Sample records for process control networks

  1. A first packet processing subdomain cluster model based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    For the current controller cluster packet processing performance bottlenecks and controller downtime problems. An SDN controller is proposed to allocate the priority of each device in the SDN (Software Defined Network) network, and the domain contains several network devices and Controller, the controller is responsible for managing the network equipment within the domain, the switch performs data delivery based on the load of the controller, processing network equipment data. The experimental results show that the model can effectively solve the risk of single point failure of the controller, and can solve the performance bottleneck of the first packet processing.

  2. Controlling Contagion Processes in Activity Driven Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  3. Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder.

    PubMed

    Dong, Guangheng; Lin, Xiao; Hu, Yanbo; Xie, Chunming; Du, Xiaoxia

    2015-03-17

    Literatures have shown that Internet gaming disorder (IGD) subjects show impaired executive control and enhanced reward sensitivities than healthy controls. However, how these two networks jointly affect the valuation process and drive IGD subjects' online-game-seeking behaviors remains unknown. Thirty-five IGD and 36 healthy controls underwent a resting-states scan in the MRI scanner. Functional connectivity (FC) was examined within control and reward network seeds regions, respectively. Nucleus accumbens (NAcc) was selected as the node to find the interactions between these two networks. IGD subjects show decreased FC in the executive control network and increased FC in the reward network when comparing with the healthy controls. When examining the correlations between the NAcc and the executive control/reward networks, the link between the NAcc - executive control network is negatively related with the link between NAcc - reward network. The changes (decrease/increase) in IGD subjects' brain synchrony in control/reward networks suggest the inefficient/overly processing within neural circuitry underlying these processes. The inverse proportion between control network and reward network in IGD suggest that impairments in executive control lead to inefficient inhibition of enhanced cravings to excessive online game playing. This might shed light on the mechanistic understanding of IGD.

  4. Detecting Anomalies in Process Control Networks

    NASA Astrophysics Data System (ADS)

    Rrushi, Julian; Kang, Kyoung-Don

    This paper presents the estimation-inspection algorithm, a statistical algorithm for anomaly detection in process control networks. The algorithm determines if the payload of a network packet that is about to be processed by a control system is normal or abnormal based on the effect that the packet will have on a variable stored in control system memory. The estimation part of the algorithm uses logistic regression integrated with maximum likelihood estimation in an inductive machine learning process to estimate a series of statistical parameters; these parameters are used in conjunction with logistic regression formulas to form a probability mass function for each variable stored in control system memory. The inspection part of the algorithm uses the probability mass functions to estimate the normalcy probability of a specific value that a network packet writes to a variable. Experimental results demonstrate that the algorithm is very effective at detecting anomalies in process control networks.

  5. Digital Signal Processing and Control for the Study of Gene Networks

    NASA Astrophysics Data System (ADS)

    Shin, Yong-Jun

    2016-04-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  6. Digital Signal Processing and Control for the Study of Gene Networks.

    PubMed

    Shin, Yong-Jun

    2016-04-22

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks.

  7. Digital Signal Processing and Control for the Study of Gene Networks

    PubMed Central

    Shin, Yong-Jun

    2016-01-01

    Thanks to the digital revolution, digital signal processing and control has been widely used in many areas of science and engineering today. It provides practical and powerful tools to model, simulate, analyze, design, measure, and control complex and dynamic systems such as robots and aircrafts. Gene networks are also complex dynamic systems which can be studied via digital signal processing and control. Unlike conventional computational methods, this approach is capable of not only modeling but also controlling gene networks since the experimental environment is mostly digital today. The overall aim of this article is to introduce digital signal processing and control as a useful tool for the study of gene networks. PMID:27102828

  8. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  9. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  10. Information processing speed and attention in multiple sclerosis: Reconsidering the Attention Network Test (ANT).

    PubMed

    Roth, Alexandra K; Denney, Douglas R; Lynch, Sharon G

    2015-01-01

    The Attention Network Test (ANT) assesses attention in terms of discrepancies between response times to items that differ in the burden they place on some facet of attention. However, simple arithmetic difference scores commonly used to capture these discrepancies fail to provide adequate control for information processing speed, leading to distorted findings when patient and control groups differ markedly in the speed with which they process and respond to stimulus information. This study examined attention networks in patients with multiple sclerosis (MS) using simple difference scores, proportional scores, and residualized scores that control for processing speed through statistical regression. Patients with relapsing-remitting (N = 20) or secondary progressive (N = 20) MS and healthy controls (N = 40) of similar age, education, and gender completed the ANT. Substantial differences between patients and controls were found on all measures of processing speed. Patients exhibited difficulties in the executive control network, but only when difference scores were considered. When deficits in information processing speed were adequately controlled using proportional or residualized score, deficits in the alerting network emerged. The effect sizes for these deficits were notably smaller than those for overall information processing speed and were also limited to patients with secondary progressive MS. Deficits in processing speed are more prominent in MS than those involving attention, and when the former are properly accounted for, differences in the latter are confined to the alerting network.

  11. Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Bonnelycke, B.; Strickland, S.

    1982-01-01

    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.

  12. Reliable and Fault-Tolerant Software-Defined Network Operations Scheme for Remote 3D Printing

    NASA Astrophysics Data System (ADS)

    Kim, Dongkyun; Gil, Joon-Min

    2015-03-01

    The recent wide expansion of applicable three-dimensional (3D) printing and software-defined networking (SDN) technologies has led to a great deal of attention being focused on efficient remote control of manufacturing processes. SDN is a renowned paradigm for network softwarization, which has helped facilitate remote manufacturing in association with high network performance, since SDN is designed to control network paths and traffic flows, guaranteeing improved quality of services by obtaining network requests from end-applications on demand through the separated SDN controller or control plane. However, current SDN approaches are generally focused on the controls and automation of the networks, which indicates that there is a lack of management plane development designed for a reliable and fault-tolerant SDN environment. Therefore, in addition to the inherent advantage of SDN, this paper proposes a new software-defined network operations center (SD-NOC) architecture to strengthen the reliability and fault-tolerance of SDN in terms of network operations and management in particular. The cooperation and orchestration between SDN and SD-NOC are also introduced for the SDN failover processes based on four principal SDN breakdown scenarios derived from the failures of the controller, SDN nodes, and connected links. The abovementioned SDN troubles significantly reduce the network reachability to remote devices (e.g., 3D printers, super high-definition cameras, etc.) and the reliability of relevant control processes. Our performance consideration and analysis results show that the proposed scheme can shrink operations and management overheads of SDN, which leads to the enhancement of responsiveness and reliability of SDN for remote 3D printing and control processes.

  13. A Process Management System for Networked Manufacturing

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Wang, Huifen; Liu, Linyan

    With the development of computer, communication and network, networked manufacturing has become one of the main manufacturing paradigms in the 21st century. Under the networked manufacturing environment, there exist a large number of cooperative tasks susceptible to alterations, conflicts caused by resources and problems of cost and quality. This increases the complexity of administration. Process management is a technology used to design, enact, control, and analyze networked manufacturing processes. It supports efficient execution, effective management, conflict resolution, cost containment and quality control. In this paper we propose an integrated process management system for networked manufacturing. Requirements of process management are analyzed and architecture of the system is presented. And a process model considering process cost and quality is developed. Finally a case study is provided to explain how the system runs efficiently.

  14. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    PubMed

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  15. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  16. Neural networks for self-learning control systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Derrick H.; Widrow, Bernard

    1990-01-01

    It is shown how a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper,' a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.

  17. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  18. Method and system for downhole clock synchronization

    DOEpatents

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  19. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    PubMed

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  20. Integration and segregation of large-scale brain networks during short-term task automatization

    PubMed Central

    Mohr, Holger; Wolfensteller, Uta; Betzel, Richard F.; Mišić, Bratislav; Sporns, Olaf; Richiardi, Jonas; Ruge, Hannes

    2016-01-01

    The human brain is organized into large-scale functional networks that can flexibly reconfigure their connectivity patterns, supporting both rapid adaptive control and long-term learning processes. However, it has remained unclear how short-term network dynamics support the rapid transformation of instructions into fluent behaviour. Comparing fMRI data of a learning sample (N=70) with a control sample (N=67), we find that increasingly efficient task processing during short-term practice is associated with a reorganization of large-scale network interactions. Practice-related efficiency gains are facilitated by enhanced coupling between the cingulo-opercular network and the dorsal attention network. Simultaneously, short-term task automatization is accompanied by decreasing activation of the fronto-parietal network, indicating a release of high-level cognitive control, and a segregation of the default mode network from task-related networks. These findings suggest that short-term task automatization is enabled by the brain's ability to rapidly reconfigure its large-scale network organization involving complementary integration and segregation processes. PMID:27808095

  1. Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness

    PubMed Central

    Sadaghiani, Sepideh; D'Esposito, Mark

    2015-01-01

    The complex processing architecture underlying attentional control requires delineation of the functional role of different control-related brain networks. A key component is the cingulo-opercular (CO) network composed of anterior insula/operculum, dorsal anterior cingulate cortex, and thalamus. Its function has been particularly difficult to characterize due to the network's pervasive activity and frequent co-activation with other control-related networks. We previously suggested this network to underlie intrinsically maintained tonic alertness. Here, we tested this hypothesis by separately manipulating the demand for selective attention and for tonic alertness in a two-factorial, continuous pitch discrimination paradigm. The 2 factors had independent behavioral effects. Functional imaging revealed that activity as well as functional connectivity in the CO network increased when the task required more tonic alertness. Conversely, heightened selective attention to pitch increased activity in the dorsal attention (DAT) network but not in the CO network. Across participants, performance accuracy showed dissociable correlation patterns with activity in the CO, DAT, and fronto-parietal (FP) control networks. These results support tonic alertness as a fundamental function of the CO network. They further the characterization of this function as the effortful process of maintaining cognitive faculties available for current processing requirements. PMID:24770711

  2. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  3. Functional brain networks associated with cognitive control, cocaine dependence, and treatment outcome.

    PubMed

    Worhunsky, Patrick D; Stevens, Michael C; Carroll, Kathleen M; Rounsaville, Bruce J; Calhoun, Vince D; Pearlson, Godfrey D; Potenza, Marc N

    2013-06-01

    Individuals with cocaine dependence often evidence poor cognitive control. The purpose of this exploratory study was to investigate networks of functional connectivity underlying cognitive control in cocaine dependence and examine the relationship of the networks to the disorder and its treatment. Independent component analysis (ICA) was applied to fMRI data to investigate if regional activations underlying cognitive control processes operate in functional networks, and whether these networks relate to performance and treatment outcome measures in cocaine dependence. Twenty patients completed a Stroop task during fMRI prior to entering outpatient treatment and were compared to 20 control participants. ICA identified five distinct functional networks related to cognitive control interference events. Cocaine-dependent patients displayed differences in performance-related recruitment of three networks. Reduced involvement of a "top-down" fronto-cingular network contributing to conflict monitoring correlated with better treatment retention. Greater engagement of two "bottom-up" subcortical and ventral prefrontal networks related to cue-elicited motivational processing correlated with abstinence during treatment. The identification of subcortical networks linked to cocaine abstinence and cortical networks to treatment retention suggests that specific circuits may represent important, complementary targets in treatment development for cocaine dependence. 2013 APA, all rights reserved

  4. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing.

    PubMed

    Li, Yingjie; Cao, Dan; Wei, Ling; Tang, Yingying; Wang, Jijun

    2015-11-01

    This paper evaluates the large-scale structure of functional brain networks using graph theoretical concepts and investigates the difference in brain functional networks between patients with depression and healthy controls while they were processing emotional stimuli. Electroencephalography (EEG) activities were recorded from 16 patients with depression and 14 healthy controls when they performed a spatial search task for facial expressions. Correlations between all possible pairs of 59 electrodes were determined by coherence, and the coherence matrices were calculated in delta, theta, alpha, beta, and gamma bands (low gamma: 30-50Hz and high gamma: 50-80Hz, respectively). Graph theoretical analysis was applied to these matrices by using two indexes: the clustering coefficient and the characteristic path length. The global EEG coherence of patients with depression was significantly higher than that of healthy controls in both gamma bands, especially in the high gamma band. The global coherence in both gamma bands from healthy controls appeared higher in negative conditions than in positive conditions. All the brain networks were found to hold a regular and ordered topology during emotion processing. However, the brain network of patients with depression appeared randomized compared with the normal one. The abnormal network topology of patients with depression was detected in both the prefrontal and occipital regions. The negative bias from healthy controls occurred in both gamma bands during emotion processing, while it disappeared in patients with depression. The proposed work studied abnormally increased connectivity of brain functional networks in patients with depression. By combing the clustering coefficient and the characteristic path length, we found that the brain networks of patients with depression and healthy controls had regular networks during emotion processing. Yet the brain networks of the depressed group presented randomization trends. Moreover, negative bias was detected in the healthy controls during emotion processing, while it was not detected in patients with depression, which might be related to the types of negative stimuli used in this study. The brain networks from both patients with depression and healthy controls were found to hold a regular and ordered topology. Yet the brain networks of patients with depression had randomization trends. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Optimization of robustness of interdependent network controllability by redundant design

    PubMed Central

    2018-01-01

    Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426

  6. A Statistical Method to Distinguish Functional Brain Networks

    PubMed Central

    Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045

  7. A Statistical Method to Distinguish Functional Brain Networks.

    PubMed

    Fujita, André; Vidal, Maciel C; Takahashi, Daniel Y

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism ( p < 0.001).

  8. Functional Specialization in the Human Brain Estimated By Intrinsic Hemispheric Interaction

    PubMed Central

    Wang, Danhong; Buckner, Randy L.

    2014-01-01

    The human brain demonstrates functional specialization, including strong hemispheric asymmetries. Here specialization was explored using fMRI by examining the degree to which brain networks preferentially interact with ipsilateral as opposed to contralateral networks. Preferential within-hemisphere interaction was prominent in the heteromodal association cortices and minimal in the sensorimotor cortices. The frontoparietal control network exhibited strong within-hemisphere interactions but with distinct patterns in each hemisphere. The frontoparietal control network preferentially coupled to the default network and language-related regions in the left hemisphere but to attention networks in the right hemisphere. This arrangement may facilitate control of processing functions that are lateralized. Moreover, the regions most linked to asymmetric specialization also display the highest degree of evolutionary cortical expansion. Functional specialization that emphasizes processing within a hemisphere may allow the expanded hominin brain to minimize between-hemisphere connectivity and distribute domain-specific processing functions. PMID:25209275

  9. Distinct brain networks for adaptive and stable task control in humans

    PubMed Central

    Dosenbach, Nico U. F.; Fair, Damien A.; Miezin, Francis M.; Cohen, Alexander L.; Wenger, Kristin K.; Dosenbach, Ronny A. T.; Fox, Michael D.; Snyder, Abraham Z.; Vincent, Justin L.; Raichle, Marcus E.; Schlaggar, Bradley L.; Petersen, Steven E.

    2007-01-01

    Control regions in the brain are thought to provide signals that configure the brain's moment-to-moment information processing. Previously, we identified regions that carried signals related to task-control initiation, maintenance, and adjustment. Here we characterize the interactions of these regions by applying graph theory to resting state functional connectivity MRI data. In contrast to previous, more unitary models of control, this approach suggests the presence of two distinct task-control networks. A frontoparietal network included the dorsolateral prefrontal cortex and intraparietal sulcus. This network emphasized start-cue and error-related activity and may initiate and adapt control on a trial-by-trial basis. The second network included dorsal anterior cingulate/medial superior frontal cortex, anterior insula/frontal operculum, and anterior prefrontal cortex. Among other signals, these regions showed activity sustained across the entire task epoch, suggesting that this network may control goal-directed behavior through the stable maintenance of task sets. These two independent networks appear to operate on different time scales and affect downstream processing via dissociable mechanisms. PMID:17576922

  10. Okayama optical polarimetry and spectroscopy system (OOPS) II. Network-transparent control software.

    NASA Astrophysics Data System (ADS)

    Sasaki, T.; Kurakami, T.; Shimizu, Y.; Yutani, M.

    Control system of the OOPS (Okayama Optical Polarimetry and Spectroscopy system) is designed to integrate several instruments whose controllers are distributed over a network; the OOPS instrument, a CCD camera and data acquisition unit, the 91 cm telescope, an autoguider, a weather monitor, and an image display tool SAOimage. With the help of message-based communication, the control processes cooperate with related processes to perform an astronomical observation under supervising control by a scheduler process. A logger process collects status data of all the instruments to distribute them to related processes upon request. Software structure of each process is described.

  11. Prediction and control of chaotic processes using nonlinear adaptive networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Barnes, C.W.; Flake, G.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  12. Plastic modulation of episodic memory networks in the aging brain with cognitive decline.

    PubMed

    Bai, Feng; Yuan, Yonggui; Yu, Hui; Zhang, Zhijun

    2016-07-15

    Social-cognitive processing has been posited to underlie general functions such as episodic memory. Episodic memory impairment is a recognized hallmark of amnestic mild cognitive impairment (aMCI) who is at a high risk for dementia. Three canonical networks, self-referential processing, executive control processing and salience processing, have distinct roles in episodic memory retrieval processing. It remains unclear whether and how these sub-networks of the episodic memory retrieval system would be affected in aMCI. This task-state fMRI study constructed systems-level episodic memory retrieval sub-networks in 28 aMCI and 23 controls using two computational approaches: a multiple region-of-interest based approach and a voxel-level functional connectivity-based approach, respectively. These approaches produced the remarkably similar findings that the self-referential processing network made critical contributions to episodic memory retrieval in aMCI. More conspicuous alterations in self-referential processing of the episodic memory retrieval network were identified in aMCI. In order to complete a given episodic memory retrieval task, increases in cooperation between the self-referential processing network and other sub-networks were mobilized in aMCI. Self-referential processing mediate the cooperation of the episodic memory retrieval sub-networks as it may help to achieve neural plasticity and may contribute to the prevention and treatment of dementia. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  14. A neural network controller of a flotation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durao, F.; Cortez, L.

    1995-12-31

    The dynamic control of a froth flotation section is simulated through a neural network feedback controller, trained in order to stabilize the concentrate metal grade and recovery by applying random step changes to the feed metal grade. The results of the application example show that this controller seems to be sufficiently robust and a good alternative to handle a non-linear process.

  15. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  16. Interorganizational relationships within state tobacco control networks: a social network analysis.

    PubMed

    Krauss, Melissa; Mueller, Nancy; Luke, Douglas

    2004-10-01

    State tobacco control programs are implemented by networks of public and private agencies with a common goal to reduce tobacco use. The degree of a program's comprehensiveness depends on the scope of its activities and the variety of agencies involved in the network. Structural aspects of these networks could help describe the process of implementing a state's tobacco control program, but have not yet been examined. Social network analysis was used to examine the structure of five state tobacco control networks. Semi-structured interviews with key agencies collected quantitative and qualitative data on frequency of contact among network partners, money flow, relationship productivity, level of network effectiveness, and methods for improvement. Most states had hierarchical communication structures in which partner agencies had frequent contact with one or two central agencies. Lead agencies had the highest control over network communication. Networks with denser communication structures had denser productivity structures. Lead agencies had the highest financial influence within the networks, while statewide coalitions were financially influenced by others. Lead agencies had highly productive relationships with others, while agencies with narrow roles had fewer productive relationships. Statewide coalitions that received Robert Wood Johnson Foundation funding had more highly productive relationships than coalitions that did not receive the funding. Results suggest that frequent communication among network partners is related to more highly productive relationships. Results also highlight the importance of lead agencies and statewide coalitions in implementing a comprehensive state tobacco control program. Network analysis could be useful in developing process indicators for state tobacco control programs.

  17. Emotion regulation, attention to emotion, and the ventral attentional network

    PubMed Central

    Viviani, Roberto

    2013-01-01

    Accounts of the effect of emotional information on behavioral response and current models of emotion regulation are based on two opposed but interacting processes: automatic bottom-up processes (triggered by emotionally arousing stimuli) and top-down control processes (mapped to prefrontal cortical areas). Data on the existence of a third attentional network operating without recourse to limited-capacity processes but influencing response raise the issue of how it is integrated in emotion regulation. We summarize here data from attention to emotion, voluntary emotion regulation, and on the origin of biases against negative content suggesting that the ventral network is modulated by exposure to emotional stimuli when the task does not constrain the handling of emotional content. In the parietal lobes, preferential activation of ventral areas associated with “bottom-up” attention by ventral network theorists is strongest in studies of cognitive reappraisal. In conditions when no explicit instruction is given to change one's response to emotional stimuli, control of emotionally arousing stimuli is observed without concomitant activation of the dorsal attentional network, replaced by a shift of activation toward ventral areas. In contrast, in studies where emotional stimuli are placed in the role of distracter, the observed deactivation of these ventral semantic association areas is consistent with the existence of proactive control on the role emotional representations are allowed to take in generating response. It is here argued that attentional orienting mechanisms located in the ventral network constitute an intermediate kind of process, with features only partially in common with effortful and automatic processes, which plays an important role in handling emotion by conveying the influence of semantic networks, with which the ventral network is co-localized. Current neuroimaging work in emotion regulation has neglected this system by focusing on a bottom-up/top-down dichotomy of attentional control. PMID:24223546

  18. Statistical porcess control in Deep Space Network operation

    NASA Technical Reports Server (NTRS)

    Hodder, J. A.

    2002-01-01

    This report describes how the Deep Space Mission System (DSMS) Operations Program Office at the Jet Propulsion Laboratory's (EL) uses Statistical Process Control (SPC) to monitor performance and evaluate initiatives for improving processes on the National Aeronautics and Space Administration's (NASA) Deep Space Network (DSN).

  19. Intrinsic Connectivity Networks in post-traumatic stress disorder during sub- and supraliminal processing of threat-related stimuli.

    PubMed

    Rabellino, D; Tursich, M; Frewen, P A; Daniels, J K; Densmore, M; Théberge, J; Lanius, R A

    2015-11-01

    To investigate the functional connectivity of large-scale intrinsic connectivity networks (ICNs) in post-traumatic stress disorder (PTSD) during subliminal and supraliminal presentation of threat-related stimuli. Group independent component analysis was utilized to study functional connectivity within the ICNs most correlated with the Default-mode Network (DMN), Salience Network (SN), and Central Executive Network (CEN) in PTSD participants (n = 26) as compared to healthy controls (n = 20) during sub- and supraliminal processing of threat-related stimuli. Comparing patients with PTSD with healthy participants, prefrontal and anterior cingulate cortex involved in top-down regulation showed increased integration during subliminal threat processing within the CEN and SN and during supraliminal threat processing within the DMN. The right amygdala showed increased connectivity with the DMN during subliminal processing in PTSD as compared to controls. Brain regions associated with self-awareness and consciousness exhibited decreased connectivity during subliminal threat processing in PTSD as compared to controls: the claustrum within the SN and the precuneus within the DMN. Key nodes of the ICNs showed altered functional connectivity in PTSD as compared to controls, and differential results characterized sub- and supraliminal processing of threat-related stimuli. These findings enhance our understanding of ICNs underlying PTSD at different levels of conscious threat perception. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Insula Demonstrates a Non-Linear Response to Varying Demand for Cognitive Control and Weaker Resting Connectivity With the Executive Control Network in Smokers.

    PubMed

    Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A

    2016-09-01

    Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.

  1. A network control concept for the 30/20 GHz communication system baseband processor

    NASA Technical Reports Server (NTRS)

    Sabourin, D. J.; Hay, R. E.

    1982-01-01

    The architecture and system design for a satellite-switched TDMA communication system employing on-board processing was developed by Motorola for NASA's Lewis Research Center. The system design is based on distributed processing techniques that provide extreme flexibility in the selection of a network control protocol without impacting the satellite or ground terminal hardware. A network control concept that includes system synchronization and allows burst synchronization to occur within the system operational requirement is described. This concept integrates the tracking and control links with the communication links via the baseband processor, resulting in an autonomous system operational approach.

  2. A source-controlled data center network model.

    PubMed

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS.

  3. A source-controlled data center network model

    PubMed Central

    Yu, Yang; Liang, Mangui; Wang, Zhe

    2017-01-01

    The construction of data center network by applying SDN technology has become a hot research topic. The SDN architecture has innovatively separated the control plane from the data plane which makes the network more software-oriented and agile. Moreover, it provides virtual multi-tenancy, effective scheduling resources and centralized control strategies to meet the demand for cloud computing data center. However, the explosion of network information is facing severe challenges for SDN controller. The flow storage and lookup mechanisms based on TCAM device have led to the restriction of scalability, high cost and energy consumption. In view of this, a source-controlled data center network (SCDCN) model is proposed herein. The SCDCN model applies a new type of source routing address named the vector address (VA) as the packet-switching label. The VA completely defines the communication path and the data forwarding process can be finished solely relying on VA. There are four advantages in the SCDCN architecture. 1) The model adopts hierarchical multi-controllers and abstracts large-scale data center network into some small network domains that has solved the restriction for the processing ability of single controller and reduced the computational complexity. 2) Vector switches (VS) developed in the core network no longer apply TCAM for table storage and lookup that has significantly cut down the cost and complexity for switches. Meanwhile, the problem of scalability can be solved effectively. 3) The SCDCN model simplifies the establishment process for new flows and there is no need to download flow tables to VS. The amount of control signaling consumed when establishing new flows can be significantly decreased. 4) We design the VS on the NetFPGA platform. The statistical results show that the hardware resource consumption in a VS is about 27% of that in an OFS. PMID:28328925

  4. In-Network Processing for Mission-Critical Wireless Networked Sensing and Control: A Real-Time, Efficiency, and Resiliency Perspective

    ERIC Educational Resources Information Center

    Xiang, Qiao

    2014-01-01

    As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…

  5. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  6. System and method for networking electrochemical devices

    DOEpatents

    Williams, Mark C.; Wimer, John G.; Archer, David H.

    1995-01-01

    An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.

  7. Hierarchical Process Control of Chemical Vapor Infiltration.

    DTIC Science & Technology

    1995-05-31

    convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.

  8. Statistical process control using optimized neural networks: a case study.

    PubMed

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A microcomputer network for control of a continuous mining machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffbauer, W.H.

    1993-12-31

    This report details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines and installed on a continuous mining machine. The network consists of microcomputers that are connected together via a single twisted-pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers, in conjunction with the appropriate sensors, provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and control the continuous miningmore » machine. Because of the network`s generic structure, it can be installed on most mining machines.« less

  10. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    PubMed Central

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444

  11. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    PubMed

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.

  12. Cognitive Control Signals in Posterior Cingulate Cortex

    PubMed Central

    Hayden, Benjamin Y.; Smith, David V.; Platt, Michael L.

    2010-01-01

    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain. PMID:21160560

  13. NCC Simulation Model: Simulating the operations of the network control center, phase 2

    NASA Technical Reports Server (NTRS)

    Benjamin, Norman M.; Paul, Arthur S.; Gill, Tepper L.

    1992-01-01

    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors.

  14. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  15. The deep space network, volume 16

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the DSN are summarized, and the instrumentation facility, ground communication facility, and the network control system are described. The requirements for supporting planetary flight projects are discussed along with the research and technology for tracking, navigation, network control, and data processing.

  16. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  17. Using cyber vulnerability testing techniques to expose undocumented security vulnerabilities in DCS and SCADA equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollet, J.

    2006-07-01

    This session starts by providing an overview of typical DCS (Distributed Control Systems) and SCADA (Supervisory Control and Data Acquisition) architectures, and exposes cyber security vulnerabilities that vendors never admit, but are found through a comprehensive cyber testing process. A complete assessment process involves testing all of the layers and components of a SCADA or DCS environment, from the perimeter firewall all the way down to the end devices controlling the process, including what to look for when conducting a vulnerability assessment of real-time control systems. The following systems are discussed: 1. Perimeter (isolation from corporate IT or other non-criticalmore » networks) 2. Remote Access (third Party access into SCADA or DCS networks) 3. Network Architecture (switch, router, firewalls, access controls, network design) 4. Network Traffic Analysis (what is running on the network) 5. Host Operating Systems Hardening 6. Applications (how they communicate with other applications and end devices) 7. End Device Testing (PLCs, RTUs, DCS Controllers, Smart Transmitters) a. System Discovery b. Functional Discovery c. Attack Methodology i. DoS Tests (at what point does the device fail) ii. Malformed Packet Tests (packets that can cause equipment failure) iii. Session Hijacking (do anything that the operator can do) iv. Packet Injection (code and inject your own SCADA commands) v. Protocol Exploitation (Protocol Reverse Engineering / Fuzzing) This paper will provide information compiled from over five years of conducting cyber security testing on control systems hardware, software, and systems. (authors)« less

  18. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.

  19. Verification and Validation of Neural Networks for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Mackall, Dale; Nelson, Stacy; Schumann, Johann

    2002-01-01

    The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.

  20. A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control.

    PubMed

    Wang, Tong; Gao, Huijun; Qiu, Jianbin

    2016-02-01

    This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period T(d) is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period T(u) at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

  1. An information theory account of cognitive control.

    PubMed

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  2. Resting-state functional connectivity in multiple sclerosis: an examination of group differences and individual differences.

    PubMed

    Janssen, Alisha L; Boster, Aaron; Patterson, Beth A; Abduljalil, Amir; Prakash, Ruchika Shaurya

    2013-11-01

    Multiple sclerosis (MS) is a neurodegenerative, inflammatory disease of the central nervous system, resulting in physical and cognitive disturbances. The goal of the current study was to examine the association between network integrity and composite measures of cognition and disease severity in individuals with relapsing-remitting MS (RRMS), relative to healthy controls. All participants underwent a neuropsychological and neuroimaging session, where resting-state data was collected. Independent component analysis and dual regression were employed to examine network integrity in individuals with MS, relative to healthy controls. The MS sample exhibited less connectivity in the motor and visual networks, relative to healthy controls, after controlling for group differences in gray matter volume. However, no alterations were observed in the frontoparietal, executive control, or default-mode networks, despite previous evidence of altered neuronal patterns during tasks of exogenous processing. Whole-brain, voxel-wise regression analyses with disease severity and processing speed composites were also performed to elucidate the brain-behavior relationship with neuronal network integrity. Individuals with higher levels of disease severity demonstrated reduced intra-network connectivity of the motor network, and the executive control network, while higher disease burden was associated with greater inter-network connectivity between the medial visual network and areas involved in visuomotor learning. Our findings underscore the importance of examining resting-state oscillations in this population, both as a biomarker of disease progression and a potential target for therapeutic intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems

    NASA Technical Reports Server (NTRS)

    Esogbue, Augustine O.

    1998-01-01

    The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of these are in progress in our laboratory while others await additional support. All of these enhancements will improve the attractiveness of the controller as an effective tool for the on line control of an array of complex process environments.

  4. Controllability of structural brain networks

    NASA Astrophysics Data System (ADS)

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-10-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.

  5. MFAHP: A novel method on the performance evaluation of the industrial wireless networked control system

    NASA Astrophysics Data System (ADS)

    Wu, Linqin; Xu, Sheng; Jiang, Dezhi

    2015-12-01

    Industrial wireless networked control system has been widely used, and how to evaluate the performance of the wireless network is of great significance. In this paper, considering the shortcoming of the existing performance evaluation methods, a comprehensive performance evaluation method of networks multi-indexes fuzzy analytic hierarchy process (MFAHP) combined with the fuzzy mathematics and the traditional analytic hierarchy process (AHP) is presented. The method can overcome that the performance evaluation is not comprehensive and subjective. Experiments show that the method can reflect the network performance of real condition. It has direct guiding role on protocol selection, network cabling, and node setting, and can meet the requirements of different occasions by modifying the underlying parameters.

  6. A technique for processing of planetary images with heterogeneous characteristics for estimating geodetic parameters of celestial bodies with the example of Ganymede

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.

    2016-09-01

    The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).

  7. Flexible brain network reconfiguration supporting inhibitory control.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties.

  8. Transcriptional network control of normal and leukaemic haematopoiesis

    PubMed Central

    Sive, Jonathan I.; Göttgens, Berthold

    2014-01-01

    Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. PMID:25014893

  9. Transcriptional network control of normal and leukaemic haematopoiesis.

    PubMed

    Sive, Jonathan I; Göttgens, Berthold

    2014-12-10

    Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  11. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing.

    PubMed

    Lizbinski, Kristyn M; Dacks, Andrew M

    2017-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a "memory" by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform.

  12. An Architecture for SCADA Network Forensics

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Tim; Gonzalez, Jesus; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet

    Supervisory control and data acquisition (SCADA) systems are widely used in industrial control and automation. Modern SCADA protocols often employ TCP/IP to transport sensor data and control signals. Meanwhile, corporate IT infrastructures are interconnecting with previously isolated SCADA networks. The use of TCP/IP as a carrier protocol and the interconnection of IT and SCADA networks raise serious security issues. This paper describes an architecture for SCADA network forensics. In addition to supporting forensic investigations of SCADA network incidents, the architecture incorporates mechanisms for monitoring process behavior, analyzing trends and optimizing plant performance.

  13. Neuromorphic Learning From Noisy Data

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Troudet, Terry

    1993-01-01

    Two reports present numerical study of performance of feedforward neural network trained by back-propagation algorithm in learning continuous-valued mappings from data corrupted by noise. Two types of noise considered: plant noise which affects dynamics of controlled process and data-processing noise, which occurs during analog processing and digital sampling of signals. Study performed with view toward use of neural networks as neurocontrollers to substitute for, or enhance, performances of human experts in controlling mechanical devices in presence of sensor and actuator noise and to enhance performances of more-conventional digital feedback electronic process controllers in noisy environments.

  14. Identification of control targets in Boolean molecular network models via computational algebra.

    PubMed

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  15. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An information theory account of cognitive control

    PubMed Central

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875

  17. The deep space network, volume 13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.

  18. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  19. Communication devices for network-hopping communications and methods of network-hopping communications

    DOEpatents

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  20. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    NASA Astrophysics Data System (ADS)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  1. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  2. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  3. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  4. Nonlinear Dynamic Model-Based Multiobjective Sensor Network Design Algorithm for a Plant with an Estimator-Based Control System

    DOE PAGES

    Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...

    2017-06-06

    Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less

  5. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    PubMed

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  6. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  7. Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control

    PubMed Central

    Wise, Richard J.S.; Mehta, Amrish; Leech, Robert

    2014-01-01

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373

  8. Overlapping networks engaged during spoken language production and its cognitive control.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert

    2014-06-25

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.

  9. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    PubMed Central

    Hale, T. Sigi; Kane, Andrea M.; Kaminsky, Olivia; Tung, Kelly L.; Wiley, Joshua F.; McGough, James J.; Loo, Sandra K.; Kaplan, Jonas T.

    2014-01-01

    Background: A growing body of research has identified abnormal visual information processing in attention-deficit hyperactivity disorder (ADHD). In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association with several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association with large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left-lateralized visual cortical activity in controls but right-lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN). We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic. PMID:25076915

  10. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  11. On the efficacy of using the transfer-controlled procedure during periods of STP processor overloads in SS7 networks

    NASA Astrophysics Data System (ADS)

    Rumsewicz, Michael

    1994-04-01

    In this paper, we examine call completion performance, rather than message throughput, in a Common Channel Signaling network in which the processing resources, and not transmission resources, of a Signaling Transfer Point (STP) are overloaded. Specifically, we perform a transient analysis, via simulation, of a network consisting of a single Central Processor-based STP connecting many local exchanges. We consider the efficacy of using the Transfer Controlled (TFC) procedure when the network call attempt rate exceeds the processing capability of the STP. We find the following: (1) the success of the control depends critically on the rate at which TFC's are sent; (2) use of the TFC procedure in theevent of processor overload can provide reasonable call completion rates.

  12. Reduced integration and improved segregation of functional brain networks in Alzheimer’s disease

    NASA Astrophysics Data System (ADS)

    Kabbara, A.; Eid, H.; El Falou, W.; Khalil, M.; Wendling, F.; Hassan, M.

    2018-04-01

    Objective. Emerging evidence shows that cognitive deficits in Alzheimer’s disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. Approach. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Main results. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients’ functional brain networks and their cognitive scores. Significance. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  13. Reduced integration and improved segregation of functional brain networks in Alzheimer's disease.

    PubMed

    Kabbara, A; Eid, H; El Falou, W; Khalil, M; Wendling, F; Hassan, M

    2018-04-01

    Emerging evidence shows that cognitive deficits in Alzheimer's disease (AD) are associated with disruptions in brain functional connectivity. Thus, the identification of alterations in AD functional networks has become a topic of increasing interest. However, to what extent AD induces disruption of the balance of local and global information processing in the human brain remains elusive. The main objective of this study is to explore the dynamic topological changes of AD networks in terms of brain network segregation and integration. We used electroencephalography (EEG) data recorded from 20 participants (10 AD patients and 10 healthy controls) during resting state. Functional brain networks were reconstructed using EEG source connectivity computed in different frequency bands. Graph theoretical analyses were performed assess differences between both groups. Results revealed that AD networks, compared to networks of age-matched healthy controls, are characterized by lower global information processing (integration) and higher local information processing (segregation). Results showed also significant correlation between the alterations in the AD patients' functional brain networks and their cognitive scores. These findings may contribute to the development of EEG network-based test that could strengthen results obtained from currently-used neurophysiological tests in neurodegenerative diseases.

  14. Multi-voxel Patterns Reveal Functionally Differentiated Networks Underlying Auditory Feedback Processing of Speech

    PubMed Central

    Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.

    2013-01-01

    The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350

  15. Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI

    PubMed Central

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-01-01

    Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559

  16. General visual robot controller networks via artificial evolution

    NASA Astrophysics Data System (ADS)

    Cliff, David; Harvey, Inman; Husbands, Philip

    1993-08-01

    We discuss recent results from our ongoing research concerning the application of artificial evolution techniques (i.e., an extended form of genetic algorithm) to the problem of developing `neural' network controllers for visually guided robots. The robot is a small autonomous vehicle with extremely low-resolution vision, employing visual sensors which could readily be constructed from discrete analog components. In addition to visual sensing, the robot is equipped with a small number of mechanical tactile sensors. Activity from the sensors is fed to a recurrent dynamical artificial `neural' network, which acts as the robot controller, providing signals to motors governing the robot's motion. Prior to presentation of new results, this paper summarizes our rationale and past work, which has demonstrated that visually guided control networks can arise without any explicit specification that visual processing should be employed: the evolutionary process opportunistically makes use of visual information if it is available.

  17. PLANT - An experimental task for the study of human problem solving in process control. [Production Levels and Network Troubleshooting

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Fath, J. L.

    1985-01-01

    An experimental tool for the investigation of human problem-solving behavior is introduced. Production Levels and Network Troubleshooting (PLANT) is a computer-based process-control task which may be used to provide opportunities for subjects to control a dynamic system and diagnose, repair, and compensate for system failures. The task is described in detail, and experiments which have been conducted using PLANT are briefly discussed.

  18. Biomorphic Networks for ATR and Higher-Level Processing.

    DTIC Science & Technology

    1998-01-10

    Publications during this period: 1. N.H. Farhat, "Biomorphic Dynamical Networks for Cognition and Control", Journal of Intelligent and Rototic Systems...34 Neurodynamic networks for recognition of radar targets", Ph.D. dissertation, University of Pennsyl- vania, 1992. 2. J. Wood, "Invariant pattern...167-177,1998. 167 © 1998 Kluwer Academic Publishers. Printed in the Netherlands. Biomorphic Dynamical Networks for Cognition and Control N. H

  19. Selective impairment of attention networks in breast cancer patients receiving chemotherapy treatment.

    PubMed

    Chen, Xingui; Li, Jingjing; Ren, Jing; Hu, Xinglong; Zhu, Chunyan; Tian, Yanghua; Hu, Panpan; Ma, Huijuan; Yu, Fengqiong; Wang, Kai

    2014-10-01

    Complaints about attention disorders are common among breast cancer survivors who have undergone chemotherapy treatment. However, it is not known whether these complaints indicate a global attention deficit or the selective impairment of attention networks. This study sought to investigate the attentional abilities of breast cancer patients after chemotherapy treatment using the attention network test (ANT). The participants included breast cancer patients who had undergone chemotherapy (CT, N = 58), patients who had not undergone chemotherapy (non-CT, N = 53), and matched healthy controls (HC, N = 55). All participants completed the ANT, which provides measures of three independent attention networks (alerting, orienting, and executive control) and neuropsychological background tests. Our results indicated that the chemotherapy-treated breast cancer patients had significant deficits in the alerting and executive control networks but not in the orienting network. The CT group scored significantly lower in several cognitive tasks, including attention, memory, and information processing tasks, relative to the other two groups. Additionally, significant correlations were found between information processing and the efficiency of the executive control network within the CT group. These results suggest that the three attention networks were selectively impaired following chemotherapy treatment, which affected different brain areas in the breast cancer survivors. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Intrinsic and Extrinsic Neuromodulation of Olfactory Processing

    PubMed Central

    Lizbinski, Kristyn M.; Dacks, Andrew M.

    2018-01-01

    Neuromodulation is a ubiquitous feature of neural systems, allowing flexible, context specific control over network dynamics. Neuromodulation was first described in invertebrate motor systems and early work established a basic dichotomy for neuromodulation as having either an intrinsic origin (i.e., neurons that participate in network coding) or an extrinsic origin (i.e., neurons from independent networks). In this conceptual dichotomy, intrinsic sources of neuromodulation provide a “memory” by adjusting network dynamics based upon previous and ongoing activation of the network itself, while extrinsic neuromodulators provide the context of ongoing activity of other neural networks. Although this dichotomy has been thoroughly considered in motor systems, it has received far less attention in sensory systems. In this review, we discuss intrinsic and extrinsic modulation in the context of olfactory processing in invertebrate and vertebrate model systems. We begin by discussing presynaptic modulation of olfactory sensory neurons by local interneurons (LNs) as a mechanism for gain control based on ongoing network activation. We then discuss the cell-class specific effects of serotonergic centrifugal neurons on olfactory processing. Finally, we briefly discuss the integration of intrinsic and extrinsic neuromodulation (metamodulation) as an effective mechanism for exerting global control over olfactory network dynamics. The heterogeneous nature of neuromodulation is a recurring theme throughout this review as the effects of both intrinsic and extrinsic modulation are generally non-uniform. PMID:29375314

  1. Development of distinct control networks through segregation and integration

    PubMed Central

    Fair, Damien A.; Dosenbach, Nico U. F.; Church, Jessica A.; Cohen, Alexander L.; Brahmbhatt, Shefali; Miezin, Francis M.; Barch, Deanna M.; Raichle, Marcus E.; Petersen, Steven E.; Schlaggar, Bradley L.

    2007-01-01

    Human attentional control is unrivaled. We recently proposed that adults depend on distinct frontoparietal and cinguloopercular networks for adaptive online task control versus more stable set control, respectively. During development, both experience-dependent evoked activity and spontaneous waves of synchronized cortical activity are thought to support the formation and maintenance of neural networks. Such mechanisms may encourage tighter “integration” of some regions into networks over time while “segregating” other sets of regions into separate networks. Here we use resting state functional connectivity MRI, which measures correlations in spontaneous blood oxygenation level-dependent signal fluctuations between brain regions to compare previously identified control networks between children and adults. We find that development of the proposed adult control networks involves both segregation (i.e., decreased short-range connections) and integration (i.e., increased long-range connections) of the brain regions that comprise them. Delay/disruption in the developmental processes of segregation and integration may play a role in disorders of control, such as autism, attention deficit hyperactivity disorder, and Tourette's syndrome. PMID:17679691

  2. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  3. Interdependent networks: the fragility of control

    PubMed Central

    Morris, Richard G.; Barthelemy, Marc

    2013-01-01

    Recent work in the area of interdependent networks has focused on interactions between two systems of the same type. However, an important and ubiquitous class of systems are those involving monitoring and control, an example of interdependence between processes that are very different. In this Article, we introduce a framework for modelling ‘distributed supervisory control' in the guise of an electrical network supervised by a distributed system of control devices. The system is characterised by degrees of freedom salient to real-world systems— namely, the number of control devices, their inherent reliability, and the topology of the control network. Surprisingly, the behavior of the system depends crucially on the reliability of control devices. When devices are completely reliable, cascade sizes are percolation controlled; the number of devices being the relevant parameter. For unreliable devices, the topology of the control network is important and can dramatically reduce the resilience of the system. PMID:24067404

  4. Neural-Network-Development Program

    NASA Technical Reports Server (NTRS)

    Phillips, Todd A.

    1993-01-01

    NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.

  5. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  6. Evidence for a neural dual-process account for adverse effects of cognitive control.

    PubMed

    Zink, Nicolas; Stock, Ann-Kathrin; Colzato, Lorenza; Beste, Christian

    2018-06-09

    Advantageous effects of cognitive control are well-known, but cognitive control may also have adverse effects, for example when it suppresses the implicit processing of stimulus-response (S-R) bindings that could benefit task performance. Yet, the neurophysiological and functional neuroanatomical structures associated with adverse effects of cognitive control are poorly understood. We used an extreme group approach to compare individuals who exhibit adverse effects of cognitive control to individuals who do not by combining event-related potentials (ERPs), source localization, time-frequency analysis and network analysis methods. While neurophysiological correlates of cognitive control (i.e. N2, N450, theta power and theta-mediated neuronal network efficiency) and task-set updating (P3) both reflect control demands and implicit information processing, differences in the degree of adverse cognitive control effects are associated with two independent neural mechanisms: Individuals, who show adverse behavioral effects of cognitive control, show reduced small-world properties and thus reduced efficiency in theta-modulated networks when they fail to effectively process implicit information. In contrast to this, individuals who do not display adverse control effects show enhanced task-set updating mechanism when effectively processing implicit information, which is reflected by the P3 ERP component and associated with the temporo-parietal junction (TPJ, BA 40) and medial frontal gyrus (MFG; BA 8). These findings suggest that implicit S-R contingencies, which benefit response selection without cognitive control, are always 'picked up', but may fail to be integrated with task representations to guide response selection. This provides evidence for a neurophysiological and functional neuroanatomical "dual-process" account of adverse cognitive control effects.

  7. Robustness of Controllability for Networks Based on Edge-Attack

    PubMed Central

    Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

    2014-01-01

    We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components. PMID:24586507

  8. Robustness of controllability for networks based on edge-attack.

    PubMed

    Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong

    2014-01-01

    We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.

  9. A New Approach to Create Image Control Networks in ISIS

    NASA Astrophysics Data System (ADS)

    Becker, K. J.; Berry, K. L.; Mapel, J. A.; Walldren, J. C.

    2017-06-01

    A new approach was used to create a feature-based control point network that required the development of new tools in the Integrated Software for Imagers and Spectrometers (ISIS3) system to process very large datasets.

  10. The birth of quantum networks: merging remote entanglement with local multi-qubit control

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald

    The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.

  11. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  12. Neural networks for continuous online learning and control.

    PubMed

    Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long

    2006-11-01

    This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.

  13. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  14. A Hybrid Authentication and Authorization Process for Control System Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manz, David O.; Edgar, Thomas W.; Fink, Glenn A.

    2010-08-25

    Convergence of control system and IT networks require that security, privacy, and trust be addressed. Trust management continues to plague traditional IT managers and is even more complex when extended into control system networks, with potentially millions of entities, a mission that requires 100% availability. Yet these very networks necessitate a trusted secure environment where controllers and managers can be assured that the systems are secure and functioning properly. We propose a hybrid authentication management protocol that addresses the unique issues inherent within control system networks, while leveraging the considerable research and momentum in existing IT authentication schemes. Our hybridmore » authentication protocol for control systems provides end device to end device authentication within a remote station and between remote stations and control centers. Additionally, the hybrid protocol is failsafe and will not interrupt communication or control of vital systems in a network partition or device failure. Finally, the hybrid protocol is resilient to transitory link loss and can operate in an island mode until connectivity is reestablished.« less

  15. Structure and formation of ant transportation networks

    PubMed Central

    Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine

    2011-01-01

    Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958

  16. Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults.

    PubMed

    Shaw, Emily E; Schultz, Aaron P; Sperling, Reisa A; Hedden, Trey

    2015-10-01

    Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65-90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging.

  17. Process control and recovery in the Link Monitor and Control Operator Assistant

    NASA Technical Reports Server (NTRS)

    Lee, Lorrine; Hill, Randall W., Jr.

    1993-01-01

    This paper describes our approach to providing process control and recovery functions in the Link Monitor and Control Operator Assistant (LMCOA). The focus of the LMCOA is to provide semi-automated monitor and control to support station operations in the Deep Space Network. The LMCOA will be demonstrated with precalibration operations for Very Long Baseline Interferometry on a 70-meter antenna. Precalibration, the task of setting up the equipment to support a communications link with a spacecraft, is a manual, time consuming and error-prone process. One problem with the current system is that it does not provide explicit feedback about the effects of control actions. The LMCOA uses a Temporal Dependency Network (TDN) to represent an end-to-end sequence of operational procedures and a Situation Manager (SM) module to provide process control, diagnosis, and recovery functions. The TDN is a directed network representing precedence, parallelism, precondition, and postcondition constraints. The SM maintains an internal model of the expected and actual states of the subsystems in order to determine if each control action executed successfully and to provide feedback to the user. The LMCOA is implemented on a NeXT workstation using Objective C, Interface Builder and the C Language Integrated Production System.

  18. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  19. The default network and self-generated thought: component processes, dynamic control, and clinical relevance

    PubMed Central

    Andrews-Hanna, Jessica R.; Smallwood, Jonathan; Spreng, R. Nathan

    2014-01-01

    Though only a decade has elapsed since the default network was first emphasized as being a large-scale brain system, recent years have brought great insight into the network’s adaptive functions. A growing theme highlights the default network as playing a key role in internally-directed—or self-generated—thought. Here, we synthesize recent findings from cognitive science, neuroscience, and clinical psychology to focus attention on two emerging topics as current and future directions surrounding the default network. First, we present evidence that self-generated thought is a multi-faceted construct whose component processes are supported by different subsystems within the network. Second, we highlight the dynamic nature of the default network, emphasizing its interaction with executive control systems when regulating aspects of internal thought. We conclude by discussing clinical implications of disruptions to the integrity of the network, and consider disorders when thought content becomes polarized or network interactions become disrupted or imbalanced. PMID:24502540

  20. Regulatory gene networks and the properties of the developmental process

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; McClay, David R.; Hood, Leroy

    2003-01-01

    Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.

  1. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  2. Coordinated control of active and reactive power of distribution network with distributed PV cluster via model predictive control

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng

    2018-02-01

    A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method

  3. Temperamental factors in remitted depression: The role of effortful control and attentional mechanisms.

    PubMed

    Marchetti, Igor; Shumake, Jason; Grahek, Ivan; Koster, Ernst H W

    2018-08-01

    Temperamental effortful control and attentional networks are increasingly viewed as important underlying processes in depression and anxiety. However, it is still unknown whether these factors facilitate depressive and anxiety symptoms in the general population and, more specifically, in remitted depressed individuals. We investigated to what extent effortful control and attentional networks (i.e., Attention Network Task) explain concurrent depressive and anxious symptoms in healthy individuals (n = 270) and remitted depressed individuals (n = 90). Both samples were highly representative of the US population. Increased effortful control predicted a substantial decrease in symptoms of both depression and anxiety in the whole sample, whereas decreased efficiency of executive attention predicted a modest increase in depressive symptoms. Remitted depressed individuals did not show less effortful control nor less efficient attentional networks than healthy individuals. Moreover, clinical status did not moderate the relationship between temperamental factors and either depressive or anxiety symptoms. Limitations include the cross-sectional nature of the study. Our study shows that temperamental effortful control represents an important transdiagnostic process for depressive and anxiety symptoms in adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The evolutions of medical building network structure for emerging infectious disease protection and control.

    PubMed

    Liu, Nan; Zhang, Hongzhe; Zhang, Shanshan

    2014-12-01

    Emerging infectious disease is one of the most minatory threats in modern society. A perfect medical building network system need to be established to protect and control emerging infectious disease. Although in China a preliminary medical building network is already set up with disease control center, the infectious disease hospital, infectious diseases department in general hospital and basic medical institutions, there are still many defects in this system, such as simple structural model, weak interoperability among subsystems, and poor capability of the medical building to adapt to outbreaks of infectious disease. Based on the characteristics of infectious diseases, the whole process of its prevention and control and the comprehensive influence factors, three-dimensional medical architecture network system is proposed as an inevitable trend. In this conception of medical architecture network structure, the evolutions are mentioned, such as from simple network system to multilayer space network system, from static network to dynamic network, and from mechanical network to sustainable network. Ultimately, a more adaptable and corresponsive medical building network system will be established and argued in this paper.

  5. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  6. LMI designmethod for networked-based PID control

    NASA Astrophysics Data System (ADS)

    Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez

    2016-10-01

    In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.

  7. Space Network Control Conference on Resource Allocation Concepts and Approaches

    NASA Technical Reports Server (NTRS)

    Moe, Karen L. (Editor)

    1991-01-01

    The results are presented of the Space Network Control (SNC) Conference. In the late 1990s, when the Advanced Tracking and Data Relay Satellite System is operational, Space Network communication services will be supported and controlled by the SNC. The goals of the conference were to survey existing resource allocation concepts and approaches, to identify solutions applicable to the Space Network, and to identify avenues of study in support of the SNC development. The conference was divided into three sessions: (1) Concepts for Space Network Allocation; (2) SNC and User Payload Operations Control Center (POCC) Human-Computer Interface Concepts; and (3) Resource Allocation Tools, Technology, and Algorithms. Key recommendations addressed approaches to achieving higher levels of automation in the scheduling process.

  8. Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.

    PubMed

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-02-10

    Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Microcomputer network for control of a continuous mining machine. Information circular/1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiffbauer, W.H.

    1993-01-01

    The paper details a microcomputer-based control and monitoring network that was developed in-house by the U.S. Bureau of Mines, and installed on a Joy 14 continuous mining machine. The network consists of microcomputers that are connected together via a single twisted pair cable. Each microcomputer was developed to provide a particular function in the control process. Machine-mounted microcomputers in conjunction with the appropriate sensors provide closed-loop control of the machine, navigation, and environmental monitoring. Off-the-machine microcomputers provide remote control of the machine, sensor status, and a connection to the network so that external computers can access network data and controlmore » the continuous mining machine. Although the network was installed on a Joy 14 continuous mining machine, its use extends beyond it. Its generic structure lends itself to installation onto most mining machine types.« less

  10. Dynamics and control of state-dependent networks for probing genomic organization

    PubMed Central

    Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran

    2011-01-01

    A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407

  11. Interdependent Network Recovery Games.

    PubMed

    Smith, Andrew M; González, Andrés D; Dueñas-Osorio, Leonardo; D'Souza, Raissa M

    2017-10-30

    Recovery of interdependent infrastructure networks in the presence of catastrophic failure is crucial to the economy and welfare of society. Recently, centralized methods have been developed to address optimal resource allocation in postdisaster recovery scenarios of interdependent infrastructure systems that minimize total cost. In real-world systems, however, multiple independent, possibly noncooperative, utility network controllers are responsible for making recovery decisions, resulting in suboptimal decentralized processes. With the goal of minimizing recovery cost, a best-case decentralized model allows controllers to develop a full recovery plan and negotiate until all parties are satisfied (an equilibrium is reached). Such a model is computationally intensive for planning and negotiating, and time is a crucial resource in postdisaster recovery scenarios. Furthermore, in this work, we prove this best-case decentralized negotiation process could continue indefinitely under certain conditions. Accounting for network controllers' urgency in repairing their system, we propose an ad hoc sequential game-theoretic model of interdependent infrastructure network recovery represented as a discrete time noncooperative game between network controllers that is guaranteed to converge to an equilibrium. We further reduce the computation time needed to find a solution by applying a best-response heuristic and prove bounds on ε-Nash equilibrium, where ε depends on problem inputs. We compare best-case and ad hoc models on an empirical interdependent infrastructure network in the presence of simulated earthquakes to demonstrate the extent of the tradeoff between optimality and computational efficiency. Our method provides a foundation for modeling sociotechnical systems in a way that mirrors restoration processes in practice. © 2017 Society for Risk Analysis.

  12. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  13. Parallel plan execution with self-processing networks

    NASA Technical Reports Server (NTRS)

    Dautrechy, C. Lynne; Reggia, James A.

    1989-01-01

    A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems.

  14. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  15. Cognitive control, attention, and the other race effect in memory.

    PubMed

    Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D

    2017-01-01

    People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces.

  16. Cognitive control, attention, and the other race effect in memory

    PubMed Central

    Uncapher, Melina R.; Chow, Tiffany E.; Eberhardt, Jennifer L.; Wagner, Anthony D.

    2017-01-01

    People are better at remembering faces from their own race than other races–a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an “old/new” recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during encoding, such that same-race memory benefits from elevated top-down attentional engagement with face processing regions; conversely, reduced recruitment of cognitive control circuitry appears more predictive of memory failure when encoding out-group faces. PMID:28282414

  17. A precise time synchronization method for 5G based on radio-over-fiber network with SDN controller

    NASA Astrophysics Data System (ADS)

    He, Linkuan; Wei, Baoguo; Yang, Hui; Yu, Ao; Wang, Zhengyong; Zhang, Jie

    2018-02-01

    There is an increasing demand on accurate time synchronization with the growing bandwidth of network service for 5G. In 5G network, it's necessary for base station to achieve accurate time synchronization to guarantee the quality of communication. In order to keep accuracy time for 5G network, we propose a time synchronization system for satellite ground station based on radio-over-fiber network (RoFN) with software defined optical network (SDON) controller. The advantage of this method is to improve the accuracy of time synchronization of ground station. The IEEE 1588 time synchronization protocol can solve the problems of high cost and lack of precision. However, in the process of time synchronization, distortion exists during the transmission of digital time signal. RoF uses analog optical transmission links and therefore analog transmission can be implemented among ground stations instead of digital transmission, which means distortion and bandwidth waste in the process of digital synchronization can be avoided. Additionally, the thought of SDN, software defined network, can optimize RoFN with centralized control and simplifying base station. Related simulation had been carried out to prove its superiority.

  18. Resting State Synchrony in Short-Term versus Long-Term Abstinent Alcoholics

    PubMed Central

    Camchong, Jazmin; Stenger, Victor Andrew; Fein, George

    2012-01-01

    BACKGROUND We previously reported that when compared to controls, long-term abstinent alcoholics (LTAA) have increased resting state synchrony (RSS) of the inhibitory control network and reduced synchrony of the appetitive drive network, and hypothesized that these levels of synchrony are adaptive, and support the behavioral changes required to maintain abstinence. In the current study, we investigate whether these RSS patterns can be identified in short-term abstinent alcoholics. METHODS Resting state functional magnetic resonance imaging data were collected from 27 short-term abstinent alcoholics (STAA), 23 LTAA and 23 non-substance abusing controls (NSAC). We examined baseline RSS using seed-based measures. RESULTS We found ordered RSS effects from NSAC to STAA and then to LTAA within both the appetitive drive and executive control networks: increasing RSS of the executive control network, and decreasing RSS of the reward processing network. Finally, we found significant correlations between strength of RSS in these networks and (a) cognitive flexibility and (b) current antisocial behavior. DISCUSSION Findings are consistent with an adaptive progression of RSS from short- to long-term abstinence so that, compared to normal controls, the synchrony (a) within the reward network progressively decreases and (b) within the executive control network progressively increases. PMID:23421812

  19. An expanding universe of circadian networks in higher plants.

    PubMed

    Pruneda-Paz, Jose L; Kay, Steve A

    2010-05-01

    Extensive circadian clock networks regulate almost every biological process in plants. Clock-controlled physiological responses are coupled with daily oscillations in environmental conditions resulting in enhanced fitness and growth vigor. Identification of core clock components and their associated molecular interactions has established the basic network architecture of plant clocks, which consists of multiple interlocked feedback loops. A hierarchical structure of transcriptional feedback overlaid with regulated protein turnover sets the pace of the clock and ultimately drives all clock-controlled processes. Although originally described as linear entities, increasing evidence suggests that many signaling pathways can act as both inputs and outputs within the overall network. Future studies will determine the molecular mechanisms involved in these complex regulatory loops. 2010 Elsevier Ltd. All rights reserved.

  20. How neuroscience can inform the study of individual differences in cognitive abilities

    PubMed Central

    McFarland, Dennis J.

    2018-01-01

    Theories of human mental abilities should be consistent with what is known in neuroscience. Currently tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such at perception, attention, decision and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control. PMID:28195556

  1. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex

    PubMed Central

    Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A.; Grill-Spector, Kalanit; Rossion, Bruno

    2016-01-01

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. SIGNIFICANCE STATEMENT Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. PMID:27511014

  2. Resilient distributed control in the presence of misbehaving agents in networked control systems.

    PubMed

    Zeng, Wente; Chow, Mo-Yuen

    2014-11-01

    In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.

  3. Autoplan: A self-processing network model for an extended blocks world planning environment

    NASA Technical Reports Server (NTRS)

    Dautrechy, C. Lynne; Reggia, James A.; Mcfadden, Frank

    1990-01-01

    Self-processing network models (neural/connectionist models, marker passing/message passing networks, etc.) are currently undergoing intense investigation for a variety of information processing applications. These models are potentially very powerful in that they support a large amount of explicit parallel processing, and they cleanly integrate high level and low level information processing. However they are currently limited by a lack of understanding of how to apply them effectively in many application areas. The formulation of self-processing network methods for dynamic, reactive planning is studied. The long-term goal is to formulate robust, computationally effective information processing methods for the distributed control of semiautonomous exploration systems, e.g., the Mars Rover. The current research effort is focusing on hierarchical plan generation, execution and revision through local operations in an extended blocks world environment. This scenario involves many challenging features that would be encountered in a real planning and control environment: multiple simultaneous goals, parallel as well as sequential action execution, action sequencing determined not only by goals and their interactions but also by limited resources (e.g., three tasks, two acting agents), need to interpret unanticipated events and react appropriately through replanning, etc.

  4. On-board processing architectures for satellite B-ISDN services

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Shyy, Dong-Jye; Faris, Faris

    1991-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  5. Using OPC technology to support the study of advanced process control.

    PubMed

    Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa

    2015-03-01

    OPC, originally the Object Linking and Embedding (OLE) for Process Control, brings a broad communication opportunity between different kinds of control systems. This paper investigates the use of OPC technology for the study of distributed control systems (DCS) as a cost effective and flexible research tool for the development and testing of advanced process control (APC) techniques in university research centers. Co-Simulation environment based on Matlab, LabVIEW and TCP/IP network is presented here. Several implementation issues and OPC based client/server control application have been addressed for TCP/IP network. A nonlinear boiler model is simulated as OPC server and OPC client is used for closed loop model identification, and to design a Model Predictive Controller. The MPC is able to control the NOx emissions in addition to drum water level and steam pressure. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Technologies for network-centric C4ISR

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Kirk A.

    2003-07-01

    Three technologies form the heart of any network-centric command, control, communication, intelligence, surveillance, and reconnaissance (C4ISR) system: distributed processing, reconfigurable networking, and distributed resource management. Distributed processing, enabled by automated federation, mobile code, intelligent process allocation, dynamic multiprocessing groups, check pointing, and other capabilities creates a virtual peer-to-peer computing network across the force. Reconfigurable networking, consisting of content-based information exchange, dynamic ad-hoc routing, information operations (perception management) and other component technologies forms the interconnect fabric for fault tolerant inter processor and node communication. Distributed resource management, which provides the means for distributed cooperative sensor management, foe sensor utilization, opportunistic collection, symbiotic inductive/deductive reasoning and other applications provides the canonical algorithms for network-centric enterprises and warfare. This paper introduces these three core technologies and briefly discusses a sampling of their component technologies and their individual contributions to network-centric enterprises and warfare. Based on the implied requirements, two new algorithms are defined and characterized which provide critical building blocks for network centricity: distributed asynchronous auctioning and predictive dynamic source routing. The first provides a reliable, efficient, effective approach for near-optimal assignment problems; the algorithm has been demonstrated to be a viable implementation for ad-hoc command and control, object/sensor pairing, and weapon/target assignment. The second is founded on traditional dynamic source routing (from mobile ad-hoc networking), but leverages the results of ad-hoc command and control (from the contributed auctioning algorithm) into significant increases in connection reliability through forward prediction. Emphasis is placed on the advantages gained from the closed-loop interaction of the multiple technologies in the network-centric application environment.

  7. Training trajectories by continuous recurrent multilayer networks.

    PubMed

    Leistritz, L; Galicki, M; Witte, H; Kochs, E

    2002-01-01

    This paper addresses the problem of training trajectories by means of continuous recurrent neural networks whose feedforward parts are multilayer perceptrons. Such networks can approximate a general nonlinear dynamic system with arbitrary accuracy. The learning process is transformed into an optimal control framework where the weights are the controls to be determined. A training algorithm based upon a variational formulation of Pontryagin's maximum principle is proposed for such networks. Computer examples demonstrating the efficiency of the given approach are also presented.

  8. The Contribution of Network Organization and Integration to the Development of Cognitive Control

    PubMed Central

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N.; Luna, Beatriz

    2015-01-01

    Abstract Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10–26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control. PMID:26713863

  9. The Contribution of Network Organization and Integration to the Development of Cognitive Control.

    PubMed

    Marek, Scott; Hwang, Kai; Foran, William; Hallquist, Michael N; Luna, Beatriz

    2015-12-01

    Cognitive control, which continues to mature throughout adolescence, is supported by the ability for well-defined organized brain networks to flexibly integrate information. However, the development of intrinsic brain network organization and its relationship to observed improvements in cognitive control are not well understood. In the present study, we used resting state functional magnetic resonance imaging (RS-fMRI), graph theory, the antisaccade task, and rigorous head motion control to characterize and relate developmental changes in network organization, connectivity strength, and integration to inhibitory control development. Subjects were 192 10-26-y-olds who were imaged during 5 min of rest. In contrast to initial studies, our results indicate that network organization is stable throughout adolescence. However, cross-network integration, predominantly of the cingulo-opercular/salience network, increased with age. Importantly, this increased integration of the cingulo-opercular/salience network significantly moderated the robust effect of age on the latency to initiate a correct inhibitory control response. These results provide compelling evidence that the transition to adult-level inhibitory control is dependent upon the refinement and strengthening of integration between specialized networks. Our findings support a novel, two-stage model of neural development, in which networks stabilize prior to adolescence and subsequently increase their integration to support the cross-domain incorporation of information processing critical for mature cognitive control.

  10. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    NASA Technical Reports Server (NTRS)

    Cui, Zhenqian

    1999-01-01

    With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.

  11. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  12. Intrinsic network connectivity and own body perception in gender dysphoria.

    PubMed

    Feusner, Jamie D; Lidström, Andreas; Moody, Teena D; Dhejne, Cecilia; Bookheimer, Susan Y; Savic, Ivanka

    2017-08-01

    Gender dysphoria (GD) is characterized by incongruence between one's identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception -default mode network (DMN) and salience network - and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher "self" ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.

  13. Salience network engagement with the detection of morally laden information

    PubMed Central

    Gurvit, Hakan; Spreng, R. Nathan

    2017-01-01

    Abstract Moral cognition is associated with activation of the default network, regions implicated in mentalizing about one’s own actions or the intentions of others. Yet little is known about the initial detection of moral information. We examined the neural correlates of moral processing during a narrative completion task, which included an implicit moral salience manipulation. During fMRI scanning, participants read a brief vignette and selected the most semantically congruent sentence from two options to complete the narrative. The options were immoral, moral or neutral statements. RT was fastest for the selection of neutral statements and slowest for immoral statements. Neuroimaging analyses revealed that responses involving morally laden content engaged default and executive control network brain regions including medial and rostral prefrontal cortex, and core regions of the salience network, including anterior insula and dorsal anterior cingulate. Immoral vs moral conditions additionally engaged the salience network. These results implicate the salience network in the detection of moral information, which may modulate downstream default and frontal control network interactions in the service of complex moral reasoning and decision-making processes. These findings suggest that moral cognition involves both bottom-up and top-down attentional processes, mediated by discrete large-scale brain networks and their interactions. PMID:28338944

  14. Design and implementation of an Internet based effective controlling and monitoring system with wireless fieldbus communications technologies for process automation--an experimental study.

    PubMed

    Cetinceviz, Yucel; Bayindir, Ramazan

    2012-05-01

    The network requirements of control systems in industrial applications increase day by day. The Internet based control system and various fieldbus systems have been designed in order to meet these requirements. This paper describes an Internet based control system with wireless fieldbus communication designed for distributed processes. The system was implemented as an experimental setup in a laboratory. In industrial facilities, the process control layer and the distance connection of the distributed control devices in the lowest levels of the industrial production environment are provided with fieldbus networks. In this paper, the Internet based control system that will be able to meet the system requirements with a new-generation communication structure, which is called wired/wireless hybrid system, has been designed on field level and carried out to cover all sectors of distributed automation, from process control, to distributed input/output (I/O). The system has been accomplished by hardware structure with a programmable logic controller (PLC), a communication processor (CP) module, two industrial wireless modules and a distributed I/O module, Motor Protection Package (MPP) and software structure with WinCC flexible program used for the screen of Scada (Supervisory Control And Data Acquisition), SIMATIC MANAGER package program ("STEP7") used for the hardware and network configuration and also for downloading control program to PLC. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    PubMed Central

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  16. Network analysis reveals multiscale controls on streamwater chemistry

    USGS Publications Warehouse

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  17. Network analysis reveals multiscale controls on streamwater chemistry

    PubMed Central

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575

  18. Network analysis reveals multiscale controls on streamwater chemistry.

    PubMed

    McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W

    2014-05-13

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  19. Neural network modelling of the influence of channelopathies on reflex visual attention.

    PubMed

    Gravier, Alexandre; Quek, Chai; Duch, Włodzisław; Wahab, Abdul; Gravier-Rymaszewska, Joanna

    2016-02-01

    This paper introduces a model of Emergent Visual Attention in presence of calcium channelopathy (EVAC). By modelling channelopathy, EVAC constitutes an effort towards identifying the possible causes of autism. The network structure embodies the dual pathways model of cortical processing of visual input, with reflex attention as an emergent property of neural interactions. EVAC extends existing work by introducing attention shift in a larger-scale network and applying a phenomenological model of channelopathy. In presence of a distractor, the channelopathic network's rate of failure to shift attention is lower than the control network's, but overall, the control network exhibits a lower classification error rate. The simulation results also show differences in task-relative reaction times between control and channelopathic networks. The attention shift timings inferred from the model are consistent with studies of attention shift in autistic children.

  20. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  1. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1994-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  2. The neural networks of inhibitory control in posttraumatic stress disorder

    PubMed Central

    Falconer, Erin; Bryant, Richard; Felmingham, Kim L.; Kemp, Andrew H.; Gordon, Evian; Peduto, Anthony; Olivieri, Gloria; Williams, Leanne M.

    2008-01-01

    Objective Posttraumatic stress disorder (PTSD) involves deficits in information processing that may reflect hypervigilence and deficient inhibitory control. To date, however, no PTSD neuroimaging study has directly examined PTSD-related changes in executive inhibition. Our objective was to investigate the hypothesis that executive inhibitory control networks are compromised in PTSD. Methods Functional magnetic resonance imaging (fMRI) was used during a Go/No-Go inhibition task completed by a sample of patients with PTSD (n = 23), a matched sample of healthy (i.e. without trauma exposure) control participants (n = 23) and a sample of control participants with trauma exposure who did not meet criteria for PTSD (n = 17). Results Participants with PTSD showed more inhibition-related errors than did individuals without trauma exposure. During inhibition, control participants activated a right-lateralized cortical inhibitory network, whereas patients with PTSD activated only the left lateral frontal cortex. PTSD was associated with a reduction in right cortical activation and increased activation of striatal and somatosensory regions. Conclusion The increased inhibitory error and reduced right frontal cortical activation are consistent with compromised inhibitory control in PTSD, while the increased activation of brain regions associated with sensory processing and a greater demand on inhibitory control may reflect enhanced stimulus processing in PTSD, which may undermine cortical control mechanisms. PMID:18787658

  3. Locating the source of diffusion in complex networks by time-reversal backward spreading.

    PubMed

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  4. Locating the source of diffusion in complex networks by time-reversal backward spreading

    NASA Astrophysics Data System (ADS)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  5. Controls on stream network branching angles, tested using landscape evolution models

    NASA Astrophysics Data System (ADS)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.

  6. Centralized and distributed control architectures under Foundation Fieldbus network.

    PubMed

    Persechini, Maria Auxiliadora Muanis; Jota, Fábio Gonçalves

    2013-01-01

    This paper aims at discussing possible automation and control system architectures based on fieldbus networks in which the controllers can be implemented either in a centralized or in a distributed form. An experimental setup is used to demonstrate some of the addressed issues. The control and automation architecture is composed of a supervisory system, a programmable logic controller and various other devices connected to a Foundation Fieldbus H1 network. The procedures used in the network configuration, in the process modelling and in the design and implementation of controllers are described. The specificities of each one of the considered logical organizations are also discussed. Finally, experimental results are analysed using an algorithm for the assessment of control loops to compare the performances between the centralized and the distributed implementations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Construct mine environment monitoring system based on wireless mesh network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  8. Failure and recovery in dynamical networks.

    PubMed

    Böttcher, L; Luković, M; Nagler, J; Havlin, S; Herrmann, H J

    2017-02-03

    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks.

  9. Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates (Briefing Charts)

    DTIC Science & Technology

    2015-03-24

    distribution is unlimited.  . Interactions Between Structure and Processing that Control Moisture Uptake in High-Performance Polycyanurates Presenter: Dr...Edwards AFB, CA 4 California State University, Long Beach, CA 90840 2 Outline: Basic Studies of Moisture Uptake in Cyanate Ester Networks • Background...Motivation • SOTA Theories of Moisture Uptake in Thermosetting Networks • New Tools and New Discoveries • Unresolved Issues and Ways to Address Them

  10. Organization of the secure distributed computing based on multi-agent system

    NASA Astrophysics Data System (ADS)

    Khovanskov, Sergey; Rumyantsev, Konstantin; Khovanskova, Vera

    2018-04-01

    Nowadays developing methods for distributed computing is received much attention. One of the methods of distributed computing is using of multi-agent systems. The organization of distributed computing based on the conventional network computers can experience security threats performed by computational processes. Authors have developed the unified agent algorithm of control system of computing network nodes operation. Network PCs is used as computing nodes. The proposed multi-agent control system for the implementation of distributed computing allows in a short time to organize using of the processing power of computers any existing network to solve large-task by creating a distributed computing. Agents based on a computer network can: configure a distributed computing system; to distribute the computational load among computers operated agents; perform optimization distributed computing system according to the computing power of computers on the network. The number of computers connected to the network can be increased by connecting computers to the new computer system, which leads to an increase in overall processing power. Adding multi-agent system in the central agent increases the security of distributed computing. This organization of the distributed computing system reduces the problem solving time and increase fault tolerance (vitality) of computing processes in a changing computing environment (dynamic change of the number of computers on the network). Developed a multi-agent system detects cases of falsification of the results of a distributed system, which may lead to wrong decisions. In addition, the system checks and corrects wrong results.

  11. Neural bases of enhanced attentional control: Lessons from action video game players.

    PubMed

    Föcker, Julia; Cole, Daniel; Beer, Anton L; Bavelier, Daphne

    2018-06-19

    The ability to resist distraction and focus on-task-relevant information while being responsive to changes in the environment is fundamental to goal-directed behavior. Such attentional control abilities are regulated by a constant interplay between previously characterized bottom-up and top-down attentional networks. Here we ask about the neural changes within these two attentional networks that may mediate enhanced attentional control. To address this question, we contrasted action video game players (AVGPs) and nonvideo game players (NVGPs) in a Posner-cueing paradigm, building on studies documenting enhanced attentional control in AVGPs. Behavioral results indicated a trend for more efficient target processing in AVGPs, and better suppression in rare catch trials for which responses had to be withheld. During the cue period, AVGPs recruited the top-down network less than NVGPs, despite showing comparable validity effects, in line with a greater efficiency of that network in AVGPs. During target processing, as previously shown, recruitment of top-down areas correlated with greater processing difficulties, but only in NVGPs. AVGPs showed no such effect, but rather greater activation across the two networks. In particular, the right temporoparietal junction, middle frontal gyrus, and superior parietal cortex predicted better task performance in catch trials. A functional connectivity analysis revealed enhanced correlated activity in AVGPs compared to NVGPs between parietal and visual areas. These results point to dynamic functional reconfigurations of top-down and bottom-up attentional networks in AVGPs as attentional demands vary. Aspects of this functional reconfiguration that may act as key signatures of high attentional control are discussed. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  12. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    NASA Astrophysics Data System (ADS)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  13. Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity.

    PubMed

    Kaiser, Roselinde H; Andrews-Hanna, Jessica R; Wager, Tor D; Pizzagalli, Diego A

    2015-06-01

    Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. To investigate network dysfunction in MDD through a meta-analysis of rsFC studies. Seed-based voxelwise rsFC studies comparing individuals with MDD with healthy controls (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web of Science, and EMBASE) and authors contacted for additional data. Twenty-seven seed-based voxel-wise rsFC data sets from 25 publications (556 individuals with MDD and 518 healthy controls) were included in the meta-analysis. Coordinates of seed regions of interest and between-group effects were extracted. Seeds were categorized into seed-networks by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive or reduced negative connectivity) or hypoconnectivity (increased negative or reduced positive connectivity) with each seed-network. Major depressive disorder was characterized by hypoconnectivity within the frontoparietal network, a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network involved in attending to the external environment. Major depressive disorder was also associated with hyperconnectivity within the default network, a network believed to support internally oriented and self-referential thought, and hyperconnectivity between frontoparietal control systems and regions of the default network. Finally, the MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. Reduced connectivity within frontoparietal control systems and imbalanced connectivity between control systems and networks involved in internal or external attention may reflect depressive biases toward internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression.

  14. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Modified neural networks for rapid recovery of tokamak plasma parameters for real time control

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ranjan, P.

    2002-07-01

    Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.

  16. Scalable software-defined optical networking with high-performance routing and wavelength assignment algorithms.

    PubMed

    Lee, Chankyun; Cao, Xiaoyuan; Yoshikane, Noboru; Tsuritani, Takehiro; Rhee, June-Koo Kevin

    2015-10-19

    The feasibility of software-defined optical networking (SDON) for a practical application critically depends on scalability of centralized control performance. The paper, highly scalable routing and wavelength assignment (RWA) algorithms are investigated on an OpenFlow-based SDON testbed for proof-of-concept demonstration. Efficient RWA algorithms are proposed to achieve high performance in achieving network capacity with reduced computation cost, which is a significant attribute in a scalable centralized-control SDON. The proposed heuristic RWA algorithms differ in the orders of request processes and in the procedures of routing table updates. Combined in a shortest-path-based routing algorithm, a hottest-request-first processing policy that considers demand intensity and end-to-end distance information offers both the highest throughput of networks and acceptable computation scalability. We further investigate trade-off relationship between network throughput and computation complexity in routing table update procedure by a simulation study.

  17. Statistical process control based chart for information systems security

    NASA Astrophysics Data System (ADS)

    Khan, Mansoor S.; Cui, Lirong

    2015-07-01

    Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.

  18. Network of Internet-Controlled HF Receivers for Ionospheric Researches

    NASA Astrophysics Data System (ADS)

    Koloskov, A. V.; Yampolski, Y. M.; Zalizovski, A. V.; Galushko, V. G.; Kascheev, A. S.; La Hoz, C.; Brekke, A.; Beley, V. S.; Rietveld, M. T.

    2014-12-01

    A network of HF receivers intended for multi-position monitoring of the ionosphere is described. At present, it includes nine observation sites located at high, middle and low latitudes in both hemispheres of the Earth. The basic element of the network is a small- size receiving and measuring units designed at the Institute of Radio Astronomy (IRA) of the National Academy of Sciences of Ukraine (NASU) on the basis of a personal computer equipped with commercial digital receiving modules. Software packages developed by the authors make it possible to remotely control the facilities via the Internet network. The received emissions are HF signals from special transmitters and broadcast radio stations. These are processed using Doppler and pulse selection algorithms. In the Internet-controlled mode, the observation results are transferred to the main server in real time to be automatically processed and visualized at the website of the IRA NASU’s Department of Radiophysics of Geospace. Several examples of using the observation results obtained with the HF receiver network for diagnostics of dynamic processes in the near-Earth plasma are presented. The advantages of the multiposition mode of observations are discussed. The possibility of upgrading the HF facilities to provide measuring angles of arrival of signals is considered.

  19. The deep space network, volume 15

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The DSN progress is reported in flight project support, TDA research and technology, network engineering, hardware and software implementation, and operations. Topics discussed include: DSN functions and facilities, planetary flight projects, tracking and ground-based navigation, communications, data processing, network control system, and deep space stations.

  20. The telecommunications and data acquisition report

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A. (Editor)

    1981-01-01

    Developments in Earth-based ratio technology as applied to the Deep Space Network are reported. Topics include ratio astronomy and spacecraft tracking networks. Telemetric methods and instrumentation are described. Station control and system technology for space communication is discussed. Special emphasis is placed on network data processing.

  1. Deep space network Mark 4A description

    NASA Technical Reports Server (NTRS)

    Wallace, R. J.; Burt, R. W.

    1986-01-01

    The general system configuration for the Mark 4A Deep Space Network is described. The arrangement and complement of antennas at the communications complexes and subsystem equipment at the signal processing centers are described. A description of the Network Operations Control Center is also presented.

  2. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism

    PubMed Central

    Mason, Robert A.; Williams, Diane L.; Kana, Rajesh K.; Minshew, Nancy; Just, Marcel Adam

    2008-01-01

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum. PMID:17869314

  3. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    PubMed

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Functional connectivity changes in second language vocabulary learning.

    PubMed

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005). Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  6. Theory of Mind disruption and recruitment of the right hemisphere during narrative comprehension in autism.

    PubMed

    Mason, Robert A; Williams, Diane L; Kana, Rajesh K; Minshew, Nancy; Just, Marcel Adam

    2008-01-15

    The intersection of Theory of Mind (ToM) processing and complex narrative comprehension in high functioning autism was examined by comparing cortical activation during the reading of passages that required inferences based on either intentions, emotional states, or physical causality. Right hemisphere activation was substantially greater for all sentences in the autism group than in a matched control group suggesting decreased LH capacity in autism resulting in a spillover of processing to RH homologs. Moreover, the ToM network was disrupted. The autism group showed similar activation for all inference types in the right temporo-parietal component of the ToM network whereas the control participants selectively activated this network only when appropriate. The autism group had lower functional connectivity within the ToM network and also between the ToM and a left hemisphere language network. Furthermore, the within-network functional connectivity in autism was correlated with the size of the anterior portion of the corpus callosum.

  7. Empirical modeling for intelligent, real-time manufacture control

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoshu

    1994-01-01

    Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.

  8. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  9. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

    NASA Astrophysics Data System (ADS)

    Forman, Yakir; Cameron, Maria

    2017-07-01

    We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

  10. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  11. Nutrient Stress Detection in Corn Using Neural Networks and AVIRIS Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Lee

    2001-01-01

    AVIRIS image cube data has been processed for the detection of nutrient stress in corn by both known, ratio-type algorithms and by trained neural networks. The USDA Shelton, NE, ARS Variable Rate Nitrogen Application (VRAT) experimental farm was the site used in the study. Upon application of ANOVA and Dunnett multiple comparsion tests on the outcome of both the neural network processing and the ratio-type algorithm results, it was found that the neural network methodology provides a better overall capability to separate nutrient stressed crops from in-field controls.

  12. Datum maintenance of the main Egyptian geodetic control networks by utilizing Precise Point Positioning "PPP" technique

    NASA Astrophysics Data System (ADS)

    Rabah, Mostafa; Elmewafey, Mahmoud; Farahan, Magda H.

    2016-06-01

    A geodetic control network is the wire-frame or the skeleton on which continuous and consistent mapping, Geographic Information Systems (GIS), and surveys are based. Traditionally, geodetic control points are established as permanent physical monuments placed in the ground and precisely marked, located, and documented. With the development of satellite surveying methods and their availability and high degree of accuracy, a geodetic control network could be established by using GNSS and referred to an international terrestrial reference frame used as a three-dimensional geocentric reference system for a country. Based on this concept, in 1992, the Egypt Survey Authority (ESA) established two networks, namely High Accuracy Reference Network (HARN) and the National Agricultural Cadastral Network (NACN). To transfer the International Terrestrial Reference Frame to the HARN, the HARN was connected with four IGS stations. The processing results were 1:10,000,000 (Order A) for HARN and 1:1,000,000 (Order B) for NACN relative network accuracy standard between stations defined in ITRF1994 Epoch1996. Since 1996, ESA did not perform any updating or maintaining works for these networks. To see how non-performing maintenance degrading the values of the HARN and NACN, the available HARN and NACN stations in the Nile Delta were observed. The Processing of the tested part was done by CSRS-PPP Service based on utilizing Precise Point Positioning "PPP" and Trimble Business Center "TBC". The study shows the feasibility of Precise Point Positioning in updating the absolute positioning of the HARN network and its role in updating the reference frame (ITRF). The study also confirmed the necessity of the absent role of datum maintenance of Egypt networks.

  13. Neural manufacturing: a novel concept for processing modeling, monitoring, and control

    NASA Astrophysics Data System (ADS)

    Fu, Chi Y.; Petrich, Loren; Law, Benjamin

    1995-09-01

    Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.

  14. Perspectives of construction robots

    NASA Astrophysics Data System (ADS)

    Stepanov, M. A.; Gridchin, A. M.

    2018-03-01

    This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.

  15. ICC '86; Proceedings of the International Conference on Communications, Toronto, Canada, June 22-25, 1986, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    Papers are presented on ISDN, mobile radio systems and techniques for digital connectivity, centralized and distributed algorithms in computer networks, communications networks, quality assurance and impact on cost, adaptive filters in communications, the spread spectrum, signal processing, video communication techniques, and digital satellite services. Topics discussed include performance evaluation issues for integrated protocols, packet network operations, the computer network theory and multiple-access, microwave single sideband systems, switching architectures, fiber optic systems, wireless local communications, modulation, coding, and synchronization, remote switching, software quality, transmission, and expert systems in network operations. Consideration is given to wide area networks, image and speech processing, office communications application protocols, multimedia systems, customer-controlled network operations, digital radio systems, channel modeling and signal processing in digital communications, earth station/on-board modems, computer communications system performance evaluation, source encoding, compression, and quantization, and adaptive communications systems.

  16. Differential effects of bilingualism and culture on early attention: a longitudinal study in the U.S., Argentina, and Vietnam.

    PubMed

    Tran, Crystal D; Arredondo, Maria M; Yoshida, Hanako

    2015-01-01

    A large body of literature suggests that bilingualism strongly influences attentional processes among a variety of age groups. Increasing studies, however, indicate that culture may also have measurable effects on attentional processes. Bilinguals are often exposed to multiple cultural backgrounds, therefore, it is unclear if being exposed to multiple languages and culture together influence attentional processes, or if the effect themselves are uniquely linked to different attentional processes. The present study explores the relevancy of different attentional processes-alerting, orienting, and executive control-to language and to culture. In the present study, 97 3-years-old (Mean age = 38.78 months) monolingual and bilingual children from three countries (the U.S., Argentina, and Vietnam) were longitudinally tested for a total of five time points on a commonly used non-linguistic attentional paradigm-the Attention Network Test. Results demonstrate that when other factors are controlled (e.g., socio-economic status, vocabulary knowledge, age), culture plays an important role on the development of the alerting and executive control attentional network, while language status was only significant on the executive control attentional network. The present study indicates that culture may interact with bilingualism to further explain previous reported advantages, as well as elucidate the increasing disparity surrounding cognitive advantages in bilingual literature.

  17. Intelligent control and adaptive systems; Proceedings of the Meeting, Philadelphia, PA, Nov. 7, 8, 1989

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo (Editor)

    1990-01-01

    Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.

  18. Fast packet switching algorithms for dynamic resource control over ATM networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  19. Functional Connectivity with Distinct Neural Networks Tracks Fluctuations in Gain/Loss Framing Susceptibility

    PubMed Central

    Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.

    2016-01-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445

  20. Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility.

    PubMed

    Smith, David V; Sip, Kamila E; Delgado, Mauricio R

    2015-07-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.

  1. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or the User Datagram Protocol makes it possible to obtain reasonably short response times: Typical response times in event-driven control, using packets sized .300 bytes, are <0.2 second for commands issued from locations anywhere on Earth. The protocol requires that control commands represent absolute values of controlled parameters (e.g., a specified temperature), as distinguished from changes in values of controlled parameters (e.g., a specified increment of temperature). Each command is issued three or more times to ensure delivery in crowded networks. The use of absolute-value commands prevents additional (redundant) commands from causing trouble. Because a remote controlling computer receives "talkback" in the form of data packets from the controlled computer, typically within a time interval < or =1 s, the controlling computer can re-issue a command if network failure has occurred. The controlled computer, the process or equipment that it controls, and any human operator(s) at the site of the controlled equipment or process should be equipped with safety measures to prevent damage to equipment or injury to humans. These features could be a combination of software, external hardware, and intervention by the human operator(s). The protocol is not fail-safe, but by adopting these safety measures as part of the protocol, one makes the protocol a robust means of controlling remote processes and equipment by use of typical office computers via intranets and/or the Internet.

  2. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method.

    PubMed

    Van Calster, Laurens; D'Argembeau, Arnaud; Salmon, Eric; Peters, Frédéric; Majerus, Steve

    2017-01-01

    Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top-down versus bottom-up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.

  3. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  4. Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Haiwen; Ni, Weidou

    1997-06-01

    A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.

  5. The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex.

    PubMed

    Weiner, Kevin S; Jonas, Jacques; Gomez, Jesse; Maillard, Louis; Brissart, Hélène; Hossu, Gabriela; Jacques, Corentin; Loftus, David; Colnat-Coulbois, Sophie; Stigliani, Anthony; Barnett, Michael A; Grill-Spector, Kalanit; Rossion, Bruno

    2016-08-10

    Human face perception requires a network of brain regions distributed throughout the occipital and temporal lobes with a right hemisphere advantage. Present theories consider this network as either a processing hierarchy beginning with the inferior occipital gyrus (occipital face area; IOG-faces/OFA) or a multiple-route network with nonhierarchical components. The former predicts that removing IOG-faces/OFA will detrimentally affect downstream stages, whereas the latter does not. We tested this prediction in a human patient (Patient S.P.) requiring removal of the right inferior occipital cortex, including IOG-faces/OFA. We acquired multiple fMRI measurements in Patient S.P. before and after a preplanned surgery and multiple measurements in typical controls, enabling both within-subject/across-session comparisons (Patient S.P. before resection vs Patient S.P. after resection) and between-subject/across-session comparisons (Patient S.P. vs controls). We found that the spatial topology and selectivity of downstream ipsilateral face-selective regions were stable 1 and 8 month(s) after surgery. Additionally, the reliability of distributed patterns of face selectivity in Patient S.P. before versus after resection was not different from across-session reliability in controls. Nevertheless, postoperatively, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1 of the resected hemisphere. Diffusion weighted imaging in Patient S.P. and controls identifies white matter tracts connecting retinotopic areas to downstream face-selective regions, which may contribute to the stable and plastic features of the face network in Patient S.P. after surgery. Together, our results support a multiple-route network of face processing with nonhierarchical components and shed light on stable and plastic features of high-level visual cortex following focal brain damage. Brain networks consist of interconnected functional regions commonly organized in processing hierarchies. Prevailing theories predict that damage to the input of the hierarchy will detrimentally affect later stages. We tested this prediction with multiple brain measurements in a rare human patient requiring surgical removal of the putative input to a network processing faces. Surprisingly, the spatial topology and selectivity of downstream face-selective regions are stable after surgery. Nevertheless, representations of visual space were typical in dorsal face-selective regions but atypical in ventral face-selective regions and V1. White matter connections from outside the face network may support these stable and plastic features. As processing hierarchies are ubiquitous in biological and nonbiological systems, our results have pervasive implications for understanding the construction of resilient networks. Copyright © 2016 the authors 0270-6474/16/368426-16$15.00/0.

  6. Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint.

    PubMed

    Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki

    2017-04-01

    In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neural dynamic programming and its application to control systems

    NASA Astrophysics Data System (ADS)

    Seong, Chang-Yun

    There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.

  8. [The contracting process and outsourcing in health: the scenario for dispute between public and private interests].

    PubMed

    Albuquerque, Maria do Socorro Veloso; Morais, Heloísa Maria Mendonça de; Lima, Luci Praciano

    2015-06-01

    This research analyzed the public-private composition in the municipal health network and aspects of the contracting/outsourcing process for services over the period from 2001 to 2008. The research method used was a case study with documentary research and interviews. The interviewees were former secretaries of health, directors of regulation and district managers. The categories of analysis used were public funds, care networks and public control. The results showed that the contracting was restricted to philanthropic units. With respect to the other private establishments linked to the public care network, non-compliance with programmatic aspects was detected, such as the lack of regulation of bidding processes required for contracting. Management authorities did not actively pursue building up state public services, or the formation of care networks. The contracted establishments conducted their activities without effective external and internal control mechanisms, which are paramount for the proper use of public resources. The authors conclude that the contracting process does not significantly alter the standard of buying and selling of services and indeed does not enhance the empowering process of the role of the public domain.

  9. Real-time Adaptive Control Using Neural Generalized Predictive Control

    NASA Technical Reports Server (NTRS)

    Haley, Pam; Soloway, Don; Gold, Brian

    1999-01-01

    The objective of this paper is to demonstrate the feasibility of a Nonlinear Generalized Predictive Control algorithm by showing real-time adaptive control on a plant with relatively fast time-constants. Generalized Predictive Control has classically been used in process control where linear control laws were formulated for plants with relatively slow time-constants. The plant of interest for this paper is a magnetic levitation device that is nonlinear and open-loop unstable. In this application, the reference model of the plant is a neural network that has an embedded nominal linear model in the network weights. The control based on the linear model provides initial stability at the beginning of network training. In using a neural network the control laws are nonlinear and online adaptation of the model is possible to capture unmodeled or time-varying dynamics. Newton-Raphson is the minimization algorithm. Newton-Raphson requires the calculation of the Hessian, but even with this computational expense the low iteration rate make this a viable algorithm for real-time control.

  10. Brain processing of pain in patients with unresponsive wakefulness syndrome

    PubMed Central

    Markl, Alexandra; Yu, Tao; Vogel, Dominik; Müller, Friedemann; Kotchoubey, Boris; Lang, Simone

    2013-01-01

    By definition, patients with unresponsive wakefulness syndrome (UWS) do not experience pain, but it is still not completely understood how far their brain can process noxious stimuli. The few positron emission tomography studies that have examined pain processing did not yield a clear and consistent result. We performed an functional magnetic resonance imaging scan in 30 UWS patients of nontraumatic etiology and 15 age- and sex-matched healthy control participants (HC). In a block design, noxious electrical stimuli were presented at the patients' left index finger, alternating with a resting baseline condition. Sixteen of the UWS patients (53%) showed neural activation in at least one subsystem of the pain-processing network. More specifically, 15 UWS patients (50%) showed responses in the sensory-discriminative pain network, 30% in the affective pain network. The data indicate that some patients completely fulfilling the clinical UWS criteria have the neural substrates of noxious stimulation processing, which resemble that in control individuals. We therefore suppose that at least some of these patients can experience pain. PMID:23533065

  11. The persuasion context and results in online opinion seeking: effects of message and source-the moderating role of network managers.

    PubMed

    Cabezudo, Rebeca San José; Izquierdo, Carmen Camarero; Pinto, Javier Rodríguez

    2013-11-01

    Online opinion networks are areas for social exchange, or conversational networks, made up of individuals actively involved in sharing experiences and opinions concerning matters of mutual interest between consumers or concerning their experience with a given product or service. We pinpoint a gap in the literature regarding how the persuasion process occurs when individuals seek opinions online, including the results process. In an attempt to find an answer, we draw on traditional theories related to information processing. These are mostly taken from the field of psychology and enable us to identify which signals or aspects of communication or opinions the individuals focus their attention on (message and source) and the value attached to such communications as well as how much they impact individuals' purchase decisions, bearing in mind the medium (or online opinion network) in which the opinions are located. Findings from those interviewed support the idea that the quality of information on the Internet, as well as trust in the source of said information, or in the opinion of network users, have an impact on the informational value obtained from involvement in this online opinion seeking and on purchasing decisions. Moreover, depending on the kind of network (firm or brand controlled, review Web sites, and user-controlled nonofficial opinion networks), the quality of the information or trust in the users will have a different bearing in the persuasion process.

  12. Ongoing activity in temporally coherent networks predicts intra-subject fluctuation of response time to sporadic executive control demands.

    PubMed

    Nozawa, Takayuki; Sugiura, Motoaki; Yokoyama, Ryoichi; Ihara, Mizuki; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Kanno, Akitake; Kawashima, Ryuta

    2014-01-01

    Can ongoing fMRI BOLD signals predict fluctuations in swiftness of a person's response to sporadic cognitive demands? This is an important issue because it clarifies whether intrinsic brain dynamics, for which spatio-temporal patterns are expressed as temporally coherent networks (TCNs), have effects not only on sensory or motor processes, but also on cognitive processes. Predictivity has been affirmed, although to a limited extent. Expecting a predictive effect on executive performance for a wider range of TCNs constituting the cingulo-opercular, fronto-parietal, and default mode networks, we conducted an fMRI study using a version of the color-word Stroop task that was specifically designed to put a higher load on executive control, with the aim of making its fluctuations more detectable. We explored the relationships between the fluctuations in ongoing pre-trial activity in TCNs and the task response time (RT). The results revealed the existence of TCNs in which fluctuations in activity several seconds before the onset of the trial predicted RT fluctuations for the subsequent trial. These TCNs were distributed in the cingulo-opercular and fronto-parietal networks, as well as in perceptual and motor networks. Our results suggest that intrinsic brain dynamics in these networks constitute "cognitive readiness," which plays an active role especially in situations where information for anticipatory attention control is unavailable. Fluctuations in these networks lead to fluctuations in executive control performance.

  13. Cascade control of superheated steam temperature with neuro-PID controller.

    PubMed

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A genomic regulatory network for development

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; hide

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  15. Study on Coagulant Dosing Control System of Micro Vortex Water Treatment

    NASA Astrophysics Data System (ADS)

    Fengping, Hu; Qi, Fan; Wenjie, Hu; Xizhen, He; Hongling, Dai

    2018-03-01

    In view of the characteristics of nonlinearity, large time delay and multi disturbance in the process of coagulant dosing in water treatment, it is difficult to control the dosage of coagulant. According to the four indexes of raw water quality parameters (raw water flow, turbidity, pH value) and turbidity of sedimentation tank, the micro vortex coagulation dosing control model is constructed based on BP neural network and GA. The forecast results of BP neural network model are ideal, and after the optimization of GA, the prediction accuracy of the model is partly improved. The prediction error of the optimized network is ±0.5 mg/L, and has a better performance than non-optimized network.

  16. Distributed Environment Control Using Wireless Sensor/Actuator Networks for Lighting Applications

    PubMed Central

    Nakamura, Masayuki; Sakurai, Atsushi; Nakamura, Jiro

    2009-01-01

    We propose a decentralized algorithm to calculate the control signals for lights in wireless sensor/actuator networks. This algorithm uses an appropriate step size in the iterative process used for quickly computing the control signals. We demonstrate the accuracy and efficiency of this approach compared with the penalty method by using Mote-based mesh sensor networks. The estimation error of the new approach is one-eighth as large as that of the penalty method with one-fifth of its computation time. In addition, we describe our sensor/actuator node for distributed lighting control based on the decentralized algorithm and demonstrate its practical efficacy. PMID:22291525

  17. Pulse-firing winner-take-all networks

    NASA Technical Reports Server (NTRS)

    Meador, Jack L.

    1991-01-01

    Winner-take-all (WTA) neural networks using pulse-firing processing elements are introduced. In the pulse-firing WTA (PWTA) networks described, input and activation signal shunting is controlled by one shared lateral inhibition signal. This organization yields an O(n) area complexity that is convenient for integrated circuit implementation. Appropriately specified network parameters allow for the accurate continuous evaluation of inputs using a signal representation compatible with established pulse-firing neural network implementations.

  18. Network acceleration techniques

    NASA Technical Reports Server (NTRS)

    Crowley, Patricia (Inventor); Maccabe, Arthur Barney (Inventor); Awrach, James Michael (Inventor)

    2012-01-01

    Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).

  19. Toward Optimal Transport Networks

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  20. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Uncertainty and Cognitive Control

    PubMed Central

    Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre

    2011-01-01

    A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181

  2. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  4. Controllability and observability analysis for vertex domination centrality in directed networks

    PubMed Central

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-01-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks. PMID:24954137

  5. Functional resting-state networks are differentially affected in schizophrenia

    PubMed Central

    Woodward, Neil D.; Rogers, Baxter; Heckers, Stephan

    2011-01-01

    Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia. PMID:21458238

  6. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  7. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.

    PubMed

    Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A

    2018-05-02

    Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to inherent methodological constraints, much of this research has been unable to characterize the temporal dynamics of such networks (e.g., direction of information flow between nodes). Guided by fMRI research identifying the structure of brain networks supporting inhibitory control, results of EEG source analysis in a test sample ( n = 96) and replication sample ( n = 237) using effective connectivity and predictive analytics strategies advance a model of inhibitory control by characterizing the precise temporal dynamics by which this network operates and exemplify an approach by which mechanistic models can be developed for other key psychological processes. Copyright © 2018 the authors 0270-6474/18/384348-09$15.00/0.

  8. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  9. Predictive functional control for active queue management in congested TCP/IP networks.

    PubMed

    Bigdeli, N; Haeri, M

    2009-01-01

    Predictive functional control (PFC) as a new active queue management (AQM) method in dynamic TCP networks supporting explicit congestion notification (ECN) is proposed. The ability of the controller in handling system delay along with its simplicity and low computational load makes PFC a privileged AQM method in the high speed networks. Besides, considering the disturbance term (which represents model/process mismatches, external disturbances, and existing noise) in the control formulation adds some level of robustness into the PFC-AQM controller. This is an important and desired property in the control of dynamically-varying computer networks. In this paper, the controller is designed based on a small signal linearized fluid-flow model of the TCP/AQM networks. Then, closed-loop transfer function representation of the system is derived to analyze the robustness with respect to the network and controller parameters. The analytical as well as the packet-level ns-2 simulation results show the out-performance of the developed controller for both queue regulation and resource utilization. Fast response, low queue fluctuations (and consequently low delay jitter), high link utilization, good disturbance rejection, scalability, and low packet marking probability are other features of the developed method with respect to other well-known AQM methods such as RED, PI, and REM which are also simulated for comparison.

  10. Disrupted sensorimotor and social–cognitive networks underlie symptoms in childhood-onset schizophrenia

    PubMed Central

    Gotts, Stephen J.; McAdams, Harrison M.; Greenstein, Dede; Lalonde, Francois; Clasen, Liv; Watsky, Rebecca E.; Shora, Lorie; Ordonez, Anna E.; Raznahan, Armin; Martin, Alex; Gogtay, Nitin; Rapoport, Judith

    2016-01-01

    Abstract See Lancaster and Hall (doi: 10.1093/awv330 ) for a scientific commentary on this article . Schizophrenia is increasingly recognized as a neurodevelopmental disorder with altered connectivity among brain networks. In the current study we examined large-scale network interactions in childhood-onset schizophrenia, a severe form of the disease with salient genetic and neurobiological abnormalities. Using a data-driven analysis of resting-state functional magnetic resonance imaging fluctuations, we characterized data from 19 patients with schizophrenia and 26 typically developing controls, group matched for age, sex, handedness, and magnitude of head motion during scanning. This approach identified 26 regions with decreased functional correlations in schizophrenia compared to controls. These regions were found to organize into two function-related networks, the first with regions associated with social and higher-level cognitive processing, and the second with regions involved in somatosensory and motor processing. Analyses of across- and within-network regional interactions revealed pronounced across-network decreases in functional connectivity in the schizophrenia group, as well as a set of across-network relationships with overall negative coupling indicating competitive or opponent network dynamics. Critically, across-network decreases in functional connectivity in schizophrenia predicted the severity of positive symptoms in the disorder, such as hallucinations and delusions. By contrast, decreases in functional connectivity within the social-cognitive network of regions predicted the severity of negative symptoms, such as impoverished speech and flattened affect. These results point toward the role that abnormal integration of sensorimotor and social-cognitive processing may play in the pathophysiology and symptomatology of schizophrenia. PMID:26493637

  11. Complex social contagion makes networks more vulnerable to disease outbreaks.

    PubMed

    Campbell, Ellsworth; Salathé, Marcel

    2013-01-01

    Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.

  12. Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks.

    PubMed

    Chmielewski, Witold X; Mückschel, Moritz; Dippel, Gabriel; Beste, Christian

    2016-11-01

    Inhibiting responses is a challenge, where the outcome (partly) depends on the situational context. In everyday situations, response inhibition performance might be altered when irrelevant input is presented simultaneously with the information relevant for response inhibition. More specifically, irrelevant concurrent information may either brace or interfere with response-relevant information, depending on whether these inputs are redundant or conflicting. The aim of this study is to investigate neurophysiological mechanisms and the network underlying such modulations using EEG beamforming as method. The results show that in comparison to a baseline condition without concurrent information, response inhibition performance can be aggravated or facilitated by manipulating the extent of conflict via concurrent input. This depends on whether the requirement for cognitive control is high, as in conflicting trials, or whether it is low, as in redundant trials. In line with this, the total theta frequency power decreases in a right hemispheric orbitofrontal response inhibition network including the SFG, MFG, and SMA, when concurrent redundant information facilitates response inhibition processes. Vice versa, theta activity in a left-hemispheric response inhibition network (i.e., SFG, MFG, and IFG) increases, when conflicting concurrent information compromises response inhibition processes. We conclude that concurrent information bi-directionally shifts response inhibition performance and modulates the network architecture underlying theta oscillations which are signaling different levels of the need for cognitive control.

  13. Network Controllability in the Inferior Frontal Gyrus Relates to Controlled Language Variability and Susceptibility to TMS.

    PubMed

    Medaglia, John D; Harvey, Denise Y; White, Nicole; Kelkar, Apoorva; Zimmerman, Jared; Bassett, Danielle S; Hamilton, Roy H

    2018-06-08

    In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words in order to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understand word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging (DSI), we computed network controllability underlying the site of transcranial magnetic stimulation in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response (word generation) vs. closed-response (number naming) tasks. We find that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we find that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link between network controllability, cognitive function, and TMS effects. SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects. Copyright © 2018 the authors.

  14. Major technological innovations introduced in the large antennas of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  15. Exploring adolescent cognitive control in a combined interference switching task.

    PubMed

    Mennigen, Eva; Rodehacke, Sarah; Müller, Kathrin U; Ripke, Stephan; Goschke, Thomas; Smolka, Michael N

    2014-08-01

    Cognitive control enables individuals to flexibly adapt to environmental challenges. In the present functional magnetic resonance imaging (fMRI) study, we investigated 185 adolescents at the age of 14 with a combined response interference switching task measuring behavioral responses (reaction time, RT and error rate, ER) and brain activity during the task. This task comprises two types of conflict which are co-occurring, namely, task switching and stimulus-response incongruence. Data indicated that already in adolescents an overlapping cognitive control network comprising the dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (DLPFC), pre-supplementary motor area (preSMA) and posterior parietal cortex (PPC) is recruited by conflicts arising from task switching and response incongruence. Furthermore our study revealed higher blood oxygenation level dependent (BOLD) responses elicited by incongruent stimuli in participants with a pronounced incongruence effect, calculated as the RT difference between incongruent and congruent trials. No such correlation was observed for switch costs. Furthermore, increased activation of the default mode network (DMN) was only observed in congruent trials compared to incongruent trials, but not in task repetition relative to task switch trials. These findings suggest that even though the two processes of task switching and response incongruence share a common cognitive control network they might be processed differentially within the cognitive control network. Results are discussed in the context of a novel hypothesis concerning antagonistic relations between the DMN and the cognitive control network. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Security and SCADA protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igure, V. M.; Williams, R. D.

    2006-07-01

    Supervisory control and data acquisition (SCADA) networks have replaced discrete wiring for many industrial processes, and the efficiency of the network alternative suggests a trend toward more SCADA networks in the future. This paper broadly considers SCADA to include distributed control systems (DCS) and digital control systems. These networks offer many advantages, but they also introduce potential vulnerabilities that can be exploited by adversaries. Inter-connectivity exposes SCADA networks to many of the same threats that face the public internet and many of the established defenses therefore show promise if adapted to the SCADA differences. This paper provides an overview ofmore » security issues in SCADA networks and ongoing efforts to improve the security of these networks. Initially, a few samples from the range of threats to SCADA network security are offered. Next, attention is focused on security assessment of SCADA communication protocols. Three challenges must be addressed to strengthen SCADA networks. Access control mechanisms need to be introduced or strengthened, improvements are needed inside of the network to enhance security and network monitoring, and SCADA security management improvements and policies are needed. This paper discusses each of these challenges. This paper uses the Profibus protocol as an example to illustrate some of the vulnerabilities that arise within SCADA networks. The example Profibus security assessment establishes a network model and an attacker model before proceeding to a list of example attacks. (authors)« less

  17. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  18. Adaptive parallel logic networks

    NASA Technical Reports Server (NTRS)

    Martinez, Tony R.; Vidal, Jacques J.

    1988-01-01

    Adaptive, self-organizing concurrent systems (ASOCS) that combine self-organization with massive parallelism for such applications as adaptive logic devices, robotics, process control, and system malfunction management, are presently discussed. In ASOCS, an adaptive network composed of many simple computing elements operating in combinational and asynchronous fashion is used and problems are specified by presenting if-then rules to the system in the form of Boolean conjunctions. During data processing, which is a different operational phase from adaptation, the network acts as a parallel hardware circuit.

  19. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  20. Stability of Control Networks in Autonomous Homeostatic Regulation of Stem Cell Lineages.

    PubMed

    Komarova, Natalia L; van den Driessche, P

    2018-05-01

    Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.

  1. Evolutionary transitions in controls reconcile adaptation with continuity of evolution.

    PubMed

    Badyaev, Alexander V

    2018-05-19

    Evolution proceeds by accumulating functional solutions, necessarily forming an uninterrupted lineage from past solutions of ancestors to the current design of extant forms. At the population level, this process requires an organismal architecture in which the maintenance of local adaptation does not preclude the ability to innovate in the same traits and their continuous evolution. Representing complex traits as networks enables us to visualize a fundamental principle that resolves tension between adaptation and continuous evolution: phenotypic states encompassing adaptations traverse the continuous multi-layered landscape of past physical, developmental and functional associations among traits. The key concept that captures such traversing is network controllability - the ability to move a network from one state into another while maintaining its functionality (reflecting evolvability) and to efficiently propagate information or products through the network within a phenotypic state (maintaining its robustness). Here I suggest that transitions in network controllability - specifically in the topology of controls - help to explain how robustness and evolvability are balanced during evolution. I will focus on evolutionary transitions in degeneracy of metabolic networks - a ubiquitous property of phenotypic robustness where distinct pathways achieve the same end product - to suggest that associated changes in network controls is a common rule underlying phenomena as distinct as phenotypic plasticity, organismal accommodation of novelties, genetic assimilation, and macroevolutionary diversification. Capitalizing on well understood principles by which network structure translates into function of control nodes, I show that accumulating redundancy in one type of network controls inevitably leads to the emergence of another type of controls, forming evolutionary cycles of network controllability that, ultimately, reconcile local adaptation with continuity of evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Top-Down Network Effective Connectivity in Abstinent Substance Dependent Individuals

    PubMed Central

    Regner, Michael F.; Saenz, Naomi; Maharajh, Keeran; Yamamoto, Dorothy J.; Mohl, Brianne; Wylie, Korey; Tregellas, Jason; Tanabe, Jody

    2016-01-01

    Objective We hypothesized that compared to healthy controls, long-term abstinent substance dependent individuals (SDI) will differ in their effective connectivity between large-scale brain networks and demonstrate increased directional information from executive control to interoception-, reward-, and habit-related networks. In addition, using graph theory to compare network efficiencies we predicted decreased small-worldness in SDI compared to controls. Methods 50 SDI and 50 controls of similar sex and age completed psychological surveys and resting state fMRI. fMRI results were analyzed using group independent component analysis; 14 networks-of-interest (NOI) were selected using template matching to a canonical set of resting state networks. The number, direction, and strength of connections between NOI were analyzed with Granger Causality. Within-group thresholds were p<0.005 using a bootstrap permutation. Between group thresholds were p<0.05, FDR-corrected for multiple comparisons. NOI were correlated with behavioral measures, and group-level graph theory measures were compared. Results Compared to controls, SDI showed significantly greater Granger causal connectivity from right executive control network (RECN) to dorsal default mode network (dDMN) and from dDMN to basal ganglia network (BGN). RECN was negatively correlated with impulsivity, behavioral approach, and negative affect; dDMN was positively correlated with impulsivity. Among the 14 NOI, SDI showed greater bidirectional connectivity; controls showed more unidirectional connectivity. SDI demonstrated greater global efficiency and lower local efficiency. Conclusions Increased effective connectivity in long-term abstinent drug users may reflect improved cognitive control over habit and reward processes. Higher global and lower local efficiency across all networks in SDI compared to controls may reflect connectivity changes associated with drug dependence or remission and requires future, longitudinal studies to confirm. PMID:27776135

  3. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  4. Investigating the specific core genetic-and-epigenetic networks of cellular mechanisms involved in human aging in peripheral blood mononuclear cells

    PubMed Central

    Li, Cheng-Wei; Wang, Wen-Hsin; Chen, Bor-Sen

    2016-01-01

    Aging is an inevitable part of life for humans, and slowing down the aging process has become a main focus of human endeavor. Here, we applied a systems biology approach to construct protein-protein interaction networks, gene regulatory networks, and epigenetic networks, i.e. genetic and epigenetic networks (GENs), of elderly individuals and young controls. We then compared these GENs to extract aging mechanisms using microarray data in peripheral blood mononuclear cells, microRNA (miRNA) data, and database mining. The core GENs of elderly individuals and young controls were obtained by applying principal network projection to GENs based on Principal Component Analysis. By comparing the core networks, we identified that to overcome the accumulated mutation of genes in the aging process the transcription factor JUN can be activated by stress signals, including the MAPK signaling, T-cell receptor signaling, and neurotrophin signaling pathways through DNA methylation of BTG3, G0S2, and AP2B1 and the regulations of mir-223 let-7d, and mir-130a. We also address the aging mechanisms in old men and women. Furthermore, we proposed that drugs designed to target these DNA methylated genes or miRNAs may delay aging. A multiple drug combination comprising phenylalanine, cholesterol, and palbociclib was finally designed for delaying the aging process. PMID:26895224

  5. Complexity in relational processing predicts changes in functional brain network dynamics.

    PubMed

    Cocchi, Luca; Halford, Graeme S; Zalesky, Andrew; Harding, Ian H; Ramm, Brentyn J; Cutmore, Tim; Shum, David H K; Mattingley, Jason B

    2014-09-01

    The ability to link variables is critical to many high-order cognitive functions, including reasoning. It has been proposed that limits in relating variables depend critically on relational complexity, defined formally as the number of variables to be related in solving a problem. In humans, the prefrontal cortex is known to be important for reasoning, but recent studies have suggested that such processes are likely to involve widespread functional brain networks. To test this hypothesis, we used functional magnetic resonance imaging and a classic measure of deductive reasoning to examine changes in brain networks as a function of relational complexity. As expected, behavioral performance declined as the number of variables to be related increased. Likewise, increments in relational complexity were associated with proportional enhancements in brain activity and task-based connectivity within and between 2 cognitive control networks: A cingulo-opercular network for maintaining task set, and a fronto-parietal network for implementing trial-by-trial control. Changes in effective connectivity as a function of increased relational complexity suggested a key role for the left dorsolateral prefrontal cortex in integrating and implementing task set in a trial-by-trial manner. Our findings show that limits in relational processing are manifested in the brain as complexity-dependent modulations of large-scale networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  7. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder

    PubMed Central

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-01-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's ‘small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function. PMID:27356764

  8. Resting State Brain Network Disturbances Related to Hypomania and Depression in Medication-Free Bipolar Disorder.

    PubMed

    Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit

    2016-12-01

    Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.

  9. Network analysis reveals multiscale controls on streamwater chemistry

    Treesearch

    Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...

  10. The deep space network, volume 12

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Progress in the development of the DSN is reported along with TDA research and technology, network engineering, hardware, and software implementation. Included are descriptions of the DSN function and facilities, Helios mission support, Mariner Venus/Mercury 1973 mission support, Viking mission support, tracking and ground-based navigation, communications, network control and data processing, and deep space stations.

  11. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    PubMed Central

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  12. A field programmable gate array-based reconfigurable smart-sensor network for wireless monitoring of new generation computer numerically controlled machines.

    PubMed

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; Romero-Troncoso, Rene de Jesus

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node.

  13. Large-scale network dysfunction in Major Depressive Disorder: Meta-analysis of resting-state functional connectivity

    PubMed Central

    Kaiser, Roselinde H.; Andrews-Hanna, Jessica R.; Wager, Tor D.; Pizzagalli, Diego A.

    2015-01-01

    IMPORTANCE Major depressive disorder (MDD) has been linked to imbalanced communication among large-scale brain networks, as reflected by abnormal resting-state functional connectivity (rsFC). However, given variable methods and results across studies, identifying consistent patterns of network dysfunction in MDD has been elusive. OBJECTIVE To investigate network dysfunction in MDD through the first meta-analysis of rsFC studies. DATA SOURCES Seed-based voxel-wise rsFC studies comparing MDD with healthy individuals (published before June 30, 2014) were retrieved from electronic databases (PubMed, Web-of-Science, EMBASE), and authors contacted for additional data. STUDY SELECTION Twenty-seven datasets from 25 publications (556 MDD adults/teens; 518 controls) were included in the meta-analysis. DATA EXTRACTION AND SYNTHESIS Coordinates of seed regions-of-interest and between-group effects were extracted. Seeds were categorized into “seed-networks” by their location within a priori functional networks. Multilevel kernel density analysis of between-group effects identified brain systems in which MDD was associated with hyperconnectivity (increased positive, or reduced negative, connectivity) or hypoconnectivity (increased negative, or reduced positive, connectivity) with each seed-network. RESULTS MDD was characterized by hypoconnectivity within the frontoparietal network (FN), a set of regions involved in cognitive control of attention and emotion regulation, and hypoconnectivity between frontoparietal systems and parietal regions of the dorsal attention network (DAN) involved in attending to the external environment. MDD was also associated with hyperconnectivity within the default network (DN), a network believed to support internally-oriented and self-referential thought, and hyperconnectivity between FN control systems and regions of DN. Finally, MDD groups exhibited hypoconnectivity between neural systems involved in processing emotion or salience and midline cortical regions that may mediate top-down regulation of such functions. CONCLUSIONS AND RELEVANCE Reduced connectivity within frontoparietal control systems, and imbalanced connectivity between control systems and networks involved in internal- or external-attention, may reflect depressive biases towards internal thoughts at the cost of engaging with the external world. Meanwhile, altered connectivity between neural systems involved in cognitive control and those that support salience or emotion processing may relate to deficits regulating mood. These findings provide an empirical foundation for a neurocognitive model in which network dysfunction underlies core cognitive and affective abnormalities in depression. PMID:25785575

  14. Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network

    PubMed Central

    Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli

    2015-01-01

    Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649

  15. Design and implementation of a software package to control a network of robotic observatories

    NASA Astrophysics Data System (ADS)

    Tuparev, G.; Nicolova, I.; Zlatanov, B.; Mihova, D.; Popova, I.; Hessman, F. V.

    2006-09-01

    We present a description of a reusable software package able to control a large, heterogeneous network of fully and semi-robotic observatories initially developed to run the MONET network of two 1.2 m telescopes. Special attention is given to the design of a robust, long-term observation scheduler which also allows the trading of observation time and facilities within various networks. The handling of the ``Phase I&II" project-development process, the time-accounting between complex organizational structures, and usability issues for making the package accessible not only to professional astronomers, but also to amateurs and high-school students is discussed. A simple RTML-based solution to link multiple networks is demonstrated.

  16. [Assessment of laboratory diagnostic network in the implementation of the Program for Viral Hepatitis Prevention and Control in São Paulo State, Brazil, 1997-2012].

    PubMed

    Marques, Cristiano Corrêa de Azevedo; Carvalheiro, José da Rocha

    2017-01-01

    to assess the performance of the diagnostic network in the implementation process of the Program for Viral Hepatitis Prevention and Control in São Paulo State, Brazil, from 1997 to 2012. evaluation study based on documentary research and structured interviews, combined with a historical series analysis of indicators developed to assess the implementation process of the program, using data from the Department of the Brazilian National Health System. from 1997 to 2012, the serology, biopsy and molecular biology diagnostic networks showed an increase in the coefficients of coverage of 7.4, 7.3, and 62.0 times, respectively, with an increase in cases detection and treatment access. despite the effective implementation of the diagnostic network, there is a need to review the search strategy for new cases, and access to liver biopsy, still insufficient to the program demand.

  17. Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture.

    PubMed

    Suzuki, Ikurou; Sugio, Yoshihiro; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Yasuda, Kenji

    2004-07-01

    Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.

  18. Limited ability driven phase transitions in the coevolution process in Axelrod's model

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Han, Yuexing; Chen, Luonan; Aihara, Kazuyuki

    2009-04-01

    We study the coevolution process in Axelrod's model by taking into account of agents' abilities to access information, which is described by a parameter α to control the geographical range of communication. We observe two kinds of phase transitions in both cultural domains and network fragments, which depend on the parameter α. By simulation, we find that not all rewiring processes pervade the dissemination of culture, that is, a very limited ability to access information constrains the cultural dissemination, while an exceptional ability to access information aids the dissemination of culture. Furthermore, by analyzing the network characteristics at the frozen states, we find that there exists a stage at which the network develops to be a small-world network with community structures.

  19. Non-Markovian quantum feedback networks II: Controlled flows

    NASA Astrophysics Data System (ADS)

    Gough, John E.

    2017-06-01

    The concept of a controlled flow of a dynamical system, especially when the controlling process feeds information back about the system, is of central importance in control engineering. In this paper, we build on the ideas presented by Bouten and van Handel [Quantum Stochastics and Information: Statistics, Filtering and Control (World Scientific, 2008)] and develop a general theory of quantum feedback. We elucidate the relationship between the controlling processes, Z, and the measured processes, Y, and to this end we make a distinction between what we call the input picture and the output picture. We should note that the input-output relations for the noise fields have additional terms not present in the standard theory but that the relationship between the control processes and measured processes themselves is internally consistent—we do this for the two main cases of quadrature measurement and photon-counting measurement. The theory is general enough to include a modulating filter which post-processes the measurement readout Y before returning to the system. This opens up the prospect of applying very general engineering feedback control techniques to open quantum systems in a systematic manner, and we consider a number of specific modulating filter problems. Finally, we give a brief argument as to why most of the rules for making instantaneous feedback connections [J. Gough and M. R. James, Commun. Math. Phys. 287, 1109 (2009)] ought to apply for controlled dynamical networks as well.

  20. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  1. Controllable Hysteresis and Threshold Voltage of Single-Walled Carbon Nano-tube Transistors with Ferroelectric Polymer Top-Gate Insulators

    PubMed Central

    Sun, Yi-Lin; Xie, Dan; Xu, Jian-Long; Zhang, Cheng; Dai, Rui-Xuan; Li, Xian; Meng, Xiang-Jian; Zhu, Hong-Wei

    2016-01-01

    Double-gated field effect transistors have been fabricated using the SWCNT networks as channel layer and the organic ferroelectric P(VDF-TrFE) film spin-coated as top gate insulators. Standard photolithography process has been adopted to achieve the patterning of organic P(VDF-TrFE) films and top-gate electrodes, which is compatible with conventional CMOS process technology. An effective way for modulating the threshold voltage in the channel of P(VDF-TrFE) top-gate transistors under polarization has been reported. The introduction of functional P(VDF-TrFE) gate dielectric also provides us an alternative method to suppress the initial hysteresis of SWCNT networks and obtain a controllable ferroelectric hysteresis behavior. Applied bottom gate voltage has been found to be another effective way to highly control the threshold voltage of the networked SWCNTs based FETs by electrostatic doping effect. PMID:26980284

  2. Competing Contact Processes on Homogeneous Networks with Tunable Clusterization

    NASA Astrophysics Data System (ADS)

    Rybak, Marcin; Kułakowski, Krzysztof

    2013-03-01

    We investigate two homogeneous networks: the Watts-Strogatz network with mean degree ⟨k⟩ = 4 and the Erdös-Rényi network with ⟨k⟩ = 10. In both kinds of networks, the clustering coefficient C is a tunable control parameter. The network is an area of two competing contact processes, where nodes can be in two states, S or D. A node S becomes D with probability 1 if at least two its mutually linked neighbors are D. A node D becomes S with a given probability p if at least one of its neighbors is S. The competition between the processes is described by a phase diagram, where the critical probability pc depends on the clustering coefficient C. For p > pc the rate of state S increases in time, seemingly to dominate in the whole system. Below pc, the majority of nodes is in the D-state. The numerical results indicate that for the Watts-Strogatz network the D-process is activated at the finite value of the clustering coefficient C, close to 0.3. On the contrary, for the Erdös-Rényi network the transition is observed at the whole investigated range of C.

  3. Genetic effect of interleukin-1 beta (C-511T) polymorphism on the structural covariance network and white matter integrity in Alzheimer's disease.

    PubMed

    Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih

    2017-01-18

    Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.

  4. Childhood maltreatment is associated with a sex-dependent functional reorganization of a brain inhibitory control network.

    PubMed

    Elton, Amanda; Tripathi, Shanti P; Mletzko, Tanja; Young, Jonathan; Cisler, Josh M; James, G Andrew; Kilts, Clinton D

    2014-04-01

    Childhood adversity represents a major risk factor for drug addiction and other mental disorders. However, the specific mechanisms by which childhood adversity impacts human brain organization to confer greater vulnerability for negative outcomes in adulthood is largely unknown. As an impaired process in drug addiction, inhibitory control of behavior was investigated as a target of childhood maltreatment (abuse and neglect). Forty adults without Axis-I psychiatric disorders (21 females) completed a Childhood Trauma Questionnaire (CTQ) and underwent functional MRI (fMRI) while performing a stop-signal task. A group independent component analysis identified a putative brain inhibitory control network. Graph theoretical analyses and structural equation modeling investigated the impact of childhood maltreatment on the functional organization of this neural processing network. Graph theory outcomes revealed sex differences in the relationship between network functional connectivity and inhibitory control which were dependent on the severity of childhood maltreatment exposure. A network effective connectivity analysis indicated that a maltreatment dose-related negative modulation of dorsal anterior cingulate (dACC) activity by the left inferior frontal cortex (IFC) predicted better response inhibition and lesser attention deficit hyperactivity disorder (ADHD) symptoms in females, but poorer response inhibition and greater ADHD symptoms in males. Less inhibition of the right IFC by dACC in males with higher CTQ scores improved inhibitory control ability. The childhood maltreatment-related reorganization of a brain inhibitory control network provides sex-dependent mechanisms by which childhood adversity may confer greater risk for drug use and related disorders and by which adaptive brain responses protect individuals from this risk factor. Copyright © 2013 Wiley Periodicals, Inc.

  5. Verification and Validation of Adaptive and Intelligent Systems with Flight Test Results

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Larson, Richard R.

    2009-01-01

    F-15 IFCS project goals are: a) Demonstrate Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions [A] & [B] failures. b) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs with a Pilot in the Loop. Gen II objectives include; a) Implement and Fly a Direct Adaptive Neural Network Based Flight Controller; b) Demonstrate the Ability of the System to Adapt to Simulated System Failures: 1) Suppress Transients Associated with Failure; 2) Re-Establish Sufficient Control and Handling of Vehicle for Safe Recovery. c) Provide Flight Experience for Development of Verification and Validation Processes for Flight Critical Neural Network Software.

  6. Development of cognitive and affective control networks and decision making.

    PubMed

    Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi

    2013-01-01

    Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects of cognitive control and decision making from a developmental perspective. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Onboard connectivity network for command-and-control aircraft

    NASA Astrophysics Data System (ADS)

    Artz, Timothy J.

    1993-02-01

    Command and control (C2) aircraft are host to an array of communications, information processing, and electronic control systems. The previous method of interconnecting this equipment involves point-to-point wiring harnesses between devices. A fiber optic broadband bus can be used to improve this situation by consolidating equipment connections on a shared medium. This network, known as the Onboard Connectivity Network (OCN), is being prototypes for application on the U.S. Government's Special Air Mission aircraft. Significant weight reduction and simplified future systems integration are the primary benefits of the OCN. The OCN design integrates voice, data, control, and video communications on a 3GHZ single mode fiber backbone. Communications within the aircraft use 500 MHz coaxial cable subnetworks connected to the backbone. The entire network is a dual redundant system for enhanced reliability. Node topologies are based on VMEbus to encourage use of commercial products and facilitate future evolution of the backbone topology. Network encryption technologies are being developed for OCN communications security. Automated workstations will be implemented to control and switch communications assets and to provide a technical control, test, and monitoring function.

  8. Control chart pattern recognition using RBF neural network with new training algorithm and practical features.

    PubMed

    Addeh, Abdoljalil; Khormali, Aminollah; Golilarz, Noorbakhsh Amiri

    2018-05-04

    The control chart patterns are the most commonly used statistical process control (SPC) tools to monitor process changes. When a control chart produces an out-of-control signal, this means that the process has been changed. In this study, a new method based on optimized radial basis function neural network (RBFNN) is proposed for control chart patterns (CCPs) recognition. The proposed method consists of four main modules: feature extraction, feature selection, classification and learning algorithm. In the feature extraction module, shape and statistical features are used. Recently, various shape and statistical features have been presented for the CCPs recognition. In the feature selection module, the association rules (AR) method has been employed to select the best set of the shape and statistical features. In the classifier section, RBFNN is used and finally, in RBFNN, learning algorithm has a high impact on the network performance. Therefore, a new learning algorithm based on the bees algorithm has been used in the learning module. Most studies have considered only six patterns: Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift and Downward Shift. Since three patterns namely Normal, Stratification, and Systematic are very similar to each other and distinguishing them is very difficult, in most studies Stratification and Systematic have not been considered. Regarding to the continuous monitoring and control over the production process and the exact type detection of the problem encountered during the production process, eight patterns have been investigated in this study. The proposed method is tested on a dataset containing 1600 samples (200 samples from each pattern) and the results showed that the proposed method has a very good performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Three Eras in Global Tobacco Control: How Global Governance Processes Influenced Online Tobacco Control Networking.

    PubMed

    Wipfli, Heather; Chu, Kar-Hai; Lancaster, Molly; Valente, Thomas

    2016-01-01

    Online networks can serve as a platform to diffuse policy innovations and enhance global health governance. This study focuses on how shifts in global health governance may influence related online networks. We compare social network metrics (average degree centrality [AVGD], density [D] and clustering coefficient [CC]) of Globalink, an online network of tobacco control advocates, across three eras in global tobacco control governance; pre-Framework Convention on Tobacco Control (FCTC) policy transfer (1992-1998), global regime formation through the FCTC negotiations (1999-2005), and philanthropic funding through the Bloomberg Initiative (2006-2012). Prior to 1999, Globalink was driven by a handful of high-income countries (AVGD=1.908 D=0.030, CC=0.215). The FCTC negotiations (1999-2005) corresponded with a rapid uptick in the number of countries represented within Globalink and new members were most often brought into the network through relationships with regional neighbors (AVGD=2.824, D=0.021, CC=0.253). Between 2006 and 2012, the centrality of the US in the network increases significantly (AVGD=3.414, D=0.023, CC=0.310). The findings suggest that global institutionalization through WHO, as with the FCTC, can lead to the rapid growth of decentralized online networks. Alternatively, private initiatives, such as the Bloomberg Initiative, can lead to clustering in which a single source of information gains increasing influence over an online network.

  10. A Distributed Data Acquisition System for the Sensor Network of the TAWARA_RTM Project

    NASA Astrophysics Data System (ADS)

    Fontana, Cristiano Lino; Donati, Massimiliano; Cester, Davide; Fanucci, Luca; Iovene, Alessandro; Swiderski, Lukasz; Moretto, Sandra; Moszynski, Marek; Olejnik, Anna; Ruiu, Alessio; Stevanato, Luca; Batsch, Tadeusz; Tintori, Carlo; Lunardon, Marcello

    This paper describes a distributed Data Acquisition System (DAQ) developed for the TAWARA_RTM project (TAp WAter RAdioactivity Real Time Monitor). The aim is detecting the presence of radioactive contaminants in drinking water; in order to prevent deliberate or accidental threats. Employing a set of detectors, it is possible to detect alpha, beta and gamma radiations, from emitters dissolved in water. The Sensor Network (SN) consists of several heterogeneous nodes controlled by a centralized server. The SN cyber-security is guaranteed in order to protect it from external intrusions and malicious acts. The nodes were installed in different locations, along the water treatment processes, in the waterworks plant supplying the aqueduct of Warsaw, Poland. Embedded computers control the simpler nodes, and are directly connected to the SN. Local-PCs (LPCs) control the more complex nodes that consist signal digitizers acquiring data from several detectors. The DAQ in the LPC is split in several processes communicating with sockets in a local sub-network. Each process is dedicated to a very simple task (e.g. data acquisition, data analysis, hydraulics management) in order to have a flexible and fault-tolerant system. The main SN and the local DAQ networks are separated by data routers to ensure the cyber-security.

  11. PSF estimation for defocus blurred image based on quantum back-propagation neural network

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Zhang, Yan; Shao, Xiao-guang; Liu, Ying-hui; Ni, Guoqiang

    2010-11-01

    Images obtained by an aberration-free system are defocused blur due to motion in depth and/or zooming. The precondition of restoring the degraded image is to estimate point spread function (PSF) of the imaging system as precisely as possible. But it is difficult to identify the analytic model of PSF precisely due to the complexity of the degradation process. Inspired by the similarity between the quantum process and imaging process in the probability and statistics fields, one reformed multilayer quantum neural network (QNN) is proposed to estimate PSF of the defocus blurred image. Different from the conventional artificial neural network (ANN), an improved quantum neuron model is used in the hidden layer instead, which introduces a 2-bit controlled NOT quantum gate to control output and adopts 2 texture and edge features as the input vectors. The supervised back-propagation learning rule is adopted to train network based on training sets from the historical images. Test results show that this method owns excellent features of high precision and strong generalization ability.

  12. Neural basis of bilingual language control.

    PubMed

    Calabria, Marco; Costa, Albert; Green, David W; Abutalebi, Jubin

    2018-06-19

    Acquiring and speaking a second language increases demand on the processes of language control for bilingual as compared to monolingual speakers. Language control for bilingual speakers involves the ability to keep the two languages separated to avoid interference and to select one language or the other in a given conversational context. This ability is what we refer with the term "bilingual language control" (BLC). It is now well established that the architecture of this complex system of language control encompasses brain networks involving cortical and subcortical structures, each responsible for different cognitive processes such as goal maintenance, conflict monitoring, interference suppression, and selective response inhibition. Furthermore, advances have been made in determining the overlap between the BLC and the nonlinguistic executive control networks, under the hypothesis that the BLC processes are just an instantiation of a more domain-general control system. Here, we review the current knowledge about the neural basis of these control systems. Results from brain imaging studies of healthy adults and on the performance of bilingual individuals with brain damage are discussed. © 2018 New York Academy of Sciences.

  13. Autonomous control of production networks using a pheromone approach

    NASA Astrophysics Data System (ADS)

    Armbruster, D.; de Beer, C.; Freitag, M.; Jagalski, T.; Ringhofer, C.

    2006-04-01

    The flow of parts through a production network is usually pre-planned by a central control system. Such central control fails in presence of highly fluctuating demand and/or unforeseen disturbances. To manage such dynamic networks according to low work-in-progress and short throughput times, an autonomous control approach is proposed. Autonomous control means a decentralized routing of the autonomous parts themselves. The parts’ decisions base on backward propagated information about the throughput times of finished parts for different routes. So, routes with shorter throughput times attract parts to use this route again. This process can be compared to ants leaving pheromones on their way to communicate with following ants. The paper focuses on a mathematical description of such autonomously controlled production networks. A fluid model with limited service rates in a general network topology is derived and compared to a discrete-event simulation model. Whereas the discrete-event simulation of production networks is straightforward, the formulation of the addressed scenario in terms of a fluid model is challenging. Here it is shown, how several problems in a fluid model formulation (e.g. discontinuities) can be handled mathematically. Finally, some simulation results for the pheromone-based control with both the discrete-event simulation model and the fluid model are presented for a time-dependent influx.

  14. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  15. Frequency-specific alterations in functional connectivity in treatment-resistant and -sensitive major depressive disorder.

    PubMed

    He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu

    2016-11-01

    Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Active control of complex, multicomponent self-assembly processes

    NASA Astrophysics Data System (ADS)

    Schulman, Rebecca

    The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.

  17. Feedback control system based on a remote operated PID controller implemented using mbed NXP LPC1768 development board

    NASA Astrophysics Data System (ADS)

    Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae

    2015-11-01

    Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.

  18. Attention and Cognitive Control Networks Assessed in a Dichotic Listening fMRI Study

    ERIC Educational Resources Information Center

    Falkenberg, Liv E.; Specht, Karsten; Westerhausen, Rene

    2011-01-01

    A meaningful interaction with our environment relies on the ability to focus on relevant sensory input and to ignore irrelevant information, i.e. top-down control and attention processes are employed to select from competing stimuli following internal goals. In this, the demands for the recruitment of top-down control processes depend on the…

  19. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder

    PubMed Central

    Dima, D; Roberts, R E; Frangou, S

    2016-01-01

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical—primarily emotional processing regions—and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies. PMID:26731443

  20. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.

    PubMed

    Dima, D; Roberts, R E; Frangou, S

    2016-01-05

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical-primarily emotional processing regions-and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies.

  1. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, Chi Yung

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  2. Closed loop adaptive control of spectrum-producing step using neural networks

    DOEpatents

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  3. PILOT: An intelligent distributed operations support system

    NASA Technical Reports Server (NTRS)

    Rasmussen, Arthur N.

    1993-01-01

    The Real-Time Data System (RTDS) project is exploring the application of advanced technologies to the real-time flight operations environment of the Mission Control Centers at NASA's Johnson Space Center. The system, based on a network of engineering workstations, provides services such as delivery of real time telemetry data to flight control applications. To automate the operation of this complex distributed environment, a facility called PILOT (Process Integrity Level and Operation Tracker) is being developed. PILOT comprises a set of distributed agents cooperating with a rule-based expert system; together they monitor process operation and data flows throughout the RTDS network. The goal of PILOT is to provide unattended management and automated operation under user control.

  4. Comparative analyses of different variants of standard ground for automatic control systems of technical processes of oil and gas production

    NASA Astrophysics Data System (ADS)

    Gromakov, E. I.; Gazizov, A. T.; Lukin, V. P.; Chimrov, A. V.

    2017-01-01

    The paper analyses efficiency (interference resistance) of standard TT, TN, IT networks in control links of automatic control systems (ACS) of technical processes (TP) of oil and gas production. Electromagnetic compatibility (EMC) is a standard term used to describe the interference in grounding circuits. Improved EMC of ACS TP can significantly reduce risks and costs of malfunction of equipment that could have serious consequences. It has been proved that an IT network is the best type of grounds for protection of ACS TP in real life conditions. It allows reducing the interference down to the level that is stated in standards of oil and gas companies.

  5. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  6. Artificial neural networks and approximate reasoning for intelligent control in space

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    A method is introduced for learning to refine the control rules of approximate reasoning-based controllers. A reinforcement-learning technique is used in conjunction with a multi-layer neural network model of an approximate reasoning-based controller. The model learns by updating its prediction of the physical system's behavior. The model can use the control knowledge of an experienced operator and fine-tune it through the process of learning. Some of the space domains suitable for applications of the model such as rendezvous and docking, camera tracking, and tethered systems control are discussed.

  7. Effects of pre-cooked cheeses of different emulsifying conditions on mechanical properties and microstructure of processed cheese.

    PubMed

    Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi

    2018-04-15

    The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. CÆLIS: software for assimilation, management and processing data of an atmospheric measurement network

    NASA Astrophysics Data System (ADS)

    Fuertes, David; Toledano, Carlos; González, Ramiro; Berjón, Alberto; Torres, Benjamín; Cachorro, Victoria E.; de Frutos, Ángel M.

    2018-02-01

    Given the importance of the atmospheric aerosol, the number of instruments and measurement networks which focus on its characterization are growing. Many challenges are derived from standardization of protocols, monitoring of the instrument status to evaluate the network data quality and manipulation and distribution of large volume of data (raw and processed). CÆLIS is a software system which aims at simplifying the management of a network, providing tools by monitoring the instruments, processing the data in real time and offering the scientific community a new tool to work with the data. Since 2008 CÆLIS has been successfully applied to the photometer calibration facility managed by the University of Valladolid, Spain, in the framework of Aerosol Robotic Network (AERONET). Thanks to the use of advanced tools, this facility has been able to analyze a growing number of stations and data in real time, which greatly benefits the network management and data quality control. The present work describes the system architecture of CÆLIS and some examples of applications and data processing.

  9. Synchronization transmission of laser pattern signal within uncertain switched network

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Li, Chengren; Li, Gang; Sun, Ao; Yan, Zhe; Rong, Tingting; Gao, Yan

    2017-06-01

    We propose a new technology for synchronization transmission of laser pattern signal within uncertain network with controllable topology. In synchronization process, the connection of dynamic network can vary at all time according to different demands. Especially, we construct the Lyapunov function of network through designing a special semi-positive definite function, and the synchronization transmission of laser pattern signal within uncertain network with controllable topology can be realized perfectly, which effectively avoids the complicated calculation for solving the second largest eignvalue of the coupling matrix of the dynamic network in order to obtain the network synchronization condition. At the same time, the uncertain parameters in dynamic equations belonging to network nodes can also be identified accurately via designing the identification laws of uncertain parameters. In addition, there are not any limitations for the synchronization target of network in the new technology, in other words, the target can either be a state variable signal of an arbitrary node within the network or an exterior signal.

  10. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  11. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    NASA Technical Reports Server (NTRS)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  12. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    NASA Astrophysics Data System (ADS)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  13. Space Communications Technology Conference: Onboard Processing and Switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers and presentations from the conference are presented. The topics covered include the following: satellite network architecture, network control and protocols, fault tolerance and autonomy, multichanned demultiplexing and demodulation, information switching and routing, modulation and coding, and planned satellite communications systems.

  14. Renormalization group theory for percolation in time-varying networks.

    PubMed

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  15. Effect of memory in non-Markovian Boolean networks illustrated with a case study: A cell cycling process

    NASA Astrophysics Data System (ADS)

    Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.

    2016-11-01

    The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.

  16. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    PubMed

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that the mediodorsal and ventrolateral thalamus may be candidate targets for modulating abnormal network behavior underlying LGS, potentially via emerging thalamic neurostimulation therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  17. Robot welding process control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1991-01-01

    This final report documents the development and installation of software and hardware for Robotic Welding Process Control. Primary emphasis is on serial communications between the CYRO 750 robotic welder, Heurikon minicomputer running Hunter & Ready VRTX, and an IBM PC/AT, for offline programming and control and closed-loop welding control. The requirements for completion of the implementation of the Rocketdyne weld tracking control are discussed. The procedure for downloading programs from the Intergraph, over the network, is discussed. Conclusions are made on the results of this task, and recommendations are made for efficient implementation of communications, weld process control development, and advanced process control procedures using the Heurikon.

  18. Epidemic spread on interconnected metapopulation networks

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2014-09-01

    Numerous real-world networks have been observed to interact with each other, resulting in interconnected networks that exhibit diverse, nontrivial behavior with dynamical processes. Here we investigate epidemic spreading on interconnected networks at the level of metapopulation. Through a mean-field approximation for a metapopulation model, we find that both the interaction network topology and the mobility probabilities between subnetworks jointly influence the epidemic spread. Depending on the interaction between subnetworks, proper controls of mobility can efficiently mitigate epidemics, whereas an extremely biased mobility to one subnetwork will typically cause a severe outbreak and promote the epidemic spreading. Our analysis provides a basic framework for better understanding of epidemic behavior in related transportation systems as well as for better control of epidemics by guiding human mobility patterns.

  19. Router Agent Technology for Policy-Based Network Management

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  20. Neurocomputing

    NASA Technical Reports Server (NTRS)

    Hecht-Nielsen, Robert

    1990-01-01

    The present work is intended to give technologists, research scientists, and mathematicians a graduate-level overview of the field of neurocomputing. After exploring the relationship of this field to general neuroscience, attention is given to neural network building blocks, the self-adaptation equations of learning laws, the data-transformation structures of associative networks, and the multilayer data-transformation structures of mapping networks. Also treated are the neurocomputing frontiers of spatiotemporal, stochastic, and hierarchical networks, 'neurosoftware', the creation of neural network-based computers, and neurocomputing applications in sensor processing, control, and data analysis.

  1. The Life-Changing Magic of Nonlinearity in Network Control

    NASA Astrophysics Data System (ADS)

    Cornelius, Sean

    The proper functioning and reliability of many man-made and natural systems is fundamentally tied to our ability to control them. Indeed, applications as diverse as ecosystem management, emergency response and cell reprogramming all, at their heart, require us to drive a system to--or keep it in--a desired state. This process is complicated by the nonlinear dynamics inherent to most real systems, which has traditionally been viewed as the principle obstacle to their control. In this talk, I will discuss two ways in which nonlinearity turns this view on its head, in fact representing an asset to the control of complex systems. First, I will show how nonlinearity in the form of multistability allows one to systematically design control interventions that can deliberately induce ``reverse cascading failures'', in which a network spontaneously evolves to a desirable (rather than a failed) state. Second, I will show that nonlinearity in the form of time-varying dynamics unexpectedly makes temporal networks easier to control than their static counterparts, with the former enjoying dramatic and simultaneous reductions in all costs of control. This is true despite the fact that temporality tends to fragment a network's structure, disrupting the paths that allow the directly-controlled or ``driver'' nodes to communicate with the rest of the network. Taken together, these studies shed new light on the crucial role of nonlinearity in network control, and provide support to the idea we can control nonlinearity, rather than letting nonlinearity control us.

  2. Public authority control strategy for opinion evolution in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  3. Public authority control strategy for opinion evolution in social networks.

    PubMed

    Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei

    2016-08-01

    This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.

  4. Multiple-predators-based capture process on complex networks

    NASA Astrophysics Data System (ADS)

    Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi

    2017-03-01

    The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.

  5. Two Phase Admission Control for QoS Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Sheng; Su, Yi-Wen; Liu, Wen-Hsiung; Chi, Ching-Lung

    In this paper a novel and effective two phase admission control (TPAC) for QoS mobile ad hoc networks is proposed that satisfies the real-time traffic requirements in mobile ad hoc networks. With a limited amount of extra overhead, TPAC can avoid network congestions by a simple and precise admission control which blocks most of the overloading flow-requests in the route discovery process. When compared with previous QoS routing schemes such as QoS-aware routing protocol and CACP protocols, it is shown from system simulations that the proposed scheme can increase the system throughput and reduce both the dropping rate and the end-to-end delay. Therefore, TPAC is surely an effective QoS-guarantee protocol to provide for real-time traffic.

  6. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  7. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning.

    PubMed

    Zhang, L; Gan, J Q; Wang, H

    2015-03-19

    Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  9. Modulations of the executive control network by stimulus onset asynchrony in a Stroop task

    PubMed Central

    2013-01-01

    Background Manipulating task difficulty is a useful way of elucidating the functional recruitment of the brain’s executive control network. In a Stroop task, pre-exposing the irrelevant word using varying stimulus onset asynchronies (‘negative’ SOAs) modulates the amount of behavioural interference and facilitation, suggesting disparate mechanisms of cognitive processing in each SOA. The current study employed a Stroop task with three SOAs (−400, -200, 0 ms), using functional magnetic resonance imaging to investigate for the first time the neural effects of SOA manipulation. Of specific interest were 1) how SOA affects the neural representation of interference and facilitation; 2) response priming effects in negative SOAs; and 3) attentional effects of blocked SOA presentation. Results The results revealed three regions of the executive control network that were sensitive to SOA during Stroop interference; the 0 ms SOA elicited the greatest activation of these areas but experienced relatively smaller behavioural interference, suggesting that the enhanced recruitment led to more efficient conflict processing. Response priming effects were localized to the right inferior frontal gyrus, which is consistent with the idea that this region performed response inhibition in incongruent conditions to overcome the incorrectly-primed response, as well as more general action updating and response preparation. Finally, the right superior parietal lobe was sensitive to blocked SOA presentation and was most active for the 0 ms SOA, suggesting that this region is involved in attentional control. Conclusions SOA exerted both trial-specific and block-wide effects on executive processing, providing a unique paradigm for functional investigations of the cognitive control network. PMID:23902451

  10. Probing into the effectiveness of self-isolation policies in epidemic control

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno; Duarte Queirós, Sílvio M.

    2012-06-01

    In this work, we inspect the reliability of controlling and quelling an epidemic disease mimicked by a susceptible-infected-susceptible (SIS) model defined on a complex network by means of current and implementable quarantine and isolation policies. Specifically, we consider that each individual in the network is originally linked to individuals of two types: members of the same household and acquaintances. The topology of this network evolves, taking into account a probability q that aims at representing the quarantine or isolation process in which the connection with acquaintances is severed according to standard policies of control of epidemics. Within current policies of self-isolation and standard infection rates, our results show that the propagation is either only controllable for hypothetical rates of compliance or not controllable at all.

  11. A Taxonomy of Attacks on the DNP3 Protocol

    NASA Astrophysics Data System (ADS)

    East, Samuel; Butts, Jonathan; Papa, Mauricio; Shenoi, Sujeet

    Distributed Network Protocol (DNP3) is the predominant SCADA protocol in the energy sector - more than 75% of North American electric utilities currently use DNP3 for industrial control applications. This paper presents a taxonomy of attacks on the protocol. The attacks are classified based on targets (control center, outstation devices and network/communication paths) and threat categories (interception, interruption, modification and fabrication). To facilitate risk analysis and mitigation strategies, the attacks are associated with the specific DNP3 protocol layers they exploit. Also, the operational impact of the attacks is categorized in terms of three key SCADA objectives: process confi- dentiality, process awareness and process control. The attack taxonomy clarifies the nature and scope of the threats to DNP3 systems, and can provide insights into the relative costs and benefits of implementing mitigation strategies.

  12. Anoxic control of odour and corrosion from sewer networks.

    PubMed

    Yang, W; Vollertsen, J; Hvitved-Jacobsen, T

    2004-01-01

    Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)(-1), accounted for less than 40% of the corresponding aerobic values.

  13. INcreasing Security and Protection through Infrastructure REsilience: The INSPIRE Project

    NASA Astrophysics Data System (ADS)

    D'Antonio, Salvatore; Romano, Luigi; Khelil, Abdelmajid; Suri, Neeraj

    The INSPIRE project aims at enhancing the European potential in the field of security by ensuring the protection of critical information infrastructures through (a) the identification of their vulnerabilities and (b) the development of innovative techniques for securing networked process control systems. To increase the resilience of such systems INSPIRE will develop traffic engineering algorithms, diagnostic processes and self-reconfigurable architectures along with recovery techniques. Hence, the core idea of the INSPIRE project is to protect critical information infrastructures by appropriately configuring, managing, and securing the communication network which interconnects the distributed control systems. A working prototype will be implemented as a final demonstrator of selected scenarios. Controls/Communication Experts will support project partners in the validation and demonstration activities. INSPIRE will also contribute to standardization process in order to foster multi-operator interoperability and coordinated strategies for securing lifeline systems.

  14. A model system for targeted drug release triggered by biomolecular signals logically processed through enzyme logic networks.

    PubMed

    Mailloux, Shay; Halámek, Jan; Katz, Evgeny

    2014-03-07

    A new Sense-and-Act system was realized by the integration of a biocomputing system, performing analytical processes, with a signal-responsive electrode. A drug-mimicking release process was triggered by biomolecular signals processed by different logic networks, including three concatenated AND logic gates or a 3-input OR logic gate. Biocatalytically produced NADH, controlled by various combinations of input signals, was used to activate the electrochemical system. A biocatalytic electrode associated with signal-processing "biocomputing" systems was electrically connected to another electrode coated with a polymer film, which was dissolved upon the formation of negative potential releasing entrapped drug-mimicking species, an enzyme-antibody conjugate, operating as a model for targeted immune-delivery and consequent "prodrug" activation. The system offers great versatility for future applications in controlled drug release and personalized medicine.

  15. Locating the source of spreading in temporal networks

    NASA Astrophysics Data System (ADS)

    Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Yi, Dongyun

    2017-02-01

    The topological structure of many real networks changes with time. Thus, locating the sources of a temporal network is a creative and challenging problem, as the enormous size of many real networks makes it unfeasible to observe the state of all nodes. In this paper, we propose an algorithm to solve this problem, named the backward temporal diffusion process. The proposed algorithm calculates the shortest temporal distance to locate the transmission source. We assume that the spreading process can be modeled as a simple diffusion process and by consensus dynamics. To improve the location accuracy, we also adopt four strategies to select which nodes should be observed by ranking their importance in the temporal network. Our paper proposes a highly accurate method for locating the source in temporal networks and is, to the best of our knowledge, a frontier work in this field. Moreover, our framework has important significance for controlling the transmission of diseases or rumors and formulating immediate immunization strategies.

  16. Neuroimaging Impaired Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review.

    PubMed

    Zilverstand, Anna; Huang, Anna S; Alia-Klein, Nelly; Goldstein, Rita Z

    2018-06-06

    The impaired response inhibition and salience attribution (iRISA) model proposes that impaired response inhibition and salience attribution underlie drug seeking and taking. To update this model, we systematically reviewed 105 task-related neuroimaging studies (n > 15/group) published since 2010. Results demonstrate specific impairments within six large-scale brain networks (reward, habit, salience, executive, memory, and self-directed networks) during drug cue exposure, decision making, inhibitory control, and social-emotional processing. Addicted individuals demonstrated increased recruitment of these networks during drug-related processing but a blunted response during non-drug-related processing, with the same networks also being implicated during resting state. Associations with real-life drug use, relapse, therapeutic interventions, and the relevance to initiation of drug use during adolescence support the clinical relevance of the results. Whereas the salience and executive networks showed impairments throughout the addiction cycle, the reward network was dysregulated at later stages of abuse. Effects were similar in alcohol, cannabis, and stimulant addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Model of epidemic control based on quarantine and message delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Tianfang; Qin, Xiaomeng

    2016-09-01

    The model provides two novel strategies for the preventive control of epidemic diseases. One approach is related to the different isolating rates in latent period and invasion period. Experiments show that the increasing of isolating rates in invasion period, as long as over 0.5, contributes little to the preventing of epidemic; the improvement of isolation rate in latent period is key to control the disease spreading. Another is a specific mechanism of message delivering and forwarding. Information quality and information accumulating process are also considered there. Macroscopically, diseases are easy to control as long as the immune messages reach a certain quality. Individually, the accumulating messages bring people with certain immunity to the disease. Also, the model is performed on the classic complex networks like scale-free network and small-world network, and location-based social networks. Results show that the proposed measures demonstrate superior performance and significantly reduce the negative impact of epidemic disease.

  18. On the use of multi-agent systems for the monitoring of industrial systems

    NASA Astrophysics Data System (ADS)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  19. The relationship between context, structure, and processes with outcomes of 6 regional diabetes networks in Europe.

    PubMed

    Mahdavi, Mahdi; Vissers, Jan; Elkhuizen, Sylvia; van Dijk, Mattees; Vanhala, Antero; Karampli, Eleftheria; Faubel, Raquel; Forte, Paul; Coroian, Elena; van de Klundert, Joris

    2018-01-01

    While health service provisioning for the chronic condition Type 2 Diabetes (T2D) often involves a network of organisations and professionals, most evidence on the relationships between the structures and processes of service provisioning and the outcomes considers single organisations or solo practitioners. Extending Donabedian's Structure-Process-Outcome (SPO) model, we investigate how differences in quality of life, effective coverage of diabetes, and service satisfaction are associated with differences in the structures, processes, and context of T2D services in six regions in Finland, Germany, Greece, Netherlands, Spain, and UK. Data collection consisted of: a) systematic modelling of provider network's structures and processes, and b) a cross-sectional survey of patient reported outcomes and other information. The survey resulted in data from 1459 T2D patients, during 2011-2012. Stepwise linear regression models were used to identify how independent cumulative proportion of variance in quality of life and service satisfaction are related to differences in context, structure and process. The selected context, structure and process variables are based on Donabedian's SPO model, a service quality research instrument (SERVQUAL), and previous organization and professional level evidence. Additional analysis deepens the possible bidirectional relation between outcomes and processes. The regression models explain 44% of variance in service satisfaction, mostly by structure and process variables (such as human resource use and the SERVQUAL dimensions). The models explained 23% of variance in quality of life between the networks, much of which is related to contextual variables. Our results suggest that effectiveness of A1c control is negatively correlated with process variables such as total hours of care provided per year and cost of services per year. While the selected structure and process variables explain much of the variance in service satisfaction, this is less the case for quality of life. Moreover, it appears that the effect of the clinical outcome A1c control on processes is stronger than the other way around, as poorer control seems to relate to more service use, and higher cost. The standardized operational models used in this research prove to form a basis for expanding the network level evidence base for effective T2D service provisioning.

  20. Default and Executive Network Coupling Supports Creative Idea Production

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Barry Kaufman, Scott; Silvia, Paul J.

    2015-01-01

    The role of attention in creative cognition remains controversial. Neuroimaging studies have reported activation of brain regions linked to both cognitive control and spontaneous imaginative processes, raising questions about how these regions interact to support creative thought. Using functional magnetic resonance imaging (fMRI), we explored this question by examining dynamic interactions between brain regions during a divergent thinking task. Multivariate pattern analysis revealed a distributed network associated with divergent thinking, including several core hubs of the default (posterior cingulate) and executive (dorsolateral prefrontal cortex) networks. The resting-state network affiliation of these regions was confirmed using data from an independent sample of participants. Graph theory analysis assessed global efficiency of the divergent thinking network, and network efficiency was found to increase as a function of individual differences in divergent thinking ability. Moreover, temporal connectivity analysis revealed increased coupling between default and salience network regions (bilateral insula) at the beginning of the task, followed by increased coupling between default and executive network regions at later stages. Such dynamic coupling suggests that divergent thinking involves cooperation between brain networks linked to cognitive control and spontaneous thought, which may reflect focused internal attention and the top-down control of spontaneous cognition during creative idea production. PMID:26084037

  1. Altered Connectivity of the Balance Processing Network After Tongue Stimulation in Balance-Impaired Individuals

    PubMed Central

    Tyler, Mitchell E.; Danilov, Yuri P.; Kaczmarek, Kurt A.; Meyerand, Mary E.

    2013-01-01

    Abstract Some individuals with balance impairment have hypersensitivity of the motion-sensitive visual cortices (hMT+) compared to healthy controls. Previous work showed that electrical tongue stimulation can reduce the exaggerated postural sway induced by optic flow in this subject population and decrease the hypersensitive response of hMT+. Additionally, a region within the brainstem (BS), likely containing the vestibular and trigeminal nuclei, showed increased optic flow-induced activity after tongue stimulation. The aim of this study was to understand how the modulation induced by tongue stimulation affects the balance-processing network as a whole and how modulation of BS structures can influence cortical activity. Four volumes of interest, discovered in a general linear model analysis, constitute major contributors to the balance-processing network. These regions were entered into a dynamic causal modeling analysis to map the network and measure any connection or topology changes due to the stimulation. Balance-impaired individuals had downregulated response of the primary visual cortex (V1) to visual stimuli but upregulated modulation of the connection between V1 and hMT+ by visual motion compared to healthy controls (p≤1E–5). This upregulation was decreased to near-normal levels after stimulation. Additionally, the region within the BS showed increased response to visual motion after stimulation compared to both prestimulation and controls. Stimulation to the tongue enters the central nervous system at the BS but likely propagates to the cortex through supramodal information transfer. We present a model to explain these brain responses that utilizes an anatomically present, but functionally dormant pathway of information flow within the processing network. PMID:23216162

  2. Neuroimaging the neural correlates of increased risk for substance use disorders in attention-deficit/hyperactivity disorder-A systematic review.

    PubMed

    Adisetiyo, Vitria; Gray, Kevin M

    2017-03-01

    Children with attention-deficit/hyperactivity disorder (ADHD) are nearly three times more likely to develop substance use disorders (SUD) than their typically developing peers. Our objective was to review the existing neuroimaging research on high-risk ADHD (ie, ADHD with disruptive behavior disorders, familial SUD and/or early substance use), focusing on impulsivity as one possible mechanism underlying SUD risk. A PubMed literature search was conducted using combinations of the keywords "ADHD," "substance use," "substance use disorder," "SUD," "addiction," "dependence," "abuse," "risk," "brain" "MRI," "imaging" and "neuroimaging." Studies had to include cohorts that met diagnostic criteria for ADHD; studies of individuals with ADHD who all met criteria for SUD were excluded. Eight studies met the search criteria. Individuals with high-risk ADHD have hyperactivation in the motivation-reward processing brain network during tasks of impulsive choice, emotion processing, and risky decision-making. During response inhibition tasks, they have hypoactivation in the inhibitory control brain network. However, studies focusing on this latter circuit found hypoactivation during inhibitory control tasks, decreased white matter microstructure coherence and reduced cortical thickness in ADHD independent of substance use history. An exaggerated imbalance between the inhibitory control network and the motivation-reward processing network is theorized to distinguish individuals with high-risk ADHD. Preliminary findings suggest that an exaggerated aberrant reward processing network may be the driving neural correlate of increased SUD risk in ADHD. Neural biomarkers of increased SUD risk in ADHD could help clinicians identify which patients may benefit most from SUD prevention. Thus, more neuroimaging research on this vulnerable population is needed. (Am J Addict 2017;26:99-111). © 2017 American Academy of Addiction Psychiatry.

  3. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    PubMed

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands

    PubMed Central

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140

  5. Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classification of Movements for Prosthetic Hands.

    PubMed

    Atzori, Manfredo; Cognolato, Matteo; Müller, Henning

    2016-01-01

    Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.

  6. A neuro-data envelopment analysis approach for optimization of uncorrelated multiple response problems with smaller the better type controllable factors

    NASA Astrophysics Data System (ADS)

    Bashiri, Mahdi; Farshbaf-Geranmayeh, Amir; Mogouie, Hamed

    2013-11-01

    In this paper, a new method is proposed to optimize a multi-response optimization problem based on the Taguchi method for the processes where controllable factors are the smaller-the-better (STB)-type variables and the analyzer desires to find an optimal solution with smaller amount of controllable factors. In such processes, the overall output quality of the product should be maximized while the usage of the process inputs, the controllable factors, should be minimized. Since all possible combinations of factors' levels, are not considered in the Taguchi method, the response values of the possible unpracticed treatments are estimated using the artificial neural network (ANN). The neural network is tuned by the central composite design (CCD) and the genetic algorithm (GA). Then data envelopment analysis (DEA) is applied for determining the efficiency of each treatment. Although the important issue for implementation of DEA is its philosophy, which is maximization of outputs versus minimization of inputs, this important issue has been neglected in previous similar studies in multi-response problems. Finally, the most efficient treatment is determined using the maximin weight model approach. The performance of the proposed method is verified in a plastic molding process. Moreover a sensitivity analysis has been done by an efficiency estimator neural network. The results show efficiency of the proposed approach.

  7. Dynamic Controllability and Dispatchability Relationships

    NASA Technical Reports Server (NTRS)

    Morris, Paul Henry

    2014-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. We present a fast algorithm for Dynamic Controllability. We also note a correspondence between the reduction steps in the algorithm and the operations involved in converting the projections to dispatchable form. This has implications for the complexity for sparse networks.

  8. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  9. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    DOE PAGES

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less

  10. Neural Networks for Signal Processing and Control

    NASA Astrophysics Data System (ADS)

    Hesselroth, Ted Daniel

    Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual cortex by the application of lateral interactions during the learning phase. The organization of the mature network is compared to that found in the macaque monkey by several analytical tests. The capacity of the network to process images is investigated. By a method of reconstructing the input images in terms of V1 activities, the simulations show that images can be faithfully represented in V1 by the proposed network. The signal-to-noise ratio of the image is improved by the representation, and compression ratios of well over two-hundred are possible. Lateral interactions between V1 neurons sharpen their orientational tuning. We further study the dynamics of the processing, showing that the rate of decrease of the error of the reconstruction is maximized for the receptive fields used. Lastly, we employ a Fokker-Planck equation for a more detailed prediction of the error value vs. time. The Fokker-Planck equation for an underdamped system with a driving force is derived, yielding an energy-dependent diffusion coefficient which is the integral of the spectral densities of the force and the velocity of the system. The theory is applied to correlated noise activation and resonant activation. Simulation results for the error of the network vs time are compared to the solution of the Fokker-Planck equation.

  11. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  12. Reconstruction of network topology using status-time-series data

    NASA Astrophysics Data System (ADS)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  13. Three Eras in Global Tobacco Control: How Global Governance Processes Influenced Online Tobacco Control Networking

    PubMed Central

    Wipfli, Heather; Chu, Kar-Hai; Lancaster, Molly; Valente, Thomas

    2017-01-01

    Online networks can serve as a platform to diffuse policy innovations and enhance global health governance. This study focuses on how shifts in global health governance may influence related online networks. We compare social network metrics (average degree centrality [AVGD], density [D] and clustering coefficient [CC]) of Globalink, an online network of tobacco control advocates, across three eras in global tobacco control governance; pre-Framework Convention on Tobacco Control (FCTC) policy transfer (1992–1998), global regime formation through the FCTC negotiations (1999–2005), and philanthropic funding through the Bloomberg Initiative (2006–2012). Prior to 1999, Globalink was driven by a handful of high-income countries (AVGD=1.908 D=0.030, CC=0.215). The FCTC negotiations (1999–2005) corresponded with a rapid uptick in the number of countries represented within Globalink and new members were most often brought into the network through relationships with regional neighbors (AVGD=2.824, D=0.021, CC=0.253). Between 2006 and 2012, the centrality of the US in the network increases significantly (AVGD=3.414, D=0.023, CC=0.310). The findings suggest that global institutionalization through WHO, as with the FCTC, can lead to the rapid growth of decentralized online networks. Alternatively, private initiatives, such as the Bloomberg Initiative, can lead to clustering in which a single source of information gains increasing influence over an online network. PMID:28596813

  14. Applying traditional signal processing techniques to social media exploitation for situational understanding

    NASA Astrophysics Data System (ADS)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  15. Reversible large–scale modification of cortical networks during neuroprosthetic control

    PubMed Central

    Ganguly, Karunesh; Wallis, Jonathan D.

    2012-01-01

    Brain-Machine Interfaces (BMI) provide a framework to study cortical dynamics and the neural correlates of learning. Neuroprosthetic control has been associated with tuning changes in specific neurons directly projecting to the BMI (hereafter ‘direct neurons’). However, little is known about the larger network dynamics. By monitoring ensembles of neurons that were either causally linked to BMI control or indirectly involved, here we show that proficient neuroprosthetic control is associated with large-scale modifications to the cortical network in macaque monkeys. Specifically, there were changes in the preferred direction of both direct and indirect neurons. Interestingly, with learning, there was a relative decrease in the net modulation of indirect neural activity in comparison to the direct activity. These widespread differential changes in the direct and indirect population activity were remarkably stable from one day to the next and readily coexisted with the long-standing cortical network for upper limb control. Thus, the process of learning BMI control is associated with differential modification of neural populations based on their specific relation to movement control. PMID:21499255

  16. Reversible large-scale modification of cortical networks during neuroprosthetic control.

    PubMed

    Ganguly, Karunesh; Dimitrov, Dragan F; Wallis, Jonathan D; Carmena, Jose M

    2011-05-01

    Brain-machine interfaces (BMIs) provide a framework for studying cortical dynamics and the neural correlates of learning. Neuroprosthetic control has been associated with tuning changes in specific neurons directly projecting to the BMI (hereafter referred to as direct neurons). However, little is known about the larger network dynamics. By monitoring ensembles of neurons that were either causally linked to BMI control or indirectly involved, we found that proficient neuroprosthetic control is associated with large-scale modifications to the cortical network in macaque monkeys. Specifically, there were changes in the preferred direction of both direct and indirect neurons. Notably, with learning, there was a relative decrease in the net modulation of indirect neural activity in comparison with direct activity. These widespread differential changes in the direct and indirect population activity were markedly stable from one day to the next and readily coexisted with the long-standing cortical network for upper limb control. Thus, the process of learning BMI control is associated with differential modification of neural populations based on their specific relation to movement control.

  17. How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?

    NASA Astrophysics Data System (ADS)

    Ebner, R.; Featherstone, W. E.

    2008-09-01

    Establishing geodetic control networks for subsequent surveys can be a costly business, even when using GPS. Multiple stations should be occupied simultaneously and post-processed with scientific software. However, the free availability of online GPS precise point positioning (PPP) post-processing services offer the opportunity to establish a whole geodetic control network with just one dual-frequency receiver and one field crew. To test this idea, we compared coordinates from a moderate-sized (~550 km by ~440 km) geodetic network of 46 points over part of south-western Western Australia, which were processed both with the Bernese v5 scientific software and with the CSRS (Canadian Spatial Reference System) PPP free online service. After rejection of five stations where the antenna type was not recognised by CSRS, the PPP solutions agreed on average with the Bernese solutions to 3.3 mm in east, 4.8 mm in north and 11.8 mm in height. The average standard deviations of the Bernese solutions were 1.0 mm in east, 1.2 mm in north and 6.2 mm in height, whereas for CSRS they were 3.9 mm in east, 1.9 mm in north and 7.8 mm in height, reflecting the inherently lower precision of PPP. However, at the 99% confidence level, only one CSRS solution was statistically different to the Bernese solution in the north component, due to a data interruption at that site. Nevertheless, PPP can still be used to establish geodetic survey control, albeit with a slightly lower quality because of the larger standard deviations. This approach may be of particular benefit in developing countries or remote regions, where geodetic infrastructure is sparse and would not normally be established without this approach.

  18. Cyber-physical approach to the network-centric robotics control task

    NASA Astrophysics Data System (ADS)

    Muliukha, Vladimir; Ilyashenko, Alexander; Zaborovsky, Vladimir; Lukashin, Alexey

    2016-10-01

    Complex engineering tasks concerning control for groups of mobile robots are developed poorly. In our work for their formalization we use cyber-physical approach, which extends the range of engineering and physical methods for a design of complex technical objects by researching the informational aspects of communication and interaction between objects and with an external environment [1]. The paper analyzes network-centric methods for control of cyber-physical objects. Robots or cyber-physical objects interact with each other by transmitting information via computer networks using preemptive queueing system and randomized push-out mechanism [2],[3]. The main field of application for the results of our work is space robotics. The selection of cyber-physical systems as a special class of designed objects is due to the necessity of integrating various components responsible for computing, communications and control processes. Network-centric solutions allow using universal means for the organization of information exchange to integrate different technologies for the control system.

  19. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    PubMed

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  20. Neurofunctional Underpinnings of Audiovisual Emotion Processing in Teens with Autism Spectrum Disorders

    PubMed Central

    Doyle-Thomas, Krissy A.R.; Goldberg, Jeremy; Szatmari, Peter; Hall, Geoffrey B.C.

    2013-01-01

    Despite successful performance on some audiovisual emotion tasks, hypoactivity has been observed in frontal and temporal integration cortices in individuals with autism spectrum disorders (ASD). Little is understood about the neurofunctional network underlying this ability in individuals with ASD. Research suggests that there may be processing biases in individuals with ASD, based on their ability to obtain meaningful information from the face and/or the voice. This functional magnetic resonance imaging study examined brain activity in teens with ASD (n = 18) and typically developing controls (n = 16) during audiovisual and unimodal emotion processing. Teens with ASD had a significantly lower accuracy when matching an emotional face to an emotion label. However, no differences in accuracy were observed between groups when matching an emotional voice or face-voice pair to an emotion label. In both groups brain activity during audiovisual emotion matching differed significantly from activity during unimodal emotion matching. Between-group analyses of audiovisual processing revealed significantly greater activation in teens with ASD in a parietofrontal network believed to be implicated in attention, goal-directed behaviors, and semantic processing. In contrast, controls showed greater activity in frontal and temporal association cortices during this task. These results suggest that in the absence of engaging integrative emotional networks during audiovisual emotion matching, teens with ASD may have recruited the parietofrontal network as an alternate compensatory system. PMID:23750139

  1. Efficiency of quarantine and self-protection processes in epidemic spreading control on scale-free networks

    NASA Astrophysics Data System (ADS)

    Esquivel-Gómez, Jose de Jesus; Barajas-Ramírez, Juan Gonzalo

    2018-01-01

    One of the most effective mechanisms to contain the spread of an infectious disease through a population is the implementation of quarantine policies. However, its efficiency is affected by different aspects, for example, the structure of the underlining social network where highly connected individuals are more likely to become infected; therefore, the speed of the transmission of the decease is directly determined by the degree distribution of the network. Another aspect that influences the effectiveness of the quarantine is the self-protection processes of the individuals in the population, that is, they try to avoid contact with potentially infected individuals. In this paper, we investigate the efficiency of quarantine and self-protection processes in preventing the spreading of infectious diseases over complex networks with a power-law degree distribution [ P ( k ) ˜ k - ν ] for different ν values. We propose two alternative scale-free models that result in power-law degree distributions above and below the exponent ν = 3 associated with the conventional Barabási-Albert model. Our results show that the exponent ν determines the effectiveness of these policies in controlling the spreading process. More precisely, we show that for the ν exponent below three, the quarantine mechanism loses effectiveness. However, the efficiency is improved if the quarantine is jointly implemented with a self-protection process driving the number of infected individuals significantly lower.

  2. The nature of mind wandering during reading varies with the cognitive control demands of the reading strategy.

    PubMed

    Moss, Jarrod; Schunn, Christian D; Schneider, Walter; McNamara, Danielle S

    2013-11-20

    Prior studies of mind wandering find the default network active during mind wandering, but these studies have yielded mixed results concerning the role of cognitive control brain regions during mind wandering. Mind wandering often interferes with reading comprehension, and prior neuroimaging studies of discourse comprehension and strategic reading comprehension have shown that there are at least two networks of brain regions that support strategic discourse comprehension: a domain-general control network and a network of regions supporting coherence-building comprehension processes. The present study was designed to further examine the neural correlates of mind wandering by examining mind wandering during strategic reading comprehension. Participants provided ratings of mind wandering frequency that were used to investigate interactions between the strategy being performed and brain regions whose activation was modulated by wind wandering. The results support prior findings showing that cognitive control regions are at times more active during mind wandering than during a task with low control demands, such as rereading. This result provides an initial examination of the neural correlates of mind wandering during discourse comprehension and shows that the processes being engaged by the primary task need to be considered when studying mind wandering. The results also replicate, in a different learning domain, prior findings of key brain areas associated with different reading strategies. © 2013 Published by Elsevier B.V.

  3. Control of Complex Dynamic Systems by Neural Networks

    NASA Technical Reports Server (NTRS)

    Spall, James C.; Cristion, John A.

    1993-01-01

    This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.

  4. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  5. Effects of wireless packet loss in industrial process control systems.

    PubMed

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. Published by Elsevier Ltd.

  6. Effects of Wireless Packet Loss in Industrial Process Control Systems

    PubMed Central

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-01-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100 % reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 % reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. PMID:28190566

  7. The neural control of singing

    PubMed Central

    Zarate, Jean Mary

    2013-01-01

    Singing provides a unique opportunity to examine music performance—the musical instrument is contained wholly within the body, thus eliminating the need for creating artificial instruments or tasks in neuroimaging experiments. Here, more than two decades of voice and singing research will be reviewed to give an overview of the sensory-motor control of the singing voice, starting from the vocal tract and leading up to the brain regions involved in singing. Additionally, to demonstrate how sensory feedback is integrated with vocal motor control, recent functional magnetic resonance imaging (fMRI) research on somatosensory and auditory feedback processing during singing will be presented. The relationship between the brain and singing behavior will be explored also by examining: (1) neuroplasticity as a function of various lengths and types of training, (2) vocal amusia due to a compromised singing network, and (3) singing performance in individuals with congenital amusia. Finally, the auditory-motor control network for singing will be considered alongside dual-stream models of auditory processing in music and speech to refine both these theoretical models and the singing network itself. PMID:23761746

  8. A comprehensive Network Security Risk Model for process control networks.

    PubMed

    Henry, Matthew H; Haimes, Yacov Y

    2009-02-01

    The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.

  9. Differential effects of bilingualism and culture on early attention: a longitudinal study in the U.S., Argentina, and Vietnam

    PubMed Central

    Tran, Crystal D.; Arredondo, Maria M.; Yoshida, Hanako

    2015-01-01

    A large body of literature suggests that bilingualism strongly influences attentional processes among a variety of age groups. Increasing studies, however, indicate that culture may also have measurable effects on attentional processes. Bilinguals are often exposed to multiple cultural backgrounds, therefore, it is unclear if being exposed to multiple languages and culture together influence attentional processes, or if the effect themselves are uniquely linked to different attentional processes. The present study explores the relevancy of different attentional processes—alerting, orienting, and executive control—to language and to culture. In the present study, 97 3-years-old (Mean age = 38.78 months) monolingual and bilingual children from three countries (the U.S., Argentina, and Vietnam) were longitudinally tested for a total of five time points on a commonly used non-linguistic attentional paradigm—the Attention Network Test. Results demonstrate that when other factors are controlled (e.g., socio-economic status, vocabulary knowledge, age), culture plays an important role on the development of the alerting and executive control attentional network, while language status was only significant on the executive control attentional network. The present study indicates that culture may interact with bilingualism to further explain previous reported advantages, as well as elucidate the increasing disparity surrounding cognitive advantages in bilingual literature. PMID:26150793

  10. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems.

    PubMed

    Dai, Shi-Lu; Wang, Cong; Wang, Min

    2014-01-01

    This paper studies the problem of learning from adaptive neural network (NN) control of a class of nonaffine nonlinear systems in uncertain dynamic environments. In the control design process, a stable adaptive NN tracking control design technique is proposed for the nonaffine nonlinear systems with a mild assumption by combining a filtered tracking error with the implicit function theorem, input-to-state stability, and the small-gain theorem. The proposed stable control design technique not only overcomes the difficulty in controlling nonaffine nonlinear systems but also relaxes constraint conditions of the considered systems. In the learning process, the partial persistent excitation (PE) condition of radial basis function NNs is satisfied during tracking control to a recurrent reference trajectory. Under the PE condition and an appropriate state transformation, the proposed adaptive NN control is shown to be capable of acquiring knowledge on the implicit desired control input dynamics in the stable control process and of storing the learned knowledge in memory. Subsequently, an NN learning control design technique that effectively exploits the learned knowledge without re-adapting to the controller parameters is proposed to achieve closed-loop stability and improved control performance. Simulation studies are performed to demonstrate the effectiveness of the proposed design techniques.

  11. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  13. Neural substrates of sublexical processing for spelling.

    PubMed

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Neural Substrates of Sublexical Processing for Spelling

    PubMed Central

    Wilson, Stephen M.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.

    2016-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. PMID:27838547

  15. BIO-Plex Information System Concept

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Boulanger, Richard; Arnold, James O. (Technical Monitor)

    1999-01-01

    This paper describes a suggested design for an integrated information system for the proposed BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) at Johnson Space Center (JSC), including distributed control systems, central control, networks, database servers, personal computers and workstations, applications software, and external communications. The system will have an open commercial computing and networking, architecture. The network will provide automatic real-time transfer of information to database server computers which perform data collection and validation. This information system will support integrated, data sharing applications for everything, from system alarms to management summaries. Most existing complex process control systems have information gaps between the different real time subsystems, between these subsystems and central controller, between the central controller and system level planning and analysis application software, and between the system level applications and management overview reporting. An integrated information system is vitally necessary as the basis for the integration of planning, scheduling, modeling, monitoring, and control, which will allow improved monitoring and control based on timely, accurate and complete data. Data describing the system configuration and the real time processes can be collected, checked and reconciled, analyzed and stored in database servers that can be accessed by all applications. The required technology is available. The only opportunity to design a distributed, nonredundant, integrated system is before it is built. Retrofit is extremely difficult and costly.

  16. Stochastic availability analysis of operational data systems in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Issa, T. N.

    1991-01-01

    Existing availability models of standby redundant systems consider only an operator's performance and its interaction with the hardware performance. In the case of operational data systems in the Deep Space Network (DSN), in addition to an operator system interface, a controller reconfigures the system and links a standby unit into the network data path upon failure of the operating unit. A stochastic (Markovian) process technique is used to model and analyze the availability performance and occurrence of degradation due to partial failures are quantitatively incorporated into the model. Exact expressions of the steady state availability and proportion degraded performance measures are derived for the systems under study. The interaction among the hardware, operator, and controller performance parameters and that interaction's effect on data availability are evaluated and illustrated for an operational data processing system.

  17. Evaluation of strength-controlling defects in paper by stress concentration analyses

    Treesearch

    John M. Considine; David W. Vahey; James W. Evans; Kevin T. Turner; Robert E. Rowlands

    2011-01-01

    Cellulosic webs, such as paper materials, are composed of an interwoven, bonded network of cellulose fibers. Strength-controlling parameters in these webs are influenced by constituent fibers and method of processing and manufacture. Instead of estimating the effect on tensile strength of each processing/manufacturing variable, this study modifies and compares the...

  18. An efficient transmission power control scheme for temperature variation in wireless sensor networks.

    PubMed

    Lee, Jungwook; Chung, Kwangsue

    2011-01-01

    Wireless sensor networks collect data from several nodes dispersed at remote sites. Sensor nodes can be installed in harsh environments such as deserts, cities, and indoors, where the link quality changes considerably over time. Particularly, changes in transmission power may be caused by temperature, humidity, and other factors. In order to compensate for link quality changes, existing schemes detect the link quality changes between nodes and control transmission power through a series of feedback processes, but these approaches can cause heavy overhead with the additional control packets needed. In this paper, the change of the link quality according to temperature is examined through empirical experimentation. A new power control scheme combining both temperature-aware link quality compensation and a closed-loop feedback process to adapt to link quality changes is proposed. We prove that the proposed scheme effectively adapts the transmission power to the changing link quality with less control overhead and energy consumption.

  19. Integrating conflict detection and attentional control mechanisms.

    PubMed

    Walsh, Bong J; Buonocore, Michael H; Carter, Cameron S; Mangun, George R

    2011-09-01

    Human behavior involves monitoring and adjusting performance to meet established goals. Performance-monitoring systems that act by detecting conflict in stimulus and response processing have been hypothesized to influence cortical control systems to adjust and improve performance. Here we used fMRI to investigate the neural mechanisms of conflict monitoring and resolution during voluntary spatial attention. We tested the hypothesis that the ACC would be sensitive to conflict during attentional orienting and influence activity in the frontoparietal attentional control network that selectively modulates visual information processing. We found that activity in ACC increased monotonically with increasing attentional conflict. This increased conflict detection activity was correlated with both increased activity in the attentional control network and improved speed and accuracy from one trial to the next. These results establish a long hypothesized interaction between conflict detection systems and neural systems supporting voluntary control of visual attention.

  20. A Supramodal Neural Network for Speech and Gesture Semantics: An fMRI Study

    PubMed Central

    Weis, Susanne; Kircher, Tilo

    2012-01-01

    In a natural setting, speech is often accompanied by gestures. As language, speech-accompanying iconic gestures to some extent convey semantic information. However, if comprehension of the information contained in both the auditory and visual modality depends on same or different brain-networks is quite unknown. In this fMRI study, we aimed at identifying the cortical areas engaged in supramodal processing of semantic information. BOLD changes were recorded in 18 healthy right-handed male subjects watching video clips showing an actor who either performed speech (S, acoustic) or gestures (G, visual) in more (+) or less (−) meaningful varieties. In the experimental conditions familiar speech or isolated iconic gestures were presented; during the visual control condition the volunteers watched meaningless gestures (G−), while during the acoustic control condition a foreign language was presented (S−). The conjunction of the visual and acoustic semantic processing revealed activations extending from the left inferior frontal gyrus to the precentral gyrus, and included bilateral posterior temporal regions. We conclude that proclaiming this frontotemporal network the brain's core language system is to take too narrow a view. Our results rather indicate that these regions constitute a supramodal semantic processing network. PMID:23226488

  1. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  2. Fault detection of Tennessee Eastman process based on topological features and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Huiyang; Hu, Yanzhu; Ai, Xinbo; Hu, Yu; Meng, Zhen

    2018-03-01

    Fault detection in industrial process is a popular research topic. Although the distributed control system(DCS) has been introduced to monitor the state of industrial process, it still cannot satisfy all the requirements for fault detection of all the industrial systems. In this paper, we proposed a novel method based on topological features and support vector machine(SVM), for fault detection of industrial process. The proposed method takes global information of measured variables into account by complex network model and predicts whether a system has generated some faults or not by SVM. The proposed method can be divided into four steps, i.e. network construction, network analysis, model training and model testing respectively. Finally, we apply the model to Tennessee Eastman process(TEP). The results show that this method works well and can be a useful supplement for fault detection of industrial process.

  3. A chronometric functional sub-network in the thalamo-cortical system regulates the flow of neural information necessary for conscious cognitive processes.

    PubMed

    León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose

    2013-06-01

    The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment.

    PubMed

    Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun

    2009-06-01

    Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

  5. BDM-KAT; Report of Research Results

    DTIC Science & Technology

    1990-03-31

    relations, constraints TASK PRC>CESS MODEL TASK MICRO FOR SENSOR DATA Figure 4. Computer Network for the Intelligent Control of the HIP Process...prototyped and used in preliminary knowledge acquisition for an intelligent process controller for Hot Isostatic Pressing (HIP). Both the volume of...information collected and structured and Lhe value of that knowledge for the developing controller attest to the value of the concepts implemented in BDM

  6. Multicenter Cell Processing for Cardiovascular Regenerative Medicine Applications - The Cardiovascular Cell Therapy Research Network (CCTRN) Experience

    PubMed Central

    Gee, Adrian P.; Richman, Sara; Durett, April; McKenna, David; Traverse, Jay; Henry, Timothy; Fisk, Diann; Pepine, Carl; Bloom, Jeannette; Willerson, James; Prater, Karen; Zhao, David; Koç, Jane Reese; Ellis, Steven; Taylor, Doris; Cogle, Christopher; Moyé, Lemuel; Simari, Robert; Skarlatos, Sonia

    2013-01-01

    Background Aims Multi-center cellular therapy clinical trials require the establishment and implementation of standardized cell processing protocols and associated quality control mechanisms. The aims here were to develop such an infrastructure in support of the Cardiovascular Cell Therapy Research Network (CCTRN) and to report on the results of processing for the first 60 patients. Methods Standardized cell preparations, consisting of autologous bone marrow mononuclear cells, prepared using the Sepax device were manufactured at each of the five processing facilities that supported the clinical treatment centers. Processing staff underwent centralized training that included proficiency evaluation. Quality was subsequently monitored by a central quality control program that included product evaluation by the CCTRN biorepositories. Results Data from the first 60 procedures demonstrate that uniform products, that met all release criteria, could be manufactured at all five sites within 7 hours of receipt of the bone marrow. Uniformity was facilitated by use of the automated systems (the Sepax for processing and the Endosafe device for endotoxin testing), standardized procedures and centralized quality control. Conclusions Complex multicenter cell therapy and regenerative medicine protocols can, where necessary, successfully utilize local processing facilities once an effective infrastructure is in place to provide training, and quality control. PMID:20524773

  7. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    PubMed

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A discrete mathematical model of the dynamic evolution of a transportation network

    NASA Astrophysics Data System (ADS)

    Malinetskii, G. G.; Stepantsov, M. E.

    2009-09-01

    A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.

  9. Robust, Multi-layered Plan Execution and Revision for Operation of a Network of Communication Antennas

    NASA Technical Reports Server (NTRS)

    Chien, S. A.; Hill, R. W., Jr.; Govindjee, A.; Wang, X.; Estlin, T.; Griesel, M. A.; Lam, R.; Fayyad, K. V.

    1996-01-01

    This paper describes a hierarchical scheduling, planning, control, and execution monitoring architecture for automating operations of a worldwide network of communications antennas. The purpose of this paper is to describe an architecture for automating the process of capturing spacecraft data.

  10. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    USGS Publications Warehouse

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.

  11. Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)

    2000-01-01

    In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.

  12. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets

    PubMed Central

    Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-01-01

    The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990

  13. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, J.J.; Osborne-Lee, I.W.; Grizzaffi, P.A.

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applicationsmore » of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.« less

  15. Overlap and Differences in Brain Networks Underlying the Processing of Complex Sentence Structures in Second Language Users Compared with Native Speakers.

    PubMed

    Weber, Kirsten; Luther, Lisa; Indefrey, Peter; Hagoort, Peter

    2016-05-01

    When we learn a second language later in life, do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study, we investigated the underlying brain networks in native speakers compared with proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations and task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.

  16. Network efficient power control for wireless communication systems.

    PubMed

    Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.

  17. Discrete event command and control for networked teams with multiple missions

    NASA Astrophysics Data System (ADS)

    Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher

    2009-05-01

    During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

  18. Network Efficient Power Control for Wireless Communication Systems

    PubMed Central

    Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.

    2014-01-01

    We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350

  19. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  20. A Method for Functional Network Connectivity Among Spatially Independent Resting-State Components in Schizophrenia

    PubMed Central

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2011-01-01

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. PMID:18082428

  1. An Architecture for Cooperative Localization in Underwater Acoustic Networks

    DTIC Science & Technology

    2015-10-24

    range. (b) Independent navigation and control system onboard Iver AUVs . The cooperative localization process is highlighted in red. Figure 1: Block...Iver2 AUVs (Fig. 3) and a topside ship. While we make spe- cific notes about this three vehicle network, the architecture is vehicle independent. 3.1...Single vehicle subsystem Each vehicle executes several processes including sensor drivers, a pose estimator (Section 2), and, in the case of the AUVs

  2. Online intelligent controllers for an enzyme recovery plant: design methodology and performance.

    PubMed

    Leite, M S; Fujiki, T L; Silva, F V; Fileti, A M F

    2010-12-27

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.

  3. Online Intelligent Controllers for an Enzyme Recovery Plant: Design Methodology and Performance

    PubMed Central

    Leite, M. S.; Fujiki, T. L.; Silva, F. V.; Fileti, A. M. F.

    2010-01-01

    This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind. The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank. Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS), based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well. Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced error parameter (ITAE), lower power consumption, and better recovery of enzyme activity. PMID:21234106

  4. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  5. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  6. The "handwriting brain": a meta-analysis of neuroimaging studies of motor versus orthographic processes.

    PubMed

    Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François

    2013-01-01

    Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The extended functional neuroanatomy of emotional processing biases for masked faces in major depressive disorder.

    PubMed

    Victor, Teresa A; Furey, Maura L; Fromm, Stephen J; Bellgowan, Patrick S F; Öhman, Arne; Drevets, Wayne C

    2012-01-01

    Major depressive disorder (MDD) is associated with a mood-congruent processing bias in the amygdala toward face stimuli portraying sad expressions that is evident even when such stimuli are presented below the level of conscious awareness. The extended functional anatomical network that maintains this response bias has not been established, however. To identify neural network differences in the hemodynamic response to implicitly presented facial expressions between depressed and healthy control participants. Unmedicated-depressed participants with MDD (n=22) and healthy controls (HC; n=25) underwent functional MRI as they viewed face stimuli showing sad, happy or neutral face expressions, presented using a backward masking design. The blood-oxygen-level dependent (BOLD) signal was measured to identify regions where the hemodynamic response to the emotionally valenced stimuli differed between groups. The MDD subjects showed greater BOLD responses than the controls to masked-sad versus masked-happy faces in the hippocampus, amygdala and anterior inferotemporal cortex. While viewing both masked-sad and masked-happy faces relative to masked-neutral faces, the depressed subjects showed greater hemodynamic responses than the controls in a network that included the medial and orbital prefrontal cortices and anterior temporal cortex. Depressed and healthy participants showed distinct hemodynamic responses to masked-sad and masked-happy faces in neural circuits known to support the processing of emotionally valenced stimuli and to integrate the sensory and visceromotor aspects of emotional behavior. Altered function within these networks in MDD may establish and maintain illness-associated differences in the salience of sensory/social stimuli, such that attention is biased toward negative and away from positive stimuli.

  8. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  9. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    NASA Astrophysics Data System (ADS)

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  10. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  11. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems

    PubMed Central

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169

  12. Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.

    PubMed

    Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P

    2015-01-01

    Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.

  13. Neural responses to maternal criticism in healthy youth

    PubMed Central

    Siegle, Greg J.; Dahl, Ronald E.; Hooley, Jill M.; Silk, Jennifer S.

    2015-01-01

    Parental criticism can have positive and negative effects on children’s and adolescents’ behavior; yet, it is unclear how youth react to, understand and process parental criticism. We proposed that youth would engage three sets of neural processes in response to parental criticism including the following: (i) activating emotional reactions, (ii) regulating those reactions and (iii) social cognitive processing (e.g. understanding the parent’s mental state). To examine neural processes associated with both emotional and social processing of parental criticism in personally relevant and ecologically valid social contexts, typically developing youth were scanned while they listened to their mother providing critical, praising and neutral statements. In response to maternal criticism, youth showed increased brain activity in affective networks (e.g. subcortical–limbic regions including lentiform nucleus and posterior insula), but decreased activity in cognitive control networks (e.g. dorsolateral prefrontal cortex and caudal anterior cingulate cortex) and social cognitive networks (e.g. temporoparietal junction and posterior cingulate cortex/precuneus). These results suggest that youth may respond to maternal criticism with increased emotional reactivity but decreased cognitive control and social cognitive processing. A better understanding of children’s responses to parental criticism may provide insights into the ways that parental feedback can be modified to be more helpful to behavior and development in youth. PMID:25338632

  14. Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control

    PubMed Central

    Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun

    2016-01-01

    Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768

  15. Networking among Chevron Libraries.

    ERIC Educational Resources Information Center

    Linden, Margaret J.

    1989-01-01

    Describes the process by which librarians at the Chevron and Gulf Oil Corporations managed the merger of corporation libraries and developed a framework for a company-wide library network. The discussion covers corporate policies for information exchange, shared resources, and cost control, and examines factors that led to the success of the…

  16. Network Centric Warfare: A Realistic Defense Alternative for Smaller Nations?

    DTIC Science & Technology

    2004-06-01

    organic information sources. The degree to which force entities are networked will determine the quality of information that is available to various...control processes will determine the extent that information is shared, as well as the nature and quality of the interactions that occur between and...

  17. Building Process Improvement Business Cases Using Bayesian Belief Networks and Monte Carlo Simulation

    DTIC Science & Technology

    2009-07-01

    simulation. The pilot described in this paper used this two-step approach within a Define, Measure, Analyze, Improve, and Control ( DMAIC ) framework to...networks, BBN, Monte Carlo simulation, DMAIC , Six Sigma, business case 15. NUMBER OF PAGES 35 16. PRICE CODE 17. SECURITY CLASSIFICATION OF

  18. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization

    PubMed Central

    2017-01-01

    Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity—a measure of network segregation—is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. PMID:28242796

  19. Episodic Memory Retrieval Benefits from a Less Modular Brain Network Organization.

    PubMed

    Westphal, Andrew J; Wang, Siliang; Rissman, Jesse

    2017-03-29

    Most complex cognitive tasks require the coordinated interplay of multiple brain networks, but the act of retrieving an episodic memory may place especially heavy demands for communication between the frontoparietal control network (FPCN) and the default mode network (DMN), two networks that do not strongly interact with one another in many task contexts. We applied graph theoretical analysis to task-related fMRI functional connectivity data from 20 human participants and found that global brain modularity-a measure of network segregation-is markedly reduced during episodic memory retrieval relative to closely matched analogical reasoning and visuospatial perception tasks. Individual differences in modularity were correlated with memory task performance, such that lower modularity levels were associated with a lower false alarm rate. Moreover, the FPCN and DMN showed significantly elevated coupling with each other during the memory task, which correlated with the global reduction in brain modularity. Both networks also strengthened their functional connectivity with the hippocampus during the memory task. Together, these results provide a novel demonstration that reduced modularity is conducive to effective episodic retrieval, which requires close collaboration between goal-directed control processes supported by the FPCN and internally oriented self-referential processing supported by the DMN. SIGNIFICANCE STATEMENT Modularity, an index of the degree to which nodes of a complex system are organized into discrete communities, has emerged as an important construct in the characterization of brain connectivity dynamics. We provide novel evidence that the modularity of the human brain is reduced when individuals engage in episodic memory retrieval, relative to other cognitive tasks, and that this state of lower modularity is associated with improved memory performance. We propose a neural systems mechanism for this finding where the nodes of the frontoparietal control network and default mode network strengthen their interaction with one another during episodic retrieval. Such across-network communication likely facilitates effective access to internally generated representations of past event knowledge. Copyright © 2017 the authors 0270-6474/17/373523-09$15.00/0.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Cheng, Liang; Chuah, Mooi Choo

    In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less

  1. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding.

    PubMed

    Pedersen, Mangor; Omidvarnia, Amir H; Walz, Jennifer M; Jackson, Graeme D

    2015-01-01

    Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications.

  2. Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding

    PubMed Central

    Pedersen, Mangor; Omidvarnia, Amir H.; Walz, Jennifer M.; Jackson, Graeme D.

    2015-01-01

    Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications. PMID:26110111

  3. Predicting the Lifetime of Dynamic Networks Experiencing Persistent Random Attacks.

    PubMed

    Podobnik, Boris; Lipic, Tomislav; Horvatic, Davor; Majdandzic, Antonio; Bishop, Steven R; Eugene Stanley, H

    2015-09-21

    Estimating the critical points at which complex systems abruptly flip from one state to another is one of the remaining challenges in network science. Due to lack of knowledge about the underlying stochastic processes controlling critical transitions, it is widely considered difficult to determine the location of critical points for real-world networks, and it is even more difficult to predict the time at which these potentially catastrophic failures occur. We analyse a class of decaying dynamic networks experiencing persistent failures in which the magnitude of the overall failure is quantified by the probability that a potentially permanent internal failure will occur. When the fraction of active neighbours is reduced to a critical threshold, cascading failures can trigger a total network failure. For this class of network we find that the time to network failure, which is equivalent to network lifetime, is inversely dependent upon the magnitude of the failure and logarithmically dependent on the threshold. We analyse how permanent failures affect network robustness using network lifetime as a measure. These findings provide new methodological insight into system dynamics and, in particular, of the dynamic processes of networks. We illustrate the network model by selected examples from biology, and social science.

  4. Temporal Genetic Modifications after Controlled Cortical Impact—Understanding Traumatic Brain Injury through a Systematic Network Approach

    PubMed Central

    Wong, Yung-Hao; Wu, Chia-Chou; Wu, John Chung-Che; Lai, Hsien-Yong; Chen, Kai-Yun; Jheng, Bo-Ren; Chen, Mien-Cheng; Chang, Tzu-Hao; Chen, Bor-Sen

    2016-01-01

    Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research. PMID:26861311

  5. Meditation leads to reduced default mode network activity beyond an active task

    PubMed Central

    Garrison, Kathleen A.; Zeffiro, Thomas A.; Scheinost, Dustin; Constable, R. Todd; Brewer, Judson A.

    2015-01-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest despite other studies reporting differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, this study compared meditation to another active cognitive task, both to replicate findings that meditation is associated with relatively reduced default mode network activity, and to extend these findings by testing whether default mode activity was reduced during meditation beyond the typical reductions observed during effortful tasks. In addition, prior studies have used small groups, whereas the current study tested these hypotheses in a larger group. Results indicate that meditation is associated with reduced activations in the default mode network relative to an active task in meditators compared to controls. Regions of the default mode showing a group by task interaction include the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that suppression of default mode processing may represent a central neural process in long-term meditation, and suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task. PMID:25904238

  6. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks.

    PubMed

    Dixon, Matthew L; De La Vega, Alejandro; Mills, Caitlin; Andrews-Hanna, Jessica; Spreng, R Nathan; Cole, Michael W; Christoff, Kalina

    2018-02-13

    The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCN A exhibited stronger connectivity with the DN than the DAN, whereas FPCN B exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCN A may be preferentially involved in the regulation of introspective processes, whereas FPCN B may be preferentially involved in the regulation of visuospatial perceptual attention.

  7. Research on moving target defense based on SDN

    NASA Astrophysics Data System (ADS)

    Chen, Mingyong; Wu, Weimin

    2017-08-01

    An address mutation strategy was proposed. This strategy provided an unpredictable change in address, replacing the real address of the packet forwarding process and path mutation, thus hiding the real address of the host and path. a mobile object defense technology based on Spatio-temporal Mutation on this basis is proposed, Using the software Defined Network centralized control architecture advantage combines sFlow traffic monitoring technology and Moving Target Defense. A mutated time period which can be changed in real time according to the network traffic is changed, and the destination address is changed while the controller abruptly changes the address while the data packet is transferred between the switches to construct a moving target, confusing the host within the network, thereby protecting the host and network.

  8. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  9. The design of the automated control system for warehouse equipment under radio-electronic manufacturing

    NASA Astrophysics Data System (ADS)

    Kapulin, D. V.; Chemidov, I. V.; Kazantsev, M. A.

    2017-01-01

    In the paper, the aspects of design, development and implementation of the automated control system for warehousing under the manufacturing process of the radio-electronic enterprise JSC «Radiosvyaz» are discussed. The architecture of the automated control system for warehousing proposed in the paper consists of a server which is connected to the physically separated information networks: the network with a database server, which stores information about the orders for picking, and the network with the automated storage and retrieval system. This principle allows implementing the requirements for differentiation of access, ensuring the information safety and security requirements. Also, the efficiency of the developed automated solutions in terms of optimizing the warehouse’s logistic characteristics is researched.

  10. Slow Computing Simulation of Bio-plausible Control

    DTIC Science & Technology

    2012-03-01

    information networks, neuromorphic chips would become necessary. Small unstable flying platforms currently require RTK, GPS, or Vicon closed-circuit...Visual, and IR Sensing FPGA ASIC Neuromorphic Chip Simulation Quad Rotor Robotic Insect Uniform Independent Network Single Modality Neural Network... neuromorphic Processing across parallel computational elements =0.54 N u m b e r o f c o m p u ta tio n s - No info 14 integrated circuit

  11. Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    DTIC Science & Technology

    2011-03-01

    Heuristics on Hexagonal Connected Dominating Sets to Model Routing Dissemination," in Communication Theory, Reliability, and Quality of Service (CTRQ...24] Matthew Capt. USAF Compton, Improving the Quality of Service and Security of Military Networks with a Network Tasking Order Process, 2010. [25...Wesley, 2006. [32] James Haught, "Adaptive Quality of Service Engine with Dynamic Queue Control," Air Force Institute of Technology, Wright

  12. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain

    NASA Astrophysics Data System (ADS)

    Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward

    2016-10-01

    Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.

  13. Managing integrated oncology treatment in virtual networks.

    PubMed

    Stanicki, Verena; Becker, Matthias; Böckmann, Britta

    2015-01-01

    Interdisciplinary and intersectoral coordinated healthcare management based on Clinical Practice Guidelines is essential to achieve high quality in oncological networks. The objective of our research project is to create a cookbook, which can be used by oncological networks as a template. The cookbook is based on guideline-compliant care processes. To develop these care processes, the three S3-guidelines breast, colon and prostate carcinoma have been formalized. The thus-obtained platform-independent process fragments were transformed into an underlying metamodel, which is based on HL7 and can be used for modeling clinical pathways. Additional, qualitative guided interviews were chosen to capitalize on the experts' (e.g. chief residents, resident specialists) wide knowledge and experience in oncological health care management. One of these use cases (tumor board scheduling) is developed for a healthcare management platform which is linked to a national electronic case record. The projected result of our approach is a cookbook which shows, how the treatment can be controlled by interdisciplinary and intersectoral care processes in an oncological network.

  14. Temporal percolation of the susceptible network in an epidemic spreading.

    PubMed

    Valdez, Lucas Daniel; Macri, Pablo Alejandro; Braunstein, Lidia Adriana

    2012-01-01

    In this work, we study the evolution of the susceptible individuals during the spread of an epidemic modeled by the susceptible-infected-recovered (SIR) process spreading on the top of complex networks. Using an edge-based compartmental approach and percolation tools, we find that a time-dependent quantity ΦS(t), namely, the probability that a given neighbor of a node is susceptible at time t, is the control parameter of a node void percolation process involving those nodes on the network not-reached by the disease. We show that there exists a critical time t(c) above which the giant susceptible component is destroyed. As a consequence, in order to preserve a macroscopic connected fraction of the network composed by healthy individuals which guarantee its functionality, any mitigation strategy should be implemented before this critical time t(c). Our theoretical results are confirmed by extensive simulations of the SIR process.

  15. Neuromorphic photonic networks using silicon photonic weight banks.

    PubMed

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  16. Neural network evaluation of reflectometry density profiles for control purposes

    NASA Astrophysics Data System (ADS)

    Santos, J.; Nunes, F.; Manso, M.; Nunes, I.

    1999-01-01

    Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.

  17. Variable speed limit strategies analysis with mesoscopic traffic flow model based on complex networks

    NASA Astrophysics Data System (ADS)

    Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin

    As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.

  18. Topological data analysis of contagion maps for examining spreading processes on networks.

    PubMed

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  19. Topological data analysis of contagion maps for examining spreading processes on networks

    NASA Astrophysics Data System (ADS)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  20. A network function-based definition of communities in complex networks.

    PubMed

    Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward

    2012-09-01

    We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.

  1. On-board congestion control for satellite packet switching networks

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.

    1991-01-01

    It is desirable to incorporate packet switching capability on-board for future communication satellites. Because of the statistical nature of packet communication, incoming traffic fluctuates and may cause congestion. Thus, it is necessary to incorporate a congestion control mechanism as part of the on-board processing to smooth and regulate the bursty traffic. Although there are extensive studies on congestion control for both baseband and broadband terrestrial networks, these schemes are not feasible for space based switching networks because of the unique characteristics of satellite link. Here, we propose a new congestion control method for on-board satellite packet switching. This scheme takes into consideration the long propagation delay in satellite link and takes advantage of the the satellite's broadcasting capability. It divides the control between the ground terminals and satellite, but distributes the primary responsibility to ground terminals and only requires minimal hardware resource on-board satellite.

  2. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  3. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  4. Optimal deployment of resources for maximizing impact in spreading processes

    PubMed Central

    2017-01-01

    The effective use of limited resources for controlling spreading processes on networks is of prime significance in diverse contexts, ranging from the identification of “influential spreaders” for maximizing information dissemination and targeted interventions in regulatory networks, to the development of mitigation policies for infectious diseases and financial contagion in economic systems. Solutions for these optimization tasks that are based purely on topological arguments are not fully satisfactory; in realistic settings, the problem is often characterized by heterogeneous interactions and requires interventions in a dynamic fashion over a finite time window via a restricted set of controllable nodes. The optimal distribution of available resources hence results from an interplay between network topology and spreading dynamics. We show how these problems can be addressed as particular instances of a universal analytical framework based on a scalable dynamic message-passing approach and demonstrate the efficacy of the method on a variety of real-world examples. PMID:28900013

  5. A DNA-based molecular motor that can navigate a network of tracks

    NASA Astrophysics Data System (ADS)

    Wickham, Shelley F. J.; Bath, Jonathan; Katsuda, Yousuke; Endo, Masayuki; Hidaka, Kumi; Sugiyama, Hiroshi; Turberfield, Andrew J.

    2012-03-01

    Synthetic molecular motors can be fuelled by the hydrolysis or hybridization of DNA. Such motors can move autonomously and programmably, and long-range transport has been observed on linear tracks. It has also been shown that DNA systems can compute. Here, we report a synthetic DNA-based system that integrates long-range transport and information processing. We show that the path of a motor through a network of tracks containing four possible routes can be programmed using instructions that are added externally or carried by the motor itself. When external control is used we find that 87% of the motors follow the correct path, and when internal control is used 71% of the motors follow the correct path. Programmable motion will allow the development of computing networks, molecular systems that can sort and process cargoes according to instructions that they carry, and assembly lines that can be reconfigured dynamically in response to changing demands.

  6. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  7. Brain Functional Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: an ICA fMRI Study

    NASA Astrophysics Data System (ADS)

    Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.

    2017-11-01

    Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.

  8. Dynamic network expansion, contraction, and connectivity in the river corridor of mountain stream network

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.

    2017-12-01

    River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge < 1 L s-1). We also demonstrate a discharge-dependence on the dominant controls on network expansion, contraction, and river corridor exchange. Finally, we suggest this parsimonious model will be useful to managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.

  9. Brain structural covariance network centrality in maltreated youth with PTSD and in maltreated youth resilient to PTSD.

    PubMed

    Sun, Delin; Haswell, Courtney C; Morey, Rajendra A; De Bellis, Michael D

    2018-04-10

    Child maltreatment is a major cause of pediatric posttraumatic stress disorder (PTSD). Previous studies have not investigated potential differences in network architecture in maltreated youth with PTSD and those resilient to PTSD. High-resolution magnetic resonance imaging brain scans at 3 T were completed in maltreated youth with PTSD (n = 31), without PTSD (n = 32), and nonmaltreated controls (n = 57). Structural covariance network architecture was derived from between-subject intraregional correlations in measures of cortical thickness in 148 cortical regions (nodes). Interregional positive partial correlations controlling for demographic variables were assessed, and those correlations that exceeded specified thresholds constituted connections in cortical brain networks. Four measures of network centrality characterized topology, and the importance of cortical regions (nodes) within the network architecture were calculated for each group. Permutation testing and principle component analysis method were employed to calculate between-group differences. Principle component analysis is a methodological improvement to methods used in previous brain structural covariance network studies. Differences in centrality were observed between groups. Larger centrality was found in maltreated youth with PTSD in the right posterior cingulate cortex; smaller centrality was detected in the right inferior frontal cortex compared to youth resilient to PTSD and controls, demonstrating network characteristics unique to pediatric maltreatment-related PTSD. Larger centrality was detected in right frontal pole in maltreated youth resilient to PTSD compared to youth with PTSD and controls, demonstrating structural covariance network differences in youth resilience to PTSD following maltreatment. Smaller centrality was found in the left posterior cingulate cortex and in the right inferior frontal cortex in maltreated youth compared to controls, demonstrating attributes of structural covariance network topology that is unique to experiencing maltreatment. This work is the first to identify cortical thickness-based structural covariance network differences between maltreated youth with and without PTSD. We demonstrated network differences in both networks unique to maltreated youth with PTSD and those resilient to PTSD. The networks identified are important for the successful attainment of age-appropriate social cognition, attention, emotional processing, and inhibitory control. Our findings in maltreated youth with PTSD versus those without PTSD suggest vulnerability mechanisms for developing PTSD.

  10. Serials Control System Procedures and Policies.

    ERIC Educational Resources Information Center

    Schlembach, Mary C.

    This document includes procedures and policies for a networked serials control system originally developed at the Grainger Engineering Library Information Center at the University of Illinois at Urbana-Champaign (UIUC). The serials control systems encompass serials processing, public service, and end-user functions. The system employs a…

  11. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays.

    PubMed

    Mejias, Jorge F; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry-also known as "open-loop feedback"-, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.

  12. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays

    PubMed Central

    Mejias, Jorge F.; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain. PMID:24616694

  13. A social network approach to the interplay between adolescents' bullying and likeability over time.

    PubMed

    Sentse, Miranda; Kiuru, Noona; Veenstra, René; Salmivalli, Christina

    2014-09-01

    Our knowledge on adolescents' bullying behavior has rapidly increased over the past decade and it is widely recognized that bullying is a group process and, consequently, context-dependent. Only since recently, though, researchers have had access to statistical programs to study these group processes appropriately. The current 1-year longitudinal study examined the interplay between adolescents' bullying and likeability from a social network perspective. Data came from the evaluation of the Finnish KiVa antibullying program, consisting of students in grades 7-9 (N = 9,183, M age at wave 1 = 13.96 years; 49.2% boys; M classroom size = 19.47) from 37 intervention and 30 control schools. Perceived popularity, gender, and structural network effects were additionally controlled. Longitudinal social network analysis with SIENA revealed that, overall, the higher the students' level of bullying, the less they were liked by their peers. Second, students liked peers with similar levels of bullying and this selection-similarity effect was stronger at low levels of bullying. This selection effect held after controlling for selection-similarity in perceived popularity and gender. Third, students were likely to increase in bullying when they liked peers high on bullying and to decrease in bullying when they liked peers low on bullying. Again, this influence effect held after controlling for the effects of perceived popularity and gender on changes in bullying behavior. No significant differences between control and intervention schools appeared in the effects. The results are discussed in light of their theoretical and methodological implications.

  14. Use of NEXRAD radar-based observations for quality control of in-situ rain gauge measurements

    NASA Astrophysics Data System (ADS)

    Nelson, B. R.; Prat, O.; Leeper, R.

    2017-12-01

    Rain gauge quality control is an often over looked important step in the archive of historical precipitation estimates. We investigate the possibilities that exist for using ground based radar networks for quality control of rain gauge measurements. This process includes the point to pixel comparisons of the rain gauge measurements with NEXRAD observations. There are two NEXRAD based data sets used for reference; the NCEP stage IV and the NWS MRMS gridded data sets. The NCEP stage IV data set is available at 4km hourly for the period 2002-present and includes the radar-gauge bias adjusted precipitation estimate. The NWS MRMS data set includes several different variables such as reflectivity, radar-only estimates, precipitation flag, and radar-gauge bias adjusted precipitation estimates. The latter product provides for much more information to apply quality control such as identification of precipitation type, identification of storm type and Z-R relation. In addition, some of the variables are available at 5-minute scale. The rain gauge networks that are investigated are the Climate Reference Network (CRN), the Fischer-Porter Hourly Precipitation Database (HPD), and the Hydrometeorological Automated Data System (HADS). The CRN network is available at the 5-minute scale, the HPD network is available at the 15-minute and hourly scale, and HADS is available at the hourly scale. The varying scales present challenges for comparisons. However given the higher resolution radar-based products we identify an optimal combination of rain gauge observations that can be compared to the radar-based information. The quality control process focuses on identifying faulty gauges in direct comparison while a deeper investigation focuses on event-based differences from light rain to extreme storms.

  15. Weight-Control Information Network

    MedlinePlus

    ... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Events Health Information Diabetes Digestive ...

  16. On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification.

    PubMed

    Pläschke, Rachel N; Cieslik, Edna C; Müller, Veronika I; Hoffstaedter, Felix; Plachti, Anna; Varikuti, Deepthi P; Goosses, Mareike; Latz, Anne; Caspers, Svenja; Jockwitz, Christiane; Moebus, Susanne; Gruber, Oliver; Eickhoff, Claudia R; Reetz, Kathrin; Heller, Julia; Südmeyer, Martin; Mathys, Christian; Caspers, Julian; Grefkes, Christian; Kalenscher, Tobias; Langner, Robert; Eickhoff, Simon B

    2017-12-01

    Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Bandwidth turbulence control based on flow community structure in the Internet

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng

    2016-10-01

    Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.

  18. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  19. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  20. Experimental and computational analysis of a large protein network that controls fat storage reveals the design principles of a signaling network.

    PubMed

    Al-Anzi, Bader; Arpp, Patrick; Gerges, Sherif; Ormerod, Christopher; Olsman, Noah; Zinn, Kai

    2015-05-01

    An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates "small-world" networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein's position within a module and to the module's relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model.

  1. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    PubMed

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  2. Systems and methods for optimal power flow on a radial network

    DOEpatents

    Low, Steven H.; Peng, Qiuyu

    2018-04-24

    Node controllers and power distribution networks in accordance with embodiments of the invention enable distributed power control. One embodiment includes a node controller including a distributed power control application; a plurality of node operating parameters describing the operating parameter of a node and a set of at least one node selected from the group consisting of an ancestor node and at least one child node; wherein send node operating parameters to nodes in the set of at least one node; receive operating parameters from the nodes in the set of at least one node; calculate a plurality of updated node operating parameters using an iterative process to determine the updated node operating parameters using the node operating parameters that describe the operating parameters of the node and the set of at least one node, where the iterative process involves evaluation of a closed form solution; and adjust node operating parameters.

  3. Neural control of heart rate: the role of neuronal networking.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2011-05-21

    Neural control of heart rate, particularly its sympathetic component, is generally thought to reside primarily in the central nervous system, though accumulating evidence suggests that intrathoracic extracardiac and intrinsic cardiac ganglia are also involved. We propose an integrated model in which the control of heart rate is achieved via three neuronal "levels" representing three control centers instead of the conventional one. Most importantly, in this model control is effected through networking between neuronal populations within and among these layers. The results obtained indicate that networking serves to process demands for systemic blood flow before transducing them to cardiac motor neurons. This provides the heart with a measure of protection against the possibility of "overdrive" implied by the currently held centrally driven system. The results also show that localized networking instabilities can lead to sporadic low frequency oscillations that have the characteristics of the well-known Mayer waves. The sporadic nature of Mayer waves has been unexplained so far and is of particular interest in clinical diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Google matrix of Twitter

    NASA Astrophysics Data System (ADS)

    Frahm, K. M.; Shepelyansky, D. L.

    2012-10-01

    We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.

  5. Out of focus - brain attention control deficits in adult ADHD.

    PubMed

    Salmi, Juha; Salmela, Viljami; Salo, Emma; Mikkola, Katri; Leppämäki, Sami; Tani, Pekka; Hokkanen, Laura; Laasonen, Marja; Numminen, Jussi; Alho, Kimmo

    2018-04-24

    Modern environments are full of information, and place high demands on the attention control mechanisms that allow the selection of information from one (focused attention) or multiple (divided attention) sources, react to changes in a given situation (stimulus-driven attention), and allocate effort according to demands (task-positive and task-negative activity). We aimed to reveal how attention deficit hyperactivity disorder (ADHD) affects the brain functions associated with these attention control processes in constantly demanding tasks. Sixteen adults with ADHD and 17 controls performed adaptive visual and auditory discrimination tasks during functional magnetic resonance imaging (fMRI). Overlapping brain activity in frontoparietal saliency and default-mode networks, as well as in the somato-motor, cerebellar, and striatal areas were observed in all participants. In the ADHD participants, we observed exclusive activity enhancement in the brain areas typically considered to be primarily involved in other attention control functions: During auditory-focused attention, we observed higher activation in the sensory cortical areas of irrelevant modality and the default-mode network (DMN). DMN activity also increased during divided attention in the ADHD group, in turn decreasing during a simple button-press task. Adding irrelevant stimulation resulted in enhanced activity in the salience network. Finally, the irrelevant distractors that capture attention in a stimulus-driven manner activated dorsal attention networks and the cerebellum. Our findings suggest that attention control deficits involve the activation of irrelevant sensory modality, problems in regulating the level of attention on demand, and may encumber top-down processing in cases of irrelevant information. Copyright © 2018. Published by Elsevier B.V.

  6. Modeling sediment transport after ditch network maintenance of a forested peatland

    NASA Astrophysics Data System (ADS)

    Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.

    2016-11-01

    Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.

  7. Intelligent manipulation technique for multi-branch robotic systems

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  8. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  9. The Deep Space Network information system in the year 2000

    NASA Technical Reports Server (NTRS)

    Markley, R. W.; Beswick, C. A.

    1992-01-01

    The Deep Space Network (DSN), the largest, most sensitive scientific communications and radio navigation network in the world, is considered. Focus is made on the telemetry processing, monitor and control, and ground data transport architectures of the DSN ground information system envisioned for the year 2000. The telemetry architecture will be unified from the front-end area to the end user. It will provide highly automated monitor and control of the DSN, automated configuration of support activities, and a vastly improved human interface. Automated decision support systems will be in place for DSN resource management, performance analysis, fault diagnosis, and contingency management.

  10. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  11. Kinetic signature of fractal-like filament networks formed by orientational linear epitaxy.

    PubMed

    Hwang, Wonmuk; Eryilmaz, Esma

    2014-07-11

    We study a broad class of epitaxial assembly of filament networks on lattice surfaces. Over time, a scale-free behavior emerges with a 2.5-3 power-law exponent in filament length distribution. Partitioning between the power-law and exponential behaviors in a network can be used to find the stage and kinetic parameters of the assembly process. To analyze real-world networks, we develop a computer program that measures the network architecture in experimental images. Application to triaxial networks of collagen fibrils shows quantitative agreement with our model. Our unifying approach can be used for characterizing and controlling the network formation that is observed across biological and nonbiological systems.

  12. Disrupted reward and cognitive control networks contribute to anhedonia in depression.

    PubMed

    Gong, Liang; He, Cancan; Zhang, Haisan; Zhang, Hongxing; Zhang, Zhijun; Xie, Chunming

    2018-08-01

    Neuroimaging studies have identified that anhedonia, a core feature of major depressive disorder (MDD), is associated with dysfunction in reward and cognitive control processing. However, it is still not clear how the reward network (β-network) and the cognitive control network (δ-network) are linked to biased anhedonia in MDD patients. Sixty-eight MDD patients and 64 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. A 2*2 ANCOVA analysis was used to explore the differences in the nucleus accumbens-based, voxelwise functional connectivity (FC) between the groups. Then, the β- and δ-networks were constructed, and the FC intensities were compared within and between theβ- and δ-networks across all subjects. Multiple linear regression analyses were also employed to investigate the relationships between the neural features of the β- and δ-networks and anhedonia in MDD patients. Compared to the CN subjects, the MDD patients showed synergistic functional decoupling in both the β- and δ-networks, as well as decreased FC intensities in the intra- and inter- β- and δ-networks. In addition, the FC in both the β- and δ-networks was significantly correlated with anhedonia severity in the MDD patients. Importantly, the integrated neural features of the β- and δ-networks could more precisely predict anhedonic symptoms. These findings initially demonstrated that the imbalance between β- and δ-network activity successfully predicted anhedonia severity and suggested that the neural features of both the β- and δ-networks could represent a fundamental mechanism that underlies anhedonia in MDD patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation

    PubMed Central

    Marzetti, Laura; Di Lanzo, Claudia; Zappasodi, Filippo; Chella, Federico; Raffone, Antonino; Pizzella, Vittorio

    2014-01-01

    According to several conceptualizations of meditation, the interplay between brain systems associated to self-related processing, attention and executive control is crucial for meditative states and related traits. We used magnetoencephalography (MEG) to investigate such interplay in a highly selected group of “virtuoso” meditators (Theravada Buddhist monks), with long-term training in the two main meditation styles: focused attention (FA) and open monitoring (OM) meditation. Specifically, we investigated the differences between FA meditation, OM meditation and resting state in the coupling between the posterior cingulate cortex, core node of the Default Mode Network (DMN) implicated in mind wandering and self-related processing, and the whole brain, with a recently developed phase coherence approach. Our findings showed a state dependent coupling of posterior cingulate cortex (PCC) to nodes of the DMN and of the executive control brain network in the alpha frequency band (8–12 Hz), related to different attentional and cognitive control processes in FA and OM meditation, consistently with the putative role of alpha band synchronization in the functional mechanisms for attention and consciousness. The coupling of PCC with left medial prefrontal cortex (lmPFC) and superior frontal gyrus characterized the contrast between the two meditation styles in a way that correlated with meditation expertise. These correlations may be related to a higher mindful observing ability and a reduced identification with ongoing mental activity in more expert meditators. Notably, different styles of meditation and different meditation expertise appeared to modulate the dynamic balance between fronto-parietal (FP) and DMN networks. Our results support the idea that the interplay between the DMN and the FP network in the alpha band is crucial for the transition from resting state to different meditative states. PMID:25360102

  14. A method for functional network connectivity among spatially independent resting-state components in schizophrenia.

    PubMed

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2008-02-15

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.

  15. From global agenda-setting to domestic implementation: successes and challenges of the global health network on tobacco control.

    PubMed

    Gneiting, Uwe

    2016-04-01

    Global policy attention to tobacco control has increased significantly since the 1990 s and culminated in the first international treaty negotiated under the auspices of the World Health Organization--the Framework Convention on Tobacco Control (FCTC). Although the political process that led to the creation of the FCTC has been extensively researched, the FCTC's progression from an aspirational treaty towards a global health governance framework with tangible policy effects within FCTC member countries has not been well-understood to date. This article analyses the role of the global health network of tobacco control advocates and scientists, which formed during the FCTC negotiations during the late 1990 s, in translating countries' commitment to the FCTC into domestic policy change. By comparing the network's influence around two central tobacco control interventions (smoke-free environments and taxation), the study identifies several scope conditions, which have shaped the network's effectiveness around the FCTC's implementation: the complexity of the policy issue and the relative importance of non-health expertise, the required scope of domestic political buy-in, the role of the general public as network allies, and the strength of policy opposition. These political factors had a greater influence on the network's success than the evidence base for the effectiveness of tobacco control interventions. The network's variable success points to a trade-off faced by global health networks between their need to maintain internal cohesion and their ability to form alliances with actors in their social environment. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.

  16. Persistence and storage of activity patterns in spiking recurrent cortical networks: modulation of sigmoid signals by after-hyperpolarization currents and acetylcholine

    PubMed Central

    Palma, Jesse; Grossberg, Stephen; Versace, Massimiliano

    2012-01-01

    Many cortical networks contain recurrent architectures that transform input patterns before storing them in short-term memory (STM). Theorems in the 1970's showed how feedback signal functions in rate-based recurrent on-center off-surround networks control this process. A sigmoid signal function induces a quenching threshold below which inputs are suppressed as noise and above which they are contrast-enhanced before pattern storage. This article describes how changes in feedback signaling, neuromodulation, and recurrent connectivity may alter pattern processing in recurrent on-center off-surround networks of spiking neurons. In spiking neurons, fast, medium, and slow after-hyperpolarization (AHP) currents control sigmoid signal threshold and slope. Modulation of AHP currents by acetylcholine (ACh) can change sigmoid shape and, with it, network dynamics. For example, decreasing signal function threshold and increasing slope can lengthen the persistence of a partially contrast-enhanced pattern, increase the number of active cells stored in STM, or, if connectivity is distance-dependent, cause cell activities to cluster. These results clarify how cholinergic modulation by the basal forebrain may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract features, as predicted by Adaptive Resonance Theory. The analysis includes global, distance-dependent, and interneuron-mediated circuits. With an appropriate degree of recurrent excitation and inhibition, spiking networks maintain a partially contrast-enhanced pattern for 800 ms or longer after stimuli offset, then resolve to no stored pattern, or to winner-take-all (WTA) stored patterns with one or multiple winners. Strengthening inhibition prolongs a partially contrast-enhanced pattern by slowing the transition to stability, while strengthening excitation causes more winners when the network stabilizes. PMID:22754524

  17. Implementation of orthogonal frequency division multiplexing (OFDM) and advanced signal processing for elastic optical networking in accordance with networking and transmission constraints

    NASA Astrophysics Data System (ADS)

    Johnson, Stanley

    An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I experimentally demonstrate optical re-timing of a 10.7 Gb/s data stream utilizing the property of bound soliton pairs (or "soliton molecules") to relax to an equilibrium temporal separation after propagation through a nonlinear dispersion alternating fiber span. Pulses offset up to 16 ps from bit center are successfully re-timed. The optical re-timing scheme studied here is a good example of signal processing in the optical domain and such a technique can overcome the bandwidth bottleneck present in DSP. An enhanced version of this re-timing scheme is analyzed using numerical simulations.

  18. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.

    PubMed

    Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar

    2017-12-26

    Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.

  19. Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder

    PubMed Central

    Zhang, Tijiang; Wang, Jinhui; Yang, Yanchun; Wu, Qizhu; Li, Bin; Chen, Long; Yue, Qiang; Tang, Hehan; Yan, Chaogan; Lui, Su; Huang, Xiaoqi; Chan, Raymond C.K.; Zang, Yufeng; He, Yong; Gong, Qiyong

    2011-01-01

    Background Obsessive–compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD–related alterations in functional connectivity patterns in the brain’s top–down control network. Methods We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level–dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top–down control and then analyzed using graph theory-based approaches. Results Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain’s control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD. Limitations The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated. Conclusion Our preliminary results suggest that the organizational patterns of intrinsic brain activity in the control networks are altered in patients with OCD and thus provide empirical evidence for aberrant functional connectivity in the large-scale brain systems in people with this disorder. PMID:20964957

  20. Integrated Business Process Adaptation towards Friction-Free Business-to-Business Collaboration

    ERIC Educational Resources Information Center

    Shan, Zhe

    2011-01-01

    One key issue in process-aware E-commerce collaboration is the orchestration of business processes of multiple business partners throughout a supply chain network in an automated and seamless way. Since each partner has its own internal processes with different control flow structures and message interfaces, the real challenge lies in verifying…

  1. [Schizophrenia and semantic priming effects].

    PubMed

    Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S

    2006-01-01

    This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which influence on the degree of involvement of controlled processes and therefore prevent to really assess its functioning. In addition, manipulations of the relation between prime and target (semantic distance, type of semantic relation and strength of semantic relation) seem to influence reaction times. However, the relation between prime and target (mediated priming) frequently used could not be the most relevant relation to understand the way of spreading of activation in semantic network in patients with schizophrenia. Finally, patients with formal thought disorders present particularly high priming effects relative to controls. These abnormal semantic priming effects could reflect a dysfunction of automatic spreading activation process and consequently an exaggerated diffusion of activation in the semantic network. In the future, the inclusion of different groups schizophrenic subjects could allow us to determine whether semantic memory disorders are pathognomonic or specific of a particular group of patients with schizophrenia.

  2. A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.

    2012-01-01

    Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

  3. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  4. Hyper-modulation of brain networks by the amygdala among women with Borderline Personality Disorder: Network signatures of affective interference during cognitive processing.

    PubMed

    Soloff, Paul H; Abraham, Kristy; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A

    2017-05-01

    Emotion dysregulation is a core characteristic of patients with Borderline Personality Disorder (BPD), and is often attributed to an imbalance in fronto-limbic network function. Hyperarousal of amygdala, especially in response to negative affective stimuli, results in affective interference with cognitive processing of executive functions. Clinical consequences include the impulsive-aggression, suicidal and self-injurious behaviors which characterize BPD. Dysfunctional interactions between amygdala and its network targets have not been well characterized during cognitive task performance. Using psychophysiological interaction analysis (PPI), we mapped network profiles of amygdala interaction with key regulatory regions during a Go No-Go task, modified to use negative, positive and neutral Ekman faces as targets. Fifty-six female subjects, 31 BPD and 25 healthy controls (HC), completed the affectively valenced Go No-Go task during fMRI scanning. In the negative affective condition, the amygdala exerted greater modulation of its targets in BPD compared to HC subjects in Rt. OFC, Rt. dACC, Rt. Parietal cortex, Rt. Basal Ganglia, and Rt. dlPFC. Across the spectrum of affective contrasts, hypermodulation in BPD subjects observed the following ordering: Negative > Neutral > Positive contrast. The amygdala seed exerted modulatory effects on specific target regions important in processing response inhibition and motor impulsiveness. The vulnerability of BPD subjects to affective interference with impulse control may be due to specific network dysfunction related to amygdala hyper-arousal and its effects on prefrontal regulatory regions such as the OFC and dACC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Photonic reservoir computing: a new approach to optical information processing

    NASA Astrophysics Data System (ADS)

    Vandoorne, Kristof; Fiers, Martin; Verstraeten, David; Schrauwen, Benjamin; Dambre, Joni; Bienstman, Peter

    2010-06-01

    Despite ever increasing computational power, recognition and classification problems remain challenging to solve. Recently, advances have been made by the introduction of the new concept of reservoir computing. This is a methodology coming from the field of machine learning and neural networks that has been successfully used in several pattern classification problems, like speech and image recognition. Thus far, most implementations have been in software, limiting their speed and power efficiency. Photonics could be an excellent platform for a hardware implementation of this concept because of its inherent parallelism and unique nonlinear behaviour. Moreover, a photonic implementation offers the promise of massively parallel information processing with low power and high speed. We propose using a network of coupled Semiconductor Optical Amplifiers (SOA) and show in simulation that it could be used as a reservoir by comparing it to conventional software implementations using a benchmark speech recognition task. In spite of the differences with classical reservoir models, the performance of our photonic reservoir is comparable to that of conventional implementations and sometimes slightly better. As our implementation uses coherent light for information processing, we find that phase tuning is crucial to obtain high performance. In parallel we investigate the use of a network of photonic crystal cavities. The coupled mode theory (CMT) is used to investigate these resonators. A new framework is designed to model networks of resonators and SOAs. The same network topologies are used, but feedback is added to control the internal dynamics of the system. By adjusting the readout weights of the network in a controlled manner, we can generate arbitrary periodic patterns.

  6. Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences

    PubMed Central

    Madore, Kevin P.; Szpunar, Karl K.; Addis, Donna Rose; Schacter, Daniel L.

    2016-01-01

    Recent behavioral work suggests that an episodic specificity induction—brief training in recollecting the details of a past experience—enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus. PMID:27601666

  7. A Decentralized Framework for Multi-Agent Robotic Systems

    PubMed Central

    2018-01-01

    Over the past few years, decentralization of multi-agent robotic systems has become an important research area. These systems do not depend on a central control unit, which enables the control and assignment of distributed, asynchronous and robust tasks. However, in some cases, the network communication process between robotic agents is overlooked, and this creates a dependency for each agent to maintain a permanent link with nearby units to be able to fulfill its goals. This article describes a communication framework, where each agent in the system can leave the network or accept new connections, sending its information based on the transfer history of all nodes in the network. To this end, each agent needs to comply with four processes to participate in the system, plus a fifth process for data transfer to the nearest nodes that is based on Received Signal Strength Indicator (RSSI) and data history. To validate this framework, we use differential robotic agents and a monitoring agent to generate a topological map of an environment with the presence of obstacles. PMID:29389849

  8. Distributed framework for dyanmic telescope and instrument control

    NASA Astrophysics Data System (ADS)

    Ames, Troy J.; Case, Lynne

    2003-02-01

    Traditionally, instrument command and control systems have been developed specifically for a single instrument. Such solutions are frequently expensive and are inflexible to support the next instrument development effort. NASA Goddard Space Flight Center is developing an extensible framework, known as Instrument Remote Control (IRC) that applies to any kind of instrument that can be controlled by a computer. IRC combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms. The IRC framework provides the ability to communicate to components anywhere on a network using the JXTA protocol for dynamic discovery of distributed components. JXTA (see http://www.jxta.org) is a generalized protocol that allows any devices connected by a network to communicate in a peer-to-peer manner. IRC uses JXTA to advertise a devices IML and discover devices of interest on the network. Devices can join or leave the network and thus join or leave the instrument control environment of IRC. Currently, several astronomical instruments are working with the IRC development team to develop custom components for IRC to control their instruments. These instruments include: High resolution Airborne Wideband Camera (HAWC), a first light instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA); Submillimeter And Far Infrared Experiment (SAFIRE), a Principal Investigator instrument for SOFIA; and Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE), a prototype of the SAFIRE instrument, used at the Caltech Submillimeter Observatory (CSO). Most recently, we have been working with the Submillimetre High

  9. Input reconstruction for networked control systems subject to deception attacks and data losses on control signals

    NASA Astrophysics Data System (ADS)

    Keller, J. Y.; Chabir, K.; Sauter, D.

    2016-03-01

    State estimation of stochastic discrete-time linear systems subject to unknown inputs or constant biases has been widely studied but no work has been dedicated to the case where a disturbance switches between unknown input and constant bias. We show that such disturbance can affect a networked control system subject to deception attacks and data losses on the control signals transmitted by the controller to the plant. This paper proposes to estimate the switching disturbance from an augmented state version of the intermittent unknown input Kalman filter recently developed by the authors. Sufficient stochastic stability conditions are established when the arrival binary sequence of data losses follows a Bernoulli random process.

  10. An Ontology for Identifying Cyber Intrusion Induced Faults in Process Control Systems

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James; Guan, Jian

    This paper presents an ontological framework that permits formal representations of process control systems, including elements of the process being controlled and the control system itself. A fault diagnosis algorithm based on the ontological model is also presented. The algorithm can identify traditional process elements as well as control system elements (e.g., IP network and SCADA protocol) as fault sources. When these elements are identified as a likely fault source, the possibility exists that the process fault is induced by a cyber intrusion. A laboratory-scale distillation column is used to illustrate the model and the algorithm. Coupled with a well-defined statistical process model, this fault diagnosis approach provides cyber security enhanced fault diagnosis information to plant operators and can help identify that a cyber attack is underway before a major process failure is experienced.

  11. Process for anodizing a robotic device

    DOEpatents

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  12. Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy.

    PubMed

    Pashayi, Kamyar; Fard, Hafez Raeisi; Lai, Fengyuan; Iruvanti, Sushumna; Plawsky, Joel; Borca-Tasciuc, Theodorian

    2014-04-21

    We report the formation of high aspect ratio nanoscale tree-shape silver networks in epoxy, at low temperatures (<150 °C) and atmospheric pressures, that are correlated to a ∼200 fold enhancement of thermal conductivity (κ) of the nanocomposite compared to the polymer matrix. The networks form through a three-step process comprising of self-assembly by diffusion limited aggregation of polyvinylpyrrolidone (PVP) coated nanoparticles, removal of PVP coating from the surface, and sintering of silver nanoparticles in high aspect ratio networked structures. Controlling self-assembly and sintering by carefully designed multistep temperature and time processing leads to κ of our silver nanocomposites that are up to 300% of the present state of the art polymer nanocomposites at similar volume fractions. Our investigation of the κ enhancements enabled by tree-shaped network nanocomposites provides a basis for the development of new polymer nanocomposites for thermal transport and storage applications.

  13. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

  14. Modeling of the ground-to-SSFMB link networking features using SPW

    NASA Technical Reports Server (NTRS)

    Watson, John C.

    1993-01-01

    This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.

  15. Development of the Global Measles Laboratory Network.

    PubMed

    Featherstone, David; Brown, David; Sanders, Ray

    2003-05-15

    The routine reporting of suspected measles cases and laboratory testing of samples from these cases is the backbone of measles surveillance. The Global Measles Laboratory Network (GMLN) has developed standards for laboratory confirmation of measles and provides training resources for staff of network laboratories, reference materials and expertise for the development and quality control of testing procedures, and accurate information for the Measles Mortality Reduction and Regional Elimination Initiative. The GMLN was developed along the lines of the successful Global Polio Laboratory Network, and much of the polio laboratory infrastructure was utilized for measles. The GMLN has developed as countries focus on measles control activities following successful eradication of polio. Currently more than 100 laboratories are part of the global network and follow standardized testing and reporting procedures. A comprehensive laboratory accreditation process will be introduced in 2002 with six quality assurance and performance indicators.

  16. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    PubMed

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  17. Control strategies of 3-cell Central Pattern Generator via global stimuli

    NASA Astrophysics Data System (ADS)

    Lozano, Álvaro; Rodríguez, Marcos; Barrio, Roberto

    2016-03-01

    The study of the synchronization patterns of small neuron networks that control several biological processes has become an interesting growing discipline. Some of these synchronization patterns of individual neurons are related to some undesirable neurological diseases, and they are believed to play a crucial role in the emergence of pathological rhythmic brain activity in different diseases, like Parkinson’s disease. We show how, with a suitable combination of short and weak global inhibitory and excitatory stimuli over the whole network, we can switch between different stable bursting patterns in small neuron networks (in our case a 3-neuron network). We develop a systematic study showing and explaining the effects of applying the pulses at different moments. Moreover, we compare the technique on a completely symmetric network and on a slightly perturbed one (a much more realistic situation). The present approach of using global stimuli may allow to avoid undesirable synchronization patterns with nonaggressive stimuli.

  18. Digital intelligent booster for DCC miniature train networks

    NASA Astrophysics Data System (ADS)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  19. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

  20. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.

    PubMed

    Chein, Jason M; Schneider, Walter

    2005-12-01

    Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.

  1. Using Bayesian networks to support decision-focused information retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, P.; Elsaesser, C.; Seligman, L.

    This paper has described an approach to controlling the process of pulling data/information from distributed data bases in a way that is specific to a persons specific decision making context. Our prototype implementation of this approach uses a knowledge-based planner to generate a plan, an automatically constructed Bayesian network to evaluate the plan, specialized processing of the network to derive key information items that would substantially impact the evaluation of the plan (e.g., determine that replanning is needed), automated construction of Standing Requests for Information (SRIs) which are automated functions that monitor changes and trends in distributed data base thatmore » are relevant to the key information items. This emphasis of this paper is on how Bayesian networks are used.« less

  2. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  3. Communication Dynamics in Finite Capacity Social Networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim

    2012-10-01

    In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.

  4. Control Systems Cyber Security:Defense in Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Kuipers; Mark Fabro

    2006-05-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: Maintenance of various field devices, telemetry collection, and/or industrial-level process systems Access to facilities via remote data link or modem Public facing services for customer or corporate operations A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  5. Control Systems Cyber Security: Defense-in-Depth Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Fabro

    2007-10-01

    Information infrastructures across many public and private domains share several common attributes regarding IT deployments and data communications. This is particularly true in the control systems domain. A majority of the systems use robust architectures to enhance business and reduce costs by increasing the integration of external, business, and control system networks. However, multi-network integration strategies often lead to vulnerabilities that greatly reduce the security of an organization, and can expose mission-critical control systems to cyber threats. This document provides guidance and direction for developing ‘defense-in-depth’ strategies for organizations that use control system networks while maintaining a multi-tier information architecturemore » that requires: • Maintenance of various field devices, telemetry collection, and/or industrial-level process systems • Access to facilities via remote data link or modem • Public facing services for customer or corporate operations • A robust business environment that requires connections among the control system domain, the external Internet, and other peer organizations.« less

  6. Multirate control with incomplete information over Profibus-DP network

    NASA Astrophysics Data System (ADS)

    Salt, J.; Casanova, V.; Cuenca, A.; Pizá, R.

    2014-07-01

    When a process field bus-decentralized peripherals (Profibus-DP) network is used in an industrial environment, a deterministic behaviour is usually claimed. However, due to some concerns such as bandwidth limitations, lack of synchronisation among different clocks and existence of time-varying delays, a more complex problem must be faced. This problem implies the transmission of irregular and, even, random sequences of incomplete information. The main consequence of this issue is the appearance of different sampling periods at different network devices. In this paper, this aspect is checked by means of a detailed Profibus-DP timescale study. In addition, in order to deal with the different periods, a delay-dependent dual-rate proportional-integral-derivative control is introduced. Stability for the proposed control system is analysed in terms of linear matrix inequalities.

  7. Self-organizing sensing and actuation for automatic control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, George Shu-Xing

    A Self-Organizing Process Control Architecture is introduced with a Sensing Layer, Control Layer, Actuation Layer, Process Layer, as well as Self-Organizing Sensors (SOS) and Self-Organizing Actuators (SOA). A Self-Organizing Sensor for a process variable with one or multiple input variables is disclosed. An artificial neural network (ANN) based dynamic modeling mechanism as part of the Self-Organizing Sensor is described. As a case example, a Self-Organizing Soft-Sensor for CFB Boiler Bed Height is presented. Also provided is a method to develop a Self-Organizing Sensor.

  8. A distributed computing approach to mission operations support. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1975-01-01

    Computing mission operation support includes orbit determination, attitude processing, maneuver computation, resource scheduling, etc. The large-scale third-generation distributed computer network discussed is capable of fulfilling these dynamic requirements. It is shown that distribution of resources and control leads to increased reliability, and exhibits potential for incremental growth. Through functional specialization, a distributed system may be tuned to very specific operational requirements. Fundamental to the approach is the notion of process-to-process communication, which is effected through a high-bandwidth communications network. Both resource-sharing and load-sharing may be realized in the system.

  9. A feedback control model for network flow with multiple pure time delays

    NASA Technical Reports Server (NTRS)

    Press, J.

    1972-01-01

    A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.

  10. Application of an Adaptive Clustering Network to Flight Control of a Fighter Aircraft. Phase 1

    DTIC Science & Technology

    1991-12-19

    whether the underlying neurodynamics are appropriate to the dynamics of the controlled element as well as the broad objectives of the control process...Dept. of Brain & Cognitive Sciences ........................ 1 Massachusetts Institute of Technology Cambridge, MA 02139 Attn: Dr. M. Jordan Dept. of

  11. Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.

    PubMed

    Abraham, Anna

    2014-01-01

    Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.

  12. Controlled information destruction: the final frontier in preserving information security for every organisation

    NASA Astrophysics Data System (ADS)

    Curiac, Daniel-Ioan; Pachia, Mihai

    2015-05-01

    Information security represents the cornerstone of every data processing system that resides in an organisation's trusted network, implementing all necessary protocols, mechanisms and policies to be one step ahead of possible threats. Starting from the need to strengthen the set of security services, in this article we introduce a new and innovative process named controlled information destruction (CID) that is meant to secure sensitive data that are no longer needed for the organisation's future purposes but would be very damaging if revealed. The disposal of this type of data has to be controlled carefully in order to delete not only the information itself but also all its splinters spread throughout the network, thus denying any possibility of recovering the information after its alleged destruction. This process leads to a modified model of information assurance and also reconfigures the architecture of any information security management system. The scheme we envisioned relies on a reshaped information lifecycle, which reveals the impact of the CID procedure directly upon the information states.

  13. Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    PubMed Central

    Mäkinen, Ville-Petteri; Civelek, Mete; Meng, Qingying; Zhang, Bin; Zhu, Jun; Levian, Candace; Huan, Tianxiao; Segrè, Ayellet V.; Ghosh, Sujoy; Vivar, Juan; Nikpay, Majid; Stewart, Alexandre F. R.; Nelson, Christopher P.; Willenborg, Christina; Erdmann, Jeanette; Blakenberg, Stefan; O'Donnell, Christopher J.; März, Winfried; Laaksonen, Reijo; Epstein, Stephen E.; Kathiresan, Sekar; Shah, Svati H.; Hazen, Stanley L.; Reilly, Muredach P.; Lusis, Aldons J.; Samani, Nilesh J.; Schunkert, Heribert; Quertermous, Thomas; McPherson, Ruth; Yang, Xia; Assimes, Themistocles L.

    2014-01-01

    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions. PMID:25033284

  14. The relationship between context, structure, and processes with outcomes of 6 regional diabetes networks in Europe

    PubMed Central

    Elkhuizen, Sylvia; van Dijk, Mattees; Vanhala, Antero; Karampli, Eleftheria; Faubel, Raquel; Forte, Paul; Coroian, Elena

    2018-01-01

    Background While health service provisioning for the chronic condition Type 2 Diabetes (T2D) often involves a network of organisations and professionals, most evidence on the relationships between the structures and processes of service provisioning and the outcomes considers single organisations or solo practitioners. Extending Donabedian’s Structure-Process-Outcome (SPO) model, we investigate how differences in quality of life, effective coverage of diabetes, and service satisfaction are associated with differences in the structures, processes, and context of T2D services in six regions in Finland, Germany, Greece, Netherlands, Spain, and UK. Methods Data collection consisted of: a) systematic modelling of provider network’s structures and processes, and b) a cross-sectional survey of patient reported outcomes and other information. The survey resulted in data from 1459 T2D patients, during 2011–2012. Stepwise linear regression models were used to identify how independent cumulative proportion of variance in quality of life and service satisfaction are related to differences in context, structure and process. The selected context, structure and process variables are based on Donabedian’s SPO model, a service quality research instrument (SERVQUAL), and previous organization and professional level evidence. Additional analysis deepens the possible bidirectional relation between outcomes and processes. Results The regression models explain 44% of variance in service satisfaction, mostly by structure and process variables (such as human resource use and the SERVQUAL dimensions). The models explained 23% of variance in quality of life between the networks, much of which is related to contextual variables. Our results suggest that effectiveness of A1c control is negatively correlated with process variables such as total hours of care provided per year and cost of services per year. Conclusions While the selected structure and process variables explain much of the variance in service satisfaction, this is less the case for quality of life. Moreover, it appears that the effect of the clinical outcome A1c control on processes is stronger than the other way around, as poorer control seems to relate to more service use, and higher cost. The standardized operational models used in this research prove to form a basis for expanding the network level evidence base for effective T2D service provisioning. PMID:29447220

  15. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning

    PubMed Central

    Voss, Joel L.; Gonsalves, Brian D.; Federmeier, Kara D.; Tranel, Daniel; Cohen, Neal J.

    2010-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. We manipulated how much control subjects had over the position of a moving window through which they studied objects and their locations, in order to elucidate the cognitive and neural determinants of exploratory behaviors. Our behavioral, neuropsychological, and neuroimaging data indicate volitional control benefits memory performance, and is linked to a brain network centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, suggesting that volitional control optimizes interactions among specialized neural systems via the hippocampus. Memory is therefore an active process intrinsically linked to behavior. Furthermore, brain structures typically seen as passive participants in memory encoding (e.g., the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds. PMID:21102449

  16. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning.

    PubMed

    Voss, Joel L; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Daniel; Cohen, Neal J

    2011-01-01

    Exploratory behaviors during learning determine what is studied and when, helping to optimize subsequent memory performance. To elucidate the cognitive and neural determinants of exploratory behaviors, we manipulated the control that human subjects had over the position of a moving window through which they studied objects and their locations. Our behavioral, neuropsychological and neuroimaging data indicate that volitional control benefits memory performance and is linked to a brain network that is centered on the hippocampus. Increases in correlated activity between the hippocampus and other areas were associated with specific aspects of memory, which suggests that volitional control optimizes interactions among specialized neural systems through the hippocampus. Memory is therefore an active process that is intrinsically linked to behavior. Furthermore, brain structures that are typically seen as passive participants in memory encoding (for example, the hippocampus) are actually part of an active network that controls behavior dynamically as it unfolds.

  17. Epidemic spreading in annealed directed networks: susceptible-infected-susceptible model and contact process.

    PubMed

    Kwon, Sungchul; Kim, Yup

    2013-01-01

    We investigate epidemic spreading in annealed directed scale-free networks with the in-degree (k) distribution P(in)(k)~k(-γ(in)) and the out-degree (ℓ) distribution, P(out)(ℓ)~ℓ(-γ(out)). The correlation of each node on the networks is controlled by the probability r(0≤r≤1) in two different algorithms, the so-called k and ℓ algorithms. For r=1, the k algorithm gives =, whereas the ℓ algorithm gives =<ℓ(2)>. For r=0, =<ℓ> for both algorithms. As the prototype of epidemic spreading, the susceptible-infected-susceptible model and contact process on the networks are analyzed using the heterogeneous mean-field theory and Monte Carlo simulations. The directedness of links and the correlation of the network are found to play important roles in the spreading, so that critical behaviors of both models are distinct from those on undirected scale-free networks.

  18. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  19. The informational architecture of the cell.

    PubMed

    Walker, Sara Imari; Kim, Hyunju; Davies, Paul C W

    2016-03-13

    We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life. © 2016 The Author(s).

  20. The small heat shock protein Hsp27 affects assembly dynamics and structure of keratin intermediate filament networks.

    PubMed

    Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R

    2013-10-15

    The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Top