Design Considerations | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Towards a systems approach to risk considerations for concurrent design
NASA Technical Reports Server (NTRS)
Meshkat, Leila; Oberto, Robert E.
2004-01-01
This paper describes the new process used by the Project Design Center at NASA's Jet Propulsion Laboratory for the identification, assessment and communication of risk elements throughout the lifecycle of a mission design. This process includes a software tool, 'RAP' that collects and communicates risk information between the various designers and a 'risk expert' who mediates this process. The establishment of this process is an attempt towards the systematic consideration of risk in the design decision making process. Using this process, we are able to better keep track of the risks associated with the design decisions. Furthermore, it helps us develop better risk profiles for the studies under consideration. We aim to refine and expand the current process to enable more thorough risk analysis capabilities in the future.
METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS
The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...
Chang, Joonho; Moon, Seung Ki; Jung, Kihyo; Kim, Wonmo; Parkinson, Matthew; Freivalds, Andris; Simpson, Timothy W; Baik, Seon Pill
2018-05-01
This study presents usability considerations and solutions for the design of glasses-type wearable computer displays and examines their effectiveness in a case study. Design countermeasures were investigated by a four-step design process: (1) preliminary design analysis; (2) design idea generation; (3) final design selection; and (4) virtual fitting trial. Three design interventions were devised from the design process: (1) weight balance to reduce pressure concentrated on the nose, (2) compliant temples to accommodate diverse head sizes and (3) a hanger mechanism to help spectacle users hang their wearable display on their eye glasses. To investigate their effectiveness, in the case study, the novel 3D glasses adopting the three interventions were compared with two existing 3D glasses in terms of neck muscle fatigue and subjective discomfort rating. While neck muscle fatigue was not significantly different among the three glasses (p = 0.467), the novel glasses had significantly smaller discomfort ratings (p = 0.009). Relevance to Industry: A four-step design process identified usability considerations and solutions for the design of glasses-type wearable computer displays. A novel 3D glasses was proposed through the process and its effectiveness was validated. The results identify design considerations and opportunities relevant to the emerging wearable display industry.
Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.
2009-01-01
This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.
12 CFR 1320.10 - Factors for consideration in designations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... FINANCIAL MARKET UTILITIES Consultations, Determinations and Hearings § 1320.10 Factors for consideration in designations. In making any proposed or final determination with respect to whether a financial market utility... consideration: (a) The aggregate monetary value of transactions processed by the financial market utility...
12 CFR 1320.10 - Factors for consideration in designations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... MARKET UTILITIES Consultations, Determinations and Hearings § 1320.10 Factors for consideration in designations. In making any proposed or final determination with respect to whether a financial market utility... consideration: (a) The aggregate monetary value of transactions processed by the financial market utility...
12 CFR 1320.10 - Factors for consideration in designations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... MARKET UTILITIES Consultations, Determinations and Hearings § 1320.10 Factors for consideration in designations. In making any proposed or final determination with respect to whether a financial market utility... consideration: (a) The aggregate monetary value of transactions processed by the financial market utility...
Modelling and simulation of a robotic work cell
NASA Astrophysics Data System (ADS)
Sękala, A.; Gwiazda, A.; Kost, G.; Banaś, W.
2017-08-01
The subject of considerations presented in this work concerns the designing and simulation of a robotic work cell. The designing of robotic cells is the process of synergistic combining the components in the group, combining this groups into specific, larger work units or dividing the large work units into small ones. Combinations or divisions are carried out in the terms of the needs of realization the assumed objectives to be performed in these unit. The designing process bases on the integrated approach what lets to take into consideration all needed elements of this process. Each of the elements of a design process could be an independent design agent which could tend to obtain its objectives.
Selection Process for New Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Selection Process for Replacement Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Design Guidance for New Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Design Guidance for Replacement Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Optimum Design of High Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1992-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.
Gas Fills | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Understanding Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Books & Publications | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Efficient Windows Collaborative | Home
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
DESIGNING PROCESSES FOR ENVIRONMENTAL PROBLEMS
Designing for the environment requires consideration of environmental impacts. The Generalized WAR Algorithm is the methodology that allows the user to evaluate the potential environmental impact of the design of a chemical process. In this methodology, chemicals are assigned val...
Resources | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Provide Views | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Links | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Reducing Condensation | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Reduced Fading | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
EWC Membership | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Visible Transmittance | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
EWC Members | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Financing & Incentives | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
WORKSHOP ON ENVIRONMENTALLY CONSCIOUS CHEMICAL PROCESS DESIGN
To encourage the consideration of environmental issues during chemical process design, the USEPA has developed techniques and software tools to evaluate the relative environmental impact of a chemical process. These techniques and tools aid in the risk management process by focus...
Benefits of Efficient Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Increased Light & View | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Windows for New Construction | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Performance Standards for Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Window Selection Tool | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Air Leakage (AL) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
State Fact Sheets | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Fact Sheets & Publications | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Condensation Resistance (CR) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Assessing Window Replacement Options | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
National Fenestration Rating Council (NFRC) | Efficient Windows
Collaborative Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring
Low Conductance Spacers | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Energy & Cost Savings | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
U-Factor (U-value) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Space bioreactor: Design/process flow
NASA Technical Reports Server (NTRS)
Cross, John H.
1987-01-01
The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.
Lyophilization process design space.
Patel, Sajal Manubhai; Pikal, Michael J
2013-11-01
The application of key elements of quality by design (QbD), such as risk assessment, process analytical technology, and design space, is discussed widely as it relates to freeze-drying process design and development. However, this commentary focuses on constructing the Design and Control Space, particularly for the primary drying step of the freeze-drying process. Also, practical applications and considerations of claiming a process Design Space under the QbD paradigm have been discussed. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Solar Heat Gain Coefficient (SHGC) | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Context-Aware Design for Process Flexibility and Adaptation
ERIC Educational Resources Information Center
Yao, Wen
2012-01-01
Today's organizations face continuous and unprecedented changes in their business environment. Traditional process design tools tend to be inflexible and can only support rigidly defined processes (e.g., order processing in the supply chain). This considerably restricts their real-world applications value, especially in the dynamic and…
An integrated optimum design approach for high speed prop-rotors including acoustic constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris
1993-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.
A general theory known as the WAste Reduction (WASR) algorithm has been developed to describe the flow and the generation of potential environmental impact through a chemical process. This theory integrates environmental impact assessment into chemical process design Potential en...
Optical design and performance of F-Theta lenses for high-power and high-precision applications
NASA Astrophysics Data System (ADS)
Yurevich, V. I.; Grimm, V. A.; Afonyushkin, A. A.; Yudin, K. V.; Gorny, S. G.
2015-09-01
F-Theta lenses are widely used in remote laser processing. Nowadays, a large variety of scanning systems utilizing these devices are commercially available. In this paper, we demonstrate that all practical issues lose their triviality in designing high-performance F-Theta scanning systems. Laser power scaling requires attention to thermally-induced phenomena and ghost reflections. This requirement considerably complicates optimization of the optical configuration of the system and primary aberration correction, even during preliminary design. Obtaining high positioning accuracy requires taking into consideration all probable reasons for processing field distortion. We briefly describe the key engineering relationships and invariants as well as the typical design of a scanner lens and the main field-flattening techniques. Specific emphasis is directed to consideration of the fundamental nonlinearity of two-mirror scanners. To the best of our knowledge, this issue has not been yet studied. We also demonstrate the benefits of our F-Theta lens optimization technique, which uses a plurality of entrance pupils. The problems of eliminating focused ghost reflections and the effects of thermally-induced processes in high-power F-Theta lenses are considered. A set of multi-path 3D processing and laser cutting experiments were conducted and are presented herein to demonstrate the impact of laser beam degradation on the process performance. A selection of our non-standard optical designs is presented.
WASTE REDUCTION USING COMPUTER-AIDED DESIGN TOOLS
Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized.
Process simulators can be effective tools i...
PROCESS DESIGN FOR ENVIRONMENT: A MULTI-OBJECTIVE FRAMEWORK UNDER UNCERTAINTY
Designing chemical processes for environment requires consideration of several indexes of environmental impact including ozone depletion and global warming potentials, human and aquatic toxicity, and photochemical oxidation, and acid rain potentials. Current methodologies like t...
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franta, G.; Baylin, F.; Crowther, R.
1981-06-01
This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for themore » solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.« less
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.
Yuen, Yeo Tze; Sharratt, Paul N; Jie, Bu
2016-11-01
Numerous carbon dioxide mineralization (CM) processes have been proposed to overcome the slow rate of natural weathering of silicate minerals. Ten of these proposals are mentioned in this article. The proposals are described in terms of the four major areas relating to CM process design: pre-treatment, purification, carbonation, and reagent recycling operations. Any known specifics based on probable or representative operating and reaction conditions are listed, and basic analysis of the strengths and shortcomings associated with the individual process designs are given in this article. The processes typically employ physical or chemical pseudo-catalytic methods to enhance the rate of carbon dioxide mineralization; however, both methods have its own associated advantages and problems. To examine the feasibility of a CM process, three key aspects should be included in the evaluation criteria: energy use, operational considerations as well as product value and economics. Recommendations regarding the optimal level of emphasis and implementation of measures to control these aspects are given, and these will depend very much on the desired process objectives. Ultimately, a mix-and-match approach to process design might be required to provide viable and economic proposals for CM processes.
A systems-based approach for integrated design of materials, products and design process chains
NASA Astrophysics Data System (ADS)
Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh
2007-12-01
The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.
Universal Design: Process, Principles, and Applications
ERIC Educational Resources Information Center
Burgstahler, Sheryl
2009-01-01
Designing any product or environment involves the consideration of many factors, including aesthetics, engineering options, environmental issues, safety concerns, industry standards, and cost. Typically, designers focus their attention on the average user. In contrast, universal design (UD), according to the Center for Universal Design," is…
Nontraditional Intersections/Interchanges: Informational Report
DOT National Transportation Integrated Search
2007-06-18
Comprehensive Coverage -Geometric design considerations. -Traffic analysis and comparison with similar conventional design. -Signal settings. -Signing and marking. -Material or cost comparison. -Selection Process in a spread sheet.
Designing Training Materials for Developing Countries.
ERIC Educational Resources Information Center
Rosenweig, Fred
1984-01-01
Describes four training guides developed by the Water and Sanitation for Health Project for use in rural water supply and sanitation projects in developing countries, explains the development process, offers insights gained from the process, and presents five considerations for designing training in third world countries. (MBR)
Perceptual Considerations in Icon Design for Instructional Communication.
ERIC Educational Resources Information Center
Lee, Shih-Chung
1996-01-01
Discusses the use of icons in computer interface design. Highlights include picture processing time, complexity, recognition memory, differences between picture icons and picture/text icons, the use of color, size, placement, and touch design. (LRW)
System design from mission definition to flight validation
NASA Technical Reports Server (NTRS)
Batill, S. M.
1992-01-01
Considerations related to the engineering systems design process and an approach taken to introduce undergraduate students to that process are presented. The paper includes details on a particular capstone design course. This course is a team oriented aircraft design project which requires the students to participate in many phases of the system design process, from mission definition to validation of their design through flight testing. To accomplish this in a single course requires special types of flight vehicles. Relatively small-scale, remotely piloted vehicles have provided the class of aircraft considered in this course.
NASA Astrophysics Data System (ADS)
Launch vehicle propulsion system reliability considerations during the design and verification processes are discussed. The tools available for predicting and minimizing anomalies or failure modes are described and objectives for validating advanced launch system propulsion reliability are listed. Methods for ensuring vehicle/propulsion system interface reliability are examined and improvements in the propulsion system development process are suggested to improve reliability in launch operations. Also, possible approaches to streamline the specification and procurement process are given. It is suggested that government and industry should define reliability program requirements and manage production and operations activities in a manner that provides control over reliability drivers. Also, it is recommended that sufficient funds should be invested in design, development, test, and evaluation processes to ensure that reliability is not inappropriately subordinated to other management considerations.
KSC Shuttle ground turnaround evaluation
NASA Technical Reports Server (NTRS)
Ragusa, J. M.
1983-01-01
Payload/mission development, processing flows, facilities/systems, and the various environments to which a payload is exposed during ground processing are described. These considerations are important for payload design and ground processing requirements development.
ERIC Educational Resources Information Center
Spokane, Arnold R.; Mori, Yoko; Martinez, Frank
2013-01-01
Displacement and dislocation from homes disrupt fundamental social processes necessary for optimal community functioning. Neighborhood and community social capital, collective efficacy and place attachment are social processes that may be compromised following disaster, conflict, and upheaval. A collaborative approach to the preplanning, design,…
Universal Design in Postsecondary Education: Process, Principles, and Applications
ERIC Educational Resources Information Center
Burgstahler, Sheryl
2009-01-01
Designing any product or environment involves the consideration of many factors, including aesthetics, engineering options, environmental issues, safety concerns, industry standards, and cost. Typically, designers focus their attention on the average user. In contrast, universal design (UD), according to the Center for Universal Design, "is…
Effect of fossil fuels on the parameters of CO2 capture.
Nagy, Tibor; Mizsey, Peter
2013-08-06
The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.
The implementation of the integrated design process in the hole-plan system
NASA Astrophysics Data System (ADS)
Ruy, Won-Sun; Ko, Dae-Eun; Yang, Young-Soon
2012-12-01
All current shipyards are using the customized CAD/CAM programs in order to improve the design quality and increase the design efficiency. Even though the data structures for ship design and construction are almost completed, the implementation related to the ship design processes are still in progress so that it has been the main causes of the bottleneck and delay during the middle of design process. In this study, we thought that the hole-plan system would be a good example which is remained to be improved. The people of outfitting division who don't have direct authority to edit the structural panels, should request the hull design division to install the holes for the outfitting equipment. For acceptance, they should calculate the hole position, determine the hole type, and find the intersected contour of panel. After consideration of the hull people, the requested holes are manually installed on the hull structure. As the above, many processes are needed such as communication and discussion between the divisions, drawings for hole-plan, and the consideration for the structural or production compatibility. However this iterative process takes a lot of working time and requires mental pressure to the related people and cross-division conflict. This paper will handle the hole-plan system in detail to automate the series of process and minimize the human efforts and time-consumption.
Replacement Windows for Existing Homes Homes | Efficient Windows
Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Selection Tool will take you through a series of design conditions pertaining to your design and location
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2012 CFR
2012-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2014 CFR
2014-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2010 CFR
2010-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2011 CFR
2011-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.
Code of Federal Regulations, 2013 CFR
2013-10-01
...—Manufacturing plants involving operations requiring a high degree of design layout or process control; nuclear reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for...
Energy-Efficient Design for Florida Educational Facilities.
ERIC Educational Resources Information Center
Florida Solar Energy Center, Cape Canaveral.
This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…
Use of Concurrent Engineering in Space Mission Design
NASA Technical Reports Server (NTRS)
Wall, S.
2000-01-01
In recent years, conceptual-phase (proposal level) design of space missions has been improved considerably. Team structures, tool linkage, specialized facilities known as design centers and scripted processes have been demonstrated to cut proposal-level engineering design time from a few months to a few weeks.
Key issues in application of composites to transport aircraft
NASA Technical Reports Server (NTRS)
Stone, M.
1978-01-01
The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed.
Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However,...
NASA Technical Reports Server (NTRS)
Barnett, Henry C (Editor); Hibbard, Robert R (Editor)
1955-01-01
The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the key points in power module design, especially for high power densities, where couplings are increased. In this paper, along with the design example, an automatic design processes by using a genetic algorithm are presented. Some practical considerations and implementations are introduced in the optimization of module layout design.
Design criteria monograph for metal tanks and tank components
NASA Technical Reports Server (NTRS)
1975-01-01
Significant elements in detail tank design are wall and end structures, weld joints at bulkhead and attachment junctures, and ports and access openings. Additional design considerations are influence and effect of fabrication processes on tank component design, and finally, testing and inspection that are required to establish confidence in tank design.
Computerized Adaptive Testing System Design: Preliminary Design Considerations.
ERIC Educational Resources Information Center
Croll, Paul R.
A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…
Fast-acting sprinkler system design considerations for propellant manufacture
NASA Astrophysics Data System (ADS)
Matthews, A. L.; Crable, J. M.; Kristoff, P. T.
1984-08-01
Fast-acting sprinkler systems for detection and suppression of fires in propellant operations, which require activation in the millisecond range in order to be effective, can be easily defeated unless particular attention is paid to design and maintenance details. Of primary consideration are detector selection and placement in processes to minimize the effect of environmental influences. Also important are nozzle placement, water flow density, water supply pressure, and pattern and sloping of piping. When all of these design criteria are properly implemented, water application can occur within 100 ms of fire detection.
Space Station logistics policy - Risk management from the top down
NASA Technical Reports Server (NTRS)
Paules, Granville; Graham, James L., Jr.
1990-01-01
Considerations are presented in the area of risk management specifically relating to logistics and system supportability. These considerations form a basis for confident application of concurrent engineering principles to a development program, aiming at simultaneous consideration of support and logistics requirements within the engineering process as the system concept and designs develop. It is shown that, by applying such a process, the chances of minimizing program logistics and supportability risk in the long term can be improved. The problem of analyzing and minimizing integrated logistics risk for the Space Station Freedom Program is discussed.
Environmental and sustainability ethics in supply chain management.
Beamon, Benita M
2005-04-01
Environmentally Conscious Supply Chain Management (ECSCM refers to the control exerted over all immediate and eventual environmental effects of products and processes associated with converting raw materials into final products. While much work has been done in this area, the focus has traditionally been on either: product recovery (recycling, remanufacturing, or re-use) or the product design function only (e.g., design for environment). Environmental considerations in manufacturing are often viewed as separate from traditional, value-added considerations. However, the case can be made that professional engineers have an ethical responsibility to consider the immediate and eventual environmental impacts of products and processes that they design and/or manage. This paper describes ECSCM as a component of engineering ethics, and highlights the major issues associated with ethical decision-making in supply chain management.
Checklist of Library Building Design Considerations. Fourth Edition.
ERIC Educational Resources Information Center
Sannwald, William W.
This checklist serves as a guide during various stages of a library design process to help ensure that all needed spaces and functions are included, to help enable the evaluation of existing library spaces as part of a library's needs assessment process, and to help provide data and support to the library in presentations that might be made to…
Considerations for the Systematic Analysis and Use of Single-Case Research
ERIC Educational Resources Information Center
Horner, Robert H.; Swaminathan, Hariharan; Sugai, George; Smolkowski, Keith
2012-01-01
Single-case research designs provide a rigorous research methodology for documenting experimental control. If single-case methods are to gain wider application, however, a need exists to define more clearly (a) the logic of single-case designs, (b) the process and decision rules for visual analysis, and (c) an accepted process for integrating…
ROMPS critical design review data package
NASA Technical Reports Server (NTRS)
Dobbs, M. E.
1992-01-01
The design elements of the Robot-Operated Material Processing in Space (ROMPS) system are described in outline and graphical form. The following subsystems/topics are addressed: servo system, testbed and simulation results, System V Controller, robot module, furnace module, SCL experiment supervisor and script sample processing control, battery system, watchdog timers, mechanical/thermal considerations, and fault conditions and recovery.
Designers as Teachers and Learners: Transferring Workplace Design Practice into Educational Settings
ERIC Educational Resources Information Center
Mawson, B.
2007-01-01
The nature of the design process and how to develop this skill in novice designers has been of considerable interest to technology educators. The relationship between workplace and school-based design is one area in which a need for further research has been identified by Hill and Anning (2001, "International Journal of Technology and Design…
Humidity Measurements: A Psychrometer Suitable for On-Line Data Acquisition.
ERIC Educational Resources Information Center
Caporaloni, Marina; Ambrosini, Roberto
1992-01-01
Explains the typical design, operation, and calibration of a traditional psychrometer. Presents the method utilized for this class project with design considerations, calibration techniques, remote data sensing schematic, and specifics of the implementation process. (JJK)
30 CFR 250.912 - What plans must I submit under the Platform Verification Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... computer programs used in the design process; and (3) A summary of the major design considerations and the...) Structural tolerances; (ii) Welding procedures; (iii) Material (concrete, gravel, or silt) placement methods...
1988-07-01
quantity of air which requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the...BACKGROUND AND PURPOSE .... ................ .... 57 B. DESIGN CONSIDERATIONS .... ............... .... 58 1. Safety Standards .......... ............... 58...65 5. Conceptual Design .... ................ ... 68 V CONCLUSIONS AND RECOMMENDATIONS ............... .. 72 A. CONCLUSIONS
Preliminary design of turbopumps and related machinery
NASA Technical Reports Server (NTRS)
Wislicenus, George F.
1986-01-01
Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.
Program Helps Decompose Complicated Design Problems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.
1993-01-01
Time saved by intelligent decomposition into smaller, interrelated problems. DeMAID is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Displays modules in N x N matrix format. Requires investment of time to generate and refine list of modules for input, it saves considerable amount of money and time in total design process, particularly new design problems in which ordering of modules has not been defined. Program also implemented to examine assembly-line process or ordering of tasks and milestones.
NASA Astrophysics Data System (ADS)
Brunner, Manuela Irene; Seibert, Jan; Favre, Anne-Catherine
2018-02-01
Traditional design flood estimation approaches have focused on peak discharges and have often neglected other hydrograph characteristics such as hydrograph volume and shape. Synthetic design hydrograph estimation procedures overcome this deficiency by jointly considering peak discharge, hydrograph volume, and shape. Such procedures have recently been extended to allow for the consideration of process variability within a catchment by a flood-type specific construction of design hydrographs. However, they depend on observed runoff time series and are not directly applicable in ungauged catchments where such series are not available. To obtain reliable flood estimates, there is a need for an approach that allows for the consideration of process variability in the construction of synthetic design hydrographs in ungauged catchments. In this study, we therefore propose an approach that combines a bivariate index flood approach with event-type specific synthetic design hydrograph construction. First, regions of similar flood reactivity are delineated and a classification rule that enables the assignment of ungauged catchments to one of these reactivity regions is established. Second, event-type specific synthetic design hydrographs are constructed using the pooled data divided by event type from the corresponding reactivity region in a bivariate index flood procedure. The approach was tested and validated on a dataset of 163 Swiss catchments. The results indicated that 1) random forest is a suitable classification model for the assignment of an ungauged catchment to one of the reactivity regions, 2) the combination of a bivariate index flood approach and event-type specific synthetic design hydrograph construction enables the consideration of event types in ungauged catchments, and 3) the use of probabilistic class memberships in regional synthetic design hydrograph construction helps to alleviate the problem of misclassification. Event-type specific synthetic design hydrograph sets enable the inclusion of process variability into design flood estimation and can be used as a compromise between single best estimate synthetic design hydrographs and continuous simulation studies.
Evaluation of test procedures for hydrogen environment embrittlement
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1974-01-01
Report presents discussion of three common and primary influences on embrittlement process. Application of theoretical considerations to design of test coupons and methods is illustrated for both internal and external hydrogen embrittlement. Acceptable designs and methods are indicated.
Family and Consumer Sciences: A Facility Planning and Design Guide for School Systems.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
This document presents design concepts and considerations for planning and developing middle and high school family and consumer sciences education facilities. It includes discussions on family and consumer sciences education trends and the facility planning process. Design concepts explore multipurpose laboratories and spaces for food/nutrition…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS
Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...
Considerations in the design of a communication network for an autonomously managed power system
NASA Technical Reports Server (NTRS)
Mckee, J. W.; Whitehead, Norma; Lollar, Louis
1989-01-01
The considerations involved in designing a communication network for an autonomously managed power system intended for use in space vehicles are examined. An overview of the design and implementation of a communication network implemented in a breadboard power system is presented. An assumption that the monitoring and control devices are distributed but physically close leads to the selection of a multidrop cable communication system. The assumption of a high-quality communication cable in which few messages are lost resulted in a simple recovery procedure consisting of a time out and retransmit process.
Holistic Design for Total Product Well Being
NASA Technical Reports Server (NTRS)
Adams, Chris W.; Hamilton, George S.
2004-01-01
Recent hardware development work at NASA's Marshall Space Flight Center creates and argument for the use of a holistic design approach as opposed to a piece part design approach. A piece part design approach being one where individual pieces are developed to their finished state having to meet certain interface and human engineering requirements without much consideration to the final product as a whole. A holistic design approach being one where the final product is evaluated early and frequently during the design process, and individual parts are developed with consideration to how they interact a whole,and how they interact with the user and environment. Examples from the development of the Materials Science Research Rack - 1 will illustrate: a design failure due to piece part design; a design save, due to a failure of piece part design, but saved by evaluating the design holistically; and a design success due to a holistic design approach.
Crew considerations in the design for Space Station Freedom modules on-orbit maintenance
NASA Technical Reports Server (NTRS)
Stokes, Jack W.; Williams, Katherine A.
1992-01-01
The paper presents an approach to the maintenance process currently planned for the Space Station Freedom modules. In particular, it describes the planned crew interfaces with maintenance items, and the anticipated implications for the crew in performing the interior and exterior maintenance of modules developed by U.S., ESA, and NASDA. Special consideration is given to the maintenance requirements, allocations, and approach; the maintenance design; the Maintenance Workstation; the robotic mechanisms; and the developemnt of maintenance techniques.
United States Air Force Graduate Student Summer Support Program (1985). Technical Report. Volume 2.
1985-12-01
C. , "A Thermodynamic and Continuum Approach to the Design and Control of Precision Forging Processes," Master’s Thesis , Wright State University, Aug...on mobile platforms, space will usually be a design consideration. This consideration will 48-4 •.J o,-. " limit the size of the laser used with the...Dichromated Gelatin Emulsions for Recording Phase Holograms," Master’s Thesis USAF Institute of Technology, December 1975, AD-A019320- 7. Graube, A
Toxic Acid Gas Absorber Design Considerations for Air Pollution Control in Process Industries
ERIC Educational Resources Information Center
Manyele, S. V.
2008-01-01
This paper analyses the design parameters for an absorber used for removal of toxic acid gas (in particular sulfur dioxide) from a process gas stream for environmental health protection purposes. Starting from the equilibrium data, Henry's law constant was determined from the slope of the y-x diagram. Based on mass balances across the absorber,…
Automatic Layout Design for Power Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning, Puqi; Wang, Fei; Ngo, Khai
The layout of power modules is one of the most important elements in power module design, especially for high power densities, where couplings are increased. In this paper, an automatic design process using a genetic algorithm is presented. Some practical considerations are introduced in the optimization of the layout design of the module. This paper presents a process for automatic layout design for high power density modules. Detailed GA implementations are introduced both for outer loop and inner loop. As verified by a design example, the results of the automatic design process presented here are better than those from manualmore » design and also better than the results from a popular design software. This automatic design procedure could be a major step toward improving the overall performance of future layout design.« less
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Highfill, J. H., III
1976-01-01
The design of a microwave landing system (MLS) aircraft receiver, capable of optimal performance in multipath environments found in air terminal areas, is reported. Special attention was given to the angle tracking problem of the receiver and includes tracking system design considerations, study and application of locally optimum estimation involving multipath adaptive reception and then envelope processing, and microcomputer system design. Results show processing is competitive in this application with i-f signal processing performance-wise and is much more simple and cheaper. A summary of the signal model is given.
The Design Process of Physical Security as Applied to a U.S. Border Point of Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.
1998-10-26
This paper describes the design process of physical security as applied to a U.S. Border Port of Entry (PoE). Included in this paper are descriptions of the elements that compose U.S. border security. The physical security design will describe the various elements that make up the process as well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry and exit of illegal contraband will be emphasized.
1981-01-01
per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern
Scientific, statistical, practical, and regulatory considerations in design space development.
Debevec, Veronika; Srčič, Stanko; Horvat, Matej
2018-03-01
The quality by design (QbD) paradigm guides the pharmaceutical industry towards improved understanding of products and processes, and at the same time facilitates a high degree of manufacturing and regulatory flexibility throughout the establishment of the design space. This review article presents scientific, statistical and regulatory considerations in design space development. All key development milestones, starting with planning, selection of factors, experimental execution, data analysis, model development and assessment, verification, and validation, and ending with design space submission, are presented and discussed. The focus is especially on frequently ignored topics, like management of factors and CQAs that will not be included in experimental design, evaluation of risk of failure on design space edges, or modeling scale-up strategy. Moreover, development of a design space that is independent of manufacturing scale is proposed as the preferred approach.
Separation science is the key to successful biopharmaceuticals.
Guiochon, Georges; Beaver, Lois Ann
2011-12-09
The impact of economic change, advances in science, therapy and production processes resulted in considerable growth in the area of biopharmaceuticals. Progress in selection of microorganisms and improvements in cell culture and bioreactors is evidenced by increased yields of the desired products in the complex fermentation mixture. At this stage the downstream process of extraction and purification of the desired biopharmaceutical requires considerable attention in the design and operation of the units used for preparative chromatography. Understanding of the process, optimization of column design and experimental conditions have become critical to the biopharmaceutical industry in order to minimize production costs while satisfying new regulatory requirements. Optimization of the purification of biopharmaceuticals by preparative liquid chromatography including an examination of column preparation and bed properties is the focus of this manuscript. Copyright © 2011 Elsevier B.V. All rights reserved.
New Vistas in Chemical Product and Process Design.
Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul
2016-06-07
Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.; Sriram, S.
The design and implementation of integrated optical circuits are discussed in reviews and reports. Topics addressed include lithium niobate devices, silicon integrated optics, waveguide phenomena, coupling considerations, processing technology, nonlinear guided-wave optics, integrated optics for fiber systems, and systems considerations and applications. Also included are eight papers and a panel discussion from an SPIE conference on the processing of guided-wave optoelectronic materials (held in Los Angeles, CA, on January 21-22, 1986).
Increasing the Capacity of College Counseling through Video Game Design
ERIC Educational Resources Information Center
Mathis, Jonathan D.
2010-01-01
This article discusses game design concepts suggested to foster engagement while considering the needs of underserved high school students preparing for the college admission process. The contextual nature of college counseling efforts in urban secondary school settings provides a backdrop for consideration of the manner in which game design and…
Master Classrooms: Classroom Design with Technology in Mind.
ERIC Educational Resources Information Center
Conway, Kathryn
Technology is changing the classroom requiring new design features and considerations to make the classroom flexible and interactive with the teaching process. The design of a Master Classroom, a product of the Classroom Improvement Project at the University of North Carolina at Chapel Hill, is described. These classrooms are specially-equipped to…
The Rise of the Embedded Designer in the Creative Industries
ERIC Educational Resources Information Center
Fleischmann, Katja; Daniel, Ryan
2015-01-01
Work practices in the creative industries have changed significantly since the turn of the twenty-first century. The design profession in particular has been influenced by rapidly emerging digital media practices and processes. While the design sector remains a significant source of employment, in recent years, there has been considerable growth…
Fifth International Symposium on Liquid Space Propulsion
NASA Technical Reports Server (NTRS)
Garcia, R. (Compiler)
2005-01-01
Contents include the fiollowing: Theme: Life-life Combustion Devices Technology. Technical Sessions: International Perspectives. System Level Effects. Component Level Processes. Material Considerations. Design Environments -- Predictions. Injector Design Technology. Design Environments -- Measurements. Panel Discussion: Views on future research and development needs and Symposium observations. Aquarium Welcome and Southern Belle Riverboat Recognition Banquet evening events.
Landsverk, John; Brown, C Hendricks; Rolls Reutz, Jennifer; Palinkas, Lawrence; Horwitz, Sarah McCue
2011-01-01
Implementation science is an emerging field of research with considerable penetration in physical medicine and less in the fields of mental health and social services. There remains a lack of consensus on methodological approaches to the study of implementation processes and tests of implementation strategies. This paper addresses the need for methods development through a structured review that describes design elements in nine studies testing implementation strategies for evidence-based interventions addressing mental health problems of children in child welfare and child mental health settings. Randomized trial designs were dominant with considerable use of mixed method designs in the nine studies published since 2005. The findings are discussed in reference to the limitations of randomized designs in implementation science and the potential for use of alternative designs.
Li, Z; Liu, Y S; Ye, H Q; Liu, Y S; Hu, W J; Zhou, Y S
2017-02-18
To explore a new method of whole-process digital esthetic prosthodontic rehabilitation combined with periodontic surgery for complicated anterior teeth esthetic defects accompanied by soft tissue morphology, to provide an alternative choice for solving this problem under the guidance of three-dimensional (3D) printing digital dental model and surgical guide, thus completing periodontic surgery and digital esthetic rehabilitation of anterior teeth. In this study, 12 patients with complicated esthetic problems accompanied by soft tissue morphology in their anterior teeth were included. The dentition and facial images were obtained by intra-oral scanning and three-dimensional (3D) facial scanning and then calibrated. Two esthetic designs and prosthodontic outcome predictions were created by computer aided design /computer aided manufacturing (CAD/CAM) software combined with digital photography, including consideration of white esthetics and comprehensive consideration of pink-white esthetics. The predictive design of prostheses and the facial appearances of the two designs were evaluated by the patients. If the patients chose the design of comprehensive consideration of pink-white esthetics, they would choose whether they would receive periodontic surgery before esthetic rehabilitation. The dentition design cast of those who chose periodontic surgery would be 3D printed for the guide of periodontic surgery accordingly. In light of the two digital designs based on intra-oral scanning, facing scanning and digital photography, the satisfaction rate of the patients was significantly higher for the comprehensive consideration of pink-white esthetic design (P<0.05) and more patients tended to choose priodontic surgery before esthetic rehabilitation. The 3D printed digital dental model and surgical guide provided significant instructions for periodontic surgery, and achieved success transfer from digital design to clinical application. The prostheses were fabricated by CAD/CAM, thus realizing the whole-process digital esthetic rehabilitation. The new method for esthetic rehabilitation of complicated anterior teeth esthetic defects accompanied by soft tissue morphology, including patient-involved digital esthetic analysis, design, esthetic outcome prediction, 3D printing surgical guide for periodontic surgery and digital fabrication is a practical technology. This method is useful for improvement of clinical communication efficiency between doctor-patient, doctor-technician and doctors from different departments, and is conducive to multidisciplinary treatment of this complicated anterior teeth esthetic problem.
Program Helps Decompose Complex Design Systems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Hall, Laura E.
1994-01-01
DeMAID (A Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problem. Groups modular subsystems on basis of interactions among them. Saves considerable money and time in total design process, particularly in new design problem in which order of modules has not been defined. Available in two machine versions: Macintosh and Sun.
Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics
NASA Technical Reports Server (NTRS)
Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed
Designing for Learner Success (D4LS) at Otago Polytechnic: From an E-learning Designer's Perspective
ERIC Educational Resources Information Center
Gedera, Dilani S. P.
2016-01-01
Otago Polytechnic (OP) is currently redesigning and redeveloping its programmes and courses under an institution-wide initiative called Designing for Learner Success (D4LS). This initiative has several phases--design, development, delivery, and evaluation. This article focuses on the processes and considerations in the development phase of D4LS,…
NASA Astrophysics Data System (ADS)
Sokolov, M. A.
This handbook treats the design and analysis of of pulsed radar receivers, with emphasis on elements (especially IC elements) that implement optimal and suboptimal algorithms. The design methodology is developed from the viewpoint of statistical communications theory. Particular consideration is given to the synthesis of single-channel and multichannel detectors, the design of analog and digital signal-processing devices, and the analysis of IF amplifiers.
Translating supportability requirements into design reality
NASA Astrophysics Data System (ADS)
Buche, J.; Cohen, I.
1986-10-01
This paper explores some of the principal issues in the integration of supportability into the design process. Roles of the contractor's design, supportability and management specialists and their government counterparts are discussed as they relate to logistics influence in design. Methods and processes by which weapon system logistics and readiness requirements are established, assessed, allocated to system elements and translated into specific design features are described. Tradeoff consideration, an approach to effective tradeoff criteria, and the progress of supportability issues through the program phases are identified with particular emphasis on the necessity for developing and maintaining an effective audit trail.
NASA Astrophysics Data System (ADS)
Pershin, I. M.; Pervukhin, D. A.; Ilyushin, Y. V.; Afanaseva, O. V.
2017-10-01
The paper considers an important problem of designing distributed systems of hydrolithosphere processes management. The control actions on the hydrolithosphere processes under consideration are implemented by a set of extractive wells. The article shows the method of defining the approximation links for description of the dynamic characteristics of hydrolithosphere processes. The structure of distributed regulators, used in the management systems by the considered processes, is presented. The paper analyses the results of the synthesis of the distributed management system and the results of modelling the closed-loop control system by the parameters of the hydrolithosphere process.
Facilities Guidelines for Fine Arts Programs.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
This manual of facility guidelines examines the planning process and design features and considerations for public school fine arts programs in Maryland. Planning concepts and trends are highlighted followed by planning guidelines for dance, music, theater, visual arts, general education, and performance spaces. General design considerations…
Methodological considerations for studying social processes.
Patterson, Barbara; Morin, Karen
2012-01-01
To discuss the nature of and considerations in the study of social processes. Social processes include the elements of time, change and human interaction and many phenomena of interest to nurse researchers. Despite the significance of social processes for nursing practice and the labelling in many studies of phenomena as processes, there seems to be an inability to describe processes fully. The paper includes a presentation of two methodological approaches for illuminating the dynamics of social processes: participant observation and prospective time-series designs. Strengths and limitations of the two paradigmatically different approaches are offered. The method an investigator chooses should be considered selectively and appropriately according to the nature of the problem, what is known about the phenomena to be studied, and the investigator's world view and theoretical perspective. The conceptualisation of process can also influence the methodological choice. Capturing a social process in its entirety with either a qualitative or quantitative approach can be a difficult task. The focus of this paper is an initiation and expansion of the dialogue about which methods provide the best insight into social processes. This knowledge may offer opportunities for nurse researchers to design and implement interventions for individuals as they progress through life events.
40 CFR 240.204-2 - Recommended procedures: Design.
Code of Federal Regulations, 2010 CFR
2010-07-01
....204-2 Section 240.204-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures... indiscriminately. Consideration should be given to onsite treatment of process and waste waters before discharge...
ALARA radiation considerations for the AP600 reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, F.L.
1995-03-01
The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less
Program Helps Decompose Complex Design Systems
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Hall, Laura E.
1995-01-01
DeMAID (Design Manager's Aid for Intelligent Decomposition) computer program is knowledge-based software system for ordering sequence of modules and identifying possible multilevel structure for design problems such as large platforms in outer space. Groups modular subsystems on basis of interactions among them. Saves considerable amount of money and time in total design process, particularly in new design problem in which order of modules has not been defined. Originally written for design problems, also applicable to problems containing modules (processes) that take inputs and generate outputs. Available in three machine versions: Macintosh written in Symantec's Think C 3.01, Sun, and SGI IRIS in C language.
A PC-based inverse design method for radial and mixed flow turbomachinery
NASA Technical Reports Server (NTRS)
Skoe, Ivar Helge
1991-01-01
An Inverse Design Method suitable for radial and mixed flow turbomachinery is presented. The codes are based on the streamline curvature concept; therefore, it is applicable for current personal computers from the 286/287 range. In addition to the imposed aerodynamic constraints, mechanical constraints are imposed during the design process to ensure that the resulting geometry satisfies production consideration and that structural considerations are taken into account. By the use of Bezier Curves in the geometric modeling, the same subroutine is used to prepare input for both aero and structural files since it is important to ensure that the geometric data is identical to both structural analysis and production. To illustrate the method, a mixed flow turbine design is shown.
Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.
ERIC Educational Resources Information Center
Leffel, R. E.; And Others
This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…
Building a High-Tech Library in a Period of Austerity.
ERIC Educational Resources Information Center
Bazillion, Richard J.; Scott, Sue
1991-01-01
Describes the planning process for designing a new library for Algoma University College (Ontario). Topics discussed include the building committee, library policy, design considerations, an electric system that supports computer technology, library automation, the online public access catalog (OPAC), furnishings and interior environment, and…
47 CFR 1.934 - Defective applications and dismissal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... designated for comparative hearing; or (B) It is an application for which the applicant submitted the winning... has been designated for comparative hearing may submit a written petition requesting that the... submit the winning bid in a competitive bidding process; or (2) That receive comparative consideration in...
47 CFR 1.934 - Defective applications and dismissal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... designated for comparative hearing; or (B) It is an application for which the applicant submitted the winning... has been designated for comparative hearing may submit a written petition requesting that the... submit the winning bid in a competitive bidding process; or (2) That receive comparative consideration in...
USDA-ARS?s Scientific Manuscript database
Design and management criteria for created agricultural wetlands in the midwestern United States typically focus on maximizing the ability to process agricultural runoff. Ecological benefits for fish, amphibian, and reptiles are often secondary considerations. One example of this water quality focu...
Stress Corrosion of Ceramic Materials
1981-10-01
stresses are liable to fail after an indeterminate period of time, leading to a considerable uncertainty in the safe design stress. One of the objectives...of modern ceramics technology is to reduce the uncertainty associated with structural design , and hence, to improve our capabilities of designing ...processes that occur during stress corrosion cracking. Recent advances in th~earea of structural design with ceramic materials have lead to several
NASA Technical Reports Server (NTRS)
1977-01-01
Topics discussed include: (1) design considerations for a MARS sample return laboratory module for space station investigations; (2) crew productivity as a function of work shift arrangement; (3) preliminary analysis of the local logistics problem on the space construction base; (4) mission hardware construction operational flows and timelines; (5) orbit transfer vehicle concept definition; (6) summary of results and findings of space processing working review; (7) crew and habitability subsystem (option L); (8) habitability subsystem considerations for shuttle tended option L; (9) orbiter utilization in manned sortie missions; (10) considerations in definition of space construction base standard module configuration (option L); (11) guidance, control, and navigation subsystems; and (12) system and design tradeoffs.
ERIC Educational Resources Information Center
Zhao, Li
2012-01-01
Drawing from social cognitive career theory (Lent, Brown, & Hackett, 1994), this study explored social supports' influence on the career choice consideration of farmers during China's current process of urbanization. A questionnaire was designed based on interviews with 140 people and a pretest with a sample of 419 participants. A total of 628…
NASA Astrophysics Data System (ADS)
Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei
2016-03-01
The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.
Decision making for wildfires: A guide for applying a risk management process at the incident level
Mary A. Taber; Lisa M. Elenz; Paul G. Langowski
2013-01-01
This publication focuses on the thought processes and considerations surrounding a risk management process for decision making on wildfires. The publication introduces a six element risk management cycle designed to encourage sound risk-informed decision making in accordance with Federal wildland fire policy, although the process is equally applicable to non-Federal...
Materials Selection. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
This learning activity develops algorithms to ensure that the process of selecting materials is well defined and sound. These procedures require the use of many databases to provide the designer with information such as physical, mechanical, and chemical properties of the materials under consideration. A design brief, student quiz, and five…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... determine endpoints; questionnaire design and analyses; and presentation of survey results. To date, FDA has..., the workshop will invest considerable time in identifying best methodological practices for conducting... sample, sample size, question design, process, and endpoints. Panel 2 will focus on alternatives to...
Teachers' Considerations of Students' Thinking during Mathematics Lesson Design
ERIC Educational Resources Information Center
Amador, Julie M.
2016-01-01
Teachers' abilities to design mathematics lessons are related to their capability to mobilize resources to meeting intended learning goals based on their noticing. In this process, knowing how teachers consider Students' thinking is important for understanding how they are making decisions to promote student learning. While teaching, what teachers…
Shhhh! Don't Tell: Advertising Design Impacts Sales.
ERIC Educational Resources Information Center
Schaub, Laura; Kelsey, Roy
2000-01-01
Discusses the creation of an advertisement to catch the attention of the target audience: student readers. Notes the consideration of several important factors including: the product, the audience, the positioning, the principles, and the ingredients. Describes ways to get started and several points in approaching the design process. (SC)
High-speed digital signal normalization for feature identification
NASA Technical Reports Server (NTRS)
Ortiz, J. A.; Meredith, B. D.
1983-01-01
A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.
Design of an MR image processing module on an FPGA chip
NASA Astrophysics Data System (ADS)
Li, Limin; Wyrwicz, Alice M.
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.
Design of an MR image processing module on an FPGA chip
Li, Limin; Wyrwicz, Alice M.
2015-01-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646
Envisioning future cognitive telerehabilitation technologies: a co-design process with clinicians.
How, Tuck-Voon; Hwang, Amy S; Green, Robin E A; Mihailidis, Alex
2017-04-01
Purpose Cognitive telerehabilitation is the concept of delivering cognitive assessment, feedback, or therapeutic intervention at a distance through technology. With the increase of mobile devices, wearable sensors, and novel human-computer interfaces, new possibilities are emerging to expand the cognitive telerehabilitation paradigm. This research aims to: (1) explore design opportunities and considerations when applying emergent pervasive computing technologies to cognitive telerehabilitation and (2) develop a generative co-design process for use with rehabilitation clinicians. Methods We conducted a custom co-design process that used design cards, probes, and design sessions with traumatic brain injury (TBI) clinicians. All field notes and transcripts were analyzed qualitatively. Results Potential opportunities for TBI cognitive telerehabilitation exist in the areas of communication competency, executive functioning, emotional regulation, energy management, assessment, and skill training. Designers of TBI cognitive telerehabilitation technologies should consider how technologies are adapted to a patient's physical/cognitive/emotional state, their changing rehabilitation trajectory, and their surrounding life context (e.g. social considerations). Clinicians were receptive to our co-design approach. Conclusion Pervasive computing offers new opportunities for life-situated cognitive telerehabilitation. Convivial design methods, such as this co-design process, are a helpful way to explore new design opportunities and an important space for further methodological development. Implications for Rehabilitation Designers of rehabilitation technologies should consider how to extend current design methods in order to facilitate the creative contribution of rehabilitation stakeholders. This co-design approach enables a fuller participation from rehabilitation clinicians at the front-end of design. Pervasive computing has the potential to: extend the duration and intensity of cognitive telerehabilitation training (including the delivery of 'booster' sessions or maintenance therapies); provide assessment and treatment in the context of a traumatic brain injury (TBI) patient's everyday life (thereby enhancing generalization); and permit time-sensitive interventions. Long-term use of pervasive computing for TBI cognitive telerehabilitation should take into account a patient's changing recovery trajectory, their meaningful goals, and their journey from loss to redefinition.
Reliability considerations in long-life outer planet spacecraft system design
NASA Technical Reports Server (NTRS)
Casani, E. K.
1975-01-01
A Mariner Jupiter/Saturn mission has been planned for 1977. System reliability questions are discussed, taking into account the actual and design lifetime, causes of mission termination, in-flight failures and their consequences for the mission, and the use of redundancy to avoid failures. The design process employed optimizes the use of proven subsystem and system designs and then makes the necessary improvements to increase the lifetime as required.
The Design of Pressure Safety Systems in the Alumina Industry
NASA Astrophysics Data System (ADS)
Haneman, Brady
The alumina refinery presents the designer with multiple challenges. For a given process flowsheet, the mechanical equipment installed must be routinely inspected and maintained. Piping systems must also be inspected routinely for signs of erosion and/or corrosion. Rapid deposits of chemical species such as lime, silica, and alumina on equipment and piping need special consideration in the mechanical design of the facilities, such that fluid flows are not unduly interrupted. Above and beyond all else, the process plant must be a safe place of work for refinery personnel.
Process Feasibility Study in Support of Silicon Material, Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2005-01-01
The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.
Minimization In Digital Design As A Meta-Planning Problem
NASA Astrophysics Data System (ADS)
Ho, William P. C.; Wu, Jung-Gen
1987-05-01
In our model-based expert system for automatic digital system design, we formalize the design process into three sub-processes - compiling high-level behavioral specifications into primitive behavioral operations, grouping primitive operations into behavioral functions, and grouping functions into modules. Consideration of design minimization explicitly controls decision-making in the last two subprocesses. Design minimization, a key task in the automatic design of digital systems, is complicated by the high degree of interaction among the time sequence and content of design decisions. In this paper, we present an AI approach which directly addresses these interactions and their consequences by modeling the minimization prob-lem as a planning problem, and the management of design decision-making as a meta-planning problem.
NASA Astrophysics Data System (ADS)
Bonnema, E. C.; Cunningham, E. K.; Rumel, J. D.
2014-01-01
The Department of Energy requires its subcontractors to meet 10 CFR 851 Appendix A Part 4 for all new pressure vessels and pressure piping. The stainless steel pressure vessel boundaries surrounding SCRF cavities fall under this requirement. Methods for meeting this requirement include design and fabrication of the pressure vessels to meet the requirements of the ASME Boiler & Pressure Vessel Code Section VIII Division 1 or Division 2. Design considerations include determining whether the configuration of the SCRF cavity can be accommodated under the rules of Division 1 or must be analyzed under Division 2 Part 4 Design by Rule Requirements or Part 5 Design by Analysis Requirements. Regardless of the Division or Part choice, designers will find the rules of the ASME Code require thicker pressure boundary members, larger welds, and additional non-destructive testing and quality assurance requirements. These challenges must be met and overcome by the fabricator through the development of robust, detailed, and repeatable manufacturing processes. In this paper we discuss the considerations for stainless steel pressure vessels that must meet the ASME Code and illustrate the discussion with examples from direct experience fabricating such vessels.
Determination of the robot location in a workcell of a flexible production line
NASA Astrophysics Data System (ADS)
Banas, W.; Sekala, A.; Gwiazda, A.; Foit, K.; Hryniewicz, P.; Kost, G.
2015-11-01
Location of components of a manufacturing cell is apparently an easy task but even during the constructing of a manufacturing cell, in which is planned a production of one, simple component it is necessary, among others, to check access to all required points. The robot in a manufacturing cell must handle both machine tools located in a manufacturing cell and parts store (input and output one). It handles also transport equipment and auxiliary stands. Sometimes, during the design phase, the changes of robot location are necessary due to the limitation of access to its required working positions. Often succeeding changes of a manufacturing cell configuration are realized. They occur at the stages of visualization and simulation of robot program functioning. In special cases, it is even necessary to replace the planned robot with a robot of greater range or of a different configuration type. This article presents and describes the parameters and components which should be taken into consideration during designing robotised manufacturing cells. The main idea bases on application of advanced engineering programs to adding the designing process. Using this approach it could be possible to present the designing process of an exemplar flexible manufacturing cell intended to manufacture two similar components. The proposed model of such designed manufacturing cell could be easily extended to the manufacturing cell model in which it is possible to produce components belonging the one technological group of chosen similarity level. In particular, during the design process, one should take into consideration components which limit the ability of robot foundation. It is also important to show the method of determining the best location of robot foundation. The presented design method could also support the designing process of other robotised manufacturing cells.
NASA Technical Reports Server (NTRS)
Kreutz, E. W. (Editor); Quenzer, Alain (Editor); Schuoecker, Dieter (Editor)
1987-01-01
The design and operation of high-power lasers for industrial applications are discussed in reviews and reports. Topics addressed include the status of optical technology in the Netherlands, laser design, the deposition of optical energy, laser diagnostics, nonmetal processing, and energy coupling and plasma formation. Consideration is given to laser-induced damage to materials, fluid and gas flow dynamics, metal processing, and manufacturing. Graphs, diagrams, micrographs, and photographs are provided.
NASA Astrophysics Data System (ADS)
Beardsley, Sara; Stochetti, Alejandro; Cerone, Marc
2018-03-01
Akhmat Tower is a 435m supertall building designed by Adrian Smith + Gordon Gill Architecture. It is currently under construction in the city of Grozny, in the Chechen Republic, in the North Caucasus region of Russia. The design of the tower was done during a collaborative process by a multi-disciplinary architectural and engineering team, based primarily in the United States and Russia. During this process, the designers considered many factors including, most primarily, the cultural and historical context, the structural requirements given the high seismicity of the region, and the client's programmatic needs. The resulting crystalline-shaped tower is both an aesthetic statement and a performative architectural solution which will be a new landmark for Chechnya. "The Design of Akhmat Tower" describes in detail the design process including structural considerations, exterior wall design, building program, interior design, the tuned mass damper, and the use of building information modeling.
Multidisciplinary Analysis and Optimal Design: As Easy as it Sounds?
NASA Technical Reports Server (NTRS)
Moore, Greg; Chainyk, Mike; Schiermeier, John
2004-01-01
The viewgraph presentation examines optimal design for precision, large aperture structures. Discussion focuses on aspects of design optimization, code architecture and current capabilities, and planned activities and collaborative area suggestions. The discussion of design optimization examines design sensitivity analysis; practical considerations; and new analytical environments including finite element-based capability for high-fidelity multidisciplinary analysis, design sensitivity, and optimization. The discussion of code architecture and current capabilities includes basic thermal and structural elements, nonlinear heat transfer solutions and process, and optical modes generation.
Henk, Henry J; Li, Xiaoyan; Becker, Laura K; Xu, Hairong; Gong, Qi; Deeter, Robert G; Barron, Richard L
2015-01-01
To examine the impact of research design on results in two published comparative effectiveness studies. Guidelines for comparative effectiveness research have recommended incorporating disease process in study design. Based on the recommendations, we develop a checklist of considerations and apply the checklist in review of two published studies on comparative effectiveness of colony-stimulating factors. Both studies used similar administrative claims data, but different methods, which resulted in directionally different estimates. Major design differences between the two studies include: whether the timing of intervention in disease process was identified and whether study cohort and outcome assessment period were defined based on this temporal relationship. Disease process and timing of intervention should be incorporated into the design of comparative effectiveness studies.
ERIC Educational Resources Information Center
Wanger, Judith; And Others
Designed to facilitate communications in future automation projects between library and data processing personnel, especially those projects involving the use of automated systems in the service of disabled patrons, this guide identifies and describes a master set of major circulation system requirements and design considerations, and illustrates…
CMOS array design automation techniques. [metal oxide semiconductors
NASA Technical Reports Server (NTRS)
Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.
1975-01-01
A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.
Earth integrated design: office dormitory facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapira, H. B.; Barnes, P. R.
1980-01-01
The generation process of the design of the Joint Institute for Heavy Ion Research is described. Architectural and energy considerations are discussed. The facility will contain living quarters for guest scientists who come to Oak Ridge to conduct short experiments and sleeping alcoves for local researchers on long experimental shifts as well as office space. (MHR)
Brian Buma; Jennifer K Costanza; Kurt Riitters
2017-01-01
The scale of investigation for disturbanceinfluenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact...
Falinski, Mark M; Plata, Desiree L; Chopra, Shauhrat S; Theis, Thomas L; Gilbertson, Leanne M; Zimmerman, Julie B
2018-04-30
Engineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations. The utility of this framework is demonstrated through two case studies, the design and selection of antimicrobial substances and conductive polymers, including ENMs, ENM-enabled products and their alternatives. Further, these case studies consider both the comparative efficacy and impacts at two scales: (i) a broad scale, where chemical/material classes are readily compared for primary decision-making, and (ii) within a chemical/material class, where physicochemical properties are manipulated to tailor the desired performance and environmental impact profile. Development and implementation of this framework can inform decision-making for the implementation of ENMs to facilitate promising applications and prevent unintended consequences.
Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering
Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.
2015-01-01
A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972
Fuel ethanol production: process design trends and integration opportunities.
Cardona, Carlos A; Sánchez, Oscar J
2007-09-01
Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.
NASA Astrophysics Data System (ADS)
Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François
2014-09-01
This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.
Design Considerations for Developing Biodegradable Magnesium Implants
NASA Astrophysics Data System (ADS)
Brar, Harpreet S.; Keselowsky, Benjamin G.; Sarntinoranont, Malisa; Manuel, Michele V.
The integration of biodegradable and bioabsorbable magnesium implants into the human body is a complex undertaking that faces major challenges. The complexity arises from the fact that biomaterials must meet both engineering and physiological requirements to ensure the desired properties. Historically, efforts have been focused on the behavior of commercial magnesium alloys in biological environments and their resultant effect on cell-mediated processes. Developing causal relationships between alloy chemistry and micro structure, and its effect on cellular behavior can be a difficult and time intensive process. A systems design approach driven by thermodynamics has the power to provide significant contributions in developing the next generation of magnesium alloy implants with controlled degradability, biocompatibility, and optimized mechanical properties, at reduced time and cost. This approach couples experimental research with theory and mechanistic modeling for the accelerated development of materials. The aim of this article is to enumerate this strategy, design considerations and hurdles for developing new magnesium alloys for use as biodegradable implant materials [1].
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
NASA Astrophysics Data System (ADS)
Mentzer, Mark A.
Recent advances in the theoretical and practical design and applications of optoelectronic devices and optical circuits are examined in reviews and reports. Topics discussed include system and market considerations, guided-wave phenomena, waveguide devices, processing technology, lithium niobate devices, and coupling problems. Consideration is given to testing and measurement, integrated optics for fiber-optic systems, optical interconnect technology, and optical computing.
Design and validation of instruments to measure knowledge.
Elliott, T E; Regal, R R; Elliott, B A; Renier, C M
2001-01-01
Measuring health care providers' learning after they have participated in educational interventions that use experimental designs requires valid, reliable, and practical instruments. A literature review was conducted. In addition, experience gained from designing and validating instruments for measuring the effect of an educational intervention informed this process. The eight main steps for designing, validating, and testing the reliability of instruments for measuring learning outcomes are presented. The key considerations and rationale for this process are discussed. Methods for critiquing and adapting existent instruments and creating new ones are offered. This study may help other investigators in developing valid, reliable, and practical instruments for measuring the outcomes of educational activities.
Viper cabin-fuselage structural design concept with engine installation and wing structural design
NASA Technical Reports Server (NTRS)
Marchesseault, B.; Carr, D.; Mccorkle, T.; Stevens, C.; Turner, D.
1993-01-01
This report describes the process and considerations in designing the cabin, nose, drive shaft, and wing assemblies for the 'Viper' concept aircraft. Interfaces of these assemblies, as well as interfaces with the sections of the aircraft aft of the cabin, are also discussed. The results of the design process are included. The goal of this project is to provide a structural design which complies with FAR 23 requirements regarding occupant safety, emergency landing loads, and maneuvering loads. The design must also address the interfaces of the various systems in the cabin, nose, and wing, including the drive shaft, venting, vacuum, electrical, fuel, and control systems. Interfaces between the cabin assembly and the wing carrythrough and empennage assemblies were required, as well. In the design of the wing assemblies, consistency with the existing cabin design was required. The major areas considered in this report are materials and construction, loading, maintenance, environmental considerations, wing assembly fatigue, and weight. The first three areas are developed separately for the nose, cabin, drive shaft, and wing assemblies, while the last three are discussed for the entire design. For each assembly, loading calculations were performed to determine the proper sizing of major load carrying components. Table 1.0 lists the resulting margins of safety for these key components, along with the types of the loads involved, and the page number upon which they are discussed.
Magnetic design for the PediaFlow ventricular assist device.
Noh, Myounggyu D; Antaki, James F; Ricci, Michael; Gardiner, Jeff; Paden, Dave; Wu, Jingchun; Prem, Ed; Borovetz, Harvey; Paden, Bradley E
2008-02-01
This article describes a design process for a new pediatric ventricular assist device, the PediaFlow. The pump is embodied in a magnetically levitated turbodynamic design that was developed explicitly based on the requirements for chronic support of infants and small children. The procedure entailed the consideration of multiple pump topologies, from which an axial mixed-flow configuration was chosen for further development. The magnetic design includes permanent-magnet (PM) passive bearings for radial support of the rotor, an actively controlled thrust actuator for axial support, and a brushless direct current (DC) motor for rotation. These components are closely coupled both geometrically and magnetically, and were therefore optimized in parallel, using electromagnetic, rotordynamic models and fluid models, and in consideration of hydrodynamic requirements. Multiple design objectives were considered, including efficiency, size, and margin between critical speeds to operating speed. The former depends upon the radial and yaw stiffnesses of the PM bearings. Analytical expressions for the stiffnesses were derived and verified through finite element analysis (FEA). A toroidally wound motor was designed for high efficiency and minimal additional negative radial stiffness. The design process relies heavily on optimization at the component level and system level. The results of this preliminary design optimization yielded a pump design with an overall stability margin of 15%, based on a pressure rise of 100 mm Hg at 0.5 lpm running at 16,000 rpm.
Factors influencing confidential unit exclusions in blood donors.
Sümnig, A; Konerding, U; Kohlmann, T; Greinacher, A
2010-04-01
In many countries blood donors can exclude their donated blood from being transfused in a confidential unit exclusion (CUE) process. We aimed to identify characteristics which might influence the decision for CUE. In a 3-step approach we first enrolled 29 German blood donation centers in 2005 and addressed how the clarity of different CUE forms applied in these centers was rated by first time blood donors and also assessed three newly designed CUE forms. Second, we performed a survey on the characteristics of the CUE process including 25 centers. Third, we performed an intervention study, in which the CUE form originally applied in the study centre was compared with a newly developed CUE form in a before-after study design with respect to the corresponding CUE rates. (1) Clarity of the CUE forms varied considerably. (2) The CUE rate was higher (P < 0.05) when nurses rather than a physician were involved in informing the donors and when the CUE form was submitted anonymously instead of being handed to a person. (3) Application of the newly designed CUE form which was rated as being very clear resulted in a 31% decrease in the CUE rate. Design of the CUE form and characteristics of the CUE process may considerably influence the CUE rates.
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Design considerations for eye-safe single-aperture laser radars
NASA Astrophysics Data System (ADS)
Starodubov, D.; McCormick, K.; Volfson, L.
2015-05-01
The design considerations for low cost, shock resistant, compact and efficient laser radars and ranging systems are discussed. The reviewed approach with single optical aperture allows reducing the size, weight and power of the system. Additional design benefits include improved stability, reliability and rigidity of the overall system. The proposed modular architecture provides simplified way of varying the performance parameters of the range finder product family by selecting the sets of specific illumination and detection modules. The performance operation challenges are presented. The implementation of non-reciprocal optical elements is considered. The cross talk between illumination and detection channels for single aperture design is reviewed. 3D imaging capability for the ranging applications is considered. The simplified assembly and testing process for single aperture range finders that allows to mass produce the design are discussed. The eye safety of the range finder operation is summarized.
NASA Technical Reports Server (NTRS)
Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.
1991-01-01
An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.
Loads and low frequency dynamics - An ENVIRONET data base
NASA Technical Reports Server (NTRS)
Garba, John A.
1988-01-01
The loads and low frequency dynamics data base, part of Environet, is described with particular attention given to its development and contents. The objective of the data base is to provide the payload designer with design approaches and design data to meet STS safety requirements. Currently the data base consists of the following sections: abstract, scope, glossary, requirements, interaction with other environments, summary of the loads analysis process, design considerations, guidelines for payload design loads, information data base, and references.
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
ERIC Educational Resources Information Center
Akpo, Essegbemon; Crane, Todd A.; Vissoh, Pierre V.; Tossou, Rigobert C.
2015-01-01
Purpose: Changing research design and methodologies regarding how researchers articulate with end-users of technology is an important consideration in developing sustainable agricultural practices. This paper analyzes a joint experiment as a multi-stakeholder process and contributes to understand how the way of organizing social learning affects…
47 CFR 25.157 - Consideration of NGSO-like satellite applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...
47 CFR 25.157 - Consideration of NGSO-like satellite applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...
47 CFR 25.157 - Consideration of NGSO-like satellite applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...
47 CFR 25.157 - Consideration of NGSO-like satellite applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... satellite systems, in which the satellites are designed to communicate with earth stations with omni... response to a public notice initiating a processing round, or a “lead application,” i.e., all other NGSO... public notice. This public notice will initiate a processing round, establish a cut-off date for...
NASA Astrophysics Data System (ADS)
Tuzkaya, Umut R.; Eser, Arzum; Argon, Goner
2004-02-01
Today, growing amounts of waste due to fast consumption rate of products started an irreversible environmental pollution and damage. A considerable part of this waste is caused by packaging material. With the realization of this fact, various waste policies have taken important steps. Here we considered a firm, where waste Aluminum constitutes majority of raw materials for this fir0m. In order to achieve a profitable recycling process, plant layout should be well designed. In this study, we propose a two-step approach involving Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) to solve facility layout design problems. A case example is considered to demonstrate the results achieved.
Design of an MR image processing module on an FPGA chip.
Li, Limin; Wyrwicz, Alice M
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic andmore » changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.« less
ERIC Educational Resources Information Center
Coursen, David
Modern educators and playground designers are increasingly recognizing that play is a part, perhaps the decisive part, of the entire learning process. Theories of playground equipment design, planning the playground, financial considerations, and equipment suggestions are featured in this review. Examples of playgrounds include innovative…
Quiet aircraft design and operational characteristics
NASA Technical Reports Server (NTRS)
Hodge, Charles G.
1991-01-01
The application of aircraft noise technology to the design and operation of aircraft is discussed. Areas of discussion include the setting of target airplane noise levels, operational considerations and their effect on noise, and the sequencing and timing of the design and development process. Primary emphasis is placed on commercial transport aircraft of the type operated by major airlines. Additionally, noise control engineering of other types of aircraft is briefly discussed.
Software Assurance: Five Essential Considerations for Acquisition Officials
2007-05-01
May 2007 www.stsc.hill.af.mil 17 2 • address security concerns in the software development life cycle ( SDLC )? • Are there formal software quality...What threat modeling process, if any, is used when designing the software ? What analysis, design, and construction tools are used by your software design...the-shelf (COTS), government off-the-shelf (GOTS), open- source, embedded, and legacy software . Attackers exploit unintentional vulnerabil- ities or
Design and Implementation of an Integrated Screen-Oriented Text Editing and Formatting System.
1980-06-01
AD-AG92 180 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G V/2 DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT--ETC(, JUN 80 L A TALMAGE...1963-A wI NAVAL POSTGRADUATE SCHOOL Monterey, California 0 THESISA DESIGN AND IMPLEMENTATION OF AN INTEGRATED SCREEN-ORIENTED TEXT EDITING AND...processors are described. The state-of-the-art in text processing is examined. Design and implementation considerations in developing an interactive
Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Peters, David A.
1991-01-01
Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.
Programming and machining of complex parts based on CATIA solid modeling
NASA Astrophysics Data System (ADS)
Zhu, Xiurong
2017-09-01
The complex parts of the use of CATIA solid modeling programming and simulation processing design, elaborated in the field of CNC machining, programming and the importance of processing technology. In parts of the design process, first make a deep analysis on the principle, and then the size of the design, the size of each chain, connected to each other. After the use of backstepping and a variety of methods to calculate the final size of the parts. In the selection of parts materials, careful study, repeated testing, the final choice of 6061 aluminum alloy. According to the actual situation of the processing site, it is necessary to make a comprehensive consideration of various factors in the machining process. The simulation process should be based on the actual processing, not only pay attention to shape. It can be used as reference for machining.
Space Tethers: Design Criteria
NASA Technical Reports Server (NTRS)
Tomlin, D. D.; Faile, G. C.; Hayashida, K. B.; Frost, C. L.; Wagner, C. Y.; Mitchell, M. L.; Vaughn, J. A.; Galuska, M. J.
1997-01-01
This document is prepared to provide a systematic process for the selection of tethers for space applications. Criteria arc provided for determining the strength requirement for tether missions and for mission success from tether severing due to micrometeoroids and orbital debris particle impacts. Background information of materials for use in space tethers is provided, including electricity-conducting tethers. Dynamic considerations for tether selection is also provided. Safety, quality, and reliability considerations are provided for a tether project.
Indications and Warning Analysis Management System IWAMS. A Design Study
1980-03-01
First, we must understand the process of warning analysis; we must develop an -;adequate functional model. In the present research we have divided ...and changeable). (In subsequent discussions, considerable attention will be focused on these issues.) -77-7-12Z ’m,77+-U 21 WARNING ANALYSIS MODEL...have charted limitations in man’s memory, attention span, reasoning capability and other cognitive functions. These limitations considerably affect man’s
NASA Astrophysics Data System (ADS)
Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.
2015-05-01
Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.
Bibby, Anna C; Torgerson, David J; Leach, Samantha; Lewis-White, Helen; Maskell, Nick A
2018-01-08
The 'trials within cohorts' (TwiC) design is a pragmatic approach to randomised trials in which trial participants are randomly selected from an existing cohort. The design has multiple potential benefits, including the option of conducting multiple trials within the same cohort. To date, the TwiC design methodology been used in numerous clinical settings but has never been applied to a clinical trial of an investigational medicinal product (CTIMP). We have recently secured the necessary approvals to undertake the first CTIMP using the TwiC design. In this paper, we describe some of the considerations and modifications required to ensure such a trial is compliant with Good Clinical Practice and international clinical trials regulations. We advocate using a two-stage consent process and using the consent stages to explicitly differentiate between trial participants and cohort participants who are providing control data. This distinction ensured compliance but had consequences with respect to costings, recruitment and the trial assessment schedule. We have demonstrated that it is possible to secure ethical and regulatory approval for a CTIMP TwiC. By including certain considerations at the trial design stage, we believe this pragmatic and efficient methodology could be utilised in other CTIMPs in future.
Model reduction in integrated controls-structures design
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.
1993-01-01
It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.
CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS
Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...
Thermal modeling of nickel-hydrogen battery cells operating under transient orbital conditions
NASA Technical Reports Server (NTRS)
Schrage, Dean S.
1991-01-01
An analytical study of the thermal operating characteristics of nickel-hydrogen battery cells is presented. Combined finite-element and finite-difference techniques are employed to arrive at a computationally efficient composite thermal model representing a series-cell arrangement operating in conjunction with a radiately coupled baseplate and coldplate thermal bus. An aggressive, low-mass design approach indicates that thermal considerations can and should direct the design of the thermal bus arrangement. Special consideration is given to the potential for mixed conductive and convective processes across the hydrogen gap. Results of a compressible flow model are presented and indicate the transfer process is suitably represented by molecular conduction. A high-fidelity thermal model of the cell stack (and related components) indicates the presence of axial and radial temperature gradients. A detailed model of the thermal bus reveals the thermal interaction of individual cells and is imperative for assessing the intercell temperature gradients.
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications
Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; ...
2018-03-12
This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The proposed TFM has a modular structure with quasi-U stator cores and toroidal ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating setup to achieve high air gap flux density. Pole number selection is critical in the design process of a TFM as it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the initial design procedure. The effect of pole shaping on back-EMF andmore » inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis (FEA). A proof-of-concept prototype was developed to experimentally validate the FEA results.« less
Conceptual design of industrial process displays.
Pedersen, C R; Lind, M
1999-11-01
Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is concluded that the design method proposed provides a framework for the progress of the display design and is useful in pin-pointing the actual problems. The method was useful in reducing the number of existing displays that could fulfil the requirements of the supervision task. The method provided at the same time a framework for dealing with the problems involved in inventing new displays based on structured analysis. However the problems in a systematic approach to display invention still need consideration.
USDA-ARS?s Scientific Manuscript database
To expand the biomass to fuel ethanol industry, process strategies are needed to foster the production and utilization of microorganisms which can survive and ferment both hexose (C6) and pentose (C5) sugars while exposed to inhibitors (such as ethanol, furfural, and hydroxymethylfurfural, or HMF). ...
Moments of Intensity: Affect and the Making and Teaching of Art
ERIC Educational Resources Information Center
Addison, Nicholas
2011-01-01
Affect often arises unexpectedly within the process of making art (along with other creative activities). In this article I argue for affect as a necessary and constructive dynamic within educational processes specifically for art and design. After a consideration of its recent neglect within art education, I revisit the notion of affect with…
NASA Technical Reports Server (NTRS)
Carpenter, Ronn L.
1993-01-01
Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
NASA Technical Reports Server (NTRS)
Woodbury, Sarah K.
2008-01-01
The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.
Enhancing the traditional hospital design process: a focus on patient safety.
Reiling, John G; Knutzen, Barbara L; Wallen, Thomas K; McCullough, Susan; Miller, Ric; Chernos, Sonja
2004-03-01
In 2002 St. Joseph's Community Hospital (West Bend, WI), a member of SynergyHealth, brought together leaders in health care and systems engineering to develop a set of safety-driven facility design principles that would guide the hospital design process. DESIGNING FOR SAFETY: Hospital leadership recognized that a cross-departmental team approach would be needed and formed the 11-member Facility Design Advisory Council, which, with departmental teams and the aid of architects, was responsible for overseeing the design process and for ensuring that the safety considerations were met. The design process was a team approach, with input from national experts, patients and families, hospital staff and physicians, architects, contractors, and the community. The new facility, designed using safety-driven design principles, reflects many innovative design elements, including truly standardized patient rooms, new technology to minimize falls, and patient care alcoves for every patient room. The new hospital has been designed with maximum adaptability and flexibility in mind, to accommodate changes and provide for future growth. The architects labeled the innovative design. The Synergy Model, to describe the process of shaping the entire building and its spaces to work efficiently as a whole for the care and safety of patients. Construction began on the new facility in August 2003 and is expected to be completed in 2005.
CMOS array design automation techniques
NASA Technical Reports Server (NTRS)
Lombardi, T.; Feller, A.
1976-01-01
The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.
Design and fabrication of titanium multi-wall Thermal Protection System (TPS) test panels
NASA Technical Reports Server (NTRS)
Blair, W.; Meaney, J. E., Jr.; Rosenthal, H. A.
1980-01-01
A titanium multiwall thermal protection system panel was designed. The panel is a nine sheet sandwich structure consisting of an upper and lower face sheet; four dimpled sheets, three septum sheets, and clips for attachment to a vehicle structure. An acceptable fabrication process was developed, and the panel design was verified through mechanical and thermal testing of component specimens. A design was completed which takes into consideration fabrication techniques, thermal properties, mechanical properties, and materials availability.
Compressed sensing system considerations for ECG and EMG wireless biosensors.
Dixon, Anna M R; Allstot, Emily G; Gangopadhyay, Daibashish; Allstot, David J
2012-04-01
Compressed sensing (CS) is an emerging signal processing paradigm that enables sub-Nyquist processing of sparse signals such as electrocardiogram (ECG) and electromyogram (EMG) biosignals. Consequently, it can be applied to biosignal acquisition systems to reduce the data rate to realize ultra-low-power performance. CS is compared to conventional and adaptive sampling techniques and several system-level design considerations are presented for CS acquisition systems including sparsity and compression limits, thresholding techniques, encoder bit-precision requirements, and signal recovery algorithms. Simulation studies show that compression factors greater than 16X are achievable for ECG and EMG signals with signal-to-quantization noise ratios greater than 60 dB.
Computerized Adaptive Testing System Design: Preliminary Design Considerations.
1982-07-01
the administrative or operational requirements of CAT and presented - # k*----.,ku nh-n.-utu (IPOI efi~g.2me (PMU tQ7q. vim NPRDC TR 82-52 July 1982...design model for a computerized adaptive testing ( CAT ) system was developed and presented through a series of hierarchy plus input-process-output (HIPO...physical system was addressed through brief discussions of hardware, software, interfaces, and personnel requirements. Further steps in CAT system
Getting started in research: designing and preparing to conduct a research study.
Macfarlane, Matthew D; Kisely, Steve; Loi, Samantha; Macfarlane, Stephen; Merry, Sally; Parker, Stephen; Power, Brian; Siskind, Dan; Smith, Geoff; Looi, Jeffrey C
2015-02-01
To discuss common pitfalls and useful tips in designing a quantitative research study, the importance and process of ethical approval, and consideration of funding. Through careful planning, based on formulation of a research question, early career researchers can design and conduct quantitative research projects within the framework of the Scholarly Project or in their own independent projects. © The Royal Australian and New Zealand College of Psychiatrists 2014.
Defining process design space for monoclonal antibody cell culture.
Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A
2010-08-15
The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.
Wilson, M; Kahn, N; Wartman, S
2001-04-01
Implementation of the Interdisciplinary Generalist Curriculum (IGC) Project involved complex processes that reflect structural, funding, and intervention design considerations. Among structural considerations, the IGC Project benefited from a national structure above the level of the demonstration schools. Governance by committee was highly effective because it harnessed and balanced power. At the national level, governance by committee was enhanced by strong central coordination, and it had a role-modeling effect for governance at the school level. The IGC experience over the seven-year course of the project suggests that it is important to revisit the role of a national advisory committee over time and to revise that role as warranted. Funding considerations, including the importance of funding evaluation for a period of time long enough to measure intended impacts and the length and amount of funding to demonstration schools, are discussed. Prescription of the IGC intervention and the focus on years one and two of medical education are critical design considerations. The authors conclude that the IGC Project used relatively few federal dollars to demonstrate a highly prescribed intervention in a limited number of medical schools toward a clear and limited goal. IGC lessons apply to programs specifically targeting primary care education, but also to other medical school curricular innovations, and perhaps, to a larger framework of multi-site educational interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibo, A.
SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).
Development of assembly and joint concepts for erectable space structures
NASA Technical Reports Server (NTRS)
Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.
1980-01-01
The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.
FORMAL SCENARIO DEVELOPMENT FOR ENVIRONMENTAL IMPACT ASSESSMENT STUDIES
Scenario analysis is a process of evaluating possible future events through the consideration of alternative plausible (though not equally likely) outcomes (scenarios). The analysis is designed to enable improved decision-making and assessment through a more rigorous evaluation o...
Orientation to Municipal Wastewater Treatment. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…
Implementation of Testing Equipment for Asphalt Materials : Tech Summary
DOT National Transportation Integrated Search
2009-05-01
Three new automated methods for related asphalt material and mixture testing were evaluated under this study. Each of these devices is designed to reduce testing time considerably and reduce operator error by automating the testing process. The Thery...
Implementation of testing equipment for asphalt materials : tech summary.
DOT National Transportation Integrated Search
2009-05-01
Three new automated methods for related asphalt material and mixture testing were evaluated : under this study. Each of these devices is designed to reduce testing time considerably and reduce : operator error by automating the testing process. The T...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.M.; Thurner, R.P.
1977-01-01
In considering the use of regenerative and recuperative heat exchangers for process-gas heat recovery general information regarding heat-exchanger effectiveness versus initial capital investment and operating costs is discussed. Specific examples for preheating combustion air for process furnaces and for using primary and secondary heat exchangers in conjunction with an air-pollution-control system for drying and curing ovens cover basic heat-exchanger design and application considerations as well as investment-payback factors.
2014-11-18
this research was to characterize the naturalistic decision making process used in Naval Aviation acquisition to assess cost, schedule and...Naval Aviation acquisitions can be identified, which can support the future development of new processes and tools for training and decision making...part of Department of Defense acquisition processes , HSI ensures that operator, maintainer and sustainer considerations are incorporated into
A flexible tool for hydraulic and water quality performance analysis of green infrastructure
NASA Astrophysics Data System (ADS)
Massoudieh, A.; Alikhani, J.
2017-12-01
Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. To be used to evaluate the effect design configurations on the long-term performance of GIs, models should be able to consider processes within GIs with good fidelity. In this presentation, a sophisticated, yet flexible tool for hydraulic and water quality assessment of GIs will be introduced. The tool can be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media employed in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biogeochemical processes affecting contaminants such as evapotranspiration, plant uptake, reactions, and particle-associated transport accurately while maintaining a high degree of flexibility to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as stormwater ponds, green roofs, retention ponds, bioretention systems, infiltration trench, permeable pavement and other custom-designed combinatory systems. An example of the application of the system to evaluate the performance of a rain-garden system will be demonstrated.
An optimal system design process for a Mars roving vehicle
NASA Technical Reports Server (NTRS)
Pavarini, C.; Baker, J.; Goldberg, A.
1971-01-01
The problem of determining the optimal design for a Mars roving vehicle is considered. A system model is generated by consideration of the physical constraints on the design parameters and the requirement that the system be deliverable to the Mars surface. An expression which evaluates system performance relative to mission goals as a function of the design parameters only is developed. The use of nonlinear programming techniques to optimize the design is proposed and an example considering only two of the vehicle subsystems is formulated and solved.
Power management and distribution considerations for a lunar base
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Coleman, Anthony S.
1991-01-01
Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.
Proximity operations considerations affecting spacecraft design
NASA Technical Reports Server (NTRS)
Staas, Steven K.
1991-01-01
Experience from several recent spacecraft development programs, such as Space Station Freedom (SSF) and the Orbital Maneuvering Vehicle (OMV) has shown the need for factoring proximity operations considerations into the vehicle design process. Proximity operations, those orbital maneuvers and procedures which involve operation of two or more spacecraft at ranges of less than one nautical mile, are essential to the construction, servicing, and operation of complex spacecraft. Typical proximity operations considerations which drive spacecraft design may be broken into two broad categories; flight profile characteristics and concerns, and use of various spacecraft systems during proximity operations. Proximity operations flight profile concerns include the following: (1) relative approach/separation line; (2) relative orientation of the vehicles; (3) relative translational and rotational rates; (4) vehicle interaction, in the form of thruster plume impingement, mating or demating operations, or uncontrolled contact/collision; and (5) active vehicle piloting. Spacecraft systems used during proximity operations include the following: (1) sensors, such as radar, laser ranging devices, or optical ranging systems; (2) effector hardware, such as thrusters; (3) flight control software; and (4) mating hardware, needed for docking or berthing operations. A discussion of how these factors affect vehicle design follows, addressing both active and passive/cooperative vehicles.
Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.
Galinski, Daniel; Sapin, Julien; Dehez, Bruno
2013-06-01
This paper presents the optimal design of an alignment-free exoskeleton for the rehabilitation of the shoulder complex. This robot structure is constituted of two actuated joints and is linked to the arm through passive degrees of freedom (DOFs) to drive the flexion-extension and abduction-adduction movements of the upper arm. The optimal design of this structure is performed through two steps. The first step is a multi-objective optimization process aiming to find the best parameters characterizing the robot and its position relative to the patient. The second step is a comparison process aiming to select the best solution from the optimization results on the basis of several criteria related to practical considerations. The optimal design process leads to a solution outperforming an existing solution on aspects as kinematics or ergonomics while being more simple.
The Design Process of Physical Security as Applied to a U.S. Border Port of Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.
1999-02-22
This paper details the application of a standard physical security system design process to a US Border Port of Entry (PoE) for vehicle entry/exit. The physical security design methodology is described as well as the physical security similarities to facilities currently at a US Border PoE for vehicles. The physical security design process description includes the various elements that make up the methodologies well as the considerations that must be taken into account when dealing with system integration of those elements. The distinctions between preventing unlawful entry/exit of illegal contraband and personnel are described. The potential to enhance the functionsmore » of drug/contraband detection in the Pre-Primary Inspection area through the application of emerging technologies are also addressed.« less
Trajectory Dispersed Vehicle Process for Space Launch System
NASA Technical Reports Server (NTRS)
Statham, Tamara; Thompson, Seth
2017-01-01
The Space Launch System (SLS) vehicle is part of NASA's deep space exploration plans that includes manned missions to Mars. Manufacturing uncertainties in design parameters are key considerations throughout SLS development as they have significant effects on focus parameters such as lift-off-thrust-to-weight, vehicle payload, maximum dynamic pressure, and compression loads. This presentation discusses how the SLS program captures these uncertainties by utilizing a 3 degree of freedom (DOF) process called Trajectory Dispersed (TD) analysis. This analysis biases nominal trajectories to identify extremes in the design parameters for various potential SLS configurations and missions. This process utilizes a Design of Experiments (DOE) and response surface methodologies (RSM) to statistically sample uncertainties, and develop resulting vehicles using a Maximum Likelihood Estimate (MLE) process for targeting uncertainties bias. These vehicles represent various missions and configurations which are used as key inputs into a variety of analyses in the SLS design process, including 6 DOF dispersions, separation clearances, and engine out failure studies.
Effects of process parameters in plastic, metal, and ceramic injection molding processes
NASA Astrophysics Data System (ADS)
Lee, Shi W.; Ahn, Seokyoung; Whang, Chul Jin; Park, Seong Jin; Atre, Sundar V.; Kim, Jookwon; German, Randall M.
2011-09-01
Plastic injection molding has been widely used in the past and is a dominant forming approach today. As the customer demands require materials with better engineering properties that were not feasible with polymers, powder injection molding with metal and ceramic powders has received considerable attention in recent decades. To better understand the differences in the plastic injection molding, metal injection molding, and ceramic injection molding, the effects of the core process parameters on the process performances has been studied using the state-of-the-art computer-aided engineering (CAE) design tool, PIMSolver® The design of experiments has been conducted using the Taguchi method to obtain the relative contributions of various process parameters onto the successful operations.
NASA Astrophysics Data System (ADS)
Fox, Matthew D.
Advanced automotive technology assessment and powertrain design are increasingly performed through modeling, simulation, and optimization. But technology assessments usually target many competing criteria making any individual optimization challenging and arbitrary. Further, independent design simulations and optimizations take considerable time to execute, and design constraints and objectives change throughout the design process. Changes in design considerations usually require re-processing of simulations and more time. In this thesis, these challenges are confronted through CSU's participation in the EcoCAR2 hybrid vehicle design competition. The complexity of the competition's design objectives leveraged development of a decision support system tool to aid in multi-criteria decision making across technologies and to perform powertrain optimization. To make the decision support system interactive, and bypass the problem of long simulation times, a new approach was taken. The result of this research is CSU's architecture selection and component sizing, which optimizes a composite objective function representing the competition score. The selected architecture is an electric vehicle with an onboard range extending hydrogen fuel cell system. The vehicle has a 145kW traction motor, 18.9kWh of lithium ion battery, a 15kW fuel cell system, and 5kg of hydrogen storage capacity. Finally, a control strategy was developed that improves the vehicles performance throughout the driving range under variable driving conditions. In conclusion, the design process used in this research is reviewed and evaluated against other common design methodologies. I conclude, through the highlighted case studies, that the approach is more comprehensive than other popular design methodologies and is likely to lead to a higher quality product. The upfront modeling work and decision support system formulation will pay off in superior and timely knowledge transfer and more informed design decisions. The hypothesis is supported by the three case studies examined in this thesis.
Distribution factors for construction loads and girder capacity equations, final report.
DOT National Transportation Integrated Search
2017-03-01
During the process of constructing a highway bridge, there are several construction stages that warrant : consideration from a structural safety and design perspective. The first objective of the present study was to use analytical : models of prestr...
Interdisciplinary research on the nature and properties of ceramic materials
NASA Technical Reports Server (NTRS)
1980-01-01
Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.
Design of siRNA Therapeutics from the Molecular Scale
Angart, Phillip; Vocelle, Daniel; Chan, Christina; Walton, S. Patrick
2013-01-01
While protein-based therapeutics is well-established in the market, development of nucleic acid therapeutics has lagged. Short interfering RNAs (siRNAs) represent an exciting new direction for the pharmaceutical industry. These small, chemically synthesized RNAs can knock down the expression of target genes through the use of a native eukaryotic pathway called RNA interference (RNAi). Though siRNAs are routinely used in research studies of eukaryotic biological processes, transitioning the technology to the clinic has proven challenging. Early efforts to design an siRNA therapeutic have demonstrated the difficulties in generating a highly-active siRNA with good specificity and a delivery vehicle that can protect the siRNA as it is transported to a specific tissue. In this review article, we discuss design considerations for siRNA therapeutics, identifying criteria for choosing therapeutic targets, producing highly-active siRNA sequences, and designing an optimized delivery vehicle. Taken together, these design considerations provide logical guidelines for generating novel siRNA therapeutics. PMID:23976875
NASA Technical Reports Server (NTRS)
Lee, Jonggil
1990-01-01
High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm.
George, Barbara Jane; Sobus, Jon R; Phelps, Lara P; Rashleigh, Brenda; Simmons, Jane Ellen; Hines, Ronald N
2015-05-01
Considerable concern has been raised regarding research reproducibility both within and outside the scientific community. Several factors possibly contribute to a lack of reproducibility, including a failure to adequately employ statistical considerations during study design, bias in sample selection or subject recruitment, errors in developing data inclusion/exclusion criteria, and flawed statistical analysis. To address some of these issues, several publishers have developed checklists that authors must complete. Others have either enhanced statistical expertise on existing editorial boards, or formed distinct statistics editorial boards. Although the U.S. Environmental Protection Agency, Office of Research and Development, already has a strong Quality Assurance Program, an initiative was undertaken to further strengthen statistics consideration and other factors in study design and also to ensure these same factors are evaluated during the review and approval of study protocols. To raise awareness of the importance of statistical issues and provide a forum for robust discussion, a Community of Practice for Statistics was formed in January 2014. In addition, three working groups were established to develop a series of questions or criteria that should be considered when designing or reviewing experimental, observational, or modeling focused research. This article describes the process used to develop these study design guidance documents, their contents, how they are being employed by the Agency's research enterprise, and expected benefits to Agency science. The process and guidance documents presented here may be of utility for any research enterprise interested in enhancing the reproducibility of its science. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.
A flexible framework for process-based hydraulic and water ...
Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and
Sovány, Tamás; Tislér, Zsófia; Kristó, Katalin; Kelemen, András; Regdon, Géza
2016-09-01
The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical developments. In the past decade a lot of knowledge was collected about the practical realization of the concept, but there are still a lot of unanswered questions. The key requirement of the concept is the mathematical description of the effect of the critical factors and their interactions on the critical quality attributes (CQAs) of the product. The process design space (PDS) is usually determined by the use of design of experiment (DoE) based response surface methodologies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation of the real trends and changes making the calculations uncertain, especially in the edge regions of the PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial, Central Composite, Box-Behnken, 3 level fractional and 3 level full factorial design) on the model predictability and to compare model sensitivities according to the organization of the experimental data set. It was revealed that the size of the design space could differ more than 40% calculated with different polynomial models, which was associated with a considerable shift in its position when higher level layouts were applied. The shift was more considerable when the calculation was based on RSM. The model predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit considerable sensitivity to the organization of the experimental data set, and the use of design layouts is recommended, where the extreme values factors are more represented. Copyright © 2016 Elsevier B.V. All rights reserved.
MEMS product engineering: methodology and tools
NASA Astrophysics Data System (ADS)
Ortloff, Dirk; Popp, Jens; Schmidt, Thilo; Hahn, Kai; Mielke, Matthias; Brück, Rainer
2011-03-01
The development of MEMS comprises the structural design as well as the definition of an appropriate manufacturing process. Technology constraints have a considerable impact on the device design and vice-versa. Product design and technology development are therefore concurrent tasks. Based on a comprehensive methodology the authors introduce a software environment that links commercial design tools from both area into a common design flow. In this paper emphasis is put on automatic low threshold data acquisition. The intention is to collect and categorize development data for further developments with minimum overhead and minimum disturbance of established business processes. As a first step software tools that automatically extract data from spreadsheets or file-systems and put them in context with existing information are presented. The developments are currently carried out in a European research project.
Methodological considerations in the design and implementation of clinical trials.
Cirrincione, Constance T; Lavoie Smith, Ellen M; Pang, Herbert
2014-02-01
To review study design issues related to clinical trials led by oncology nurses, with special attention to those conducted within the cooperative group setting; to emphasize the importance of the statistician's role in the process of clinical trials. Studies available at clinicaltrials.gov using experimental designs that have been published in peer-reviewed journals; cooperative group trials are highlighted. The clinical trial is a primary means to test intervention efficacy. A properly designed and powered study with clear and measurable objectives is as important as the intervention itself. Collaboration among the study team, including the statistician, is central in developing and conducting appropriately designed studies. For optimal results, collaboration is an ongoing process that should begin early on. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.
The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique
An, Jia
2016-01-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.
An, Jia; Chua, Chee Kai
2016-12-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.
Study of percolation behavior depending on molecular structure design
NASA Astrophysics Data System (ADS)
Yu, Ji Woong; Lee, Won Bo
Each differently designed anisotropic nano-crystals(ANCs) are studied using Langevin dynamic simulation and their percolation behaviors are presented. Popular molecular dynamics software LAMMPS was used to design the system and perform the simulation. We calculated the minimum number density at which percolation occurs(i.e. percolation threshold), radial distribution function, and the average number of ANCs for a cluster. Electrical conductivity is improved when the number of transfers of electrons between ANCs, so called ''inter-hopping process'', which has the considerable contribution to resistance decreases and the number of inter-hopping process is directly related with the concentration of ANCs. Therefore, with the investigation of relationship between molecular architecture and percolation behavior, optimal design of ANC can be achieved.
A SURVEY OF LABORATORY AND STATISTICAL ISSUES RELATED TO FARMWORKER EXPOSURE STUDIES
Developing internally valid, and perhaps generalizable, farmworker exposure studies is a complex process that involves many statistical and laboratory considerations. Statistics are an integral component of each study beginning with the design stage and continuing to the final da...
Automatic Query Formulations in Information Retrieval.
ERIC Educational Resources Information Center
Salton, G.; And Others
1983-01-01
Introduces methods designed to reduce role of search intermediaries by generating Boolean search formulations automatically using term frequency considerations from natural language statements provided by system patrons. Experimental results are supplied and methods are described for applying automatic query formulation process in practice.…
Recent Developments in Positron Emission Tomography (PET) Instrumentation
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1986-04-01
This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.
NASA Technical Reports Server (NTRS)
Benzie, M. A.
1998-01-01
The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.
LSA silicon material task closed-cycle process development
NASA Technical Reports Server (NTRS)
Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.
1979-01-01
The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.
A Meta-Analysis and Review of Holistic Face Processing
Richler, Jennifer J.; Gauthier, Isabel
2014-01-01
The concept of holistic processing is a cornerstone of face recognition research, yet central questions related to holistic processing remain unanswered, and debates have thus far failed to reach a resolution despite accumulating empirical evidence. We argue that a considerable source of confusion in this literature stems from a methodological problem. Specifically, two different measures of holistic processing based on the composite paradigm (complete design and partial design) are used in the literature, but they often lead to qualitatively different results. First, we present a comprehensive review of the work that directly compares the two designs, and which clearly favors the complete design over the partial design. Second, we report a meta-analysis of holistic face processing according to both designs, and use this as further evidence for one design over the other. The meta-analysis effect size of holistic processing in the complete design is nearly three times that of the partial design. Effect sizes were not correlated between measures, consistent with the suggestion that they do not measure the same thing. Our meta-analysis also examines the correlation between conditions in the complete design of the composite task, and suggests that in an individual differences context, little is gained by including a misaligned baseline. Finally, we offer a comprehensive review of the state of knowledge about holistic processing based on evidence gathered from the measure we favor based on the first sections of our review—the complete design—and outline outstanding research questions in that new context. PMID:24956123
2009-09-01
suffer the power and complexity requirements of a public key system. 28 In [18], a simulation of the SHA –1 algorithm is performed on a Xilinx FPGA ... 256 bits. Thus, the construction of a hash table would need 2512 independent comparisons. It is known that hash collisions of the SHA –1 algorithm... SHA –1 algorithm for small-core FPGA design. Small-core FPGA design is the process by which a circuit is adapted to use the minimal amount of logic
3D printing technology speeds development.
McGowan, James
2013-10-01
James McGowan, R&D product designer for Monodraught, a specialist in 'natural ventilation, natural daylight, and natural cooling systems', discusses the development of Cool-phase, the company's latest innovative application of phase change material (PCM) as a thermal energy store used to actively ventilate and cool buildings. As he explains, when the company decided to re-design an already successful product to further enhance its performance, the use of 3D modelling greatly speeded up prototyping, and helped the design process progress considerably more quickly.
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Considerations for the Optimal Design of a Two-Way Interactive Distance Education Classroom.
ERIC Educational Resources Information Center
Gregg, Joe; Persichitte, Kay
To make effective use of a two-way interactive distance education system, classroom design should be a primary consideration. A properly designed classroom will enhance content objectives and increase acceptance of this type of instructional delivery. This paper describes key considerations for optimal design. Construction considerations include…
Navigating the Institutional Review Board (IRB) Process for Pharmacy-Related Research
Abdelghany, Osama; Johnston, Susan; Rarus, Rachel; Austin-Szwak, Jennifer; Kirkwood, Craig
2017-01-01
Pharmacists' specialized training and knowledge qualify them to lead and engage in research pertaining to optimal medication use. Performing research promotes pharmacy professionalism and fosters interdisciplinary collaboration. To conduct research appropriately, one must have thorough knowledge of when institutional review board (IRB) approval is required and how to successfully navigate IRB processes. The overarching mission of the IRB overseeing research at an organization per federal guidelines is to protect the rights and welfare of human subjects participating in research. This article discusses the following general pharmacy practice–based considerations relating to IRB processes: strategies for developing research projects, key distinctions between quality improvement and research, practical considerations for submitting IRB applications and documentation, different categories of IRB submission, informed consent and conditions for waivers or alterations of consent, and principal investigator obligations for approved research. Pharmacists should also account for organization-specific IRB processes when designing, submitting, and implementing research projects. PMID:28321137
Considerations In The Design And Specifications Of An Automatic Inspection System
NASA Astrophysics Data System (ADS)
Lee, David T.
1980-05-01
Considerable activities have been centered around the automation of manufacturing quality control and inspection functions. Several reasons can be cited for this development. The continuous pressure of direct and indirect labor cost increase is only one of the obvious motivations. With the drive for electronics miniaturization come more and more complex processes where control parameters are critical and the yield is highly susceptible to inadequate process monitor and inspection. With multi-step, multi-layer process for substrate fabrication, process defects that are not detected and corrected at certain critical points may render the entire subassembly useless. As a process becomes more complex, the time required to test the product increases significantly in the total build cycle. The urgency to reduce test time brings more pressure to improve in-process control and inspection. The advances and improvements of components, assemblies and systems such as micro-processors, micro-computers, programmable controllers, and other intelligent devices, have made the automation of quality control much more cost effective and justifiable.
Heat pump processes induced by laser radiation
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.
1980-01-01
A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.
Nekkanti, Vijaykumar; Marwah, Ashwani; Pillai, Raviraj
2015-01-01
Design of experiments (DOE), a component of Quality by Design (QbD), is systematic and simultaneous evaluation of process variables to develop a product with predetermined quality attributes. This article presents a case study to understand the effects of process variables in a bead milling process used for manufacture of drug nanoparticles. Experiments were designed and results were computed according to a 3-factor, 3-level face-centered central composite design (CCD). The factors investigated were motor speed, pump speed and bead volume. Responses analyzed for evaluating these effects and interactions were milling time, particle size and process yield. Process validation batches were executed using the optimum process conditions obtained from software Design-Expert® to evaluate both the repeatability and reproducibility of bead milling technique. Milling time was optimized to <5 h to obtain the desired particle size (d90 < 400 nm). The desirability function used to optimize the response variables and observed responses were in agreement with experimental values. These results demonstrated the reliability of selected model for manufacture of drug nanoparticles with predictable quality attributes. The optimization of bead milling process variables by applying DOE resulted in considerable decrease in milling time to achieve the desired particle size. The study indicates the applicability of DOE approach to optimize critical process parameters in the manufacture of drug nanoparticles.
Low NO sub x heavy fuel combustor concept program
NASA Technical Reports Server (NTRS)
Russell, P.; Beal, G.; Hinton, B.
1981-01-01
A gas turbine technology program to improve and optimize the staged rich lean low NOx combustor concept is described. Subscale combustor tests to develop the design information for optimization of the fuel preparation, rich burn, quick air quench, and lean burn steps of the combustion process were run. The program provides information for the design of high pressure full scale gas turbine combustors capable of providing environmentally clean combustion of minimally of minimally processed and synthetic fuels. It is concluded that liquid fuel atomization and mixing, rich zone stoichiometry, rich zone liner cooling, rich zone residence time, and quench zone stoichiometry are important considerations in the design and scale up of the rich lean combustor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-08-01
Documents relevant to the development and implementation of the California energy insulation standards for new residential buildings were evaluated and a survey was conducted to determine problems encountered in the implementation, enforcement, and design aspects of the standards. The impact of the standards on enforcement agencies, designers, builders and developers, manufacturers and suppliers, consumers, and the building process in general is summarized. The impact on construction costs and energy savings varies considerably because of the wide variation in prior insulation practices and climatic conditions in California. The report concludes with a series of recommendations covering all levels of government andmore » the building process. (MCW)« less
McEwan, Reed; Melton, Genevieve B; Knoll, Benjamin C; Wang, Yan; Hultman, Gretchen; Dale, Justin L; Meyer, Tim; Pakhomov, Serguei V
2016-01-01
Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota.
Gaining the Competitive Edge: Design for Manufacturing
NASA Technical Reports Server (NTRS)
Batill, Stephen M.; Pinkelman, Jim; Sellar, Richard
1993-01-01
The successful design of a commercial aircraft which is intended to be in direct competition with existing aircraft requires a market analysis to establish design requirements, the development of a concept to achieve those goals. and the ability to economically manufacture the aircraft. It is often the case that an engineer designs system components with only the perspective of a particular discipline. The relationship of that component to the entire system is often a minor consideration. In an effort to highlight the interaction that is necessary during the design process, the students were organized into design/build teams and required to integrate aspects of market analysis, engineering design, production and economics into their concepts. In order to facilitate this process a hypothetical "Aeroworld" was established. Having been furnished relevant demographic and economic data for "Aeroworld". students were given the task of designing and building an aircraft for a specific market while achieving an economically competitive design. Involvement of the team in the evolution of the design from market definition to technical development to manufacturing allowed the students to identify critical issues in the design process and to encounter many of the conflicting requirements which arise in an aerospace systems design.
ERIC Educational Resources Information Center
Peterson, Sharyl Bender
This guide, which was developed by a college career center, is designed to answer some common questions about the process of applying to graduate school. The following topics are covered: graduate schools versus professional schools; differences between graduate and undergraduate school; considerations in deciding whether/when to attend graduate…
Bat noseleaf model: echolocation function, design considerations, and experimental verification.
Kuc, Roman
2011-05-01
This paper describes a possible bat noseleaf echolocation function that improves target elevation resolution. Bats with a protruding noseleaf can rotate the lancet to act as an acoustic mirror that reflects the nostril emission, modeled as a virtual nostril that produces a delayed emission. The cancellation of the nostril and virtual nostril components at a target produces a sharp spectral notch whose frequency location relates to target elevation. This notch can be observed directly from the swept-frequency emission waveform, suggesting cochlear processing capabilities. Physical acoustic principles indicate the design considerations and trade-offs that a bat can accomplish through noseleaf shape and emission characteristics. An experimental model verifies the analysis and exhibits an elevation versus notch frequency sensitivity of approximately 1°/kHz.
Work process and task-based design of intelligent assistance systems in German textile industry
NASA Astrophysics Data System (ADS)
Löhrer, M.; Ziesen, N.; Altepost, A.; Saggiomo, M.; Gloy, Y. S.
2017-10-01
The mid-sized embossed German textile industry must face social challenges e.g. demographic change or technical changing processes. Interaction with intelligent systems (on machines) and increasing automation changes processes, working structures and employees’ tasks on all levels. Work contents are getting more complex, resulting in the necessity for diversified and enhanced competencies. Mobile devices like tablets or smartphones are increasingly finding their way into the workplace. Employees who grew up with new forms of media have certain advantages regarding the usage of modern technologies compared to older employees. Therefore, it is necessary to design new systems which help to adapt the competencies of both younger and older employees to new automated production processes in the digital work environment. The key to successful integration of technical assistance systems is user-orientated design and development that includes concepts for competency development under consideration of, e.g., ethical and legal aspects.
NASA Technical Reports Server (NTRS)
Berg, Melanie; Label, Kenneth
2018-01-01
The United States government has identified that application specific integrated circuit (ASIC) and field programmable gate array (FPGA) hardware are at risk from a variety of adversary attacks. This finding affects system security and trust. Consequently, processes are being developed for system mitigation and countermeasure application. The scope of this tutorial pertains to potential vulnerabilities and countermeasures within the ASIC/FPGA design cycle. The presentation demonstrates how design practices can affect the risk for the adversary to: change circuitry, steal intellectual property, and listen to data operations. An important portion of the design cycle is assuring the design is working as specified or as expected. This is accomplished by exhaustive testing of the target design. Alternatively, it has been shown that well established schemes for test coverage enhancement (design-for-verification (DFV) and design-for-test (DFT)) can create conduits for adversary accessibility. As a result, it is essential to perform a trade between robust test coverage versus reliable design implementation. The goal of this tutorial is to explain the evolution of design practices; review adversary accessibility points due to DFV and DFT circuitry insertion (back door circuitry); and to describe common engineering trade-off considerations for test versus adversary threats.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Clinical Trials Targeting Aging and Age-Related Multimorbidity
Crimmins, Eileen M; Grossardt, Brandon R; Crandall, Jill P; Gelfond, Jonathan A L; Harris, Tamara B; Kritchevsky, Stephen B; Manson, JoAnn E; Robinson, Jennifer G; Rocca, Walter A; Temprosa, Marinella; Thomas, Fridtjof; Wallace, Robert; Barzilai, Nir
2017-01-01
Abstract Background There is growing interest in identifying interventions that may increase health span by targeting biological processes underlying aging. The design of efficient and rigorous clinical trials to assess these interventions requires careful consideration of eligibility criteria, outcomes, sample size, and monitoring plans. Methods Experienced geriatrics researchers and clinical trialists collaborated to provide advice on clinical trial design. Results Outcomes based on the accumulation and incidence of age-related chronic diseases are attractive for clinical trials targeting aging. Accumulation and incidence rates of multimorbidity outcomes were developed by selecting at-risk subsets of individuals from three large cohort studies of older individuals. These provide representative benchmark data for decisions on eligibility, duration, and assessment protocols. Monitoring rules should be sensitive to targeting aging-related, rather than disease-specific, outcomes. Conclusions Clinical trials targeting aging are feasible, but require careful design consideration and monitoring rules. PMID:28364543
Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.
Lee, Jia Min; Yeong, Wai Yee
2016-11-01
Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Critical considerations when planning experimental in vivo studies in dental traumatology.
Andreasen, Jens O; Andersson, Lars
2011-08-01
In vivo studies are sometimes needed to understand healing processes after trauma. For several reasons, not the least ethical, such studies have to be carefully planned and important considerations have to be taken into account about suitability of the experimental model, sample size and optimizing the accuracy of the analysis. Several manuscripts of in vivo studies are submitted for publication to Dental Traumatology and rejected because of inadequate design, methodology or insufficient documentation of the results. The authors have substantial experience in experimental in vivo studies of tissue healing in dental traumatology and share their knowledge regarding critical considerations when planning experimental in vivo studies. © 2011 John Wiley & Sons A/S.
Turbine Design for Energy Extraction from Dust Devils
NASA Astrophysics Data System (ADS)
Malaya, Nicholas; Moser, Robert
2016-11-01
Columnar vortices ("Dust-Devils") arise naturally in the atmosphere, over a wide range of scales in many different locations across the Earth, as well as on Mars. A new energy harvesting approach makes use of this ubiquitous process by creating and anchoring the vortices artificially and extracting energy from them. However, any analysis of the power that can be extracted is complicated by the presence of considerable vertical and azimuthal flow in the vortex, and so the design considerations are different from those for a classical wind turbine. This talk presents a modeling approach to estimate the upper limit on the power that could be extracted from such a flow. This method is based on the actuator disk model common to turbine design, but with generalized drag polars permitting exploration of a broader design space. This model can be fully coupled to the flow, which ensures the results do not violate any Betz-like considerations that might similarly arise in an analysis of frozen flow fields. The results of this model demonstrate a limit on how much of the energy can be extracted before disrupting the flow so greatly that the vortex cannot be maintained. This work supported by the Department of Energy [ARPA-E] un- der Award Number [DE-FOA-0000670].
Engineering specification and system design for CAD/CAM of custom shoes: UMC project effort
NASA Technical Reports Server (NTRS)
Bao, Han P.
1990-01-01
Further experimentations were made to improve the design and fabrication techniques of the integrated sole. The sole design is shown to be related to the foot position requirements and the actual shape of the foot including presence of neurotropic ulcers or other infections. Factors for consideration were: heel pitch, balance line, and rigidity conditions of the foot. Machining considerations were also part of the design problem. Among these considerations, widths of each contour, tool motion, tool feed rate, depths of cut, and slopes of cut at the boundary were the key elements. The essential fabrication techniques evolved around the idea of machining a mold then, using quick-firm latex material, casting the sole through the mold. Two main mold materials were experimented with: plaster and wood. Plaster was very easy to machine and shape but could barely support the pressure in the hydraulic press required by the casting process. Wood was found to be quite effective in terms of relative cost, strength, and surface smoothness except for the problem of cutting against the fibers which could generate ragged surfaces. The programming efforts to convert the original dBase programs into C programs so that they could be executed on the SUN Computer at North Carolina State University are discussed.
Sustainable supply chain design: a configurational approach.
Masoumik, S Maryam; Abdul-Rashid, Salwa Hanim; Olugu, Ezutah Udoncy; Raja Ghazilla, Raja Ariffin
2014-01-01
Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research.
Tritium glovebox stripper system seismic design evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinnell, J. J.; Klein, J. E.
2015-09-01
The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological dosesmore » to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.« less
Control Design for a Generic Commercial Aircraft Engine
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; May, Ryan D.
2010-01-01
This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements
Infection prevention and control in the design of healthcare facilities.
Farrow, Tye S; Black, Stephen M
2009-01-01
The lead paper, "Healthcare-Associated Infections as Patient Safety Indicators," written by Gardam, Lemieux, Reason, van Dijk and Goel, puts forward the design of healthcare facilities as one of many strategies to improve patient safety with respect to healthcare-associated infections. This commentary explores some of the issues in balancing infection prevention and control priorities with other needs and values brought to the design process. This balance is challenged not only by a lack of supporting evidence but also by the superficial nature in which infection prevention and control are often discussed within a design context. For the physical environment to support any patient safety initiative, the design of the processes must be developed in conjunction with that of the physical environment so that compliance can be natural and convenient. Finally, consideration is given to the value of documenting decision-making related to infection prevention and control in facility design and ongoing assessments of existing facilities.
Sustainable Supply Chain Design: A Configurational Approach
Masoumik, S. Maryam; Raja Ghazilla, Raja Ariffin
2014-01-01
Designing the right supply chain that meets the requirements of sustainable development is a significant challenge. Although there are a considerable number of studies on issues relating to sustainable supply chain design (SSCD) in terms of designing the practices, processes, and structures, they have rarely demonstrated how these components can be aligned to form an effective sustainable supply chain (SSC). Considering this gap in the literature, this study adopts the configurational approach to develop a conceptual framework that could configure the components of a SSC. In this respect, a process-oriented approach is utilized to classify and harmonize the design components. A natural-resource-based view (NRBV) is adopted to determine the central theme to align the design components around. The proposed framework presents three types of SSC, namely, efficient SSC, innovative SSC, and reputed SSC. The study culminates with recommendations concerning the direction for future research. PMID:24523652
Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System
NASA Technical Reports Server (NTRS)
Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.
2005-01-01
In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.
A meta-analysis and review of holistic face processing.
Richler, Jennifer J; Gauthier, Isabel
2014-09-01
The concept of holistic processing is a cornerstone of face recognition research, yet central questions related to holistic processing remain unanswered, and debates have thus far failed to reach a resolution despite accumulating empirical evidence. We argue that a considerable source of confusion in this literature stems from a methodological problem. Specifically, 2 measures of holistic processing based on the composite paradigm (complete design and partial design) are used in the literature, but they often lead to qualitatively different results. First, we present a comprehensive review of the work that directly compares the 2 designs, and which clearly favors the complete design over the partial design. Second, we report a meta-analysis of holistic face processing according to both designs and use this as further evidence for one design over the other. The meta-analysis effect size of holistic processing in the complete design is nearly 3 times that of the partial design. Effect sizes were not correlated between measures, consistent with the suggestion that they do not measure the same thing. Our meta-analysis also examines the correlation between conditions in the complete design of the composite task, and suggests that in an individual differences context, little is gained by including a misaligned baseline. Finally, we offer a comprehensive review of the state of knowledge about holistic processing based on evidence gathered from the measure we favor based on the 1st sections of our review-the complete design-and outline outstanding research questions in that new context. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes
2014-03-27
DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING
Applying the Ottawa Charter to inform health promotion programme design.
Fry, Denise; Zask, Avigdor
2017-10-01
There is evidence of a correlation between adoption of the Ottawa Charter's framework of five action areas and health promotion programme effectiveness, but the Charter's framework has not been as fully implemented as hoped, nor is generally used by formal programme design models. In response, we aimed to translate the Charter's framework into a method to inform programme design. Our resulting design process uses detailed definitions of the Charter's action areas and evidence of predicted effectiveness to prompt greater consideration and use of the Charter's framework. We piloted the process by applying it to the design of four programmes of the Healthy Children's Initiative in New South Wales, Australia; refined the criteria via consensus; and made consensus decisions on the extent to which programme designs reflected the Charter's framework. The design process has broad potential applicability to health promotion programmes; facilitating greater use of the Ottawa Charter framework, which evidence indicates can increase programme effectiveness. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.
2004-01-01
The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.
The Impact of Cognitive Dissonance on Learning Work Behavior
ERIC Educational Resources Information Center
Dechawatanapaisal, Decha; Siengthai, Sununta
2006-01-01
Purpose: This research proposes a framework, which identifies the underlying factors that shape learning behavior in the workplace. It takes organizational members' perspectives into consideration to gain better understanding on managing people and their behavior in the organizational learning process. Design/methodology/approach: Primary data…
Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices
Morrison, Robert J.; Kashlan, Khaled N.; Flanangan, Colleen L.; Wright, Jeanne K.; Green, Glenn E.; Hollister, Scott J.
2015-01-01
Abstract Three‐dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D‐printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D‐printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D‐printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D‐printed bioresorbable implantable device. PMID:26243449
Comparison of optimization algorithms for the slow shot phase in HPDC
NASA Astrophysics Data System (ADS)
Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie
2018-05-01
High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.
NASA Astrophysics Data System (ADS)
Kim, Shin-Hyung; Ruy, Won-Sun; Jang, Beom Seon
2013-09-01
An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system
Design of a lamella settler for biomass recycling in continuous ethanol fermentation process.
Tabera, J; Iznaola, M A
1989-04-20
The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.
ERIC Educational Resources Information Center
Joe, Jilliam N.; Tocci, Cynthia M.; Holtzman, Steven L.; Williams, Jean C.
2013-01-01
The purpose of this paper is to provide states and school districts with processes they can use to help ensure high-quality data collection during teacher observations. Educational Testing Service's (ETS's) goal in writing it is to share the knowledge and expertise they gained: (1) from designing and implementing scoring processes for the Measures…
When Content Matters: The Role of Processing Code in Tactile Display Design.
Ferris, Thomas K; Sarter, Nadine
2010-01-01
The distribution of tasks and stimuli across multiple modalities has been proposed as a means to support multitasking in data-rich environments. Recently, the tactile channel and, more specifically, communication via the use of tactile/haptic icons have received considerable interest. Past research has examined primarily the impact of concurrent task modality on the effectiveness of tactile information presentation. However, it is not well known to what extent the interpretation of iconic tactile patterns is affected by another attribute of information: the information processing codes of concurrent tasks. In two driving simulation studies (n = 25 for each), participants decoded icons composed of either spatial or nonspatial patterns of vibrations (engaging spatial and nonspatial processing code resources, respectively) while concurrently interpreting spatial or nonspatial visual task stimuli. As predicted by Multiple Resource Theory, performance was significantly worse (approximately 5-10 percent worse) when the tactile icons and visual tasks engaged the same processing code, with the overall worst performance in the spatial-spatial task pairing. The findings from these studies contribute to an improved understanding of information processing and can serve as input to multidimensional quantitative models of timesharing performance. From an applied perspective, the results suggest that competition for processing code resources warrants consideration, alongside other factors such as the naturalness of signal-message mapping, when designing iconic tactile displays. Nonspatially encoded tactile icons may be preferable in environments which already rely heavily on spatial processing, such as car cockpits.
Digital processing of the Mariner 10 images of Venus and Mercury
NASA Technical Reports Server (NTRS)
Soha, J. M.; Lynn, D. J.; Mosher, J. A.; Elliot, D. A.
1977-01-01
An extensive effort was devoted to the digital processing of the Mariner 10 images of Venus and Mercury at the Image Processing Laboratory of the Jet Propulsion Laboratory. This effort was designed to optimize the display of the considerable quantity of information contained in the images. Several image restoration, enhancement, and transformation procedures were applied; examples of these techniques are included. A particular task was the construction of large mosaics which characterize the surface of Mercury and the atmospheric structure of Venus.
Selection of a turbine cooling system applying multi-disciplinary design considerations.
Glezer, B
2001-05-01
The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.
Design of simulated moving bed for separation of fumaric acid with a little fronting phenomenon.
Choi, Jae-Hwan; Kang, Mun-Seok; Lee, Chung-Gi; Wang, Nien-Hwa Linda; Mun, Sungyong
2017-03-31
The production of fumaric acid through a biotechnological pathway has grown in importance because of its potential value in related industries. This has sparked an interest in developing an economically-efficient process for separation of fumaric acid (product of interest) from acetic acid (by-product). This study aimed to develop a simulated moving bed (SMB) chromatographic process for such separation in a systematic way. As a first step for this work, commercially available adsorbents were screened for their applicability to the considered separation, which revealed that an Amberchrom-CG71C resin had a sufficient potential to become an adsorbent of the targeted SMB. Using this adsorbent, the intrinsic parameters of fumaric and acetic acids were determined and then applied to optimizing the SMB process under consideration. The optimized SMB process was tested experimentally, from which the yield of fumaric-acid product was found to become lower than expected in the design. An investigation about the reason for such problem revealed that it was attributed to a fronting phenomenon occurring in the solute band of fumaric acid. To resolve this issue, the extent of the fronting was evaluated quantitatively using an experimental axial dispersion coefficient for fumaric acid, which was then considered in the design of the SMB of interest. The SMB experimental results showed that the SMB design based on the consideration of the fumaric-acid fronting could guarantee the attainment of both high purity (>99%) and high yield (>99%) for fumaric-acid product under the desorbent consumption of 2.6 and the throughput of 0.36L/L/h. Copyright © 2017 Elsevier B.V. All rights reserved.
Basic elements of light water reactor fuel rod design. [FUELROD code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weisman, J.; Eckart, R.
1981-06-01
Basic design techniques and equations are presented to allow students to understand and perform preliminary fuel design for normal reactor conditions. Each of the important design considerations is presented and discussed in detail. These include the interaction between fuel pellets and cladding and the changes in fuel and cladding that occur during the operating lifetime of the fuel. A simple, student-oriented, fuel rod design computer program, called FUELROD, is described. The FUELROD program models the in-pile pellet cladding interaction and allows a realistic exploration of the effect of various design parameters. By use of FUELROD, the student can gain anmore » appreciation of the fuel rod design process. 34 refs.« less
Reliability of large superconducting magnets through design
NASA Astrophysics Data System (ADS)
Henning, C. D.
1981-01-01
Design and quality control of large superconducting magnets for reliability comparable to pressure vessels are discussed. The failure modes are analyzed including thermoelectric instabilities, electrical shorts, cryogenic/vacuum defects, and mechanical malfunctions. Design must take into consideration conductor stability, insulation based on the Paschen curves, and the possible burnout of cryogenic transition leads if the He flow is interrupted. The final stage of the metal drawing process should stress the superconductor material to a stress value higher than the magnet design stress, cabled conductors should be used to achieve mechanical redundancy, and ground-plane insulation must be multilayered for arc prevention.
An Instrument for the Identification of Core Curriculum in the Discipline of Gynaecology
ERIC Educational Resources Information Center
Taylor, P. J.
1976-01-01
Describes an instrument designed to identify with considerable agreement appropriate knowledge, skills, and attitudes for gynecology curriculum, relate it to other curriculum content, and determine where it should appear in the curriculum. Focus is on clinical problems to be solved and the underlying processes. (JT)
Elections: Secondary Teaching Activities in the Participation Series.
ERIC Educational Resources Information Center
Schultz, John; Taft-Morales, Hugh
One of a series of teacher-developed curriculum guides designed to encourage student participation and involvement in important social issues, this secondary level guide helps 7th through 12th grade English and social studies educators teach about the election process. An introductory section suggests practical considerations, means of enlisting…
Feedback Processes in Multimedia Language Learning Software
ERIC Educational Resources Information Center
Kartal, Erdogan
2010-01-01
Feedback has been one of the important elements of learning and teaching theories and still pervades the literature and instructional models, especially computer and web-based ones. However, the mechanisms about feedback dominating the fundamentals of all the instructional models designed for self-learning have changed considerably with the…
Educational Affordances and Learning Design in Music Software Development
ERIC Educational Resources Information Center
Cheng, Lee; Leong, Samuel
2017-01-01
Although music software has become increasingly affordable and widely adopted in today's classrooms, concerns have been raised about a lack of consideration for users' needs during the software development process. This paper examines intra- and inter-sectoral communication pertaining to software development and music education to shed light on…
Corporate restructuring--strategic planning and redesign of employee benefits.
Macey, S J
1996-12-01
Many intricate legal, actuarial, design and fiduciary issues arise during corporate restructuring. It is critical to create a process approach that clearly defines and evaluates the human resource and benefits issues that are involved, giving consideration to legal and regulatory, operational, administrative, financial and labor-related concerns.
SIMULATIONS OF AEROSOLS AND PHOTOCHEMICAL SPECIES WITH THE CMAQ PLUME-IN-GRID MODELING SYSTEM
A plume-in-grid (PinG) method has been an integral component of the CMAQ modeling system and has been designed in order to realistically simulate the relevant processes impacting pollutant concentrations in plumes released from major point sources. In particular, considerable di...
Production of hydrogen by direct gasification of coal with steam using nuclear heat
NASA Technical Reports Server (NTRS)
1975-01-01
Problems related to: (1) high helium outlet temperature of the reactor, and (2) gas generator design used in hydrogen production are studied. Special attention was given to the use of Oklahoma coal in the gasification process. Plant performance, operation, and environmental considerations are covered.
Designing a Culturally Sensitive Wiki Space for Developing Chinese Students' Media Literacy
ERIC Educational Resources Information Center
Mezentceva, Daria
2014-01-01
Due to technological development and intensification of integration processes all over the world, people from different cultural backgrounds have more opportunities to maintain academic and professional cooperation. To make this cooperation more effective, it is important to take into consideration diverse ethnic values and their influence on…
Definition and Classification of Assisted Living
ERIC Educational Resources Information Center
Zimmerman, Sheryl; Sloane, Philip D.
2007-01-01
Purpose: The purpose of this article is to discuss the benefits and limitations of, and considerations in, developing a typology of assisted living (AL). Design and Methods: We conducted a review and comparison of nine AL typologies drawn from the literature. Results: Typologies addressed matters related to the structure, process, population, and…
Lu, Zhengwu
2010-01-01
To identify key challenges and propose technical considerations in designing electronic case report form (eCRF) for post-marketing studies, the author undertakes a comprehensive literature review of peer reviewed and grey literature to assess the key aspects, processes, standards, recommendations, and best practices in designing eCRFs based on industry experience in designing and supporting electronic data capture (EDC) studies. Literature search using strings on MEDLINE and PUBMED returned few papers directly related to CRF design. Health informatics and general practice journals were searched and results reviewed. Many conference, government commission, health professional and special interests group websites provide relevant information from practical experience - summarization of this information is presented. Further, we presented a list of concrete technical considerations in dealing with EDC technology/system limitations based on literature assessment and industry implementation experience. It is recognized that cross-functional teams be involved in eCRF design process and decision making. To summarize the keys in designing eCRFs to address post-market study safety and pharmacovigilance needs, the first is to identify required data elements from the study protocol supporting data analyses and reporting requirements. Secondly, accepted best practices, CDASH & CDISC guidelines, and company internal or therapeutic unit standard should be considered and applied. Coding (MedDRA & WHODD) mapping should be managed and implemented as well when possible. Finally, we need to be on top of the EDC technologies, challenge the technologies, drive EDC improvement via working with vendors, and utilize the technologies to drive clinical effectiveness. Copyright (c) 2009 Elsevier Inc. All rights reserved.
How to design and fly your humanly space object in space?
NASA Astrophysics Data System (ADS)
Balint, Tibor; Hall, Ashley
2016-06-01
Today's space exploration, both robotic- and human-exploration driven, is dominated by objects and artifacts which are mostly conceived, designed and built through technology and engineering approaches. They are functional, reliable, safe, and expensive. Building on considerations and concepts established in an earlier paper, we can state that the current approach leaves very little room for art and design based objects, as organizations-typically led by engineers, project and business managers-see the inclusion of these disciplines and artifacts as nice to have instead of a genuine need, let alone requirement. In this paper we will offer initial discussions about where design and engineering practices are different or similar and how to bridge them and highlight the benefits that domains such as design or art can offer to space exploration. Some of the design considerations and approaches will be demonstrated through the double diamond of divergence-convergence cycles of design, leading to an experimental piece called a ;cybernetic astronaut chair;, which was designed as a form of abstraction and discussion point to highlight a subset of concepts and ideas that designers may consider when designing objects for space use, with attention to human-centered or humanly interactions. Although there are few suggested functional needs for chairs in space, they can provide reassuring emotional experiences from home, while being far away from home. In zero gravity, back-to-back seats provide affordances-or add variety in a cybernetic sense-to accommodate two astronauts simultaneously, while implying the circularity of cybernetics in a rather symbolic way. The cybernetic astronaut chair allows us to refine the three-actor model proposed in a previous paper, defining the circular interactions between the artist or designer; object or process; and user or observer. We will also dedicate a brief discussion to the process of navigating through the complex regulations of space agencies, from solicitations through development and testing, to space flight. The provided insights to designers and artists, related to agency-driven processes and requirements, may help to deconvolute the steps and may lead to flying their objects or artifacts in space.
A Formalized Design Process for Bacterial Consortia That Perform Logic Computing
Sun, Rui; Xi, Jingyi; Wen, Dingqiao; Feng, Jingchen; Chen, Yiwei; Qin, Xiao; Ma, Yanrong; Luo, Wenhan; Deng, Linna; Lin, Hanchi; Yu, Ruofan; Ouyang, Qi
2013-01-01
The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation. PMID:23468999
Selecting automation for the clinical chemistry laboratory.
Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr
2007-07-01
Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.
Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen
2017-01-01
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031
Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen
2017-06-19
Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.
Design of fast signal processing readout front-end electronics implemented in CMOS 40 nm technology
NASA Astrophysics Data System (ADS)
Kleczek, Rafal
2016-12-01
The author presents considerations on the design of fast readout front-end electronics implemented in a CMOS 40 nm technology with an emphasis on the system dead time, noise performance and power dissipation. The designed processing channel consists of a charge sensitive amplifier with different feedback types (Krummenacher, resistive and constant current blocks), a threshold setting block, a discriminator and a counter with logic circuitry. The results of schematic and post-layout simulations with randomly generated input pulses in a time domain according to the Poisson distribution are presented and analyzed. Dead time below 20 ns is possible while keeping noise ENC ≈ 90 e- for a detector capacitance CDET = 160 fF.
McEwan, Reed; Melton, Genevieve B.; Knoll, Benjamin C.; Wang, Yan; Hultman, Gretchen; Dale, Justin L.; Meyer, Tim; Pakhomov, Serguei V.
2016-01-01
Many design considerations must be addressed in order to provide researchers with full text and semantic search of unstructured healthcare data such as clinical notes and reports. Institutions looking at providing this functionality must also address the big data aspects of their unstructured corpora. Because these systems are complex and demand a non-trivial investment, there is an incentive to make the system capable of servicing future needs as well, further complicating the design. We present architectural best practices as lessons learned in the design and implementation NLP-PIER (Patient Information Extraction for Research), a scalable, extensible, and secure system for processing, indexing, and searching clinical notes at the University of Minnesota. PMID:27570663
Human Centred Design Considerations for Connected Health Devices for the Older Adult
Harte, Richard P.; Glynn, Liam G.; Broderick, Barry J.; Rodriguez-Molinero, Alejandro; Baker, Paul M. A.; McGuiness, Bernadette; O’Sullivan, Leonard; Diaz, Marta; Quinlan, Leo R.; ÓLaighin, Gearóid
2014-01-01
Connected health devices are generally designed for unsupervised use, by non-healthcare professionals, facilitating independent control of the individuals own healthcare. Older adults are major users of such devices and are a population significantly increasing in size. This group presents challenges due to the wide spectrum of capabilities and attitudes towards technology. The fit between capabilities of the user and demands of the device can be optimised in a process called Human Centred Design. Here we review examples of some connected health devices chosen by random selection, assess older adult known capabilities and attitudes and finally make analytical recommendations for design approaches and design specifications. PMID:25563225
Design of experiments applications in bioprocessing: concepts and approach.
Kumar, Vijesh; Bhalla, Akriti; Rathore, Anurag S
2014-01-01
Most biotechnology unit operations are complex in nature with numerous process variables, feed material attributes, and raw material attributes that can have significant impact on the performance of the process. Design of experiments (DOE)-based approach offers a solution to this conundrum and allows for an efficient estimation of the main effects and the interactions with minimal number of experiments. Numerous publications illustrate application of DOE towards development of different bioprocessing unit operations. However, a systematic approach for evaluation of the different DOE designs and for choosing the optimal design for a given application has not been published yet. Through this work we have compared the I-optimal and D-optimal designs to the commonly used central composite and Box-Behnken designs for bioprocess applications. A systematic methodology is proposed for construction of the model and for precise prediction of the responses for the three case studies involving some of the commonly used unit operations in downstream processing. Use of Akaike information criterion for model selection has been examined and found to be suitable for the applications under consideration. © 2013 American Institute of Chemical Engineers.
A linearized theory method of constrained optimization for supersonic cruise wing design
NASA Technical Reports Server (NTRS)
Miller, D. S.; Carlson, H. W.; Middleton, W. D.
1976-01-01
A linearized theory wing design and optimization procedure which allows physical realism and practical considerations to be imposed as constraints on the optimum (least drag due to lift) solution is discussed and examples of application are presented. In addition to the usual constraints on lift and pitching moment, constraints are imposed on wing surface ordinates and wing upper surface pressure levels and gradients. The design procedure also provides the capability of including directly in the optimization process the effects of other aircraft components such as a fuselage, canards, and nacelles.
The influence of international standards on optomechanical design
NASA Astrophysics Data System (ADS)
Parks, Robert E.
1992-12-01
In the last 10 to 15 years, a considerable body of international standards literature has been published on both mechanical and optical design. We discuss the influence of these internationally developed standards on the design and fabrication of optical systems. We conclude that while there are large benefits to be gained from using these international standards, there will have to be a substantial educational effort at all levels from project scientist to worker on the shop floor to take advantage of the benefits. Many sources to help in this education process are outlined.
Design of a Low Power, Fast-Spectrum, Liquid-Metal Cooled Surface Reactor System
NASA Astrophysics Data System (ADS)
Marcille, T. F.; Dixon, D. D.; Fischer, G. A.; Doherty, S. P.; Poston, D. I.; Kapernick, R. J.
2006-01-01
In the current 2005 US budget environment, competition for fiscal resources make funding for comprehensive space reactor development programs difficult to justify and accommodate. Simultaneously, the need to develop these systems to provide planetary and deep space-enabling power systems is increasing. Given that environment, designs intended to satisfy reasonable near-term surface missions, using affordable technology-ready materials and processes warrant serious consideration. An initial lunar application design incorporating a stainless structure, 880 K pumped NaK coolant system and a stainless/UO2 fuel system can be designed, fabricated and tested for a fraction of the cost of recent high-profile reactor programs (JIMO, SP-100). Along with the cost reductions associated with the use of qualified materials and processes, this design offers a low-risk, high-reliability implementation associated with mission specific low temperature, low burnup, five year operating lifetime requirements.
Granularity as a Cognitive Factor in the Effectiveness of Business Process Model Reuse
NASA Astrophysics Data System (ADS)
Holschke, Oliver; Rake, Jannis; Levina, Olga
Reusing design models is an attractive approach in business process modeling as modeling efficiency and quality of design outcomes may be significantly improved. However, reusing conceptual models is not a cost-free effort, but has to be carefully designed. While factors such as psychological anchoring and task-adequacy in reuse-based modeling tasks have been investigated, information granularity as a cognitive concept has not been at the center of empirical research yet. We hypothesize that business process granularity as a factor in design tasks under reuse has a significant impact on the effectiveness of resulting business process models. We test our hypothesis in a comparative study employing high and low granularities. The reusable processes provided were taken from widely accessible reference models for the telecommunication industry (enhanced Telecom Operations Map). First experimental results show that Recall in tasks involving coarser granularity is lower than in cases of finer granularity. These findings suggest that decision makers in business process management should be considerate with regard to the implementation of reuse mechanisms of different granularities. We realize that due to our small sample size results are not statistically significant, but this preliminary run shows that it is ready for running on a larger scale.
PLACE: an open-source python package for laboratory automation, control, and experimentation.
Johnson, Jami L; Tom Wörden, Henrik; van Wijk, Kasper
2015-02-01
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing, and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability, and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible, and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and analysis with Python through the development of an analysis module for data produced by PLACE automation. © 2014 Society for Laboratory Automation and Screening.
Scientific and Regulatory Considerations in Solid Oral Modified Release Drug Product Development.
Li, Min; Sander, Sanna; Duan, John; Rosencrance, Susan; Miksinski, Sarah Pope; Yu, Lawrence; Seo, Paul; Rege, Bhagwant
2016-11-01
This review presents scientific and regulatory considerations for the development of solid oral modified release (MR) drug products. It includes a rationale for patient-focused development based on Quality-by-Design (QbD) principles. Product and process understanding of MR products includes identification and risk-based evaluation of critical material attributes (CMAs), critical process parameters (CPPs), and their impact on critical quality attributes (CQAs) that affect the clinical performance. The use of various biopharmaceutics tools that link the CQAs to a predictable and reproducible clinical performance for patient benefit is emphasized. Product and process understanding lead to a more comprehensive control strategy that can maintain product quality through the shelf life and the lifecycle of the drug product. The overall goal is to develop MR products that consistently meet the clinical objectives while mitigating the risks to patients by reducing the probability and increasing the detectability of CQA failures.
46 CFR 177.340 - Alternate design considerations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Alternate design considerations. 177.340 Section 177.340... TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design, unusual form, or special materials, which cannot be reviewed or...
Inauen, A; Jenny, G J; Bauer, G F
2012-06-01
This article focuses on organizational analysis in workplace health promotion (WHP) projects. It shows how this analysis can be designed such that it provides rational data relevant to the further context-specific and goal-oriented planning of WHP and equally supports individual and organizational change processes implied by WHP. Design principles for organizational analysis were developed on the basis of a narrative review of the guiding principles of WHP interventions and organizational change as well as the scientific principles of data collection. Further, the practical experience of WHP consultants who routinely conduct organizational analysis was considered. This resulted in a framework with data-oriented and change-oriented design principles, addressing the following elements of organizational analysis in WHP: planning the overall procedure, data content, data-collection methods and information processing. Overall, the data-oriented design principles aim to produce valid, reliable and representative data, whereas the change-oriented design principles aim to promote motivation, coherence and a capacity for self-analysis. We expect that the simultaneous consideration of data- and change-oriented design principles for organizational analysis will strongly support the WHP process. We finally illustrate the applicability of the design principles to health promotion within a WHP case study.
Cook, Richard J; Wei, Wei
2003-07-01
The design of clinical trials is typically based on marginal comparisons of a primary response under two or more treatments. The considerable gains in efficiency afforded by models conditional on one or more baseline responses has been extensively studied for Gaussian models. The purpose of this article is to present methods for the design and analysis of clinical trials in which the response is a count or a point process, and a corresponding baseline count is available prior to randomization. The methods are based on a conditional negative binomial model for the response given the baseline count and can be used to examine the effect of introducing selection criteria on power and sample size requirements. We show that designs based on this approach are more efficient than those proposed by McMahon et al. (1994).
NASA Technical Reports Server (NTRS)
Pickett, Lorri A. (Editor)
1995-01-01
Topics covered include: Risk assessment of hazardous materials, Automated systems for pollution prevention and hazardous materials elimination, Study design for the toxicity evaluation of ammonium perchlorate, Plasma sprayed bondable stainless surface coatings, Development of CFC-free cleaning processes, New fluorinated solvent alternatives to ozone depleting solvents, Cleaning with highly fluorinated liquids, Biotreatment of propyleneglycol nitrate by anoxic denitrification, Treatment of hazardous waste with white rot fungus, Hydrothermal oxidation as an environmentally benign treatment technology, Treatment of solid propellant manufacturing wastes by base hydrolysis, Design considerations for cleaning using supercritical fluid technology, and Centrifugal shear carbon dioxide cleaning.
The Design Manager's Aid for Intelligent Decomposition (DeMAID)
NASA Technical Reports Server (NTRS)
Rogers, James L.
1994-01-01
Before the design of new complex systems such as large space platforms can begin, the possible interactions among subsystems and their parts must be determined. Once this is completed, the proposed system can be decomposed to identify its hierarchical structure. The design manager's aid for intelligent decomposition (DeMAID) is a knowledge based system for ordering the sequence of modules and identifying a possible multilevel structure for design. Although DeMAID requires an investment of time to generate and refine the list of modules for input, it could save considerable money and time in the total design process, particularly in new design problems where the ordering of the modules has not been defined.
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.
Investigation of design considerations for a complex demodulation filter
NASA Technical Reports Server (NTRS)
Stoughton, J. W.
1984-01-01
The digital design of an adaptive digital filter to be employed in the processing of microwave remote sensor data was developed. In particular, a complex demodulation approach was developed to provide narrow band power estimation for a proposed Doppler scatterometer system. This scatterometer was considered for application in the proposed National Oceanographic survey satellite, on an improvement of SEASAT features. A generalized analysis of complex diagrams for the digital architecture component of the proposed system.
A semiconductor bridge ignited hot gas piston ejector
NASA Technical Reports Server (NTRS)
Grubelich, M. C.; Bickes, Robert W., Jr.
1993-01-01
The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.
Energy conservation in housing design using solar energy, mechanical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakir, N.M.W.
1985-01-01
This paper presents the first experimental full-scale house built by the Solar Energy Research Center of Baghdad to be heated and cooled by solar energy. The various architectural and environmental considerations which entered into the design process are discussed, as well as the range of passive techniques examined for their compatibility with the local climate and their ability to optimize the energy efficiency of the house. The mechanical systems which were ultimately implemented are described.
Investigation of model-based physical design restrictions (Invited Paper)
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl
2005-05-01
As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricapito, I.; Calderoni, P.; Poitevin, Y.
2015-03-15
Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for themore » design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)« less
Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahlquist, D.R.
This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take placemore » inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho.« less
Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang
2018-03-01
Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal hydraulic feasibility assessment of the hot conditioning system and process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.
1996-10-10
The Spent Nuclear Fuel Project was established to develop engineered solutions for the expedited removal, stabilization, and storage of spent nuclear fuel from the K Basins at the U.S. Department of Energy`s Hanford Site in Richland, Washington. A series of analyses have been completed investigating the thermal-hydraulic performance and feasibility of the proposed Hot Conditioning System and process for the Spent Nuclear Fuel Project. The analyses were performed using a series of thermal-hydraulic models that could respond to all process and safety-related issues that may arise pertaining to the Hot Conditioning System. The subject efforts focus on independently investigating, quantifying,more » and establishing the governing heat production and removal mechanisms, flow distributions within the multi-canister overpack, and performing process simulations for various purge gases under consideration for the Hot Conditioning System, as well as obtaining preliminary results for comparison with and verification of other analyses, and providing technology- based recommendations for consideration and incorporation into the Hot Conditioning System design bases.« less
Does human cognition allow Human Factors (HF) certification of advanced aircrew systems?
NASA Technical Reports Server (NTRS)
Macleod, Iain S.; Taylor, Robert M.
1994-01-01
This paper has examined the requirements of HF specification and certification within advanced or complex aircrew systems. It suggests reasons for current inadequacies in the use of HF in the design process, giving some examples in support, and suggesting an avenue towards the improvement of the HF certification process. The importance of human cognition to the operation and performance of advanced aircrew systems has been stressed. Many of the shortfalls of advanced aircrew systems must be attributed to over automated designs that show little consideration on either the mental limits or the cognitive capabilities of the human system component. Traditional approaches to system design and HF certification are set within an over physicalistic foundation. Also, traditionally it was assumed that physicalistic system functions could be attributed to either the human or the machine on a one to one basis. Moreover, any problems associated with the parallel needs, or promoting human understanding alongside system operation and direction, were generally equated in reality by the natural flexibility and adaptability of human skills. The consideration of the human component of a complex system is seen as being primarily based on manifestations of human behavior to the almost total exclusion of any appreciation of unobservable human mental and cognitive processes. The argument of this paper is that the considered functionality of any complex human-machine system must contain functions that are purely human and purely cognitive. Human-machine system reliability ultimately depends on human reliability and dependability and, therefore, on the form and frequency of cognitive processes that have to be conducted to support system performance. The greater the demand placed by an advanced aircraft system on the human component's basic knowledge processes or cognition, rather than on skill, the more insiduous the effects the human may have on that system. This paper discusses one example of an attempt to devise an improved method of specificaiton and certification with relation to the advanced aircrew system, that of the RN Merlin helicopter. The method is realized to have limitations in practice, these mainly associated with the late production of the system specification in relation to the system development process. The need for a careful appreciation of the capabilities and support needs of human cognition within the design process of a complex man machine system has been argued, especially with relation to the concept of system functionality. Unlike the physicalistic Fitts list, a new classification of system functionality is proposed, namely: (1) equipment - system equipment related; (2) cognitive - human cognition related; and (3) associated - necessary combinatin of equipment and cognitive. This paper has not proposed a method for a fuller consideration of cognition within systems design, but has suggested the need for such a method and indicated an avenue towards its development. Finally, the HF certification of advanced aircrew systems is seen as only being possible in a qualified sense until the important functions of human cognition are considered within the system design process. (This paper contains the opinions of its authors and does not necessarily refledt the standpoint of their respective organizations).
Design Process of Flight Vehicle Structures for a Common Bulkhead and an MPCV Spacecraft Adapter
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Hull, Patrick V.
2015-01-01
Design and manufacturing space flight vehicle structures is a skillset that has grown considerably at NASA during that last several years. Beginning with the Ares program and followed by the Space Launch System (SLS); in-house designs were produced for both the Upper Stage and the SLS Multipurpose crew vehicle (MPCV) spacecraft adapter. Specifically, critical design review (CDR) level analysis and flight production drawing were produced for the above mentioned hardware. In particular, the experience of this in-house design work led to increased manufacturing infrastructure for both Marshal Space Flight Center (MSFC) and Michoud Assembly Facility (MAF), improved skillsets in both analysis and design, and hands on experience in building and testing (MSA) full scale hardware. The hardware design and development processes from initiation to CDR and finally flight; resulted in many challenges and experiences that produced valuable lessons. This paper builds on these experiences of NASA in recent years on designing and fabricating flight hardware and examines the design/development processes used, as well as the challenges and lessons learned, i.e. from the initial design, loads estimation and mass constraints to structural optimization/affordability to release of production drawing to hardware manufacturing. While there are many documented design processes which a design engineer can follow, these unique experiences can offer insight into designing hardware in current program environments and present solutions to many of the challenges experienced by the engineering team.
The qualitative research proposal.
Klopper, H
2008-12-01
Qualitative research in the health sciences has had to overcome many prejudices and a number of misunderstandings, but today qualitative research is as acceptable as quantitative research designs and is widely funded and published. Writing the proposal of a qualitative study, however, can be a challenging feat, due to the emergent nature of the qualitative research design and the description of the methodology as a process. Even today, many sub-standard proposals at post-graduate evaluation committees and application proposals to be considered for funding are still seen. This problem has led the researcher to develop a framework to guide the qualitative researcher in writing the proposal of a qualitative study based on the following research questions: (i) What is the process of writing a qualitative research proposal? and (ii) What does the structure and layout of a qualitative proposal look like? The purpose of this article is to discuss the process of writing the qualitative research proposal, as well as describe the structure and layout of a qualitative research proposal. The process of writing a qualitative research proposal is discussed with regards to the most important questions that need to be answered in your research proposal with consideration of the guidelines of being practical, being persuasive, making broader links, aiming for crystal clarity and planning before you write. While the structure of the qualitative research proposal is discussed with regards to the key sections of the proposal, namely the cover page, abstract, introduction, review of the literature, research problem and research questions, research purpose and objectives, research paradigm, research design, research method, ethical considerations, dissemination plan, budget and appendices.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-13
... document, which addresses safety achieved through drug product design, is the first in a series of planned...] Draft Guidance for Industry on Safety Considerations for Product Design To Minimize Medication Errors... Considerations for Product Design to Minimize Medication Errors.'' The draft guidance provides sponsors of...
46 CFR 177.340 - Alternate design considerations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...
46 CFR 177.340 - Alternate design considerations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...
46 CFR 177.340 - Alternate design considerations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Alternate design considerations. 177.340 Section 177.340 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Hull Structure § 177.340 Alternate design considerations. When the structure of vessel is of novel design,...
A vision for chronic disease prevention intervention research: report from a workshop.
Ashbury, Frederick D; Little, Julian; Ioannidis, John P A; Kreiger, Nancy; Palmer, Lyle J; Relton, Clare; Taylor, Peter
2014-04-17
The Population Studies Research Network of Cancer Care Ontario hosted a strategic planning workshop to establish an agenda for a prevention intervention research program in Ontario, including priority topics for investigation and design considerations. The two-day workshop included: presentations on background papers developed to facilitate participants' preparation for and discussions in the workshop; keynote presentations on intervention research concerning primary prevention of chronic diseases, design and study implementation considerations; a dedicated session on critical and creative thinking to stimulate participation and discussion topics; break out groups to identify, discuss and present study ideas, designs, implementation considerations; and a consensus process to discuss and identify recommendations for research priorities and next steps. The retreat yielded the following recommendations: 1) develop an intervention research agenda that includes working with existing large-scale cohorts; 2) develop an intervention research agenda that includes novel research designs that could target individuals or groups; and 3) develop an intervention research agenda in which studies collect data on costs, define stakeholders, and ensure clear strategies for stakeholder engagement and knowledge transfer. The Population Studies Research Network will develop options from these recommendations and release a call for proposals in 2014 for intervention research pilot projects that reflect these recommendations. Pilot projects will be evaluated based on their fit with the retreat's recommendations, and their potential to scale up to full studies and application in practice.
Factors to Consider in Designing Aerosol Inlet Systems for Engine Exhaust Plume Sampling
NASA Technical Reports Server (NTRS)
Anderson, Bruce
2004-01-01
This document consists of viewgraphs of charts and diagrams of considerations to take when sampling the engine exhaust plume. It includes a chart that compares the emissions from various fuels, a diagram and charts of the various processes and conditions that influence the particulate size and concentration,
Web-Based Learning Environment: A Theory-Based Design Process for Development and Evaluation
ERIC Educational Resources Information Center
Nam, Chang S.; Smith-Jackson, Tonya L.
2007-01-01
Web-based courses and programs have increasingly been developed by many academic institutions, organizations, and companies worldwide due to their benefits for both learners and educators. However, many of the developmental approaches lack two important considerations needed for implementing Web-based learning applications: (1) integration of the…
Yamato: Bringing the Moon to the Earth ... Again
NASA Technical Reports Server (NTRS)
Lam, King; Martinelli, Scott; Patel, Neal; Powell, David; Smith, Brandon
2008-01-01
The Yamato mission to the lunar South Pole-Aitken Basin returns samples that enable dating of lunar formation and the lunar bombardment period. The design of the Yamato mission is based on a systems engineering process which takes an advanced consideration of cost and mission risk to give the mission a high probability of success.
Selecting Models for Measuring Change When True Experimental Conditions Do Not Exist.
ERIC Educational Resources Information Center
Fortune, Jim C.; Hutson, Barbara A.
1984-01-01
Measuring change when true experimental conditions do not exist is a difficult process. This article reviews the artifacts of change measurement in evaluations and quasi-experimental designs, delineates considerations in choosing a model to measure change under nonideal conditions, and suggests ways to organize models to facilitate selection.…
2010-09-01
was reexposed by erosion following the initial event (Figure 9). Erosion of the fan toe in the vicinity of the downstream array is primarily...Digitally Capture the Topography of Sand Dunes in High Spatial Resolution. Earth Surface Processes and Landforms 29:391-398. Queensland, G. 2008
A Guide to Networking for K-12 Schools.
ERIC Educational Resources Information Center
Northwest Regional Educational Lab., Portland, OR.
The purpose of this guide is to provide basic networking information and planning assistance for technology coordinators and others involved in building networks for K-12 schools. The information in this guide focuses on the first few steps in the networking process. It reviews planning considerations and network design issues facing educators who…
Enhancement of Spatial Thinking with Virtual Spaces 1.0
ERIC Educational Resources Information Center
Hauptman, Hanoch
2010-01-01
Developing a software environment to enhance 3D geometric proficiency demands the consideration of theoretical views of the learning process. Simultaneously, this effort requires taking into account the range of tools that technology offers, as well as their limitations. In this paper, we report on the design of Virtual Spaces 1.0 software, a…
47 CFR 25.158 - Consideration of GSO-like satellite applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...
47 CFR 25.158 - Consideration of GSO-like satellite applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...
47 CFR 25.158 - Consideration of GSO-like satellite applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...
47 CFR 25.158 - Consideration of GSO-like satellite applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-like satellite system” is defined as a GSO satellite designed to communicate with earth stations with directional antennas. Examples of GSO-like satellite systems are those which use earth stations with antennas... of this letter to the other participants in the processing round pursuant to § 1.47 of this chapter...
How to Design, Analyze, and Write Doctoral or Masters Research. Second Edition.
ERIC Educational Resources Information Center
Balian, Edward S.
A practical guide to conducting and reporting graduate-level research projects outlines each step in the research process and discusses both practical and theoretical considerations. Chapter 1 addresses idea and topic development. Chapter 2 discusses the purposes, procedures, and sources for literature reviews and searches. In chapter 3, the…
Object reasoning for waste remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, K.A.; Bohn, S.J.; Franklin, A.L.
1991-08-01
A large number of contaminated waste sites across the United States await size remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System is a hybrid system, designed and constructed using object-oriented, knowledge- based systems, and structured programming techniques. RAAS uses amore » combination of quantitative and qualitative reasoning to consider and suggest remediation alternatives. The reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper describes the information structure and organization used to support this reasoning process. In addition, the paper describes the level of detail of the technology related information used in RAAS, discusses required assumptions and procedural implications of these assumptions, and provides rationale for structuring RAAS in this manner. 3 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Srinivasagupta, Deepak; Kardos, John L.
2004-05-01
Injected pultrusion (IP) is an environmentally benign continuous process for low-cost manufacture of prismatic polymer composites. IP has been of recent regulatory interest as an option to achieve significant vapour emissions reduction. This work describes the design of the IP process with multiple design objectives. In our previous work (Srinivasagupta D et al 2003 J. Compos. Mater. at press), an algorithm for economic design using a validated three-dimensional physical model of the IP process was developed, subject to controllability considerations. In this work, this algorithm was used in a multi-objective optimization approach to simultaneously meet economic, quality related, and environmental objectives. The retrofit design of a bench-scale set-up was considered, and the concept of exergy loss in the process, as well as in vapour emission, was introduced. The multi-objective approach was able to determine the optimal values of the processing parameters such as heating zone temperatures and resin injection pressure, as well as the equipment specifications (die dimensions, heater, puller and pump ratings) that satisfy the various objectives in a weighted sense, and result in enhanced throughput rates. The economic objective did not coincide with the environmental objective, and a compromise became necessary. It was seen that most of the exergy loss is in the conversion of electric power into process heating. Vapour exergy loss was observed to be negligible for the most part.
Current status and challenges for automotive battery production technologies
NASA Astrophysics Data System (ADS)
Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus
2018-04-01
Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.
Facility design consideration for continuous mix production of class 1.3 propellant
NASA Technical Reports Server (NTRS)
Williamson, K. L.; Schirk, P. G.
1994-01-01
In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.
Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinak, M; Lamb, D
2012-07-03
This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.
International standards on working postures and movements ISO 11226 and EN 1005-4.
Delleman, N J; Dul, J
2007-11-01
Standards organizations have given considerable attention to the problem of work-related musculoskeletal disorders. The publication of international standards for evaluating working postures and movements, ISO 11,226 in 2000 and EN 1,005-4 in 2005, may be considered as a support for those involved in preventing and controlling these disorders. The first one is a tool for evaluation of existing work situations, whereas the latter one is a tool for evaluation during a design/engineering process. Key publications and considerations that led to the content of the standards are presented, followed by examples of application.
Interphase layer optimization for metal matrix composites with fabrication considerations
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.
Chen, Ronald C; Carpenter, William R; Kim, Mimi; Hendrix, Laura H; Agans, Robert P; Meyer, Anne-Marie; Hoffmeyer, Anna; Reeve, Bryce B; Nielsen, Matthew E; Usinger, Deborah S; Strigo, Tara S; Jackman, Anne M; Anderson, Mary; Godley, Paul A
2015-01-01
The North Carolina Prostate Cancer Comparative Effectiveness & Survivorship Study (NC ProCESS) was designed in collaboration with stakeholders to compare the effectiveness of different treatment options for localized prostate cancer. Using the Rapid Case Ascertainment system of the North Carolina Central Cancer Registry, 1,419 patients (57% of eligible) with newly-diagnosed localized prostate cancer were enrolled from January 2011 to June 2013, on average 5 weeks after diagnosis. All participants were enrolled prior to treatment and this population-based cohort is sociodemographically diverse. Prospective follow-up continues to collect data on treatments received, disease control, survival and patient-reported outcomes. This study highlights several important considerations regarding stakeholder involvement, study design and generalizability regarding comparative effectiveness research in prostate cancer.
Taylor, Emily; Hoang, Sylvia; Cook, Brian
2014-01-01
In this article, we describe a process for designing and applying vignettes in public health policy research and practice. We developed this methodology for a study on moral reasoning underpinning policy debate on food advertising to children. Using vignettes prompted policy actors who were relatively entrenched in particular ways of speaking professionally about a controversial and ethically challenging issue to converse in a more authentic and reflective way. Vignettes hold benefits and complexities. They can focus attention on moral conflicts, draw out different types of evidence to support moral reasoning, and enable simultaneous consideration of real and ideal worlds. We suggest a process and recommendations on design features for crafting vignettes for public health policy. PMID:25121818
Mah, Catherine L; Taylor, Emily; Hoang, Sylvia; Cook, Brian
2014-10-01
In this article, we describe a process for designing and applying vignettes in public health policy research and practice. We developed this methodology for a study on moral reasoning underpinning policy debate on food advertising to children. Using vignettes prompted policy actors who were relatively entrenched in particular ways of speaking professionally about a controversial and ethically challenging issue to converse in a more authentic and reflective way. Vignettes hold benefits and complexities. They can focus attention on moral conflicts, draw out different types of evidence to support moral reasoning, and enable simultaneous consideration of real and ideal worlds. We suggest a process and recommendations on design features for crafting vignettes for public health policy.
Seat pressure measurement technologies: considerations for their evaluation.
Gyi, D E; Porter, J M; Robertson, N K
1998-04-01
Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.
Design control considerations for biologic-device combination products.
Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon
2017-03-01
Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting development of innovative, safe and effective combination products. It remains the manufacturer's responsibility to comply with the relevant requirements and regulations, and develop good business practices that clearly describe how these practices comply with FDA's final rule (21 CFR Part 4) and aligns with the company's already established quality system. Copyright © 2017 Elsevier B.V. All rights reserved.
Biocontainment laboratory risk assessment: perspectives and considerations.
Patterson, Amy; Fennington, Kelly; Bayha, Ryan; Wax, Diane; Hirschberg, Rona; Boyd, Nancy; Kurilla, Michael
2014-07-01
The ability to respond to public health emergencies involving infectious diseases as well as our ability to adequately prepare for as yet unknown or unrecognized emerging infectious diseases requires suitable facilities within which scientific investigations can take place. To ensure the safe conduct of such investigations so that laboratory workers and the general public are protected from potential consequences of accidental or intentional release of high consequence pathogens, special containment facilities have been designed and constructed. Evaluation of the adequacy of containment for these types of investigations requires a risk assessment (RA) as part of the overall construction project for these types of laboratories. A discussion of the RA process along with considerations that impact the design of such studies and the overall results is presented. Published 2014. This article is a US Government work and is in the public domain in the USA.
Hurol, Yonca
2014-06-01
Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.
Design and optimization of an energy degrader with a multi-wedge scheme based on Geant4
NASA Astrophysics Data System (ADS)
Liang, Zhikai; Liu, Kaifeng; Qin, Bin; Chen, Wei; Liu, Xu; Li, Dong; Xiong, Yongqian
2018-05-01
A proton therapy facility based on an isochronous superconducting cyclotron is under construction in Huazhong University of Science and Technology (HUST). To meet the clinical requirements, an energy degrader is essential in the beamline to modulate the fixed beam energy extracted from the cyclotron. Because of the multiple Coulomb scattering in the degrader, the beam emittance and the energy spread will be considerably increased during the energy degradation process. Therefore, a set of collimators is designed to restrict the increase in beam emittance after the energy degradation. The energy spread will be reduced in the following beam line which is not discussed in this paper. In this paper, the design considerations of an energy degrader and collimators are introduced, and the properties of the degrader material, degrader structure and the initial beam parameters are discussed using the Geant4 Monte-Carlo toolkit, with the main purpose of improving the overall performance of the degrader by multiple parameter optimization.
Feasibility study: Liquid hydrogen plant, 30 tons per day
NASA Technical Reports Server (NTRS)
1975-01-01
The design considerations of the plant are discussed in detail along with management planning, objective schedules, and cost estimates. The processing scheme is aimed at ultimate use of coal as the basic raw material. For back-up, and to provide assurance of a dependable and steady supply of hydrogen, a parallel and redundant facility for gasifying heavy residual oil will be installed. Both the coal and residual oil gasifiers will use the partial oxidation process.
Optimization of Transmon Qubit Fabrication
NASA Astrophysics Data System (ADS)
Chang, Josephine; Rothwell, Mary; Keefe, George; IBM Quantum Computing Group Team
2013-03-01
Rapid advances in the field of superconducting transmon qubits have refined our understanding of the role that substrate and interfaces play in qubit decoherence. Here, we review strategies for enhancing coherence times in both 2D and 3D transmon qubits through substrate design, structural improvements, and process optimization. Results correlating processing techniques to decoherence times are presented, and some novel structures are proposed for further consideration. We acknowledge support from IARPA under contract W911NF-10-1-0324
C-A1-03: Considerations in the Design and Use of an Oracle-based Virtual Data Warehouse
Bredfeldt, Christine; McFarland, Lela
2011-01-01
Background/Aims The amount of clinical data available for research is growing exponentially. As it grows, increasing the efficiency of both data storage and data access becomes critical. Relational database management systems (rDBMS) such as Oracle are ideal solutions for managing longitudinal clinical data because they support large-scale data storage and highly efficient data retrieval. In addition, they can greatly simplify the management of large data warehouses, including security management and regular data refreshes. However, the HMORN Virtual Data Warehouse (VDW) was originally designed based on SAS datasets, and this design choice has a number of implications for both the design and use of an Oracle-based VDW. From a design standpoint, VDW tables are designed as flat SAS datasets, which do not take full advantage of Oracle indexing capabilities. From a data retrieval standpoint, standard VDW SAS scripts do not take advantage of SAS pass-through SQL capabilities to enable Oracle to perform the processing required to narrow datasets to the population of interest. Methods Beginning in 2009, the research department at Kaiser Permanente in the Mid-Atlantic States (KPMA) has developed an Oracle-based VDW according to the HMORN v3 specifications. In order to take advantage of the strengths of relational databases, KPMA introduced an interface layer to the VDW data, using views to provide access to standardized VDW variables. In addition, KPMA has developed SAS programs that provide access to SQL pass-through processing for first-pass data extraction into SAS VDW datasets for processing by standard VDW scripts. Results We discuss both the design and performance considerations specific to the KPMA Oracle-based VDW. We benchmarked performance of the Oracle-based VDW using both standard VDW scripts and an initial pre-processing layer to evaluate speed and accuracy of data return. Conclusions Adapting the VDW for deployment in an Oracle environment required minor changes to the underlying structure of the data. Further modifications of the underlying data structure would lead to performance enhancements. Maximally efficient data access for standard VDW scripts requires an extra step that involves restricting the data to the population of interest at the data server level prior to standard processing.
Operational factors affecting microgravity levels in orbit
NASA Technical Reports Server (NTRS)
Olsen, R. E.; Mockovciak, J., Jr.
1980-01-01
Microgravity levels desired for proposed materials processing payloads are fundamental considerations in the design of future space platforms. Disturbance sources, such as aerodynamic drag, attitude control torques, crew motion and orbital dynamics, influence the microgravity levels attainable in orbit. The nature of these effects are assessed relative to platform design parameters such as orbital altitude and configuration geometry, and examples are presented for a representative spacecraft configuration. The possible applications of control techniques to provide extremely low acceleration levels are also discussed.
Engine dynamic analysis with general nonlinear finite element codes
NASA Technical Reports Server (NTRS)
Adams, M. L.; Padovan, J.; Fertis, D. G.
1991-01-01
A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.
Mutual information based feature selection for medical image retrieval
NASA Astrophysics Data System (ADS)
Zhi, Lijia; Zhang, Shaomin; Li, Yan
2018-04-01
In this paper, authors propose a mutual information based method for lung CT image retrieval. This method is designed to adapt to different datasets and different retrieval task. For practical applying consideration, this method avoids using a large amount of training data. Instead, with a well-designed training process and robust fundamental features and measurements, the method in this paper can get promising performance and maintain economic training computation. Experimental results show that the method has potential practical values for clinical routine application.
Design of an Airlift Bioreactor
Jiao, Yongqin; Park, Dan; Ho, Lewis
2017-03-13
An important consideration for the process design is cell immobilization-enabled flow-through operation. Large-scale biosorption relies on cells that are immobilized on a supporting substrate and used to 'attract' metal ions. Cell immobilization allows easy separation of the feed solution and REEs that are attached to the cell surface. It also allows continuous operation without the need of energy-intensive centrifugation or filtration. Lightweight, high surface area, low cost (~$200/m3) high-density polyethylene (HDPE) plastic disks are used as cell carriers for biofilm formation.
International Workshop on Millimeter Waves (1992) Held in Orvieto, Italy on April 22-24, 1992
1992-04-24
1fillinmler4Vtlatri Circuits T. Yotwymatiat. Receott IDeehotnns. #of NRI)-;,.,s. Te, impIig It. 11. Jamset. Adv’anced Design Tee hnu jues fir Leiear... designed for the sky radiation measurement. - consideration of typical flight altitudes of 300m to Its output delivers a mean-value of the relevant...Electrolytic Processes: Anodic, Etching and Cathodic -increase of Surface to Volume Ratio metal deponition. Loca-Stuctre epoitin b pont- ikea ) no damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.
1993-03-01
The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the referencemore » design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.« less
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
Designing for Dissemination: Lessons in Message Design From “1-2-3 Pap”
Cohen, Elisia L.; Head, Katharine J.; McGladrey, Margaret J.; Hoover, Anna G.; Vanderpool, Robin C.; Bridger, Colleen; Carman, Angela; Crosby, Richard A.; Darling, Elaine; Tucker-McLaughlin, Mary; Winterbauer, Nancy
2016-01-01
Despite a large number of evidence-based health communication interventions tested in private, public, and community health settings, there is a dearth of research on successful secondary dissemination of these interventions to other audiences. This article presents the case study of “1-2-3 Pap,” a health communication intervention to improve human papillomavirus (HPV) vaccination uptake and Pap testing outcomes in Eastern Kentucky, and explores strategies used to disseminate this intervention to other populations in Kentucky, North Carolina, and West Virginia. Through this dissemination project, we identified several health communication intervention design considerations that facilitated our successful dissemination to these other audiences; these intervention design considerations include (a) developing strategies for reaching other potential audiences, (b) identifying intervention message adaptations that might be needed, and (c) determining the most appropriate means or channels by which to reach these potential future audiences. Using “1-2-3 Pap” as an illustrative case study, we describe how careful planning and partnership development early in the intervention development process can improve the potential success of enhancing the reach and effectiveness of an intervention to other audiences beyond the audience for whom the intervention messages were originally designed. PMID:25470444
Simulation of materials processing: Fantasy or reality?
NASA Technical Reports Server (NTRS)
Jenkins, Thomas J.; Bright, Victor M.
1994-01-01
This experiment introduces students to the application of computer-aided design (CAD) and analysis of materials processing in the context of integrated circuit (IC) fabrication. The fabrication of modern IC's is a complex process which consists of several sequential steps. These steps involve the precise control of processing variables such as temperature, humidity, and ambient gas composition. In essence, the particular process employed during the fabrication becomes a 'recipe'. Due to economic and other considerations, CAD is becoming an indispensable part of the development of new recipes for IC fabrication. In particular, this experiment permits the students to explore the CAD of the thermal oxidation of silicon.
Process development for green part printing using binder jetting additive manufacturing
NASA Astrophysics Data System (ADS)
Miyanaji, Hadi; Orth, Morgan; Akbar, Junaid Muhammad; Yang, Li
2018-05-01
Originally developed decades ago, the binder jetting additive manufacturing (BJ-AM) process possesses various advantages compared to other additive manufacturing (AM) technologies such as broad material compatibility and technological expandability. However, the adoption of BJ-AM has been limited by the lack of knowledge with the fundamental understanding of the process principles and characteristics, as well as the relatively few systematic design guideline that are available. In this work, the process design considerations for BJ-AM in green part fabrication were discussed in detail in order to provide a comprehensive perspective of the design for additive manufacturing for the process. Various process factors, including binder saturation, in-process drying, powder spreading, powder feedstock characteristics, binder characteristics and post-process curing, could significantly affect the printing quality of the green parts such as geometrical accuracy and part integrity. For powder feedstock with low flowability, even though process parameters could be optimized to partially offset the printing feasibility issue, the qualities of the green parts will be intrinsically limited due to the existence of large internal voids that are inaccessible to the binder. In addition, during the process development, the balanced combination between the saturation level and in-process drying is of critical importance in the quality control of the green parts.
Microtube strip heat exchanger
NASA Astrophysics Data System (ADS)
Doty, F. D.
1991-10-01
This progress report is for the September-October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.
Human Health/Human Factors Considerations in Trans-Lunar Space
NASA Technical Reports Server (NTRS)
Moore, E. Cherice; Howard, Robert; Mendeck, Gavin
2014-01-01
The human factors insights of how they are incorporated into the vehicle are crucial towards designing and planning the internal designs necessary for future spacecraft and missions. The adjusted mission concept of supporting the Asteroid Redirect Crewed Mission will drive some human factors changes on how the Orion will be used and will be reassessed so as to best contribute to missions success. Recognizing what the human factors and health functional needs are early in the design process and how to integrate them will improve this and future generations of space vehicles to achieve mission success and continue to minimize risks.
Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay
2015-07-01
Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.
NASA Technical Reports Server (NTRS)
Khan, Gufran Sayeed; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian
2010-01-01
The presentation includes grazing incidence X-ray optics, motivation and challenges, mid spatial frequency generation in cylindrical polishing, design considerations for polishing lap, simulation studies and experimental results, future scope, and summary. Topics include current status of replication optics technology, cylindrical polishing process using large size polishing lap, non-conformance of polishin lap to the optics, development of software and polishing machine, deterministic prediction of polishing, polishing experiment under optimum conditions, and polishing experiment based on known error profile. Future plans include determination of non-uniformity in the polishing lap compliance, development of a polishing sequence based on a known error profile of the specimen, software for generating a mandrel polishing sequence, design an development of a flexible polishing lap, and computer controlled localized polishing process.
Additive Manufacturing Design Considerations for Liquid Engine Components
NASA Technical Reports Server (NTRS)
Whitten, Dave; Hissam, Andy; Baker, Kevin; Rice, Darron
2014-01-01
The Marshall Space Flight Center's Propulsion Systems Department has gained significant experience in the last year designing, building, and testing liquid engine components using additive manufacturing. The department has developed valve, duct, turbo-machinery, and combustion device components using this technology. Many valuable lessons were learned during this process. These lessons will be the focus of this presentation. We will present criteria for selecting part candidates for additive manufacturing. Some part characteristics are 'tailor made' for this process. Selecting the right parts for the process is the first step to maximizing productivity gains. We will also present specific lessons we learned about feature geometry that can and cannot be produced using additive manufacturing machines. Most liquid engine components were made using a two-step process. The base part was made using additive manufacturing and then traditional machining processes were used to produce the final part. The presentation will describe design accommodations needed to make the base part and lessons we learned about which features could be built directly and which require the final machine process. Tolerance capabilities, surface finish, and material thickness allowances will also be covered. Additive Manufacturing can produce internal passages that cannot be made using traditional approaches. It can also eliminate a significant amount of manpower by reducing part count and leveraging model-based design and analysis techniques. Information will be shared about performance enhancements and design efficiencies we experienced for certain categories of engine parts.
Ordering Design Tasks Based on Coupling Strengths
NASA Technical Reports Server (NTRS)
Rogers, J. L.; Bloebaum, C. L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Ordering design tasks based on coupling strengths
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Bloebaum, Christina L.
1994-01-01
The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.
Thakkar, Jay; Barry, Tony; Thiagalingam, Aravinda; Redfern, Julie; McEwan, Alistair L; Rodgers, Anthony
2016-01-01
Background Mobile health (mHealth) has huge potential to deliver preventative health services. However, there is paucity of literature on theoretical constructs, technical, practical, and regulatory considerations that enable delivery of such services. Objectives The objective of this study was to outline the key considerations in the development of a text message-based mHealth program; thus providing broad recommendations and guidance to future researchers designing similar programs. Methods We describe the key considerations in designing the intervention with respect to functionality, technical infrastructure, data management, software components, regulatory requirements, and operationalization. We also illustrate some of the potential issues and decision points utilizing our experience of developing text message (short message service, SMS) management systems to support 2 large randomized controlled trials: TEXT messages to improve MEDication adherence & Secondary prevention (TEXTMEDS) and Tobacco, EXercise and dieT MEssages (TEXT ME). Results The steps identified in the development process were: (1) background research and development of the text message bank based on scientific evidence and disease-specific guidelines, (2) pilot testing with target audience and incorporating feedback, (3) software-hardware customization to enable delivery of complex personalized programs using prespecified algorithms, and (4) legal and regulatory considerations. Additional considerations in developing text message management systems include: balancing the use of customized versus preexisting software systems, the level of automation versus need for human inputs, monitoring, ensuring data security, interface flexibility, and the ability for upscaling. Conclusions A merging of expertise in clinical and behavioral sciences, health and research data management systems, software engineering, and mobile phone regulatory requirements is essential to develop a platform to deliver and manage support programs to hundreds of participants simultaneously as in TEXT ME and TEXTMEDS trials. This research provides broad principles that may assist other researchers in developing mHealth programs. PMID:27847350
Thakkar, Jay; Barry, Tony; Thiagalingam, Aravinda; Redfern, Julie; McEwan, Alistair L; Rodgers, Anthony; Chow, Clara K
2016-11-15
Mobile health (mHealth) has huge potential to deliver preventative health services. However, there is paucity of literature on theoretical constructs, technical, practical, and regulatory considerations that enable delivery of such services. The objective of this study was to outline the key considerations in the development of a text message-based mHealth program; thus providing broad recommendations and guidance to future researchers designing similar programs. We describe the key considerations in designing the intervention with respect to functionality, technical infrastructure, data management, software components, regulatory requirements, and operationalization. We also illustrate some of the potential issues and decision points utilizing our experience of developing text message (short message service, SMS) management systems to support 2 large randomized controlled trials: TEXT messages to improve MEDication adherence & Secondary prevention (TEXTMEDS) and Tobacco, EXercise and dieT MEssages (TEXT ME). The steps identified in the development process were: (1) background research and development of the text message bank based on scientific evidence and disease-specific guidelines, (2) pilot testing with target audience and incorporating feedback, (3) software-hardware customization to enable delivery of complex personalized programs using prespecified algorithms, and (4) legal and regulatory considerations. Additional considerations in developing text message management systems include: balancing the use of customized versus preexisting software systems, the level of automation versus need for human inputs, monitoring, ensuring data security, interface flexibility, and the ability for upscaling. A merging of expertise in clinical and behavioral sciences, health and research data management systems, software engineering, and mobile phone regulatory requirements is essential to develop a platform to deliver and manage support programs to hundreds of participants simultaneously as in TEXT ME and TEXTMEDS trials. This research provides broad principles that may assist other researchers in developing mHealth programs. ©Jay Thakkar, Tony Barry, Aravinda Thiagalingam, Julie Redfern, Alistair L McEwan, Anthony Rodgers, Clara K Chow. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 15.11.2016.
Orion Absolute Navigation System Progress and Challenges
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher
2011-01-01
The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.
Study design considerations in evaluating environmental impacts
Stan T. Lebow; Paul A. Cooper; Patricia Lebow
2006-01-01
The purpose of this chapter is to make the reader aware of how choices in study parameters may influence the outcome of treated-wood environmental impact evaluations. Evaluation of the leaching and environmental accumulation of preservatives from treated wood is a complex process. and many factors can influence the results of such studies. In laboratory studies, the...
Towards an Approach for an Accessible and Inclusive Virtual Education Using ESVI-AL Project Results
ERIC Educational Resources Information Center
Amado-Salvatierra, Hector R.; Hilera, Jose R.
2015-01-01
Purpose: This paper aims to present an approach to achieve accessible and inclusive Virtual Education for all, but especially intended for students with disabilities. This work proposes main steps to take into consideration for stakeholders involved in the educational process related to an inclusive e-Learning. Design/methodology/approach: The…
ERIC Educational Resources Information Center
White, Kiri; Boehm, Emilia; Chester, Andrea
2014-01-01
Peer review of teaching is a collegial process designed to help academics reflect on and improve their teaching practice. Considerable research supports the value of peer review of teaching. However, uptake of voluntary programs is typically low. Few studies have examined the predictors of engagement in voluntary peer review. This study surveyed…
Designing Peer Review for Pedagogical Success: What Can We Learn from Professional Science?
ERIC Educational Resources Information Center
Trautmann, Nancy M.
2009-01-01
This article compares peer review in professional versus education settings, summarizing key aspects of scientific peer review and reflecting on how these relate to the process as experienced by students. Consideration of professional peer review benefits educators in two ways. First, systems used for student peer review can employ some of the…
Evaluating English Language Teaching Software for Kids: Education or Entertainment or Both?
ERIC Educational Resources Information Center
Kazanci, Zekeriya; Okan, Zuhal
2009-01-01
The purpose of this study is to offer a critical consideration of instructional software designed particularly for children. Since the early 1990s computer applications integrating education with entertainment have been adopted on a large scale by both educators and parents. It is expected that through edutainment software the process of learning…
Learning Styles: Considerations for Technology Enhanced Item Design
ERIC Educational Resources Information Center
Adkins, Deborah; Guerreiro, Meg
2018-01-01
Learning styles (LS) have been used for classifying students by their preferences relative to taking information in, processing it and demonstrating their ability in the context of education. This paper investigates the role of LS in K-12 education by considering the manner in which student LS are assessed and the extent to which they have…
Donald G. MacGregor; David N. Seesholtz
2008-01-01
Prior to the existence of the National Environmental Policy Act (NEPA), Forest Service district rangers had considerable latitude to make resource management decisions and execute management plans with relatively little encumbrance by documentation and process requirements. Today there appear to be differences not only in the district ranger population, but in the...
NASA Technical Reports Server (NTRS)
Kezirian, M. T.
2007-01-01
As NASA implements the nation's Vision for Space Exploration to return to the moon and travel to Mars, new considerations will be be given to the processes governing design and operations of manned spaceflight. New objectives bring new technical challenges; Safety will drive many of these decisions.
ERIC Educational Resources Information Center
Colley, Joanna; Bradley, Claire; Stead, Geoff; Wakelin, Jessica
2014-01-01
This paper outlines an m-learning solution, "Global MedAid", which aims to provide learning resources and tools for personnel in various roles in disaster or emergency situations. It outlines the development process and presents the design considerations and solutions for developing a cross-platform application combining a wide range of…
ERIC Educational Resources Information Center
Whiley, Dona; Witt, Bradd; Colvin, R. M.; Sapiains Arrue, Rodolfo; Kotir, Julius
2017-01-01
This paper chronicles the experience of academic staff in developing a course to enhance the critical thinking skills of environmental management undergraduates. We outline our considerations and process for course development, discuss insights from course evaluations, and reflect on the challenges encountered. We believe these perspectives will…
Extreme winds and tornadoes: an overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.
1985-01-01
The objective of this course on extreme winds, hurricanes and tornadoes is to provide an overview of these natural phenomenon from the perspective of design of new buildings and structures or the evaluation of existing ones. Information is directly applicable to design and evaluation processes. The premise is that the facility under consideration, which may consist of various buildings, structures, processing equipment, stacks, ventilation ducts, etc., can be classified into certain categories, depending on the importance of the mission performed in the facility or the hazard that is presented by the particular operation. Having classified the facility into an appropriatemore » category will automatically define certain design goals for the facility. The design goals are then met by selecting a design wind speed that is appropriate for the specified exceedance probability and by following certain specified design procedures. The problem then is to determine appropriate wind loads and other applicable loads, including dead loads, live loads, seismic loads and other loads that may act on the structures. The design process can then proceed in the usual manner. In the case of existing facilities the strengths of the various structural elements, subsystems and systems are evaluated and these strengths are related to wind speeds that would result in failure to meet the design goals. 12 refs.« less
Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments
2017-02-16
ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate
What makes a good home-based nocturnal seizure detector? A value sensitive design.
van Andel, Judith; Leijten, Frans; van Delden, Hans; van Thiel, Ghislaine
2015-01-01
A device for the in-home detection of nocturnal seizures is currently being developed in the Netherlands, to improve care for patients with severe epilepsy. It is recognized that the design of medical technology is not value neutral: perspectives of users and developers are influential in design, and design choices influence these perspectives. However, during development processes, these influences are generally ignored and value-related choices remain implicit and poorly argued for. In the development process of the seizure detector we aimed to take values of all stakeholders into consideration. Therefore, we performed a parallel ethics study, using "value sensitive design." Analysis of stakeholder communication (in meetings and e-mail messages) identified five important values, namely, health, trust, autonomy, accessibility, and reliability. Stakeholders were then asked to give feedback on the choice of these values and how they should be interpreted. In a next step, the values were related to design choices relevant for the device, and then the consequences (risks and benefits) of these choices were investigated. Currently the process of design and testing of the device is still ongoing. The device will be validated in a trial in which the identified consequences of design choices are measured as secondary endpoints. Value sensitive design methodology is feasible for the development of new medical technology and can help designers substantiate the choices in their design.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... container labels and carton labeling design, is the second in a series of three planned guidance documents...] Draft Guidance for Industry on Safety Considerations for Container Labels and Carton Labeling Design To... entitled ``Safety Considerations for Container Labels and Carton Labeling Design to Minimize Medication...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
..., choosing a study population, using a control group and blinding, dose selection, treatment plans...] Draft Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of Cellular... document entitled ``Guidance for Industry: Considerations for the Design of Early-Phase Clinical Trials of...
The examination of headache activity using time-series research designs.
Houle, Timothy T; Remble, Thomas A; Houle, Thomas A
2005-05-01
The majority of research conducted on headache has utilized cross-sectional designs which preclude the examination of dynamic factors and principally rely on group-level effects. The present article describes the application of an individual-oriented process model using time-series analytical techniques. The blending of a time-series approach with an interactive process model allows consideration of the relationships of intra-individual dynamic processes, while not precluding the researcher to examine inter-individual differences. The authors explore the nature of time-series data and present two necessary assumptions underlying the time-series approach. The concept of shock and its contribution to headache activity is also presented. The time-series approach is not without its problems and two such problems are specifically reported: autocorrelation and the distribution of daily observations. The article concludes with the presentation of several analytical techniques suited to examine the time-series interactive process model.
Development of Next Generation Memory Test Experiment for Deployment on a Small Satellite
NASA Technical Reports Server (NTRS)
MacLeod, Todd; Ho, Fat D.
2012-01-01
The original Memory Test Experiment successfully flew on the FASTSAT satellite launched in November 2010. It contained a single Ramtron 512K ferroelectric memory. The memory device went through many thousands of read/write cycles and recorded any errors that were encountered. The original mission length was schedule to last 6 months but was extended to 18 months. New opportunities exist to launch a similar satellite and considerations for a new memory test experiment should be examined. The original experiment had to be designed and integrated in less than two months, so the experiment was a simple design using readily available parts. The follow-on experiment needs to be more sophisticated and encompass more technologies. This paper lays out the considerations for the design and development of this follow-on flight memory experiment. It also details the results from the original Memory Test Experiment that flew on board FASTSAT. Some of the design considerations for the new experiment include the number and type of memory devices to be used, the kinds of tests that will be performed, other data needed to analyze the results, and best use of limited resources on a small satellite. The memory technologies that are considered are FRAM, FLASH, SONOS, Resistive Memory, Phase Change Memory, Nano-wire Memory, Magneto-resistive Memory, Standard DRAM, and Standard SRAM. The kinds of tests that could be performed are read/write operations, non-volatile memory retention, write cycle endurance, power measurements, and testing Error Detection and Correction schemes. Other data that may help analyze the results are GPS location of recorded errors, time stamp of all data recorded, radiation measurements, temperature, and other activities being perform by the satellite. The resources of power, volume, mass, temperature, processing power, and telemetry bandwidth are extremely limited on a small satellite. Design considerations must be made to allow the experiment to not interfere with the satellite s primary mission.
Production Design: Holding It Together.
ERIC Educational Resources Information Center
Connelly, James O.
1994-01-01
Discusses production design for videos. Outlines general considerations (opening, transitions, content areas, and closing) and specific considerations (typography, screen design, music, and sound effects). Offers an example. (SR)
NASA Technical Reports Server (NTRS)
Hampton, R. David; Whorton, Mark S.
2000-01-01
Many microgravity space-science experiments require active vibration isolation, to attain suitably low levels of background acceleration for useful experimental results. The design of state-space controllers by optimal control methods requires judicious choices of frequency-weighting design filters. Kinematic coupling among states greatly clouds designer intuition in the choices of these filters, and the masking effects of the state observations cloud the process further. Recent research into the practical application of H2 synthesis methods to such problems, indicates that certain steps can lead to state frequency-weighting design-filter choices with substantially improved promise of usefulness, even in the face of these difficulties. In choosing these filters on the states, one considers their relationships to corresponding design filters on appropriate pseudo-sensitivity- and pseudo-complementary-sensitivity functions. This paper investigates the application of these considerations to a single-degree-of-freedom microgravity vibration-isolation test case. Significant observations that were noted during the design process are presented. along with explanations based on the existent theory for such problems.
Engine design considerations for 2nd generation supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.
1975-01-01
The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.
Disease management interventions: what's in the black box?
Linden, Ariel; Roberts, Nancy
2004-01-01
In discussing evaluation techniques to assess disease management (DM) program outcomes, it is often assumed that DM program interventions are premised on sound clinical judgment, an understanding of the disease process, and knowledge of the psychosocial models of behavioral change that must be used to effect those processes and ultimately improve the health outcomes that are being evaluated. This paper describes eight commonly used behavioral change models applied in the healthcare industry today. They represent programs designed to address individual, interpersonal, and community level factors as well as "packaged" comprehensive approaches. These models illustrate the breadth of approaches to consider when designing or assessing DM program interventions. Careful consideration of the type of behavioral change desired and the theories of how to effect such change should be an integral part of designing disease management program interventions.
Evaluating the performance of free-formed surface parts using an analytic network process
NASA Astrophysics Data System (ADS)
Qian, Xueming; Ma, Yanqiao; Liang, Dezhi
2018-03-01
To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.
Cell encapsulation in biodegradable hydrogels for tissue engineering applications.
Nicodemus, Garret D; Bryant, Stephanie J
2008-06-01
Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering.
Energy Savings by Treating Buildings as Systems
NASA Astrophysics Data System (ADS)
Harvey, L. D. Danny
2008-09-01
This paper reviews the opportunities for dramatically reducing energy use in buildings by treating buildings as systems, rather than focusing on device efficiencies. Systems-level considerations are relevant for the operation of heat pumps (where the temperatures at which heat or coldness are distributed are particularly important); the joint or separate provision of heating, cooling, and ventilation; the joint or separate removal of sensible heat and moisture; and in the operation of fluid systems having pumps. Passive heating, cooling, and ventilation, as well as daylighting (use of sunlight for lighting purposes) also require consideration of buildings as systems. In order to achieve the significant (50-75%) energy savings that are possible through a systems approach, the design process itself has to involve a high degree of integration between the architect and various engineering disciplines (structural, mechanical, electrical), and requires the systematic examination and adjustment of alternative designs using computer simulation models.
NASA Astrophysics Data System (ADS)
Gerck, Ed
We present a new, comprehensive framework to qualitatively improve election outcome trustworthiness, where voting is modeled as an information transfer process. Although voting is deterministic (all ballots are counted), information is treated stochastically using Information Theory. Error considerations, including faults, attacks, and threats by adversaries, are explicitly included. The influence of errors may be corrected to achieve an election outcome error as close to zero as desired (error-free), with a provably optimal design that is applicable to any type of voting, with or without ballots. Sixteen voting system requirements, including functional, performance, environmental and non-functional considerations, are derived and rated, meeting or exceeding current public-election requirements. The voter and the vote are unlinkable (secret ballot) although each is identifiable. The Witness-Voting System (Gerck, 2001) is extended as a conforming implementation of the provably optimal design that is error-free, transparent, simple, scalable, robust, receipt-free, universally-verifiable, 100% voter-verified, and end-to-end audited.
Expert reasoning within an object-oriented framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, S.J.; Pennock, K.A.
1991-10-01
A large number of contaminated waste sites across the United States await site remediation efforts. These sites can be physically complex, composed of multiple, possibly interacting, contaminants distributed throughout one or more media. The Remedial Action Assessment System (RAAS) is being designed and developed to support decisions concerning the selection of remediation alternatives. The goal of this system is to broaden the consideration of remediation alternatives, while reducing the time and cost of making these considerations. The Remedial Action Assessment System was designed and constructed using object-oriented techniques. It is a hybrid system which uses a combination of quantitative andmore » qualitative reasoning to consider and suggest remediation alternatives. the reasoning process that drives this application is centered around an object-oriented organization of remediation technology information. This paper briefly describes the waste remediation problem and then discusses the information structure and organization RAAS utilizes to address it. 4 refs., 4 figs.« less
New procedures of ergonomics design in a large oil company.
Alhadeff, Cynthia Mossé; Silva, Rosana Fernandes da; Reis, Márcia Sales dos
2012-01-01
This study presents the challenge involved in the negotiation and construction of a standard process in a major petroleum company that has the purpose of guiding the implementation of ergonomic studies in the development of projects, systemising the implementation of ergonomics design. The standard was created by a multi-disciplinary working group consisting of specialists in ergonomics, who work in a number of different areas of the company. The objective was to guide "how to" undertake ergonomics in all projects, taking into consideration the development of the ergonomic appraisals of work. It also established that all the process, in each project phase, should be accompanied by a specialist in ergonomics. This process as an innovation in the conception of projects in this company, signals a change of culture, and, for this reason requires broad dissemination throughout the several company leadership levels, and training of professionals in projects of ergonomics design. An implementation plan was also prepared and approved by the corporate governance, complementing the proposed challenge. In this way, this major oil company will implement new procedures of ergonomics design to promote health, safety, and wellbeing of the workforce, besides improving the performance and reliability of its systems and processes.
Space Vehicle Terrestrial Environment Design Requirements Guidelines
NASA Technical Reports Server (NTRS)
Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.
2006-01-01
The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.
Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.
Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang
2012-10-29
Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.
Design considerations for the beam-waveguide retrofit of a ground antenna station
NASA Technical Reports Server (NTRS)
Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.
1986-01-01
Retrofitting an antenna that was originally designed without a beam waveguide introduces special difficulties because it is desirable to minimize alteration of the original mechanical truss work and to image the actual feed without distortion at the focal point of the dual-shaped reflector. To obtain an acceptable image, certain Geometrical Optics (GO) design criteria are followed as closely as possible. The problems associated with applying these design criteria to a 34-meter dual-shaped DSN (Deep Space Network) antenna are discussed. The use of various diffraction analysis techniques in the design process is also discussed. GTD and FFT algorithms are particularly necessary at the higher frequencies, while Physical Optics and Spherical Wave Expansions proved necessary at the lower frequencies.
Interaction devices for hands-on desktop design
NASA Astrophysics Data System (ADS)
Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf
2003-05-01
Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.
Sterilization of space hardware.
NASA Technical Reports Server (NTRS)
Pflug, I. J.
1971-01-01
Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.
NASA Technical Reports Server (NTRS)
Posner, Jack (Editor)
1961-01-01
This report reviews a number of the factors which influence space flight experiments. Included are discussions of payload considerations, payload design and packaging, environmental tests, launch facilities, tracking and telemetry requirements, data acquisition, processing and analysis procedures, communication of information, and project management. Particular emphasis is placed on the "Scout" as a launching vehicle. The document includes a description of the geometry of the "Scout" as well as its flight capabilities and limitations. Although oriented toward the "Scout" vehicle and its payload capabilities, the information presented is sufficiently general to be equally applicable to most space vehicle systems.
Design Considerations for a Web-based Database System of ELISpot Assay in Immunological Research
Ma, Jingming; Mosmann, Tim; Wu, Hulin
2005-01-01
The enzyme-linked immunospot (ELISpot) assay has been a primary means in immunological researches (such as HIV-specific T cell response). Due to huge amount of data involved in ELISpot assay testing, the database system is needed for efficient data entry, easy retrieval, secure storage, and convenient data process. Besides, the NIH has recently issued a policy to promote the sharing of research data (see http://grants.nih.gov/grants/policy/data_sharing). The Web-based database system will be definitely benefit to data sharing among broad research communities. Here are some considerations for a database system of ELISpot assay (DBSEA). PMID:16779326
Vehicle health management technology needs
NASA Technical Reports Server (NTRS)
Hammond, Walter E.; Jones, W. G.
1992-01-01
Background material on vehicle health management (VHM) and health monitoring/control is presented. VHM benefits are described and a list of VHM technology needs that should be pursued is presented. The NASA funding process as it impacts VHM technology funding is touched upon, and the VHM architecture guidelines for generic launch vehicles are described. An example of a good VHM architecture, design, and operational philosophy as it was conceptualized for the National Launch System program is presented. Consideration is given to the Strategic Avionics Technology Working Group's role in VHM, earth-to-orbit, and space vehicle avionics technology development considerations, and some actual examples of VHM benefits for checkout are given.
Small Interactive Image Processing System (SMIPS) system description
NASA Technical Reports Server (NTRS)
Moik, J. G.
1973-01-01
The Small Interactive Image Processing System (SMIPS) operates under control of the IBM-OS/MVT operating system and uses an IBM-2250 model 1 display unit as interactive graphic device. The input language in the form of character strings or attentions from keys and light pen is interpreted and causes processing of built-in image processing functions as well as execution of a variable number of application programs kept on a private disk file. A description of design considerations is given and characteristics, structure and logic flow of SMIPS are summarized. Data management and graphic programming techniques used for the interactive manipulation and display of digital pictures are also discussed.
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon
2010-01-01
This slide presentation reviews the evolution of risk management (RM) at NASA. The aim of the RM approach at NASA is to promote an approach that is heuristic, proactive, and coherent across all of NASA. Risk Informed Decision Making (RIDM) is a decision making process that uses a diverse set of performance measures along with other considerations within a deliberative process to inform decision making. RIDM is invoked for key decisions such as architecture and design decisions, make-buy decisions, and budget reallocation. The RIDM process and how it relates to the continuous Risk Management (CRM) process is reviewed.
NASA Technical Reports Server (NTRS)
Agnone, A. M.
1972-01-01
The factors affecting a tangential fuel injector design for scramjet operation are reviewed and their effect on the efficiency of the supersonic combustion process is evaluated using both experimental data and theoretical predictions. A description of the physical problem of supersonic combustion and method of analysis is followed by a presentation and evaluation of some standard and exotic types of fuel injectors. Engineering fuel injector design criteria and hydrogen ignition schemes are presented along with a cursory review of available experimental data. A two-dimensional tangential fuel injector design is developed using analyses as a guide in evaluating the effects on the combustion process of various initial and boundary conditions including splitter plate thickness, injector wall temperature, pressure gradients, etc. The fuel injector wall geometry is shaped so as to maintain approximately constant pressure at the flame as required by a cycle analysis. A viscous characteristics program which accounts for lateral as well as axial pressure variations due to the mixing and combustion process is used in determining the wall geometry.
Design considerations for rechargeable lithium batteries
NASA Technical Reports Server (NTRS)
Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald
1993-01-01
Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.
NASA Astrophysics Data System (ADS)
Au, How Meng
The aircraft design process traditionally starts with a given set of top-level requirements. These requirements can be aircraft performance related such as the fuel consumption, cruise speed, or takeoff field length, etc., or aircraft geometry related such as the cabin height or cabin volume, etc. This thesis proposes a new aircraft design process in which some of the top-level requirements are not explicitly specified. Instead, these previously specified parameters are now determined through the use of the Price-Per-Value-Factor (PPVF) index. This design process is well suited for design projects where general consensus of the top-level requirements does not exist. One example is the design of small commuter airliners. The above mentioned value factor is comprised of productivity, cabin volume, cabin height, cabin pressurization, mission fuel consumption, and field length, each weighted to a different exponent. The relative magnitude and positive/negative signs of these exponents are in agreement with general experience. The value factors of the commuter aircraft are shown to have improved over a period of four decades. In addition, the purchase price is shown to vary linearly with the value factor. The initial aircraft sizing process can be manpower intensive if the calculations are done manually. By incorporating automation into the process, the design cycle can be shortened considerably. The Fortran program functions and subroutines in this dissertation, in addition to the design and optimization methodologies described above, contribute to the reduction of manpower required for the initial sizing process. By combining the new design process mentioned above and the PPVF as the objective function, an optimization study is conducted on the design of a 20-seat regional jet. Handbook methods for aircraft design are written into a Fortran code. A genetic algorithm is used as the optimization scheme. The result of the optimization shows that aircraft designed to this PPVF index can be competitive compared to existing turboprop commuter aircraft. The process developed can be applied to other classes of aircraft with the designer modifying the cost function based upon the design goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladany, G.J.
Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less
Conceptual design considerations and neutronics of lithium fall laser fusion target chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Thomson, W.B.
1978-05-31
Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.
NASA Astrophysics Data System (ADS)
Daud, Rabaayah; Mohamed, Faizal; Majid, Amran Ab; Yasir, Muhammad Samudi
2015-09-01
Designers and manufacturers of plants are responsible to design or redesign the process, product and workplace with consideration of eliminating hazards or controlling risks as early as possible at design stage.The purpose of this paper is to determine the perception of enforcement officers towards compliance and implementation of OSH legislation by the designers and manufacturers of plant.The research partners was a goverment department that enforce the related OSH laws to designers and manufacturers of the plant. A total of 59 technical staffs were surveyed together with examination of the sekunder data from the department to evaluate overall OSH legal obligation by the industries. This study demonstrate how OSH regulators play the roles to influence the industries to perform better in OSH.
Cost considerations for long-term ecological monitoring
Caughlan, L.; Oakley, K.L.
2001-01-01
For an ecological monitoring program to be successful over the long-term, the perceived benefits of the information must justify the cost. Financial limitations will always restrict the scope of a monitoring program, hence the program's focus must be carefully prioritized. Clearly identifying the costs and benefits of a program will assist in this prioritization process, but this is easier said than done. Frequently, the true costs of monitoring are not recognized and are, therefore, underestimated. Benefits are rarely evaluated, because they are difficult to quantify. The intent of this review is to assist the designers and managers of long-term ecological monitoring programs by providing a general framework for building and operating a cost-effective program. Previous considerations of monitoring costs have focused on sampling design optimization. We present cost considerations of monitoring in a broader context. We explore monitoring costs, including both budgetary costs--what dollars are spent on--and economic costs, which include opportunity costs. Often, the largest portion of a monitoring program budget is spent on data collection, and other, critical aspects of the program, such as scientific oversight, training, data management, quality assurance, and reporting, are neglected. Recognizing and budgeting for all program costs is therefore a key factor in a program's longevity. The close relationship between statistical issues and cost is discussed, highlighting the importance of sampling design, replication and power, and comparing the costs of alternative designs through pilot studies and simulation modeling. A monitoring program development process that includes explicit checkpoints for considering costs is presented. The first checkpoint occur during the setting of objectives and during sampling design optimization. The last checkpoint occurs once the basic shape of the program is known, and the costs and benefits, or alternatively the cost-effectiveness, of each program element can be evaluated. Moving into the implementation phase without careful evaluation of costs and benefits is risky because if costs are later found to exceed benefits, the program will fail. The costs of development, which can be quite high, will have been largely wasted. Realistic expectations of costs and benefits will help ensure that monitoring programs survive the early, turbulent stages of development and the challenges posed by fluctuating budgets during implementation.
ERIC Educational Resources Information Center
Myers, Paul D.
2012-01-01
The purpose of the study was to examine the implementation of a special education program designed to support students with autism and social/emotional disturbances in a large, suburban school district. The study examined how services are delivered to students, staffing/personnel aspects, and budgetary considerations relative to programming.…
ERIC Educational Resources Information Center
Friedman, Dana E.
This brief paper was prepared as a starting point for employers considering the adoption of a new management initiative for working parents. It is not an exhaustive outline of all considerations in the decision-making process, nor does it provide solutions to all the known pitfalls. It does, however, suggest the potential scope and complexity of…
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
This activity is designed for secondary school students. The process of constructing a model solar building includes consideration of many fundamental scientific principles, such as the nature of heat, light, electricity, and energy conversion technology. When the model solar building is completed, there are numerous possibilities for the use of…
The Cam Shell: An Innovative Design With Materials and Manufacturing
NASA Technical Reports Server (NTRS)
Chung, W. Richard; Larsen, Frank M.; Kornienko, Rob
2003-01-01
Most of the personal audio and video recording devices currently sold on the open market all require hands to operate. Little consideration was given to designing a hands-free unit. Such a system once designed and made available to the public could greatly benefit mobile police officers, bicyclists, adventurers, street and dirt motorcyclists, horseback riders and many others. With a few design changes water sports and skiing activities could be another large area of application. The cam shell is an innovative design in which an audio and video recording device (such as palm camcorder) is housed in a body-mounted protection system. This system is based on the concept of viewing and recording at the same time. A view cam is attached to a helmet wired to a recording unit encased in a transparent body-mounted protection system. The helmet can also be controlled by remote. The operator will have full control in recording everything. However, the recording unit will be operated completely hands-free. This project will address the design considerations and their effects on material selection and manufacturing. It will enhance the understanding of the structure of materials, and how the structure affects the behavior of the material, and the role that processing play in linking the relationship between structure and properties. A systematic approach to design feasibility study, cost analysis and problem solving will also be discussed.
Moloughney, Brent W; Bursey, Gayle E; Neumann, Jana; Leeming, Daniel H; Gutmann, Christine E; Sivanand, Bhavna; Mowat, David L
2014-09-12
This project involved development of a Health Background Study (HBS) Framework to support consideration of health impacts within municipalities' approval process for land use development. Peel Public Health and Toronto Public Health led the project with the participation of planners, urban designers, engineers, public health staff and development industry representatives. Historical growth in the Region of Peel and suburban Toronto has resulted in extensive low-density development, creating car-dependent communities with disconnected streets and segregated land uses. The inclusion of an HBS in developers' applications to municipalities is one approach by which health-related expectations for the built environment can be established within the approval process. Development of the HBS Framework used the six core elements of the built environment with the strongest evidence for impact on health and was informed by analysis of the provincial and local policy contexts, practices of other municipalities and stakeholder interviews. The Framework's contents were refined according to feedback from multidisciplinary stakeholder workshops. The HBS Framework identifies minimum standards for built environment core elements that developers need to address in their applications. The Framework was created to be simple and instructive with applicability to a range of development locations and scales, and to various stages of the development approval process. Peel Public Health is leading several initiatives to support the use of the HBS as a part of the development application process. The HBS Framework is a tool that public health and planning can use to support the consideration of health impacts within municipalities' land use development processes.
System Safety and the Unintended Consequence
NASA Technical Reports Server (NTRS)
Watson, Clifford
2012-01-01
The analysis and identification of risks often result in design changes or modification of operational steps. This paper identifies the potential of unintended consequences as an over-looked result of these changes. Examples of societal changes such as prohibition, regulatory changes including mandating lifeboats on passenger ships, and engineering proposals or design changes to automobiles and spaceflight hardware are used to demonstrate that the System Safety Engineer must be cognizant of the potential for unintended consequences as a result of an analysis. Conclusions of the report indicate the need for additional foresight and consideration of the potential effects of analysis-driven design, processing changes, and/or operational modifications.
Cognitive considerations for helmet-mounted display design
NASA Astrophysics Data System (ADS)
Francis, Gregory; Rash, Clarence E.
2010-04-01
Helmet-mounted displays (HMDs) are designed as a tool to increase performance. To achieve this, there must be an accurate transfer of information from the HMD to the user. Ideally, an HMD would be designed to accommodate the abilities and limitations of users' cognitive processes. It is not enough for the information (whether visual, auditory, or tactual) to be displayed; the information must be perceived, attended, remembered, and organized in a way that guides appropriate decision-making, judgment, and action. Following a general overview, specific subtopics of cognition, including perception, attention, memory, knowledge, decision-making, and problem solving are explored within the context of HMDs.
NGDS User Centered Design Meeting the Needs of the Geothermal Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam; Patten, Kim
2013-10-15
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
Macroergonomic aspects in the design of development programs in IDCs.
Coelho, Denis A; Ferrara, Patricia R; Couvinhas, Ana F; Lima, Tânia M; Walter, Jake K
2012-01-01
This paper revisits three reports on ergonomic aspects of development initiatives taking place in Industrially Developing Countries (IDCs). These include a macro-ergonomics intervention in a habitation community in Cape Verde (aimed at designing solutions contributing to sustainable development), the evolution of poultry growers' control strategies as an integrative broiler operation is introduced in Mozambique, and a set of macro-ergonomic considerations related to the Agro Forestry Village Project in Mozambique. The paper seeks to set the reviewed development endeavors against the backdrop of the goals of ergonomics interventions. This reflection may inform development agents in future processes of design and implementation of integrated community and work systems transformation.
NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim
In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.
Optimizing RF gun cavity geometry within an automated injector design system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alicia Hofler ,Pavel Evtushenko
2011-03-28
RF guns play an integral role in the success of several light sources around the world, and properly designed and optimized cw superconducting RF (SRF) guns can provide a path to higher average brightness. As the need for these guns grows, it is important to have automated optimization software tools that vary the geometry of the gun cavity as part of the injector design process. This will allow designers to improve existing designs for present installations, extend the utility of these guns to other applications, and develop new designs. An evolutionary algorithm (EA) based system can provide this capability becausemore » EAs can search in parallel a large parameter space (often non-linear) and in a relatively short time identify promising regions of the space for more careful consideration. The injector designer can then evaluate more cavity design parameters during the injector optimization process against the beam performance requirements of the injector. This paper will describe an extension to the APISA software that allows the cavity geometry to be modified as part of the injector optimization and provide examples of its application to existing RF and SRF gun designs.« less
Devonshire, Elizabeth; Henderson, Sarah E
2012-05-01
1. Health professionals need access to flexible, high-quality, advanced education in pain management. 2. There are multiple pedagogical distances to be negotiated in the delivery of effective postgraduate education. 3. A critical consideration in the design and delivery of effective online learning for postgraduate education in pain management is how to: actively engage students in the learning process; and encourage students to become lifelong learners. 4. Conceptual frameworks for encouraging student interaction online provide a useful tool in the design of postgraduate online learning activities.
Topics in LIFE Target Survival: 11-SI-004 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Robin; Benett, Bill; Bond, Tiziana
The LIFE target design incorporates many considerations to generate the desired fusion gain including the physics design, the cost of manufacturing of the target, the injectability of the target, the aerodynamic flight characteristics of the target, the ability to track and engage the target and to maintain the structural and thermal integrity of the target. This document describes the effort that was made in support of issues of survivability of the target during injection which included issues massmanufactural materials and processes which could be used in the target.
NASA Technical Reports Server (NTRS)
Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien
2015-01-01
A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.
Toxics and combustibles: Designing gas-detection systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, L.P.; Pryor, D.A.
1998-07-01
When a plant decides to install a gas-detection system, several questions come to mind: How many detectors are needed and where should they go? Simple questions--but unfortunately ones without a simple answer. However, there are some general considerations that plant personnel can use to rough out a gas-monitoring installation. Any evaluation process should include the following five steps. Each is discussed: (1) Understand the application; (2) Identify potential danger points; (3) Establish design goals; (4) Determine gas characteristics; and (5) Profile the plant and potential release scenarios.
Structural dynamics technology research in NASA: Perspective on future needs
NASA Technical Reports Server (NTRS)
1979-01-01
The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.
NASA Technical Reports Server (NTRS)
Goochee, Charles F.
1987-01-01
The purpose is to review some of the physical/metabolic factors which must be considered in the development of an operating strategy for a mammalian cell bioreactor. Emphasis is placed on the dissolved oxygen and carbon dioxide requirements of growing mammalian epithelial cells. Literature reviews concerning oxygen and carbon dioxide requirements are discussed. A preliminary, dynamic model which encompasses the current features of the NASA bioreactor is presented. The implications of the literature survey and modeling effort on the design and operation of the NASA bioreactor are discussed.
Laser ignition application in a space experiment
NASA Technical Reports Server (NTRS)
Liou, Larry C.; Culley, Dennis E.
1993-01-01
A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.
Design of a Blended Learning Environment: Considerations and Implementation Issues
ERIC Educational Resources Information Center
Gedik, Nuray; Kiraz, Ercan; Ozden, M. Yasar
2013-01-01
This study identified critical issues in the design of a blended learning environment by examining basic design considerations and implementation issues. Following a design-based research approach with the phenomenological tradition of qualitative research, the study investigated instructor experiences relating to the design, development, and…
Augmenting endogenous repair of soft tissues with nanofibre scaffolds
Snelling, Sarah; Dakin, Stephanie; Carr, Andrew
2018-01-01
As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials. PMID:29695606
Evaluating the Process of Generating a Clinical Trial Protocol
Franciosi, Lui G.; Butterfield, Noam N.; MacLeod, Bernard A.
2002-01-01
The research protocol is the principal document in the conduct of a clinical trial. Its generation requires knowledge about the research problem, the potential experimental confounders, and the relevant Good Clinical Practices for conducting the trial. However, such information is not always available to authors during the writing process. A checklist of over 80 items has been developed to better understand the considerations made by authors in generating a protocol. It is based on the most cited requirements for designing and implementing the randomised controlled trial. Items are categorised according to the trial's research question, experimental design, statistics, ethics, and standard operating procedures. This quality assessment tool evaluates the extent that a generated protocol deviates from the best-planned clinical trial.
A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.
Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang
2017-11-01
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-01
Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less
Manetti, Fabrizio
2018-06-08
LIM kinases are involved in various pathophysiological processes that depend on actin organization. Alteration of microtubule dynamics by LIMK dysregulation is in fact related to tumor progression and metastasis, viral infection, and ocular diseases, such as glaucoma. As a consequence, many efforts have been done in recent years to rationally design small molecules able to inhibit LIMK activity selectively, without affecting other kinases. As a result, compounds optimized in terms of binding affinity and pharmacokinetic parameters have been discovered, that however failed to access clinical trials. In this review, a comprehensive survey of recent LIMK inhibitors is reported, together with SAR considerations and optimization processes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Design considerations for composite fuselage structure of commercial transport aircraft
NASA Technical Reports Server (NTRS)
Davis, G. W.; Sakata, I. F.
1981-01-01
The structural, manufacturing, and service and environmental considerations that could impact the design of composite fuselage structure for commercial transport aircraft application were explored. The severity of these considerations was assessed and the principal design drivers delineated. Technical issues and potential problem areas which must be resolved before sufficient confidence is established to commit to composite materials were defined. The key issues considered are: definition of composite fuselage design specifications, damage tolerance, and crashworthiness.
NASA Astrophysics Data System (ADS)
Saffar, Seha; Azni Jafar, Fairul; Jamaludin, Zamberi
2016-02-01
A case study was selected as a method to collect data in actual industry situation. The study aimed to assess the influences of automated material handling system in automotive industry by proposing a new design of integration system through simulation, and analyze the significant effect and influence of the system. The method approach tool will be CAD Software (Delmia & Quest). The process of preliminary data gathering in phase 1 will collect all data related from actual industry situation. It is expected to produce a guideline and limitation in designing a new integration system later. In phase 2, an idea or concept of design will be done by using 10 principles of design consideration for manufacturing. A full factorial design will be used as design of experiment in order to analyze the performance measured of the integration system with the current system in case study. From the result of the experiment, an ANOVA analysis will be done to study the performance measured. Thus, it is expected that influences can be seen from the improvement made in the system.
Mortimer, Duncan; Li, Jing Jing; Watts, Jennifer; Harris, Anthony
2011-10-01
Funding contingent upon evidence development (FED) has recently been the subject of some considerable debate in the literature but relatively little has been made of its economic impact. We argue that FED has the potential to shorten the lag between innovation and access but may also (i) crowd-out more valuable interventions in situations in which there is a fixed dedicated budget; or (ii) lead to a de facto increase in the funding threshold and increased expenditure growth in situations in which the programme budget is open-ended. Although FED would typically entail periodic review of provisional or interim listings, it may prove difficult to withdraw funding even at cost/QALY ratios well in excess of current listing thresholds. Further consideration of the design and implementation of FED processes is therefore required to ensure that its introduction yields net benefits over existing processes.
Structural Design Considerations for an 8-m Space Telescope
NASA Technical Reports Server (NTRS)
Arnold, William R. Sr.; Stahl, H. Philip
2009-01-01
NASA's upcoming ARES V launch vehicle, with its' immerse payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.
Structural design considerations for an 8-m space telescope
NASA Astrophysics Data System (ADS)
Arnold, William r., Sr.; Stahl, H. Philip
2009-08-01
NASA's upcoming ARES V launch vehicle, with its' immense payload capacities (both volume and mass) has opened the possibilities for a whole new paradigm of space observatories. It becomes practical to consider a monolith mirror of sufficient size to permit significant scientific advantages, both in collection area and smoothness or figure at a reasonable price. The technologies and engineering to manufacture and test 8 meter class monoliths is mature, with nearly a dozen of such mirrors already in operation around the world. This paper will discuss the design requirements to adapt an 8m meniscus mirror into a Space Telescope System, both launch and operational considerations are included. With objects this massive and structurally sensitive, the mirror design must include all stages of the process. Based upon the experiences of the Hubble Space Telescope, testing and verification at both component and integrated system levels are considered vital to mission success. To this end, two different component level test methods for gravity sag (the so call zero- gravity simulation or test mount) are proposed, with one of these methods suitable for the full up system level testing as well.
Human factors of intelligent computer aided display design
NASA Technical Reports Server (NTRS)
Hunt, R. M.
1985-01-01
Design concepts for a decision support system being studied at NASA Langley as an aid to visual display unit (VDU) designers are described. Ideally, human factors should be taken into account by VDU designers. In reality, although the human factors database on VDUs is small, such systems must be constantly developed. Human factors are therefore a secondary consideration. An expert system will thus serve mainly in an advisory capacity. Functions can include facilitating the design process by shortening the time to generate and alter drawings, enhancing the capability of breaking design requirements down into simpler functions, and providing visual displays equivalent to the final product. The VDU system could also discriminate, and display the difference, between designer decisions and machine inferences. The system could also aid in analyzing the effects of designer choices on future options and in ennunciating when there are data available on a design selections.
Aspects of the BPRIM Language for Risk Driven Process Engineering
NASA Astrophysics Data System (ADS)
Sienou, Amadou; Lamine, Elyes; Pingaud, Hervé; Karduck, Achim
Nowadays organizations are exposed to frequent changes in business environment requiring continuous alignment of business processes on business strategies. This agility requires methods promoted in enterprise engineering approaches. Risk consideration in enterprise engineering is getting important since the business environment is becoming more and more competitive and unpredictable. Business processes are subject to the same quality requirements as material and human resources. Thus, process management is supposed to tackle value creation challenges but also the ones related to value preservation. Our research considers risk driven business process design as an integral part of enterprise engineering. A graphical modelling language for risk driven business process engineering was introduced in former research. This paper extends the language and handles questions related to modelling risk in organisational context.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle; Nielsen, Hanne Mørck; Rantanen, Jukka; Foged, Camilla
2013-11-01
The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB). A quality by design (QbD) approach was applied to identify and link critical process parameters (CPPs) of the spray drying process to critical quality attributes (CQAs) using risk assessment and design of experiments (DoE), followed by identification of an optimal operating space (OOS). A central composite face-centered design was carried out followed by multiple linear regression analysis. Four CQAs were identified; the mass median aerodynamic diameter (MMAD), the liposome stability (size) during processing, the moisture content and the yield. Five CPPs (drying airflow, feed flow rate, feedstock concentration, atomizing airflow and outlet temperature) were identified and tested in a systematic way. The MMAD and the yield were successfully modeled. For the liposome size stability, the ratio between the size after and before spray drying was modeled successfully. The model for the residual moisture content was poor, although, the moisture content was below 3% in the entire design space. Finally, the OOS was drafted from the constructed models for the spray drying of trehalose stabilized DDA/TDB liposomes. The QbD approach for the spray drying process should include a careful consideration of the quality target product profile. This approach implementing risk assessment and DoE was successfully applied to optimize the spray drying of an inhalable DDA/TDB liposomal adjuvant designed for pulmonary vaccination.
NASA Astrophysics Data System (ADS)
Drexler, Wendy
This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.
Barrett, Jeffrey S; Jayaraman, Bhuvana; Patel, Dimple; Skolnik, Jeffrey M
2008-06-01
Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.
The trajectories of Prevention through Design in construction.
Toole, T Michael; Gambatese, John
2008-01-01
Construction Hazards Prevention through Design (CHPtD) is a process in which engineers and architects explicitly consider the safety of construction workers during the design process. Although articles on CHPtD have appeared in top construction journals, the literature has not addressed technical principles underlying CHPtD to help designers better perform CHPtD, to facilitate the development of additional CHPtD tools, and to predict the future path of CHPtD. This theoretical paper uses the existing literature on CHPtD and current action research associated with several CHPtD workgroups to analyze how CHPtD will likely evolve over the coming decades. There are four trajectories along which CHPtD will progress. (a) Designs will increasingly facilitate prefabricated construction; (b) designers will increasingly choose materials and systems that are inherently safer than alternatives; (c) designers will increasingly perform construction engineering; and (d) designers will increasingly apply spatial considerations to reduce worker hazards. By understanding how CHPtD may be manifested in the engineering-procurement-construction (EPC) industry, practitioners can better prepare for adopting CHPtD within their organizations and construction and engineering educators can better prepare their graduates to perform CHPtD.
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
The development of more usable and effective healthcare information systems has become a critical issue. In the software industry methodologies such as agile and iterative development processes have emerged to lead to more effective and usable systems. These approaches highlight focusing on user needs and promoting iterative and flexible development practices. Evaluation and testing of iterative agile development cycles is considered an important part of the agile methodology and iterative processes for system design and re-design. However, the issue of how to effectively integrate usability testing methods into rapid and flexible agile design cycles has remained to be fully explored. In this paper we describe our application of an approach known as low-cost rapid usability testing as it has been applied within agile system development in healthcare. The advantages of the integrative approach are described, along with current methodological considerations.
Status of the secondary mirrors (M2) for the Gemini 8-m telescopes
NASA Astrophysics Data System (ADS)
Knohl, Ernst-Dieter; Schoeppach, Armin; Pickering, Michael A.
1998-08-01
The 1-m diameter lightweight secondary mirrors (M2) for the Gemini 8-m telescopes will be the largest CVD-SiC mirrors ever produced. The design and manufacture of these mirrors is a very challenging task. In this paper we will discuss the mirror design, structural and mechanical analysis, and the CVD manufacturing process used to produce the mirror blanks. The lightweight design consist of a thin faceplate (4-mm) and triangular backstructure cells with ribs of varying heights. The main drivers in the design were weight (40 kg) and manufacturing limitations imposed on the backstructure cells and mirror mounts. Finite element modeling predicts that the mirror design will meet all of the Gemini M2 requirements for weight, mechanical integrity, resonances, and optical performance. Special design considerations were necessary to avoid stress concentration in the mounting areas and to meet the requirement that the mirror survive an 8-g earthquake. The highest risk step in the mirror blank manufacturing process is the near-net-shape CVD deposition of the thin, curved faceplate. Special tooling and procedures had to be developed to produce faceplates free of fractures, cracks, and stress during the cool-down from deposition temperature (1350 C) to room temperature. Due to time delay with the CVD manufacturing process in the meantime a backup solution from Zerodur has been started. This mirror is now in the advanced polishing process. Because the design of both mirrors is very similar an excellent comparison of both solutions is possible.
Test plan : I-40 TTIS focus groups and personal interview
DOT National Transportation Integrated Search
1976-04-01
This provides specific design recommendations, design considerations, and construction techniques for the construction of lateral support systems and underpinning. The design considerations are presented for each technique or method (solider piles, s...
Initial planetary base construction techniques and machine implementation
NASA Technical Reports Server (NTRS)
Crockford, William W.
1987-01-01
Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.
The Gold Rush: A simulated commercial air transportation study
NASA Technical Reports Server (NTRS)
Clarke, Amanda; Degiorgio, Chris; Galka, Edmund; Stumm, Albert; Valenta, Lisa; Winter, Tom
1993-01-01
The remotely piloted vehicle (RPV) GoldRush was designed to complete the mission of transporting passengers in AeroWorld at a lower cost per seat per thousand feet (CPSPK) than the competition, the HB-40. There were two major factors which were constant considerations in the design process. The cost of manufacturing was the most important. In light of this, the designs were kept as simple as possible while considering trade-offs in performance. For example, the wing was not tapered so that several ribs could be cut at one time. Also of major importance was the takeoff distance. In order to serve all the cities in AeroWorld it was necessary to maintain a takeoff distance requirement of 24 feet. The takeoff distance proved to be the number one force in driving the design process. The Astro 25 engine and 13 inch propellor, a large wing area, and the high lift Wortmann airfoil were all chosen in order to satisfy this objective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaffner, Michael
2014-06-01
The current downward trend in funding for U.S. defense systems seems to be on a collision course with the state of the practice in systems engineering, which typically results in the increased pace and scale of capabilities and resultantly increased cost of complex national defense systems. Recent advances in the state of the art in systems engineering methodology can be leveraged to address this growing challenge. The present work leverages advanced constructs and methods for early-phase conceptual design of complex systems, when committed costs are still low and management influence is still high. First, a literature review is presented ofmore » the topics relevant to this work, including approaches to the design of affordable systems, assumptions and methods of exploratory modeling, and enabling techniques to help mitigate the computational challenges involved. The types, purposes, and limits of early-phase, exploratory models are then elucidated. The RSC-based Method for Affordable Concept Selection (RMACS) is described, which comprises nine processes in the three main thrusts of information gathering, evaluation, and analysis. The method is then applied to a naval ship case example, described as the Next-Generation Combat Ship, with representational information outputs and discussions of affordability with respect to each process. The ninth process, Multi-Era Analysis (MERA), is introduced and explicated, including required and optional informational components, temporal and change-related considerations, required and optional activities involved, and the potential types of outputs from the process. The MERA process is then applied to a naval ship case example similar to that of the RMACS application, but with discrete change options added to enable a tradespace network. The seven activities of the MERA process are demonstrated, with the salient outputs of each given and discussed. Additional thoughts are presented on MERA and RMACS, and 8 distinct areas are identified for further research in the MERA process, along with a brief description of the directions that such research might take. It is concluded that the affordability of complex systems can be better enabled through a conceptual design method that incorporates MERA as well as metrics such as Multi-Attribute Expense, Max Expense, and Expense Stability. It is also found that affordability of changeable systems can be better enabled through the use of existing path-planning algorithms in efficient evaluation and analysis of long-term strategies. Finally, it is found that MERA enables the identification and analysis of path-dependent considerations related to designs, epochs, strategies, and change options, in many possible futures.« less
Consumer preferences and values as an integral key to evidence-based practice.
Melnyk, Bernadette Mazurek; Fineout-Overholt, Ellen
2006-01-01
Although evidence-based practice (EBP) integrates the best evidence from well-designed studies with a clinician's expertise and patient preferences and values, most of what is emphasized in books and reports on EBP is the 5-step EBP process. However, the consideration of patient values and preferences in making clinical decisions is essential to deliver the highest quality of care. This article briefly reviews the status of EBP in the United States, described the ARCC mentorship model, and highlights how to engage consumers in the EBP process.
Operational aspects of satellite data collection systems
NASA Technical Reports Server (NTRS)
Morakis, J. C.
1979-01-01
Operational aspects of satellite data collection systems (DCS) are discussed with consideration given to a cooperative program between the United States and France. The Tiros-N DCS is described which is a random access system providing operational capability for position location and/or data collection of 4000 to 16,000 moving and/or fixed platforms. The platform transmissions and processing of the data is designed to conform with the user needs. The position location is obtained through ground processing of Doppler measurements made by the data collection instrument on board the spacecraft.
Product modular design incorporating preventive maintenance issues
NASA Astrophysics Data System (ADS)
Gao, Yicong; Feng, Yixiong; Tan, Jianrong
2016-03-01
Traditional modular design methods lead to product maintenance problems, because the module form of a system is created according to either the function requirements or the manufacturing considerations. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the maintenance related ones. First, modularity parameters and modularity scenarios for product modularity are defined. Then the reliability and economic assessment models of product modularity strategies are formulated with the introduction of the effective working age of modules. A mathematical model used to evaluate the difference among the modules of the product so that the optimal module of the product can be established. After that, a multi-objective optimization problem based on metrics for preventive maintenance interval different degrees and preventive maintenance economics is formulated for modular optimization. Multi-objective GA is utilized to rapidly approximate the Pareto set of optimal modularity strategy trade-offs between preventive maintenance cost and preventive maintenance interval difference degree. Finally, a coordinate CNC boring machine is adopted to depict the process of product modularity. In addition, two factorial design experiments based on the modularity parameters are constructed and analyzed. These experiments investigate the impacts of these parameters on the optimal modularity strategies and the structure of module. The research proposes a new modular design method, which may help to improve the maintainability of product in modular design.
Airport Planning and Design - Legal and Professional Competence Requirements
NASA Astrophysics Data System (ADS)
Kazda, Antonin
2017-12-01
Airport design and planning considerably differs from the design of other transport infrastructure. The reasons are the wide scope of regulation in civil aviation and the lack of links between the Civil Aviation Act and the Building Act. The effect is that the sequence of procedures, negotiation, and/or document approval is not clearly defined. The situation is further complicated by the fact that an airport is a unique construction both for the investor and for the local building authority. The paper is an outcome of our research, building on long-term experience in airport planning and design, and the elucidation of planning and approval processes with experts from the Transport Authority and the Ministry of Transport and Construction of the Slovak Republic.
Catarci, Tiziana; De Giovanni, Loredana; Gabrielli, Silvia; Kimani, Stephen; Mirabella, Valeria
2008-08-01
There exist various guidelines for facilitating the design, preparation, and deployment of accessible eLearning applications and contents. However, such guidelines prevalently address accessibility in a rather technical sense, without giving sufficient consideration to the cognitive aspects and issues related to the use of eLearning materials by learners with disabilities. In this paper we describe how a user-centered design process was applied to develop a method and set of guidelines for didactical experts to scaffold their creation of accessible eLearning content, based on a more sound approach to accessibility. The paper also discusses possible design solutions for tools supporting eLearning content authors in the adoption and application of the proposed approach.
NASA Technical Reports Server (NTRS)
Noll, Thomas E.
1990-01-01
The paper describes recent accomplishments and current research projects along four main thrusts in aeroservoelasticity at NASA Langley. One activity focuses on enhancing the modeling and analysis procedures to accurately predict aeroservoelastic interactions. Improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise low-order models for design and simulation tasks. Recent extensions in aerodynamic correction-factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to matched filter theory and random process theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. Two research projects leading towards improved design capability are also summarized: (1) an integrated structure/control design capability and (2) procedures for obtaining low-order robust digital control laws for aeroelastic applications.
Advanced Structural Optimization Under Consideration of Cost Tracking
NASA Astrophysics Data System (ADS)
Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.
2014-06-01
In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.
Ethical Design of Intelligent Assistive Technologies for Dementia: A Descriptive Review.
Ienca, Marcello; Wangmo, Tenzin; Jotterand, Fabrice; Kressig, Reto W; Elger, Bernice
2017-09-22
The use of Intelligent Assistive Technology (IAT) in dementia care opens the prospects of reducing the global burden of dementia and enabling novel opportunities to improve the lives of dementia patients. However, with current adoption rates being reportedly low, the potential of IATs might remain under-expressed as long as the reasons for suboptimal adoption remain unaddressed. Among these, ethical and social considerations are critical. This article reviews the spectrum of IATs for dementia and investigates the prevalence of ethical considerations in the design of current IATs. Our screening shows that a significant portion of current IATs is designed in the absence of explicit ethical considerations. These results suggest that the lack of ethical consideration might be a codeterminant of current structural limitations in the translation of IATs from designing labs to bedside. Based on these data, we call for a coordinated effort to proactively incorporate ethical considerations early in the design and development of new products.
1980-01-01
verre ainsi que des fibres synthftiques. Les cinq sections, preparation de la pate, table de fabrication, presse, s~cherie et enrouleuse sont dcrites...installation, DREO had been concerned with two types of paper and the machine was designed specifically to process these particular papers and at the same...time to offer considerable versatility for the possible preparation of other papers. The two types were detector papers for liquid chemical warfare
Track Score Processing of Multiple Dissimilar Sensors
2007-06-01
sensors ( infrared and light detection and ranging system) and one radio frenquency sensor (radar). The signal to noise ratio and design considerations...categorized as Johnson noise , shot noise , generation-recombination noise , temperature noise , microphonic noise , 1/f noise , and finally electronic...of 2.1 µm. The values of detectivity in this figure were derived from an analysis of commercial detectors , under background- limited conditions, at
New Approaches in Usable Booster System Life Cycle Cost Modeling
2012-01-01
the more visible technology products . Organizational considerations, processes/practices, and indirect costs are traditionally derived (“wrapped...only by relationship to tangible product characteristics. This traditional approach works well as long as it is understood that no significant changes...from the traditional product or “what” centered view into “how”. This early exploratory work showed how (1) design/technology, (2) reliability and (3
Coding Theory Information Theory and Radar
2005-01-01
the design and synthesis of artificial multiagent systems and for the understanding of human decision-making processes. This... altruism that may exist in a complex society. SGT derives its ability to account simultaneously for both group and individual interests from the structure of ...satisficing decision theory as a model of human decision mak- ing. 2 Multi-Attribute Decision Making Many decision problems involve the consideration of
1993-05-01
processes [48] ................ 91 Figure 4.14 Energy effectiveness comparison between EBW, GMAW , and PAW [48...1 10 Figure 5.2 The spectrum of control modes [76] ................. 112 Figure 5.3 Levels of control for GMAW [26...vehicular activity FTS Flight Telerobotic Servicer GMAW Gas metal arc welding GTAW Gas tungsten arc welding LEO Low-earth orbit NDT Non-destructive test
Long-range eye tracking: A feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayaweera, S.K.; Lu, Shin-yee
1994-08-24
The design considerations for a long-range Purkinje effects based video tracking system using current technology is presented. Past work, current experiments, and future directions are thoroughly discussed, with an emphasis on digital signal processing techniques and obstacles. It has been determined that while a robust, efficient, long-range, and non-invasive eye tracking system will be difficult to develop, such as a project is indeed feasible.
ERIC Educational Resources Information Center
Robertson, Michelle M.
1992-01-01
Discusses ergonomic design considerations for library media centers. Specific design variables, including temperature and humidity, noise, illumination, color, and windows are discussed; and computer workstation design requirements are presented that address furniture and keyboard design, monitor and display features, software issues, and…
Design Considerations for Post-Acute Care mHealth: Patient Perspectives.
Sanger, Patrick; Hartzler, Andrea; Lober, William B; Evans, Heather L; Pratt, Wanda
2014-01-01
Many current mobile health applications ("apps") and most previous research have been directed at management of chronic illnesses. However, little is known about patient preferences and design considerations for apps intended to help in a post-acute setting. Our team is developing an mHealth platform to engage patients in wound tracking to identify and manage surgical site infections (SSI) after hospital discharge. Post-discharge SSIs are a major source of morbidity and expense, and occur at a critical care transition when patients are physically and emotionally stressed. Through interviews with surgical patients who experienced SSI, we derived design considerations for such a post-acute care app. Key design qualities include: meeting basic accessibility, usability and security needs; encouraging patient-centeredness; facilitating better, more predictable communication; and supporting personalized management by providers. We illustrate our application of these guiding design considerations and propose a new framework for mHealth design based on illness duration and intensity.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.