitative studies that are currently available.

  4. A Web-Based Course Assessment Tool with Direct Mapping to Student Outcomes

    ERIC Educational Resources Information Center

    Ibrahim, Walid; Atif, Yacine; Shuaib, Khaled; Sampson, Demetrios

    2015-01-01

    The assessment of curriculum outcomes is an essential element for continuous academic improvement. However, the collection, aggregation and analysis of assessment data are notoriously complex and time-consuming processes. At the same time, only few developments of supporting electronic processes and tools for continuous academic program assessment…

  5. Information Literacy and Office Tool Competencies: A Benchmark Study

    ERIC Educational Resources Information Center

    Heinrichs, John H.; Lim, Jeen-Su

    2010-01-01

    Present information science literature recognizes the importance of information technology to achieve information literacy. The authors report the results of a benchmarking student survey regarding perceived functional skills and competencies in word-processing and presentation tools. They used analysis of variance and regression analysis to…

  6. Direct analysis in real time mass spectrometry, a process analytical technology tool for real-time process monitoring in botanical drug manufacturing.

    PubMed

    Wang, Lu; Zeng, Shanshan; Chen, Teng; Qu, Haibin

    2014-03-01

    A promising process analytical technology (PAT) tool has been introduced for batch processes monitoring. Direct analysis in real time mass spectrometry (DART-MS), a means of rapid fingerprint analysis, was applied to a percolation process with multi-constituent substances for an anti-cancer botanical preparation. Fifteen batches were carried out, including ten normal operations and five abnormal batches with artificial variations. The obtained multivariate data were analyzed by a multi-way partial least squares (MPLS) model. Control trajectories were derived from eight normal batches, and the qualification was tested by R(2) and Q(2). Accuracy and diagnosis capability of the batch model were then validated by the remaining batches. Assisted with high performance liquid chromatography (HPLC) determination, process faults were explained by corresponding variable contributions. Furthermore, a batch level model was developed to compare and assess the model performance. The present study has demonstrated that DART-MS is very promising in process monitoring in botanical manufacturing. Compared with general PAT tools, DART-MS offers a particular account on effective compositions and can be potentially used to improve batch quality and process consistency of samples in complex matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Efficient simulation of press hardening process through integrated structural and CFD analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integratedmore » commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.« less

  8. WaveNet: A Web-Based Metocean Data Access, Processing, and Analysis Tool. Part 3 - CDIP Database

    DTIC Science & Technology

    2014-06-01

    and Analysis Tool; Part 3 – CDIP Database by Zeki Demirbilek, Lihwa Lin, and Derek Wilson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) describes coupling of the Coastal Data Information Program ( CDIP ) database to WaveNet, the first module of MetOcnDat (Meteorological...provides a step-by-step procedure to access, process, and analyze wave and wind data from the CDIP database. BACKGROUND: WaveNet addresses a basic

  9. (abstract) Generic Modeling of a Life Support System for Process Technology Comparisons

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.

  10. DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Burnside, Jathan J.

    2012-01-01

    Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.

  11. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2013-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very difficult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The first version of this tool was a serial code and the current version is a parallel code, which has greatly increased the analysis capabilities. This paper describes the new implementation of this analysis tool on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  12. SLIPTA e-Tool improves laboratory audit process in Vietnam and Cambodia.

    PubMed

    Nguyen, Thuong T; McKinney, Barbara; Pierson, Antoine; Luong, Khue N; Hoang, Quynh T; Meharwal, Sandeep; Carvalho, Humberto M; Nguyen, Cuong Q; Nguyen, Kim T; Bond, Kyle B

    2014-01-01

    The Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist is used worldwide to drive quality improvement in laboratories in developing countries and to assess the effectiveness of interventions such as the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme. However, the paper-based format of the checklist makes administration cumbersome and limits timely analysis and communication of results. In early 2012, the SLMTA team in Vietnam developed an electronic SLIPTA checklist tool. The e-Tool was pilot tested in Vietnam in mid-2012 and revised. It was used during SLMTA implementation in Vietnam and Cambodia in 2012 and 2013 and further revised based on auditors' feedback about usability. The SLIPTA e-Tool enabled rapid turn-around of audit results, reduced workload and language barriers and facilitated analysis of national results. Benefits of the e-Tool will be magnified with in-country scale-up of laboratory quality improvement efforts and potential expansion to other countries.

  13. Policy Analysis: A Tool for Setting District Computer Use Policy. Paper and Report Series No. 97.

    ERIC Educational Resources Information Center

    Gray, Peter J.

    This report explores the use of policy analysis as a tool for setting computer use policy in a school district by discussing the steps in the policy formation and implementation processes and outlining how policy analysis methods can contribute to the creation of effective policy. Factors related to the adoption and implementation of innovations…

  14. Operational Analysis of Time-Optimal Maneuvering for Imaging Spacecraft

    DTIC Science & Technology

    2013-03-01

    imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic Hierarchy Process (AHP)-based...the Singapore-developed X-SAT imaging spacecraft. The analysis is facilitated through the use of AGI’s Systems Tool Kit ( STK ) software. An Analytic...89  B.  FUTURE WORK................................................................................. 90  APPENDIX A. STK DATA AND BENEFIT

  15. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  16. An Overview of the Role of Systems Analysis in NASA's Hypersonics Project

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Martin John G.; Bowles, Jeffrey V> ; Mehta, Unmeel B.; Snyder, CHristopher A.

    2006-01-01

    NASA's Aeronautics Research Mission Directorate recently restructured its Vehicle Systems Program, refocusing it towards understanding the fundamental physics that govern flight in all speed regimes. Now called the Fundamental Aeronautics Program, it is comprised of four new projects, Subsonic Fixed Wing, Subsonic Rotary Wing, Supersonics, and Hypersonics. The Aeronautics Research Mission Directorate has charged the Hypersonics Project with having a basic understanding of all systems that travel at hypersonic speeds within the Earth's and other planets atmospheres. This includes both powered and unpowered systems, such as re-entry vehicles and vehicles powered by rocket or airbreathing propulsion that cruise in and accelerate through the atmosphere. The primary objective of the Hypersonics Project is to develop physics-based predictive tools that enable the design, analysis and optimization of such systems. The Hypersonics Project charges the systems analysis discipline team with providing it the decision-making information it needs to properly guide research and technology development. Credible, rapid, and robust multi-disciplinary system analysis processes and design tools are required in order to generate this information. To this end, the principal challenges for the systems analysis team are the introduction of high fidelity physics into the analysis process and integration into a design environment, quantification of design uncertainty through the use of probabilistic methods, reduction in design cycle time, and the development and implementation of robust processes and tools enabling a wide design space and associated technology assessment capability. This paper will discuss the roles and responsibilities of the systems analysis discipline team within the Hypersonics Project as well as the tools, methods, processes, and approach that the team will undertake in order to perform its project designated functions.

  17. ARTiiFACT: a tool for heart rate artifact processing and heart rate variability analysis.

    PubMed

    Kaufmann, Tobias; Sütterlin, Stefan; Schulz, Stefan M; Vögele, Claus

    2011-12-01

    The importance of appropriate handling of artifacts in interbeat interval (IBI) data must not be underestimated. Even a single artifact may cause unreliable heart rate variability (HRV) results. Thus, a robust artifact detection algorithm and the option for manual intervention by the researcher form key components for confident HRV analysis. Here, we present ARTiiFACT, a software tool for processing electrocardiogram and IBI data. Both automated and manual artifact detection and correction are available in a graphical user interface. In addition, ARTiiFACT includes time- and frequency-based HRV analyses and descriptive statistics, thus offering the basic tools for HRV analysis. Notably, all program steps can be executed separately and allow for data export, thus offering high flexibility and interoperability with a whole range of applications.

  18. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  19. Range Process Simulation Tool

    NASA Technical Reports Server (NTRS)

    Phillips, Dave; Haas, William; Barth, Tim; Benjamin, Perakath; Graul, Michael; Bagatourova, Olga

    2005-01-01

    Range Process Simulation Tool (RPST) is a computer program that assists managers in rapidly predicting and quantitatively assessing the operational effects of proposed technological additions to, and/or upgrades of, complex facilities and engineering systems such as the Eastern Test Range. Originally designed for application to space transportation systems, RPST is also suitable for assessing effects of proposed changes in industrial facilities and large organizations. RPST follows a model-based approach that includes finite-capacity schedule analysis and discrete-event process simulation. A component-based, scalable, open architecture makes RPST easily and rapidly tailorable for diverse applications. Specific RPST functions include: (1) definition of analysis objectives and performance metrics; (2) selection of process templates from a processtemplate library; (3) configuration of process models for detailed simulation and schedule analysis; (4) design of operations- analysis experiments; (5) schedule and simulation-based process analysis; and (6) optimization of performance by use of genetic algorithms and simulated annealing. The main benefits afforded by RPST are provision of information that can be used to reduce costs of operation and maintenance, and the capability for affordable, accurate, and reliable prediction and exploration of the consequences of many alternative proposed decisions.

  20. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  1. A learning tool for optical and microwave satellite image processing and analysis

    NASA Astrophysics Data System (ADS)

    Dashondhi, Gaurav K.; Mohanty, Jyotirmoy; Eeti, Laxmi N.; Bhattacharya, Avik; De, Shaunak; Buddhiraju, Krishna M.

    2016-04-01

    This paper presents a self-learning tool, which contains a number of virtual experiments for processing and analysis of Optical/Infrared and Synthetic Aperture Radar (SAR) images. The tool is named Virtual Satellite Image Processing and Analysis Lab (v-SIPLAB) Experiments that are included in Learning Tool are related to: Optical/Infrared - Image and Edge enhancement, smoothing, PCT, vegetation indices, Mathematical Morphology, Accuracy Assessment, Supervised/Unsupervised classification etc.; Basic SAR - Parameter extraction and range spectrum estimation, Range compression, Doppler centroid estimation, Azimuth reference function generation and compression, Multilooking, image enhancement, texture analysis, edge and detection. etc.; SAR Interferometry - BaseLine Calculation, Extraction of single look SAR images, Registration, Resampling, and Interferogram generation; SAR Polarimetry - Conversion of AirSAR or Radarsat data to S2/C3/T3 matrix, Speckle Filtering, Power/Intensity image generation, Decomposition of S2/C3/T3, Classification of S2/C3/T3 using Wishart Classifier [3]. A professional quality polarimetric SAR software can be found at [8], a part of whose functionality can be found in our system. The learning tool also contains other modules, besides executable software experiments, such as aim, theory, procedure, interpretation, quizzes, link to additional reading material and user feedback. Students can have understanding of Optical and SAR remotely sensed images through discussion of basic principles and supported by structured procedure for running and interpreting the experiments. Quizzes for self-assessment and a provision for online feedback are also being provided to make this Learning tool self-contained. One can download results after performing experiments.

  2. Analytical framework and tool kit for SEA follow-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mans; Wiklund, Hans; Finnveden, Goeran

    2009-04-15

    Most Strategic Environmental Assessment (SEA) research and applications have so far neglected the ex post stages of the process, also called SEA follow-up. Tool kits and methodological frameworks for engaging effectively with SEA follow-up have been conspicuously missing. In particular, little has so far been learned from the much more mature evaluation literature although many aspects are similar. This paper provides an analytical framework and tool kit for SEA follow-up. It is based on insights and tools developed within programme evaluation and environmental systems analysis. It is also grounded in empirical studies into real planning and programming practices at themore » regional level, but should have relevance for SEA processes at all levels. The purpose of the framework is to promote a learning-oriented and integrated use of SEA follow-up in strategic decision making. It helps to identify appropriate tools and their use in the process, and to systematise the use of available data and knowledge across the planning organization and process. It distinguishes three stages in follow-up: scoping, analysis and learning, identifies the key functions and demonstrates the informational linkages to the strategic decision-making process. The associated tool kit includes specific analytical and deliberative tools. Many of these are applicable also ex ante, but are then used in a predictive mode rather than on the basis of real data. The analytical element of the framework is organized on the basis of programme theory and 'DPSIR' tools. The paper discusses three issues in the application of the framework: understanding the integration of organizations and knowledge; understanding planners' questions and analytical requirements; and understanding interests, incentives and reluctance to evaluate.« less

  3. The dynamic analysis of drum roll lathe for machining of rollers

    NASA Astrophysics Data System (ADS)

    Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei

    2014-08-01

    An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.

  4. SLIPTA e-Tool improves laboratory audit process in Vietnam and Cambodia

    PubMed Central

    Nguyen, Thuong T.; McKinney, Barbara; Pierson, Antoine; Luong, Khue N.; Hoang, Quynh T.; Meharwal, Sandeep; Carvalho, Humberto M.; Nguyen, Cuong Q.; Nguyen, Kim T.

    2014-01-01

    Background The Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist is used worldwide to drive quality improvement in laboratories in developing countries and to assess the effectiveness of interventions such as the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme. However, the paper-based format of the checklist makes administration cumbersome and limits timely analysis and communication of results. Development of e-Tool In early 2012, the SLMTA team in Vietnam developed an electronic SLIPTA checklist tool. The e-Tool was pilot tested in Vietnam in mid-2012 and revised. It was used during SLMTA implementation in Vietnam and Cambodia in 2012 and 2013 and further revised based on auditors’ feedback about usability. Outcomes The SLIPTA e-Tool enabled rapid turn-around of audit results, reduced workload and language barriers and facilitated analysis of national results. Benefits of the e-Tool will be magnified with in-country scale-up of laboratory quality improvement efforts and potential expansion to other countries. PMID:29043190

  5. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    PubMed

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  6. Determination of Specific Forces and Tool Deflections in Micro-milling of Ti-6Al-4V alloy using Finite Element Simulations and Analysis

    NASA Astrophysics Data System (ADS)

    Farina, Simone; Thepsonti, Thanongsak; Ceretti, Elisabetta; Özel, Tugrul

    2011-05-01

    Titanium alloys offer superb properties in strength, corrosion resistance and biocompatibility and are commonly utilized in medical devices and implants. Micro-end milling process is a direct and rapid fabrication method for manufacturing medical devices and implants in titanium alloys. Process performance and quality depend upon an understanding of the relationship between cutting parameters and forces and resultant tool deflections to avoid tool breakage. For this purpose, FE simulations of chip formation during micro-end milling of Ti-6Al-4V alloy with an ultra-fine grain solid carbide two-flute micro-end mill are investigated using DEFORM software. At first, specific forces in tangential and radial directions of cutting during micro-end milling for varying feed advance and rotational speeds have been determined using designed FE simulations for chip formation process. Later, these forces are applied to the micro-end mill geometry along the axial depth of cut in 3D analysis of ABAQUS. Consequently, 3D distributions for tool deflections & von Misses stress are determined. These analyses will yield in establishing integrated multi-physics process models for high performance micro-end milling and a leap-forward to process improvements.

  7. Evaluation of the quality of the teaching-learning process in undergraduate courses in Nursing 1

    PubMed Central

    González-Chordá, Víctor Manuel; Maciá-Soler, María Loreto

    2015-01-01

    Abstract Objective: to identify aspects of improvement of the quality of the teaching-learning process through the analysis of tools that evaluated the acquisition of skills by undergraduate students of Nursing. Method: prospective longitudinal study conducted in a population of 60 secondyear Nursing students based on registration data, from which quality indicators that evaluate the acquisition of skills were obtained, with descriptive and inferential analysis. Results: nine items were identified and nine learning activities included in the assessment tools that did not reach the established quality indicators (p<0.05). There are statistically significant differences depending on the hospital and clinical practices unit (p<0.05). Conclusion: the analysis of the evaluation tools used in the article "Nursing Care in Welfare Processes" of the analyzed university undergraduate course enabled the detection of the areas for improvement in the teachinglearning process. The challenge of education in nursing is to reach the best clinical research and educational results, in order to provide improvements to the quality of education and health care. PMID:26444173

  8. Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project

    PubMed Central

    Boubela, Roland N.; Kalcher, Klaudius; Huf, Wolfgang; Našel, Christian; Moser, Ewald

    2016-01-01

    Technologies for scalable analysis of very large datasets have emerged in the domain of internet computing, but are still rarely used in neuroimaging despite the existence of data and research questions in need of efficient computation tools especially in fMRI. In this work, we present software tools for the application of Apache Spark and Graphics Processing Units (GPUs) to neuroimaging datasets, in particular providing distributed file input for 4D NIfTI fMRI datasets in Scala for use in an Apache Spark environment. Examples for using this Big Data platform in graph analysis of fMRI datasets are shown to illustrate how processing pipelines employing it can be developed. With more tools for the convenient integration of neuroimaging file formats and typical processing steps, big data technologies could find wider endorsement in the community, leading to a range of potentially useful applications especially in view of the current collaborative creation of a wealth of large data repositories including thousands of individual fMRI datasets. PMID:26778951

  9. International Space Station Execution Replanning Process: Trends and Implications

    NASA Technical Reports Server (NTRS)

    McCormick, Robet J.

    2007-01-01

    International Space Station is a joint venture. Because of this, ISS execution planning- planning within the week for the ISS requires coordination across multiple partner, and the associated processes and tools to allow this coordination to occur. These processes and tools are currently defined and are extensively used. This paper summarizes these processes, and documents the current data trends associated with these processes and tools, with a focus on the metrics provided from the ISS Planning Product Change Request (PPCR) tool. As NASA's Vision for Space Exploration and general Human spaceflight trends are implemented, the probability of joint venture long duration programs such as ISS, with varying levels of intergovernmental and/or corporate partnership, will increase. Therefore, the results of this PPCR analysis serve as current Lessons learned for the ISS and for further similar ventures.

  10. metAlignID: a high-throughput software tool set for automated detection of trace level contaminants in comprehensive LECO two-dimensional gas chromatography time-of-flight mass spectrometry data.

    PubMed

    Lommen, Arjen; van der Kamp, Henk J; Kools, Harrie J; van der Lee, Martijn K; van der Weg, Guido; Mol, Hans G J

    2012-11-09

    A new alternative data processing tool set, metAlignID, is developed for automated pre-processing and library-based identification and concentration estimation of target compounds after analysis by comprehensive two-dimensional gas chromatography with mass spectrometric detection. The tool set has been developed for and tested on LECO data. The software is developed to run multi-threaded (one thread per processor core) on a standard PC (personal computer) under different operating systems and is as such capable of processing multiple data sets simultaneously. Raw data files are converted into netCDF (network Common Data Form) format using a fast conversion tool. They are then preprocessed using previously developed algorithms originating from metAlign software. Next, the resulting reduced data files are searched against a user-composed library (derived from user or commercial NIST-compatible libraries) (NIST=National Institute of Standards and Technology) and the identified compounds, including an indicative concentration, are reported in Excel format. Data can be processed batch wise. The overall time needed for conversion together with processing and searching of 30 raw data sets for 560 compounds is routinely within an hour. The screening performance is evaluated for detection of pesticides and contaminants in raw data obtained after analysis of soil and plant samples. Results are compared to the existing data-handling routine based on proprietary software (LECO, ChromaTOF). The developed software tool set, which is freely downloadable at www.metalign.nl, greatly accelerates data-analysis and offers more options for fine-tuning automated identification toward specific application needs. The quality of the results obtained is slightly better than the standard processing and also adds a quantitative estimate. The software tool set in combination with two-dimensional gas chromatography coupled to time-of-flight mass spectrometry shows great potential as a highly-automated and fast multi-residue instrumental screening method. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Rural Health Clinics (RHCs)

    MedlinePlus

    ... Toolkits Economic Impact Analysis Tool Community Health Gateway Sustainability Planning Tools Testing New Approaches Rural Health IT ... of the certification process is the RHC Cost Report. Once a clinic has received its Medicare Provider ...

  12. Micro-based fact collection tool user's manual

    NASA Technical Reports Server (NTRS)

    Mayer, Richard

    1988-01-01

    A procedure designed for use by an analyst to assist in the collection and organization of data gathered during the interview processes associated with system analysis and modeling task is described. The basic concept behind the development of this tool is that during the interview process an analyst is presented with assertions of facts by the domain expert. The analyst also makes observations of the domain. These facts need to be collected and preserved in such a way as to allow them to serve as the basis for a number of decision making processes throughout the system development process. This tool can be thought of as a computerization of the analysts's notebook.

  13. Link Analysis in the Mission Planning Lab

    NASA Technical Reports Server (NTRS)

    McCarthy, Jessica A.; Cervantes, Benjamin W.; Daugherty, Sarah C.; Arroyo, Felipe; Mago, Divyang

    2011-01-01

    The legacy communications link analysis software currently used at Wallops Flight Facility involves processes that are different for command destruct, radar, and telemetry. There is a clear advantage to developing an easy-to-use tool that combines all the processes in one application. Link Analysis in the Mission Planning Lab (MPL) uses custom software and algorithms integrated with Analytical Graphics Inc. Satellite Toolkit (AGI STK). The MPL link analysis tool uses pre/post-mission data to conduct a dynamic link analysis between ground assets and the launch vehicle. Just as the legacy methods do, the MPL link analysis tool calculates signal strength and signal- to-noise according to the accepted processes for command destruct, radar, and telemetry assets. Graphs and other custom data are generated rapidly in formats for reports and presentations. STK is used for analysis as well as to depict plume angles and antenna gain patterns in 3D. The MPL has developed two interfaces with the STK software (see figure). The first interface is an HTML utility, which was developed in Visual Basic to enhance analysis for plume modeling and to offer a more user friendly, flexible tool. A graphical user interface (GUI) written in MATLAB (see figure upper right-hand corner) is also used to quickly depict link budget information for multiple ground assets. This new method yields a dramatic decrease in the time it takes to provide launch managers with the required link budgets to make critical pre-mission decisions. The software code used for these two custom utilities is a product of NASA's MPL.

  14. Extraction of process zones and low-dimensional attractive subspaces in stochastic fracture mechanics

    PubMed Central

    Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.

    2013-01-01

    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423

  15. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  16. The business process management software for successful quality management and organization: A case study from the University of Split School of Medicine.

    PubMed

    Sapunar, Damir; Grković, Ivica; Lukšić, Davor; Marušić, Matko

    2016-05-01

    Our aim was to describe a comprehensive model of internal quality management (QM) at a medical school founded on the business process analysis (BPA) software tool. BPA software tool was used as the core element for description of all working processes in our medical school, and subsequently the system served as the comprehensive model of internal QM. The quality management system at the University of Split School of Medicine included the documentation and analysis of all business processes within the School. The analysis revealed 80 weak points related to one or several business processes. A precise analysis of medical school business processes allows identification of unfinished, unclear and inadequate points in these processes, and subsequently the respective improvements and increase of the QM level and ultimately a rationalization of the institution's work. Our approach offers a potential reference model for development of common QM framework allowing a continuous quality control, i.e. the adjustments and adaptation to contemporary educational needs of medical students. Copyright © 2016 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  17. Addressing and Presenting Quality of Satellite Data via Web-Based Services

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Lynnes, C.; Ahmad, S.; Fox, P.; Zednik, S.; West, P.

    2011-01-01

    With the recent attention to climate change and proliferation of remote-sensing data utilization, climate model and various environmental monitoring and protection applications have begun to increasingly rely on satellite measurements. Research application users seek good quality satellite data, with uncertainties and biases provided for each data point. However, different communities address remote sensing quality issues rather inconsistently and differently. We describe our attempt to systematically characterize, capture, and provision quality and uncertainty information as it applies to the NASA MODIS Aerosol Optical Depth data product. In particular, we note the semantic differences in quality/bias/uncertainty at the pixel, granule, product, and record levels. We outline various factors contributing to uncertainty or error budget; errors. Web-based science analysis and processing tools allow users to access, analyze, and generate visualizations of data while alleviating users from having directly managing complex data processing operations. These tools provide value by streamlining the data analysis process, but usually shield users from details of the data processing steps, algorithm assumptions, caveats, etc. Correct interpretation of the final analysis requires user understanding of how data has been generated and processed and what potential biases, anomalies, or errors may have been introduced. By providing services that leverage data lineage provenance and domain-expertise, expert systems can be built to aid the user in understanding data sources, processing, and the suitability for use of products generated by the tools. We describe our experiences developing a semantic, provenance-aware, expert-knowledge advisory system applied to NASA Giovanni web-based Earth science data analysis tool as part of the ESTO AIST-funded Multi-sensor Data Synergy Advisor project.

  18. deepTools: a flexible platform for exploring deep-sequencing data.

    PubMed

    Ramírez, Fidel; Dündar, Friederike; Diehl, Sarah; Grüning, Björn A; Manke, Thomas

    2014-07-01

    We present a Galaxy based web server for processing and visualizing deeply sequenced data. The web server's core functionality consists of a suite of newly developed tools, called deepTools, that enable users with little bioinformatic background to explore the results of their sequencing experiments in a standardized setting. Users can upload pre-processed files with continuous data in standard formats and generate heatmaps and summary plots in a straight-forward, yet highly customizable manner. In addition, we offer several tools for the analysis of files containing aligned reads and enable efficient and reproducible generation of normalized coverage files. As a modular and open-source platform, deepTools can easily be expanded and customized to future demands and developments. The deepTools webserver is freely available at http://deeptools.ie-freiburg.mpg.de and is accompanied by extensive documentation and tutorials aimed at conveying the principles of deep-sequencing data analysis. The web server can be used without registration. deepTools can be installed locally either stand-alone or as part of Galaxy. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Enhancements to the Image Analysis Tool for Core Punch Experiments and Simulations (vs. 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogden, John Edward; Unal, Cetin

    A previous paper (Hogden & Unal, 2012, Image Analysis Tool for Core Punch Experiments and Simulations) described an image processing computer program developed at Los Alamos National Laboratory. This program has proven useful so developement has been continued. In this paper we describe enhacements to the program as of 2014.

  20. SensePath: Understanding the Sensemaking Process Through Analytic Provenance.

    PubMed

    Nguyen, Phong H; Xu, Kai; Wheat, Ashley; Wong, B L William; Attfield, Simon; Fields, Bob

    2016-01-01

    Sensemaking is described as the process of comprehension, finding meaning and gaining insight from information, producing new knowledge and informing further action. Understanding the sensemaking process allows building effective visual analytics tools to make sense of large and complex datasets. Currently, it is often a manual and time-consuming undertaking to comprehend this: researchers collect observation data, transcribe screen capture videos and think-aloud recordings, identify recurring patterns, and eventually abstract the sensemaking process into a general model. In this paper, we propose a general approach to facilitate such a qualitative analysis process, and introduce a prototype, SensePath, to demonstrate the application of this approach with a focus on browser-based online sensemaking. The approach is based on a study of a number of qualitative research sessions including observations of users performing sensemaking tasks and post hoc analyses to uncover their sensemaking processes. Based on the study results and a follow-up participatory design session with HCI researchers, we decided to focus on the transcription and coding stages of thematic analysis. SensePath automatically captures user's sensemaking actions, i.e., analytic provenance, and provides multi-linked views to support their further analysis. A number of other requirements elicited from the design session are also implemented in SensePath, such as easy integration with existing qualitative analysis workflow and non-intrusive for participants. The tool was used by an experienced HCI researcher to analyze two sensemaking sessions. The researcher found the tool intuitive and considerably reduced analysis time, allowing better understanding of the sensemaking process.

  1. Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Koo, Michelle; Cao, Yu

    Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less

  2. Sentinel-2 ArcGIS Tool for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Plesoianu, Alin; Cosmin Sandric, Ionut; Anca, Paula; Vasile, Alexandru; Calugaru, Andreea; Vasile, Cristian; Zavate, Lucian

    2017-04-01

    This paper addresses one of the biggest challenges regarding Sentinel-2 data, related to the need of an efficient tool to access and process the large collection of images that are available. Consequently, developing a tool for the automation of Sentinel-2 data analysis is the most immediate need. We developed a series of tools for the automation of Sentinel-2 data download and processing for vegetation health monitoring. The tools automatically perform the following operations: downloading image tiles from ESA's Scientific Hub or other venders (Amazon), pre-processing of the images to extract the 10-m bands, creating image composites, applying a series of vegetation indexes (NDVI, OSAVI, etc.) and performing change detection analyses on different temporal data sets. All of these tools run in a dynamic way in the ArcGIS Platform, without the need of creating intermediate datasets (rasters, layers), as the images are processed on-the-fly in order to avoid data duplication. Finally, they allow complete integration with the ArcGIS environment and workflows

  3. Explorative visual analytics on interval-based genomic data and their metadata.

    PubMed

    Jalili, Vahid; Matteucci, Matteo; Masseroli, Marco; Ceri, Stefano

    2017-12-04

    With the wide-spreading of public repositories of NGS processed data, the availability of user-friendly and effective tools for data exploration, analysis and visualization is becoming very relevant. These tools enable interactive analytics, an exploratory approach for the seamless "sense-making" of data through on-the-fly integration of analysis and visualization phases, suggested not only for evaluating processing results, but also for designing and adapting NGS data analysis pipelines. This paper presents abstractions for supporting the early analysis of NGS processed data and their implementation in an associated tool, named GenoMetric Space Explorer (GeMSE). This tool serves the needs of the GenoMetric Query Language, an innovative cloud-based system for computing complex queries over heterogeneous processed data. It can also be used starting from any text files in standard BED, BroadPeak, NarrowPeak, GTF, or general tab-delimited format, containing numerical features of genomic regions; metadata can be provided as text files in tab-delimited attribute-value format. GeMSE allows interactive analytics, consisting of on-the-fly cycling among steps of data exploration, analysis and visualization that help biologists and bioinformaticians in making sense of heterogeneous genomic datasets. By means of an explorative interaction support, users can trace past activities and quickly recover their results, seamlessly going backward and forward in the analysis steps and comparative visualizations of heatmaps. GeMSE effective application and practical usefulness is demonstrated through significant use cases of biological interest. GeMSE is available at http://www.bioinformatics.deib.polimi.it/GeMSE/ , and its source code is available at https://github.com/Genometric/GeMSE under GPLv3 open-source license.

  4. Massively Parallel Processing for Fast and Accurate Stamping Simulations

    NASA Astrophysics Data System (ADS)

    Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu

    2005-08-01

    The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.

  5. Scientific Platform as a Service - Tools and solutions for efficient access to and analysis of oceanographic data

    NASA Astrophysics Data System (ADS)

    Vines, Aleksander; Hansen, Morten W.; Korosov, Anton

    2017-04-01

    Existing infrastructure international and Norwegian projects, e.g., NorDataNet, NMDC and NORMAP, provide open data access through the OPeNDAP protocol following the conventions for CF (Climate and Forecast) metadata, designed to promote the processing and sharing of files created with the NetCDF application programming interface (API). This approach is now also being implemented in the Norwegian Sentinel Data Hub (satellittdata.no) to provide satellite EO data to the user community. Simultaneously with providing simplified and unified data access, these projects also seek to use and establish common standards for use and discovery metadata. This then allows development of standardized tools for data search and (subset) streaming over the internet to perform actual scientific analysis. A combinnation of software tools, which we call a Scientific Platform as a Service (SPaaS), will take advantage of these opportunities to harmonize and streamline the search, retrieval and analysis of integrated satellite and auxiliary observations of the oceans in a seamless system. The SPaaS is a cloud solution for integration of analysis tools with scientific datasets via an API. The core part of the SPaaS is a distributed metadata catalog to store granular metadata describing the structure, location and content of available satellite, model, and in situ datasets. The analysis tools include software for visualization (also online), interactive in-depth analysis, and server-based processing chains. The API conveys search requests between system nodes (i.e., interactive and server tools) and provides easy access to the metadata catalog, data repositories, and the tools. The SPaaS components are integrated in virtual machines, of which provisioning and deployment are automatized using existing state-of-the-art open-source tools (e.g., Vagrant, Ansible, Docker). The open-source code for scientific tools and virtual machine configurations is under version control at https://github.com/nansencenter/, and is coupled to an online continuous integration system (e.g., Travis CI).

  6. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying.

  7. Case Study Application Of Determining End Of Asset Physical Life Using Survival Analysis:(WERF Report INFR2R11a)

    EPA Science Inventory

    Abstract:This case study application provides discussion on a selected application of advanced concepts, included in the End of Asset Life Reinvestment decision-making process tool, using a utility practitioner’s data set. The tool provides step-by-step process guidance to the as...

  8. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    ERIC Educational Resources Information Center

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  9. Interaction between Tool and Talk: How Instruction and Tools Support Consensus Building in Collaborative Inquiry-Learning Environments

    ERIC Educational Resources Information Center

    Gijlers, H.; Saab, N.; Van Joolingen, W. R.; De Jong, T.; Van Hout-Wolters, B. H. A. M.

    2009-01-01

    The process of collaborative inquiry learning requires maintaining a mutual understanding of the task, along with reaching consensus on strategies, plans and domain knowledge. In this study, we explore how different supportive measures affect students' consensus-building process, based on a re-analysis of data from four studies. We distinguish…

  10. A population MRI brain template and analysis tools for the macaque.

    PubMed

    Seidlitz, Jakob; Sponheim, Caleb; Glen, Daniel; Ye, Frank Q; Saleem, Kadharbatcha S; Leopold, David A; Ungerleider, Leslie; Messinger, Adam

    2018-04-15

    The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies. Copyright © 2017 ElsevierCompany. All rights reserved.

  11. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant.

    PubMed

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-10-15

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage. 2010 Elsevier B.V. All rights reserved.

  12. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Chris J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Willkinson, Timothy S.

    2008-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  13. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Christopher J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Wilkinson, Timothy S.

    2010-06-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  14. Object-Oriented MDAO Tool with Aeroservoelastic Model Tuning Capability

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley; Lung, Shun-fat

    2008-01-01

    An object-oriented multi-disciplinary analysis and optimization (MDAO) tool has been developed at the NASA Dryden Flight Research Center to automate the design and analysis process and leverage existing commercial as well as in-house codes to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic and hypersonic aircraft. Once the structural analysis discipline is finalized and integrated completely into the MDAO process, other disciplines such as aerodynamics and flight controls will be integrated as well. Simple and efficient model tuning capabilities based on optimization problem are successfully integrated with the MDAO tool. More synchronized all phases of experimental testing (ground and flight), analytical model updating, high-fidelity simulations for model validation, and integrated design may result in reduction of uncertainties in the aeroservoelastic model and increase the flight safety.

  15. Integrating automated structured analysis and design with Ada programming support environments

    NASA Technical Reports Server (NTRS)

    Hecht, Alan; Simmons, Andy

    1986-01-01

    Ada Programming Support Environments (APSE) include many powerful tools that address the implementation of Ada code. These tools do not address the entire software development process. Structured analysis is a methodology that addresses the creation of complete and accurate system specifications. Structured design takes a specification and derives a plan to decompose the system subcomponents, and provides heuristics to optimize the software design to minimize errors and maintenance. It can also produce the creation of useable modules. Studies have shown that most software errors result from poor system specifications, and that these errors also become more expensive to fix as the development process continues. Structured analysis and design help to uncover error in the early stages of development. The APSE tools help to insure that the code produced is correct, and aid in finding obscure coding errors. However, they do not have the capability to detect errors in specifications or to detect poor designs. An automated system for structured analysis and design TEAMWORK, which can be integrated with an APSE to support software systems development from specification through implementation is described. These tools completement each other to help developers improve quality and productivity, as well as to reduce development and maintenance costs. Complete system documentation and reusable code also resultss from the use of these tools. Integrating an APSE with automated tools for structured analysis and design provide capabilities and advantages beyond those realized with any of these systems used by themselves.

  16. Interferometric analysis of polishing surface with a petal tool

    NASA Astrophysics Data System (ADS)

    Salas-Sánchez, Alfonso; Leal-Cabrera, Irce; Percino Zacarias, Elizabeth; Granados-Agustín, Fermín S.

    2011-09-01

    In this work, we describe a phase shift interferometric monitoring of polishing processes produced by a petal tool over a spherical surface to obtain a parabolic surface. In the process, we used a commercial polishing machine; the purpose of this work is to have control of polishing time. To achieve this analysis, we used a Fizeau interferometer of ZYGO Company for optical shop testing, and the Durango software from Diffraction International Company. For data acquisition, simulation and evaluation of optical surfaces, we start polishing process with a spherical surface with 15.46 cm of diameter; a 59.9 cm of radius curvature and, with f/# 1.9.

  17. WISE: Automated support for software project management and measurement. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Sudhakar

    1995-01-01

    One important aspect of software development and IV&V is measurement. Unless a software development effort is measured in some way, it is difficult to judge the effectiveness of current efforts and predict future performances. Collection of metrics and adherence to a process are difficult tasks in a software project. Change activity is a powerful indicator of project status. Automated systems that can handle change requests, issues, and other process documents provide an excellent platform for tracking the status of the project. A World Wide Web based architecture is developed for (a) making metrics collection an implicit part of the software process, (b) providing metric analysis dynamically, (c) supporting automated tools that can complement current practices of in-process improvement, and (d) overcoming geographical barrier. An operational system (WISE) instantiates this architecture allowing for the improvement of software process in a realistic environment. The tool tracks issues in software development process, provides informal communication between the users with different roles, supports to-do lists (TDL), and helps in software process improvement. WISE minimizes the time devoted to metrics collection, analysis, and captures software change data. Automated tools like WISE focus on understanding and managing the software process. The goal is improvement through measurement.

  18. Lean manufacturing analysis to reduce waste on production process of fan products

    NASA Astrophysics Data System (ADS)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Sari, R. M.; Syahputri, K.; Anizar

    2018-02-01

    This research is based on case study that being on electrical company. One of the products that will be researched is the fan, which when running the production process there is a time that is not value-added, among others, the removal of material which is not efficient in the raw materials and component molding fan. This study aims to reduce waste or non-value added activities and shorten the total lead time by using the tools Value Stream Mapping. Lean manufacturing methods used to analyze and reduce the non-value added activities, namely the value stream mapping analysis tools, process mapping activity with 5W1H, and tools 5 whys. Based on the research note that no value-added activities in the production process of a fan of 647.94 minutes of total lead time of 725.68 minutes. Process cycle efficiency in the production process indicates that the fan is still very low at 11%. While estimates of the repair showed a decrease in total lead time became 340.9 minutes and the process cycle efficiency is greater by 24%, which indicates that the production process has been better.

  19. "Development Radar": The Co-Configuration of a Tool in a Learning Network

    ERIC Educational Resources Information Center

    Toiviainen, Hanna; Kerosuo, Hannele; Syrjala, Tuula

    2009-01-01

    Purpose: The paper aims to argue that new tools are needed for operating, developing and learning in work-life networks where academic and practice knowledge are intertwined in multiple levels of and in boundary-crossing across activities. At best, tools for learning are designed in a process of co-configuration, as the analysis of one tool,…

  20. miRToolsGallery: a tag-based and rankable microRNA bioinformatics resources database portal

    PubMed Central

    Chen, Liang; Heikkinen, Liisa; Wang, ChangLiang; Yang, Yang; Knott, K Emily

    2018-01-01

    Abstract Hundreds of bioinformatics tools have been developed for MicroRNA (miRNA) investigations including those used for identification, target prediction, structure and expression profile analysis. However, finding the correct tool for a specific application requires the tedious and laborious process of locating, downloading, testing and validating the appropriate tool from a group of nearly a thousand. In order to facilitate this process, we developed a novel database portal named miRToolsGallery. We constructed the portal by manually curating > 950 miRNA analysis tools and resources. In the portal, a query to locate the appropriate tool is expedited by being searchable, filterable and rankable. The ranking feature is vital to quickly identify and prioritize the more useful from the obscure tools. Tools are ranked via different criteria including the PageRank algorithm, date of publication, number of citations, average of votes and number of publications. miRToolsGallery provides links and data for the comprehensive collection of currently available miRNA tools with a ranking function which can be adjusted using different criteria according to specific requirements. Database URL: http://www.mirtoolsgallery.org PMID:29688355

  1. Operations management tools to be applied for textile

    NASA Astrophysics Data System (ADS)

    Maralcan, A.; Ilhan, I.

    2017-10-01

    In this paper, basic concepts of process analysis such as flow time, inventory, bottleneck, labour cost and utilization are illustrated first. The effect of bottleneck on the results of a business are especially emphasized. In the next section, tools on productivity measurement; KPI (Key Performance Indicators) Tree, OEE (Overall Equipment Effectiveness) and Takt Time are introduced and exemplified. KPI tree is a diagram on which we can visualize all the variables of an operation which are driving financial results through cost and profit. OEE is a tool to measure a potential extra capacity of an equipment or an employee. Takt time is a tool to determine the process flow rate according to the customer demand. KPI tree is studied through the whole process while OEE is exemplified for a stenter frame machine which is the most important machine (and usually the bottleneck) and the most expensive investment in a finishing plant. Takt time is exemplified for the quality control department. Finally quality tools, six sigma, control charts and jidoka are introduced. Six sigma is a tool to measure process capability and by the way probability of a defect. Control chart is a powerful tool to monitor the process. The idea of jidoka (detect, stop and alert) is about alerting the people that there is a problem in the process.

  2. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    PubMed

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.

  3. Faculty Recommendations for Web Tools: Implications for Course Management Systems

    ERIC Educational Resources Information Center

    Oliver, Kevin; Moore, John

    2008-01-01

    A gap analysis of web tools in Engineering was undertaken as one part of the Digital Library Network for Engineering and Technology (DLNET) grant funded by NSF (DUE-0085849). DLNET represents a Web portal and an online review process to archive quality knowledge objects in Engineering and Technology disciplines. The gap analysis coincided with the…

  4. Open Architecture as an Enabler for FORCEnet Cruise Missile Defense

    DTIC Science & Technology

    2007-09-01

    2007). Step 4 introduces another tool called the Strengths, Weaknesses, Opportunities, and Threats ( SWOT ) analysis. Once the TRO has been identified...the SWOT analysis can be used to help in the pursuit of that objective or mission objective. SWOT is defined as Strengths: attributes of the...overtime. In addition to the SCAN and SWOT , analysis processes also needed are Automated Battle Management Aids (ABMA) tools that are required to

  5. Navigating freely-available software tools for metabolomics analysis.

    PubMed

    Spicer, Rachel; Salek, Reza M; Moreno, Pablo; Cañueto, Daniel; Steinbeck, Christoph

    2017-01-01

    The field of metabolomics has expanded greatly over the past two decades, both as an experimental science with applications in many areas, as well as in regards to data standards and bioinformatics software tools. The diversity of experimental designs and instrumental technologies used for metabolomics has led to the need for distinct data analysis methods and the development of many software tools. To compile a comprehensive list of the most widely used freely available software and tools that are used primarily in metabolomics. The most widely used tools were selected for inclusion in the review by either ≥ 50 citations on Web of Science (as of 08/09/16) or the use of the tool being reported in the recent Metabolomics Society survey. Tools were then categorised by the type of instrumental data (i.e. LC-MS, GC-MS or NMR) and the functionality (i.e. pre- and post-processing, statistical analysis, workflow and other functions) they are designed for. A comprehensive list of the most used tools was compiled. Each tool is discussed within the context of its application domain and in relation to comparable tools of the same domain. An extended list including additional tools is available at https://github.com/RASpicer/MetabolomicsTools which is classified and searchable via a simple controlled vocabulary. This review presents the most widely used tools for metabolomics analysis, categorised based on their main functionality. As future work, we suggest a direct comparison of tools' abilities to perform specific data analysis tasks e.g. peak picking.

  6. Lessons Learned for Cx PRACA. Constellation Program Problem Reporting, Analysis and Corrective Action Process and System

    NASA Technical Reports Server (NTRS)

    Kelle, Pido I.; Ratterman, Christian; Gibbs, Cecil

    2009-01-01

    This slide presentation reviews the Constellation Program Problem Reporting, Analysis and Corrective Action Process and System (Cx PRACA). The goal of the Cx PRACA is to incorporate Lessons learned from the Shuttle, ISS, and Orbiter programs by creating a single tool for managing the PRACA process, that clearly defines the scope of PRACA applicability and what must be reported, and defines the ownership and responsibility for managing the PRACA process including disposition approval authority. CxP PRACA is a process, supported by a single information gathering data module which will be integrated with a single CxP Information System, providing interoperability, import and export capability making the CxP PRACA a more effective and user friendly technical and management tool.

  7. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  8. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  9. BBMerge – Accurate paired shotgun read merging via overlap

    DOE PAGES

    Bushnell, Brian; Rood, Jonathan; Singer, Esther

    2017-10-26

    Merging paired-end shotgun reads generated on high-throughput sequencing platforms can substantially improve various subsequent bioinformatics processes, including genome assembly, binning, mapping, annotation, and clustering for taxonomic analysis. With the inexorable growth of sequence data volume and CPU core counts, the speed and scalability of read-processing tools becomes ever-more important. The accuracy of shotgun read merging is crucial as well, as errors introduced by incorrect merging percolate through to reduce the quality of downstream analysis. Thus, we designed a new tool to maximize accuracy and minimize processing time, allowing the use of read merging on larger datasets, and in analyses highlymore » sensitive to errors. We present BBMerge, a new merging tool for paired-end shotgun sequence data. We benchmark BBMerge by comparison with eight other widely used merging tools, assessing speed, accuracy and scalability. Evaluations of both synthetic and real-world datasets demonstrate that BBMerge produces merged shotgun reads with greater accuracy and at higher speed than any existing merging tool examined. BBMerge also provides the ability to merge non-overlapping shotgun read pairs by using k-mer frequency information to assemble the unsequenced gap between reads, achieving a significantly higher merge rate while maintaining or increasing accuracy.« less

  10. BBMerge – Accurate paired shotgun read merging via overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushnell, Brian; Rood, Jonathan; Singer, Esther

    Merging paired-end shotgun reads generated on high-throughput sequencing platforms can substantially improve various subsequent bioinformatics processes, including genome assembly, binning, mapping, annotation, and clustering for taxonomic analysis. With the inexorable growth of sequence data volume and CPU core counts, the speed and scalability of read-processing tools becomes ever-more important. The accuracy of shotgun read merging is crucial as well, as errors introduced by incorrect merging percolate through to reduce the quality of downstream analysis. Thus, we designed a new tool to maximize accuracy and minimize processing time, allowing the use of read merging on larger datasets, and in analyses highlymore » sensitive to errors. We present BBMerge, a new merging tool for paired-end shotgun sequence data. We benchmark BBMerge by comparison with eight other widely used merging tools, assessing speed, accuracy and scalability. Evaluations of both synthetic and real-world datasets demonstrate that BBMerge produces merged shotgun reads with greater accuracy and at higher speed than any existing merging tool examined. BBMerge also provides the ability to merge non-overlapping shotgun read pairs by using k-mer frequency information to assemble the unsequenced gap between reads, achieving a significantly higher merge rate while maintaining or increasing accuracy.« less

  11. Some uses of wavelets for imaging dynamic processes in live cochlear structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, J.

    2007-09-01

    A variety of image and signal processing algorithms based on wavelet filtering tools have been developed during the last few decades, that are well adapted to the experimental variability typically encountered in live biological microscopy. A number of processing tools are reviewed, that use wavelets for adaptive image restoration and for motion or brightness variation analysis by optical flow computation. The usefulness of these tools for biological imaging is illustrated in the context of the restoration of images of the inner ear and the analysis of cochlear motion patterns in two and three dimensions. I also report on recent work that aims at capturing fluorescence intensity changes associated with vesicle dynamics at synaptic zones of sensory hair cells. This latest application requires one to separate the intensity variations associated with the physiological process under study from the variations caused by motion of the observed structures. A wavelet optical flow algorithm for doing this is presented, and its effectiveness is demonstrated on artificial and experimental image sequences.

  12. Tool for Rapid Analysis of Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Restrepo, Carolina; McCall, Kurt E.; Hurtado, John E.

    2011-01-01

    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very di cult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The Tool for Rapid Analysis of Monte Carlo simulations (TRAM) has been used in recent design and analysis work for the Orion vehicle, greatly decreasing the time it takes to evaluate performance requirements. A previous version of this tool was developed to automatically identify driving design variables in Monte Carlo data sets. This paper describes a new, parallel version, of TRAM implemented on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities.

  13. The manipulator tool state classification based on inertia forces analysis

    NASA Astrophysics Data System (ADS)

    Gierlak, Piotr

    2018-07-01

    In this article, we discuss the detection of damage to the cutting tool used in robotised light mechanical processing. Continuous monitoring of the state of the tool mounted in the tool holder of the robot is required due to the necessity to save time. The tool is a brush with ceramic fibres used for surface grinding. A typical example of damage to the brush is the breaking of fibres, resulting in a tool imbalance and vibrations at a high rotational speed, e.g. during grinding. This also results in a limited operating surface of the tool and a decrease in the efficiency of processing. While an imbalanced tool is spinning, fictitious forces occur that carry the information regarding the balance of the tool. The forces can be measured using a force sensor located in the end-effector of the robot allowing the assessment of the damage to the brush in an automatized way, devoid of any operator.

  14. Modeling interdependencies between business and communication processes in hospitals.

    PubMed

    Brigl, Birgit; Wendt, Thomas; Winter, Alfred

    2003-01-01

    The optimization and redesign of business processes in hospitals is an important challenge for the hospital information management who has to design and implement a suitable HIS architecture. Nevertheless, there are no tools available specializing in modeling information-driven business processes and the consequences on the communication between information processing, tools. Therefore, we will present an approach which facilitates the representation and analysis of business processes and resulting communication processes between application components and their interdependencies. This approach aims not only to visualize those processes, but to also to evaluate if there are weaknesses concerning the information processing infrastructure which hinder the smooth implementation of the business processes.

  15. Thermo-hydro-mechanical-chemical processes in fractured-porous media: Benchmarks and examples

    NASA Astrophysics Data System (ADS)

    Kolditz, O.; Shao, H.; Görke, U.; Kalbacher, T.; Bauer, S.; McDermott, C. I.; Wang, W.

    2012-12-01

    The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate change. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.

  16. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  17. Analyzing Collaborative Learning Processes Automatically: Exploiting the Advances of Computational Linguistics in Computer-Supported Collaborative Learning

    ERIC Educational Resources Information Center

    Rose, Carolyn; Wang, Yi-Chia; Cui, Yue; Arguello, Jaime; Stegmann, Karsten; Weinberger, Armin; Fischer, Frank

    2008-01-01

    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners' interactions is a…

  18. Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.

    2001-01-01

    Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.

  19. Capturing district nursing through a knowledge-based electronic caseload analysis tool (eCAT).

    PubMed

    Kane, Kay

    2014-03-01

    The Electronic Caseload Analysis Tool (eCAT) is a knowledge-based software tool to assist the caseload analysis process. The tool provides a wide range of graphical reports, along with an integrated clinical advisor, to assist district nurses, team leaders, operational and strategic managers with caseload analysis by describing, comparing and benchmarking district nursing practice in the context of population need, staff resources, and service structure. District nurses and clinical lead nurses in Northern Ireland developed the tool, along with academic colleagues from the University of Ulster, working in partnership with a leading software company. The aim was to use the eCAT tool to identify the nursing need of local populations, along with the variances in district nursing practice, and match the workforce accordingly. This article reviews the literature, describes the eCAT solution and discusses the impact of eCAT on nursing practice, staff allocation, service delivery and workforce planning, using fictitious exemplars and a post-implementation evaluation from the trusts.

  20. PipeCraft: Flexible open-source toolkit for bioinformatics analysis of custom high-throughput amplicon sequencing data.

    PubMed

    Anslan, Sten; Bahram, Mohammad; Hiiesalu, Indrek; Tedersoo, Leho

    2017-11-01

    High-throughput sequencing methods have become a routine analysis tool in environmental sciences as well as in public and private sector. These methods provide vast amount of data, which need to be analysed in several steps. Although the bioinformatics may be applied using several public tools, many analytical pipelines allow too few options for the optimal analysis for more complicated or customized designs. Here, we introduce PipeCraft, a flexible and handy bioinformatics pipeline with a user-friendly graphical interface that links several public tools for analysing amplicon sequencing data. Users are able to customize the pipeline by selecting the most suitable tools and options to process raw sequences from Illumina, Pacific Biosciences, Ion Torrent and Roche 454 sequencing platforms. We described the design and options of PipeCraft and evaluated its performance by analysing the data sets from three different sequencing platforms. We demonstrated that PipeCraft is able to process large data sets within 24 hr. The graphical user interface and the automated links between various bioinformatics tools enable easy customization of the workflow. All analytical steps and options are recorded in log files and are easily traceable. © 2017 John Wiley & Sons Ltd.

  1. Dataflow Design Tool: User's Manual

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1996-01-01

    The Dataflow Design Tool is a software tool for selecting a multiprocessor scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. The software tool implements graph-search algorithms and analysis techniques based on the dataflow paradigm. Dataflow analyses provided by the software are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool provides performance optimization through the inclusion of artificial precedence constraints among the schedulable tasks. The user interface and tool capabilities are described. Examples are provided to demonstrate the analysis, scheduling, and optimization functions facilitated by the tool.

  2. Advanced Video Analysis Needs for Human Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.

    1994-01-01

    Evaluators of human task performance in space missions make use of video as a primary source of data. Extraction of relevant human performance information from video is often a labor-intensive process requiring a large amount of time on the part of the evaluator. Based on the experiences of several human performance evaluators, needs were defined for advanced tools which could aid in the analysis of video data from space missions. Such tools should increase the efficiency with which useful information is retrieved from large quantities of raw video. They should also provide the evaluator with new analytical functions which are not present in currently used methods. Video analysis tools based on the needs defined by this study would also have uses in U.S. industry and education. Evaluation of human performance from video data can be a valuable technique in many industrial and institutional settings where humans are involved in operational systems and processes.

  3. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    NASA Astrophysics Data System (ADS)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of the TCIS interactive data portal and analysis tools, including the spatial database technology for the representation and query of the level 2 satellite data, the automatic process flow using web services, the interactive user interface using the Google Earth API, and a common and expandable Python wrapper to invoke the analysis tools.

  4. Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.

    PubMed

    Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2015-09-28

    Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft. © 2015 The Author(s).

  5. Biomedical image analysis and processing in clouds

    NASA Astrophysics Data System (ADS)

    Bednarz, Tomasz; Szul, Piotr; Arzhaeva, Yulia; Wang, Dadong; Burdett, Neil; Khassapov, Alex; Chen, Shiping; Vallotton, Pascal; Lagerstrom, Ryan; Gureyev, Tim; Taylor, John

    2013-10-01

    Cloud-based Image Analysis and Processing Toolbox project runs on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) cloud infrastructure and allows access to biomedical image processing and analysis services to researchers via remotely accessible user interfaces. By providing user-friendly access to cloud computing resources and new workflow-based interfaces, our solution enables researchers to carry out various challenging image analysis and reconstruction tasks. Several case studies will be presented during the conference.

  6. Design tool for multiprocessor scheduling and evaluation of iterative dataflow algorithms

    NASA Technical Reports Server (NTRS)

    Jones, Robert L., III

    1995-01-01

    A graph-theoretic design process and software tool is defined for selecting a multiprocessing scheduling solution for a class of computational problems. The problems of interest are those that can be described with a dataflow graph and are intended to be executed repetitively on a set of identical processors. Typical applications include signal processing and control law problems. Graph-search algorithms and analysis techniques are introduced and shown to effectively determine performance bounds, scheduling constraints, and resource requirements. The software tool applies the design process to a given problem and includes performance optimization through the inclusion of additional precedence constraints among the schedulable tasks.

  7. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph

    2018-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Willse, Alan R.

    The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.

  9. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  10. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  11. Analysis of real-time vibration data

    USGS Publications Warehouse

    Safak, E.

    2005-01-01

    In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.

  12. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  13. Overcoming redundancies in bedside nursing assessments by validating a parsimonious meta-tool: findings from a methodological exercise study.

    PubMed

    Palese, Alvisa; Marini, Eva; Guarnier, Annamaria; Barelli, Paolo; Zambiasi, Paola; Allegrini, Elisabetta; Bazoli, Letizia; Casson, Paola; Marin, Meri; Padovan, Marisa; Picogna, Michele; Taddia, Patrizia; Chiari, Paolo; Salmaso, Daniele; Marognolli, Oliva; Canzan, Federica; Ambrosi, Elisa; Saiani, Luisa; Grassetti, Luca

    2016-10-01

    There is growing interest in validating tools aimed at supporting the clinical decision-making process and research. However, an increased bureaucratization of clinical practice and redundancies in the measures collected have been reported by clinicians. Redundancies in clinical assessments affect negatively both patients and nurses. To validate a meta-tool measuring the risks/problems currently estimated by multiple tools used in daily practice. A secondary analysis of a database was performed, using a cross-validation and a longitudinal study designs. In total, 1464 patients admitted to 12 medical units in 2012 were assessed at admission with the Brass, Barthel, Conley and Braden tools. Pertinent outcomes such as the occurrence of post-discharge need for resources and functional decline at discharge, as well as falls and pressure sores, were measured. Explorative factor analysis of each tool, inter-tool correlations and a conceptual evaluation of the redundant/similar items across tools were performed. Therefore, the validation of the meta-tool was performed through explorative factor analysis, confirmatory factor analysis and the structural equation model to establish the ability of the meta-tool to predict the outcomes estimated by the original tools. High correlations between the tools have emerged (from r 0.428 to 0.867) with a common variance from 18.3% to 75.1%. Through a conceptual evaluation and explorative factor analysis, the items were reduced from 42 to 20, and the three factors that emerged were confirmed by confirmatory factor analysis. According to the structural equation model results, two out of three emerged factors predicted the outcomes. From the initial 42 items, the meta-tool is composed of 20 items capable of predicting the outcomes as with the original tools. © 2016 John Wiley & Sons, Ltd.

  14. Towards the Integration of APECS with VE-Suite to Create a Comprehensive Virtual Engineering Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCorkle, D.; Yang, C.; Jordan, T.

    2007-06-01

    Modeling and simulation tools are becoming pervasive in the process engineering practice of designing advanced power generation facilities. These tools enable engineers to explore many what-if scenarios before cutting metal or constructing a pilot scale facility. While such tools enable investigation of crucial plant design aspects, typical commercial process simulation tools such as Aspen Plus®, gPROMS®, and HYSYS® still do not explore some plant design information, including computational fluid dynamics (CFD) models for complex thermal and fluid flow phenomena, economics models for policy decisions, operational data after the plant is constructed, and as-built information for use in as-designed models. Softwaremore » tools must be created that allow disparate sources of information to be integrated if environments are to be constructed where process simulation information can be accessed. At the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL), the Advanced Process Engineering Co-Simulator (APECS) has been developed as an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulation (e.g., Fluent® CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper, we discuss the initial phases of integrating APECS with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite utilizes the ActiveX (OLE Automation) controls in Aspen Plus wrapped by the CASI library developed by Reaction Engineering International to run the process simulation and query for unit operation results. This integration permits any application that uses the VE-Open interface to integrate with APECS co-simulations, enabling construction of the comprehensive virtual engineering environment needed for the rapid engineering of advanced power generation facilities.« less

  15. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  16. Updates in metabolomics tools and resources: 2014-2015.

    PubMed

    Misra, Biswapriya B; van der Hooft, Justin J J

    2016-01-01

    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources--in the form of tools, software, and databases--is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. [Factor Analysis: Principles to Evaluate Measurement Tools for Mental Health].

    PubMed

    Campo-Arias, Adalberto; Herazo, Edwin; Oviedo, Heidi Celina

    2012-09-01

    The validation of a measurement tool in mental health is a complex process that usually starts by estimating reliability, to later approach its validity. Factor analysis is a way to know the number of dimensions, domains or factors of a measuring tool, generally related to the construct validity of the scale. The analysis could be exploratory or confirmatory, and helps in the selection of the items with better performance. For an acceptable factor analysis, it is necessary to follow some steps and recommendations, conduct some statistical tests, and rely on a proper sample of participants. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  18. Clinical guideline representation in a CDS: a human information processing method.

    PubMed

    Kilsdonk, Ellen; Riezebos, Rinke; Kremer, Leontien; Peute, Linda; Jaspers, Monique

    2012-01-01

    The Dutch Childhood Oncology Group (DCOG) has developed evidence-based guidelines for screening childhood cancer survivors for possible late complications of treatment. These paper-based guidelines appeared to not suit clinicians' information retrieval strategies; it was thus decided to communicate the guidelines through a Computerized Decision Support (CDS) tool. To ensure high usability of this tool, an analysis of clinicians' cognitive strategies in retrieving information from the paper-based guidelines was used as requirements elicitation method. An information processing model was developed through an analysis of think aloud protocols and used as input for the design of the CDS user interface. Usability analysis of the user interface showed that the navigational structure of the CDS tool fitted well with the clinicians' mental strategies employed in deciding on survivors screening protocols. Clinicians were more efficient and more complete in deciding on patient-tailored screening procedures when supported by the CDS tool than by the paper-based guideline booklet. The think-aloud method provided detailed insight into users' clinical work patterns that supported the design of a highly usable CDS system.

  19. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  20. Using Tracker as a Pedagogical Tool for Understanding Projectile Motion

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Chew, Charles; Goh, Giam Hwee; Tan, Samuel; Lee, Tat Leong

    2012-01-01

    This article reports on the use of Tracker as a pedagogical tool in the effective learning and teaching of projectile motion in physics. When a computer model building learning process is supported and driven by video analysis data, this free Open Source Physics tool can provide opportunities for students to engage in active enquiry-based…

  1. Analysis of Utility and Use of a Web-Based Tool for Digital Signal Processing Teaching by Means of a Technological Acceptance Model

    ERIC Educational Resources Information Center

    Toral, S. L.; Barrero, F.; Martinez-Torres, M. R.

    2007-01-01

    This paper presents an exploratory study about the development of a structural and measurement model for the technological acceptance (TAM) of a web-based educational tool. The aim consists of measuring not only the use of this tool, but also the external variables with a significant influence in its use for planning future improvements. The tool,…

  2. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  3. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  4. Performance Analysis of GYRO: A Tool Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, P.; Roth, P.; Candy, J.

    2005-06-26

    The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manualmore » analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.« less

  5. Using task analysis to understand the Data System Operations Team

    NASA Technical Reports Server (NTRS)

    Holder, Barbara E.

    1994-01-01

    The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.

  6. Multicriteria decision analysis: Overview and implications for environmental decision making

    USGS Publications Warehouse

    Hermans, Caroline M.; Erickson, Jon D.; Erickson, Jon D.; Messner, Frank; Ring, Irene

    2007-01-01

    Environmental decision making involving multiple stakeholders can benefit from the use of a formal process to structure stakeholder interactions, leading to more successful outcomes than traditional discursive decision processes. There are many tools available to handle complex decision making. Here we illustrate the use of a multicriteria decision analysis (MCDA) outranking tool (PROMETHEE) to facilitate decision making at the watershed scale, involving multiple stakeholders, multiple criteria, and multiple objectives. We compare various MCDA methods and their theoretical underpinnings, examining methods that most realistically model complex decision problems in ways that are understandable and transparent to stakeholders.

  7. Generic Modeling of a Life Support System for Process Technology Comparison

    NASA Technical Reports Server (NTRS)

    Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.

    1993-01-01

    This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support system and process technology options for a Lunar Base with a crew size of 4 and mission lengths of 90 and 600 days. System configurations to minimize the life support system weight and power are explored.

  8. Digital Holography, a metrological tool for quantitative analysis: Trends and future applications

    NASA Astrophysics Data System (ADS)

    Paturzo, Melania; Pagliarulo, Vito; Bianco, Vittorio; Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Ferraro, Pietro

    2018-05-01

    A review on the last achievements of Digital Holography is reported in this paper, showing that this powerful method can be a key metrological tool for the quantitative analysis and non-invasive inspection of a variety of materials, devices and processes. Nowadays, its range of applications has been greatly extended, including the study of live biological matter and biomedical applications. This paper overviews the main progresses and future perspectives of digital holography, showing new optical configurations and investigating the numerical issues to be tackled for the processing and display of quantitative data.

  9. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  10. Image processing, analysis, and management tools for gusset plate connections in steel truss bridges.

    DOT National Transportation Integrated Search

    2016-10-01

    This report details the research undertaken and software tools that were developed that enable digital : images of gusset plates to be converted into orthophotos, establish physical dimensions, collect : geometric information from them, and conduct s...

  11. Methodological approach and tools for systems thinking in health systems research: technical assistants' support of health administration reform in the Democratic Republic of Congo as an application.

    PubMed

    Ribesse, Nathalie; Bossyns, Paul; Marchal, Bruno; Karemere, Hermes; Burman, Christopher J; Macq, Jean

    2017-03-01

    In the field of development cooperation, interest in systems thinking and complex systems theories as a methodological approach is increasingly recognised. And so it is in health systems research, which informs health development aid interventions. However, practical applications remain scarce to date. The objective of this article is to contribute to the body of knowledge by presenting the tools inspired by systems thinking and complexity theories and methodological lessons learned from their application. These tools were used in a case study. Detailed results of this study are in process for publication in additional articles. Applying a complexity 'lens', the subject of the case study is the role of long-term international technical assistance in supporting health administration reform at the provincial level in the Democratic Republic of Congo. The Methods section presents the guiding principles of systems thinking and complex systems, their relevance and implication for the subject under study, and the existing tools associated with those theories which inspired us in the design of the data collection and analysis process. The tools and their application processes are presented in the results section, and followed in the discussion section by the critical analysis of their innovative potential and emergent challenges. The overall methodology provides a coherent whole, each tool bringing a different and complementary perspective on the system.

  12. Review of free software tools for image analysis of fluorescence cell micrographs.

    PubMed

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Codifference as a practical tool to measure interdependence

    NASA Astrophysics Data System (ADS)

    Wyłomańska, Agnieszka; Chechkin, Aleksei; Gajda, Janusz; Sokolov, Igor M.

    2015-03-01

    Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.

  14. Introducing GHOST: The Geospace/Heliosphere Observation & Simulation Tool-kit

    NASA Astrophysics Data System (ADS)

    Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.

    2013-12-01

    Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Advanced post processing of the results of these simulations greatly enhances the utility of these models for scientists and other researchers. Currently, no supported centralized tool exists for performing these processing tasks. With GHOST, we introduce a toolkit for the ParaView visualization environment that provides a centralized suite of tools suited for Space Physics post processing. Building on the work from the Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer group, GHOST is an open-source tool suite for ParaView. The tool-kit plugin currently provides tools for reading LFM and Enlil data sets, and provides automated tools for data comparison with NASA's CDAweb database. As work progresses, many additional tools will be added and through open-source collaboration, we hope to add readers for additional model types, as well as any additional tools deemed necessary by the scientific public. The ultimate end goal of this work is to provide a complete Sun-to-Earth model analysis toolset.

  15. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  16. Army Sustainability Modelling Analysis and Reporting Tool Phase 1: User Manual and Results Interpretation Guide

    DTIC Science & Technology

    2009-11-01

    force structure liability analysis tool, designed to forecast the dynamics of personnel and equipment populations over time for a particular scenario...it is intended that it will support analysis of the sustainability of planned Army force structures against a range of possible scenarios, as well as...the force options testing process. A-SMART Phase 1 has been limited to the development of personnel, major equipment and supplies/strategic lift

  17. Method for automation of tool preproduction

    NASA Astrophysics Data System (ADS)

    Rychkov, D. A.; Yanyushkin, A. S.; Lobanov, D. V.; Arkhipov, P. V.

    2018-03-01

    The primary objective of tool production is a creation or selection of such tool design which could make it possible to secure high process efficiency, tool availability as well as a quality of received surfaces with minimum means and resources spent on it. It takes much time of application people, being engaged in tool preparation, to make a correct selection of the appropriate tool among the set of variants. Program software has been developed to solve the problem, which helps to create, systematize and carry out a comparative analysis of tool design to identify the rational variant under given production conditions. The literature indicates that systematization and selection of the tool rational design has been carried out in accordance with the developed modeling technology and comparative design analysis. Software application makes it possible to reduce the period of design by 80....85% and obtain a significant annual saving.

  18. A Student Assessment Tool for Standardized Patient Simulations (SAT-SPS): Psychometric analysis.

    PubMed

    Castro-Yuste, Cristina; García-Cabanillas, María José; Rodríguez-Cornejo, María Jesús; Carnicer-Fuentes, Concepción; Paloma-Castro, Olga; Moreno-Corral, Luis Javier

    2018-05-01

    The evaluation of the level of clinical competence acquired by the student is a complex process that must meet various requirements to ensure its quality. The psychometric analysis of the data collected by the assessment tools used is a fundamental aspect to guarantee the student's competence level. To conduct a psychometric analysis of an instrument which assesses clinical competence in nursing students at simulation stations with standardized patients in OSCE-format tests. The construct of clinical competence was operationalized as a set of observable and measurable behaviors, measured by the newly-created Student Assessment Tool for Standardized Patient Simulations (SAT-SPS), which was comprised of 27 items. The categories assigned to the items were 'incorrect or not performed' (0), 'acceptable' (1), and 'correct' (2). 499 nursing students. Data were collected by two independent observers during the assessment of the students' performance at a four-station OSCE with standardized patients. Descriptive statistics were used to summarize the variables. The difficulty levels and floor and ceiling effects were determined for each item. Reliability was analyzed using internal consistency and inter-observer reliability. The validity analysis was performed considering face validity, content and construct validity (through exploratory factor analysis), and criterion validity. Internal reliability and inter-observer reliability were higher than 0.80. The construct validity analysis suggested a three-factor model accounting for 37.1% of the variance. These three factors were named 'Nursing process', 'Communication skills', and 'Safe practice'. A significant correlation was found between the scores obtained and the students' grades in general, as well as with the grades obtained in subjects with clinical content. The assessment tool has proven to be sufficiently reliable and valid for the assessment of the clinical competence of nursing students using standardized patients. This tool has three main components: the nursing process, communication skills, and safety management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  20. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    PubMed

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  1. System of Objectified Judgement Analysis (SOJA) as a tool in rational and transparent drug-decision making.

    PubMed

    Janknegt, Robert; Scott, Mike; Mairs, Jill; Timoney, Mark; McElnay, James; Brenninkmeijer, Rob

    2007-10-01

    Drug selection should be a rational process that embraces the principles of evidence-based medicine. However, many factors may affect the choice of agent. It is against this background that the System of Objectified Judgement Analysis (SOJA) process for rational drug-selection was developed. This article describes how the information on which the SOJA process is based, was researched and processed.

  2. Evaluation of the Effectiveness of Stormwater Decision Support Tools for Infrastructure Selection and the Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Spahr, K.; Hogue, T. S.

    2016-12-01

    Selecting the most appropriate green, gray, and / or hybrid system for stormwater treatment and conveyance can prove challenging to decision markers across all scales, from site managers to large municipalities. To help streamline the selection process, a multi-disciplinary team of academics and professionals is developing an industry standard for selecting and evaluating the most appropriate stormwater management technology for different regions. To make the tool more robust and comprehensive, life-cycle cost assessment and optimization modules will be included to evaluate non-monetized and ecosystem benefits of selected technologies. Initial work includes surveying advisory board members based in cities that use existing decision support tools in their infrastructure planning process. These surveys will qualify the decisions currently being made and identify challenges within the current planning process across a range of hydroclimatic regions and city size. Analysis of social and other non-technical barriers to adoption of the existing tools is also being performed, with identification of regional differences and institutional challenges. Surveys will also gage the regional appropriateness of certain stormwater technologies based off experiences in implementing stormwater treatment and conveyance plans. In additional to compiling qualitative data on existing decision support tools, a technical review of components of the decision support tool used will be performed. Gaps in each tool's analysis, like the lack of certain critical functionalities, will be identified and ease of use will be evaluated. Conclusions drawn from both the qualitative and quantitative analyses will be used to inform the development of the new decision support tool and its eventual dissemination.

  3. Look@NanoSIMS--a tool for the analysis of nanoSIMS data in environmental microbiology.

    PubMed

    Polerecky, Lubos; Adam, Birgit; Milucka, Jana; Musat, Niculina; Vagner, Tomas; Kuypers, Marcel M M

    2012-04-01

    We describe an open-source freeware programme for high throughput analysis of nanoSIMS (nanometre-scale secondary ion mass spectrometry) data. The programme implements basic data processing and analytical functions, including display and drift-corrected accumulation of scanned planes, interactive and semi-automated definition of regions of interest (ROIs), and export of the ROIs' elemental and isotopic composition in graphical and text-based formats. Additionally, the programme offers new functions that were custom-designed to address the needs of environmental microbiologists. Specifically, it allows manual and automated classification of ROIs based on the information that is derived either from the nanoSIMS dataset itself (e.g. from labelling achieved by halogen in situ hybridization) or is provided externally (e.g. as a fluorescence in situ hybridization image). Moreover, by implementing post-processing routines coupled to built-in statistical tools, the programme allows rapid synthesis and comparative analysis of results from many different datasets. After validation of the programme, we illustrate how these new processing and analytical functions increase flexibility, efficiency and depth of the nanoSIMS data analysis. Through its custom-made and open-source design, the programme provides an efficient, reliable and easily expandable tool that can help a growing community of environmental microbiologists and researchers from other disciplines process and analyse their nanoSIMS data. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-Art and Challenges

    PubMed Central

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dys)functions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed). This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semi)automated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc.), and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are being faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data. PMID:27313507

  5. Generic trending and analysis system

    NASA Technical Reports Server (NTRS)

    Keehan, Lori; Reese, Jay

    1994-01-01

    The Generic Trending and Analysis System (GTAS) is a generic spacecraft performance monitoring tool developed by NASA Code 511 and Loral Aerosys. It is designed to facilitate quick anomaly resolution and trend analysis. Traditionally, the job of off-line analysis has been performed using hardware and software systems developed for real-time spacecraft contacts; then, the systems were supplemented with a collection of tools developed by Flight Operations Team (FOT) members. Since the number of upcoming missions is increasing, NASA can no longer afford to operate in this manner. GTAS improves control center productivity and effectiveness because it provides a generic solution across multiple missions. Thus, GTAS eliminates the need for each individual mission to develop duplicate capabilities. It also allows for more sophisticated tools to be developed because it draws resources from several projects. In addition, the GTAS software system incorporates commercial off-the-shelf tools software (COTS) packages and reuses components of other NASA-developed systems wherever possible. GTAS has incorporated lessons learned from previous missions by involving the users early in the development process. GTAS users took a proactive role in requirements analysis, design, development, and testing. Because of user involvement, several special tools were designed and are now being developed. GTAS users expressed considerable interest in facilitating data collection for long term trending and analysis. As a result, GTAS provides easy access to large volumes of processed telemetry data directly in the control center. The GTAS archival and retrieval capabilities are supported by the integration of optical disk technology and a COTS relational database management system.

  6. Classification of processes involved in sharing individual participant data from clinical trials.

    PubMed

    Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena

    2018-01-01

    Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods : Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing.

  7. Classification of processes involved in sharing individual participant data from clinical trials

    PubMed Central

    Ohmann, Christian; Canham, Steve; Banzi, Rita; Kuchinke, Wolfgang; Battaglia, Serena

    2018-01-01

    Background: In recent years, a cultural change in the handling of data from research has resulted in the strong promotion of a culture of openness and increased sharing of data. In the area of clinical trials, sharing of individual participant data involves a complex set of processes and the interaction of many actors and actions. Individual services/tools to support data sharing are available, but what is missing is a detailed, structured and comprehensive list of processes/subprocesses involved and tools/services needed. Methods: Principles and recommendations from a published data sharing consensus document are analysed in detail by a small expert group. Processes/subprocesses involved in data sharing are identified and linked to actors and possible services/tools. Definitions are adapted from the business process model and notation (BPMN) and applied in the analysis. Results: A detailed and comprehensive list of individual processes/subprocesses involved in data sharing, structured according to 9 main processes, is provided. Possible tools/services to support these processes/subprocesses are identified and grouped according to major type of support. Conclusions: The list of individual processes/subprocesses and tools/services identified is a first step towards development of a generic framework or architecture for sharing of data from clinical trials. Such a framework is strongly needed to give an overview of how various actors, research processes and services could form an interoperable system for data sharing. PMID:29623192

  8. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  9. AQUATOX Features and Tools

    EPA Pesticide Factsheets

    Numerous features have been included to facilitate the modeling process, from model setup and data input, presentation and analysis of results, to easy export of results to spreadsheet programs for additional analysis.

  10. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  11. Software analysis handbook: Software complexity analysis and software reliability estimation and prediction

    NASA Technical Reports Server (NTRS)

    Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron

    1994-01-01

    This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.

  12. Applications of urban tree canopy assessment and prioritization tools: supporting collaborative decision making to achieve urban sustainability goals

    Treesearch

    Dexter H. Locke; J. Morgan Grove; Michael Galvin; Jarlath P.M. ONeil-Dunne; Charles Murphy

    2013-01-01

    Urban Tree Canopy (UTC) Prioritizations can be both a set of geographic analysis tools and a planning process for collaborative decision-making. In this paper, we describe how UTC Prioritizations can be used as a planning process to provide decision support to multiple government agencies, civic groups and private businesses to aid in reaching a canopy target. Linkages...

  13. Application of structured analysis to a telerobotic system

    NASA Technical Reports Server (NTRS)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  14. Addressing multi-label imbalance problem of surgical tool detection using CNN.

    PubMed

    Sahu, Manish; Mukhopadhyay, Anirban; Szengel, Angelika; Zachow, Stefan

    2017-06-01

    A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during convolutional neural network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance runtime prediction. Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. The analysis on tool imbalance, backed by the empirical results, indicates the need and superiority of the proposed framework over state-of-the-art techniques.

  15. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  16. MatSeis and the GNEM R&E regional seismic anaylsis tools.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Eric Paul; Hart, Darren M.; Young, Christopher John

    2003-08-01

    To improve the nuclear event monitoring capability of the U.S., the NNSA Ground-based Nuclear Explosion Monitoring Research & Engineering (GNEM R&E) program has been developing a collection of products known as the Knowledge Base (KB). Though much of the focus for the KB has been on the development of calibration data, we have also developed numerous software tools for various purposes. The Matlab-based MatSeis package and the associated suite of regional seismic analysis tools were developed to aid in the testing and evaluation of some Knowledge Base products for which existing applications were either not available or ill-suited. This presentationmore » will provide brief overviews of MatSeis and each of the tools, emphasizing features added in the last year. MatSeis was begun in 1996 and is now a fairly mature product. It is a highly flexible seismic analysis package that provides interfaces to read data from either flatfiles or an Oracle database. All of the standard seismic analysis tasks are supported (e.g. filtering, 3 component rotation, phase picking, event location, magnitude calculation), as well as a variety of array processing algorithms (beaming, FK, coherency analysis, vespagrams). The simplicity of Matlab coding and the tremendous number of available functions make MatSeis/Matlab an ideal environment for developing new monitoring research tools (see the regional seismic analysis tools below). New MatSeis features include: addition of evid information to events in MatSeis, options to screen picks by author, input and output of origerr information, improved performance in reading flatfiles, improved speed in FK calculations, and significant improvements to Measure Tool (filtering, multiple phase display), Free Plot (filtering, phase display and alignment), Mag Tool (maximum likelihood options), and Infra Tool (improved calculation speed, display of an F statistic stream). Work on the regional seismic analysis tools (CodaMag, EventID, PhaseMatch, and Dendro) began in 1999 and the tools vary in their level of maturity. All rely on MatSeis to provide necessary data (waveforms, arrivals, origins, and travel time curves). CodaMag Tool implements magnitude calculation by scaling to fit the envelope shape of the coda for a selected phase type (Mayeda, 1993; Mayeda and Walter, 1996). New tool features include: calculation of a yield estimate based on the source spectrum, display of a filtered version of the seismogram based on the selected band, and the output of codamag data records for processed events. EventID Tool implements event discrimination using phase ratios of regional arrivals (Hartse et al., 1997; Walter et al., 1999). New features include: bandpass filtering of displayed waveforms, screening of reference events based on SNR, multivariate discriminants, use of libcgi to access correction surfaces, and the output of discrim{_}data records for processed events. PhaseMatch Tool implements match filtering to isolate surface waves (Herrin and Goforth, 1977). New features include: display of the signal's observed dispersion and an option to use a station-based dispersion surface. Dendro Tool implements agglomerative hierarchical clustering using dendrograms to identify similar events based on waveform correlation (Everitt, 1993). New features include: modifications to include arrival information within the tool, and the capability to automatically add/re-pick arrivals based on the picked arrivals for similar events.« less

  17. Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)

    2001-01-01

    The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.

  18. Development of materials for the rapid manufacture of die cast tooling

    NASA Astrophysics Data System (ADS)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely, reduce tooling cost, shorten tooling creation time, and reduce the man-hours needed for tool creation. Though identifying the appropriate time to use RP tooling appears to be the most important aspect in achieving successful implementation.

  19. Machine Learning: A Crucial Tool for Sensor Design

    PubMed Central

    Zhao, Weixiang; Bhushan, Abhinav; Santamaria, Anthony D.; Simon, Melinda G.; Davis, Cristina E.

    2009-01-01

    Sensors have been widely used for disease diagnosis, environmental quality monitoring, food quality control, industrial process analysis and control, and other related fields. As a key tool for sensor data analysis, machine learning is becoming a core part of novel sensor design. Dividing a complete machine learning process into three steps: data pre-treatment, feature extraction and dimension reduction, and system modeling, this paper provides a review of the methods that are widely used for each step. For each method, the principles and the key issues that affect modeling results are discussed. After reviewing the potential problems in machine learning processes, this paper gives a summary of current algorithms in this field and provides some feasible directions for future studies. PMID:20191110

  20. Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley

    2009-01-01

    Multidisciplinary design, analysis, and optimization using a genetic algorithm is being developed at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) to automate analysis and design process by leveraging existing tools to enable true multidisciplinary optimization in the preliminary design stage of subsonic, transonic, supersonic, and hypersonic aircraft. This is a promising technology, but faces many challenges in large-scale, real-world application. This report describes current approaches, recent results, and challenges for multidisciplinary design, analysis, and optimization as demonstrated by experience with the Ikhana fire pod design.!

  1. Optimization and Surface Modification of Al-6351 Alloy Using SiC-Cu Green Compact Electrode by Electro Discharge Coating Process

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sujoy; Kar, Siddhartha; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-06-01

    This paper introduces the surface modification of Al-6351 alloy by green compact SiC-Cu electrode using electro-discharge coating (EDC) process. A Taguchi L-16 orthogonal array is employed to investigate the process by varying tool parameters like composition and compaction load and electro-discharge machining (EDM) parameters like pulse-on time and peak current. Material deposition rate (MDR), tool wear rate (TWR) and surface roughness (SR) are measured on the coated specimens. An optimum condition is achieved by formulating overall evaluation criteria (OEC), which combines multi-objective task into a single index. The signal-to-noise (S/N) ratio, and the analysis of variance (ANOVA) is employed to investigate the effect of relevant process parameters. A confirmation test is conducted based on optimal process parameters and experimental results are provided to illustrate the effectiveness of this approach. The modified surface is characterized by optical microscope and X-ray diffraction (XRD) analysis. XRD analysis of the deposited layer confirmed the transfer of tool materials to the work surface and formation of inter-metallic phases. The micro-hardness of the resulting composite layer is also measured which is 1.5-3 times more than work material’s one and highest layer thickness (LT) of 83.644μm has been successfully achieved.

  2. Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion

    NASA Astrophysics Data System (ADS)

    Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.

    2011-01-01

    In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.

  3. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes.

    PubMed

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-04-25

    With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way.

  4. On the Development of a Hospital-Patient Web-Based Communication Tool: A Case Study From Norway.

    PubMed

    Granja, Conceição; Dyb, Kari; Bolle, Stein Roald; Hartvigsen, Gunnar

    2015-01-01

    Surgery cancellations are undesirable in hospital settings as they increase costs, reduce productivity and efficiency, and directly affect the patient. The problem of elective surgery cancellations in a North Norwegian University Hospital is addressed. Based on a three-step methodology conducted at the hospital, the preoperative planning process was modeled taking into consideration the narratives from different health professions. From the analysis of the generated process models, it is concluded that in order to develop a useful patient centered web-based communication tool, it is necessary to fully understand how hospitals plan and organize surgeries today. Moreover, process reengineering is required to generate a standard process that can serve as a tool for health ICT designers to define the requirements for a robust and useful system.

  5. Formability Analysis of Bamboo Fabric Reinforced Poly (Lactic) Acid Composites

    PubMed Central

    M. R., Nurul Fazita; Jayaraman, Krishnan; Bhattacharyya, Debes

    2016-01-01

    Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters. PMID:28773662

  6. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  7. Assessing Group Interaction with Social Language Network Analysis

    NASA Astrophysics Data System (ADS)

    Scholand, Andrew J.; Tausczik, Yla R.; Pennebaker, James W.

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  8. Understanding human uses and values in watershed analysis.

    Treesearch

    Roger D. Fight; Linda E. Kruger; Christopher Hansen-Murray; Arnold Holden; Dale Bays

    2000-01-01

    Watershed analysis is used as a tool to understand the functioning of aquatic and terrestrial ecosystem processes at the landscape scale and to assess opportunities to restore or improve those processes and associated watershed conditions. Assessing those opportunities correctly requires an understanding of how humans have interacted with the watershed in the past and...

  9. Family therapy process - works on the Polish version of SCORE-15 tool.

    PubMed

    Józefik, Barbara; Matusiak, Feliks; Wolska, Małgorzata; Ulasińska, Romualda

    2016-01-01

    The aim of the paper is to demonstrate progress of the works on the Polish version of SCORE-15 and the results of the preliminary data analysis of changes in the process of family therapy, obtained with this tool. The works on the Polish version, ongoing since 2010, were inspired by the Research Committee European Family Therapy Association EFTA. Since the Polish version of SCORE-15 will be make public and published on EFTA website in the near future, therefore, it is important that people interested in the tool know the context of its development. The Polish version of SCORE-15, the tool designed to examine the process of family therapy, was used. The comparison of the results obtained by family members before the first family session and before the fourth one and psychotherapists' assessments show that the perception of the weight of the problem with which the family members came to therapy is indeed significantly lower already after three sessions of family therapy. Additionally, the obtained results show great coherence of the assessment of the family therapy progress in families and their therapists. The preliminary analysis of data obtained during the research project conducted in Outpatient Family Therapy Clinic, Department of Adult, Child and Adolescent Psychiatry, University Hospital in Krakow and in Laboratory of Psychology and Systemic Psychotherapy, Department of Child and Adolescent Psychiatry, Jagiellonian University Medical College between 2010 and 2014 revealed that SCORE-15 is a useful tool in research on changes in the systemic family therapy process.

  10. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  11. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Pathology economic model tool: a novel approach to workflow and budget cost analysis in an anatomic pathology laboratory.

    PubMed

    Muirhead, David; Aoun, Patricia; Powell, Michael; Juncker, Flemming; Mollerup, Jens

    2010-08-01

    The need for higher efficiency, maximum quality, and faster turnaround time is a continuous focus for anatomic pathology laboratories and drives changes in work scheduling, instrumentation, and management control systems. To determine the costs of generating routine, special, and immunohistochemical microscopic slides in a large, academic anatomic pathology laboratory using a top-down approach. The Pathology Economic Model Tool was used to analyze workflow processes at The Nebraska Medical Center's anatomic pathology laboratory. Data from the analysis were used to generate complete cost estimates, which included not only materials, consumables, and instrumentation but also specific labor and overhead components for each of the laboratory's subareas. The cost data generated by the Pathology Economic Model Tool were compared with the cost estimates generated using relative value units. Despite the use of automated systems for different processes, the workflow in the laboratory was found to be relatively labor intensive. The effect of labor and overhead on per-slide costs was significantly underestimated by traditional relative-value unit calculations when compared with the Pathology Economic Model Tool. Specific workflow defects with significant contributions to the cost per slide were identified. The cost of providing routine, special, and immunohistochemical slides may be significantly underestimated by traditional methods that rely on relative value units. Furthermore, a comprehensive analysis may identify specific workflow processes requiring improvement.

  13. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  14. A Portfolio Analysis Tool for Measuring NASAs Aeronautics Research Progress toward Planned Strategic Outcomes

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad; Pearce, Robert

    2016-01-01

    Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. The strategic planning process for determining the community Outcomes is also briefly described. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples are also presented.

  15. Improving designer productivity

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting those challenges.

  16. PATHA: Performance Analysis Tool for HPC Applications

    DOE PAGES

    Yoo, Wucherl; Koo, Michelle; Cao, Yi; ...

    2016-02-18

    Large science projects rely on complex workflows to analyze terabytes or petabytes of data. These jobs are often running over thousands of CPU cores and simultaneously performing data accesses, data movements, and computation. It is difficult to identify bottlenecks or to debug the performance issues in these large workflows. In order to address these challenges, we have developed Performance Analysis Tool for HPC Applications (PATHA) using the state-of-art open source big data processing tools. Our framework can ingest system logs to extract key performance measures, and apply the most sophisticated statistical tools and data mining methods on the performance data.more » Furthermore, it utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of PATHA, we conduct a case study on the workflows from an astronomy project known as the Palomar Transient Factory (PTF). This study processed 1.6 TB of system logs collected on the NERSC supercomputer Edison. Using PATHA, we were able to identify performance bottlenecks, which reside in three tasks of PTF workflow with the dependency on the density of celestial objects.« less

  17. An efficient framework for Java data processing systems in HPC environments

    NASA Astrophysics Data System (ADS)

    Fries, Aidan; Castañeda, Javier; Isasi, Yago; Taboada, Guillermo L.; Portell de Mora, Jordi; Sirvent, Raül

    2011-11-01

    Java is a commonly used programming language, although its use in High Performance Computing (HPC) remains relatively low. One of the reasons is a lack of libraries offering specific HPC functions to Java applications. In this paper we present a Java-based framework, called DpcbTools, designed to provide a set of functions that fill this gap. It includes a set of efficient data communication functions based on message-passing, thus providing, when a low latency network such as Myrinet is available, higher throughputs and lower latencies than standard solutions used by Java. DpcbTools also includes routines for the launching, monitoring and management of Java applications on several computing nodes by making use of JMX to communicate with remote Java VMs. The Gaia Data Processing and Analysis Consortium (DPAC) is a real case where scientific data from the ESA Gaia astrometric satellite will be entirely processed using Java. In this paper we describe the main elements of DPAC and its usage of the DpcbTools framework. We also assess the usefulness and performance of DpcbTools through its performance evaluation and the analysis of its impact on some DPAC systems deployed in the MareNostrum supercomputer (Barcelona Supercomputing Center).

  18. Evaluation methodology for comparing memory and communication of analytic processes in visual analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragan, Eric D; Goodall, John R

    2014-01-01

    Provenance tools can help capture and represent the history of analytic processes. In addition to supporting analytic performance, provenance tools can be used to support memory of the process and communication of the steps to others. Objective evaluation methods are needed to evaluate how well provenance tools support analyst s memory and communication of analytic processes. In this paper, we present several methods for the evaluation of process memory, and we discuss the advantages and limitations of each. We discuss methods for determining a baseline process for comparison, and we describe various methods that can be used to elicit processmore » recall, step ordering, and time estimations. Additionally, we discuss methods for conducting quantitative and qualitative analyses of process memory. By organizing possible memory evaluation methods and providing a meta-analysis of the potential benefits and drawbacks of different approaches, this paper can inform study design and encourage objective evaluation of process memory and communication.« less

  19. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    NASA Astrophysics Data System (ADS)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  20. Proposal on How To Conduct a Biopharmaceutical Process Failure Mode and Effect Analysis (FMEA) as a Risk Assessment Tool.

    PubMed

    Zimmermann, Hartmut F; Hentschel, Norbert

    2011-01-01

    With the publication of the quality guideline ICH Q9 "Quality Risk Management" by the International Conference on Harmonization, risk management has already become a standard requirement during the life cycle of a pharmaceutical product. Failure mode and effect analysis (FMEA) is a powerful risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to biopharmaceutical processes brings about some difficulties. The proposal presented here is intended to serve as a brief but nevertheless comprehensive and detailed guideline on how to conduct a biopharmaceutical process FMEA. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. The application for such a biopharmaceutical process FMEA is widespread. It can be useful whenever a biopharmaceutical manufacturing process is developed or scaled-up, or when it is transferred to a different manufacturing site. It may also be conducted during substantial optimization of an existing process or the development of a second-generation process. According to their resulting risk ratings, process parameters can be ranked for importance and important variables for process development, characterization, or validation can be identified. Health authorities around the world ask pharmaceutical companies to manage risk during development and manufacturing of pharmaceuticals. The so-called failure mode and effect analysis (FMEA) is an established risk analysis tool that has been used for decades in mechanical and electrical industries. However, the adaptation of the FMEA methodology to pharmaceutical processes that use modern biotechnology (biopharmaceutical processes) brings about some difficulties, because those biopharmaceutical processes differ from processes in mechanical and electrical industries. The proposal presented here explains how a biopharmaceutical process FMEA can be conducted. It includes a detailed 1-to-10-scale FMEA rating table for occurrence, severity, and detectability of failures that has been especially designed for typical biopharmaceutical processes. With the help of this guideline, different details of the manufacturing process can be ranked according to their potential risks, and this can help pharmaceutical companies to identify aspects with high potential risks and to react accordingly to improve the safety of medicines.

  1. MIA - A free and open source software for gray scale medical image analysis

    PubMed Central

    2013-01-01

    Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed. PMID:24119305

  2. MIA - A free and open source software for gray scale medical image analysis.

    PubMed

    Wollny, Gert; Kellman, Peter; Ledesma-Carbayo, María-Jesus; Skinner, Matthew M; Hublin, Jean-Jaques; Hierl, Thomas

    2013-10-11

    Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large.Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers.One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development.Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don't provide an clear approach when one wants to shape a new command line tool from a prototype shell script. The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

  3. 1-G Human Factors for Optimal Processing and Operability of Ground Systems Up to CxP GOP PDR

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Henderson, Gena; Miller, Darcy; Prevost, Gary; Tran, Donald; Barth, Tim

    2011-01-01

    This slide presentation reviews the development and use of a process and tool for developing these requirements and improve the design for ground operations. A Human Factors Engineering Analysis (HFEA) Tool was developed to create a dedicated subset of requirements from the FAA requirements for each subsystem. As an example the use of the human interface with an actuator motor is considered.

  4. pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data

    NASA Astrophysics Data System (ADS)

    Shkurti, Ardita; Goni, Ramon; Andrio, Pau; Breitmoser, Elena; Bethune, Iain; Orozco, Modesto; Laughton, Charles A.

    The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD) simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced) written in Python.

  5. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  6. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.

  7. EpiTools, A software suite for presurgical brain mapping in epilepsy: Intracerebral EEG.

    PubMed

    Medina Villalon, S; Paz, R; Roehri, N; Lagarde, S; Pizzo, F; Colombet, B; Bartolomei, F; Carron, R; Bénar, C-G

    2018-06-01

    In pharmacoresistant epilepsy, exploration with depth electrodes can be needed to precisely define the epileptogenic zone. Accurate location of these electrodes is thus essential for the interpretation of Stereotaxic EEG (SEEG) signals. As SEEG analysis increasingly relies on signal processing, it is crucial to make a link between these results and patient's anatomy. Our aims were thus to develop a suite of software tools, called "EpiTools", able to i) precisely and automatically localize the position of each SEEG contact and ii) display the results of signal analysis in each patient's anatomy. The first tool, GARDEL (GUI for Automatic Registration and Depth Electrode Localization), is able to automatically localize SEEG contacts and to label each contact according to a pre-specified nomenclature (for instance that of FreeSurfer or MarsAtlas). The second tool, 3Dviewer, enables to visualize in the 3D anatomy of the patient the origin of signal processing results such as rate of biomarkers, connectivity graphs or Epileptogenicity Index. GARDEL was validated in 30 patients by clinicians and proved to be highly reliable to determine within the patient's individual anatomy the actual location of contacts. GARDEL is a fully automatic electrode localization tool needing limited user interaction (only for electrode naming or contact correction). The 3Dviewer is able to read signal processing results and to display them in link with patient's anatomy. EpiTools can help speeding up the interpretation of SEEG data and improving its precision. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Flight Operations Analysis Tool

    NASA Technical Reports Server (NTRS)

    Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca

    2006-01-01

    Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.

  9. REddyProc: Enabling researchers to process Eddy-Covariance data

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas; Moffat, Antje; Migliavacca, Mirco; Knauer, Jürgen; Menzer, Olaf; Sickel, Kerstin; Reichstein, Markus

    2017-04-01

    Analysing Eddy-Covariance measurements involves extensive processing, which puts technical labour to researchers. There is a need to overcome difficulties in data processing associated with deploying, adapting and using existing software and online tools. We tackled that need by developing the REddyProc package in the open source cross-platform language R that provides standard processing routines for reading half-hourly files from different formats, including from the recently released FLUXNET 2015 dataset, uStar threshold estimation and associated uncertainty, gap-filling, flux partitioning (both night-time or daytime based), and visualization of results. Although different in some features, the package mimics the online tool that has been extensively used by many users and site Principal Investigators (PIs) in the last years, and available on the website of the Max Planck Institute for Biogeochemistry. Generally, REddyProc results are statistically equal to results based on the state-of the art tools. The provided routines can be easily installed, configured, used, and integrated with further analysis. Hence the eddy covariance community will benefit from using the provided package allowing easier integration of standard processing with extended analysis. This complements activities by AmeriFlux, ICOS, NEON, and other regional networks for developing codes for standardized data processing of multiple sites in FLUXNET.

  10. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  11. System Engineering Concept Demonstration, Effort Summary. Volume 1

    DTIC Science & Technology

    1992-12-01

    involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This

  12. ITRB Spar Domestic Source

    DTIC Science & Technology

    2012-12-14

    Each pair of rollers is designed to capture the shafts mounted to both ends of the tool lid. Additionally, a safety pin can be put in place to...ITRB for the AH-64D. The scope of the program included structural design , materials selection, manufacturing producibility analysis, tooling design ...responsible for tooling design and fabrication, fabrication process development and fabrication of spars and test samples; G3 who designed the RTM

  13. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a folding wing, and a bat-like wing. The paper also includes the verification of a medium-fidelity aerodynamic tool used for the aerodynamic database generation with a steady and unsteady high-fidelity CFD analysis tool for a folding wing example.

  14. FT-NIR: A Tool for Process Monitoring and More.

    PubMed

    Martoccia, Domenico; Lutz, Holger; Cohen, Yvan; Jerphagnon, Thomas; Jenelten, Urban

    2018-03-30

    With ever-increasing pressure to optimize product quality, to reduce cost and to safely increase production output from existing assets, all combined with regular changes in terms of feedstock and operational targets, process monitoring with traditional instruments reaches its limits. One promising answer to these challenges is in-line, real time process analysis with spectroscopic instruments, and above all Fourier-Transform Near Infrared spectroscopy (FT-NIR). Its potential to afford decreased batch cycle times, higher yields, reduced rework and minimized batch variance is presented and application examples in the field of fine chemicals are given. We demonstrate that FT-NIR can be an efficient tool for improved process monitoring and optimization, effective process design and advanced process control.

  15. Computational fluid dynamics applications to improve crop production systems

    USDA-ARS?s Scientific Manuscript database

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  16. High-Performance Data Analysis Tools for Sun-Earth Connection Missions

    NASA Technical Reports Server (NTRS)

    Messmer, Peter

    2011-01-01

    The data analysis tool of choice for many Sun-Earth Connection missions is the Interactive Data Language (IDL) by ITT VIS. The increasing amount of data produced by these missions and the increasing complexity of image processing algorithms requires access to higher computing power. Parallel computing is a cost-effective way to increase the speed of computation, but algorithms oftentimes have to be modified to take advantage of parallel systems. Enhancing IDL to work on clusters gives scientists access to increased performance in a familiar programming environment. The goal of this project was to enable IDL applications to benefit from both computing clusters as well as graphics processing units (GPUs) for accelerating data analysis tasks. The tool suite developed in this project enables scientists now to solve demanding data analysis problems in IDL that previously required specialized software, and it allows them to be solved orders of magnitude faster than on conventional PCs. The tool suite consists of three components: (1) TaskDL, a software tool that simplifies the creation and management of task farms, collections of tasks that can be processed independently and require only small amounts of data communication; (2) mpiDL, a tool that allows IDL developers to use the Message Passing Interface (MPI) inside IDL for problems that require large amounts of data to be exchanged among multiple processors; and (3) GPULib, a tool that simplifies the use of GPUs as mathematical coprocessors from within IDL. mpiDL is unique in its support for the full MPI standard and its support of a broad range of MPI implementations. GPULib is unique in enabling users to take advantage of an inexpensive piece of hardware, possibly already installed in their computer, and achieve orders of magnitude faster execution time for numerically complex algorithms. TaskDL enables the simple setup and management of task farms on compute clusters. The products developed in this project have the potential to interact, so one can build a cluster of PCs, each equipped with a GPU, and use mpiDL to communicate between the nodes and GPULib to accelerate the computations on each node.

  17. QuakeSim 2.0

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant

    2012-01-01

    QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes, and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful as a data-quality tool, enabling the discovery of station anomalies and data processing and distribution errors. Improved visualization tools enable more efficient data exploration and understanding. Tools provide flexibility to science users for exploring data in new ways through download links, but also facilitate standard, intuitive, and routine uses for science users and end users such as emergency responders.

  18. Metabolomic Analysis and Visualization Engine for LC–MS Data

    PubMed Central

    Melamud, Eugene; Vastag, Livia; Rabinowitz, Joshua D.

    2017-01-01

    Metabolomic analysis by liquid chromatography–high-resolution mass spectrometry results in data sets with thousands of features arising from metabolites, fragments, isotopes, and adducts. Here we describe a software package, Metabolomic Analysis and Visualization ENgine (MAVEN), designed for efficient interactive analysis of LC–MS data, including in the presence of isotope labeling. The software contains tools for all aspects of the data analysis process, from feature extraction to pathway-based graphical data display. To facilitate data validation, a machine learning algorithm automatically assesses peak quality. Users interact with raw data primarily in the form of extracted ion chromatograms, which are displayed with overlaid circles indicating peak quality, and bar graphs of peak intensities for both unlabeled and isotope-labeled metabolite forms. Click-based navigation leads to additional information, such as raw data for specific isotopic forms or for metabolites changing significantly between conditions. Fast data processing algorithms result in nearly delay-free browsing. Drop-down menus provide tools for the overlay of data onto pathway maps. These tools enable animating series of pathway graphs, e.g., to show propagation of labeled forms through a metabolic network. MAVEN is released under an open source license at http://maven.princeton.edu. PMID:21049934

  19. FunGene: the functional gene pipeline and repository.

    PubMed

    Fish, Jordan A; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C Titus; Tiedje, James M; Cole, James R

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes.

  20. SimHap GUI: An intuitive graphical user interface for genetic association analysis

    PubMed Central

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-01-01

    Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877

  1. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    PubMed

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  2. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    PubMed Central

    Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results. PMID:26881267

  3. Process mapping as a tool for home health network analysis.

    PubMed

    Pluto, Delores M; Hirshorn, Barbara A

    2003-01-01

    Process mapping is a qualitative tool that allows service providers, policy makers, researchers, and other concerned stakeholders to get a "bird's eye view" of a home health care organizational network or a very focused, in-depth view of a component of such a network. It can be used to share knowledge about community resources directed at the older population, identify gaps in resource availability and access, and promote on-going collaborative interactions that encourage systemic policy reassessment and programmatic refinement. This article is a methodological description of process mapping, which explores its utility as a practice and research tool, illustrates its use in describing service-providing networks, and discusses some of the issues that are key to successfully using this methodology.

  4. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  5. Application of dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study

    NASA Astrophysics Data System (ADS)

    Vikram, K. Arun; Ratnam, Ch; Lakshmi, VVK; Kumar, A. Sunny; Ramakanth, RT

    2018-02-01

    Meta-heuristic multi-response optimization methods are widely in use to solve multi-objective problems to obtain Pareto optimal solutions during optimization. This work focuses on optimal multi-response evaluation of process parameters in generating responses like surface roughness (Ra), surface hardness (H) and tool vibration displacement amplitude (Vib) while performing operations like tangential and orthogonal turn-mill processes on A-axis Computer Numerical Control vertical milling center. Process parameters like tool speed, feed rate and depth of cut are considered as process parameters machined over brass material under dry condition with high speed steel end milling cutters using Taguchi design of experiments (DOE). Meta-heuristic like Dragonfly algorithm is used to optimize the multi-objectives like ‘Ra’, ‘H’ and ‘Vib’ to identify the optimal multi-response process parameters combination. Later, the results thus obtained from multi-objective dragonfly algorithm (MODA) are compared with another multi-response optimization technique Viz. Grey relational analysis (GRA).

  6. Effects of machining parameters on tool life and its optimization in turning mild steel with brazed carbide cutting tool

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Mukherjee, S.

    2016-09-01

    One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.

  7. Bio-jETI: a service integration, design, and provisioning platform for orchestrated bioinformatics processes

    PubMed Central

    Margaria, Tiziana; Kubczak, Christian; Steffen, Bernhard

    2008-01-01

    Background With Bio-jETI, we introduce a service platform for interdisciplinary work on biological application domains and illustrate its use in a concrete application concerning statistical data processing in R and xcms for an LC/MS analysis of FAAH gene knockout. Methods Bio-jETI uses the jABC environment for service-oriented modeling and design as a graphical process modeling tool and the jETI service integration technology for remote tool execution. Conclusions As a service definition and provisioning platform, Bio-jETI has the potential to become a core technology in interdisciplinary service orchestration and technology transfer. Domain experts, like biologists not trained in computer science, directly define complex service orchestrations as process models and use efficient and complex bioinformatics tools in a simple and intuitive way. PMID:18460173

  8. Bio-TDS: bioscience query tool discovery system.

    PubMed

    Gnimpieba, Etienne Z; VanDiermen, Menno S; Gustafson, Shayla M; Conn, Bill; Lushbough, Carol M

    2017-01-04

    Bioinformatics and computational biology play a critical role in bioscience and biomedical research. As researchers design their experimental projects, one major challenge is to find the most relevant bioinformatics toolkits that will lead to new knowledge discovery from their data. The Bio-TDS (Bioscience Query Tool Discovery Systems, http://biotds.org/) has been developed to assist researchers in retrieving the most applicable analytic tools by allowing them to formulate their questions as free text. The Bio-TDS is a flexible retrieval system that affords users from multiple bioscience domains (e.g. genomic, proteomic, bio-imaging) the ability to query over 12 000 analytic tool descriptions integrated from well-established, community repositories. One of the primary components of the Bio-TDS is the ontology and natural language processing workflow for annotation, curation, query processing, and evaluation. The Bio-TDS's scientific impact was evaluated using sample questions posed by researchers retrieved from Biostars, a site focusing on BIOLOGICAL DATA ANALYSIS: The Bio-TDS was compared to five similar bioscience analytic tool retrieval systems with the Bio-TDS outperforming the others in terms of relevance and completeness. The Bio-TDS offers researchers the capacity to associate their bioscience question with the most relevant computational toolsets required for the data analysis in their knowledge discovery process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. The ALICE System: A Workbench for Learning and Using Language.

    ERIC Educational Resources Information Center

    Levin, Lori; And Others

    1991-01-01

    ALICE, a multimedia framework for intelligent computer-assisted language instruction (ICALI) at Carnegie Mellon University (PA), consists of a set of tools for building a number of different types of ICALI programs in any language. Its Natural Language Processing tools for syntactic error detection, morphological analysis, and generation of…

  10. Heart Rate Variability – a Tool to Differentiate Positive and Negative Affective States in Pigs?

    USDA-ARS?s Scientific Manuscript database

    The causal neurophysiological processes, such as autonomic nervous system activity, that mediate behavioral and physiological reactivity to an environment have largely been ignored. Heart rate variability (HRV) analysis is a clinical diagnostic tool used to assess affective states (stressful and ple...

  11. Integrated Analysis Tools for Determination of Structural Integrity and Durability of High temperature Polymer Matrix Composites

    DTIC Science & Technology

    2008-08-18

    fidelity will be used to reduce the massive experimental testing and associated time required for qualification of new materials. Tools and...develping a model of the thermo-oxidative process for polymer systems, that incorporates the effects of reaction rates, Fickian diffusion, time varying...degradation processes. Year: 2005 Month: 12 Not required at this time . AIR FORCE OFFICE OF SCIENTIFIC KESEARCH 04 SEP 2008 Page 2 of 2 DTIC Data

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenney, J.L.

    SARS is a data acquisition system designed to gather and process radar data from aircraft flights. A database of flight trajectories has been developed for Albuquerque, NM, and Amarillo, TX. The data is used for safety analysis and risk assessment reports. To support this database effort, Sandia developed a collection of hardware and software tools to collect and post process the aircraft radar data. This document describes the data reduction tools which comprise the SARS, and maintenance procedures for the hardware and software system.

  13. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  14. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  15. Development of Data Processing and Analysis Tools for Atmospheric Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Guillet, N.; Stassinopoulos, E. G.; Stauffer, C. A.; Dumas, M.; Palau, J.-M.; Calvet, M.-C.

    2001-01-01

    This paper reports on the data processing methods and techniques of measurements made by several miniature radiation spectrometers flying on different types of carriers within the Earth's atmosphere at aviation and balloon altitudes.

  16. Providing web-based tools for time series access and analysis

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30, 833-845. Verbesselt, J., R. Hyndman, G. Newnham and D. Culvenor (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 106-115. DOI: 10.1016/j.rse.2009.08.014 Forkel, M., N. Carvalhais, J. Verbesselt, M. Mahecha, C. Neigh and M. Reichstein (2013). Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing 5, 2113-2144.

  17. Virtual tool mark generation for efficient striation analysis in forensic science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekstrand, Laura

    In 2009, a National Academy of Sciences report called for investigation into the scienti c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served tomore » con rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5 and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the best matching virtual mark, allowing the examiner to focus his/her mark analysis on a smaller range of angles. Preliminary results are quite promising. In a study with both sides of 6 screwdriver tips and 34 corresponding marks, the method distinguished known matches from known non-matches with zero false positive matches and only two matches mistaken for non-matches. For matches, it could predict the correct marking angle within 5-10 . Moreover, on a standard desktop computer, the virtual marking software is capable of cleaning 3D tip and plate scans in minutes and producing a virtual mark and comparing it to a real mark in seconds. These results support several of the professional conclusions of the tool mark analysis com- munity, including the idea that marks produced by the same tool only match if they are made at similar angles. The method also displays the potential to automate part of the comparison process, freeing the examiner to focus on other tasks, which is important in busy, backlogged crime labs. Finally, the method o ers the unique chance to directly link an evidence mark to the tool that produced it while reducing potential damage to the evidence.« less

  18. Optimization of Maghemite (γ-Fe2O3) Nano-Powder Mixed micro-EDM of CoCrMo with Multiple Responses Using Gray Relational Analysis (GRA)

    NASA Astrophysics Data System (ADS)

    Mejid Elsiti, Nagwa; Noordin, M. Y.; Idris, Ani; Saed Majeed, Faraj

    2017-10-01

    This paper presents an optimization of process parameters of Micro-Electrical Discharge Machining (EDM) process with (γ-Fe2O3) nano-powder mixed dielectric using multi-response optimization Grey Relational Analysis (GRA) method instead of single response optimization. These parameters were optimized based on 2-Level factorial design combined with Grey Relational Analysis. The machining parameters such as peak current, gap voltage, and pulse on time were chosen for experimentation. The performance characteristics chosen for this study are material removal rate (MRR), tool wear rate (TWR), Taper and Overcut. Experiments were conducted using electrolyte copper as the tool and CoCrMo as the workpiece. Experimental results have been improved through this approach.

  19. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.

    PubMed

    Cianfrocco, Michael A; Lahiri, Indrajit; DiMaio, Frank; Leschziner, Andres E

    2018-06-01

    Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-galactosidase in ∼55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. Copyright © 2018. Published by Elsevier Inc.

  20. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Dianliang; Zhu Hongmin; Shanghai Key Laboratory of Advance Manufacturing Environment

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools andmore » equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.« less

  1. OverPlotter: A Utility for Herschel Data Processing

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Mei, Y.; Schulz, B.

    2008-08-01

    The OverPlotter utility is a GUI tool written in Java to support interactive data processing (DP) and analysis for the Herschel Space Observatory within the framework of the Herschel Common Science System (HCSS)(Wieprecht et al 2004). The tool expands upon the capabilities of the TableViewer (Zhang & Schulz 2005), providing now also the means to create additional overlays of several X/Y scatter plots within the same display area. These layers can be scaled and panned, either individually, or together as one graph. Visual comparison of data with different origins and units becomes much easier. The number of available layers is not limited, except by computer memory and performance. Presentation images can be easily created by adding annotations, labeling layers and setting colors. The tool will be very helpful especially in the early phases of Herschel data analysis, when a quick access to contents of data products is important.

  2. MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB.

    PubMed

    Egert, U; Knott, Th; Schwarz, C; Nawrot, M; Brandt, A; Rotter, S; Diesmann, M

    2002-05-30

    Recent advances in electrophysiological techniques have created new tools for the acquisition and storage of neuronal activity recorded simultaneously with numerous electrodes. These techniques support the analysis of the function as well as the structure of individual electrogenic cells in the context of surrounding neuronal or cardiac network. Commercially available tools for the analysis of such data, however, cannot be easily adapted to newly emerging requirements for data analysis and visualization, and cross compatibility between them is limited. In this report we introduce a free open source toolbox called microelectrode array tools (MEA-Tools) for the analysis of multi-electrode data based on the common data analysis environment MATLAB (version 5.3-6.1, The Mathworks, Natick, MA). The toolbox itself is platform independent. The file interface currently supports files recorded with MCRack (Multi Channel Systems, Reutlingen, Germany) under Microsoft Windows 95, 98, NT, and 2000, but can be adapted to other data acquisition systems. Functions are controlled via command line input and graphical user interfaces, and support common requirements for the analysis of local field potentials, extracellular spike activity, and continuous recordings, in addition to supplementary data acquired by additional instruments, e.g. intracellular amplifiers. Data may be processed as continuous recordings or time windows triggered to some event.

  3. A Comparative Case Study Analysis of Administrators Perceptions on the Adaptation of Quality and Continuous Improvement Tools to Community Colleges in the State of Michigan

    ERIC Educational Resources Information Center

    Mattis, Ted B.

    2011-01-01

    The purpose of this study was to determine whether community college administrators in the state of Michigan believe that commonly known quality and continuous improvement tools, prevalent in a manufacturing environment, can be adapted to a community college model. The tools, specifically Six Sigma, benchmarking and process mapping have played a…

  4. Probabilistic Structural Analysis of the SRB Aft Skirt External Fitting Modification

    NASA Technical Reports Server (NTRS)

    Townsend, John S.; Peck, J.; Ayala, S.

    1999-01-01

    NASA has funded several major programs (the PSAM Project is an example) to develop Probabilistic Structural Analysis Methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element design tool, known as NESSUS, is used to determine the reliability of the Space Shuttle Solid Rocket Booster (SRB) aft skirt critical weld. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process.

  5. FMAP: Functional Mapping and Analysis Pipeline for metagenomics and metatranscriptomics studies.

    PubMed

    Kim, Jiwoong; Kim, Min Soo; Koh, Andrew Y; Xie, Yang; Zhan, Xiaowei

    2016-10-10

    Given the lack of a complete and comprehensive library of microbial reference genomes, determining the functional profile of diverse microbial communities is challenging. The available functional analysis pipelines lack several key features: (i) an integrated alignment tool, (ii) operon-level analysis, and (iii) the ability to process large datasets. Here we introduce our open-sourced, stand-alone functional analysis pipeline for analyzing whole metagenomic and metatranscriptomic sequencing data, FMAP (Functional Mapping and Analysis Pipeline). FMAP performs alignment, gene family abundance calculations, and statistical analysis (three levels of analyses are provided: differentially-abundant genes, operons and pathways). The resulting output can be easily visualized with heatmaps and functional pathway diagrams. FMAP functional predictions are consistent with currently available functional analysis pipelines. FMAP is a comprehensive tool for providing functional analysis of metagenomic/metatranscriptomic sequencing data. With the added features of integrated alignment, operon-level analysis, and the ability to process large datasets, FMAP will be a valuable addition to the currently available functional analysis toolbox. We believe that this software will be of great value to the wider biology and bioinformatics communities.

  6. Internet-Based Software Tools for Analysis and Processing of LIDAR Point Cloud Data via the OpenTopography Portal

    NASA Astrophysics Data System (ADS)

    Nandigam, V.; Crosby, C. J.; Baru, C.; Arrowsmith, R.

    2009-12-01

    LIDAR is an excellent example of the new generation of powerful remote sensing data now available to Earth science researchers. Capable of producing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LIDAR data allows earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible, yet essential for their appropriate representation. Along with these high-resolution datasets comes an increase in the volume and complexity of data that the user must efficiently manage and process in order for it to be scientifically useful. Although there are expensive commercial LIDAR software applications available, processing and analysis of these datasets are typically computationally inefficient on the conventional hardware and software that is currently available to most of the Earth science community. We have designed and implemented an Internet-based system, the OpenTopography Portal, that provides integrated access to high-resolution LIDAR data as well as web-based tools for processing of these datasets. By using remote data storage and high performance compute resources, the OpenTopography Portal attempts to simplify data access and standard LIDAR processing tasks for the Earth Science community. The OpenTopography Portal allows users to access massive amounts of raw point cloud LIDAR data as well as a suite of DEM generation tools to enable users to generate custom digital elevation models to best fit their science applications. The Cyberinfrastructure software tools for processing the data are freely available via the portal and conveniently integrated with the data selection in a single user-friendly interface. The ability to run these tools on powerful Cyberinfrastructure resources instead of their own labs provides a huge advantage in terms of performance and compute power. The system also encourages users to explore data processing methods and the variations in algorithm parameters since all of the processing is done remotely and numerous jobs can be submitted in sequence. The web-based software also eliminates the need for users to deal with the hassles and costs associated with software installation and licensing while providing adequate disk space for storage and personal job archival capability. Although currently limited to data access and DEM generation tasks, the OpenTopography system is modular in design and can be modified to accommodate new processing tools as they become available. We are currently exploring implementation of higher-level DEM analysis tasks in OpenTopography, since such processing is often computationally intensive and thus lends itself to utilization of cyberinfrastructure. Products derived from OpenTopography processing are available in a variety of formats ranging from simple Google Earth visualizations of LIDAR-derived hillshades to various GIS-compatible grid formats. To serve community users less interested in data processing, OpenTopography also hosts 1 km^2 digital elevation model tiles as well as Google Earth image overlays for a synoptic view of the data.

  7. Analysis Tool Web Services from the EMBL-EBI.

    PubMed

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-07-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.

  8. Analysis Tool Web Services from the EMBL-EBI

    PubMed Central

    McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo

    2013-01-01

    Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338

  9. Review of Software Tools for Design and Analysis of Large scale MRM Proteomic Datasets

    PubMed Central

    Colangelo, Christopher M.; Chung, Lisa; Bruce, Can; Cheung, Kei-Hoi

    2013-01-01

    Selective or Multiple Reaction monitoring (SRM/MRM) is a liquid-chromatography (LC)/tandem-mass spectrometry (MS/MS) method that enables the quantitation of specific proteins in a sample by analyzing precursor ions and the fragment ions of their selected tryptic peptides. Instrumentation software has advanced to the point that thousands of transitions (pairs of primary and secondary m/z values) can be measured in a triple quadrupole instrument coupled to an LC, by a well-designed scheduling and selection of m/z windows. The design of a good MRM assay relies on the availability of peptide spectra from previous discovery-phase LC-MS/MS studies. The tedious aspect of manually developing and processing MRM assays involving thousands of transitions has spurred to development of software tools to automate this process. Software packages have been developed for project management, assay development, assay validation, data export, peak integration, quality assessment, and biostatistical analysis. No single tool provides a complete end-to-end solution, thus this article reviews the current state and discusses future directions of these software tools in order to enable researchers to combine these tools for a comprehensive targeted proteomics workflow. PMID:23702368

  10. A tool for exploring the dynamics of innovative interventions for public health: the critical event card.

    PubMed

    Figueiro, Ana Claudia; de Araújo Oliveira, Sydia Rosana; Hartz, Zulmira; Couturier, Yves; Bernier, Jocelyne; do Socorro Machado Freire, Maria; Samico, Isabella; Medina, Maria Guadalupe; de Sa, Ronice Franco; Potvin, Louise

    2017-03-01

    Public health interventions are increasingly represented as complex systems. Research tools for capturing the dynamic of interventions processes, however, are practically non-existent. This paper describes the development and proof of concept process of an analytical tool, the critical event card (CEC), which supports the representation and analysis of complex interventions' evolution, based on critical events. Drawing on the actor-network theory (ANT), we developed and field-tested the tool using three innovative health interventions in northeastern Brazil. Interventions were aimed to promote health equity through intersectoral approaches; were engaged in participatory evaluation and linked to professional training programs. The CEC developing involve practitioners and researchers from projects. Proof of concept was based on document analysis, face-to-face interviews and focus groups. Analytical categories from CEC allow identifying and describing critical events as milestones in the evolution of complex interventions. Categories are (1) event description; (2) actants (human and non-human) involved; (3) interactions between actants; (4) mediations performed; (5) actions performed; (6) inscriptions produced; and (7) consequences for interventions. The CEC provides a tool to analyze and represent intersectoral internvetions' complex and dynamic evolution.

  11. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  12. Desktop microsimulation: a tool to improve efficiency in the medical office practice.

    PubMed

    Montgomery, James B; Linville, Beth A; Slonim, Anthony D

    2013-01-01

    Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.

  13. Research for Policy (R4P): development of a reflection tool for researchers to improve knowledge utilization.

    PubMed

    Hegger, Ingrid; Marks, Lisanne K; Janssen, Susan W J; Schuit, Albertine J; Keijsers, Jolanda F M; van Oers, Hans A M

    2016-09-30

    To improve knowledge utilization in policymaking, alignment between researchers and policymakers during knowledge production is essential, but difficult to maintain. In three previously reported case studies, we extensively evaluated complex research projects commissioned by policymakers to investigate how alignment is achieved in a research process and to discover ways to enhance knowledge contributions to health policy. In the present study, we investigated how the findings of these three research projects could be integrated into a practical tool for researchers to enhance their contribution to evidence-based policy. A cross-case analysis was conducted to integrate the findings of the evaluation of the three research projects and to identify important alignment areas in these projects. By means of an iterative process, we prepared a tool that includes reflection questions for researchers. The "Research for Policy" tool was tested with input from the project managers of three new research projects. Based on the findings, the final version of the Research for Policy tool was prepared. By cross-case analysis of the three case studies, the following important alignment areas were identified: the goal, quality, relevance, timing, and presentation of research, the tasks and authorities of actors, the consultative structure and vertical alignment within organizations, and the organizational environment. The project managers regarded the Research for Policy tool as a useful checklist for addressing the important alignment areas in a research project. Based on their feedback, the illustrative examples from the case studies were added to the reflection questions. The project managers suggested making the tool accessible not only to researchers but also to policymakers. The format of the Research for Policy tool was further adjusted to users' needs by adding clickable links. Alignment between research and policymaking requires continuous efforts and a clear understanding of process issues in the research project. The Research for Policy tool offers practical alignment guidance and facilitates reflection on process issues, which supports researchers in aligning with policymakers and in acting in a context-sensitive way.

  14. RFI and SCRIMP Model Development and Verification

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Sayre, Jay

    2000-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) processes are becoming promising technologies in the manufacturing of primary composite structures in the aircraft industry as well as infrastructure. A great deal of work still needs to be done on efforts to reduce the costly trial-and-error methods of VARTM processing that are currently in practice today. A computer simulation model of the VARTM process would provide a cost-effective tool in the manufacturing of composites utilizing this technique. Therefore, the objective of this research was to modify an existing three-dimensional, Resin Film Infusion (RFI)/Resin Transfer Molding (RTM) model to include VARTM simulation capabilities and to verify this model with the fabrication of aircraft structural composites. An additional objective was to use the VARTM model as a process analysis tool, where this tool would enable the user to configure the best process for manufacturing quality composites. Experimental verification of the model was performed by processing several flat composite panels. The parameters verified included flow front patterns and infiltration times. The flow front patterns were determined to be qualitatively accurate, while the simulated infiltration times over predicted experimental times by 8 to 10%. Capillary and gravitational forces were incorporated into the existing RFI/RTM model in order to simulate VARTM processing physics more accurately. The theoretical capillary pressure showed the capability to reduce the simulated infiltration times by as great as 6%. The gravity, on the other hand, was found to be negligible for all cases. Finally, the VARTM model was used as a process analysis tool. This enabled the user to determine such important process constraints as the location and type of injection ports and the permeability and location of the high-permeable media. A process for a three-stiffener composite panel was proposed. This configuration evolved from the variation of the process constraints in the modeling of several different composite panels. The configuration was proposed by considering such factors as: infiltration time, the number of vacuum ports, and possible areas of void entrapment.

  15. JIMM: the next step for mission-level models

    NASA Astrophysics Data System (ADS)

    Gump, Jamieson; Kurker, Robert G.; Nalepka, Joseph P.

    2001-09-01

    The (Simulation Based Acquisition) SBA process is one in which the planning, design, and test of a weapon system or other product is done through the more effective use of modeling and simulation, information technology, and process improvement. This process results in a product that is produced faster, cheaper, and more reliably than its predecessors. Because the SBA process requires realistic and detailed simulation conditions, it was necessary to develop a simulation tool that would provide a simulation environment acceptable for doing SBA analysis. The Joint Integrated Mission Model (JIMM) was created to help define and meet the analysis, test and evaluation, and training requirements of a Department of Defense program utilizing SBA. Through its generic nature of representing simulation entities, its data analysis capability, and its robust configuration management process, JIMM can be used to support a wide range of simulation applications as both a constructive and a virtual simulation tool. JIMM is a Mission Level Model (MLM). A MLM is capable of evaluating the effectiveness and survivability of a composite force of air and space systems executing operational objectives in a specific scenario against an integrated air and space defense system. Because MLMs are useful for assessing a system's performance in a realistic, integrated, threat environment, they are key to implementing the SBA process. JIMM is a merger of the capabilities of one legacy model, the Suppressor MLM, into another, the Simulated Warfare Environment Generator (SWEG) MLM. By creating a more capable MLM, JIMM will not only be a tool to support the SBA initiative, but could also provide the framework for the next generation of MLMs.

  16. Independent Verification and Validation of Complex User Interfaces: A Human Factors Approach

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Berman, Andrea; Chmielewski, Cynthia

    1996-01-01

    The Usability Testing and Analysis Facility (UTAF) at the NASA Johnson Space Center has identified and evaluated a potential automated software interface inspection tool capable of assessing the degree to which space-related critical and high-risk software system user interfaces meet objective human factors standards across each NASA program and project. Testing consisted of two distinct phases. Phase 1 compared analysis times and similarity of results for the automated tool and for human-computer interface (HCI) experts. In Phase 2, HCI experts critiqued the prototype tool's user interface. Based on this evaluation, it appears that a more fully developed version of the tool will be a promising complement to a human factors-oriented independent verification and validation (IV&V) process.

  17. Time Analysis: Still an Important Accountability Tool.

    ERIC Educational Resources Information Center

    Fairchild, Thomas N.; Seeley, Tracey J.

    1994-01-01

    Reviews benefits to school counselors of conducting a time analysis. Describes time analysis system that authors have used, including case illustration of how authors used data to effect counseling program changes. System described followed process outlined by Fairchild: identifying services, devising coding system, keeping records, synthesizing…

  18. Monitoring machining conditions by infrared images

    NASA Astrophysics Data System (ADS)

    Borelli, Joao E.; Gonzaga Trabasso, Luis; Gonzaga, Adilson; Coelho, Reginaldo T.

    2001-03-01

    During machining process the knowledge of the temperature is the most important factor in tool analysis. It allows to control main factors that influence tool use, life time and waste. The temperature in the contact area between the piece and the tool is resulting from the material removal in cutting operation and it is too difficult to be obtained because the tool and the work piece are in motion. One way to measure the temperature in this situation is detecting the infrared radiation. This work presents a new methodology for diagnosis and monitoring of machining processes with the use of infrared images. The infrared image provides a map in gray tones of the elements in the process: tool, work piece and chips. Each gray tone in the image corresponds to a certain temperature for each one of those materials and the relationship between the gray tones and the temperature is gotten by the previous of infrared camera calibration. The system developed in this work uses an infrared camera, a frame grabber board and a software composed of three modules. The first module makes the image acquisition and processing. The second module makes the feature image extraction and performs the feature vector. Finally, the third module uses fuzzy logic to evaluate the feature vector and supplies the tool state diagnostic as output.

  19. Research on the EDM Technology for Micro-holes at Complex Spatial Locations

    NASA Astrophysics Data System (ADS)

    Y Liu, J.; Guo, J. M.; Sun, D. J.; Cai, Y. H.; Ding, L. T.; Jiang, H.

    2017-12-01

    For the demands on machining micro-holes at complex spatial location, several key technical problems are conquered such as micro-Electron Discharge Machining (micro-EDM) power supply system’s development, the host structure’s design and machining process technical. Through developing low-voltage power supply circuit, high-voltage circuit, micro and precision machining circuit and clearance detection system, the narrow pulse and high frequency six-axis EDM machining power supply system is developed to meet the demands on micro-hole discharging machining. With the method of combining the CAD structure design, CAE simulation analysis, modal test, ODS (Operational Deflection Shapes) test and theoretical analysis, the host construction and key axes of the machine tool are optimized to meet the position demands of the micro-holes. Through developing the special deionized water filtration system to make sure that the machining process is stable enough. To verify the machining equipment and processing technical developed in this paper through developing the micro-hole’s processing flow and test on the real machine tool. As shown in the final test results: the efficient micro-EDM machining pulse power supply system, machine tool host system, deionized filtration system and processing method developed in this paper meet the demands on machining micro-holes at complex spatial locations.

  20. Development of a software tool to support chemical and biological terrorism intelligence analysis

    NASA Astrophysics Data System (ADS)

    Hunt, Allen R.; Foreman, William

    1997-01-01

    AKELA has developed a software tool which uses a systems analytic approach to model the critical processes which support the acquisition of biological and chemical weapons by terrorist organizations. This tool has four major components. The first is a procedural expert system which describes the weapon acquisition process. It shows the relationship between the stages a group goes through to acquire and use a weapon, and the activities in each stage required to be successful. It applies to both state sponsored and small group acquisition. An important part of this expert system is an analysis of the acquisition process which is embodied in a list of observables of weapon acquisition activity. These observables are cues for intelligence collection The second component is a detailed glossary of technical terms which helps analysts with a non- technical background understand the potential relevance of collected information. The third component is a linking capability which shows where technical terms apply to the parts of the acquisition process. The final component is a simple, intuitive user interface which shows a picture of the entire process at a glance and lets the user move quickly to get more detailed information. This paper explains e each of these five model components.

  1. The function of prehistoric lithic tools: a combined study of use-wear analysis and FTIR microspectroscopy.

    PubMed

    Nunziante Cesaro, Stella; Lemorini, Cristina

    2012-02-01

    The application of combined use-wear analysis and FTIR micro spectroscopy for the investigation of the flint and obsidian tools from the archaeological sites of Masseria Candelaro (Foggia, Italy) and Sant'Anna di Oria (Brindisi, Italy) aiming to clarify their functional use is described. The tools excavated in the former site showed in a very high percentage spectroscopically detectable residues on their working edges. The identification of micro deposits is based on comparison with a great number of replicas studied in the same experimental conditions. FTIR data confirmed in almost all cases the use-wear analysis suggestions and added details about the material processed and about the working procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. An Array of Qualitative Data Analysis Tools: A Call for Data Analysis Triangulation

    ERIC Educational Resources Information Center

    Leech, Nancy L.; Onwuegbuzie, Anthony J.

    2007-01-01

    One of the most important steps in the qualitative research process is analysis of data. The purpose of this article is to provide elements for understanding multiple types of qualitative data analysis techniques available and the importance of utilizing more than one type of analysis, thus utilizing data analysis triangulation, in order to…

  3. SERVING EPA'S MISSION: POTENTIAL ROLES OF ENGERETIC TOOLS

    EPA Science Inventory

    Effective environmental protection requires an understanding of environmental systems dynamics that includes socioeconomic activity along with its interactions with environmental processes. Some forms of scientific analysis, such as emergy analysis, do seek to account for the ...

  4. Application of enhanced modern structured analysis techniques to Space Station Freedom electric power system requirements

    NASA Technical Reports Server (NTRS)

    Biernacki, John; Juhasz, John; Sadler, Gerald

    1991-01-01

    A team of Space Station Freedom (SSF) system engineers are in the process of extensive analysis of the SSF requirements, particularly those pertaining to the electrical power system (EPS). The objective of this analysis is the development of a comprehensive, computer-based requirements model, using an enhanced modern structured analysis methodology (EMSA). Such a model provides a detailed and consistent representation of the system's requirements. The process outlined in the EMSA methodology is unique in that it allows the graphical modeling of real-time system state transitions, as well as functional requirements and data relationships, to be implemented using modern computer-based tools. These tools permit flexible updating and continuous maintenance of the models. Initial findings resulting from the application of EMSA to the EPS have benefited the space station program by linking requirements to design, providing traceability of requirements, identifying discrepancies, and fostering an understanding of the EPS.

  5. Automotive manufacturing assessment system. Volume IV: engine manufacturing analysis. Final report Jun 77-Aug 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr

    Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. An analysis of automotive engine manufacturing was conducted in order to determine the impact of regulatory changes on tooling costs and the production process. The 351W CID V-8 engine at Ford's Windsor No. 1 Plant was the subject of the analysis. A review of plant history and its product is presented along with an analysis of manufacturing operations, includingmore » material and production flow, plant layout, machining and assembly processes, tooling, supporting facilities, inspection, service and repair. Four levels of product change intensity showing the impact on manufacturing methods and cost is also presented.« less

  6. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    NASA Astrophysics Data System (ADS)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  7. SlideJ: An ImageJ plugin for automated processing of whole slide images.

    PubMed

    Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.

  8. SlideJ: An ImageJ plugin for automated processing of whole slide images

    PubMed Central

    Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla

    2017-01-01

    The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129

  9. New ArcGIS tools developed for stream network extraction and basin delineations using Python and java script

    NASA Astrophysics Data System (ADS)

    Omran, Adel; Dietrich, Schröder; Abouelmagd, Abdou; Michael, Märker

    2016-09-01

    Damages caused by flash floods hazards are an increasing phenomenon, especially in arid and semi-arid areas. Thus, the need to evaluate these areas based on their flash flood risk using maps and hydrological models is also becoming more important. For ungauged watersheds a tentative analysis can be carried out based on the geomorphometric characteristics of the terrain. To process regions with larger watersheds, where perhaps hundreds of watersheds have to be delineated, processed and classified, the overall process need to be automated. GIS packages such as ESRI's ArcGIS offer a number of sophisticated tools that help regarding such analysis. Yet there are still gaps and pitfalls that need to be considered if the tools are combined into a geoprocessing model to automate the complete assessment workflow. These gaps include issues such as i) assigning stream order according to Strahler theory, ii) calculating the threshold value for the stream network extraction, and iii) determining the pour points for each of the nodes of the Strahler ordered stream network. In this study a complete automated workflow based on ArcGIS Model Builder using standard tools will be introduced and discussed. Some additional tools have been implemented to complete the overall workflow. These tools have been programmed using Python and Java in the context of ArcObjects. The workflow has been applied to digital data from the southwestern Sinai Peninsula, Egypt. An optimum threshold value has been selected to optimize drainage configuration by statistically comparing all of the extracted stream configuration results from DEM with the available reference data from topographic maps. The code has succeeded in estimating the correct ranking of specific stream orders in an automatic manner without additional manual steps. As a result, the code has proven to save time and efforts; hence it's considered a very useful tool for processing large catchment basins.

  10. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.

  11. Design and analysis of lifting tool assemblies to lift different engine block

    NASA Astrophysics Data System (ADS)

    Sawant, Arpana; Deshmukh, Nilaj N.; Chauhan, Santosh; Dabhadkar, Mandar; Deore, Rupali

    2017-07-01

    Engines block are required to be lifted from one place to another while they are being processed. The human effort required for this purpose is more and also the engine block may get damaged if it is not handled properly. There is a need for designing a proper lifting tool which will be able to conveniently lift the engine block and place it at the desired position without any accident and damage to the engine block. In the present study lifting tool assemblies are designed and analyzed in such way that it may lift different categories of engine blocks. The lifting tool assembly consists of lifting plate, lifting ring, cap screws and washers. A parametric model and assembly of Lifting tool is done in 3D modelling software CREO 2.0 and analysis is carried out in ANSYS Workbench 16.0. A test block of weight equivalent to that of an engine block is considered for the purpose of analysis. In the preliminary study, without washer the stresses obtained on the lifting tool were more than the safety margin. In the present design, washers were used with appropriate dimensions which helps to bring down the stresses on the lifting tool within the safety margin. Analysis is carried out to verify that tool design meets the ASME BTH-1 required safety margin.

  12. Investigation of effects of process parameters on properties of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Chauhan, Atul; Soota, Tarun; Rajput, S. K.

    2018-03-01

    This work deals with application of friction stir welding (FSW) using application of Taguchi orthogonal array. FSW procedure is used for joining the aluminium alloy AA6063-T0 plates in butt configuration with orthogonal combination of factors and their levels. The combination of factors involving tool rotation speed, tool travel speed and tool pin profile are used in three levels. Grey relational analysis (GRA) has been applied to select optimum level of factors for optimising UTS, ductility and hardness of joint. Experiments have been conducted with two different tool materials (HSS and HCHCr steel) with various factors level combinations for joining AA6063-T0. On the basis of grey relational grades at different levels of factors and analysis of variance (ANOVA) ideal combination of factors are determined. The influence of tool material is also studied.

  13. Astrophysics and Big Data: Challenges, Methods, and Tools

    NASA Astrophysics Data System (ADS)

    Garofalo, Mauro; Botta, Alessio; Ventre, Giorgio

    2017-06-01

    Nowadays there is no field research which is not flooded with data. Among the sciences, astrophysics has always been driven by the analysis of massive amounts of data. The development of new and more sophisticated observation facilities, both ground-based and spaceborne, has led data more and more complex (Variety), an exponential growth of both data Volume (i.e., in the order of petabytes), and Velocity in terms of production and transmission. Therefore, new and advanced processing solutions will be needed to process this huge amount of data. We investigate some of these solutions, based on machine learning models as well as tools and architectures for Big Data analysis that can be exploited in the astrophysical context.

  14. TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools

    NASA Technical Reports Server (NTRS)

    Marlowe, Jill M.; Dixon, Genevieve D.

    1998-01-01

    This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.

  15. DIAGNOSTIC STUDY ON FINE PARTICULATE MATTER PREDICTIONS OF CMAQ IN THE SOUTHEASTERN U.S.

    EPA Science Inventory

    In this study, the authors use the process analysis tool embedded in CMAQ to examine major processes that govern the fate of key pollutants, identify the most influential processes that contribute to model errors, and guide the diagnostic and sensitivity studies aimed at improvin...

  16. Scenario analysis and strategic planning: practical applications for radiology practices.

    PubMed

    Lexa, Frank James; Chan, Stephen

    2010-05-01

    Modern business science has many tools that can be of great value to radiologists and their practices. One of the most important and underused is long-term planning. Part of the problem has been the pace of change. Making a 5-year plan makes sense only if your develop robust scenarios of possible future conditions you will face. Scenario analysis is one of many highly regarded tools that can improve your predictive capability. However, as with many tools, it pays to have some training and to get practical tips on how to improve their value. It also helps to learn from other people's mistakes rather than your own. The authors discuss both theoretical and practical issues in using scenario analysis to improve your planning process. They discuss actionable ways this set of tools can be applied in a group meeting or retreat. Copyright (c) 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. NASA Instrument Cost/Schedule Model

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, Hamid; Mrozinski, Joe; Fox, George

    2011-01-01

    NASA's Office of Independent Program and Cost Evaluation (IPCE) has established a number of initiatives to improve its cost and schedule estimating capabilities. 12One of these initiatives has resulted in the JPL developed NASA Instrument Cost Model. NICM is a cost and schedule estimator that contains: A system level cost estimation tool; a subsystem level cost estimation tool; a database of cost and technical parameters of over 140 previously flown remote sensing and in-situ instruments; a schedule estimator; a set of rules to estimate cost and schedule by life cycle phases (B/C/D); and a novel tool for developing joint probability distributions for cost and schedule risk (Joint Confidence Level (JCL)). This paper describes the development and use of NICM, including the data normalization processes, data mining methods (cluster analysis, principal components analysis, regression analysis and bootstrap cross validation), the estimating equations themselves and a demonstration of the NICM tool suite.

  18. NEXT GENERATION ANALYSIS SOFTWARE FOR COMPONENT EVALUATION - Results of Rotational Seismometer Evaluation

    NASA Astrophysics Data System (ADS)

    Hart, D. M.; Merchant, B. J.; Abbott, R. E.

    2012-12-01

    The Component Evaluation project at Sandia National Laboratories supports the Ground-based Nuclear Explosion Monitoring program by performing testing and evaluation of the components that are used in seismic and infrasound monitoring systems. In order to perform this work, Component Evaluation maintains a testing facility called the FACT (Facility for Acceptance, Calibration, and Testing) site, a variety of test bed equipment, and a suite of software tools for analyzing test data. Recently, Component Evaluation has successfully integrated several improvements to its software analysis tools and test bed equipment that have substantially improved our ability to test and evaluate components. The software tool that is used to analyze test data is called TALENT: Test and AnaLysis EvaluatioN Tool. TALENT is designed to be a single, standard interface to all test configuration, metadata, parameters, waveforms, and results that are generated in the course of testing monitoring systems. It provides traceability by capturing everything about a test in a relational database that is required to reproduce the results of that test. TALENT provides a simple, yet powerful, user interface to quickly acquire, process, and analyze waveform test data. The software tool has also been expanded recently to handle sensors whose output is proportional to rotation angle, or rotation rate. As an example of this new processing capability, we show results from testing the new ATA ARS-16 rotational seismometer. The test data was collected at the USGS ASL. Four datasets were processed: 1) 1 Hz with increasing amplitude, 2) 4 Hz with increasing amplitude, 3) 16 Hz with increasing amplitude and 4) twenty-six discrete frequencies between 0.353 Hz to 64 Hz. The results are compared to manufacture-supplied data sheets.

  19. A Qualitative Analysis Framework Using Natural Language Processing and Graph Theory

    ERIC Educational Resources Information Center

    Tierney, Patrick J.

    2012-01-01

    This paper introduces a method of extending natural language-based processing of qualitative data analysis with the use of a very quantitative tool--graph theory. It is not an attempt to convert qualitative research to a positivist approach with a mathematical black box, nor is it a "graphical solution". Rather, it is a method to help qualitative…

  20. TACIT: An open-source text analysis, crawling, and interpretation tool.

    PubMed

    Dehghani, Morteza; Johnson, Kate M; Garten, Justin; Boghrati, Reihane; Hoover, Joe; Balasubramanian, Vijayan; Singh, Anurag; Shankar, Yuvarani; Pulickal, Linda; Rajkumar, Aswin; Parmar, Niki Jitendra

    2017-04-01

    As human activity and interaction increasingly take place online, the digital residues of these activities provide a valuable window into a range of psychological and social processes. A great deal of progress has been made toward utilizing these opportunities; however, the complexity of managing and analyzing the quantities of data currently available has limited both the types of analysis used and the number of researchers able to make use of these data. Although fields such as computer science have developed a range of techniques and methods for handling these difficulties, making use of those tools has often required specialized knowledge and programming experience. The Text Analysis, Crawling, and Interpretation Tool (TACIT) is designed to bridge this gap by providing an intuitive tool and interface for making use of state-of-the-art methods in text analysis and large-scale data management. Furthermore, TACIT is implemented as an open, extensible, plugin-driven architecture, which will allow other researchers to extend and expand these capabilities as new methods become available.

  1. Challenges Facing Design and Analysis Tools

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Broduer, Steve (Technical Monitor)

    2001-01-01

    The design and analysis of future aerospace systems will strongly rely on advanced engineering analysis tools used in combination with risk mitigation procedures. The implications of such a trend place increased demands on these tools to assess off-nominal conditions, residual strength, damage propagation, and extreme loading conditions in order to understand and quantify these effects as they affect mission success. Advances in computer hardware such as CPU processing speed, memory, secondary storage, and visualization provide significant resources for the engineer to exploit in engineering design. The challenges facing design and analysis tools fall into three primary areas. The first area involves mechanics needs such as constitutive modeling, contact and penetration simulation, crack growth prediction, damage initiation and progression prediction, transient dynamics and deployment simulations, and solution algorithms. The second area involves computational needs such as fast, robust solvers, adaptivity for model and solution strategies, control processes for concurrent, distributed computing for uncertainty assessments, and immersive technology. Traditional finite element codes still require fast direct solvers which when coupled to current CPU power enables new insight as a result of high-fidelity modeling. The third area involves decision making by the analyst. This area involves the integration and interrogation of vast amounts of information - some global in character while local details are critical and often drive the design. The proposed presentation will describe and illustrate these areas using composite structures, energy-absorbing structures, and inflatable space structures. While certain engineering approximations within the finite element model may be adequate for global response prediction, they generally are inadequate in a design setting or when local response prediction is critical. Pitfalls to be avoided and trends for emerging analysis tools will be described.

  2. Reliability analysis in the Office of Safety, Environmental, and Mission Assurance (OSEMA)

    NASA Astrophysics Data System (ADS)

    Kauffmann, Paul J.

    1994-12-01

    The technical personnel in the SEMA office are working to provide the highest degree of value-added activities to their support of the NASA Langley Research Center mission. Management perceives that reliability analysis tools and an understanding of a comprehensive systems approach to reliability will be a foundation of this change process. Since the office is involved in a broad range of activities supporting space mission projects and operating activities (such as wind tunnels and facilities), it was not clear what reliability tools the office should be familiar with and how these tools could serve as a flexible knowledge base for organizational growth. Interviews and discussions with the office personnel (both technicians and engineers) revealed that job responsibilities ranged from incoming inspection to component or system analysis to safety and risk. It was apparent that a broad base in applied probability and reliability along with tools for practical application was required by the office. A series of ten class sessions with a duration of two hours each was organized and scheduled. Hand-out materials were developed and practical examples based on the type of work performed by the office personnel were included. Topics covered were: Reliability Systems - a broad system oriented approach to reliability; Probability Distributions - discrete and continuous distributions; Sampling and Confidence Intervals - random sampling and sampling plans; Data Analysis and Estimation - Model selection and parameter estimates; and Reliability Tools - block diagrams, fault trees, event trees, FMEA. In the future, this information will be used to review and assess existing equipment and processes from a reliability system perspective. An analysis of incoming materials sampling plans was also completed. This study looked at the issues associated with Mil Std 105 and changes for a zero defect acceptance sampling plan.

  3. Reliability analysis in the Office of Safety, Environmental, and Mission Assurance (OSEMA)

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul J.

    1994-01-01

    The technical personnel in the SEMA office are working to provide the highest degree of value-added activities to their support of the NASA Langley Research Center mission. Management perceives that reliability analysis tools and an understanding of a comprehensive systems approach to reliability will be a foundation of this change process. Since the office is involved in a broad range of activities supporting space mission projects and operating activities (such as wind tunnels and facilities), it was not clear what reliability tools the office should be familiar with and how these tools could serve as a flexible knowledge base for organizational growth. Interviews and discussions with the office personnel (both technicians and engineers) revealed that job responsibilities ranged from incoming inspection to component or system analysis to safety and risk. It was apparent that a broad base in applied probability and reliability along with tools for practical application was required by the office. A series of ten class sessions with a duration of two hours each was organized and scheduled. Hand-out materials were developed and practical examples based on the type of work performed by the office personnel were included. Topics covered were: Reliability Systems - a broad system oriented approach to reliability; Probability Distributions - discrete and continuous distributions; Sampling and Confidence Intervals - random sampling and sampling plans; Data Analysis and Estimation - Model selection and parameter estimates; and Reliability Tools - block diagrams, fault trees, event trees, FMEA. In the future, this information will be used to review and assess existing equipment and processes from a reliability system perspective. An analysis of incoming materials sampling plans was also completed. This study looked at the issues associated with Mil Std 105 and changes for a zero defect acceptance sampling plan.

  4. The role of failure modes and effects analysis in showing the benefits of automation in the blood bank.

    PubMed

    Han, Tae Hee; Kim, Moon Jung; Kim, Shinyoung; Kim, Hyun Ok; Lee, Mi Ae; Choi, Ji Seon; Hur, Mina; St John, Andrew

    2013-05-01

    Failure modes and effects analysis (FMEA) is a risk management tool used by the manufacturing industry but now being applied in laboratories. Teams from six South Korean blood banks used this tool to map their manual and automated blood grouping processes and determine the risk priority numbers (RPNs) as a total measure of error risk. The RPNs determined by each of the teams consistently showed that the use of automation dramatically reduced the RPN compared to manual processes. In addition, FMEA showed where the major risks occur in each of the manual processes and where attention should be prioritized to improve the process. Despite no previous experience with FMEA, the teams found the technique relatively easy to use and the subjectivity associated with assigning risk numbers did not affect the validity of the data. FMEA should become a routine technique for improving processes in laboratories. © 2012 American Association of Blood Banks.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suresh, Niraj; Stephens, Sean A.; Adams, Lexor

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and forest management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving the plant. X ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. Our group at the Environmental Molecular Sciences Laboratory (EMSL) has developed an XCT-based tool to image and quantitatively analyze plant root structures in their native soil environment. XCT data collected on amore » Prairie dropseed (Sporobolus heterolepis) specimen was used to visualize its root structure. A combination of open-source software RooTrak and DDV were employed to segment the root from the soil, and calculate its isosurface, respectively. Our own computer script named 3DRoot-SV was developed and used to calculate root volume and surface area from a triangular mesh. The process utilizing a unique combination of tools, from imaging to quantitative root analysis, including the 3DRoot-SV computer script, is described.« less

  6. R-based Tool for a Pairwise Structure-activity Relationship Analysis.

    PubMed

    Klimenko, Kyrylo

    2018-04-01

    The Structure-Activity Relationship analysis is a complex process that can be enhanced by computational techniques. This article describes a simple tool for SAR analysis that has a graphic user interface and a flexible approach towards the input of molecular data. The application allows calculating molecular similarity represented by Tanimoto index & Euclid distance, as well as, determining activity cliffs by means of Structure-Activity Landscape Index. The calculation is performed in a pairwise manner either for the reference compound and other compounds or for all possible pairs in the data set. The results of SAR analysis are visualized using two types of plot. The application capability is demonstrated by the analysis of a set of COX2 inhibitors with respect to Isoxicam. This tool is available online: it includes manual and input file examples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Visual analytics for aviation safety: A collaborative approach to sensemaking

    NASA Astrophysics Data System (ADS)

    Wade, Andrew

    Visual analytics, the "science of analytical reasoning facilitated by interactive visual interfaces", is more than just visualization. Understanding the human reasoning process is essential for designing effective visualization tools and providing correct analyses. This thesis describes the evolution, application and evaluation of a new method for studying analytical reasoning that we have labeled paired analysis. Paired analysis combines subject matter experts (SMEs) and tool experts (TE) in an analytic dyad, here used to investigate aircraft maintenance and safety data. The method was developed and evaluated using interviews, pilot studies and analytic sessions during an internship at the Boeing Company. By enabling a collaborative approach to sensemaking that can be captured by researchers, paired analysis yielded rich data on human analytical reasoning that can be used to support analytic tool development and analyst training. Keywords: visual analytics, paired analysis, sensemaking, boeing, collaborative analysis.

  8. Increasingly mobile: How new technologies can enhance qualitative research

    PubMed Central

    Moylan, Carrie Ann; Derr, Amelia Seraphia; Lindhorst, Taryn

    2015-01-01

    Advances in technology, such as the growth of smart phones, tablet computing, and improved access to the internet have resulted in many new tools and applications designed to increase efficiency and improve workflow. Some of these tools will assist scholars using qualitative methods with their research processes. We describe emerging technologies for use in data collection, analysis, and dissemination that each offer enhancements to existing research processes. Suggestions for keeping pace with the ever-evolving technological landscape are also offered. PMID:25798072

  9. On aerodynamic wake analysis and its relation to total aerodynamic drag in a wind tunnel environment

    NASA Astrophysics Data System (ADS)

    Guterres, Rui M.

    The present work was developed with the goal of advancing the state of the art in the application of three-dimensional wake data analysis to the quantification of aerodynamic drag on a body in a low speed wind tunnel environment. Analysis of the existing tools, their strengths and limitations is presented. Improvements to the existing analysis approaches were made. Software tools were developed to integrate the analysis into a practical tool. A comprehensive derivation of the equations needed for drag computations based on three dimensional separated wake data is developed. A set of complete steps ranging from the basic mathematical concept to the applicable engineering equations is presented. An extensive experimental study was conducted. Three representative body types were studied in varying ground effect conditions. A detailed qualitative wake analysis using wake imaging and two and three dimensional flow visualization was performed. Several significant features of the flow were identified and their relation to the total aerodynamic drag established. A comprehensive wake study of this type is shown to be in itself a powerful tool for the analysis of the wake aerodynamics and its relation to body drag. Quantitative wake analysis techniques were developed. Significant post processing and data conditioning tools and precision analysis were developed. The quality of the data is shown to be in direct correlation with the accuracy of the computed aerodynamic drag. Steps are taken to identify the sources of uncertainty. These are quantified when possible and the accuracy of the computed results is seen to significantly improve. When post processing alone does not resolve issues related to precision and accuracy, solutions are proposed. The improved quantitative wake analysis is applied to the wake data obtained. Guidelines are established that will lead to more successful implementation of these tools in future research programs. Close attention is paid to implementation of issues that are of crucial importance for the accuracy of the results and that are not detailed in the literature. The impact of ground effect on the flows in hand is qualitatively and quantitatively studied. Its impact on the accuracy of the computations as well as the wall drag incompatibility with the theoretical model followed are discussed. The newly developed quantitative analysis provides significantly increased accuracy. The aerodynamic drag coefficient is computed within one percent of balance measured value for the best cases.

  10. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  11. dada - a web-based 2D detector analysis tool

    NASA Astrophysics Data System (ADS)

    Osterhoff, Markus

    2017-06-01

    The data daemon, dada, is a server backend for unified access to 2D pixel detector image data stored with different detectors, file formats and saved with varying naming conventions and folder structures across instruments. Furthermore, dada implements basic pre-processing and analysis routines from pixel binning over azimuthal integration to raster scan processing. Common user interactions with dada are by a web frontend, but all parameters for an analysis are encoded into a Uniform Resource Identifier (URI) which can also be written by hand or scripts for batch processing.

  12. Integrating Information Technologies Into Large Organizations

    NASA Technical Reports Server (NTRS)

    Gottlich, Gretchen; Meyer, John M.; Nelson, Michael L.; Bianco, David J.

    1997-01-01

    NASA Langley Research Center's product is aerospace research information. To this end, Langley uses information technology tools in three distinct ways. First, information technology tools are used in the production of information via computation, analysis, data collection and reduction. Second, information technology tools assist in streamlining business processes, particularly those that are primarily communication based. By applying these information tools to administrative activities, Langley spends fewer resources on managing itself and can allocate more resources for research. Third, Langley uses information technology tools to disseminate its aerospace research information, resulting in faster turn around time from the laboratory to the end-customer.

  13. Trajectory Design Tools for Libration and Cis-Lunar Environments

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Webster, Cassandra M.; Bosanac, Natasha; Cox, Andrew; Guzzetti, Davide; Howell, Kathleen C.

    2016-01-01

    Innovative trajectory design tools are required to support challenging multi-body regimes with complex dynamics, uncertain perturbations, and the integration of propulsion influences. Two distinctive tools, Adaptive Trajectory Design and the General Mission Analysis Tool have been developed and certified to provide the astrodynamics community with the ability to design multi-body trajectories. In this paper we discuss the multi-body design process and the capabilities of both tools. Demonstrable applications to confirmed missions, the Lunar IceCube Cubesat lunar mission and the Wide-Field Infrared Survey Telescope (WFIRST) Sun-Earth L2 mission, are presented.

  14. Proposing a Mathematical Software Tool in Physics Secondary Education

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.

    2009-01-01

    MathCad® is a very popular software tool for mathematical and statistical analysis in science and engineering. Its low cost, ease of use, extensive function library, and worksheet-like user interface distinguish it among other commercial packages. Its features are also well suited to educational process. The use of natural mathematical notation…

  15. Case Study Application of Determining End of Physical Life Using Survival Analysis (WERF Report INFR2R11b)

    EPA Science Inventory

    Abstract: This case study application provides discussion on a selected application of advanced concepts, included in the End of Asset Life Reinvestment decision-making process tool, using Milwaukee Metropolitan Sewer District (MMSD) pump and motor data sets. The tool provides s...

  16. Application of spatial technology in malaria research & control: some new insights.

    PubMed

    Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P

    2009-08-01

    Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.

  17. Experimental evaluation of tool run-out in micro milling

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta

    2018-05-01

    This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, Ranjit; Wu, Grace

    The MapRE (Multi-criteria Analysis for Planning Renewable Energy) GIS (Geographic Information Systems) Tools are a set of ArcGIS tools to a) conduct site suitability analysis for wind and solar resources using inclusion and exclusion criteria, and create resource maps, b) create project opportunity areas and compute various attributes such as cost, distances to existing and planned infrastructure. and environmental impact factors; and c) calculate and update various attributes for already processed renewable energy zones. In addition, MapRE data sets are geospatial data of renewable energy project opportunity areas and zones with pre-calculated attributes for several countries. These tools and datamore » are available at mapre.lbl.gov.« less

  19. FluoRender: joint freehand segmentation and visualization for many-channel fluorescence data analysis.

    PubMed

    Wan, Yong; Otsuna, Hideo; Holman, Holly A; Bagley, Brig; Ito, Masayoshi; Lewis, A Kelsey; Colasanto, Mary; Kardon, Gabrielle; Ito, Kei; Hansen, Charles

    2017-05-26

    Image segmentation and registration techniques have enabled biologists to place large amounts of volume data from fluorescence microscopy, morphed three-dimensionally, onto a common spatial frame. Existing tools built on volume visualization pipelines for single channel or red-green-blue (RGB) channels have become inadequate for the new challenges of fluorescence microscopy. For a three-dimensional atlas of the insect nervous system, hundreds of volume channels are rendered simultaneously, whereas fluorescence intensity values from each channel need to be preserved for versatile adjustment and analysis. Although several existing tools have incorporated support of multichannel data using various strategies, the lack of a flexible design has made true many-channel visualization and analysis unavailable. The most common practice for many-channel volume data presentation is still converting and rendering pseudosurfaces, which are inaccurate for both qualitative and quantitative evaluations. Here, we present an alternative design strategy that accommodates the visualization and analysis of about 100 volume channels, each of which can be interactively adjusted, selected, and segmented using freehand tools. Our multichannel visualization includes a multilevel streaming pipeline plus a triple-buffer compositing technique. Our method also preserves original fluorescence intensity values on graphics hardware, a crucial feature that allows graphics-processing-unit (GPU)-based processing for interactive data analysis, such as freehand segmentation. We have implemented the design strategies as a thorough restructuring of our original tool, FluoRender. The redesign of FluoRender not only maintains the existing multichannel capabilities for a greatly extended number of volume channels, but also enables new analysis functions for many-channel data from emerging biomedical-imaging techniques.

  20. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, A; Rowbottom, C

    Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whethermore » or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

  1. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  2. Software tool for mining liquid chromatography/multi-stage mass spectrometry data for comprehensive glycerophospholipid profiling.

    PubMed

    Hein, Eva-Maria; Bödeker, Bertram; Nolte, Jürgen; Hayen, Heiko

    2010-07-30

    Electrospray ionization mass spectrometry (ESI-MS) has emerged as an indispensable tool in the field of lipidomics. Despite the growing interest in lipid analysis, there are only a few software tools available for data evaluation, as compared for example to proteomics applications. This makes comprehensive lipid analysis a complex challenge. Thus, a computational tool for harnessing the raw data from liquid chromatography/mass spectrometry (LC/MS) experiments was developed in this study and is available from the authors on request. The Profiler-Merger-Viewer tool is a software package for automatic processing of raw-data from data-dependent experiments, measured by high-performance liquid chromatography hyphenated to electrospray ionization hybrid linear ion trap Fourier transform mass spectrometry (FTICR-MS and Orbitrap) in single and multi-stage mode. The software contains three parts: processing of the raw data by Profiler for lipid identification, summarizing of replicate measurements by Merger and visualization of all relevant data (chromatograms as well as mass spectra) for validation of the results by Viewer. The tool is easily accessible, since it is implemented in Java and uses Microsoft Excel (XLS) as output format. The motivation was to develop a tool which supports and accelerates the manual data evaluation (identification and relative quantification) significantly but does not make a complete data analysis within a black-box system. The software's mode of operation, usage and options will be demonstrated on the basis of a lipid extract of baker's yeast (S. cerevisiae). In this study, we focused on three important representatives of lipids: glycerophospholipids, lyso-glycerophospholipids and free fatty acids. Copyright 2010 John Wiley & Sons, Ltd.

  3. MS Data Miner: a web-based software tool to analyze, compare, and share mass spectrometry protein identifications.

    PubMed

    Dyrlund, Thomas F; Poulsen, Ebbe T; Scavenius, Carsten; Sanggaard, Kristian W; Enghild, Jan J

    2012-09-01

    Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web-based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot-assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC-MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The GNAT: A new tool for processing NMR data.

    PubMed

    Castañar, Laura; Poggetto, Guilherme Dal; Colbourne, Adam A; Morris, Gareth A; Nilsson, Mathias

    2018-06-01

    The GNAT (General NMR Analysis Toolbox) is a free and open-source software package for processing, visualising, and analysing NMR data. It supersedes the popular DOSY Toolbox, which has a narrower focus on diffusion NMR. Data import of most common formats from the major NMR platforms is supported, as well as a GNAT generic format. Key basic processing of NMR data (e.g., Fourier transformation, baseline correction, and phasing) is catered for within the program, as well as more advanced techniques (e.g., reference deconvolution and pure shift FID reconstruction). Analysis tools include DOSY and SCORE for diffusion data, ROSY T 1 /T 2 estimation for relaxation data, and PARAFAC for multilinear analysis. The GNAT is written for the MATLAB® language and comes with a user-friendly graphical user interface. The standard version is intended to run with a MATLAB installation, but completely free-standing compiled versions for Windows, Mac, and Linux are also freely available. © 2018 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.

  5. ReSeqTools: an integrated toolkit for large-scale next-generation sequencing based resequencing analysis.

    PubMed

    He, W; Zhao, S; Liu, X; Dong, S; Lv, J; Liu, D; Wang, J; Meng, Z

    2013-12-04

    Large-scale next-generation sequencing (NGS)-based resequencing detects sequence variations, constructs evolutionary histories, and identifies phenotype-related genotypes. However, NGS-based resequencing studies generate extraordinarily large amounts of data, making computations difficult. Effective use and analysis of these data for NGS-based resequencing studies remains a difficult task for individual researchers. Here, we introduce ReSeqTools, a full-featured toolkit for NGS (Illumina sequencing)-based resequencing analysis, which processes raw data, interprets mapping results, and identifies and annotates sequence variations. ReSeqTools provides abundant scalable functions for routine resequencing analysis in different modules to facilitate customization of the analysis pipeline. ReSeqTools is designed to use compressed data files as input or output to save storage space and facilitates faster and more computationally efficient large-scale resequencing studies in a user-friendly manner. It offers abundant practical functions and generates useful statistics during the analysis pipeline, which significantly simplifies resequencing analysis. Its integrated algorithms and abundant sub-functions provide a solid foundation for special demands in resequencing projects. Users can combine these functions to construct their own pipelines for other purposes.

  6. Understanding Classrooms through Social Network Analysis: A Primer for Social Network Analysis in Education Research

    PubMed Central

    Wiggins, Benjamin L.; Goodreau, Steven M.

    2014-01-01

    Social interactions between students are a major and underexplored part of undergraduate education. Understanding how learning relationships form in undergraduate classrooms, as well as the impacts these relationships have on learning outcomes, can inform educators in unique ways and improve educational reform. Social network analysis (SNA) provides the necessary tool kit for investigating questions involving relational data. We introduce basic concepts in SNA, along with methods for data collection, data processing, and data analysis, using a previously collected example study on an undergraduate biology classroom as a tutorial. We conduct descriptive analyses of the structure of the network of costudying relationships. We explore generative processes that create observed study networks between students and also test for an association between network position and success on exams. We also cover practical issues, such as the unique aspects of human subjects review for network studies. Our aims are to convince readers that using SNA in classroom environments allows rich and informative analyses to take place and to provide some initial tools for doing so, in the process inspiring future educational studies incorporating relational data. PMID:26086650

  7. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data.

    PubMed

    Davidson, Robert L; Weber, Ralf J M; Liu, Haoyu; Sharma-Oates, Archana; Viant, Mark R

    2016-01-01

    Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.

  8. P-TRAP: a Panicle TRAit Phenotyping tool.

    PubMed

    A L-Tam, Faroq; Adam, Helene; Anjos, António dos; Lorieux, Mathias; Larmande, Pierre; Ghesquière, Alain; Jouannic, Stefan; Shahbazkia, Hamid Reza

    2013-08-29

    In crops, inflorescence complexity and the shape and size of the seed are among the most important characters that influence yield. For example, rice panicles vary considerably in the number and order of branches, elongation of the axis, and the shape and size of the seed. Manual low-throughput phenotyping methods are time consuming, and the results are unreliable. However, high-throughput image analysis of the qualitative and quantitative traits of rice panicles is essential for understanding the diversity of the panicle as well as for breeding programs. This paper presents P-TRAP software (Panicle TRAit Phenotyping), a free open source application for high-throughput measurements of panicle architecture and seed-related traits. The software is written in Java and can be used with different platforms (the user-friendly Graphical User Interface (GUI) uses Netbeans Platform 7.3). The application offers three main tools: a tool for the analysis of panicle structure, a spikelet/grain counting tool, and a tool for the analysis of seed shape. The three tools can be used independently or simultaneously for analysis of the same image. Results are then reported in the Extensible Markup Language (XML) and Comma Separated Values (CSV) file formats. Images of rice panicles were used to evaluate the efficiency and robustness of the software. Compared to data obtained by manual processing, P-TRAP produced reliable results in a much shorter time. In addition, manual processing is not repeatable because dry panicles are vulnerable to damage. The software is very useful, practical and collects much more data than human operators. P-TRAP is a new open source software that automatically recognizes the structure of a panicle and the seeds on the panicle in numeric images. The software processes and quantifies several traits related to panicle structure, detects and counts the grains, and measures their shape parameters. In short, P-TRAP offers both efficient results and a user-friendly environment for experiments. The experimental results showed very good accuracy compared to field operator, expert verification and well-known academic methods.

  9. P-TRAP: a Panicle Trait Phenotyping tool

    PubMed Central

    2013-01-01

    Background In crops, inflorescence complexity and the shape and size of the seed are among the most important characters that influence yield. For example, rice panicles vary considerably in the number and order of branches, elongation of the axis, and the shape and size of the seed. Manual low-throughput phenotyping methods are time consuming, and the results are unreliable. However, high-throughput image analysis of the qualitative and quantitative traits of rice panicles is essential for understanding the diversity of the panicle as well as for breeding programs. Results This paper presents P-TRAP software (Panicle TRAit Phenotyping), a free open source application for high-throughput measurements of panicle architecture and seed-related traits. The software is written in Java and can be used with different platforms (the user-friendly Graphical User Interface (GUI) uses Netbeans Platform 7.3). The application offers three main tools: a tool for the analysis of panicle structure, a spikelet/grain counting tool, and a tool for the analysis of seed shape. The three tools can be used independently or simultaneously for analysis of the same image. Results are then reported in the Extensible Markup Language (XML) and Comma Separated Values (CSV) file formats. Images of rice panicles were used to evaluate the efficiency and robustness of the software. Compared to data obtained by manual processing, P-TRAP produced reliable results in a much shorter time. In addition, manual processing is not repeatable because dry panicles are vulnerable to damage. The software is very useful, practical and collects much more data than human operators. Conclusions P-TRAP is a new open source software that automatically recognizes the structure of a panicle and the seeds on the panicle in numeric images. The software processes and quantifies several traits related to panicle structure, detects and counts the grains, and measures their shape parameters. In short, P-TRAP offers both efficient results and a user-friendly environment for experiments. The experimental results showed very good accuracy compared to field operator, expert verification and well-known academic methods. PMID:23987653

  10. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitney, S.E.; McCorkle, D.; Yang, C.

    Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less

  12. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  13. The application of quality risk management to the bacterial endotoxins test: use of hazard analysis and critical control points.

    PubMed

    Annalaura, Carducci; Giulia, Davini; Stefano, Ceccanti

    2013-01-01

    Risk analysis is widely used in the pharmaceutical industry to manage production processes, validation activities, training, and other activities. Several methods of risk analysis are available (for example, failure mode and effects analysis, fault tree analysis), and one or more should be chosen and adapted to the specific field where they will be applied. Among the methods available, hazard analysis and critical control points (HACCP) is a methodology that has been applied since the 1960s, and whose areas of application have expanded over time from food to the pharmaceutical industry. It can be easily and successfully applied to several processes because its main feature is the identification, assessment, and control of hazards. It can be also integrated with other tools, such as fishbone diagram and flowcharting. The aim of this article is to show how HACCP can be used to manage an analytical process, propose how to conduct the necessary steps, and provide data templates necessary to document and useful to follow current good manufacturing practices. In the quality control process, risk analysis is a useful tool for enhancing the uniformity of technical choices and their documented rationale. Accordingly, it allows for more effective and economical laboratory management, is capable of increasing the reliability of analytical results, and enables auditors and authorities to better understand choices that have been made. The aim of this article is to show how hazard analysis and critical control points can be used to manage bacterial endotoxins testing and other analytical processes in a formal, clear, and detailed manner.

  14. Wind Sensing, Analysis, and Modeling

    NASA Technical Reports Server (NTRS)

    Corvin, Michael A.

    1995-01-01

    The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch system operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided. Current versions of prototype Process Management Environment tools are being provided to the customer.

  15. Wind sensing, analysis, and modeling

    NASA Technical Reports Server (NTRS)

    Corvin, Michael A.

    1995-01-01

    The purpose of this task was to begin development of a unified approach to the sensing, analysis, and modeling of the wind environments in which launch systems operate. The initial activity was to examine the current usage and requirements for wind modeling for the Titan 4 vehicle. This was to be followed by joint technical efforts with NASA Langley Research Center to develop applicable analysis methods. This work was to be performed in and demonstrate the use of prototype tools implementing an environment in which to realize a unified system. At the convenience of the customer, due to resource limitations, the task was descoped. The survey of Titan 4 processes was accomplished and is reported in this document. A summary of general requirements is provided . Current versions of prototype Process Management Environment tools are being provided to the customer.

  16. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  17. A Tool for Measuring NASA's Aeronautics Research Progress Toward Planned Strategic Community Outcomes

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad; Pearce, Robert

    2016-01-01

    Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. For efficiency and speed, the tool takes advantage of a function developed in Excels Visual Basic for Applications. The strategic planning process for determining the community Outcomes is also briefly discussed. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples of using the tool are also presented.

  18. An integrated workflow for analysis of ChIP-chip data.

    PubMed

    Weigelt, Karin; Moehle, Christoph; Stempfl, Thomas; Weber, Bernhard; Langmann, Thomas

    2008-08-01

    Although ChIP-chip is a powerful tool for genome-wide discovery of transcription factor target genes, the steps involving raw data analysis, identification of promoters, and correlation with binding sites are still laborious processes. Therefore, we report an integrated workflow for the analysis of promoter tiling arrays with the Genomatix ChipInspector system. We compare this tool with open-source software packages to identify PU.1 regulated genes in mouse macrophages. Our results suggest that ChipInspector data analysis, comparative genomics for binding site prediction, and pathway/network modeling significantly facilitate and enhance whole-genome promoter profiling to reveal in vivo sites of transcription factor-DNA interactions.

  19. Making practice transparent through e-portfolio.

    PubMed

    Stewart, Sarah M

    2013-12-01

    Midwives are required to maintain a professional portfolio as part of their statutory requirements. Some midwives are using open social networking tools and processes to develop an e-portfolio. However, confidentiality of patient and client data and professional reputation have to be taken into consideration when using online public spaces for reflection. There is little evidence about how midwives use social networking tools for ongoing learning. It is uncertain how reflecting in an e-portfolio with an audience impacts on learning outcomes. This paper investigates ways in which reflective midwifery practice be carried out using e-portfolio in open, social networking platforms using collaborative processes. Using an auto-ethnographic approach I explored my e-portfolio and selected posts that had attracted six or more comments. I used thematic analysis to identify themes within the textual conversations in the posts and responses posted by readers. The analysis identified that my collaborative e-portfolio had four themes: to provide commentary and discuss issues; to reflect and process learning; to seek advice, brainstorm and process ideas for practice, projects and research, and provide evidence of professional development. E-portfolio using open social networking tools and processes is a viable option for midwives because it facilitates collaborative reflection and shared learning. However, my experience shows that concerns about what people think, and client confidentiality does impact on the nature of open reflection and learning outcomes. I conclude this paper with a framework for managing midwifery statutory obligations using online public spaces and social networking tools. Copyright © 2013 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  20. Advances in the production of freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  1. A method to identify the main mode of machine tool under operating conditions

    NASA Astrophysics Data System (ADS)

    Wang, Daming; Pan, Yabing

    2017-04-01

    The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.

  2. The Effect of Process Parameters and Tool Geometry on Thermal Field Development and Weld Formation in Friction Stir Welding of the Alloys AZ31 and AZ61

    NASA Astrophysics Data System (ADS)

    Zettler, R.; Blanco, A. C.; dos Santos, J. F.; Marya, S.

    An increase in the use of magnesium (Mg) in the car manufacturing industry has raised questions concerning its weldability. Friction Stir Welding (FSW) has the advantage of achieving metallic bonding below that of the melting point of the base material thus avoiding many of the metallurgical problems associated with the solidification process. The present study presents the results of a development program carried out to investigate the response of Mg alloys AZ31 and AZ61 to different FSW tool geometries and process parameters. Temperature development across the weld zone was monitored and the produced welds have been subjected to microstructural analysis and mechanical testing. Defect free welds have been produced with optimised FSW-tool and parameters. The micro structure of the welded joint resulted in similar ductility and hardness levels as compared to that of the base material. The results also demonstrated that tool geometry plays a fundamental role in the response of the investigated alloys to the FSW process.

  3. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  4. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  5. Main Engine Prototype Development for 2nd Generation RLV RS-83

    NASA Technical Reports Server (NTRS)

    Vilja, John; Fisher, Mark; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    This presentation reports on the NASA project to develop a prototype for RS-83 engine designed for use on reusable launch vehicles (RLV). Topics covered include: program objectives, overview schedule, organizational chart, integrated systems engineering processes, requirement analysis, catastrophic engine loss, maintainability analysis tools, and prototype design analysis.

  6. The relationship between quality management practices and organisational performance: A structural equation modelling approach

    NASA Astrophysics Data System (ADS)

    Jamaluddin, Z.; Razali, A. M.; Mustafa, Z.

    2015-02-01

    The purpose of this paper is to examine the relationship between the quality management practices (QMPs) and organisational performance for the manufacturing industry in Malaysia. In this study, a QMPs and organisational performance framework is developed according to a comprehensive literature review which cover aspects of hard and soft quality factors in manufacturing process environment. A total of 11 hypotheses have been put forward to test the relationship amongst the six constructs, which are management commitment, training, process management, quality tools, continuous improvement and organisational performance. The model is analysed using Structural Equation Modeling (SEM) with AMOS software version 18.0 using Maximum Likelihood (ML) estimation. A total of 480 questionnaires were distributed, and 210 questionnaires were valid for analysis. The results of the modeling analysis using ML estimation indicate that the fits statistics of QMPs and organisational performance model for manufacturing industry is admissible. From the results, it found that the management commitment have significant impact on the training and process management. Similarly, the training had significant effect to the quality tools, process management and continuous improvement. Furthermore, the quality tools have significant influence on the process management and continuous improvement. Likewise, the process management also has a significant impact to the continuous improvement. In addition the continuous improvement has significant influence the organisational performance. However, the results of the study also found that there is no significant relationship between management commitment and quality tools, and between the management commitment and continuous improvement. The results of the study can be used by managers to prioritize the implementation of QMPs. For instances, those practices that are found to have positive impact on organisational performance can be recommended to managers so that they can allocate resources to improve these practices to get better performance.

  7. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  8. Determination of high-strength materials diamond grinding rational modes

    NASA Astrophysics Data System (ADS)

    Arkhipov, P. V.; Lobanov, D. V.; Rychkov, D. A.; Yanyushkin, A. S.

    2018-03-01

    The analysis of methods of high-strength materials abrasive processing is carried out. This method made it possible to determine the necessary directions and prospects for the development of shaping combined methods. The need to use metal bonded diamond abrasive tools in combination with a different kind of energy is noted to improve the processing efficiency and reduce the complexity of operations. The complex of experimental research on revealing the importance of mechanical and electrical components of cutting regimes, on the cutting ability of diamond tools, as well as the need to reduce the specific consumption of an abrasive wheel as one of the important economic indicators of the processing process is performed. It is established that combined diamond grinding with simultaneous continuous correction of the abrasive wheel contributes to an increase in the cutting ability of metal bonded diamond abrasive tools when processing high-strength materials by an average of 30% compared to diamond grinding. Particular recommendations on the designation of technological factors are developed depending on specific production problems.

  9. Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach

    PubMed Central

    Bigdely-Shamlo, Nima; Makeig, Scott; Robbins, Kay A.

    2016-01-01

    Large-scale analysis of EEG and other physiological measures promises new insights into brain processes and more accurate and robust brain–computer interface models. However, the absence of standardized vocabularies for annotating events in a machine understandable manner, the welter of collection-specific data organizations, the difficulty in moving data across processing platforms, and the unavailability of agreed-upon standards for preprocessing have prevented large-scale analyses of EEG. Here we describe a “containerized” approach and freely available tools we have developed to facilitate the process of annotating, packaging, and preprocessing EEG data collections to enable data sharing, archiving, large-scale machine learning/data mining and (meta-)analysis. The EEG Study Schema (ESS) comprises three data “Levels,” each with its own XML-document schema and file/folder convention, plus a standardized (PREP) pipeline to move raw (Data Level 1) data to a basic preprocessed state (Data Level 2) suitable for application of a large class of EEG analysis methods. Researchers can ship a study as a single unit and operate on its data using a standardized interface. ESS does not require a central database and provides all the metadata data necessary to execute a wide variety of EEG processing pipelines. The primary focus of ESS is automated in-depth analysis and meta-analysis EEG studies. However, ESS can also encapsulate meta-information for the other modalities such as eye tracking, that are increasingly used in both laboratory and real-world neuroimaging. ESS schema and tools are freely available at www.eegstudy.org and a central catalog of over 850 GB of existing data in ESS format is available at studycatalog.org. These tools and resources are part of a larger effort to enable data sharing at sufficient scale for researchers to engage in truly large-scale EEG analysis and data mining (BigEEG.org). PMID:27014048

  10. Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions.

    PubMed

    Hassan, Sally; Simaria, Ana S; Varadaraju, Hemanthram; Gupta, Siddharth; Warren, Kim; Farid, Suzanne S

    2015-01-01

    To develop a decisional tool to identify the most cost effective process flowsheets for allogeneic cell therapies across a range of production scales. A bioprocess economics and optimization tool was built to assess competing cell expansion and downstream processing (DSP) technologies. Tangential flow filtration was generally more cost-effective for the lower cells/lot achieved in planar technologies and fluidized bed centrifugation became the only feasible option for handling large bioreactor outputs. DSP bottlenecks were observed at large commercial lot sizes requiring multiple large bioreactors. The DSP contribution to the cost of goods/dose ranged between 20-55%, and 50-80% for planar and bioreactor flowsheets, respectively. This analysis can facilitate early decision-making during process development.

  11. Advanced engineering environment pilot project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less

  12. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  13. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  14. magHD: a new approach to multi-dimensional data storage, analysis, display and exploitation

    NASA Astrophysics Data System (ADS)

    Angleraud, Christophe

    2014-06-01

    The ever increasing amount of data and processing capabilities - following the well- known Moore's law - is challenging the way scientists and engineers are currently exploiting large datasets. The scientific visualization tools, although quite powerful, are often too generic and provide abstract views of phenomena, thus preventing cross disciplines fertilization. On the other end, Geographic information Systems allow nice and visually appealing maps to be built but they often get very confused as more layers are added. Moreover, the introduction of time as a fourth analysis dimension to allow analysis of time dependent phenomena such as meteorological or climate models, is encouraging real-time data exploration techniques that allow spatial-temporal points of interests to be detected by integration of moving images by the human brain. Magellium is involved in high performance image processing chains for satellite image processing as well as scientific signal analysis and geographic information management since its creation (2003). We believe that recent work on big data, GPU and peer-to-peer collaborative processing can open a new breakthrough in data analysis and display that will serve many new applications in collaborative scientific computing, environment mapping and understanding. The magHD (for Magellium Hyper-Dimension) project aims at developing software solutions that will bring highly interactive tools for complex datasets analysis and exploration commodity hardware, targeting small to medium scale clusters with expansion capabilities to large cloud based clusters.

  15. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining.

    PubMed

    Salehi, Mojtaba; Bahreininejad, Ardeshir

    2011-08-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously.

  16. Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining

    PubMed Central

    Salehi, Mojtaba

    2010-01-01

    Optimization of process planning is considered as the key technology for computer-aided process planning which is a rather complex and difficult procedure. A good process plan of a part is built up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each operation. In the present work, the process planning is divided into preliminary planning, and secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent searching strategy, the feasible sequences are generated. Then, in the detailed planning stage, using the genetic algorithm which prunes the initial feasible sequences, the optimized operation sequence and the optimized selection of the machine, cutting tool and TAD for each operation based on optimization constraints as an additive constraint aggregation are obtained. The main contribution of this work is the optimization of sequence of the operations of the part, and optimization of machine selection, cutting tool and TAD for each operation using the intelligent search and genetic algorithm simultaneously. PMID:21845020

  17. fMRat: an extension of SPM for a fully automatic analysis of rodent brain functional magnetic resonance series.

    PubMed

    Chavarrías, Cristina; García-Vázquez, Verónica; Alemán-Gómez, Yasser; Montesinos, Paula; Pascau, Javier; Desco, Manuel

    2016-05-01

    The purpose of this study was to develop a multi-platform automatic software tool for full processing of fMRI rodent studies. Existing tools require the usage of several different plug-ins, a significant user interaction and/or programming skills. Based on a user-friendly interface, the tool provides statistical parametric brain maps (t and Z) and percentage of signal change for user-provided regions of interest. The tool is coded in MATLAB (MathWorks(®)) and implemented as a plug-in for SPM (Statistical Parametric Mapping, the Wellcome Trust Centre for Neuroimaging). The automatic pipeline loads default parameters that are appropriate for preclinical studies and processes multiple subjects in batch mode (from images in either Nifti or raw Bruker format). In advanced mode, all processing steps can be selected or deselected and executed independently. Processing parameters and workflow were optimized for rat studies and assessed using 460 male-rat fMRI series on which we tested five smoothing kernel sizes and three different hemodynamic models. A smoothing kernel of FWHM = 1.2 mm (four times the voxel size) yielded the highest t values at the somatosensorial primary cortex, and a boxcar response function provided the lowest residual variance after fitting. fMRat offers the features of a thorough SPM-based analysis combined with the functionality of several SPM extensions in a single automatic pipeline with a user-friendly interface. The code and sample images can be downloaded from https://github.com/HGGM-LIM/fmrat .

  18. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns.

    Treesearch

    Nancy Diaz; Dean Apostol

    1992-01-01

    This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...

  19. Echo™ User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Dustin Yewell

    Echo™ is a MATLAB-based software package designed for robust and scalable analysis of complex data workflows. An alternative to tedious, error-prone conventional processes, Echo is based on three transformative principles for data analysis: self-describing data, name-based indexing, and dynamic resource allocation. The software takes an object-oriented approach to data analysis, intimately connecting measurement data with associated metadata. Echo operations in an analysis workflow automatically track and merge metadata and computation parameters to provide a complete history of the process used to generate final results, while automated figure and report generation tools eliminate the potential to mislabel those results. History reportingmore » and visualization methods provide straightforward auditability of analysis processes. Furthermore, name-based indexing on metadata greatly improves code readability for analyst collaboration and reduces opportunities for errors to occur. Echo efficiently manages large data sets using a framework that seamlessly allocates resources such that only the necessary computations to produce a given result are executed. Echo provides a versatile and extensible framework, allowing advanced users to add their own tools and data classes tailored to their own specific needs. Applying these transformative principles and powerful features, Echo greatly improves analyst efficiency and quality of results in many application areas.« less

  20. Computer-aided system design

    NASA Technical Reports Server (NTRS)

    Walker, Carrie K.

    1991-01-01

    A technique has been developed for combining features of a systems architecture design and assessment tool and a software development tool. This technique reduces simulation development time and expands simulation detail. The Architecture Design and Assessment System (ADAS), developed at the Research Triangle Institute, is a set of computer-assisted engineering tools for the design and analysis of computer systems. The ADAS system is based on directed graph concepts and supports the synthesis and analysis of software algorithms mapped to candidate hardware implementations. Greater simulation detail is provided by the ADAS functional simulator. With the functional simulator, programs written in either Ada or C can be used to provide a detailed description of graph nodes. A Computer-Aided Software Engineering tool developed at the Charles Stark Draper Laboratory (CSDL CASE) automatically generates Ada or C code from engineering block diagram specifications designed with an interactive graphical interface. A technique to use the tools together has been developed, which further automates the design process.

  1. Integrating ecosystem services analysis into scenario planning practice: accounting for street tree benefits with i-Tree valuation in Central Texas.

    PubMed

    Hilde, Thomas; Paterson, Robert

    2014-12-15

    Scenario planning continues to gain momentum in the United States as an effective process for building consensus on long-range community plans and creating regional visions for the future. However, efforts to integrate more sophisticated information into the analytical framework to help identify important ecosystem services have lagged in practice. This is problematic because understanding the tradeoffs of land consumption patterns on ecological integrity is central to mitigating the environmental degradation caused by land use change and new development. In this paper we describe how an ecosystem services valuation model, i-Tree, was integrated into a mainstream scenario planning software tool, Envision Tomorrow, to assess the benefits of public street trees for alternative future development scenarios. The tool is then applied to development scenarios from the City of Hutto, TX, a Central Texas Sustainable Places Project demonstration community. The integrated tool represents a methodological improvement for scenario planning practice, offers a way to incorporate ecosystem services analysis into mainstream planning processes, and serves as an example of how open source software tools can expand the range of issues available for community and regional planning consideration, even in cases where community resources are limited. The tool also offers room for future improvements; feasible options include canopy analysis of various future land use typologies, as well as a generalized street tree model for broader U.S. application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Old stones' song: use-wear experiments and analysis of the Oldowan quartz and quartzite assemblage from Kanjera South (Kenya).

    PubMed

    Lemorini, Cristina; Plummer, Thomas W; Braun, David R; Crittenden, Alyssa N; Ditchfield, Peter W; Bishop, Laura C; Hertel, Fritz; Oliver, James S; Marlowe, Frank W; Schoeninger, Margaret J; Potts, Richard

    2014-07-01

    Evidence of Oldowan tools by ∼2.6 million years ago (Ma) may signal a major adaptive shift in hominin evolution. While tool-dependent butchery of large mammals was important by at least 2.0 Ma, the use of artifacts for tasks other than faunal processing has been difficult to diagnose. Here we report on use-wear analysis of ∼2.0 Ma quartz and quartzite artifacts from Kanjera South, Kenya. A use-wear framework that links processing of specific materials and tool motions to their resultant use-wear patterns was developed. A blind test was then carried out to assess and improve the efficacy of this experimental use-wear framework, which was then applied to the analysis of 62 Oldowan artifacts from Kanjera South. Use-wear on a total of 23 artifact edges was attributed to the processing of specific materials. Use-wear on seven edges (30%) was attributed to animal tissue processing, corroborating zooarchaeological evidence for butchery at the site. Use-wear on 16 edges (70%) was attributed to the processing of plant tissues, including wood, grit-covered plant tissues that we interpret as underground storage organs (USOs), and stems of grass or sedges. These results expand our knowledge of the suite of behaviours carried out in the vicinity of Kanjera South to include the processing of materials that would be 'invisible' using standard archaeological methods. Wood cutting and scraping may represent the production and/or maintenance of wooden tools. Use-wear related to USO processing extends the archaeological evidence for hominin acquisition and consumption of this resource by over 1.5 Ma. Cutting of grasses, sedges or reeds may be related to a subsistence task (e.g., grass seed harvesting, cutting out papyrus culm for consumption) and/or a non-subsistence related task (e.g., production of 'twine,' simple carrying devices, or bedding). These results highlight the adaptive significance of lithic technology for hominins at Kanjera. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    NASA Technical Reports Server (NTRS)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  4. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    USDA-ARS?s Scientific Manuscript database

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  5. The Circuit of Culture as a Generative Tool of Contemporary Analysis: Examining the Construction of an Education Commodity

    ERIC Educational Resources Information Center

    Leve, Annabelle M.

    2012-01-01

    Contemporary studies in the field of education cannot afford to neglect the ever present interrelationships between power and politics, economics and consumption, representation and identity. In studying a recent cultural phenomenon in government schools, it became clear that a methodological tool that made sense of these interlinked processes was…

  6. An Analysis of Texts in Turkish Coursebooks Studied at Open Education Secondary School

    ERIC Educational Resources Information Center

    Kolac, Emine

    2015-01-01

    Head spinning pace of change and development in information and technology has not yet discredited coursebooks as the major classroom tool and equipment. Coursebooks, as they have always been, are still the primary source and tool of teaching and learning process. As with the mainstream education, well-prepared coursebooks and texts are also a…

  7. In-line monitoring of pellet coating thickness growth by means of visual imaging.

    PubMed

    Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan

    2014-08-15

    Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.

    PubMed

    Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh

    2015-01-16

    Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .

  9. Web-based analysis and publication of flow cytometry experiments.

    PubMed

    Kotecha, Nikesh; Krutzik, Peter O; Irish, Jonathan M

    2010-07-01

    Cytobank is a Web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a Web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permission, from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at http://www.cytobank.org. (c) 2010 by John Wiley & Sons, Inc.

  10. Web-Based Analysis and Publication of Flow Cytometry Experiments

    PubMed Central

    Kotecha, Nikesh; Krutzik, Peter O.; Irish, Jonathan M.

    2014-01-01

    Cytobank is a web-based application for storage, analysis, and sharing of flow cytometry experiments. Researchers use a web browser to log in and use a wide range of tools developed for basic and advanced flow cytometry. In addition to providing access to standard cytometry tools from any computer, Cytobank creates a platform and community for developing new analysis and publication tools. Figure layouts created on Cytobank are designed to allow transparent access to the underlying experiment annotation and data processing steps. Since all flow cytometry files and analysis data are stored on a central server, experiments and figures can be viewed or edited by anyone with the proper permissions from any computer with Internet access. Once a primary researcher has performed the initial analysis of the data, collaborators can engage in experiment analysis and make their own figure layouts using the gated, compensated experiment files. Cytobank is available to the scientific community at www.cytobank.org PMID:20578106

  11. EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing.

    PubMed

    Delorme, Arnaud; Mullen, Tim; Kothe, Christian; Akalin Acar, Zeynep; Bigdely-Shamlo, Nima; Vankov, Andrey; Makeig, Scott

    2011-01-01

    We describe a set of complementary EEG data collection and processing tools recently developed at the Swartz Center for Computational Neuroscience (SCCN) that connect to and extend the EEGLAB software environment, a freely available and readily extensible processing environment running under Matlab. The new tools include (1) a new and flexible EEGLAB STUDY design facility for framing and performing statistical analyses on data from multiple subjects; (2) a neuroelectromagnetic forward head modeling toolbox (NFT) for building realistic electrical head models from available data; (3) a source information flow toolbox (SIFT) for modeling ongoing or event-related effective connectivity between cortical areas; (4) a BCILAB toolbox for building online brain-computer interface (BCI) models from available data, and (5) an experimental real-time interactive control and analysis (ERICA) environment for real-time production and coordination of interactive, multimodal experiments.

  12. Performance modeling & simulation of complex systems (A systems engineering design & analysis approach)

    NASA Technical Reports Server (NTRS)

    Hall, Laverne

    1995-01-01

    Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.

  13. Generating DEM from LIDAR data - comparison of available software tools

    NASA Astrophysics Data System (ADS)

    Korzeniowska, K.; Lacka, M.

    2011-12-01

    In recent years many software tools and applications have appeared that offer procedures, scripts and algorithms to process and visualize ALS data. This variety of software tools and of "point cloud" processing methods contributed to the aim of this study: to assess algorithms available in various software tools that are used to classify LIDAR "point cloud" data, through a careful examination of Digital Elevation Models (DEMs) generated from LIDAR data on a base of these algorithms. The works focused on the most important available software tools: both commercial and open source ones. Two sites in a mountain area were selected for the study. The area of each site is 0.645 sq km. DEMs generated with analysed software tools ware compared with a reference dataset, generated using manual methods to eliminate non ground points. Surfaces were analysed using raster analysis. Minimum, maximum and mean differences between reference DEM and DEMs generated with analysed software tools were calculated, together with Root Mean Square Error. Differences between DEMs were also examined visually using transects along the grid axes in the test sites.

  14. Statistical methods for the forensic analysis of striated tool marks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoeksema, Amy Beth

    In forensics, fingerprints can be used to uniquely identify suspects in a crime. Similarly, a tool mark left at a crime scene can be used to identify the tool that was used. However, the current practice of identifying matching tool marks involves visual inspection of marks by forensic experts which can be a very subjective process. As a result, declared matches are often successfully challenged in court, so law enforcement agencies are particularly interested in encouraging research in more objective approaches. Our analysis is based on comparisons of profilometry data, essentially depth contours of a tool mark surface taken alongmore » a linear path. In current practice, for stronger support of a match or non-match, multiple marks are made in the lab under the same conditions by the suspect tool. We propose the use of a likelihood ratio test to analyze the difference between a sample of comparisons of lab tool marks to a field tool mark, against a sample of comparisons of two lab tool marks. Chumbley et al. (2010) point out that the angle of incidence between the tool and the marked surface can have a substantial impact on the tool mark and on the effectiveness of both manual and algorithmic matching procedures. To better address this problem, we describe how the analysis can be enhanced to model the effect of tool angle and allow for angle estimation for a tool mark left at a crime scene. With sufficient development, such methods may lead to more defensible forensic analyses.« less

  15. Modeling and simulation of offshore wind farm O&M processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joschko, Philip, E-mail: joschko@informatik.uni-hamburg.de; Widok, Andi H., E-mail: a.widok@htw-berlin.de; Appel, Susanne, E-mail: susanne.appel@hs-bremen.de

    2015-04-15

    This paper describes a holistic approach to operation and maintenance (O&M) processes in the domain of offshore wind farm power generation. The acquisition and process visualization is followed by a risk analysis of all relevant processes. Hereafter, a tool was designed, which is able to model the defined processes in a BPMN 2.0 notation, as well as connect and simulate them. Furthermore, the notation was enriched with new elements, representing other relevant factors that were, to date, only displayable with much higher effort. In that regard a variety of more complex situations were integrated, such as for example new processmore » interactions depending on different weather influences, in which case a stochastic weather generator was combined with the business simulation or other wind farm aspects important to the smooth running of the offshore wind farms. In addition, the choices for different methodologies, such as the simulation framework or the business process notation will be presented and elaborated depending on the impact they had on the development of the approach and the software solution. - Highlights: • Analysis of operation and maintenance processes of offshore wind farms • Process modeling with BPMN 2.0 • Domain-specific simulation tool.« less

  16. Nut Cracking Tools Used by Captive Chimpanzees (Pan troglodytes) and Their Comparison with Early Stone Age Percussive Artefacts from Olduvai Gorge.

    PubMed

    Arroyo, Adrián; Hirata, Satoshi; Matsuzawa, Tetsuro; de la Torre, Ignacio

    2016-01-01

    We present the results of a series of experiments at the Kumamoto Sanctuary in Japan, in which captive chimpanzees (Pan troglodytes) performed several nut cracking sessions using raw materials from Olduvai Gorge, Tanzania. We examined captive chimpanzee pounding tools using a combination of technological analysis, use-wear distribution, and micro-wear analysis. Our results show specific patterns of use-wear distribution across the active surfaces of pounding tools, which reveal some similarities with traces on archaeological percussive objects from the Early Stone Age, and are consistent with traces on other experimental pounding tools used by modern humans. The approach used in this study may help to stablish a framework with which to interpret archaeological assemblages and improve understanding of use-wear formation processes on pounding tools used by chimpanzees. This study represents the first direct comparison of chimpanzee pounding tools and archaeological material, and thus may contribute to a better understanding of hominin percussive activities.

  17. Decision support tools for proton therapy ePR: intelligent treatment planning navigator and radiation toxicity tool for evaluating of prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Le, Anh H.; Deshpande, Ruchi; Liu, Brent J.

    2010-03-01

    The electronic patient record (ePR) has been developed for prostate cancer patients treated with proton therapy. The ePR has functionality to accept digital input from patient data, perform outcome analysis and patient and physician profiling, provide clinical decision support and suggest courses of treatment, and distribute information across different platforms and health information systems. In previous years, we have presented the infrastructure of a medical imaging informatics based ePR for PT with functionality to accept digital patient information and distribute this information across geographical location using Internet protocol. In this paper, we present the ePR decision support tools which utilize the imaging processing tools and data collected in the ePR. The two decision support tools including the treatment plan navigator and radiation toxicity tool are presented to evaluate prostate cancer treatment to improve proton therapy operation and improve treatment outcomes analysis.

  18. Nut Cracking Tools Used by Captive Chimpanzees (Pan troglodytes) and Their Comparison with Early Stone Age Percussive Artefacts from Olduvai Gorge

    PubMed Central

    Arroyo, Adrián; Hirata, Satoshi; Matsuzawa, Tetsuro; de la Torre, Ignacio

    2016-01-01

    We present the results of a series of experiments at the Kumamoto Sanctuary in Japan, in which captive chimpanzees (Pan troglodytes) performed several nut cracking sessions using raw materials from Olduvai Gorge, Tanzania. We examined captive chimpanzee pounding tools using a combination of technological analysis, use-wear distribution, and micro-wear analysis. Our results show specific patterns of use-wear distribution across the active surfaces of pounding tools, which reveal some similarities with traces on archaeological percussive objects from the Early Stone Age, and are consistent with traces on other experimental pounding tools used by modern humans. The approach used in this study may help to stablish a framework with which to interpret archaeological assemblages and improve understanding of use-wear formation processes on pounding tools used by chimpanzees. This study represents the first direct comparison of chimpanzee pounding tools and archaeological material, and thus may contribute to a better understanding of hominin percussive activities. PMID:27870877

  19. Software integration for automated stability analysis and design optimization of a bearingless rotor blade

    NASA Astrophysics Data System (ADS)

    Gunduz, Mustafa Emre

    Many government agencies and corporations around the world have found the unique capabilities of rotorcraft indispensable. Incorporating such capabilities into rotorcraft design poses extra challenges because it is a complicated multidisciplinary process. The concept of applying several disciplines to the design and optimization processes may not be new, but it does not currently seem to be widely accepted in industry. The reason for this might be the lack of well-known tools for realizing a complete multidisciplinary design and analysis of a product. This study aims to propose a method that enables engineers in some design disciplines to perform a fairly detailed analysis and optimization of a design using commercially available software as well as codes developed at Georgia Tech. The ultimate goal is when the system is set up properly, the CAD model of the design, including all subsystems, will be automatically updated as soon as a new part or assembly is added to the design; or it will be updated when an analysis and/or an optimization is performed and the geometry needs to be modified. Designers and engineers will be involved in only checking the latest design for errors or adding/removing features. Such a design process will take dramatically less time to complete; therefore, it should reduce development time and costs. The optimization method is demonstrated on an existing helicopter rotor originally designed in the 1960's. The rotor is already an effective design with novel features. However, application of the optimization principles together with high-speed computing resulted in an even better design. The objective function to be minimized is related to the vibrations of the rotor system under gusty wind conditions. The design parameters are all continuous variables. Optimization is performed in a number of steps. First, the most crucial design variables of the objective function are identified. With these variables, Latin Hypercube Sampling method is used to probe the design space of several local minima and maxima. After analysis of numerous samples, an optimum configuration of the design that is more stable than that of the initial design is reached. The above process requires several software tools: CATIA as the CAD tool, ANSYS as the FEA tool, VABS for obtaining the cross-sectional structural properties, and DYMORE for the frequency and dynamic analysis of the rotor. MATLAB codes are also employed to generate input files and read output files of DYMORE. All these tools are connected using ModelCenter.

  20. Review of software tools for design and analysis of large scale MRM proteomic datasets.

    PubMed

    Colangelo, Christopher M; Chung, Lisa; Bruce, Can; Cheung, Kei-Hoi

    2013-06-15

    Selective or Multiple Reaction monitoring (SRM/MRM) is a liquid-chromatography (LC)/tandem-mass spectrometry (MS/MS) method that enables the quantitation of specific proteins in a sample by analyzing precursor ions and the fragment ions of their selected tryptic peptides. Instrumentation software has advanced to the point that thousands of transitions (pairs of primary and secondary m/z values) can be measured in a triple quadrupole instrument coupled to an LC, by a well-designed scheduling and selection of m/z windows. The design of a good MRM assay relies on the availability of peptide spectra from previous discovery-phase LC-MS/MS studies. The tedious aspect of manually developing and processing MRM assays involving thousands of transitions has spurred to development of software tools to automate this process. Software packages have been developed for project management, assay development, assay validation, data export, peak integration, quality assessment, and biostatistical analysis. No single tool provides a complete end-to-end solution, thus this article reviews the current state and discusses future directions of these software tools in order to enable researchers to combine these tools for a comprehensive targeted proteomics workflow. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  2. Usalpharma: A Cloud-Based Architecture to Support Quality Assurance Training Processes in Health Area Using Virtual Worlds

    PubMed Central

    García-Peñalvo, Francisco J.; Pérez-Blanco, Jonás Samuel; Martín-Suárez, Ana

    2014-01-01

    This paper discusses how cloud-based architectures can extend and enhance the functionality of the training environments based on virtual worlds and how, from this cloud perspective, we can provide support to analysis of training processes in the area of health, specifically in the field of training processes in quality assurance for pharmaceutical laboratories, presenting a tool for data retrieval and analysis that allows facing the knowledge discovery in the happenings inside the virtual worlds. PMID:24778593

  3. MDAS: an integrated system for metabonomic data analysis.

    PubMed

    Liu, Juan; Li, Bo; Xiong, Jiang-Hui

    2009-03-01

    Metabonomics, the latest 'omics' research field, shows great promise as a tool in biomarker discovery, drug efficacy and toxicity analysis, disease diagnosis and prognosis. One of the major challenges now facing researchers is how to process this data to yield useful information about a biological system, e.g., the mechanism of diseases. Traditional methods employed in metabonomic data analysis use multivariate analysis methods developed independently in chemometrics research. Additionally, with the development of machine learning approaches, some methods such as SVMs also show promise for use in metabonomic data analysis. Aside from the application of general multivariate analysis and machine learning methods to this problem, there is also a need for an integrated tool customized for metabonomic data analysis which can be easily used by biologists to reveal interesting patterns in metabonomic data.In this paper, we present a novel software tool MDAS (Metabonomic Data Analysis System) for metabonomic data analysis which integrates traditional chemometrics methods and newly introduced machine learning approaches. MDAS contains a suite of functional models for metabonomic data analysis and optimizes the flow of data analysis. Several file formats can be accepted as input. The input data can be optionally preprocessed and can then be processed with operations such as feature analysis and dimensionality reduction. The data with reduced dimensionalities can be used for training or testing through machine learning models. The system supplies proper visualization for data preprocessing, feature analysis, and classification which can be a powerful function for users to extract knowledge from the data. MDAS is an integrated platform for metabonomic data analysis, which transforms a complex analysis procedure into a more formalized and simplified one. The software package can be obtained from the authors.

  4. Discovery of Information Diffusion Process in Social Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kwanho; Jung, Jae-Yoon; Park, Jonghun

    Information diffusion analysis in social networks is of significance since it enables us to deeply understand dynamic social interactions among users. In this paper, we introduce approaches to discovering information diffusion process in social networks based on process mining. Process mining techniques are applied from three perspectives: social network analysis, process discovery and community recognition. We then present experimental results by using a real-life social network data. The proposed techniques are expected to employ as new analytical tools in online social networks such as blog and wikis for company marketers, politicians, news reporters and online writers.

  5. Using incident response trees as a tool for risk management of online financial services.

    PubMed

    Gorton, Dan

    2014-09-01

    The article introduces the use of probabilistic risk assessment for modeling the incident response process of online financial services. The main contribution is the creation of incident response trees, using event tree analysis, which provides us with a visual tool and a systematic way to estimate the probability of a successful incident response process against the currently known risk landscape, making it possible to measure the balance between front-end and back-end security measures. The model is presented using an illustrative example, and is then applied to the incident response process of a Swedish bank. Access to relevant data is verified and the applicability and usability of the proposed model is verified using one year of historical data. Potential advantages and possible shortcomings are discussed, referring to both the design phase and the operational phase, and future work is presented. © 2014 Society for Risk Analysis.

  6. Implementation of lean manufacturing for frozen fish process at PT. XYZ

    NASA Astrophysics Data System (ADS)

    Setiyawan, D. T.; Pertiwijaya, H. R.; Effendi, U.

    2018-03-01

    PT. XYZ is a company specialized in the processing of fishery products particularly in frozen fish fillet. The purpose of this research was to identify the type of waste and determine the recommendations of minimizing waste Lean manufacturing approach was used in the identification of waste by describing the Value Stream Mapping (VSM) and selecting tools in the Value Stream Analysis Tools (VALSAT). The results of this research showed that the highest waste that generated was the defect of leak packaging on fillet products with an average of 1.21%. In addition to defect, other insufficiencies were found such as: unnecessary motion, unnecessary overhead, and waiting time. Recommendations for improvements that given include reduction of time at several stages of the process, making production schedules, and conducting regular machine maintenance. VSM analysis shows reduced lead time of 582.04 minutes to 572.01 minutes.

  7. Combining LCT tools for the optimization of an industrial process: material and energy flow analysis and best available techniques.

    PubMed

    Rodríguez, M T Torres; Andrade, L Cristóbal; Bugallo, P M Bello; Long, J J Casares

    2011-09-15

    Life cycle thinking (LCT) is one of the philosophies that has recently appeared in the context of the sustainable development. Some of the already existing tools and methods, as well as some of the recently emerged ones, which seek to understand, interpret and design the life of a product, can be included into the scope of the LCT philosophy. That is the case of the material and energy flow analysis (MEFA), a tool derived from the industrial metabolism definition. This paper proposes a methodology combining MEFA with another technique derived from sustainable development which also fits the LCT philosophy, the BAT (best available techniques) analysis. This methodology, applied to an industrial process, seeks to identify the so-called improvable flows by MEFA, so that the appropriate candidate BAT can be selected by BAT analysis. Material and energy inputs, outputs and internal flows are quantified, and sustainable solutions are provided on the basis of industrial metabolism. The methodology has been applied to an exemplary roof tile manufacture plant for validation. 14 Improvable flows have been identified and 7 candidate BAT have been proposed aiming to reduce these flows. The proposed methodology provides a way to detect improvable material or energy flows in a process and selects the most sustainable options to enhance them. Solutions are proposed for the detected improvable flows, taking into account their effectiveness on improving such flows. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Validation of the World Health Organization tool for situational analysis to assess emergency and essential surgical care at district hospitals in Ghana.

    PubMed

    Osen, Hayley; Chang, David; Choo, Shelly; Perry, Henry; Hesse, Afua; Abantanga, Francis; McCord, Colin; Chrouser, Kristin; Abdullah, Fizan

    2011-03-01

    The World Health Organization (WHO) Tool for Situational Analysis to Assess Emergency and Essential Surgical Care (hereafter called the WHO Tool) has been used in more than 25 countries and is the largest effort to assess surgical care in the world. However, it has not yet been independently validated. Test-retest reliability is one way to validate the degree to which tests instruments are free from random error. The aim of the present field study was to determine the test-retest reliability of the WHO Tool. The WHO Tool was mailed to 10 district hospitals in Ghana. Written instructions were provided along with a letter from the Ghana Health Services requesting the hospital administrator to complete the survey tool. After ensuring delivery and completion of the forms, the study team readministered the WHO Tool at the time of an on-site visit less than 1 month later. The results of the two tests were compared to calculate kappa statistics for each of the 152 questions in the WHO Tool. The kappa statistic is a statistical measure of the degree of agreement above what would be expected based on chance alone. Ten hospitals were surveyed twice over a short interval (i.e., less than 1 month). Weighted and unweighted kappa statistics were calculated for 152 questions. The median unweighted kappa for the entire survey was 0.43 (interquartile range 0-0.84). The infrastructure section (24 questions) had a median kappa of 0.81; the human resources section (13 questions) had a median kappa of 0.77; the surgical procedures section (67 questions) had a median kappa of 0.00; and the emergency surgical equipment section (48 questions) had a median kappa of 0.81. Hospital capacity survey questions related to infrastructure characteristics had high reliability. However, questions related to process of care had poor reliability and may benefit from supplemental data gathered by direct observation. Limitations to the study include the small sample size: 10 district hospitals in a single country. Consistent and high correlations calculated from the field testing within the present analysis suggest that the WHO Tool for Situational Analysis is a reliable tool where it measures structure and setting, but it should be revised for measuring process of care.

  9. The Utility of Failure Modes and Effects Analysis of Consultations in a Tertiary, Academic, Medical Center.

    PubMed

    Niv, Yaron; Itskoviz, David; Cohen, Michal; Hendel, Hagit; Bar-Giora, Yonit; Berkov, Evgeny; Weisbord, Irit; Leviron, Yifat; Isasschar, Assaf; Ganor, Arian

    Failure modes and effects analysis (FMEA) is a tool used to identify potential risks in health care processes. We used the FMEA tool for improving the process of consultation in an academic medical center. A team of 10 staff members-5 physicians, 2 quality experts, 2 organizational consultants, and 1 nurse-was established. The consultation process steps, from ordering to delivering, were computed. Failure modes were assessed for likelihood of occurrence, detection, and severity. A risk priority number (RPN) was calculated. An interventional plan was designed according to the highest RPNs. Thereafter, we compared the percentage of completed computer-based documented consultations before and after the intervention. The team identified 3 main categories of failure modes that reached the highest RPNs: initiation of consultation by a junior staff physician without senior approval, failure to document the consultation in the computerized patient registry, and asking for consultation on the telephone. An interventional plan was designed, including meetings to update knowledge of the consultation request process, stressing the importance of approval by a senior physician, training sessions for closing requests in the patient file, and reporting of telephone requests. The number of electronically documented consultation results and recommendations significantly increased (75%) after intervention. FMEA is an important and efficient tool for improving the consultation process in an academic medical center.

  10. Hard Choices for Individual Situations.

    ERIC Educational Resources Information Center

    Landon, Bruce

    This paper focuses on faculty use of a decision-making process for complex situations. The analysis part of the process describes and compares course management software focusing on: technical specifications, instructional design values,tools and features, ease of use, and standards compliance. The extensive comparisons provide faculty with…

  11. ESTEST: An Open Science Platform for Electronic Structure Research

    ERIC Educational Resources Information Center

    Yuan, Gary

    2012-01-01

    Open science platforms in support of data generation, analysis, and dissemination are becoming indispensible tools for conducting research. These platforms use informatics and information technologies to address significant problems in open science data interoperability, verification & validation, comparison, analysis, post-processing,…

  12. Development and psychometric evaluation of the Impact of Health Information Technology (I-HIT) scale.

    PubMed

    Dykes, Patricia C; Hurley, Ann; Cashen, Margaret; Bakken, Suzanne; Duffy, Mary E

    2007-01-01

    The use of health information technology (HIT) for the support of communication processes and data and information access in acute care settings is a relatively new phenomenon. A means of evaluating the impact of HIT in hospital settings is needed. The purpose of this research was to design and psychometrically evaluate the Impact of Health Information Technology scale (I-HIT). I-HIT was designed to measure the perception of nurses regarding the ways in which HIT influences interdisciplinary communication and workflow patterns and nurses' satisfaction with HIT applications and tools. Content for a 43-item tool was derived from the literature, and supported theoretically by the Coiera model and by nurse informaticists. Internal consistency reliability analysis using Cronbach's alpha was conducted on the 43-item scale to initiate the item reduction process. Items with an item total correlation of less than 0.35 were removed, leaving a total of 29 items. Item analysis, exploratory principal component analysis and internal consistency reliability using Cronbach's alpha were used to confirm the 29-item scale. Principal components analysis with Varimax rotation produced a four-factor solution that explained 58.5% of total variance (general advantages, information tools to support information needs, information tools to support communication needs, and workflow implications). Internal consistency of the total scale was 0.95 and ranged from 0.80-0.89 for four subscales. I-HIT demonstrated psychometric adequacy and is recommended to measure the impact of HIT on nursing practice in acute care settings.

  13. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.

    PubMed

    Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian

    2015-12-16

    Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.

  14. An Approach for Calculating Land Valuation by Using Inspire Data Models

    NASA Astrophysics Data System (ADS)

    Aydinoglu, A. C.; Bovkir, R.

    2017-11-01

    Land valuation is a highly important concept for societies and governments have always emphasis on the process especially for taxation, expropriation, market capitalization and economic activity purposes. To success an interoperable and standardised land valuation, INSPIRE data models can be very practical and effective. If data used in land valuation process produced in compliance with INSPIRE specifications, a reliable and effective land valuation process can be performed. In this study, possibility of the performing land valuation process with using the INSPIRE data models was analysed and with the help of Geographic Information Systems (GIS) a case study in Pendik was implemented. For this purpose, firstly data analysis and gathering was performed. After, different data structures were transformed according to the INSPIRE data model requirements. For each data set necessary ETL (Extract-Transform-Load) tools were produced and all data transformed according to the target data requirements. With the availability and practicability of spatial analysis tools of GIS software, land valuation calculations were performed for study area.

  15. Gaussian process regression for tool wear prediction

    NASA Astrophysics Data System (ADS)

    Kong, Dongdong; Chen, Yongjie; Li, Ning

    2018-05-01

    To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.

  16. Grey Relational Analysis Coupled with Principal Component Analysis for Optimization of Stereolithography Process to Enhance Part Quality

    NASA Astrophysics Data System (ADS)

    Raju, B. S.; Sekhar, U. Chandra; Drakshayani, D. N.

    2017-08-01

    The paper investigates optimization of stereolithography process for SL5530 epoxy resin material to enhance part quality. The major characteristics indexed for performance selected to evaluate the processes are tensile strength, Flexural strength, Impact strength and Density analysis and corresponding process parameters are Layer thickness, Orientation and Hatch spacing. In this study, the process is intrinsically with multiple parameters tuning so that grey relational analysis which uses grey relational grade as performance index is specially adopted to determine the optimal combination of process parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively desired. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of process parameters. Hence, this confirm that the proposed approach in this study can be an useful tool to improve the process parameters in stereolithography process, which is very useful information for machine designers as well as RP machine users.

  17. An Expert Assistant for Computer Aided Parallelization

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.

  18. An Analysis of the Effects of Chip-groove Geometry on Machining Performance Using Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Ee, K. C.; Dillon, O. W.; Jawahir, I. S.

    2004-06-01

    This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.

  19. State of the art in on-line techniques coupled to flow injection analysis FIA/on-line- a critical review

    PubMed Central

    Puchades, R.; Maquieira, A.; Atienza, J.; Herrero, M. A.

    1990-01-01

    Flow injection analysis (FIA) has emerged as an increasingly used laboratory tool in chemical analysis. Employment of the technique for on-line sample treatment and on-line measurement in chemical process control is a growing trend. This article reviews the recent applications of FlA. Most papers refer to on-line sample treatment. Although FIA is very well suited to continuous on-line process monitoring, few examples have been found in this areamost of them have been applied to water treatment or fermentation processes. PMID:18925271

  20. Open environments to support systems engineering tool integration: A study using the Portable Common Tool Environment (PCTE)

    NASA Technical Reports Server (NTRS)

    Eckhardt, Dave E., Jr.; Jipping, Michael J.; Wild, Chris J.; Zeil, Steven J.; Roberts, Cathy C.

    1993-01-01

    A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized.

  1. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  2. The Influence of Processing Soil With a Coffee Grinder on Soil Classification

    DTIC Science & Technology

    2015-01-20

    shaker, sieves , coffee grinder, plastic limit tool, bowls, spatulas, and scoops. To classify soils, a dry sieve analysis is performed, as is a Plastic...processed with the coffee grinder for 90 seconds as described above. Sieve analysis using the wet preparation method was used to test and classify the soils...one 90 second cycle of Elevator Soil Figure 3: The blades after three 90 second cycles of Elevator Soil 71Page 4.2 Ottawa Sand Dry Sieve Analysis

  3. Verification and Validation of the General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Qureshi, Rizwan H.; Cooley, D. Steven; Parker, Joel J. K.; Grubb, Thomas G.

    2014-01-01

    This paper describes the processes and results of Verification and Validation (V&V) efforts for the General Mission Analysis Tool (GMAT). We describe the test program and environments, the tools used for independent test data, and comparison results. The V&V effort produced approximately 13,000 test scripts that are run as part of the nightly buildtest process. In addition, we created approximately 3000 automated GUI tests that are run every two weeks. Presenting all test results are beyond the scope of a single paper. Here we present high-level test results in most areas, and detailed test results for key areas. The final product of the V&V effort presented in this paper was GMAT version R2013a, the first Gold release of the software with completely updated documentation and greatly improved quality. Release R2013a was the staging release for flight qualification performed at Goddard Space Flight Center (GSFC) ultimately resulting in GMAT version R2013b.

  4. VisualUrText: A Text Analytics Tool for Unstructured Textual Data

    NASA Astrophysics Data System (ADS)

    Zainol, Zuraini; Jaymes, Mohd T. H.; Nohuddin, Puteri N. E.

    2018-05-01

    The growing amount of unstructured text over Internet is tremendous. Text repositories come from Web 2.0, business intelligence and social networking applications. It is also believed that 80-90% of future growth data is available in the form of unstructured text databases that may potentially contain interesting patterns and trends. Text Mining is well known technique for discovering interesting patterns and trends which are non-trivial knowledge from massive unstructured text data. Text Mining covers multidisciplinary fields involving information retrieval (IR), text analysis, natural language processing (NLP), data mining, machine learning statistics and computational linguistics. This paper discusses the development of text analytics tool that is proficient in extracting, processing, analyzing the unstructured text data and visualizing cleaned text data into multiple forms such as Document Term Matrix (DTM), Frequency Graph, Network Analysis Graph, Word Cloud and Dendogram. This tool, VisualUrText, is developed to assist students and researchers for extracting interesting patterns and trends in document analyses.

  5. Geocoded data structures and their applications to Earth science investigations

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  6. A Gap Analysis Needs Assessment Tool to Drive a Care Delivery and Research Agenda for Integration of Care and Sharing of Best Practices Across a Health System.

    PubMed

    Golden, Sherita Hill; Hager, Daniel; Gould, Lois J; Mathioudakis, Nestoras; Pronovost, Peter J

    2017-01-01

    In a complex health system, it is important to establish a systematic and data-driven approach to identifying needs. The Diabetes Clinical Community (DCC) of Johns Hopkins Medicine's Armstrong Institute for Patient Safety and Quality developed a gap analysis tool and process to establish the system's current state of inpatient diabetes care. The collectively developed tool assessed the following areas: program infrastructure; protocols, policies, and order sets; patient and health care professional education; and automated data access. For the purposes of this analysis, gaps were defined as those instances in which local resources, infrastructure, or processes demonstrated a variance against the current national evidence base or institutionally defined best practices. Following the gap analysis, members of the DCC, in collaboration with health system leadership, met to identify priority areas in order to integrate and synergize diabetes care resources and efforts to enhance quality and reduce disparities in care across the system. Key gaps in care identified included lack of standardized glucose management policies, lack of standardized training of health care professionals in inpatient diabetes management, and lack of access to automated data collection and analysis. These results were used to gain resources to support collaborative diabetes health system initiatives and to successfully obtain federal research funding to develop and pilot a pragmatic diabetes educational intervention. At a health system level, the summary format of this gap analysis tool is an effective method to clearly identify disparities in care to focus efforts and resources to improve care delivery. Copyright © 2016 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  7. Classroom Communication and Instructional Processes: Advances through Meta-Analysis

    ERIC Educational Resources Information Center

    Gayle, Barbara Mae, Ed.; Preiss, Raymond W., Ed.; Burrell, Nancy, Ed.; Allen, Mike, Ed.

    2006-01-01

    This volume offers a systematic review of the literature on communication education and instruction. Making meta-analysis findings accessible and relevant, the editors of this volume approach the topic from the perspective that meta-analysis serves as a useful tool for summarizing experiments and for determining how and why specific teaching and…

  8. Structural Analysis of Competitive Forces in Higher Education Industry: A Conceptual Framework.

    ERIC Educational Resources Information Center

    Sisaye, Seleshi

    This report describes how colleges and universities in the Not-for-Profit sector can bridge the strategic management research gap by applying competitive analysis in the strategic planning process. This business analysis tool can be used to assist colleges and universities, just as it assists businesses, in understanding the competitive forces…

  9. Generating a Magellanic star cluster catalog with ASteCA

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Piatti, A. E.; Vázquez, R. A.

    2016-08-01

    An increasing number of software tools have been employed in the recent years for the automated or semi-automated processing of astronomical data. The main advantages of using these tools over a standard by-eye analysis include: speed (particularly for large databases), homogeneity, reproducibility, and precision. At the same time, they enable a statistically correct study of the uncertainties associated with the analysis, in contrast with manually set errors, or the still widespread practice of simply not assigning errors. We present a catalog comprising 210 star clusters located in the Large and Small Magellanic Clouds, observed with Washington photometry. Their fundamental parameters were estimated through an homogeneous, automatized and completely unassisted process, via the Automated Stellar Cluster Analysis package ( ASteCA). Our results are compared with two types of studies on these clusters: one where the photometry is the same, and another where the photometric system is different than that employed by ASteCA.

  10. OpenMS: a flexible open-source software platform for mass spectrometry data analysis.

    PubMed

    Röst, Hannes L; Sachsenberg, Timo; Aiche, Stephan; Bielow, Chris; Weisser, Hendrik; Aicheler, Fabian; Andreotti, Sandro; Ehrlich, Hans-Christian; Gutenbrunner, Petra; Kenar, Erhan; Liang, Xiao; Nahnsen, Sven; Nilse, Lars; Pfeuffer, Julianus; Rosenberger, George; Rurik, Marc; Schmitt, Uwe; Veit, Johannes; Walzer, Mathias; Wojnar, David; Wolski, Witold E; Schilling, Oliver; Choudhary, Jyoti S; Malmström, Lars; Aebersold, Ruedi; Reinert, Knut; Kohlbacher, Oliver

    2016-08-30

    High-resolution mass spectrometry (MS) has become an important tool in the life sciences, contributing to the diagnosis and understanding of human diseases, elucidating biomolecular structural information and characterizing cellular signaling networks. However, the rapid growth in the volume and complexity of MS data makes transparent, accurate and reproducible analysis difficult. We present OpenMS 2.0 (http://www.openms.de), a robust, open-source, cross-platform software specifically designed for the flexible and reproducible analysis of high-throughput MS data. The extensible OpenMS software implements common mass spectrometric data processing tasks through a well-defined application programming interface in C++ and Python and through standardized open data formats. OpenMS additionally provides a set of 185 tools and ready-made workflows for common mass spectrometric data processing tasks, which enable users to perform complex quantitative mass spectrometric analyses with ease.

  11. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  12. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less

  13. Open source GIS based tools to improve hydrochemical water resources management in EU H2020 FREEWAT platform

    NASA Astrophysics Data System (ADS)

    Criollo, Rotman; Velasco, Violeta; Vázquez-Suñé, Enric; Nardi, Albert; Marazuela, Miguel A.; Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura; Cannata, Massimiliano; De Filippis, Giovanna

    2017-04-01

    Due to the general increase of water scarcity (Steduto et al., 2012), water quantity and quality must be well known to ensure a proper access to water resources in compliance with local and regional directives. This circumstance can be supported by tools which facilitate process of data management and its analysis. Such analyses have to provide research/professionals, policy makers and users with the ability to improve the management of the water resources with standard regulatory guidelines. Compliance with the established standard regulatory guidelines (with a special focus on requirement deriving from the GWD) should have an effective monitoring, evaluation, and interpretation of a large number of physical and chemical parameters. These amounts of datasets have to be assessed and interpreted: (i) integrating data from different sources and gathered with different data access techniques and formats; (ii) managing data with varying temporal and spatial extent; (iii) integrating groundwater quality information with other relevant information such as further hydrogeological data (Velasco et al., 2014) and pre-processing these data generally for the realization of groundwater models. In this context, the Hydrochemical Analysis Tools, akvaGIS Tools, has been implemented within the H2020 FREEWAT project; which aims to manage water resources by modelling water resource management in an open source GIS platform (QGIS desktop). The main goal of AkvaGIS Tools is to improve water quality analysis through different capabilities to improve the case study conceptual model managing all data related into its geospatial database (implemented in Spatialite) and a set of tools for improving the harmonization, integration, standardization, visualization and interpretation of the hydrochemical data. To achieve that, different commands cover a wide range of methodologies for querying, interpreting, and comparing groundwater quality data and facilitate the pre-processing analysis for being used in the realization of groundwater modelling. They include, ionic balance calculations, chemical time-series analysis, correlation of chemical parameters, and calculation of various common hydrochemical diagrams (Salinity, Schöeller-Berkaloff, Piper, and Stiff), among others. Furthermore, it allows the generation of maps of the spatial distributions of parameters and diagrams and thematic maps for the parameters measured and classified in the queried area. References: Rossetto R., Borsi I., Schifani C., Bonari E., Mogorovich P., Primicerio M. (2013). SID&GRID: Integrating hydrological modeling in GIS environment. Rendiconti Online Societa Geologica Italiana, Vol. 24, 282-283 Steduto, P., Faurès, J.M., Hoogeveen, J., Winpenny, J.T., Burke, J.J. (2012). Coping with water scarcity: an action framework for agriculture and food security. ISSN 1020-1203 ; 38 Velasco, V., Tubau, I., Vázquez-Suñé, E., Gogu, R., Gaitanaru, D., Alcaraz, M., Sanchez-Vila, X. (2014). GIS-based hydrogeochemical analysis tools (QUIMET). Computers & Geosciences, 70, 164-180.

  14. GECKO: a complete large-scale gene expression analysis platform.

    PubMed

    Theilhaber, Joachim; Ulyanov, Anatoly; Malanthara, Anish; Cole, Jack; Xu, Dapeng; Nahf, Robert; Heuer, Michael; Brockel, Christoph; Bushnell, Steven

    2004-12-10

    Gecko (Gene Expression: Computation and Knowledge Organization) is a complete, high-capacity centralized gene expression analysis system, developed in response to the needs of a distributed user community. Based on a client-server architecture, with a centralized repository of typically many tens of thousands of Affymetrix scans, Gecko includes automatic processing pipelines for uploading data from remote sites, a data base, a computational engine implementing approximately 50 different analysis tools, and a client application. Among available analysis tools are clustering methods, principal component analysis, supervised classification including feature selection and cross-validation, multi-factorial ANOVA, statistical contrast calculations, and various post-processing tools for extracting data at given error rates or significance levels. On account of its open architecture, Gecko also allows for the integration of new algorithms. The Gecko framework is very general: non-Affymetrix and non-gene expression data can be analyzed as well. A unique feature of the Gecko architecture is the concept of the Analysis Tree (actually, a directed acyclic graph), in which all successive results in ongoing analyses are saved. This approach has proven invaluable in allowing a large (approximately 100 users) and distributed community to share results, and to repeatedly return over a span of years to older and potentially very complex analyses of gene expression data. The Gecko system is being made publicly available as free software http://sourceforge.net/projects/geckoe. In totality or in parts, the Gecko framework should prove useful to users and system developers with a broad range of analysis needs.

  15. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  16. Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)

    2000-01-01

    HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).

  17. UQTk Version 3.0.3 User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargsyan, Khachik; Safta, Cosmin; Chowdhary, Kamaljit Singh

    2017-05-01

    The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.

  18. Seeking high reliability in primary care: Leadership, tools, and organization.

    PubMed

    Weaver, Robert R

    2015-01-01

    Leaders in health care increasingly recognize that improving health care quality and safety requires developing an organizational culture that fosters high reliability and continuous process improvement. For various reasons, a reliability-seeking culture is lacking in most health care settings. Developing a reliability-seeking culture requires leaders' sustained commitment to reliability principles using key mechanisms to embed those principles widely in the organization. The aim of this study was to examine how key mechanisms used by a primary care practice (PCP) might foster a reliability-seeking, system-oriented organizational culture. A case study approach was used to investigate the PCP's reliability culture. The study examined four cultural artifacts used to embed reliability-seeking principles across the organization: leadership statements, decision support tools, and two organizational processes. To decipher their effects on reliability, the study relied on observations of work patterns and the tools' use, interactions during morning huddles and process improvement meetings, interviews with clinical and office staff, and a "collective mindfulness" questionnaire. The five reliability principles framed the data analysis. Leadership statements articulated principles that oriented the PCP toward a reliability-seeking culture of care. Reliability principles became embedded in the everyday discourse and actions through the use of "problem knowledge coupler" decision support tools and daily "huddles." Practitioners and staff were encouraged to report unexpected events or close calls that arose and which often initiated a formal "process change" used to adjust routines and prevent adverse events from recurring. Activities that foster reliable patient care became part of the taken-for-granted routine at the PCP. The analysis illustrates the role leadership, tools, and organizational processes play in developing and embedding a reliable-seeking culture across an organization. Progress toward a reliability-seeking, system-oriented approach to care remains ongoing, and movement in that direction requires deliberate and sustained effort by committed leaders in health care.

  19. Development of processes allowing near real-time refinement and validation of triage tools during the early stage of an outbreak in readiness for surge: the FLU-CATs Study.

    PubMed

    Venkatesan, Sudhir; Myles, Puja R; McCann, Gerard; Kousoulis, Antonis A; Hashmi, Maimoona; Belatri, Rabah; Boyle, Emma; Barcroft, Alan; van Staa, Tjeerd Pieter; Kirkham, Jamie J; Nguyen Van Tam, Jonathan S; Williams, Timothy J; Semple, Malcolm G

    2015-10-01

    During pandemics of novel influenza and outbreaks of emerging infections, surge in health-care demand can exceed capacity to provide normal standards of care. In such exceptional circumstances, triage tools may aid decisions in identifying people who are most likely to benefit from higher levels of care. Rapid research during the early phase of an outbreak should allow refinement and validation of triage tools so that in the event of surge a valid tool is available. The overarching study aim is to conduct a prospective near real-time analysis of structured clinical assessments of influenza-like illness (ILI) using primary care electronic health records (EHRs) during a pandemic. This abstract summarises the preparatory work, infrastructure development, user testing and proof-of-concept study. (1) In preparation for conducting rapid research in the early phase of a future outbreak, to develop processes that allow near real-time analysis of general practitioner (GP) assessments of people presenting with ILI, management decisions and patient outcomes. (2) As proof of concept: conduct a pilot study evaluating the performance of the triage tools 'Community Assessment Tools' and 'Pandemic Medical Early Warning Score' to predict hospital admission and death in patients presenting with ILI to GPs during inter-pandemic winter seasons. Prospective near real-time analysis of structured clinical assessments and anonymised linkage to data from EHRs. User experience was evaluated by semistructured interviews with participating GPs. Thirty GPs in England, Wales and Scotland, participating in the Clinical Practice Research Datalink. All people presenting with ILI. None. Study outcome is proof of concept through demonstration of data capture and near real-time analysis. Primary patient outcomes were hospital admission within 24 hours and death (all causes) within 30 days of GP assessment. Secondary patient outcomes included GP decision to prescribe antibiotics and/or influenza-specific antiviral drugs and/or refer to hospital - if admitted, the need for higher levels of care and length of hospital stay. Linked anonymised data from a web-based structured clinical assessment and primary care EHRs. In the 24 months to April 2015, data from 704 adult and 159 child consultations by 30 GPs were captured. GPs referred 11 (1.6%) adults and six (3.8%) children to hospital. There were 13 (1.8%) deaths of adults and two (1.3%) of children. There were too few outcome events to draw any conclusions regarding the performance of the triage tools. GP interviews showed that although there were some difficulties with installation, the web-based data collection tool was quick and easy to use. Some GPs felt that a minimal monetary incentive would promote participation. We have developed processes that allow capture and near real-time automated analysis of GP's clinical assessments and management decisions of people presenting with ILI. We will develop processes to include other EHR systems, attempt linkage to data on influenza surveillance and maintain processes in readiness for a future outbreak. This study is registered as ISRCTN87130712 and UK Clinical Research Network 12827. The National Institute for Health Research Health Technology Assessment programme. MGS is supported by the UK NIHR Health Protection Research Unit in Emerging and Zoonotic Infections.

  20. Extracting Metrics for Three-dimensional Root Systems: Volume and Surface Analysis from In-soil X-ray Computed Tomography Data.

    PubMed

    Suresh, Niraj; Stephens, Sean A; Adams, Lexor; Beck, Anthon N; McKinney, Adriana L; Varga, Tamas

    2016-04-26

    Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to climate change and crop management. Quantitative size information on roots in their native environment is invaluable for studying root growth and environmental processes involving plants. X-ray computed tomography (XCT) has been demonstrated to be an effective tool for in situ root scanning and analysis. We aimed to develop a costless and efficient tool that approximates the surface and volume of the root regardless of its shape from three-dimensional (3D) tomography data. The root structure of a Prairie dropseed (Sporobolus heterolepis) specimen was imaged using XCT. The root was reconstructed, and the primary root structure was extracted from the data using a combination of licensed and open-source software. An isosurface polygonal mesh was then created for ease of analysis. We have developed the standalone application imeshJ, generated in MATLAB(1), to calculate root volume and surface area from the mesh. The outputs of imeshJ are surface area (in mm(2)) and the volume (in mm(3)). The process, utilizing a unique combination of tools from imaging to quantitative root analysis, is described. A combination of XCT and open-source software proved to be a powerful combination to noninvasively image plant root samples, segment root data, and extract quantitative information from the 3D data. This methodology of processing 3D data should be applicable to other material/sample systems where there is connectivity between components of similar X-ray attenuation and difficulties arise with segmentation.

  1. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  2. Visual analysis of variance: a tool for quantitative assessment of fMRI data processing and analysis.

    PubMed

    McNamee, R L; Eddy, W F

    2001-12-01

    Analysis of variance (ANOVA) is widely used for the study of experimental data. Here, the reach of this tool is extended to cover the preprocessing of functional magnetic resonance imaging (fMRI) data. This technique, termed visual ANOVA (VANOVA), provides both numerical and pictorial information to aid the user in understanding the effects of various parts of the data analysis. Unlike a formal ANOVA, this method does not depend on the mathematics of orthogonal projections or strictly additive decompositions. An illustrative example is presented and the application of the method to a large number of fMRI experiments is discussed. Copyright 2001 Wiley-Liss, Inc.

  3. Automated Hazard Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, F. J.

    2003-06-26

    The Automated Hazard Analysis (AHA) application is a software tool used to conduct job hazard screening and analysis of tasks to be performed in Savannah River Site facilities. The AHA application provides a systematic approach to the assessment of safety and environmental hazards associated with specific tasks, and the identification of controls regulations, and other requirements needed to perform those tasks safely. AHA is to be integrated into existing Savannah River site work control and job hazard analysis processes. Utilization of AHA will improve the consistency and completeness of hazard screening and analysis, and increase the effectiveness of the workmore » planning process.« less

  4. Application of the enterprise management tools Lean Six Sigma and PMBOK in developing a program of research management.

    PubMed

    Hors, Cora; Goldberg, Anna Carla; Almeida, Ederson Haroldo Pereira de; Babio Júnior, Fernando Galan; Rizzo, Luiz Vicente

    2012-01-01

    Introduce a program for the management of scientific research in a General Hospital employing the business management tools Lean Six Sigma and PMBOK for project management in this area. The Lean Six Sigma methodology was used to improve the management of the institution's scientific research through a specific tool (DMAIC) for identification, implementation and posterior analysis based on PMBOK practices of the solutions found. We present our solutions for the management of institutional research projects at the Sociedade Beneficente Israelita Brasileira Albert Einstein. The solutions were classified into four headings: people, processes, systems and organizational culture. A preliminary analysis of these solutions showed them to be completely or partially compliant to the processes described in the PMBOK Guide. In this post facto study, we verified that the solutions drawn from a project using Lean Six Sigma methodology and based on PMBOK enabled the improvement of our processes dealing with the management of scientific research carried out in the institution and constitutes a model to contribute to the search of innovative science management solutions by other institutions dealing with scientific research in Brazil.

  5. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    NASA Astrophysics Data System (ADS)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and Automated Rotational Center Hurricane Eye Retrieval (ARCHER) tools. In this presentation, we will compare the enabling technologies we tested and discuss which ones we selected for integration into the TCIS' data analysis tool architecture. We will also show how these techniques have been automated to provide access to NRT data through our analysis tools.

  6. Evolving software reengineering technology for the emerging innovative-competitive era

    NASA Technical Reports Server (NTRS)

    Hwang, Phillip Q.; Lock, Evan; Prywes, Noah

    1994-01-01

    This paper reports on a multi-tool commercial/military environment combining software Domain Analysis techniques with Reusable Software and Reengineering of Legacy Software. It is based on the development of a military version for the Department of Defense (DOD). The integrated tools in the military version are: Software Specification Assistant (SSA) and Software Reengineering Environment (SRE), developed by Computer Command and Control Company (CCCC) for Naval Surface Warfare Center (NSWC) and Joint Logistics Commanders (JLC), and the Advanced Research Project Agency (ARPA) STARS Software Engineering Environment (SEE) developed by Boeing for NAVAIR PMA 205. The paper describes transitioning these integrated tools to commercial use. There is a critical need for the transition for the following reasons: First, to date, 70 percent of programmers' time is applied to software maintenance. The work of these users has not been facilitated by existing tools. The addition of Software Reengineering will also facilitate software maintenance and upgrading. In fact, the integrated tools will support the entire software life cycle. Second, the integrated tools are essential to Business Process Reengineering, which seeks radical process innovations to achieve breakthrough results. Done well, process reengineering delivers extraordinary gains in process speed, productivity and profitability. Most importantly, it discovers new opportunities for products and services in collaboration with other organizations. Legacy computer software must be changed rapidly to support innovative business processes. The integrated tools will provide commercial organizations important competitive advantages. This, in turn, will increase employment by creating new business opportunities. Third, the integrated system will produce much higher quality software than use of the tools separately. The reason for this is that producing or upgrading software requires keen understanding of extremely complex applications which is facilitated by the integrated tools. The radical savings in the time and cost associated with software, due to use of CASE tools that support combined Reuse of Software and Reengineering of Legacy Code, will add an important impetus to improving the automation of enterprises. This will be reflected in continuing operations, as well as in innovating new business processes. The proposed multi-tool software development is based on state of the art technology, which will be further advanced through the use of open systems for adding new tools and experience in their use.

  7. Lean production tools and decision latitude enable conditions for innovative learning in organizations: a multilevel analysis.

    PubMed

    Fagerlind Ståhl, Anna-Carin; Gustavsson, Maria; Karlsson, Nadine; Johansson, Gun; Ekberg, Kerstin

    2015-03-01

    The effect of lean production on conditions for learning is debated. This study aimed to investigate how tools inspired by lean production (standardization, resource reduction, visual monitoring, housekeeping, value flow analysis) were associated with an innovative learning climate and with collective dispersion of ideas in organizations, and whether decision latitude contributed to these associations. A questionnaire was sent out to employees in public, private, production and service organizations (n = 4442). Multilevel linear regression analyses were used. Use of lean tools and decision latitude were positively associated with an innovative learning climate and collective dispersion of ideas. A low degree of decision latitude was a modifier in the association to collective dispersion of ideas. Lean tools can enable shared understanding and collective spreading of ideas, needed for the development of work processes, especially when decision latitude is low. Value flow analysis played a pivotal role in the associations. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. An Overview of the Runtime Verification Tool Java PathExplorer

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present an overview of the Java PathExplorer runtime verification tool, in short referred to as JPAX. JPAX can monitor the execution of a Java program and check that it conforms with a set of user provided properties formulated in temporal logic. JPAX can in addition analyze the program for concurrency errors such as deadlocks and data races. The concurrency analysis requires no user provided specification. The tool facilitates automated instrumentation of a program's bytecode, which when executed will emit an event stream, the execution trace, to an observer. The observer dispatches the incoming event stream to a set of observer processes, each performing a specialized analysis, such as the temporal logic verification, the deadlock analysis and the data race analysis. Temporal logic specifications can be formulated by the user in the Maude rewriting logic, where Maude is a high-speed rewriting system for equational logic, but here extended with executable temporal logic. The Maude rewriting engine is then activated as an event driven monitoring process. Alternatively, temporal specifications can be translated into efficient automata, which check the event stream. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems.

  9. "Testimonios" Informing a Human Rights and Social Justice Education Framework

    ERIC Educational Resources Information Center

    Prieto, Linda

    2016-01-01

    The recalling and documenting of "testimonio" "as a conceptual and methodological tool that transforms cultural and personal narratives into critical social analysis" (Fuentes & Pérez, 2016) is not an easy process. Often tears, "coraje" (both courage and rage) and laughter accompany this process--a transformative…

  10. Hands-on Approach to Prepare Specialists in Climate Changes Modeling and Analysis Using an Information-Computational Web-GIS Portal "Climate"

    NASA Astrophysics Data System (ADS)

    Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.

    2014-12-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. Financial support for this research from the RFBR (13-05-12034, 14-05-00502), SB RAS project VIII.80.2.1 and grant of the President of RF (№ 181) is acknowledged.

  11. 40 CFR 51.354 - Adequate tools and resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... assurance, data analysis and reporting, and the holding of hearings and adjudication of cases. A portion of... supply of vehicles for covert auditing, test equipment and facilities for program evaluation, and computers capable of data processing, analysis, and reporting. Equipment or equivalent services may be...

  12. GSAC - Generic Seismic Application Computing

    NASA Astrophysics Data System (ADS)

    Herrmann, R. B.; Ammon, C. J.; Koper, K. D.

    2004-12-01

    With the success of the IRIS data management center, the use of large data sets in seismological research has become common. Such data sets, and especially the significantly larger data sets expected from EarthScope, present challenges for analysis with existing tools developed over the last 30 years. For much of the community, the primary format for data analysis is the Seismic Analysis Code (SAC) format developed by Lawrence Livermore National Laboratory. Although somewhat restrictive in meta-data storage, the simplicity and stability of the format has established it as an important component of seismological research. Tools for working with SAC files fall into two categories - custom research quality processing codes and shared display - processing tools such as SAC2000, MatSeis,etc., which were developed primarily for the needs of individual seismic research groups. While the current graphics display and platform dependence of SAC2000 may be resolved if the source code is released, the code complexity and the lack of large-data set analysis or even introductory tutorials could preclude code improvements and development of expertise in its use. We believe that there is a place for new, especially open source, tools. The GSAC effort is an approach that focuses on ease of use, computational speed, transportability, rapid addition of new features and openness so that new and advanced students, researchers and instructors can quickly browse and process large data sets. We highlight several approaches toward data processing under this model. gsac - part of the Computer Programs in Seismology 3.30 distribution has much of the functionality of SAC2000 and works on UNIX/LINUX/MacOS-X/Windows (CYGWIN). This is completely programmed in C from scratch, is small, fast, and easy to maintain and extend. It is command line based and is easily included within shell processing scripts. PySAC is a set of Python functions that allow easy access to SAC files and enable efficient manipulation of SAC files under a variety of operating systems. PySAC has proven to be valuable in organizing large data sets. An array processing package includes standard beamforming algorithms and a search based method for inference of slowness vectors. The search results can be visualized using GMT scripts output by the C programs, and the resulting snapshots can be combined into an animation of the time evolution of the 2D slowness field.

  13. SpectraFox: A free open-source data management and analysis tool for scanning probe microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruby, Michael

    In the last decades scanning probe microscopy and spectroscopy have become well-established tools in nanotechnology and surface science. This opened the market for many commercial manufacturers, each with different hardware and software standards. Besides the advantage of a wide variety of available hardware, the diversity may software-wise complicate the data exchange between scientists, and the data analysis for groups working with hardware developed by different manufacturers. Not only the file format differs between manufacturers, but also the data often requires further numerical treatment before publication. SpectraFox is an open-source and independent tool which manages, processes, and evaluates scanning probe spectroscopy and microscopy data. It aims at simplifying the documentation in parallel to measurement, and it provides solid evaluation tools for a large number of data.

  14. CMM Data Analysis Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Due to the increase in the use of Coordinate Measuring Machines (CMMs) to measure fine details and complex geometries in manufacturing, many programs have been made to compile and analyze the data. These programs typically require extensive setup to determine the expected results in order to not only track the pass/fail of a dimension, but also to use statistical process control (SPC). These extra steps and setup times have been addressed through the CMM Data Analysis Tool, which only requires the output of the CMM to provide both pass/fail analysis on all parts run to the same inspection program asmore » well as provide graphs which help visualize where the part measures within the allowed tolerances. This provides feedback not only to the customer for approval of a part during development, but also to machining process engineers to identify when any dimension is drifting towards an out of tolerance condition during production. This program can handle hundreds of parts with complex dimensions and will provide an analysis within minutes.« less

  15. Design sensitivity analysis and optimization tool (DSO) for sizing design applications

    NASA Technical Reports Server (NTRS)

    Chang, Kuang-Hua; Choi, Kyung K.; Perng, Jyh-Hwa

    1992-01-01

    The DSO tool, a structural design software system that provides the designer with a graphics-based menu-driven design environment to perform easy design optimization for general applications, is presented. Three design stages, preprocessing, design sensitivity analysis, and postprocessing, are implemented in the DSO to allow the designer to carry out the design process systematically. A framework, including data base, user interface, foundation class, and remote module, has been designed and implemented to facilitate software development for the DSO. A number of dedicated commercial software/packages have been integrated in the DSO to support the design procedures. Instead of parameterizing an FEM, design parameters are defined on a geometric model associated with physical quantities, and the continuum design sensitivity analysis theory is implemented to compute design sensitivity coefficients using postprocessing data from the analysis codes. A tracked vehicle road wheel is given as a sizing design application to demonstrate the DSO's easy and convenient design optimization process.

  16. NMRPro: an integrated web component for interactive processing and visualization of NMR spectra.

    PubMed

    Mohamed, Ahmed; Nguyen, Canh Hao; Mamitsuka, Hiroshi

    2016-07-01

    The popularity of using NMR spectroscopy in metabolomics and natural products has driven the development of an array of NMR spectral analysis tools and databases. Particularly, web applications are well used recently because they are platform-independent and easy to extend through reusable web components. Currently available web applications provide the analysis of NMR spectra. However, they still lack the necessary processing and interactive visualization functionalities. To overcome these limitations, we present NMRPro, a web component that can be easily incorporated into current web applications, enabling easy-to-use online interactive processing and visualization. NMRPro integrates server-side processing with client-side interactive visualization through three parts: a python package to efficiently process large NMR datasets on the server-side, a Django App managing server-client interaction, and SpecdrawJS for client-side interactive visualization. Demo and installation instructions are available at http://mamitsukalab.org/tools/nmrpro/ mohamed@kuicr.kyoto-u.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.

    PubMed

    McCarthy, Davis J; Campbell, Kieran R; Lun, Aaron T L; Wills, Quin F

    2017-04-15

    Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalization. We have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalization and visualization of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development. The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater . davis@ebi.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  18. Service-based analysis of biological pathways

    PubMed Central

    Zheng, George; Bouguettaya, Athman

    2009-01-01

    Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403

  19. Object classification and outliers analysis in the forthcoming Gaia mission

    NASA Astrophysics Data System (ADS)

    Ordóñez-Blanco, D.; Arcay, B.; Dafonte, C.; Manteiga, M.; Ulla, A.

    2010-12-01

    Astrophysics is evolving towards the rational optimization of costly observational material by the intelligent exploitation of large astronomical databases from both terrestrial telescopes and spatial mission archives. However, there has been relatively little advance in the development of highly scalable data exploitation and analysis tools needed to generate the scientific returns from these large and expensively obtained datasets. Among the upcoming projects of astronomical instrumentation, Gaia is the next cornerstone ESA mission. The Gaia survey foresees the creation of a data archive and its future exploitation with automated or semi-automated analysis tools. This work reviews some of the work that is being developed by the Gaia Data Processing and Analysis Consortium for the object classification and analysis of outliers in the forthcoming mission.

  20. A Geant4 simulation of the depth dose percentage in brain tumors treatments using protons and carbon ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co

    2016-07-07

    The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.

  1. An Experience of Social Rising of Logical Tools in a Primary School Classroom: The Role of Language

    ERIC Educational Resources Information Center

    Coppola, Cristina; Mollo, Monica; Pacelli, Tiziana

    2011-01-01

    In this paper we explore the relationship between language and developmental processes of logical tools through the analysis at different levels of some "linguistic-manipulative" activities in a primary school classroom. We believe that this kind of activities can spur in the children a reflection and a change in their language…

  2. Consequent use of IT tools as a driver for cost reduction and quality improvements

    NASA Astrophysics Data System (ADS)

    Hein, Stefan; Rapp, Roberto; Feustel, Andreas

    2013-10-01

    The semiconductor industry drives a lot of efforts in the field of cost reductions and quality improvements. The consequent use of IT tools is one possibility to support these goals. With the extensions of its 150mm Fab to 200mm Robert Bosch increased the systematic use of data analysis and Advanced Process Control (APC).

  3. Developing an Ecosystem Services online Decision Support Tool to Assess the Impacts of Climate Change and Urban Growth in the Santa Cruz Watershed; Where We Live, Work, and Play

    EPA Science Inventory

    Processes through which ecosystems provide goods or benefit people can be referred to as "ecosystems services”, which may be quantified to clarify decision-making, with techniques including cost-benefit analysis. We are developing an online decision support tool, the Santa Cruz W...

  4. Department of the Army Cost Analysis Manual

    DTIC Science & Technology

    2001-05-01

    SECTION I - AUTOMATED COST ESTIMATING INTEGRATED TOOLS ( ACEIT ) ................................................................179 SECTION II - AUTOMATED...Management & Comptroller) endorsed the Automated Cost Estimating Integrated Tools ( ACEIT ) model and since it is widely used to prepare POEs, CCAs and...CRB IPT (in ACEIT ) will be the basis for information contained in the CAB. Any remaining unresolved issues from the IPT process will be raised at the

  5. Statistical process control: separating signal from noise in emergency department operations.

    PubMed

    Pimentel, Laura; Barrueto, Fermin

    2015-05-01

    Statistical process control (SPC) is a visually appealing and statistically rigorous methodology very suitable to the analysis of emergency department (ED) operations. We demonstrate that the control chart is the primary tool of SPC; it is constructed by plotting data measuring the key quality indicators of operational processes in rationally ordered subgroups such as units of time. Control limits are calculated using formulas reflecting the variation in the data points from one another and from the mean. SPC allows managers to determine whether operational processes are controlled and predictable. We review why the moving range chart is most appropriate for use in the complex ED milieu, how to apply SPC to ED operations, and how to determine when performance improvement is needed. SPC is an excellent tool for operational analysis and quality improvement for these reasons: 1) control charts make large data sets intuitively coherent by integrating statistical and visual descriptions; 2) SPC provides analysis of process stability and capability rather than simple comparison with a benchmark; 3) SPC allows distinction between special cause variation (signal), indicating an unstable process requiring action, and common cause variation (noise), reflecting a stable process; and 4) SPC keeps the focus of quality improvement on process rather than individual performance. Because data have no meaning apart from their context, and every process generates information that can be used to improve it, we contend that SPC should be seriously considered for driving quality improvement in emergency medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Optimization of Surface Roughness Parameters of Al-6351 Alloy in EDC Process: A Taguchi Coupled Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Kar, Siddhartha; Chakraborty, Sujoy; Dey, Vidyut; Ghosh, Subrata Kumar

    2017-10-01

    This paper investigates the application of Taguchi method with fuzzy logic for multi objective optimization of roughness parameters in electro discharge coating process of Al-6351 alloy with powder metallurgical compacted SiC/Cu tool. A Taguchi L16 orthogonal array was employed to investigate the roughness parameters by varying tool parameters like composition and compaction load and electro discharge machining parameters like pulse-on time and peak current. Crucial roughness parameters like Centre line average roughness, Average maximum height of the profile and Mean spacing of local peaks of the profile were measured on the coated specimen. The signal to noise ratios were fuzzified to optimize the roughness parameters through a single comprehensive output measure (COM). Best COM obtained with lower values of compaction load, pulse-on time and current and 30:70 (SiC:Cu) composition of tool. Analysis of variance is carried out and a significant COM model is observed with peak current yielding highest contribution followed by pulse-on time, compaction load and composition. The deposited layer is characterised by X-Ray Diffraction analysis which confirmed the presence of tool materials on the work piece surface.

  7. Climate change, land slide risks and sustainable development, risk analysis and decision support process tool

    NASA Astrophysics Data System (ADS)

    Andersson-sköld, Y. B.; Tremblay, M.

    2011-12-01

    Climate change is in most parts of Sweden expected to result in increased precipitation and increased sea water levels causing flooding, erosion, slope instability and related secondary consequences. Landslide risks are expected to increase with climate change in large parts of Sweden due to increased annual precipitation, more intense precipitation and increased flows combined with dryer summers. In response to the potential climate related risks, and on the commission of the Ministry of Environment, the Swedish Geotechnical Institute (SGI) is at present performing a risk analysis project for the most prominent landslide risk area in Sweden: the Göta river valley. As part of this, a methodology for land slide ex-ante consequence analysis today, and in a future climate, has been developed and applied in the Göta river valley. Human life, settlements, industry, contaminated sites, infrastructure of national importance are invented and assessed important elements at risk. The goal of the consequence analysis is to produce a map of geographically distributed expected losses, which can be combined with a corresponding map displaying landslide probability to describe the risk (the combination of probability and consequence of a (negative) event). The risk analysis is GIS-aided in presenting and visualise the risk and using existing databases for quantification of the consequences represented by ex-ante estimated monetary losses. The results will be used on national, regional and as an indication of the risk on local level, to assess the need of measures to mitigate the risk. The costs and environmental and social impacts to mitigate the risk are expected to be very high but the costs and impacts of a severe landslide are expected to be even higher. Therefore, civil servants have pronounced a need of tools to assess both the vulnerability and a more holistic picture of impacts of climate change adaptation measures. At SGI a tool for the inclusion of sustainability aspects in the decision making process on adaptation measures has been developed and is currently being tested in municipalities including central Gothenburg, and smaller municipalities in Sweden and Norway. The tool is a matrix based decision support tool (MDST) aiming for encoring discussion among experts and stakeholders. The first steps in the decision process include identification, inventory and assessment of the potential impacts of climate change such as landslides (or other events or actions). These steps are also included in general technical/physical risk and vulnerability analyses such as the risk analysis of the Göta älv valley. The MDST also includes further subsequent steps of the risk management process, and the full sequence of the MDST includes risk identification, risk specification, risk assessment, identification of measures, impact analysis of measures including an assessment of environmental, social and economical costs and benefits, a weight process and visualisation of the result. Here the MDST with some examples from the methodology for the Göta river valley analysis and the risk mitigation analysis from Sweden and Norway will be presented.

  8. The technique of entropy optimization in motor current signature analysis and its application in the fault diagnosis of gear transmission

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoguang; Liang, Lin; Liu, Fei; Xu, Guanghua; Luo, Ailing; Zhang, Sicong

    2012-05-01

    Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.

  9. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  10. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  11. Mapping care processes within a hospital: a web-based proposal merging enterprise modelling and ISO normative principles.

    PubMed

    Staccini, Pascal; Joubert, Michel; Quaranta, Jean-François; Fieschi, Marius

    2003-01-01

    Today, the economic and regulatory environment are pressuring hospitals and healthcare professionals to account for their results and methods of care delivery. The evaluation of the quality and the safety of care, the traceability of the acts performed and the evaluation of practices are some of the reasons underpinning current interest in clinical and hospital information systems. The structured collection of users' needs and system requirements is fundamental when installing such systems. This stage takes time and is generally misconstrued by caregivers and is of limited efficacy to analysis. We used a modelling technique designed for manufacturing processes (SADT: Structured Analysis and Design Technique). We enhanced the initial model of activity of this method and programmed a web-based tool in an object-oriented environment. This tool makes it possible to extract the data dictionary from the description of a given process and to locate documents (procedures, recommendations, instructions). Aimed at structuring needs and storing information provided by teams directly involved regarding the workings of an institution (or at least part of it), the process mapping approach has an important contribution to make in the analysis of clinical information systems.

  12. Reference Model for Project Support Environments Version 1.0

    DTIC Science & Technology

    1993-02-28

    relationship with the framework’s Process Support services and with the Lifecycle Process Engineering services. Examples: "* ORCA (Object-based...Design services. Examples: "* ORCA (Object-based Requirements Capture and Analysis). "* RETRAC (REquirements TRACeability). 4.3 Life-Cycle Process...34traditional" computer tools. Operations: Examples of audio and video processing operations include: "* Create, modify, and delete sound and video data

  13. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    PubMed

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  14. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    PubMed Central

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  15. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online

    PubMed Central

    Forsberg, Erica M; Huan, Tao; Rinehart, Duane; Benton, H Paul; Warth, Benedikt; Hilmers, Brian; Siuzdak, Gary

    2018-01-01

    Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LCLC)–mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5–10 min, depending on user experience; data processing typically takes 1–3 h, and data analysis takes ~30 min. PMID:29494574

  16. Learning from Adverse Events in Obstetrics: Is a Standardized Computer Tool an Effective Strategy for Root Cause Analysis?

    PubMed

    Murray-Davis, Beth; McDonald, Helen; Cross-Sudworth, Fiona; Ahmed, Rashid; Simioni, Julia; Dore, Sharon; Marrin, Michael; DeSantis, Judy; Leyland, Nicholas; Gardosi, Jason; Hutton, Eileen; McDonald, Sarah

    2015-08-01

    Adverse events occur in up to 10% of obstetric cases, and up to one half of these could be prevented. Case reviews and root cause analysis using a structured tool may help health care providers to learn from adverse events and to identify trends and recurring systems issues. We sought to establish the reliability of a root cause analysis computer application called Standardized Clinical Outcome Review (SCOR). We designed a mixed methods study to evaluate the effectiveness of the tool. We conducted qualitative content analysis of five charts reviewed by both the traditional obstetric quality assurance methods and the SCOR tool. We also determined inter-rater reliability by having four health care providers review the same five cases using the SCOR tool. The comparative qualitative review revealed that the traditional quality assurance case review process used inconsistent language and made serious, personalized recommendations for those involved in the case. In contrast, the SCOR review provided a consistent format for recommendations, a list of action points, and highlighted systems issues. The mean percentage agreement between the four reviewers for the five cases was 75%. The different health care providers completed data entry and assessment of the case in a similar way. Missing data from the chart and poor wording of questions were identified as issues affecting percentage agreement. The SCOR tool provides a standardized, objective, obstetric-specific tool for root cause analysis that may improve identification of risk factors and dissemination of action plans to prevent future events.

  17. Nursing informatics, outcomes, and quality improvement.

    PubMed

    Charters, Kathleen G

    2003-08-01

    Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.

  18. G-CNV: A GPU-Based Tool for Preparing Data to Detect CNVs with Read-Depth Methods.

    PubMed

    Manconi, Andrea; Manca, Emanuele; Moscatelli, Marco; Gnocchi, Matteo; Orro, Alessandro; Armano, Giuliano; Milanesi, Luciano

    2015-01-01

    Copy number variations (CNVs) are the most prevalent types of structural variations (SVs) in the human genome and are involved in a wide range of common human diseases. Different computational methods have been devised to detect this type of SVs and to study how they are implicated in human diseases. Recently, computational methods based on high-throughput sequencing (HTS) are increasingly used. The majority of these methods focus on mapping short-read sequences generated from a donor against a reference genome to detect signatures distinctive of CNVs. In particular, read-depth based methods detect CNVs by analyzing genomic regions with significantly different read-depth from the other ones. The pipeline analysis of these methods consists of four main stages: (i) data preparation, (ii) data normalization, (iii) CNV regions identification, and (iv) copy number estimation. However, available tools do not support most of the operations required at the first two stages of this pipeline. Typically, they start the analysis by building the read-depth signal from pre-processed alignments. Therefore, third-party tools must be used to perform most of the preliminary operations required to build the read-depth signal. These data-intensive operations can be efficiently parallelized on graphics processing units (GPUs). In this article, we present G-CNV, a GPU-based tool devised to perform the common operations required at the first two stages of the analysis pipeline. G-CNV is able to filter low-quality read sequences, to mask low-quality nucleotides, to remove adapter sequences, to remove duplicated read sequences, to map the short-reads, to resolve multiple mapping ambiguities, to build the read-depth signal, and to normalize it. G-CNV can be efficiently used as a third-party tool able to prepare data for the subsequent read-depth signal generation and analysis. Moreover, it can also be integrated in CNV detection tools to generate read-depth signals.

  19. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 2: Office Procedures

    Treesearch

    Richard M. Cissel; Thomas A. Black; Kimberly A. T. Schreuders; Ajay Prasad; Charles H. Luce; David G. Tarboton; Nathan A. Nelson

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data analysis and process of a...

  20. Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS

    NASA Astrophysics Data System (ADS)

    Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao

    2011-09-01

    Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.

Top