Sample records for process energy required

  1. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  2. Impact of Alternative Processes for Aluminum Production on Energy Requirements

    NASA Astrophysics Data System (ADS)

    Grjotheim, Kai; Welch, Barry

    1981-09-01

    Increasing prices and the shortage of large blocks of electrical energy have given greater impetus to the search for viable alternative processes for aluminum production. These include electrolysis of aluminum chloride, sulfide, and nitride; carbothermal reduction of either the ore or alumina; and disproportioning reactions of either aluminum sulfide or the monochloride route. Common to all these processes are the starting material—an ore containing aluminum oxide—and the final product—the metal. Thus, the thermodynamic cycle will invariably dictate similar theoretical energy requirements for the three processes. In practice, however, the achievable efficiencies and, more noticeably, the proportion of electrical to carbothermal energy required for the various stages of operation can vary. The present status of these alternative processes indicates that while alternative routes, such as the Alcoa-AlCl3-Smelting Process, show distinct potential for reducing electrical energy requirements, they offer little chance of reducing overall energy requirements. Furthermore, because of more stringent purity requirements, any gains made may be at the expense of production costs.

  3. Assessment of atmospheric moisture harvesting by direct cooling

    NASA Astrophysics Data System (ADS)

    Gido, Ben; Friedler, Eran; Broday, David M.

    2016-12-01

    The enormous amount of water vapor present in the atmosphere may serve as a potential water resource. An index is proposed for assessing the feasibility and energy requirements of atmospheric moisture harvesting by a direct cooling process. A climate-based analysis of different locations reveals the global potential of this process. We demonstrate that the Moisture Harvesting Index (MHI) can be used for assessing the energy requirements of atmospheric moisture harvesting. The efficiency of atmospheric moisture harvesting is highly weather and climate dependent, with the smallest estimated energy requirement found at the tropical regions of the Philippines (0.23 kW/L). Less favorable locations have much higher energy demands for the operation of an atmospheric moisture harvesting device. In such locations, using the MHI to select the optimal operation time periods (during the day and the year) can reduce the specific energy requirements of the process dramatically. Still, using current technology the energy requirement of atmospheric moisture harvesting by a direct air cooling process is significantly higher than of desalination by reverse osmosis.

  4. On the energy budget in the current disruption region. [of geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1993-01-01

    This study investigates the energy budget in the current disruption region of the magnetotail, coincident with a pre-onset thin current sheet, around substorm onset time using published observational data and theoretical estimates. We find that the current disruption/dipolarization process typically requires energy inflow into the primary disruption region. The disruption dipolarization process is therefore endoenergetic, i.e., requires energy input to operate. Therefore we argue that some other simultaneously operating process, possibly a large scale magnetotail instability, is required to provide the necessary energy input into the current disruption region.

  5. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    PubMed

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  6. Development of an estimation model for the evaluation of the energy requirement of dilute acid pretreatments of biomass.

    PubMed

    Mafe, Oluwakemi A T; Davies, Scott M; Hancock, John; Du, Chenyu

    2015-01-01

    This study aims to develop a mathematical model to evaluate the energy required by pretreatment processes used in the production of second generation ethanol. A dilute acid pretreatment process reported by National Renewable Energy Laboratory (NREL) was selected as an example for the model's development. The energy demand of the pretreatment process was evaluated by considering the change of internal energy of the substances, the reaction energy, the heat lost and the work done to/by the system based on a number of simplifying assumptions. Sensitivity analyses were performed on the solid loading rate, temperature, acid concentration and water evaporation rate. The results from the sensitivity analyses established that the solids loading rate had the most significant impact on the energy demand. The model was then verified with data from the NREL benchmark process. Application of this model on other dilute acid pretreatment processes reported in the literature illustrated that although similar sugar yields were reported by several studies, the energy required by the different pretreatments varied significantly.

  7. Isothermal separation processes

    NASA Technical Reports Server (NTRS)

    England, C.

    1982-01-01

    The isothermal processes of membrane separation, supercritical extraction and chromatography were examined using availability analysis. The general approach was to derive equations that identified where energy is consumed in these processes and how they compare with conventional separation methods. These separation methods are characterized by pure work inputs, chiefly in the form of a pressure drop which supplies the required energy. Equations were derived for the energy requirement in terms of regular solution theory. This approach is believed to accurately predict the work of separation in terms of the heat of solution and the entropy of mixing. It can form the basis of a convenient calculation method for optimizing membrane and solvent properties for particular applications. Calculations were made on the energy requirements for a membrane process separating air into its components.

  8. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of freshwater along with the waste heat released from the condenser of air-conditioning system. This additional energy requirement is about 60% of the energy required by a multi stage flash distillation process. The experimental studies were conducted in three phases. In the first phase, electric power from grid as energy source was used to demonstrate the feasibility of the proposed process. These tests showed that freshwater production rate of 0.25 kg/hr can be sustained at evaporation temperatures as low as 40°C with specific energy input of 3,370 kJ/kg, at efficiencies ranging from 65 to 70% during the winter. In the second phase, experiments were conducted utilizing direct solar thermal energy and photovoltaic energy as well. Four different combinations of energy sources were studied. The following results were obtained from these experimental studies: (1) Utilizing direct solar energy produced 4.9 L/d of freshwater with an evaporator area of 1 m2 with an average efficiency of 61%. This yield is two times that can be obtained from a flat solar still. The specific energy requirement for this configuration is 4157 kJ for production of 1 kilogram freshwater; (2) Utilizing direct solar energy with aid of a reflector produced 7.5 L/d of freshwater with an average efficiency more than 80%. The specific energy requirement for this configuration is 3118 kJ for production of 1 kilogram freshwater; (3) Utilizing direct solar energy during sunlight hours and photovoltaic energy during non-sunlight hours produced 12 L/d of freshwater with 1 m2 evaporator area and 6 m2 photovoltaic areas respectively. The specific energy requirement for this configuration is 2926 kJ for production of 1 kilogram freshwater. Finally, the feasibility of this process in reclaiming potable-quality water from the effluent of a domestic wastewater treatment plant was studied. The process was able to achieve the following reductions: total dissolved solids from 727 mg/L to 21 mg/L (97%); nitrates from 2.4 mg/L to <0.1 mg/L (> 95%); ammonia from 23.2 mg/L to < 0.5 mg/L (> 97%); and coliform from 77 to <0 mg/L (100%).

  9. Process Performance of Optima XEx Single Wafer High Energy Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.

    2011-01-07

    To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstreammore » dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.« less

  10. 40 CFR 125.3 - Technology-based treatment requirements in permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...

  11. 40 CFR 125.3 - Technology-based treatment requirements in permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...

  12. 40 CFR 125.3 - Technology-based treatment requirements in permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...

  13. 40 CFR 125.3 - Technology-based treatment requirements in permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... techniques; (v) Process changes; and (vi) Non-water quality environmental impact (including energy...-water quality environmental impact (including energy requirements). (3) For BAT requirements: (i) The... achieving such effluent reduction; and (vi) Non-water quality environmental impact (including energy...

  14. 10 CFR 905.37 - Process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Process. 905.37 Section 905.37 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative § 905.37 Process. Modified contractual language shall be required to place resource extensions under contract. Resource extensions and allocations...

  15. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE PAGES

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David; ...

    2016-10-13

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  16. Evaluating the energy performance of a hybrid membrane-solvent process for flue gas carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Li, Zhiwei; Hopkinson, David

    In this study, a particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure noncondensable gas is used to strip CO 2 off the rich solvent stream. The gas pressurized stripping column product, having CO 2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturingmore » CO 2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam stripping process. We also found the amount of membrane required in this process is much less than required for direct CO 2 capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO 2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration.« less

  17. Solution-Processed Cu2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance.

    PubMed

    Forster, Jason D; Lynch, Jared J; Coates, Nelson E; Liu, Jun; Jang, Hyejin; Zaia, Edmond; Gordon, Madeleine P; Szybowski, Maxime; Sahu, Ayaskanta; Cahill, David G; Urban, Jeffrey J

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of a fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.

  18. Minimization of energy and surface roughness of the products machined by milling

    NASA Astrophysics Data System (ADS)

    Belloufi, A.; Abdelkrim, M.; Bouakba, M.; Rezgui, I.

    2017-08-01

    Metal cutting represents a large portion in the manufacturing industries, which makes this process the largest consumer of energy. Energy consumption is an indirect source of carbon footprint, we know that CO2 emissions come from the production of energy. Therefore high energy consumption requires a large production, which leads to high cost and a large amount of CO2 emissions. At this day, a lot of researches done on the Metal cutting, but the environmental problems of the processes are rarely discussed. The right selection of cutting parameters is an effective method to reduce energy consumption because of the direct relationship between energy consumption and cutting parameters in machining processes. Therefore, one of the objectives of this research is to propose an optimization strategy suitable for machining processes (milling) to achieve the optimum cutting conditions based on the criterion of the energy consumed during the milling. In this paper the problem of energy consumed in milling is solved by an optimization method chosen. The optimization is done according to the different requirements in the process of roughing and finishing under various technological constraints.

  19. 10 CFR 51.26 - Requirement to publish notice of intent and conduct scoping process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Requirement to publish notice of intent and conduct scoping process. 51.26 Section 51.26 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy...

  20. Energy Implications of Materials Processing

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1976-01-01

    Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…

  1. Energy valuation methods for biofuels in South Florida: Introduction to life cycle assessment and emergy approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treese II, J. Van; Hanlon, Edward A.; Amponsah, Nana

    Here, recent changes in the United States requiring the use of ethanol in gasoline for most vehicular transportation have created discussion about important issues, such as shifting the use of certain plants from food production to energy supply, related federal subsidies, effects on soil, water and atmosphere resources, tradeoffs between food production and energy production, speculation about biofuels as a possible means for energy security, potential reduction of greenhouse gas (GHG) emissions or development and expansion of biofuels industry. A sustainable approach to biofuel production requires understanding inputs (i.e., energy required to carry out a process, both natural and anthropogenic)more » and outputs (i.e., energy produced by that process) and cover the entire process, as well as environmental considerations that can be overlooked in a more traditional approach. This publication gives an overview of two methods for evaluating energy transformations in biofuels production: (1) Life Cycle Assessment (LCA) and (2) Emergy Assessment (EA). The LCA approach involves measurements affecting greenhouse gases (GHG), which can be linked to the energy considerations used in the EA. Although these two methods have their basis in energy or GHG evaluations, their approaches can lead to a reliable judgment regarding a biofuel process. Using these two methods can ensure that the energy components are well understood and can help to evaluate the economic environmental component of a biofuel process. In turn, using these two evaluative tools will allow for decisions about biofuel processes that favor sustainability« less

  2. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  3. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  4. Solution-Processed Cu 2Se Nanocrystal Films with Bulk-Like Thermoelectric Performance

    DOE PAGES

    Forster, Jason D.; Lynch, Jared J.; Coates, Nelson E.; ...

    2017-06-05

    Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu 2 Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of amore » fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.« less

  5. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology.

    PubMed

    Canon-Rubio, Karen A; Sharp, Christine E; Bergerson, Joule; Strous, Marc; De la Hoz Siegler, Hector

    2016-02-01

    Phototrophic microorganisms have been proposed as an alternative to capture carbon dioxide (CO2) and to produce biofuels and other valuable products. Low CO2 absorption rates, low volumetric productivities, and inefficient downstream processing, however, currently make algal biotechnology highly energy intensive, expensive, and not economically competitive to produce biofuels. This mini-review summarizes advances made regarding the cultivation of phototrophic microorganisms at highly alkaline conditions, as well as other innovations oriented toward reducing the energy input into the cultivation and processing stages. An evaluation, in terms of energy requirements and energy return on energy invested, is performed for an integrated high-pH, high-alkalinity growth process that uses biofilms. Performance in terms of productivity and expected energy return on energy invested is presented for this process and is compared to previously reported life cycle assessments (LCAs) for systems at near-neutral pH. The cultivation of alkaliphilic phototrophic microorganisms in biofilms is shown to have a significant potential to reduce both energy requirements and capital costs.

  6. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is the core of the methodology; it represents the formulation of technically feasible energy enhancing options. Several techniques are applied in an iterative procedure to cast light on their synergies and counter-actions. The objective is to develop a path for improving the process so as to maximize steam savings while minimizing the investment required. The fourth stage is the implementation strategy. As the existing process configuration and operating conditions vary from process to process it is important to develop a strategy for the implementation of energy enhancement programs in the most advantageous way for each case. A three-phase strategy was selected for the specific case study in the context of its management strategic plan: the elimination of fossil fuel, the production of power and the liberation of steam capacity. A post-benchmarking analysis is done to quantify the improvement of the energy efficiency. The performance indicators are computed after all energy enhancing measures have been implemented. The improvement of the process by applying the unified methodology results in substantially more steam savings than by applying individually the typical techniques that it comprises: energy savings of 5.6 GJ/adt (27% of the current requirement), water savings of 32 m3/adt (34% of the current requirement) and an electricity production potential of 44.5MW. As a result of applying the unified methodology the process becomes eco-friendly as it does not require fossil fuel for producing steam; its water and steam consumptions are below the Canadian average and it produces large revenues from the production of green electricity.

  7. 10 CFR 830.203 - Unreviewed safety question process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Unreviewed safety question process. 830.203 Section 830.203 Energy DEPARTMENT OF ENERGY NUCLEAR SAFETY MANAGEMENT Safety Basis Requirements § 830.203 Unreviewed safety question process. (a) The contractor responsible for a hazard category 1, 2, or 3 DOE...

  8. RESULTS OF THE 2015 HELIUM PROCESSING OF CEBAF CRYOMODULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, Michael A.; Humphry, Jr., Frank J.; King, Larry

    2016-10-01

    Many conference series have adopted the same The CEBAF accelerator at Jefferson Lab consists of an injec-tor and two linacs connected by arcs. Each linac contains 25 cryomodules that are designed to deliver an integrated energy of 2.2 GeV per pass to an electron beam in order to meet 12 GeV energy requirements. Helium processing is a processing technique that is used to reduce field emis-sion (FE) in SRF cavities. Helium processing of the 50 installed linac cryomodules was seen as necessary to support 12 GeV energy requirements. This paper will describe the processing procedure and summarize the results ofmore » this effort.« less

  9. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  10. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE PAGES

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; ...

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m 3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water frommore » oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  11. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  12. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  13. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  14. 10 CFR 490.204 - Process for granting exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Process for granting exemptions. 490.204 Section 490.204 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ALTERNATIVE FUEL TRANSPORTATION PROGRAM Mandatory State...) Alternative fuels that meet the normal requirements and practices of the principal business of the State fleet...

  15. Chapter 05: energy metabolism in fasting, fed, exercise and re-feeding states

    USDA-ARS?s Scientific Manuscript database

    Energy is expended by the body to maintain electrochemical gradients, transport molecules, support biosynthetic processes, produce the mechanical work required for respiration and blood circulation, and generate muscle contraction. Most of these biological processes cannot directly harness energy fr...

  16. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  17. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  18. ECUT: Energy Conversion and Utilization Technologies program biocatalysis research activity. Potential membrane applications to biocatalyzed processes: Assessment of concentration polarization and membrane fouling

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.

    1983-01-01

    Separation and purification of the products of biocatalyzed fermentation processes, such as ethanol or butanol, consumes most of the process energy required. Since membrane systems require substantially less energy for separation than most alternatives (e.g., distillation) they have been suggested for separation or concentration of fermentation products. This report is a review of the effects of concentration polarization and membrane fouling for the principal membrane processes: microfiltration, ultrafiltration, reverse osmosis, and electrodialysis including a discussion of potential problems relevant to separation of fermentation products. It was concluded that advanced membrane systems may result in significantly decreased energy consumption. However, because of the need to separate large amounts of water from much smaller amounts of product that may be more volatile than wate, it is not clear that membrane separations will necessarily be more efficient than alternative processes.

  19. Ultraviolet and solar photocatalytic ozonation of municipal wastewater: Catalyst reuse, energy requirements and toxicity assessment.

    PubMed

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2017-11-01

    The present study evaluated the treatment of municipal wastewater containing phenol using solar and ultraviolet (UV) light photocatalytic ozonation processes to explore comparative performance. Important aspects such as catalyst reuse, mineralization of pollutants, energy requirements, and toxicity of treated wastewater which are crucial for practical implementation of the processes were explored. The activity of the photocatalysts did not change significantly even after three consecutive uses despite approximately 2% of the initial quantity of catalyst being lost in each run. Analysis of the change in average oxidation state (AOS) demonstrated the formation of more oxidized degradation products (ΔAOS values of 1.0-1.7) due to mineralization. The energy requirements were determined in terms of electrical energy per order (E EO ) and the collector area per order (A CO ). The E EO (kWh m -3  Order -1 ) values were 26.2 for ozonation, 38-47 for UV photocatalysis and 7-22 for UV photocatalytic ozonation processes. On the other hand, A CO (m 2  m -3  order -1 ) values were 31-69 for solar photocatalysis and 8-13 for solar photocatalytic ozonation. Thus photocatalytic ozonation processes required less energy input compared to the individual processes. The cytotoxicity of the wastewater was analysed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay with Vero cells. The cell viability increased from 28.7% in untreated wastewater to 80% in treated wastewater; thus showing that the treated wastewater was less toxic. The effectiveness of photocatalytic ozonation, recovery and reusability of the photocatalysts, as well as detoxification of the wastewater make this low energy consumption process attractive for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Planning Study to Establish DoD Manufacturing Technology Information Analysis Center.

    DTIC Science & Technology

    1981-01-01

    model for an MTIAC. 5-3 I Type of information inputs from potential MTIAC sources. 5-5 5-3 Processing functions required to produce MTIAC outputs. 5-8...short supply * Energy conservation and concerns of energy inten- siveness of various manufacturing processes and systems required for production of DOD...not play a major role in the process of MT invention, innovation, or diffusion. MT productivity efforts for private industry are carried out by

  1. [Energy requirements of petroleum workers in Western Siberia].

    PubMed

    Bondarev, G I; Vissarionova, V Ia; Dupik, V S; Zemlianskaia, T A

    1982-01-01

    Energy requirements of drillers, derrick mounters and maintenance workers belonging to dispersed collectives were defined on the basis of materials available at the oil field Surgutneft named for the 50th anniversary of October. Energy requirements of the team workers were studied by the method of Douglas-Haldane during autumn-winter in the course of performing various production processes. Energy requirements were established as regards the operations made in the course of the basic technological processes. The budget of the working time was calculated in accordance with a rate-qualification manual. Energy consumption during out-of-work time was established by the method of individual questionnaires, followed by energy consumption calculation during various types of the work according to the generally accepted energy equivalents. The daily energy consumption with regard to the eight-hour work was found to constitute 3100-3660 kcal for drillers and the first assistant drillers, and 3700-3900 kcal for the second and third assistant drillers. The oilmen were distributed into groups in terms of the work intensity: group II--drillers, first assistant drillers and maintenance workers; group III--the second and third assistant drillers, assistant maintenance workers, and derrick mounters.

  2. Instrumentation and Control for Fossil-Energy Processes

    NASA Technical Reports Server (NTRS)

    Mark, A., Jr.

    1984-01-01

    Instrumentation and control requirements for fossil-energy processes discussed in working document. Published to foster advancement of instrumentation and control technology by making equipment suppliers and others aware of specifications, needs, and potential markets.

  3. Energy accounting and optimization for mobile systems

    NASA Astrophysics Data System (ADS)

    Dong, Mian

    Energy accounting determines how much a software process contributes to the total system energy consumption. It is the foundation for evaluating software and has been widely used by operating system based energy management. While various energy accounting policies have been tried, there is no known way to evaluate them directly simply because it is hard to track every hardware use by software in a heterogeneous multi-core system like modern smartphones and tablets. In this thesis, we provide the ground truth for energy accounting based on multi-player game theory and offer the first evaluation of existing energy accounting policies, revealing their important flaws. The proposed ground truth is based on Shapley value, a single value solution to multi-player games of which four axiomatic properties are natural and self-evident to energy accounting. To obtain the Shapley value-based ground truth, one only needs to know if a process is active during the time under question and the system energy consumption during the same time. We further provide a utility optimization formulation of energy management and show, surprisingly, that energy accounting does not matter for existing energy management solutions that control the energy use of a process by giving it an energy budget, or budget based energy management (BEM). We show an optimal energy management (OEM) framework can always outperform BEM. While OEM does not require any form of energy accounting, it is related to Shapley value in that both require the system energy consumption for all possible combination of processes under question. We provide a novel system solution that meet this requirement by acquiring system energy consumption in situ for an OS scheduler period, i.e.,10 ms. We report a prototype implementation of both Shapley value-based energy accounting and OEM based scheduling. Using this prototype and smartphone workload, we experimentally demonstrate how erroneous existing energy accounting policies can be, show that existing BEM solutions are unnecessarily complicated yet underperforming by 20% compared to OEM.

  4. The role of chemistry in the energy challenge.

    PubMed

    Schlögl, Robert

    2010-02-22

    Chemistry with its key targets of providing materials and processes for conversion of matter is at the center stage of the energy challenge. Most energy conversion systems work on (bio)chemical energy carriers and require for their use suitable process and material solutions. The enormous scale of their application demands optimization beyond the incremental improvement of empirical discoveries. Knowledge-based systematic approaches are mandatory to arrive at scalable and sustainable solutions. Chemistry for energy, "ENERCHEM" contributes in many ways already today to the use of fossil energy carriers. Optimization of these processes exemplified by catalysis for fuels and chemicals production or by solid-state lightning can contribute in the near future substantially to the dual challenge of energy use and climate protection being in fact two sides of the same challenge. The paper focuses on the even greater role that ENERCHEM will have to play in the era of renewable energy systems where the storage of solar energy in chemical carries and batteries is a key requirement. A multidisciplinary and diversified approach is suggested to arrive at a stable and sustainable system of energy conversion processes. The timescales for transformation of the present energy scenario will be decades and the resources will be of global economic dimensions. ENERCHEM will have to provide the reliable basis for such technologies based on deep functional understanding.

  5. NASA Net Zero Energy Buildings Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pless, S.; Scheib, J.; Torcellini, P.

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less

  6. Techno-economic analysis of extraction-based separation systems for acetone, butanol, and ethanol recovery and purification.

    PubMed

    Grisales Díaz, Víctor Hugo; Olivar Tost, Gerard

    2017-01-01

    Dual extraction, high-temperature extraction, mixture extraction, and oleyl alcohol extraction have been proposed in the literature for acetone, butanol, and ethanol (ABE) production. However, energy and economic evaluation under similar assumptions of extraction-based separation systems are necessary. Hence, the new process proposed in this work, direct steam distillation (DSD), for regeneration of high-boiling extractants was compared with several extraction-based separation systems. The evaluation was performed under similar assumptions through simulation in Aspen Plus V7.3 ® software. Two end distillation systems (number of non-ideal stages between 70 and 80) were studied. Heat integration and vacuum operation of some units were proposed reducing the energy requirements. Energy requirement of hybrid processes, substrate concentration of 200 g/l, was between 6.4 and 8.3 MJ-fuel/kg-ABE. The minimum energy requirements of extraction-based separation systems, feeding a water concentration in the substrate equivalent to extractant selectivity, and ideal assumptions were between 2.6 and 3.5 MJ-fuel/kg-ABE, respectively. The efficiencies of recovery systems for baseline case and ideal evaluation were 0.53-0.57 and 0.81-0.84, respectively. The main advantages of DSD were the operation of the regeneration column at atmospheric pressure, the utilization of low-pressure steam, and the low energy requirements of preheating. The in situ recovery processes, DSD, and mixture extraction with conventional regeneration were the approaches with the lowest energy requirements and total annualized costs.

  7. A review of the Generic Design Assessment (GDA) Public Dialogue Pilot (2015) for new nuclear build in the UK: lessons for engagement theory and practice.

    PubMed

    Whitton, John; Parry, Ioan; Grundy, Colette; Lillycrop, Annabelle; Ross, David

    2016-06-01

    We have discussed previously that a community-based, asset-based approach is required to achieve any sense of how social sustainability can be defined in a community setting within the context of energy developments. Our approach aims to initiate a lasting change within 'energy' communities through building social capital; focusing on community assets not deficits to define their social priorities. Through deliberation, we develop an understanding of social sustainability so that a community is well placed to enter discussions with government and industry regarding large energy developments that will directly affect them. We review the 2015 Generic Design Assessment (GDA) Public Dialogue Pilot process for potential new nuclear reactors in the UK. We examine the aims of the dialogue, giving particular attention to a comparison between the national sampling of citizens for the GDA and the local community-based, deliberative approach we have proposed previously. We find an ongoing tension between 'national' engagement processes (such as the GDA Public Dialogue Pilot process) and the specific requirements of those energy communities that live adjacent or close to energy infrastructure, manifested here by a conflict between the requirements of the convenor and those of participants regarding priority issues for discussion. We also reveal a paradox; despite participant preference for a remote, internet-based engagement process, they agreed that face to face contact is a priority to encourage trust building between participants and the convenor of the process-a desired outcome of the process. The GDA Public Dialogue Pilot process has demonstrated that stakeholders are willing to engage with and be more directly involved in local energy-related decisions that affect them directly, provided there is opportunity to discuss locally-relevant and site-specific issues in addition to those of a broader nature. There exists a disparity and conflict between 'national' engagement processes and the 'local' priorities of those energy communities that are adjacent or close to energy infrastructure. In this process and others, we have seen an imbalance between the requirements of the convenor and those of participants regarding priority issues for discussion. This continues to be a persistent challenge for those convening stakeholder engagement events where the scope and context is not primarily site-specific. However, it is encouraging that convenors and participants alike continue to be willing to work towards resolving this.

  8. Minimizing excess air could be wasting energy in process heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieberman, N.P.

    1988-02-01

    Operating a process heater simply to achieve a minimum excess oxygen target in the flue gas may be wasting energy in some process heaters. That's because the real minimum excess oxygen percentage is that required to reach the point of absolute combustion in the furnace. The oxygen target required to achieve absolute combustion may be 1%, or it may be 6%, depending on the operating characteristics of the furnace. Where natural gas is burned, incomplete combustion can occur, wasting fuel dollars. Energy can be wasted because of some misconceptions regarding excess air control. These are: 2-3% excess oxygen in themore » flue gas is a universally good target, too little excess oxygen will always cause the evolution of black smoke in the stack, and excess air requirements are unaffected by commissioning an air preheater.« less

  9. Application of microwave energy in the control of DPM, oxides of nitrogen and VOC emissions

    NASA Astrophysics Data System (ADS)

    Pallavkar, Sameer M.

    The emissions of DPM (diesel particulate matter), NOx (oxides of nitrogen), and toxic VOCs (volatile organic compounds) from diesel engine exhaust gases and other sources such as chemical process industry and manufacturing industry have been a great environmental and health concern. Most control technologies for these emissions require elevated temperatures. The use of microwave energy as a source of heat energy, however, has not been fully explored. In this study, the microwave energy was used as the energy source in three separate emission control processes, namely, the regeneration of diesel particulate filter (DPF) for DPM control, the NOx reduction using a platinum catalyst, and the VOC destruction involving a ceramic based material. The study has demonstrated that microwave heating is an effective method in providing heat for the studied processes. The control efficiencies associated with the microwave-assisted processes have been observed to be high and acceptable. Further research, however, is required for the commercial use of these technologies.

  10. 76 FR 55278 - Assistance to Foreign Atomic Energy Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... nor an environmental impact statement is required. C. Regulatory Flexibility Act The Regulatory... Foreign relations, Nuclear energy, Reporting and recordkeeping requirements. Issued in Washington, DC, on.... Moreover, they will benefit from a clarified request process. Generally, small businesses reported that...

  11. Experimental demonstration of photon upconversion via cooperative energy pooling

    DOE PAGES

    Weingarten, Daniel H.; LaCount, Michael D.; van de Lagemaat, Jao; ...

    2017-03-15

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly andmore » simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. As a result, design guidelines are presented to facilitate further research and development of more optimized CEP systems.« less

  12. Experimental demonstration of photon upconversion via cooperative energy pooling

    PubMed Central

    Weingarten, Daniel H.; LaCount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.

    2017-01-01

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems. PMID:28294129

  13. Experimental demonstration of photon upconversion via cooperative energy pooling

    NASA Astrophysics Data System (ADS)

    Weingarten, Daniel H.; Lacount, Michael D.; van de Lagemaat, Jao; Rumbles, Garry; Lusk, Mark T.; Shaheen, Sean E.

    2017-03-01

    Photon upconversion is a fundamental interaction of light and matter that has applications in fields ranging from bioimaging to microfabrication. However, all photon upconversion methods demonstrated thus far involve challenging aspects, including requirements of high excitation intensities, degradation in ambient air, requirements of exotic materials or phases, or involvement of inherent energy loss processes. Here we experimentally demonstrate a mechanism of photon upconversion in a thin film, binary mixture of organic chromophores that provides a pathway to overcoming the aforementioned disadvantages. This singlet-based process, called Cooperative Energy Pooling (CEP), utilizes a sensitizer-acceptor design in which multiple photoexcited sensitizers resonantly and simultaneously transfer their energies to a higher-energy state on a single acceptor. Data from this proof-of-concept implementation is fit by a proposed model of the CEP process. Design guidelines are presented to facilitate further research and development of more optimized CEP systems.

  14. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  15. A possible new approach to understanding mental disorder.

    PubMed

    Sharples, P J

    2012-09-01

    The aetiology of mental disorders is not fully understood. This paper presents an analysis of the conceptual control process exploring the tools of conceptual application and the phases and the mechanism of the control process and seeks to show how the illness states of mental disorder naturally come to occur. Living occurs in a world of change. For living to occur some control is required and to exert control, to provide direction for the conceptual process, some interpretation of significance, some definition of need is also required. Such interpretation, monitoring significance in relation to the many aspects of change, forms the base on which living occurs. Change in human terms is intrinsically insecure and interpretation of significance is an interpretation of security, an interpretation of control in living. Conceptual control is a process applied to maintain security, to maintain a secure base for the interpretation of significance, it is a process applied to produce and hold a sense of control. Powering a process, producing and holding a sense of control, is an active process and so requires some form of energy. Human beings have a sense of that energy, something exhibited in terms such as full of energy, tired, exhausted. As energy is required to power the control process, accompanying the sense of energy is a sense of the ability to provide power, is a sense of the ability to hold and maintain control, is a sense of security. As available energy reduces there is difficulty holding the same sense of control, a person in the same setting comes to feel more insecure. This can result in a person experiencing mental disorder from mild to severe degree. Mild where conceptual process is applied to manage just one or a very few particular needs, severe and more general where the insecurity affects the base of interpretation. In this later case seeking to protect security can lead to mania, mood-incongruent delusions, schizophrenia. Failing ability to protect can lead to generalized anxiety disorder, mood-congruent delusions, different presentations and degrees of depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  17. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    PubMed

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  18. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of inlet raw wastewater, has been calculated to 0.172 kWh/m 3 . It is thus obvious, that the proposed process can operate on an electric energy autonomous basis. Copyright © 2016. Published by Elsevier Ltd.

  19. Theoretical/best practice energy use in metalcasting operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schifo, J. F.; Radia, J. T.

    2004-05-01

    This study determined the theoretical minimum energy requirements for melting processes for all ferrous and noferrous engenieering alloys. Also the report details the Best Practice energy consumption for the industry.

  20. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce...

  1. Thermochemical water decomposition. [hydrogen separation for energy applications

    NASA Technical Reports Server (NTRS)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  2. Ionic liquid-based green processes for energy production.

    PubMed

    Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji

    2014-11-21

    To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.

  3. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinne, A.; Morrison, A. D.

    1977-01-01

    Photovoltaics is subject of an extensive technology assessment in terms of its net energy potential as an alternate energy source. Reduction of quartzite pebbles, refinement, crystal growth, cell processing and panel building are evaluated for energy expenditure compared to direct, indirect, and overhead energies.

  4. Energy Consumption vs. Energy Requirement

    ERIC Educational Resources Information Center

    Fan, L. T.; Zhang, Tengyan; Schlup, John R.

    2006-01-01

    Energy is necessary for any phenomenon to occur or any process to proceed. Nevertheless, energy is never consumed; instead, it is conserved. What is consumed is available energy, or exergy, accompanied by an increase in entropy. Obviously, the terminology, "energy consumption" is indeed a misnomer although it is ubiquitous in the…

  5. 24 CFR 241.505 - Processing of applications and required fees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-Supplemental Loans To Finance Purchase and Installation of Energy Conserving Improvements, Solar Energy Systems... condition to submission of an initial application for a firm commitment for insurance of an energy savings...

  6. 24 CFR 241.505 - Processing of applications and required fees.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-Supplemental Loans To Finance Purchase and Installation of Energy Conserving Improvements, Solar Energy Systems... condition to submission of an initial application for a firm commitment for insurance of an energy savings...

  7. 24 CFR 241.505 - Processing of applications and required fees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-Supplemental Loans To Finance Purchase and Installation of Energy Conserving Improvements, Solar Energy Systems... condition to submission of an initial application for a firm commitment for insurance of an energy savings...

  8. 24 CFR 241.505 - Processing of applications and required fees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Supplemental Loans To Finance Purchase and Installation of Energy Conserving Improvements, Solar Energy Systems... condition to submission of an initial application for a firm commitment for insurance of an energy savings...

  9. 24 CFR 241.505 - Processing of applications and required fees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Supplemental Loans To Finance Purchase and Installation of Energy Conserving Improvements, Solar Energy Systems... condition to submission of an initial application for a firm commitment for insurance of an energy savings...

  10. Energy recovery with turboexpander processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, J.

    1985-07-01

    Although the primary function of turboexpanders has been to provide efficient, low-temperature refrigeration, the energy thus extracted has also been an important additional feature. Today, turboexpanders are proven reliable and used widely in the following applications discussed in this article: industrial gases; natural gas (NG) processing; production of liquefied natural gas (LNG); flashing hydrocarbon liquids; NG pressure letdown energy recovery; oilfield cogeneration; and recovery of energy from waste heat. Turboexpander applications for energy conservation resulted because available turboexpanders have the required high-performance capabilities and reliability. At the same time, the development of these energy conservation practices and processes helped furthermore » improve turboexpanders.« less

  11. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    NASA Astrophysics Data System (ADS)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste stream from becoming reactive or even explosive. High energy consumption is another drawback in the UAOD process. A typical 10 minutes ultrasonication applied in the UAOD process to achieve 95% desulfurization for 20g of diesel requires 450 kJ of energy, which is equivalent to approximately 50% of the energy that can be provided by the treated diesel. This great expenditure of energy is impractical for industries to adopt. In this study, modifications of the UAOD process, including the application of superoxide and selection of catalysts, were applied to lower the oxidant dosage and to improve the applicability towards heavy-distillates such as residual oil. The results demonstrated that the new system required 80% less oxidant as compared to previous generations of UAOD process without the loss of desulfurization efficiency. The new system demonstrated its suitability towards desulfurizing commercial mid-distillates including jet fuels, marine gas oil and sour diesel. This process also demonstrated a new method to desulfurize residual oil with high desulfurization yields. The new process development has been supported by Eco Energy Solutions Inc., Reno, Nevada and Intelligent Energy Inc., Long Beach, California. A feasibility study on UV assisted desulfurization by replacing ultrasound with UV irradiation was also conducted. The study demonstrated that the UV assisted desulfurization process consumes 90% less energy than the comparable process using ultrasonication. These process modifications demonstrated over 98% desulfurization efficiency on diesel oils and more than 75% on residual oils with significantly less oxidant and energy consumption. Also the feasibility to desulfurize commercial sour heavy oil was demonstrated. Based on the UAOD process and the commercialized modifications by Wan and Cheng, the feasible applications of superoxide and UV irradiation in the UAOD process could provide deep-desulfurization on various fuels with practical cost.

  12. Could the extensive use of rare elements in renewable energy technologies become a cause for concern?

    NASA Astrophysics Data System (ADS)

    Bradshaw, A. M.; Reuter, B.; Hamacher, T.

    2015-08-01

    The energy transformation process beginning to take place in many countries as a response to climate change will reduce substantially the consumption of fossil fuels, but at the same time cause a large increase in the demand for other raw materials. Whereas it is difficult to estimate the quantities of, for example, iron, copper and aluminium required, the situation is somewhat simpler for the rare elements that might be needed in a sustainable energy economy based largely on photovoltaic sources, wind and possibly nuclear fusion. We consider briefly each of these technologies and discuss the supply risks associated with the rare elements required, if they were to be used in the quantities that might be required for a global energy transformation process. In passing, we point out the need in resource studies to define the terms "rare", "scarce" and "critical" and to use them in a consistent way.

  13. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    PubMed

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Solar energy demand (SED) of commodity life cycles.

    PubMed

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.

  15. Low-complex energy-aware image communication in visual sensor networks

    NASA Astrophysics Data System (ADS)

    Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran

    2013-10-01

    A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.

  16. Energy use in the New Zealand food system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, M.G.; Earle, M.D.

    1985-03-01

    The study covered the total energy requirements of the production, processing, wholesale distribution, retailing, shopping and household sectors of the food system in New Zealand. This included the direct energy requirements, and the indirect energy requirements in supplying materials, buildings and equipment. Data were collected from a wide range of literature sources, and converted into forms required for this research project. Also, data were collected in supplementary sample surveys at the wholesale distribution, retailing and shopping sectors. The details of these supplementary surveys are outlined in detailed survey reports fully referenced in the text. From these base data, the totalmore » energy requirements per unit product (MJ/kg) were estimated for a wide range of food chain steps. Some clear alternatives in terms of energy efficiency emerged from a comparison of these estimates. For example, it was found that it was most energy efficient to use dehydrated vegetables, followed by fresh vegetables, freeze dried vegetables, canned vegetables and then finally frozen vegetables.« less

  17. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litchfield, J.W.; Watts, R.L.; Gurwell, W.E.

    A materials assessment methodology for identifying specific critical material requirements that could hinder the implementation of solar energy has been developed and demonstrated. The methodology involves an initial screening process, followed by a more detailed materials assessment. The detailed assessment considers such materials concerns and constraints as: process and production constraints, reserve and resource limitations, lack of alternative supply sources, geopolitical problems, environmental and energy concerns, time constraints, and economic constraints. Data for 55 bulk and 53 raw materials are currently available on the data base. These materials are required in the example photovoltaic systems. One photovoltaic system and thirteenmore » photovoltaic cells, ten solar heating and cooling systems, and two agricultural and industrial process heat systems have been characterized to define their engineering and bulk material requirements.« less

  19. Soil Penetration by Earthworms and Plant Roots—Mechanical Energetics of Bioturbation of Compacted Soils

    PubMed Central

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities. PMID:26087130

  20. Optimization of dual-energy subtraction chest radiography by use of a direct-conversion flat-panel detector system.

    PubMed

    Fukao, Mari; Kawamoto, Kiyosumi; Matsuzawa, Hiroaki; Honda, Osamu; Iwaki, Takeshi; Doi, Tsukasa

    2015-01-01

    We aimed to optimize the exposure conditions in the acquisition of soft-tissue images using dual-energy subtraction chest radiography with a direct-conversion flat-panel detector system. Two separate chest images were acquired at high- and low-energy exposures with standard or thick chest phantoms. The high-energy exposure was fixed at 120 kVp with the use of an auto-exposure control technique. For the low-energy exposure, the tube voltages and entrance surface doses ranged 40-80 kVp and 20-100 % of the dose required for high-energy exposure, respectively. Further, a repetitive processing algorithm was used for reduction of the image noise generated by the subtraction process. Seven radiology technicians ranked soft-tissue images, and these results were analyzed using the normalized-rank method. Images acquired at 60 kVp were of acceptable quality regardless of the entrance surface dose and phantom size. Using a repetitive processing algorithm, the minimum acceptable doses were reduced from 75 to 40 % for the standard phantom and to 50 % for the thick phantom. We determined that the optimum low-energy exposure was 60 kVp at 50 % of the dose required for the high-energy exposure. This allowed the simultaneous acquisition of standard radiographs and soft-tissue images at 1.5 times the dose required for a standard radiograph, which is significantly lower than the values reported previously.

  1. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  2. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, Colin; Boardman, Richard; McKellar, Michael

    This report quantifies greenhouse gas (GHG) emissions from the industrial sector and identifies opportunities for non-GHG-emitting thermal energy sources to replace the most significant GHG-emitting U.S. industries based on targeted, process-level analysis of industrial heat requirements. The intent is to provide a basis for projecting opportunities for clean energy use. This provides a prospectus for small modular nuclear reactors (including nuclear-renewable hybrid energy systems), solar industrial process heat, and geothermal energy. This report provides a complement to analysis of process-efficiency improvement by considering how clean energy delivery and use by industry could reduce GHG emissions.

  3. 76 FR 24871 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Processing Sites AGENCY: Department of Energy. ACTION: Notice of change in the acceptance of Title X claims... reimbursement under Title X of the Energy Policy Act of 1992. DATES: In our Federal Register Notice of November... Register on May 23, 1994, (59 FR 26714) to carry out the requirements of Title X of the Energy Policy Act...

  4. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  5. High-Level Radioactive Waste.

    ERIC Educational Resources Information Center

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  6. Establishing Priorities for Postsecondary Energy-Related Technology Programs

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    1977-01-01

    Data from a Shell Oil Company forecast of national energy requirements through 1990 and from a national invitational conference on energy-related postsecondary programs are presented under the following headings: Coal mining beneficiation and processing, petroleum extraction and refining, nuclear power production, solar energy, and energy…

  7. Energy Conservation in Dissipative Processes: Teacher Expectations and Strategies Associated with Imperceptible Thermal Energy

    ERIC Educational Resources Information Center

    Daane, Abigail R.; McKagan, Sarah B.; Vokos, Stamatis; Scherr, Rachel E.

    2015-01-01

    Research has demonstrated that many students and some teachers do not consistently apply the conservation of energy principle when analyzing mechanical scenarios. In observing elementary and secondary teachers engaged in learning activities that require tracking and conserving energy, we find that challenges to energy conservation often arise in…

  8. Water transport and energy.

    PubMed

    Fricke, Wieland

    2017-06-01

    Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.

  9. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  10. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    NASA Astrophysics Data System (ADS)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  11. Net Energetics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underhill, Gary K.; Carlson, Ronald A.; Clendinning, William A.

    1976-01-01

    Econimic analysis, next to technical analysis, has traditionally constituted the major decision-making tool of the capitalist economic system. As lon as capitalism survives, this will remain to be the case. However, during the current period of increasing scarcity and cost of energy -- a period accompanied by higher than normal inflation rates -- a proposed project may appear attractive and economic when, in fact, its demands on energy resources are extraordinarily high. Such a conclusion could well be the case when the major energy expenditure in construction or operation is directed toward a fuel, the price of which is heldmore » unusually low by legal regulation. Net energetics analysis, as applied to energy generation facilities, is a method for determining the total amount of energy, IE, required to construct, operate, and maintain the energy generation facility compared to the total energy, TE, generated (or converted) throughout the facility's lifetime. Fuel consumed by the facility as direct input to the conversion or utiliztion process is not considered a debit while energy generated is not considered a credit in the calculation of the construction, operation, and maintenance energy account, IE. Energy required to run equipment auxiliary to the conversion process is, on the other hand, considered a debit to IE. The latter considerations apply to the production, processing, and transport of fuel but not to the energy content of the fuel itself.« less

  12. Industry starts to tap the sun's energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-15

    The dedication in 1978 of the Riegel Textile Corp's solar-collecting field in La France, South Carolina, marked the first solar process hot water application within the textile industry. Results from this DOE-funded project could provide a breakthrough in the application of solar energy to industrial process hot water, which accounts for about 4% of the nation's energy needs. A General Electric Co. industrial solar process-hot-water system is used to heat water to 190 F in an open fabric-dyeing vat designed to provide from 50 to 70% of the process heat required for a single-dye unit. The largest, citrus-juice processing plantmore » in the world at Bradenton, Florida, is being equipped wth a General Electric solar system that will supply high temperature steam (350 F, 134 psig) to one of the plant's pasteurizers during weekdays. On weekends, the solar unit will supply a major part of the steam used by two of the plant's four glycol-refrigerant dryers. A solar total energy system that will be used to provide electricity, steam, heat, and hot water for a knitware plant in Shenandoah, Georgia, is described. The project, managed by Sandia Laboratory, will utilize two axis parabolic dish solar collectors, which will produce steam at temperatures in the range of 750 F. The system is being designed to provide 60% of the annual energy requirements of the knitware facility. It will provide 35% of the electricity, 60% of the process steam, 98% of the domestic water and space heating needs, and 85% of the air conditioning requirements of the 42,000 sq ft factory being built for the West Germany-based Wilhelm Bleyle Co. (MCW)« less

  13. A theoretical study of the cyclization processes of energized CCCSi and CCCP.

    PubMed

    Maclean, Micheal J; Eichinger, Peter C H; Wang, Tianfang; Fitzgerald, Mark; Bowie, John H

    2008-12-11

    Calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31+G(d) level of theory have shown that cyclization of both the ground state triplet and the corresponding singlet state of CCCSi may rearrange to give cyclic isomers which upon ring opening may reform linear C(3)Si isomers in which the carbon atoms are scrambled. The cyclization processes are energetically favorable with barriers to the transition states from 13 to 16 kcal mol(-1). This should be contrasted with the analogous process of triplet CCCC to triplet rhombic C(4), which requires an excess energy of 25.8 kcal mol(-1). A similar cyclization of doublet CCCP requires 50.4 kcal mol(-1) of excess energy; this should be contrasted with the same process for CCCN, which requires 54.7 kcal mol(-1) to effect cyclization.

  14. Solar Energy Systems for Lunar Oxygen Generation

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  15. Renewable Energy Zone (REZ) Transmission Planning Process: A Guidebook for Practitioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Nathan; Flores-Espino, Francisco; Hurlbut, David J.

    Achieving clean energy goals may require new investments in transmission, especially if planners anticipate economic growth and increased demand for electricity. The renewable energy zone (REZ) transmission planning process can help policymakers ensure their infrastructure investments achieve national goals in the most economical manner. Policymakers, planners, and system operators around the world have used variations of the REZ process to chart the expansion of their transmission networks and overcome the barriers of traditional transmission planning. This guidebook seeks to help power system planners, key decision makers, and stakeholders understand and use the REZ transmission planning process to integrate transmission expansionmore » planning and renewable energy generation planning.« less

  16. Directed-energy process technology efforts

    NASA Technical Reports Server (NTRS)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  17. Hot working behavior of selective laser melted and laser metal deposited Inconel 718

    NASA Astrophysics Data System (ADS)

    Bambach, Markus; Sizova, Irina

    2018-05-01

    The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.

  18. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Morrison, A.

    1977-01-01

    An assessment of potential changes and alternative technologies which could impact the photovoltaic manufacturing process is presented. Topics discussed include: a multiple wire saw, ribbon growth techniques, silicon casting, and a computer model for a large-scale solar power plant. Emphasis is placed on reducing the energy demands of the manufacturing process.

  19. Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization

    DTIC Science & Technology

    2017-03-01

    require high energy density battery systems. Radioisotopes are the most energy dense materials that can be converted into electrical energy. Pure...beta radioisotopes can be used towards making a long-lasting battery. However, the process to convert the energy provided by a pure beta radioisotope ...betavoltaic. Each energy conversion method has different challenges to overcome to improve thesystem efficiency. These energy conversion methods that are

  20. 10 CFR 782.6 - Processing of administrative claims.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and Procedures... regarding claims should be addressed to: General Counsel, ATTN: Assistant General Counsel for Patents, Office of the General Counsel, U.S. Department of Energy, Washington, DC 20545. If any communication...

  1. 10 CFR 782.6 - Processing of administrative claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and Procedures... regarding claims should be addressed to: General Counsel, ATTN: Assistant General Counsel for Patents, Office of the General Counsel, U.S. Department of Energy, Washington, DC 20545. If any communication...

  2. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  3. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  4. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  5. 48 CFR 927.300 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 927.300 Federal Acquisition Regulations System DEPARTMENT OF ENERGY GENERAL CONTRACTING REQUIREMENTS... primary missions of the Department of Energy is the use of its procurement process to ensure the conduct... sources of energy. To accomplish its mission, DOE must work in cooperation with industry in the...

  6. 10 CFR 782.6 - Processing of administrative claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and Procedures... regarding claims should be addressed to: General Counsel, ATTN: Assistant General Counsel for Patents, Office of the General Counsel, U.S. Department of Energy, Washington, DC 20545. If any communication...

  7. 10 CFR 782.6 - Processing of administrative claims.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and Procedures... regarding claims should be addressed to: General Counsel, ATTN: Assistant General Counsel for Patents, Office of the General Counsel, U.S. Department of Energy, Washington, DC 20545. If any communication...

  8. 10 CFR 782.6 - Processing of administrative claims.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY CLAIMS FOR PATENT AND COPYRIGHT INFRINGEMENT Requirements and Procedures... regarding claims should be addressed to: General Counsel, ATTN: Assistant General Counsel for Patents, Office of the General Counsel, U.S. Department of Energy, Washington, DC 20545. If any communication...

  9. Development of system design information for carbon dioxide using an amine type sorber

    NASA Technical Reports Server (NTRS)

    Rankin, R. L.; Roehlich, F.; Vancheri, F.

    1971-01-01

    Development work on system design information for amine type carbon dioxide sorber is reported. Amberlite IR-45, an aminated styrene divinyl benzene matrix, was investigated to determine the influence of design parameters of sorber particle size, process flow rate, CO2 partial pressure, total pressure, and bed designs. CO2 capacity and energy requirements for a 4-man size system were related mathematically to important operational parameters. Some fundamental studies in CO2 sorber capacity, energy requirements, and process operation were also performed.

  10. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    PubMed

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    PubMed

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.

  12. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388

  13. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developedmore » for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98.« less

  14. Atomic precision etch using a low-electron temperature plasma

    NASA Astrophysics Data System (ADS)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2016-03-01

    Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.

  15. Energy Consumption of Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting formmore » of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.« less

  16. Environmental Compliance Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-02-01

    The Guide is intended to assist Department of Energy personnel by providing information on the NEPA process, the processes of other environmental statutes that bear on the NEPA process, the timing relationships between the NEPA process and these other processes, as well as timing relationships between the NEPA process and the development process for policies, programs, and projects. This information should be helpful not only in formulating environmental compliance plans but also in achieving compliance with NEPA and various other environmental statutes. The Guide is divided into three parts with related appendices: Part I provides guidance for developing environmental compliancemore » plans for DOE actions; Part II is devoted to NEPA with detailed flowcharts depicting the compliance procedures required by CEQ regulations and Department of Energy NEPA Guidelines; and Part III contains a series of flowcharts for other Federal environmental requirements that may apply to DOE projects.« less

  17. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  18. Quantifying induced effects of subsurface renewable energy storage

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry of Education and Research (BMBF).

  19. Explosives Safety Requirements Manual

    DOT National Transportation Integrated Search

    1996-03-29

    This Manual describes the Department of Energy's (DOE's) explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect...

  20. Operational Impacts of Wind Energy Resources in the Bonneville Power Administration Control Area - Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Yuri V.; Lu, Shuai

    2008-07-15

    This report presents a methodology developed to study the future impact of wind on BPA power system load following and regulation requirements. The methodology uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system, by mimicking the actual power system operations. Therefore, the results are close to reality, yet the study based on this methodology is convenient to conduct. Compared with the proposed methodology, existing methodologies for doing similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. Dispatch model simulation is constrained by the design of themore » dispatch program, and standard deviation evaluation is artificial in separating the load following and regulation requirements, both of which usually do not reflect actual operational practice. The methodology used in this study provides not only capacity requirement information, it also analyzes the ramp rate requirements for system load following and regulation processes. The ramp rate data can be used to evaluate generator response/maneuverability requirements, which is another necessary capability of the generation fleet for the smooth integration of wind energy. The study results are presented in an innovative way such that the increased generation capacity or ramp requirements are compared for two different years, across 24 hours a day. Therefore, the impact of different levels of wind energy on generation requirements at different times can be easily visualized.« less

  1. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Preparation of wood for energy use

    Treesearch

    Donald L. Sirois; Bryce J. Stokes

    1985-01-01

    This paper presents an overview & current sources and forms of raw materials for wood energy use and the types of machines available to convert them to the desired form for boiler fuel. Both the fuel source or raw material, and the combustion furnace will dictate the requirements for the processing system. Because of the wide range of processing equipment...

  3. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Treesearch

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  4. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Treesearch

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  5. Waste-to-energy incineration plants as greenhouse gas reducers: a case study of seven Japanese metropolises.

    PubMed

    Tabata, Tomohiro

    2013-11-01

    Municipal solid waste (MSW) incineration is a greenhouse gas (GHG) emitter; however, if GHG reductions, achieved by accounting for waste-to-energy, exceed GHG emissions, incineration can be considered as a net GHG reducer. In Japan, only 24.5% of MSW incineration plants perform energy recovery despite 80% of MSW being incinerated; therefore, there is great potential to extract more energy from MSW. In this study, the factors that should be considered to achieve net GHG reductions from incineration were analysed from a life cycle perspective. These considerations were then applied to the energy supply requirements in seven Japanese metropolises. Firstly, the carbon footprints of approximately 1500 incineration plants in Japan were calculated. Then, the incineration plants with negative carbon footprint values were classified as net GHG reducers. Next, the processes that contribute to the carbon footprint were evaluated, and two processes-plastic burning and electricity savings-were found to have the greatest influence. Based on the results, the energy supply requirements were analysed and discussed for seven metropolises (Sapporo, Tokyo, Nagoya, Osaka, Kobe, Takamatsu and Fukuoka) taking into account the energy demands of households. In Kobe, 16.2% of the electricity demand and 25.0% of the hot water demand could be satisfied by incineration to realise a net GHG reducer, although urban design for energy utilisation would be required.

  6. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  7. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage.

    PubMed

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-06-01

    Strawberry puree was processed for 15 min using thermal (65 ℃), high-pressure processing (600 MPa, 48 ℃), and ultrasound (24 kHz, 1.3 W/g, 33 ℃). These conditions were selected based on similar polyphenoloxidase inactivation (11%-18%). The specific energies required for the above-mentioned thermal, high-pressure processing, and power ultrasound processes were 240, 291, and 1233 kJ/kg, respectively. Then, the processed strawberry was stored at 3 ℃ and room temperature for 30 days. The constant pH (3.38±0.03) and soluble solids content (9.03 ± 0.25°Brix) during storage indicated a microbiological stability. Polyphenoloxidase did not reactivate during storage. The high-pressure processing and ultrasound treatments retained the antioxidant activity (70%-74%) better than the thermal process (60%), and high-pressure processing was the best treatment after 30 days of ambient storage to preserve antioxidant activity. Puree treated with ultrasound presented more color retention after processing and after ambient storage than the other preservation methods. For the three treatments, the changes of antioxidant activity and total color difference during storage were described by the fractional conversion model with rate constants k ranging between 0.03-0.09 and 0.06-0.22 day  - 1 , respectively. In resume, high-pressure processing and thermal processes required much less energy than ultrasound for the same polyphenoloxidase inactivation in strawberry. While high-pressure processing retained better the antioxidant activity of the strawberry puree during storage, the ultrasound treatment was better in terms of color retention.

  8. Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. David M. Bowden; Dr. William H. Peter

    2012-03-31

    The use of titanium in commercial aircraft production has risen steadily over the last half century. The aerospace industry currently accounts for 58% of the domestic titanium market. The Kroll process, which has been used for over 50 years to produce titanium metal from its mineral form, consumes large quantities of energy. And, methods used to convert the titanium sponge output of the Kroll process into useful mill products also require significant energy resources. These traditional approaches result in product forms that are very expensive, have long lead times of up to a year or more, and require costly operationsmore » to fabricate finished parts. Given the increasing role of titanium in commercial aircraft, new titanium technologies are needed to create a more sustainable manufacturing strategy that consumes less energy, requires less material, and significantly reduces material and fabrication costs. A number of emerging processes are under development which could lead to a breakthrough in extraction technology. Several of these processes produce titanium alloy powder as a product. The availability of low-cost titanium powders may in turn enable a more efficient approach to the manufacture of titanium components using powder metallurgical processing. The objective of this project was to define energy-efficient strategies for manufacturing large-scale titanium structures using these low-cost powders as the starting material. Strategies include approaches to powder consolidation to achieve fully dense mill products, and joining technologies such as friction and laser welding to combine those mill products into near net shape (NNS) preforms for machining. The near net shape approach reduces material and machining requirements providing for improved affordability of titanium structures. Energy and cost modeling was used to define those approaches that offer the largest energy savings together with the economic benefits needed to drive implementation. Technical feasibility studies were performed to identify the most viable approaches to NNS preform fabrication using basic powder metallurgy mill product forms as the building blocks and advanced joining techniques including fusion and solid state joining to assemble these building blocks into efficient machining performs.« less

  9. A hybrid life cycle inventory of nano-scale semiconductor manufacturing.

    PubMed

    Krishnan, Nikhil; Boyd, Sarah; Somani, Ajay; Raoux, Sebastien; Clark, Daniel; Dornfeld, David

    2008-04-15

    The manufacturing of modern semiconductor devices involves a complex set of nanoscale fabrication processes that are energy and resource intensive, and generate significant waste. It is important to understand and reduce the environmental impacts of semiconductor manufacturing because these devices are ubiquitous components in electronics. Furthermore, the fabrication processes used in the semiconductor industry are finding increasing application in other products, such as microelectromechanical systems (MEMS), flat panel displays, and photovoltaics. In this work we develop a library of typical gate-to-gate materials and energy requirements, as well as emissions associated with a complete set of fabrication process models used in manufacturing a modern microprocessor. In addition, we evaluate upstream energy requirements associated with chemicals and materials using both existing process life cycle assessment (LCA) databases and an economic input-output (EIO) model. The result is a comprehensive data set and methodology that may be used to estimate and improve the environmental performance of a broad range of electronics and other emerging applications that involve nano and micro fabrication.

  10. Gamma-ray, neutron, and hard X-ray studies and requirements for a high-energy solar physics facility

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Dennis, B. R.; Emslie, A. G.

    1988-01-01

    The requirements for future high-resolution spatial, spectral, and temporal observation of hard X-rays, gamma rays and neutrons from solar flares are discussed in the context of current high-energy flare observations. There is much promise from these observations for achieving a deep understanding of processes of energy release, particle acceleration and particle transport in a complicated environment such as the turbulent and highly magnetized atmosphere of the active sun.

  11. 18 CFR 5.25 - Applications requiring a draft NEPA document.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a draft NEPA document. 5.25 Section 5.25 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.25 Applications requiring a draft NEPA document. (a) If the Commission determines that a license application will be processed with an environmental impact statement, or a draft and final...

  12. 18 CFR 5.25 - Applications requiring a draft NEPA document.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a draft NEPA document. 5.25 Section 5.25 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.25 Applications requiring a draft NEPA document. (a) If the Commission determines that a license application will be processed with an environmental impact statement, or a draft and final...

  13. 18 CFR 5.25 - Applications requiring a draft NEPA document.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a draft NEPA document. 5.25 Section 5.25 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.25 Applications requiring a draft NEPA document. (a) If the Commission determines that a license application will be processed with an environmental impact statement, or a draft and final...

  14. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... promethium-147: Requirements for license to manufacture, process, produce, or initially transfer. 32.22 Section 32.22 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER..., or initially transfer. (a) An application for a specific license to manufacture, process, or produce...

  15. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less

  16. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  17. Production of gluten and germ by ethanol fermentation of raw corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Illinois ethanol fuel industry has grown to be an important part of our state's economy over the past 10 years. It provides an additional market for Illinois' abundant corn production, provides many industrial jobs, and substitutes a home-grown renewable energy resource for imported oil. More than 30 percent of all gasoline sold in Illinois contains 10 percent ethanol. The economics of producing ethanol from corn is strongly affected by the byproduct value and by the energy required in the production process. This document reports on efforts to research a new microbial process that would improve the ethanol fermentation processmore » in both these areas. The new process allows direct fermentation of corn starch to ethanol without the usual requirement of cooking the corn. This reduces the amount of energy needed for production and recovers the protein-containing gluten and oil-containing germ with all of the original food value intact.« less

  18. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling.

    PubMed

    Lübken, Manfred; Gehring, Tito; Wichern, Marc

    2010-02-01

    The anaerobic fermentation process has achieved growing importance in practice in recent years. Anaerobic fermentation is especially valuable because its end product is methane, a renewable energy source. While the use of renewable energy sources has accelerated substantially in recent years, their potential has not yet been sufficiently exploited. This is especially true for biogas technology. Biogas is created in a multistage process in which different microorganisms use the energy stored in carbohydrates, fats, and proteins for their metabolism. In order to produce biogas, any organic substrate that is microbiologically accessible can be used. The microbiological process in itself is extremely complex and still requires substantial research in order to be fully understood. Technical facilities for the production of biogas are thus generally scaled in a purely empirical manner. The efficiency of the process, therefore, corresponds to the optimum only in the rarest cases. An optimal production of biogas, as well as a stable plant operation requires detailed knowledge of the biochemical processes in the fermenter. The use of mathematical models can help to achieve the necessary deeper understanding of the process. This paper reviews both the history of model development and current state of the art in modeling anaerobic digestion processes.

  19. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  20. Integrated in situ gas stripping-salting-out process for high-titer acetone-butanol-ethanol production from sweet sorghum bagasse.

    PubMed

    Wen, Hao; Chen, Huidong; Cai, Di; Gong, Peiwen; Zhang, Tao; Wu, Zhichao; Gao, Heting; Li, Zhuangzhuang; Qin, Peiyong; Tan, Tianwei

    2018-01-01

    The production of biobutanol from renewable biomass resources is attractive. The energy-intensive separation process and low-titer solvents production are the key constraints on the economy-feasible acetone-butanol-ethanol (ABE) production by fermentation. To decrease energy consumption and increase the solvents concentration, a novel two-stage gas stripping-salting-out system was established for effective ABE separation from the fermentation broth using sweet sorghum bagasse as feedstock. The ABE condensate (143.6 g/L) after gas stripping, the first-stage separation, was recovered and introduced to salting-out process as the second-stage. K 4 P 2 O 7 and K 2 HPO 4 were used, respectively. The effect of saturated salt solution temperature on final ABE concentration was also investigated. The results showed high ABE recovery (99.32%) and ABE concentration (747.58 g/L) when adding saturated K 4 P 2 O 7 solution at 323.15 K and 3.0 of salting-out factor. On this condition, the energy requirement of the downstream distillation process was 3.72 MJ/kg of ABE. High-titer cellulosic ABE production was separated from the fermentation broth by the novel two-stage gas stripping-salting-out process. The process was effective, which reduced the downstream process energy requirement significantly.

  1. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGES

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  2. Towards sustainable pollution management

    NASA Astrophysics Data System (ADS)

    Jern, N. G. W.

    2017-03-01

    It is often overlooked pollution control itself may not be entirely free from adverse impact on the environment if considered from a more holistic perspective. For example mechanised wastewater treatment is energy intensive and so has a carbon footprint because of the need to move air to supply oxygen to the aerobic treatment process. The aerobic treatment process then results in excess bio-sludge which requires disposal and if such is not appropriately performed, then there is risk of surface and groundwater contamination. This presentation explores the changes which have been investigated and are beginning to be implemented in wastewater, sludge, and agro-industrial wastes management which are more environmentally benign. Three examples shall be used to illustrate the discussion. The first example uses the conventional sewage treatment system with a unit process arrangement which converts carbonaceous pollutants from soluble and colloidal forms to particulate forms with an aerobic process before attempting energy recovery with an anaerobic process. Such an arrangement does, however, result in a negative energy balance. This is not withstanding the fact there is potentially more energy in sewage than is required to treat it if that energy can be effectively harvested. The latter can be achieved by removing the carbonaceous pollutants before the aerobic process and thereby using the aerobic process for polishing instead of treating. The carbonaceous pollutants so recovered then becomes the feed for the anaerobic process. Unfortunately conventional anaerobic sludge digestion only removes 35-45% of the organic material fed. Since biogas production (and hence energy recovery) is linked to the amount of organic material which can be degraded anaerobically, the effectiveness of the anaerobic digestion process needs to be improved. Contrary to a commonly held belief wherein methanogenesis is the “bottleneck” in anaerobic processes, hydrolysis is in sludge digestion. Hydrolysis can be enhanced thermally, chemically and biologically. With better anaerobic digestion, the digestate would have more N and P released. The digestate can be blended with organic fertilizers which have been augmented with microbes capable of producing phytohormones. The latter enable crop plants to use inorganic fertilizers more effectively and hence reducing the quantity of inorganic fertilizers required significantly. Use of such organic fertilizers rejuvenates soils which have been subjected to prolonged application of inorganic fertilisers since the latter can result in stagnating or even declining crop yields.

  3. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.« less

  4. Measures of the environmental footprint of the front end of the nuclear fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Schneider; B. Carlsen; E. Tavrides

    2013-11-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as wellmore » as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.« less

  5. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  6. Development of a water-jet assisted laser paint removal process

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2013-12-01

    The laser paint removal process usually leaves behind traces of combustion product i.e. ashes on the surface. An additional post-processing such as light-brushing or wiping by some mechanical means is required to remove the residual ash. In order to strip out the paint completely from the surface in a single step, a water-jet assisted laser paint removal process has been investigated. The 1.07 μm wavelength of Yb-fiber laser radiation has low absorption in water; therefore a high power fiber laser was used in the experiment. The laser beam was delivered on the paint-surface along with a water jet to remove the paint and residual ashes effectively. The specific energy, defined as the laser energy required removing a unit volume of paint was found to be marginally more than that for the gas-jet assisted laser paint removal process. However, complete paint removal was achieved with the water-jet assist only. The relatively higher specific energy in case of water-jet assist is mainly due to the scattering of laser beam in the turbulent flow of water-jet.

  7. Mathematical modeling for resource and energy saving control of extruders in multi-assortment productions of polymeric films

    NASA Astrophysics Data System (ADS)

    Polosin, A. N.; Chistyakova, T. B.

    2018-05-01

    In this article, the authors describe mathematical modeling of polymer processing in extruders of various types used in extrusion and calender productions of film materials. The method consists of the synthesis of a static model for calculating throughput, energy consumption of the extruder, extrudate quality indices, as well as a dynamic model for evaluating polymer residence time in the extruder, on which the quality indices depend. Models are adjusted according to the extruder type (single-screw, reciprocating, twin-screw), its screw and head configuration, extruder’s work temperature conditions, and the processed polymer type. Models enable creating extruder screw configurations and determining extruder controlling action values that provide the extrudate of required quality while satisfying extruder throughput and energy consumption requirements. Model adequacy has been verified using polyolefins’ and polyvinylchloride processing data in different extruders. The program complex, based on mathematical models, has been developed in order to control extruders of various types in order to ensure resource and energy saving in multi-assortment productions of polymeric films. Using the program complex in the control system for the extrusion stage of the polymeric film productions enables improving film quality, reducing spoilage, lessening the time required for production line change-over to other throughput and film type assignment.

  8. A new process for NOx reduction in combustion systems for the generation of energy from waste.

    PubMed

    Gohlke, Oliver; Weber, Toralf; Seguin, Philippe; Laborel, Yann

    2010-07-01

    In the EU, emissions from energy from waste plants are largely reduced by applying the Waste Incineration Directive with its limit of 200 mg/m3(s) for NO(x) emissions. The need for further improvement is reflected by new German legislation effective as of 27 January 2009, requiring 100 mg/m3(s). Other countries are expected to follow this example due to the national emission ceilings of the Gothenburg protocol and the concluding EU directive 2001/81/EC. On the other hand, an increase in energy efficiency will be encouraged by the EU Waste Framework Directive. This is why there is a need for new technologies that make it possible to reconcile both requirements: reduced emissions and increased energy efficiency. A new process combining the internal recirculation of flue gas with ammonia or urea injection in order to achieve less then 80 mg/m3(s) of NO(x) is described. Important additional features of the process are an R1 efficiency above the required 0.65 of the EU Waste Framework Directive even with standard steam parameters of 40 bar/380 degrees C as well as low ammonia slip in the flue gas at the boiler outlet of below 10 mg/m3(s). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. 10 CFR 1016.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope. 1016.2 Section 1016.2 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA General Provisions § 1016.2 Scope. The regulations in this part apply to all persons who may require access to Retricted Data used, processed, stored...

  10. 10 CFR 1016.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope. 1016.2 Section 1016.2 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA General Provisions § 1016.2 Scope. The regulations in this part apply to all persons who may require access to Retricted Data used, processed, stored...

  11. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  12. Product design for energy reduction in concurrent engineering: An Inverted Pyramid Approach

    NASA Astrophysics Data System (ADS)

    Alkadi, Nasr M.

    Energy factors in product design in concurrent engineering (CE) are becoming an emerging dimension for several reasons; (a) the rising interest in "green design and manufacturing", (b) the national energy security concerns and the dramatic increase in energy prices, (c) the global competition in the marketplace and global climate change commitments including carbon tax and emission trading systems, and (d) the widespread recognition of the need for sustainable development. This research presents a methodology for the intervention of energy factors in concurrent engineering product development process to significantly reduce the manufacturing energy requirement. The work presented here is the first attempt at integrating the design for energy in concurrent engineering framework. It adds an important tool to the DFX toolbox for evaluation of the impact of design decisions on the product manufacturing energy requirement early during the design phase. The research hypothesis states that "Product Manufacturing Energy Requirement is a Function of Design Parameters". The hypothesis was tested by conducting experimental work in machining and heat treating that took place at the manufacturing lab of the Industrial and Management Systems Engineering Department (IMSE) at West Virginia University (WVU) and at a major U.S steel manufacturing plant, respectively. The objective of the machining experiment was to study the effect of changing specific product design parameters (Material type and diameter) and process design parameters (metal removal rate) on a gear head lathe input power requirement through performing defined sets of machining experiments. The objective of the heat treating experiment was to study the effect of varying product charging temperature on the fuel consumption of a walking beams reheat furnace. The experimental work in both directions have revealed important insights into energy utilization in machining and heat-treating processes and its variance based on product, process, and system design parameters. In depth evaluation to how the design and manufacturing normally happen in concurrent engineering provided a framework to develop energy system levels in machining within the concurrent engineering environment using the method of "Inverted Pyramid Approach", (IPA). The IPA features varying levels of output energy based information depending on the input design parameters that is available during each stage (level) of the product design. The experimental work, the in-depth evaluation of design and manufacturing in CE, and the developed energy system levels in machining provided a solid base for the development of the model for the design for energy reduction in CE. The model was used to analyze an example part where 12 evolving designs were thoroughly reviewed to investigate the sensitivity of energy to design parameters in machining. The model allowed product design teams to address manufacturing energy concerns early during the design stage. As a result, ranges for energy sensitive design parameters impacting product manufacturing energy consumption were found in earlier levels. As designer proceeds to deeper levels in the model, this range tightens and results in significant energy reductions.

  13. Anaerobic digestion of stillage fractions - estimation of the potential for energy recovery in bioethanol plants.

    PubMed

    Drosg, B; Fuchs, W; Meixner, K; Waltenberger, R; Kirchmayr, R; Braun, R; Bochmann, G

    2013-01-01

    Stillage processing can require more than one third of the thermal energy demand of a dry-grind bioethanol production plant. Therefore, for every stillage fraction occurring in stillage processing the potential of energy recovery by anaerobic digestion (AD) was estimated. In the case of whole stillage up to 128% of the thermal energy demand in the process can be provided, so even an energetically self-sufficient bioethanol production process is possible. For wet cake the recovery potential of thermal energy is 57%, for thin stillage 41%, for syrup 40% and for the evaporation condensate 2.5%. Specific issues for establishing AD of stillage fractions are evaluated in detail; these are high nitrogen concentrations, digestate treatment and trace element supply. If animal feed is co-produced at the bioethanol plant and digestate fractions are to be reused as process water, a sufficient quality is necessary. Most interesting stillage fractions as substrates for AD are whole stillage, thin stillage and the evaporation condensate. For these fractions process details are presented.

  14. Low-Pressure Alcohol Distillation

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Zur Burg, F. W.; Cody, J. C.

    1984-01-01

    Heat requirements lowered for process. Temperature requirements lowered enough to make solar heat absorbed by flat-plate collectors feasible energy source. Alcohol produced without adding other solvents, eliminating need for dehydration or hydrocarbon stripping as final step.

  15. Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process.

    PubMed

    Yang, Xiaoyi; Wang, Xin; Wang, Lei

    2010-04-01

    For a better sewage sludge disposal and more efficient energy reclamation, transforming of components and energy in sludge by thermal and WAO pretreatment followed by two-phase anaerobic UASB process were studied in the pilot scale. Biogas outputs and the qualities and quantities of the effluent and solid residue were compared with a traditional anaerobic sludge digestion. Sludge components, including carbon, nitrogen, phosphorus, sulphur, were observed and mass balances were discussed throughout the process. The input and output energy balance was also studied. Results showed different trait to compare with biogas outputs in terms of COD added and raw sludge added. Pretreatment improved the transformation of carbon substances into biogas production with higher carbon removal and higher VSS removal. Comparing the energy obtained from biogas production with energy inputs required for pretreatment, energy output in the whole process decreased with higher pretreatment temperature. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Process Control in Production-Worthy Plasma Doping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, Edmund J.; Fang Ziwei; Arevalo, Edwin

    2006-11-13

    As the semiconductor industry continues to scale devices of smaller dimensions and improved performance, many ion implantation processes require lower energy and higher doses. Achieving these high doses (in some cases {approx}1x1016 ions/cm2) at low energies (<3 keV) while maintaining throughput is increasingly challenging for traditional beamline implant tools because of space-charge effects that limit achievable beam density at low energies. Plasma doping is recognized as a technology which can overcome this problem. In this paper, we highlight the technology available to achieve process control for all implant parameters associated with modem semiconductor manufacturing.

  17. An efficient start-up circuitry for de-energized ultra-low power energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hörmann, Leander B.; Berger, Achim; Salzburger, Lukas; Priller, Peter; Springer, Andreas

    2015-05-01

    Cyber-physical systems often include small wireless devices to measure physical quantities or control a technical process. These devices need a self-sufficient power supply because no wired infrastructure is available. Their operational time can be enhanced by energy harvesting systems. However, the convertible power is often limited and discontinuous which requires the need of an energy storage unit. If this unit (and thus the whole system) is de-energized, the start-up process may take a significant amount of time because of an inefficient energy harvesting process. Therefore, this paper presents a system which enables a safe and fast start-up from the de-energized state.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dafler, J.R.; Sinnott, J.; Novil, M.

    The first phase of a study to identify candidate processes and products suitable for future exploitation using high-temperature solar energy is presented. This phase has been principally analytical, consisting of techno-economic studies, thermodynamic assessments of chemical reactions and processes, and the determination of market potentials for major chemical commodities that use significant amounts of fossil resources today. The objective was to identify energy-intensive processes that would be suitable for the production of chemicals and fuels using solar energy process heat. Of particular importance was the comparison of relative costs and energy requirements for the selected solar product versus costs formore » the product derived from conventional processing. The assessment methodology used a systems analytical approach to identify processes and products having the greatest potential for solar energy-thermal processing. This approach was used to establish the basis for work to be carried out in subsequent phases of development. It has been the intent of the program to divide the analysis and process identification into the following three distinct areas: (1) process selection, (2) process evaluation, and (3) ranking of processes. Four conventional processes were selected for assessment namely, methanol synthesis, styrene monomer production, vinyl chloride monomer production, and terephthalic acid production.« less

  19. Feasibility study analysis for multi-function dual energy oven (case study: tapioca crackers small medium enterprise)

    NASA Astrophysics Data System (ADS)

    Soraya, N. W.; El Hadi, R. M.; Chumaidiyah, E.; Tripiawan, W.

    2017-12-01

    Conventional drying process is constrained by weather (cloudy / rainy), and requires wide drying area, and provides low-quality product. Multi-function dual energy oven is the appropriate technology to solve these problems. The oven uses solar thermal or gas heat for drying various type of products, including tapioca crackers. Investment analysis in technical, operational, and financial aspects show that the multi-function dual energy oven is feasible to be implemented for small medium enterprise (SME) processing tapioca crackers.

  20. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  1. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  2. Energy requirements of lactating women derived from doubly labeled water and milk energy output.

    PubMed

    Butte, N F; Wong, W W; Hopkinson, J M

    2001-01-01

    Instead of using an incremental approach to assess the energy requirements of lactation, a more comprehensive approach may be taken by measuring total energy expenditure (TEE), milk energy output and energy mobilization from tissue stores. The latter approach avoids assumptions regarding energetic efficiency and changes in physical activity and adiposity. The purpose of this study was threefold: to assess the energy requirements of lactation; to compare these estimates with energy requirements in the nonpregnant, nonlactating state and to test for energetic adaptations in basal metabolic rate (BMR) and physical activity during the energy-demanding process of lactation. Milk production and composition, body weight and composition, TEE, BMR and physical activity levels were measured in 24 well-nourished women during exclusive breastfeeding at 3 mo postpartum and after the cessation of breastfeeding at 18 or 24 mo postpartum. TEE was measured by the doubly labeled water method, milk production by 3-d test-weighing, milk energy by bomb calorimetry on a 24-h milk sample, body composition by dual-energy x-ray absorptiometry and BMR by room respiration calorimetry. TEE, BMR and physical activity level (physical activity level = TEE/BMR) did not differ between the lactating and nonlactating state (TEE 10.0 +/- 1.5 versus 10.6 +/- 2.1 MJ/d). Mean milk energy output was equivalent to 2.02 +/- 0.33 MJ/d. Total energy requirements were greater during lactation than afterward (12.0 +/- 1.4 versus 10.6 +/- 2.1 MJ/d, P: = 0.002). Energy mobilization from tissue stores (-0.65 +/- 0.97 MJ/d) resulted in net energy requirements during lactation of 11.4 +/- 1.8 MJ/d. Because adaptations in basal metabolism and physical activity were not evident in these well-nourished women, energy requirements during lactation were met primarily from the diet and only partially by mobilization of tissue stores.

  3. Solar energy research and utilization

    NASA Technical Reports Server (NTRS)

    Cherry, W. R.

    1974-01-01

    The role of solar energy is visualized in the heating and cooling of buildings, in the production of renewable gaseous, liquid and solid fuels, and in the production of electric power over the next 45 years. Potential impacts of solar energy on various energy markets, and estimated costs of such solar energy systems are discussed. Some typical solar energy utilization processes are described in detail. It is expected that at least 20% of the U.S. total energy requirements by 2020 will be delivered from solar energy.

  4. How might renewable energy technologies fit in the food-water-energy nexus?

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various metrics exist for defining land use impacts of energy technologies, with little consensus on how much total land is impacted or is necessary. Here we characterize the land use requirements of energy technologies by comparing various metrics from different studies, providing ranges of the potential land impact from alternative energy scenarios. Land use requirements for energy needs under these scenarios are compared with projected land use requirements for agriculture to support a growing population. The water implications of various energy and food scenarios are analyzed to provide insights into potential regional impacts or conflicts between sectors.

  5. Modeling of electrohydrodynamic drying process using response surface methodology

    PubMed Central

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-01-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box–Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM. PMID:24936289

  6. 7 CFR 4280.161 - Direct Loan Process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Renewable Energy Systems and Energy... available for direct loans; (2) Applicant and project eligibility criteria; (3) Minimum and maximum loan...; (11) Construction planning and performing development; (12) Requirements after project construction...

  7. 18 CFR 5.24 - Applications not requiring a draft NEPA document.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requiring a draft NEPA document. 5.24 Section 5.24 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.24 Applications not requiring a draft NEPA document. (a) If the Commission determines... environmental impact statement and that a draft environmental assessment will not be required, the Commission...

  8. 18 CFR 5.24 - Applications not requiring a draft NEPA document.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requiring a draft NEPA document. 5.24 Section 5.24 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.24 Applications not requiring a draft NEPA document. (a) If the Commission determines... environmental impact statement and that a draft environmental assessment will not be required, the Commission...

  9. 18 CFR 5.24 - Applications not requiring a draft NEPA document.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requiring a draft NEPA document. 5.24 Section 5.24 Conservation of Power and Water Resources FEDERAL ENERGY... APPLICATION PROCESS § 5.24 Applications not requiring a draft NEPA document. (a) If the Commission determines... environmental impact statement and that a draft environmental assessment will not be required, the Commission...

  10. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    NASA Astrophysics Data System (ADS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  11. Effect of Cotton Fiber Cohesion on Energy Use and Fiber Quality During Processing: 2nd Year

    USDA-ARS?s Scientific Manuscript database

    Energy is a significant expense for cotton gins, and consumers of cotton goods are increasingly concerned with the sustainability of cotton production. Previous research has demonstrated the effect of fiber-seed attachment force on the energy required to gin cotton, which will affect the ginning rat...

  12. Alternative Fuels Data Center: Ethanol Fuel Basics

    Science.gov Websites

    ethanol. Ethanol Energy Balance In the United States, 95% of ethanol is produced from the starch in corn demonstrates a positive energy balance, meaning that the process of producing ethanol fuel does not require energy balance of ethanol because the feedstocks are either waste, co-products of another industry (wood

  13. Advertising, marketing and purchase behavior for energy-related products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiedemann, K.; Nelson, D.

    Energy conservation programs have relied heavily on incentives and regulatory standards to reduce residential energy consumption. However, in the changing market environment characterized by competitive pressures, alternative mechanisms such as marketing and promotions may increase substantially in importance compared to the demand-side management programs which have been the focus of most research. This paper describes the role of marketing and promotions in encouraging energy efficiency at the household level in British Columbia. The paper examines three related issues: first, the purchase process for energy-related products; second, the criteria used by customers in making purchase decisions; and third, the impact andmore » effectiveness of alternative marketing tools. A key finding is the energy-related purchases do not fall into the impulse purchase category. There are two reasons for this: first, most of these products require installation and this requires a high level of commitment on the part of the purchaser; second, many energy-related products require a significant outlay of funds and this reduces impulse buying.« less

  14. Energy harvesting for dielectric elastomer sensing

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Illenberger, Patrin; O'Brien, Ben M.

    2016-04-01

    Soft and stretchy dielectric elastomer (DE) sensors can measure large strains on robotic devices and people. DE strain measurement requires electric energy to run the sensors. Energy is also required for information processing and telemetering of data to phone or computer. Batteries are expensive and recharging is inconvenient. One solution is to harvest energy from the strains that the sensor is exposed to. For this to work the harvester must also be wearable, soft, unobtrusive and profitable from the energy perspective; with more energy harvested than used for strain measurement. A promising way forward is to use the DE sensor as its own energy harvester. Our study indicates that it is feasible for a basic DE sensor to provide its own power to drive its own sensing signal. However telemetry and computation that are additional to this will require substantially more power than the sensing circuit. A strategy would involve keeping the number of Bluetooth data chirps low during the entire period of energy harvesting and to limit transmission to a fraction of the total time spent harvesting energy. There is much still to do to balance the energy budget. This will be a challenge but when we succeed it will open the door to autonomous DE multi-sensor systems without the requirement for battery recharge.

  15. Producing Hydrogen With Sunlight

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1987-01-01

    Costs high but reduced by further research. Producing hydrogen fuel on large scale from water by solar energy practical if plant costs reduced, according to study. Sunlight attractive energy source because it is free and because photon energy converts directly to chemical energy when it breaks water molecules into diatomic hydrogen and oxygen. Conversion process low in efficiency and photochemical reactor must be spread over large area, requiring large investment in plant. Economic analysis pertains to generic photochemical processes. Does not delve into details of photochemical reactor design because detailed reactor designs do not exist at this early stage of development.

  16. China Report, Economic Affairs, No. 397

    DTIC Science & Technology

    1983-11-10

    porphyry copper have also been discovered, together with molybdenum, tungsten, gold, silver and iron. Tibet’s potential reserve of copper is...abroad aimed at using optical fibres instead of copper and aluminum wires for the relaying of information. According to statistics, the energy required...to produce this kind of fibre is only one-thousandth of the energy required to mine, smelt, and process the same length of copper wire. After the

  17. Life‐cycle and cost of goods assessment of fed‐batch and perfusion‐based manufacturing processes for mAbs

    PubMed Central

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V.; Lettieri, Paola

    2016-01-01

    Life‐cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost‐efficient, robust and environmentally‐friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale‐up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed‐batch (FB) and perfusion‐based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO2 than the FB process. Water consumption was the most important impact category, especially when scaling‐up the processes, as energy was required to produce process water and water‐for‐injection, while CO2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally‐friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324–1335, 2016 PMID:27390260

  18. Life-cycle and cost of goods assessment of fed-batch and perfusion-based manufacturing processes for mAbs.

    PubMed

    Bunnak, Phumthep; Allmendinger, Richard; Ramasamy, Sri V; Lettieri, Paola; Titchener-Hooker, Nigel J

    2016-09-01

    Life-cycle assessment (LCA) is an environmental assessment tool that quantifies the environmental impact associated with a product or a process (e.g., water consumption, energy requirements, and solid waste generation). While LCA is a standard approach in many commercial industries, its application has not been exploited widely in the bioprocessing sector. To contribute toward the design of more cost-efficient, robust and environmentally-friendly manufacturing process for monoclonal antibodies (mAbs), a framework consisting of an LCA and economic analysis combined with a sensitivity analysis of manufacturing process parameters and a production scale-up study is presented. The efficiency of the framework is demonstrated using a comparative study of the two most commonly used upstream configurations for mAb manufacture, namely fed-batch (FB) and perfusion-based processes. Results obtained by the framework are presented using a range of visualization tools, and indicate that a standard perfusion process (with a pooling duration of 4 days) has similar cost of goods than a FB process but a larger environmental footprint because it consumed 35% more water, demanded 17% more energy, and emitted 17% more CO 2 than the FB process. Water consumption was the most important impact category, especially when scaling-up the processes, as energy was required to produce process water and water-for-injection, while CO 2 was emitted from energy generation. The sensitivity analysis revealed that the perfusion process can be made more environmentally-friendly than the FB process if the pooling duration is extended to 8 days. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1324-1335, 2016. © 2016 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  19. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    PubMed

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.

  20. Thunder Energy Inc. applications to modify an existing sweet gas processing facility to a sour gas processing facility and increase the hydrogen sulfide concentration of existing pipelines, Kelsey area: Examiner report 98-2, application numbers 1007719 and 1013399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Thunder Energy Inc. received approval from the Alberta Energy and Utilities Board for modification of an existing gas plant to process sour gas, and also applied for permission to increase the hydrogen sulfide content of its existing pipelines in the Kelsey area. This report presents the views of Thunder Energy, the Board, and various intervenors at a hearing held to consider objections to the plant approval and matters related to the application. Issues considered include the need for sour gas processing, the need for the plant modification as opposed to the feasibility of using existing sour gas processing facilities, environmentalmore » impacts, and the requirements for notification of industry in the area. The report concludes with the Board`s decision.« less

  1. Physical Properties of Nyamplung Oil (Calophyllum inophyllum L) for Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Dewang, Syamsir; Suriani; Hadriani, Siti; Bannu; Abdullah, B.

    2017-05-01

    Worldwide energy crisis due to the too high of energy consumption causes the people trying to find alternative energy to support energy requirements. The use of energy from environmentally friendly plant-based materials into an effort to assist communities in sufficient of national energy needs. Some processing of Nyamplung (Calophyllum inophyllum L) oil production is drying and pressing to produce crude oil. Degumming process is then performed to remove the sap contained in the oil. The next process is to remove free fatty acids (FFA) below 2% that can cause corrosion on the machine when in use. The results performed of the density properties quality to produce oil that appropriate with the international standards by time variation of catalyst. The result was obtained the density value of 0.92108 gr/cm3 at the time of 3 hours by trans-esterification process, and the best yield value was measured at 98.2% in 2 hours stirring of transesterification.

  2. FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...

  3. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    PubMed

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  4. 10 CFR 51.26 - Requirement to publish notice of intent and conduct scoping process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Requirement to publish notice of intent and conduct... publish notice of intent and conduct scoping process. (a) Whenever the appropriate NRC staff director... action, a notice of intent will be prepared as provided in § 51.27, and will be published in the Federal...

  5. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues.

    PubMed

    Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue

    2018-03-01

    Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  7. Creative user-centered visualization design for energy analysts and modelers.

    PubMed

    Goodwin, Sarah; Dykes, Jason; Jones, Sara; Dillingham, Iain; Dove, Graham; Duffy, Alison; Kachkaev, Alexander; Slingsby, Aidan; Wood, Jo

    2013-12-01

    We enhance a user-centered design process with techniques that deliberately promote creativity to identify opportunities for the visualization of data generated by a major energy supplier. Visualization prototypes developed in this way prove effective in a situation whereby data sets are largely unknown and requirements open - enabling successful exploration of possibilities for visualization in Smart Home data analysis. The process gives rise to novel designs and design metaphors including data sculpting. It suggests: that the deliberate use of creativity techniques with data stakeholders is likely to contribute to successful, novel and effective solutions; that being explicit about creativity may contribute to designers developing creative solutions; that using creativity techniques early in the design process may result in a creative approach persisting throughout the process. The work constitutes the first systematic visualization design for a data rich source that will be increasingly important to energy suppliers and consumers as Smart Meter technology is widely deployed. It is novel in explicitly employing creativity techniques at the requirements stage of visualization design and development, paving the way for further use and study of creativity methods in visualization design.

  8. Investigation of Recombination Processes In A Magnetized Plasma

    NASA Technical Reports Server (NTRS)

    Chavers, Greg; Chang-Diaz, Franklin; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Interplanetary travel requires propulsion systems that can provide high specific impulse (Isp), while also having sufficient thrust to rapidly accelerate large payloads. One such propulsion system is the Variable Specific Impulse Magneto-plasma Rocket (VASIMR), which creates, heats, and exhausts plasma to provide variable thrust and Isp, optimally meeting the mission requirements. A large fraction of the energy to create the plasma is frozen in the exhaust in the form of ionization energy. This loss mechanism is common to all electromagnetic plasma thrusters and has an impact on their efficiency. When the device operates at high Isp, where the exhaust kinetic energy is high compared to the ionization energy, the frozen flow component is of little consequence; however, at low Isp, the effect of the frozen flow may be important. If some of this energy could be recovered through recombination processes, and re-injected as neutral kinetic energy, the efficiency of VASIMR, in its low Isp/high thrust mode may be improved. In this operating regime, the ionization energy is a large portion of the total plasma energy. An experiment is being conducted to investigate the possibility of recovering some of the energy used to create the plasma. This presentation will cover the progress and status of the experiment involving surface recombination of the plasma.

  9. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany

    DOE PAGES

    Cebulla, Felix; Haas, Jannik; Eichman, Josh; ...

    2018-02-03

    Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less

  10. How much electrical energy storage do we need? A synthesis for the U.S., Europe, and Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebulla, Felix; Haas, Jannik; Eichman, Josh

    Electrical energy storage (EES) is a promising flexibility source for prospective low-carbon energy systems. In the last couple of years, many studies for EES capacity planning have been produced. However, these resulted in a very broad range of power and energy capacity requirements for storage, making it difficult for policymakers to identify clear storage planning recommendations. Therefore, we studied 17 recent storage expansion studies pertinent to the U.S., Europe, and Germany. We then systemized the storage requirement per variable renewable energy (VRE) share and generation technology. Our synthesis reveals that with increasing VRE shares, the EES power capacity increases linearly;more » and the energy capacity, exponentially. Further, by analyzing the outliers, the EES energy requirements can be at least halved. It becomes clear that grids dominated by photovoltaic energy call for more EES, while large shares of wind rely more on transmission capacity. Taking into account the energy mix clarifies - to a large degree - the apparent conflict of the storage requirements between the existing studies. Finally, there might exist a negative bias towards storage because transmission costs are frequently optimistic (by neglecting execution delays and social opposition) and storage can cope with uncertainties, but these issues are rarely acknowledged in the planning process.« less

  11. Energy Reconstruction for Events Detected in TES X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  12. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  13. Implementation of Energy Code Controls Requirements in New Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael I.; Hart, Philip R.; Hatten, Mike

    Most state energy codes in the United States are based on one of two national model codes; ANSI/ASHRAE/IES 90.1 (Standard 90.1) or the International Code Council (ICC) International Energy Conservation Code (IECC). Since 2004, covering the last four cycles of Standard 90.1 updates, about 30% of all new requirements have been related to building controls. These requirements can be difficult to implement and verification is beyond the expertise of most building code officials, yet the assumption in studies that measure the savings from energy codes is that they are implemented and working correctly. The objective of the current research ismore » to evaluate the degree to which high impact controls requirements included in commercial energy codes are properly designed, commissioned and implemented in new buildings. This study also evaluates the degree to which these control requirements are realizing their savings potential. This was done using a three-step process. The first step involved interviewing commissioning agents to get a better understanding of their activities as they relate to energy code required controls measures. The second involved field audits of a sample of commercial buildings to determine whether the code required control measures are being designed, commissioned and correctly implemented and functioning in new buildings. The third step includes compilation and analysis of the information gather during the first two steps. Information gathered during these activities could be valuable to code developers, energy planners, designers, building owners, and building officials.« less

  14. Immersion frying for the thermal drying of sewage sludge: an economic assessment.

    PubMed

    Peregrina, Carlos; Rudolph, Victor; Lecomte, Didier; Arlabosse, Patricia

    2008-01-01

    This paper presents an economic study of a novel thermal fry-drying technology which transforms sewage sludge and recycled cooking oil (RCO) into a solid fuel. The process is shown to have significant potential advantage in terms of capital costs (by factors of several times) and comparable operating costs. Three potential variants of the process have been simulated and costed in terms of both capital and operating requirements for a commercial scale of operation. The differences are in the energy recovery systems, which include a simple condensation of the evaporated water and two different heat pump configurations. Simple condensation provides the simplest process, but the energy efficiency gain of an open heat pump offset this, making it economically somewhat more attractive. In terms of operating costs, current sludge dryers are dominated by maintenance and energy requirements, while for fry-drying these are comparatively small. Fry-drying running costs are dominated by provision of makeup waste oil. Cost reduction could focus on cheaper waste oil, e.g. from grease trap waste.

  15. Inertial Energy Storage for Spacecraft

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.

    1984-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.

  16. Powering the planet: Chemical challenges in solar energy utilization

    PubMed Central

    Lewis, Nathan S.; Nocera, Daniel G.

    2006-01-01

    Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO2 emissions in the atmosphere demands that holding atmospheric CO2 levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species. PMID:17043226

  17. Powering the planet: chemical challenges in solar energy utilization.

    PubMed

    Lewis, Nathan S; Nocera, Daniel G

    2006-10-24

    Global energy consumption is projected to increase, even in the face of substantial declines in energy intensity, at least 2-fold by midcentury relative to the present because of population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of CO(2) emissions in the atmosphere demands that holding atmospheric CO(2) levels to even twice their preanthropogenic values by midcentury will require invention, development, and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable energy resources, solar energy is by far the largest exploitable resource, providing more energy in 1 hour to the earth than all of the energy consumed by humans in an entire year. In view of the intermittency of insolation, if solar energy is to be a major primary energy source, it must be stored and dispatched on demand to the end user. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., in a photosynthetic process at a year-round average efficiency significantly higher than current plants or algae, to reduce land-area requirements. Scientific challenges involved with this process include schemes to capture and convert solar energy and then store the energy in the form of chemical bonds, producing oxygen from water and a reduced fuel such as hydrogen, methane, methanol, or other hydrocarbon species.

  18. Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.

    2011-01-01

    We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.

  19. Processing hardwood bark residues by screening

    Treesearch

    David M. Emanuel

    1978-01-01

    Most of the hardwood bark residues removed by floating-cutterhead or rosserhead debarkers can be processed into acceptable bark products by screening alone. And by prescreening bark residues, operators of bark processing plants can use smaller hammermills than otherwise are required, thus lowering investment and energy costs.

  20. Coal conversion systems design and process modeling. Volume 1: Application of MPPR and Aspen computer models

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.

  1. Bioinspired catalytic materials for energy-relevant conversions

    NASA Astrophysics Data System (ADS)

    Artero, Vincent

    2017-09-01

    The structure of active sites of enzymes involved in bioenergetic processes can inspire design of active, stable and cost-effective catalysts for renewable-energy technologies. For these materials to reach maturity, the benefits of bioinspired systems must be combined with practical technological requirements.

  2. HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS

    EPA Science Inventory

    The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...

  3. Sustainability of Welding Process through Bobbin Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  4. Physical activity, energy requirements, and adequacy of dietary intakes of older persons in a rural Filipino community.

    PubMed

    Risonar, Maria Grace D; Rayco-Solon, Pura; Ribaya-Mercado, Judy D; Solon, Juan Antonio A; Cabalda, Aegina B; Tengco, Lorena W; Solon, Florentino S

    2009-05-04

    Aging is a process associated with physiological changes such as in body composition, energy expenditure and physical activity. Data on energy and nutrient intake adequacy among elderly is important for disease prevention, health maintenance and program development. This descriptive cross-sectional study was designed to determine the energy requirements and adequacy of energy and nutrient intakes of older persons living in private households in a rural Filipino community. Study participants were generally-healthy, ambulatory, and community living elderly aged 60-100 y (n = 98), 88 of whom provided dietary information in three nonconsecutive 24-hour food-recall interviews. There was a decrease in both physical activity and food intake with increasing years. Based on total energy expenditure and controlling for age, gender and socio-economic status, the average energy requirement for near-old (>or= 60 to < 65 y) males was 2074 kcal/d, with lower requirements, 1919 and 1699 kcal/d for the young-old (>or= 65 to < 75 y) and the old-old (>or= 75 y), respectively. Among females, the average energy requirements for the 3 age categories were 1712, 1662, and 1398 kcal/d, respectively. Actual energy intakes, however, were only approximately 65% adequate for all subjects as compared to energy expenditure. Protein, fat, and micronutrients (vitamins A and C, thiamin, riboflavin, iron and calcium) intakes were only approximately 24-51% of the recommended daily intake. Among this population, there was a weight decrease of 100 g (p = 0.012) and a BMI decrease of 0.04 kg/m2 (p = 0.003) for every 1% decrease in total caloric intake as percentage of the total energy expenditure requirements. These community living elderly suffer from lack of both macronutrient intake as compared with energy requirements, and micronutrient intake as compared with the standard dietary recommendations. Their energy intakes are ~65% of the amounts required based on their total energy expenditure. Though their intakes decrease with increasing age, so do their energy expenditure, making their relative insufficiency of food intake stable with age.

  5. Physical activity, energy requirements, and adequacy of dietary intakes of older persons in a rural Filipino community

    PubMed Central

    Risonar, Maria Grace D; Rayco-Solon, Pura; Ribaya-Mercado, Judy D; Solon, Juan Antonio A; Cabalda, Aegina B; Tengco, Lorena W; Solon, Florentino S

    2009-01-01

    Background Aging is a process associated with physiological changes such as in body composition, energy expenditure and physical activity. Data on energy and nutrient intake adequacy among elderly is important for disease prevention, health maintenance and program development. Methods This descriptive cross-sectional study was designed to determine the energy requirements and adequacy of energy and nutrient intakes of older persons living in private households in a rural Filipino community. Study participants were generally-healthy, ambulatory, and community living elderly aged 60–100 y (n = 98), 88 of whom provided dietary information in three nonconsecutive 24-hour food-recall interviews. Results There was a decrease in both physical activity and food intake with increasing years. Based on total energy expenditure and controlling for age, gender and socio-economic status, the average energy requirement for near-old (≥ 60 to < 65 y) males was 2074 kcal/d, with lower requirements, 1919 and 1699 kcal/d for the young-old (≥ 65 to < 75 y) and the old-old (≥ 75 y), respectively. Among females, the average energy requirements for the 3 age categories were 1712, 1662, and 1398 kcal/d, respectively. Actual energy intakes, however, were only ~65% adequate for all subjects as compared to energy expenditure. Protein, fat, and micronutrients (vitamins A and C, thiamin, riboflavin, iron and calcium) intakes were only ~24–51% of the recommended daily intake. Among this population, there was a weight decrease of 100 g (p = 0.012) and a BMI decrease of 0.04 kg/m2 (p = 0.003) for every 1% decrease in total caloric intake as percentage of the total energy expenditure requirements. Conclusion These community living elderly suffer from lack of both macronutrient intake as compared with energy requirements, and micronutrient intake as compared with the standard dietary recommendations. Their energy intakes are ~65% of the amounts required based on their total energy expenditure. Though their intakes decrease with increasing age, so do their energy expenditure, making their relative insufficiency of food intake stable with age. PMID:19409110

  6. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-03

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.

  7. Energy Efficiency of the Outotec® Ausmelt Process for Primary Copper Smelting

    NASA Astrophysics Data System (ADS)

    Wood, Jacob; Hoang, Joey; Hughes, Stephen

    2017-03-01

    The global, non-ferrous smelting industry has witnessed the continual development and evolution of processing technologies in a bid to reduce operating costs and improve the safety and environmental performance of processing plants. This is particularly true in the copper industry, which has seen a number of bath smelting technologies developed and implemented during the past 30 years. The Outotec® Ausmelt Top Submerged Lance Process is one such example, which has been widely adopted in the modernisation of copper processing facilities in China and Russia. Despite improvements in the energy efficiency of modern copper smelting and converting technologies, additional innovation and development is required to further reduce energy consumption, whilst still complying with stringent environmental regulations. In response to this challenge, the Ausmelt Process has undergone significant change and improvement over the course of its history, in an effort to improve its overall competitiveness, particularly with respect to energy efficiency and operating costs. This paper covers a number of recent advances to the technology and highlights the impacts of these developments in reducing energy consumptions for a range of different copper flowsheets. It also compares the energy efficiency of the Ausmelt Process against the Bottom Blown Smelting process, which has become widely adopted in China over the past 5-10 years.

  8. Manufacture of silicon carbide using solar energy

    DOEpatents

    Glatzmaier, Gregory C.

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  9. Prediction of a low-temperature N2 dissociation catalyst exploiting near-IR–to–visible light nanoplasmonics

    PubMed Central

    Martirez, John Mark P.; Carter, Emily A.

    2017-01-01

    Despite more than a century of advances in catalyst and production plant design, the Haber-Bosch process for industrial ammonia (NH3) synthesis still requires energy-intensive high temperatures and pressures. We propose taking advantage of sunlight conversion into surface plasmon resonances in Au nanoparticles to enhance the rate of the N2 dissociation reaction, which is the bottleneck in NH3 production. We predict that this can be achieved through Mo doping of the Au surface based on embedded multireference correlated wave function calculations. The Au component serves as a light-harvesting antenna funneling energy onto the Mo active site, whereby excited-state channels (requiring 1.4 to 1.45 eV, near-infrared–to–visible plasmon resonances) may be accessed. This effectively lowers the energy barriers to 0.44 to 0.77 eV/N2 (43 to 74 kJ/mol N2) from 3.5 eV/N2 (335 kJ/mol N2) in the ground state. The overall process requires three successive surface excitation events, which could be facilitated by amplified resonance energy transfer due to plasmon local field enhancement. PMID:29291247

  10. Pathways for Energization of Ca in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2015-01-01

    We investigate the possible pathways to produce the extreme energy observed in the calcium exosphere of Mercury. Any mechanism must explain the facts that Ca in Mercury's exosphere is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Simple diatomic molecules or their clusters are considered, focusing on calcium oxides while acknowledging that Ca sulfides may also be the precursor molecules. We first discuss impact vaporization to justify the assumption that CaO and Ca-oxide clusters are expected from impacts on Mercury. Then we discuss processes by which the atomic Ca is energized to a 70,000 K gas. The processes considered are (1) electron-impact dissociation of CaO molecules, (2) spontaneous dissociation of Ca-bearing molecules following impact vaporization, (3) shock-induced dissociative ionization, (4) photodissociation and (5) sputtering. We conclude that electron-impact dissociation cannot produce the required abundance of Ca, and sputtering cannot reproduce the observed spatial and temporal variation that is measured. Spontaneous dissociation is unlikely to result in the high energy that is seen. Of the two remaining processes, shock induced dissociative ionization produces the required energy and comes close to producing the required abundance, but rates are highly dependent on the incoming velocity distribution of the impactors. Photodissociation probably can produce the required abundance of Ca, but simulations show that photodissociation cannot reproduce the observed spatial distribution.

  11. Solar energy for process heat: Design/cost studies of four industrial retrofit applications

    NASA Technical Reports Server (NTRS)

    French, R. L.; Bartera, R. E.

    1978-01-01

    Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.

  12. A comparison of the energy use of in situ product recovery techniques for the Acetone Butanol Ethanol fermentation.

    PubMed

    Outram, Victoria; Lalander, Carl-Axel; Lee, Jonathan G M; Davis, E Timothy; Harvey, Adam P

    2016-11-01

    The productivity of the Acetone Butanol Ethanol (ABE) fermentation can be significantly increased by application of various in situ product recovery (ISPR) techniques. There are numerous technically viable processes, but it is not clear which is the most economically viable in practice. There is little available information about the energy requirements and economics of ISPR for the ABE fermentation. This work compares various ISPR techniques based on UniSim process simulations of the ABE fermentation. The simulations provide information on the process energy and separation efficiency, which is fed into an economic assessment. Perstraction was the only technique to reduce the energy demand below that of a batch process, by approximately 5%. Perstraction also had the highest profit increase over a batch process, by 175%. However, perstraction is an immature technology, so would need significant development before being integrated to an industrial process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Bioconversion of lignocellulosic biomass to xylitol: An overview.

    PubMed

    Venkateswar Rao, Linga; Goli, Jyosthna Khanna; Gentela, Jahnavi; Koti, Sravanthi

    2016-08-01

    Lignocellulosic wastes include agricultural and forest residues which are most promising alternative energy sources and serve as potential low cost raw materials that can be exploited to produce xylitol. The strong physical and chemical construction of lignocelluloses is a major constraint for the recovery of xylose. The large scale production of xylitol is attained by nickel catalyzed chemical process that is based on xylose hydrogenation, that requires purified xylose as raw substrate and the process requires high temperature and pressure that remains to be cost intensive and energy consuming. Therefore, there is a necessity to develop an integrated process for biotechnological conversion of lignocelluloses to xylitol and make the process economical. The present review confers about the pretreatment strategies that facilitate cellulose and hemicellulose acquiescent for hydrolysis. There is also an emphasis on various detoxification and fermentation methodologies including genetic engineering strategies for the efficient conversion of xylose to xylitol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    NASA Astrophysics Data System (ADS)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  15. Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation.

    PubMed

    Apollo, Seth; Aoyi, Ochieng

    2016-09-01

    Anaerobic digestion (AD) can remove substantial amount of organic load when applied in treating distillery effluent but it is ineffective in colour reduction. Conversely, photodegradation is effective in colour reduction but has high energy requirement. A study on the synergy of a combined AD and ultra violet (UV) photodegradation treatment of distillery effluent was carried out in fluidized bed reactors to evaluate pollution reduction and energy utilization efficiencies. The combined process improved colour removal from 41% to 85% compared to that of AD employed as a stand-alone process. An overall corresponding total organic carbon (TOC) reduction of 83% was achieved. The bioenergy production by the AD step was 14.2 kJ/g total organic carbon (TOC) biodegraded while UV lamp energy consumption was 0.9 kJ/mg TOC, corresponding to up to 100% colour removal. Electrical energy per order analysis for the photodegradation process showed that the bioenergy produced was 20% of that required by the UV lamp to photodegrade 1 m(3) of undiluted pre-AD treated effluent up to 75% colour reduction. It was concluded that a combined AD-UV system for treatment of distillery effluent is effective in organic load removal and can be operated at a reduced cost.

  16. Technologies for Upgrading Light Water Reactor Outlet Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less

  17. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrow, William R.; Marano, John; Sathaye, Jayant

    2013-02-01

    Adoption of efficient process technologies is an important approach to reducing CO 2 emissions, in particular those associated with combustion. In many cases, implementing energy efficiency measures is among the most cost-effective approaches that any refiner can take, improving productivity while reducing emissions. Therefore, careful analysis of the options and costs associated with efficiency measures is required to establish sound carbon policies addressing global climate change, and is the primary focus of LBNL’s current petroleum refining sector analysis for the U.S. Environmental Protection Agency. The analysis is aimed at identifying energy efficiency-related measures and developing energy abatement supply curves andmore » CO 2 emissions reduction potential for the U.S. refining industry. A refinery model has been developed for this purpose that is a notional aggregation of the U.S. petroleum refining sector. It consists of twelve processing units and account s for the additional energy requirements from steam generation, hydrogen production and water utilities required by each of the twelve processing units. The model is carbon and energy balanced such that crud e oil inputs and major refinery sector outputs (fuels) are benchmarked to 2010 data. Estimates of the current penetration for the identified energy efficiency measures benchmark the energy requirements to those reported in U.S. DOE 2010 data. The remaining energy efficiency potential for each of the measures is estimated and compared to U.S. DOE fuel prices resulting in estimates of cost- effective energy efficiency opportunities for each of the twelve major processes. A combined cost of conserved energy supply curve is also presented along with the CO 2 emissions abatement opportunities that exist in the U.S. petroleum refinery sector. Roughly 1,200 PJ per year of primary fuels savings and close to 500 GWh per y ear of electricity savings are potentially cost-effective given U.S. DOE fuel price forecasts. This represents roughly 70 million metric tonnes of CO 2 emission reductions assuming 2010 emissions factor for grid electricity. Energy efficiency measures resulting in an additional 400 PJ per year of primary fuels savings and close to 1,700 GWh per year of electricity savings, and an associated 24 million metric tonnes of CO 2 emission reductions are not cost-effective given the same assumption with respect to fuel prices and electricity emissions factors. Compared to the modeled energy requirements for the U.S. petroleum refining sector, the cost effective potential represents a 40% reduction in fuel consumption and a 2% reduction in electricity consumption. The non-cost-effective potential represents an additional 13% reduction in fuel consumption and an additional 7% reduction in electricity consumption. The relative energy reduction potentials are mu ch higher for fuel consumption than electricity consumption largely in part because fuel is the primary energy consumption type in the refineries. Moreover, many cost effective fuel savings measures would increase electricity consumption. The model also has the potential to be used to examine the costs and benefits of the other CO 2 mitigation options, such as combined heat and power (CHP), carbon capture, and the potential introduction of biomass feedstocks. However, these options are not addressed in this report as this report is focused on developing the modeling methodology and assessing fuels savings measures. These opportunities to further reduce refinery sector CO 2 emissions and are recommended for further research and analysis.« less

  18. 10 CFR 1017.28 - Processing on Automated Information Systems (AIS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing on Automated Information Systems (AIS). 1017.28... UNCLASSIFIED CONTROLLED NUCLEAR INFORMATION Physical Protection Requirements § 1017.28 Processing on Automated Information Systems (AIS). UCNI may be processed or produced on any AIS that complies with the guidance in OMB...

  19. 50% Advanced Energy Design Guides: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2012-07-01

    This paper presents the process, methodology, and assumptions for the development of the 50% Energy Savings Advanced Energy Design Guides (AEDGs), a design guidance document that provides specific recommendations for achieving 50% energy savings above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004 in four building types: (1) Small to medium office buildings, (2) K-12 school buildings, (3) Medium to big box retail buildings, (4) Large hospital buildings.

  20. Dose Control System in the Optima XE Single Wafer High Energy Ion Implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satoh, Shu; Yoon, Jongyoon; David, Jonathan

    2011-01-07

    Photoresist outgassing can significantly compromise accurate dosimetry of high energy implants. High energy implant even at a modest beam current produces high beam powers which create significantly worse outgassing than low and medium energy implants and the outgassing continues throughout the implant due to the low dose in typical high energy implant recipes. In the previous generation of high energy implanters, dose correction by monitoring of process chamber pressure during photoresist outgassing has been used. However, as applications diversify and requirements change, the need arises for a more versatile photoresist correction system to match the versatility of a single wafermore » high energy ion implanter. We have successfully developed a new dosimetry system for the Optima XE single wafer high energy ion implanter which does not require any form of compensation due to the implant conditions. This paper describes the principles and performance of this new dose system.« less

  1. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    PubMed

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation.

  2. From Policy to Compliance: Federal Energy Efficient Product Procurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMates, Laurèn; Scodel, Anna

    Federal buyers are required to purchase energy-efficient products in an effort to minimize energy use in the federal sector, save the federal government money, and spur market development of efficient products. The Federal Energy Management Program (FEMP)’s Energy Efficient Product Procurement (EEPP) Program helps federal agencies comply with the requirement to purchase energy-efficient products by providing technical assistance and guidance and setting efficiency requirements for certain product categories. Past studies have estimated the savings potential of purchasing energy-efficient products at over $500 million per year in energy costs across federal agencies.1 Despite the strong policy support for EEPP and resourcesmore » available, energy-efficient product purchasing operates within complex decision-making processes and operational structures; implementation challenges exist that may hinder agencies’ ability to comply with purchasing requirements. The shift to purchasing green products, including energy-efficient products, relies on “buy in” from a variety of potential actors throughout different purchasing pathways. Challenges may be especially high for EEPP relative to other sustainable acquisition programs given that efficient products frequently have a higher first cost than non-efficient ones, which may be perceived as a conflict with fiscal responsibility, or more simply problematic for agency personnel trying to stretch limited budgets. Federal buyers may also face challenges in determining whether a given product is subject to EEPP requirements. Previous analysis on agency compliance with EEPP, conducted by the Alliance to Save Energy (ASE), shows that federal agencies are getting better at purchasing energy-efficient products. ASE conducted two reviews of relevant solicitations for product and service contracts listed on Federal Business Opportunities (FBO), the centralized website where federal agencies are required to post procurements greater than $25,000. In 2010, ASE estimated a compliance rate of 46% in 2010, up from an estimate of 12% in 2008. Our work updates and expands on ASE’s 2010 analysis to gauge agency compliance with EEPP requirements.« less

  3. Program evaluation in integrated resource planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Council, C.D.

    1994-12-31

    The Western Area Power Administration along with the Southwestern and Southeastern Power Administrations joined together to develop a set of integrated resource planning (IRP) tools to help their customers development and implement an IRP process. The project has been entitled the Resource Planning Guide (RPG), and is specifically designed to help small- to mid-sized utilities analyze supply- and demand-side alternatives as part of an IRP process. The RPG project will be available in January 1994 and will include such support as: workshops, technical assistance, an RPG hotline, and an RPG User`s Group for the project. The RPG grew out ofmore » the interest shown by utility customers who wanted a user-friendly tool to aid in their application of the IRP process. The project has been field tested by 43 utilities and related organizations over the last year, has sparked interest both nationally and internationally, and is now available for public use. The program evaluation aspects of the IRP process are heightened by a requirement of the Energy Policy Act of 1992 which requires all long-term power customers of the Western Area Power Administration to develop, implement, and monitor an IRP process. The EPAct defines IRP as: A planning process for new energy resources that evaluates the full range of alternatives, including new generating capacity, power purchases, energy conservation and efficiency, cogeneration and district heating and cooling applications, and renewable energy resources, to provide adequate and reliable service to its electric customers at the lowest system cost. The process takes into account necessary features for system operation, such as diversity, reliability, dispatchability, and other factors of risk; the ability to verify energy savings achieved through energy conservation and efficiency and the projected durability of such savings measured over time; and treats demand and supply resources on a consistent and integrated basis.« less

  4. Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes.

    PubMed

    Emami, Nasir; Sobhani, Reza; Rosso, Diego

    2018-04-01

    A model was developed for a water resources recovery facility (WRRF) activated sludge process (ASP) in Modified Ludzack-Ettinger (MLE) configuration. Amplification of air requirements and its associated energy consumptions were observed as a result of concurrent circadian variations in ASP influent flow and carbonaceous/nitrogenous constituent concentrations. The indirect carbon emissions associated with the ASP aeration were further amplified due to the simultaneous variations in carbon emissions intensity (kgCO 2,eq (kWh) -1 ) and electricity consumption (kWh). The ratio of peak to minimum increased to 3.4 (for flow), 4.2 (for air flow and energy consumption), and 5.2 (for indirect CO 2,eq emission), which is indicative of strong amplification. Similarly, the energy costs for ASP aeration were further increased due to the concurrency of peak energy consumptions and power demands with time of use peak electricity rates. A comparison between the results of the equilibrium model and observed data from the benchmark WRRF demonstrated under- and over-aeration attributed to the circadian variation in air requirements and limitations associated with the aeration system specification and design.

  5. Moving toward energy security and sustainability in 2050 by reconfiguring biofuel production

    USDA-ARS?s Scientific Manuscript database

    To achieve energy security and sustainability by 2050 requires reconfiguring biofuel production both by building on current infrastructure and existing technology and also by making substantial improvements and changes in the feedstocks used, the process technologies applied, and the fuels produced....

  6. Assessment of flywheel energy storage for spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, G. E.; Studer, P. A.; Baer, D. A.

    1983-01-01

    The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.

  7. Thermal activation of dislocations in large scale obstacle bypass

    NASA Astrophysics Data System (ADS)

    Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique

    2017-08-01

    Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.

  8. Design, construction, operation and costs of a modern small-scale fuel-alcohol plant

    NASA Astrophysics Data System (ADS)

    Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.

    1982-01-01

    The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.

  9. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    PubMed

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Michael; Jonlin, Duane; Nadel, Steven

    Today’s building energy codes focus on prescriptive requirements for features of buildings that are directly controlled by the design and construction teams and verifiable by municipal inspectors. Although these code requirements have had a significant impact, they fail to influence a large slice of the building energy use pie – including not only miscellaneous plug loads, cooking equipment and commercial/industrial processes, but the maintenance and optimization of the code-mandated systems as well. Currently, code compliance is verified only through the end of construction, and there are no limits or consequences for the actual energy use in an occupied building. Inmore » the future, our suite of energy regulations will likely expand to include building efficiency, energy use or carbon emission budgets over their full life cycle. Intelligent building systems, extensive renewable energy, and a transition from fossil fuel to electric heating systems will likely be required to meet ultra-low-energy targets. This paper lays out the authors’ perspectives on how buildings may evolve over the course of the 21st century and the roles that codes and regulations will play in shaping those buildings of the future.« less

  11. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities formore » energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.« less

  12. Integration of sustainability into process simulaton of a dairy process

    USDA-ARS?s Scientific Manuscript database

    Life cycle analysis, a method used to quantify the energy and environmental flows of a process or product on the environment, is increasingly utilized by food processors to develop strategies to lessen the carbon footprint of their operations. In the case of the milk supply chain, the method requir...

  13. 76 FR 26579 - Procedures for Submitting to the Department of Energy Trade Secrets and Commercial or Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... procedures DOE uses to process loan applications submitted to DOE's Advanced Technology Vehicles... information. The procedures are modeled after existing procedures DOE uses to process loan applications... requirements as described above for any information submitted through the Title XVII loan application process...

  14. 76 FR 13300 - Procedures for Submitting to the Department of Energy Trade Secrets and Commercial or Financial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... procedures DOE uses to process loan applications submitted to DOE's Advanced Technology Vehicles... procedures DOE uses to process loan applications submitted to DOE's Advanced Technology Vehicles... requirements as described above for any information submitted through the Title XVII loan application process...

  15. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    PubMed

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  17. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    NASA Astrophysics Data System (ADS)

    Corbella, C.; Rubio-Roy, M.; Bertran, E.; Portal, S.; Pascual, E.; Polo, M. C.; Andújar, J. L.

    2011-02-01

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH4) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  18. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  19. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  20. Energy efficient solvent regeneration process for carbon dioxide capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shaojun; Meyer, Howard S.; Li, Shiguang

    A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.

  1. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three thatmore » justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.« less

  2. On the Effect of Energy Conservation on Black Hole Evaporation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-06-01

    We consider the emission of Hawking radiation by black holes as a consequence of a tunneling process. By requiring energy conservation in the derivation of the emission rate we get a well-known deviation from an exact thermal spectrum. A model that takes into account the implications of energy conservation, as well as the back-scattered radiation, is then constructed in order to describe the evolution of black holes as they evaporate. The evaporation process in this model is compared with the results in the standard "thermal" approximation. This allows us to point out the relevance that energy conservation might have in the last stages of black hole evaporation. We also comment about the possible implications of energy conservation in the information loss paradox.

  3. Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances.

    PubMed

    Yao, Zhonghua; Song, Zhe; Hao, Hua; Yu, Zhiyong; Cao, Minghe; Zhang, Shujun; Lanagan, Michael T; Liu, Hanxing

    2017-05-01

    The demand for dielectric capacitors with higher energy-storage capability is increasing for power electronic devices due to the rapid development of electronic industry. Existing dielectrics for high-energy-storage capacitors and potential new capacitor technologies are reviewed toward realizing these goals. Various dielectric materials with desirable permittivity and dielectric breakdown strength potentially meeting the device requirements are discussed. However, some significant limitations for current dielectrics can be ascribed to their low permittivity, low breakdown strength, and high hysteresis loss, which will decrease their energy density and efficiency. Thus, the implementation of dielectric materials for high-energy-density applications requires the comprehensive understanding of both the materials design and processing. The optimization of high-energy-storage dielectrics will have far-reaching impacts on the sustainable energy and will be an important research topic in the near future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface energy fluxes at Central Florida during the convection and precipitation electrification experiment

    NASA Technical Reports Server (NTRS)

    Nie, D.; Demetriades-Shah, T. D.; Kanemasu, E. T.

    1993-01-01

    One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz, 1982; Sud and Smith, 1985; Sato et. al, 1989). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al, 1989). In order to better describe the processes in the atmosphere at various scales and improve our ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.

  5. Digital interactive image analysis by array processing

    NASA Technical Reports Server (NTRS)

    Sabels, B. E.; Jennings, J. D.

    1973-01-01

    An attempt is made to draw a parallel between the existing geophysical data processing service industries and the emerging earth resources data support requirements. The relationship of seismic data analysis to ERTS data analysis is natural because in either case data is digitally recorded in the same format, resulting from remotely sensed energy which has been reflected, attenuated, shifted and degraded on its path from the source to the receiver. In the seismic case the energy is acoustic, ranging in frequencies from 10 to 75 cps, for which the lithosphere appears semi-transparent. In earth survey remote sensing through the atmosphere, visible and infrared frequency bands are being used. Yet the hardware and software required to process the magnetically recorded data from the two realms of inquiry are identical and similar, respectively. The resulting data products are similar.

  6. Research on aspheric focusing lens processing and testing technology in the high-energy laser test system

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Fu, Xiu-hua; Jia, Zong-he; Wang, Zhe; Dong, Huan

    2014-08-01

    In the high-energy laser test system, surface profile and finish of the optical element are put forward higher request. Taking a focusing aspherical zerodur lens with a diameter of 100mm as example, using CNC and classical machining method of combining surface profile and surface quality of the lens were investigated. Taking profilometer and high power microscope measurement results as a guide, by testing and simulation analysis, process parameters were improved constantly in the process of manufacturing. Mid and high frequency error were trimmed and improved so that the surface form gradually converged to the required accuracy. The experimental results show that the final accuracy of the surface is less than 0.5μm and the surface finish is □, which fulfils the accuracy requirement of aspherical focusing lens in optical system.

  7. Additive Manufacturing Consolidation of Low-Cost Water Atomized Steel Powder Using Micro-Induction Sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, William G.; Rios, Orlando; U

    ORNL worked with Grid Logic Inc to demonstrate micro induction sintering (MIS) and binder decomposition of steel powders. It was shown that MIS effectively emits spatially confined electromagnetic energy that is directly coupled to metallic powders resulting in resistive heating of individual particles. The non-uniformity of particle morphology and distribution of the water atomized steel powders resulted in inefficient transfer of energy. It was shown that adhering the particles together using polymer binders resulted in more efficient coupling. Using the MIS processes, debinding and sintering could be done in a single step. When combined with another system, such as binder-jet,more » this could reduce the amount of required post-processing. An invention disclosure was filed on hybrid systems that use MIS to reduce the amount of required post-processing.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  9. Recent advances in application of UV light-emitting diodes for degrading organic pollutants in water through advanced oxidation processes: A review.

    PubMed

    Matafonova, Galina; Batoev, Valeriy

    2018-04-01

    Over the last decade, ultraviolet light-emitting diodes (UV LEDs) have attracted considerable attention as alternative mercury-free UV sources for water treatment purposes. This review is a comprehensive analysis of data reported in recent years (mostly, post 2014) on the application of UV LED-induced advanced oxidation processes (AOPs) to degrade organic pollutants, primarily dyes, phenols, pharmaceuticals, insecticides, estrogens and cyanotoxins, in aqueous media. Heterogeneous TiO 2 -based photocatalysis in lab grade water using UVA LEDs is the most frequently applied method for treating organic contaminants. The effects of controlled periodic illumination, different TiO 2 -based nanostructures and reactor types on degradation kinetics and mineralization are discussed. UVB and UVC LEDs have been used for photo-Fenton, photo-Fenton-like and UV/H 2 O 2 treatment of pollutants, primarily, in model aqueous solutions. Notably, UV LED-activated persulfate/peroxymonosulfate processes were capable of providing degradation in DOC-containing waters. Wall-plug efficiency, energy-efficiency of UV LEDs and the energy requirements in terms of Electrical Energy per Order (E EO ) are discussed and compared. Despite the overall high degradation efficiency of the UV LED-based AOPs, practical implementation is still limited and at lab scale. More research on real water matrices at more environmentally relevant concentrations, as well as an estimation of energy requirements providing fluence-based kinetic data are required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborativemore » national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.« less

  11. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, James T.; Maile, Tobias; Rose, Cody

    Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage inmore » the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive benchmark during operation. Developing BIM based criteria to support the semi-automated process should result in significant reliable improvements and time savings in the development of BEMs. In order to define successful BIMS, CAD export of IFC based BIMs for BEM must adhere to a standard Model View Definition (MVD) for simulation as provided by the concept design BIM MVD (buildingSMART, 2011). In order to ensure wide scale adoption, companies would also need to develop their own material libraries to support automated activities and undertake a pilot project to improve understanding of modeling conventions and design tool features and limitations.« less

  12. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  13. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    DOE PAGES

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...

    2016-08-10

    We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less

  14. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  15. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  16. Carbon and energy footprint of the hydrate-based biogas upgrading process integrated with CO2 valorization.

    PubMed

    Castellani, Beatrice; Rinaldi, Sara; Bonamente, Emanuele; Nicolini, Andrea; Rossi, Federico; Cotana, Franco

    2018-02-15

    The present paper aims at assessing the carbon and energy footprint of an energy process, in which the energy excess from intermittent renewable sources is used to produce hydrogen which reacts with the CO 2 previously separated from an innovative biogas upgrading process. The process integrates a hydrate-based biogas upgrading section and a CO 2 methanation section, to produce biomethane from the biogas enrichment and synthetic methane from the CO 2 methanation. Clathrate hydrates are crystalline compounds, formed by gas enclathrated in cages of water molecules and are applied to the selective separation of CO 2 from biogas mixtures. Data from the experimental setup were analyzed in order to evaluate the green-house gas emissions (carbon footprint CF) and the primary energy consumption (energy footprint EF) associated to the two sections of the process. The biosynthetic methane production during a single-stage process was 0.962Nm 3 , obtained mixing 0.830Nm 3 of methane-enriched biogas and 0.132Nm 3 of synthetic methane. The final volume composition was: 73.82% CH 4 , 19.47% CO 2 , 0.67% H 2 , 1.98% O 2 , 4.06% N 2 and the energy content was 28.0MJ/Nm 3 . The functional unit is the unitary amount of produced biosynthetic methane in Nm 3 . Carbon and energy footprints are 0.7081kgCO 2eq /Nm 3 and 28.55MJ/Nm 3 , respectively, when the electric energy required by the process is provided by photovoltaic panels. In this scenario, the overall energy efficiency is about 0.82, higher than the worldwide average energy efficiency for fossil methane, which is 0.75. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Plants' essential chemical elements

    Treesearch

    Kevin T. Smith

    2007-01-01

    Every garden center and hardware store sells fertilizer guaranteed to "feed" plants. In a strict sense, we can't feed plants. Food contains an energy source. Green plants capture solar energy and make their own food through photosynthesis! Photosynthesis and other metabolic processes require chemical elements in appropriate doses for plants to survive...

  18. 10 CFR 600.315 - Revision of budget and program plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....315 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS FINANCIAL ASSISTANCE RULES... Requirements § 600.315 Revision of budget and program plans. (a) The budget plan is the financial expression of the project or program as approved during the award process. It includes the sum of the Federal and...

  19. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  20. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  1. Membranes for Environmentally Friendly Energy Processes

    PubMed Central

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  2. Super-Penrose process due to collisions inside ergosphere

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    If two particles collide inside the ergosphere, the energy in the center of mass frame can be made unbound provided at least one of particles has a large negative angular momentum [A. A. Grib and Yu. V. Pavlov, Europhys. Lett. 101 (2013) 20004]. We show that the same condition can give rise to unbounded Killing energy of debris at infinity, i.e. super-Penrose process. Proximity of the point of collision to the black hole horizon is not required.

  3. Automated Processing Workflow for Ambient Seismic Recordings

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.

  4. Strategy and gaps for modeling, simulation, and control of hybrid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers,more » and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.« less

  5. Nanophotonics-enabled solar membrane distillation for off-grid water purification.

    PubMed

    Dongare, Pratiksha D; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R; Hogan, Nathaniel J; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J

    2017-07-03

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination.

  6. Nanophotonics-enabled solar membrane distillation for off-grid water purification

    PubMed Central

    Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.

    2017-01-01

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307

  7. Central American information system for energy planning (in English; Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, M.G.; Lyon, P.C.; Heskett, J.C.

    1991-04-01

    SICAPE (Sistema de Information Centroamericano para Planificacion Energetica) is an expandable information system designed for energy planning. Its objective is to satisfy ongoing information requirements by means of a menu driver operational environment. SICAPE is as easily used by the novice computer user as those with more experience. Moreover, the system is capable of evolving concurrently with future requirements of the individual country. The expansion is accomplished by menu restructuring as data and user requirements change. The new menu configurations require no programming effort. The use and modification of SICAPE are separate menu-driven processes that allow for rapid data query,more » minimal training, and effortless continued growth. SICAPE's data is organized by country or region. Information is available in the following areas: energy balance, macro economics, electricity generation capacity, and electricity and petroleum product pricing. (JF)« less

  8. Beyond Solar Fuels: Renewable Energy-Driven Chemistry.

    PubMed

    Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda

    2017-11-23

    The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  10. Parallel-processing with surface plasmons, a new strategy for converting the broad solar spectrum

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    A new strategy for efficient solar-energy conversion is based on parallel processing with surface plasmons: guided electromagnetic waves supported on thin films of common metals like aluminum or silver. The approach is unique in identifying a broadband carrier with suitable range for energy transport and an inelastic tunneling process which can be used to extract more energy from the more energetic carriers without requiring different materials for each frequency band. The aim is to overcome the fundamental 56-percent loss associated with mismatch between the broad solar spectrum and the monoenergetic conduction electrons used to transport energy in conventional silicon solar cells. This paper presents a qualitative discussion of the unknowns and barrier problems, including ideas for coupling surface plasmons into the tunnels, a step which has been the weak link in the efficiency chain.

  11. A Pipeline for Large Data Processing Using Regular Sampling for Unstructured Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berres, Anne Sabine; Adhinarayanan, Vignesh; Turton, Terece

    2017-05-12

    Large simulation data requires a lot of time and computational resources to compute, store, analyze, visualize, and run user studies. Today, the largest cost of a supercomputer is not hardware but maintenance, in particular energy consumption. Our goal is to balance energy consumption and cognitive value of visualizations of resulting data. This requires us to go through the entire processing pipeline, from simulation to user studies. To reduce the amount of resources, data can be sampled or compressed. While this adds more computation time, the computational overhead is negligible compared to the simulation time. We built a processing pipeline atmore » the example of regular sampling. The reasons for this choice are two-fold: using a simple example reduces unnecessary complexity as we know what to expect from the results. Furthermore, it provides a good baseline for future, more elaborate sampling methods. We measured time and energy for each test we did, and we conducted user studies in Amazon Mechanical Turk (AMT) for a range of different results we produced through sampling.« less

  12. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  13. Heat for film processing from solar energy

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes solar water heating system for laboratory in Mill Valley, California. System furnishes 59 percent of hot water requirements for photographic film processing. Text of report discusses system problems and modifications, analyzes performance and economics, and supplies drawings and operation/maintenance manual.

  14. Challenges in scaling up biofuels infrastructure.

    PubMed

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  15. Pollen tube energetics: respiration, fermentation and the race to the ovule

    PubMed Central

    Rounds, Caleb M.; Winship, Lawrence J.; Hepler, Peter K.

    2011-01-01

    Background Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction. Pollen tubes are easily grown in vitro and have become an excellent model for investigating the contributions of respiration to plant cellular growth and morphogenesis at the molecular, biochemical and physiological levels. Scope In recent decades, pollen tube research has become increasingly focused on the molecular mechanisms involved in cellular processes. Yet, effective growth and development requires an intact, integrated set of cellular processes, all supplied with a constant flow of energy. Here we bring together information from the current and historical literature concerning respiration, fermentation and mitochondrial physiology in pollen tubes, and assess the significance of more recent molecular and genetic investigations in a physiological context. Conclusions The rapid growth of the pollen tube down the style has led to the evolution of high rates of pollen tube respiration. Respiration rates in lily predict a total energy turnover of 40–50 fmol ATP s−1 per pollen grain. Within this context we examine the energetic requirements of cell wall synthesis, osmoregulation, actin dynamics and cyclosis. At present, we can only estimate the amount of energy required, because data from growing pollen tubes are not available. In addition to respiration, we discuss fermentation and mitochondrial localization. We argue that the molecular pathways need to be examined within the physiological context to understand better the mechanisms that control tip growth in pollen tubes. PMID:22476489

  16. 10 CFR 820.20 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...

  17. 10 CFR 820.20 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...

  18. 10 CFR 820.20 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...

  19. 10 CFR 820.20 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY PROCEDURAL RULES FOR DOE NUCLEAR ACTIVITIES Enforcement Process § 820.20 Purpose and scope... violations of the DOE Nuclear Safety Requirements, for determining, whether a violation has occurred, for... of a violation of: (1) Any DOE Nuclear Safety Requirement set forth in the Code of Federal...

  20. A hierarchical approach for the design improvements of an Organocat biorefinery.

    PubMed

    Abdelaziz, Omar Y; Gadalla, Mamdouh A; El-Halwagi, Mahmoud M; Ashour, Fatma H

    2015-04-01

    Lignocellulosic biomass has emerged as a potentially attractive renewable energy source. Processing technologies of such biomass, particularly its primary separation, still lack economic justification due to intense energy requirements. Establishing an economically viable and energy efficient biorefinery scheme is a significant challenge. In this work, a systematic approach is proposed for improving basic/existing biorefinery designs. This approach is based on enhancing the efficiency of mass and energy utilization through the use of a hierarchical design approach that involves mass and energy integration. The proposed procedure is applied to a novel biorefinery called Organocat to minimize its energy and mass consumption and total annualized cost. An improved heat exchanger network with minimum energy consumption of 4.5 MJ/kgdry biomass is designed. An optimal recycle network with zero fresh water usage and minimum waste discharge is also constructed, making the process more competitive and economically attractive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  2. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  3. Data Crosscutting Requirements Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleese van Dam, Kerstin; Shoshani, Arie; Plata, Charity

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities.more » They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.« less

  4. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  5. Models of glycolysis: Glyceraldehyde as a source of energy and monomers for prebiotic condensation reactions

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1986-01-01

    All organisms require energy in a chemical form for maintenance and growth. In contemporary life this chemical energy is obtained by the synthesis of the phosphoanhydride bonds of ATP. Among the biological processes that yield ATP, fermentation is generally considered primitive, because it operates under anaerobic conditions by substrate-level phosphorylation which does not require compartmentation by membranes. Fermentation by the glycolytic pathway, which is found in almost every living cell, is an especially attractive energy source for primitive life. Glycolysis not only produces useful chemical energy (ATP), but intermediates of this pathway are also involved in amino acid synthesis and photosynthetic carbon-fixation. It is believed that energy and substrates needed for the origin of life were provided by nonenzymatic chemical reactions that resemble the enzyme-mediated reactions of glycolysis. These nonenzymatic reactions would have provided a starting point for the evolutionary development of glycolysis.

  6. Thermodynamic aspects of the coating formation through mechanochemical synthesis in vibration technology systems

    NASA Astrophysics Data System (ADS)

    Shtyn, S. U.; Lebedev, V. A.; Gorlenko, A. O.

    2017-02-01

    On the basis of thermodynamic concepts of the process, we proposed an energy model that reflects the mechanochemical essence of coating forming in terms of vibration technology systems, which takes into account the contribution to the formation of the coating, the increase of unavailable energy due to the growth of entropy, the increase in the energy of elastic-plastic crystal lattice distortion as a result of the mechanical influence of working environment indenters, surface layer internal energy change which occurs as a result of chemical interaction of the contacting media. We proposed adhesion strength of the local volume modified through processing as a criterion of the energy condition of the formed coating. We established analytical dependence which helps to obtain the coating strength of the material required by operating conditions.

  7. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: macronutrient and micronutrient requirements.

    PubMed

    Bonet Saris, A; Márquez Vácaro, J A; Serón Arbeloa, C

    2011-11-01

    Energy requirements are altered in critically-ill patients and are influenced by the clinical situation, treatment, and phase of the process. Therefore, the most appropriate method to calculate calorie intake is indirect calorimetry. In the absence of this technique, fixed calorie intake (between 25 and 35 kcal/kg/day) or predictive equations such as the Penn State formula can be used to obtain a more accurate evaluation of metabolic rate. Carbohydrate administration should be limited to a maximum of 4 g/kg/day and a minimum of 2 g/kg/day. Plasma glycemia should be controlled to avoid hyperglycemia. Fat intake should be between 1 and 1.5 g/kg/day. The recommended protein intake is 1-1.5 g/kg/day but can vary according to the patient's clinical status. Particular attention should be paid to micronutrient intake. Consensus is lacking on micronutrient requirements. Some vitamins (A, B, C, E) are highly important in critically-ill patients, especially those undergoing continuous renal replacement techniques, patients with severe burns and alcoholics, although the specific requirements in each of these types of patient have not yet been established. Energy and protein intake in critically-ill patients is complex, since both clinical factors and the stage of the process must be taken into account. The first step is to calculate each patient's energy requirements and then proceed to distribute calorie intake among its three components: proteins, carbohydrates and fat. Micronutrient requirements must also be considered.

  8. Wind turbine siting: A summary of the state of the art

    NASA Technical Reports Server (NTRS)

    Hiester, T. R.

    1982-01-01

    The process of siting large wind turbines may be divided into two broad steps: site selection, and site evaluation. Site selection is the process of locating windy sites where wind energy development shows promise of economic viability. Site evaluation is the process of determining in detail for a given site the economic potential of the site. The state of the art in the first aspect of siting, site selection is emphasized. Several techniques for assessing the wind resource were explored or developed in the Federal Wind Energy Program. Local topography and meteorology will determine which of the techniques should be used in locating potential sites. None of the techniques can do the job alone, none are foolproof, and all require considerable knowledge and experience to apply correctly. Therefore, efficient siting requires a strategy which is founded on broad based application of several techniques without relying solely on one narrow field of expertise.

  9. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    PubMed

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  10. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  11. Induction Consolidation of Thermoplastic Composites Using Smart Susceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc R

    2012-06-14

    This project has focused on the area of energy efficient consolidation and molding of fiber reinforced thermoplastic composite components as an energy efficient alternative to the conventional processing methods such as autoclave processing. The expanding application of composite materials in wind energy, automotive, and aerospace provides an attractive energy efficiency target for process development. The intent is to have this efficient processing along with the recyclable thermoplastic materials ready for large scale application before these high production volume levels are reached. Therefore, the process can be implemented in a timely manner to realize the maximum economic, energy, and environmental efficiencies.more » Under this project an increased understanding of the use of induction heating with smart susceptors applied to consolidation of thermoplastic has been achieved. This was done by the establishment of processing equipment and tooling and the subsequent demonstration of this fabrication technology by consolidating/molding of entry level components for each of the participating industrial segments, wind energy, aerospace, and automotive. This understanding adds to the nation's capability to affordably manufacture high quality lightweight high performance components from advanced recyclable composite materials in a lean and energy efficient manner. The use of induction heating with smart susceptors is a precisely controlled low energy method for the consolidation and molding of thermoplastic composites. The smart susceptor provides intrinsic thermal control based on the interaction with the magnetic field from the induction coil thereby producing highly repeatable processing. The low energy usage is enabled by the fact that only the smart susceptor surface of the tool is heated, not the entire tool. Therefore much less mass is heated resulting in significantly less required energy to consolidate/mold the desired composite components. This energy efficiency results in potential energy savings of {approx}75% as compared to autoclave processing in aerospace, {approx}63% as compared to compression molding in automotive, and {approx}42% energy savings as compared to convectively heated tools in wind energy. The ability to make parts in a rapid and controlled manner provides significant economic advantages for each of the industrial segments. These attributes were demonstrated during the processing of the demonstration components on this project.« less

  12. Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Benlattar, M.; El koraychy, E.; Kotri, A.; Mazroui, M.

    2017-12-01

    We have used molecular dynamics simulations combined with an interatomic potential derived from the embedded atom method, to investigate the hetero-diffusion of Au adatom near a stepped Ag(110) surface with the height of one monoatomic layer. The activation energies for different diffusion processes, which occur on the terrace and near the step edge, are calculated both by molecular statics and molecular dynamics simulations. Static energies are found by the drag method, whereas the dynamic barriers are computed at high temperature from the Arrhenius plots. Our numerical results reveal that the jump process requires very high activation energy compared to the exchange process either on the terrace or near the step edge. In this work, other processes, such as upward and downward diffusion at step edges, have also been discussed.

  13. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  14. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  15. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  16. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  17. 30 CFR 937.773 - Requirements for permits and permit processing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Facilities Permits, Waste Discharge Permits (ORS 468.900-ORS 468.997), Energy Facility Site Certificates (ORS 469.300-ORS 469.570, ORS 469.990, ORS 469.992) issued by the Energy Facilities Siting Council..., construction and maintenance of dams, dikes or other hydraulic structures or works (ORS 540.350, ORS 540.400...

  18. 78 FR 4859 - Notice of Proposed Information for Public Comment for: Energy and Performance Information Center

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... requirement described below will be submitted to the Office of Management and Budget (OMB) for review, as...; other planning collections and performance reports presently collected in hard copy; the Physical Needs... tracking of the Energy Performance Contract process and will include the Physical Needs Assessment tool...

  19. The role of energy composition of diet affects muscle programming and fiber recruitment, body composition, and growth trajectory in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Increasing production feed efficiency in aquaculture requires not only knowing the available energy for certain dietary components but understanding how they are interactively processed. For most aquaculture production muscle growth is of high priority. Nutrigenomics is a promising discipline to aug...

  20. Material and Energy Requirement for Rare Earth Production

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  1. Fabrication of High-Resolution Gamma-Ray Metallic Magnetic Calorimeters with Ag:Er Sensor and Thick Electroplated Absorbers

    NASA Astrophysics Data System (ADS)

    Hummatov, Ruslan; Hall, John A.; Kim, Geon-Bo; Friedrich, Stephan; Cantor, Robin; Boyd, S. T. P.

    2018-05-01

    We are developing metallic magnetic calorimeters for high-resolution gamma-ray spectroscopy for non-destructive assay of nuclear materials. Absorbers for these higher-energy photons can require substantial thickness to achieve adequate stopping power. We developed a new absorber fabrication process using dry-film photoresists to electroform cantilevered, thick absorbers. Gamma detectors with these absorbers have an energy resolution of 38 eV FWHM at 60 keV. In this report, we summarize modifications to STARCryo's "Delta 1000" process for our devices and describe the new absorber fabrication process.

  2. Interplanetary Radiation and Internal Charging Environment Models for Solar Sails

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; NeegaardParker, Linda

    2005-01-01

    A Solar Sail Radiation Environment (SSRE) model has been developed for defining charged particle environments over an energy range from 0.01 keV to 1 MeV for hydrogen ions, helium ions, and electrons. The SSRE model provides the free field charged particle environment required for characterizing energy deposition per unit mass, charge deposition, and dose rate dependent conductivity processes required to evaluate radiation dose and internal (bulk) charging processes in the solar sail membrane in interplanetary space. Solar wind and energetic particle measurements from instruments aboard the Ulysses spacecraft in a solar, near-polar orbit provide the particle data over a range of heliospheric latitudes used to derive the environment that can be used for radiation and charging environments for both high inclination 0.5 AU Solar Polar Imager mission and the 1.0 AU L1 solar missions. This paper describes the techniques used to model comprehensive electron, proton, and helium spectra over the range of particle energies of significance to energy and charge deposition in thin (less than 25 micrometers) solar sail materials.

  3. Cost of non-renewable energy in production of wood pellets in China

    NASA Astrophysics Data System (ADS)

    Wang, Changbo; Zhang, Lixiao; Liu, Jie

    2013-06-01

    Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

  4. NERVA-Derived Nuclear Thermal Propulsion Dual Mode Operation

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Hundal, Rolv

    1994-07-01

    Generation of electrical power using the nuclear heat source of a NERVA-derived nuclear thermal rocket engine is presented. A 111,200 N thrust engine defined in a study for NASA-LeRC in FY92 is the reference engine for a three-engine vehicle for which a 50 kWe capacity is required. Processes are described for energy extraction from the reactor and for converting the energy to electricity. The tie tubes which support the reactor fuel elements are the source of thermal energy. The study focuses on process systems using Stirling cycle energy conversion operating at 980 K and an alternate potassium-Rankine system operating at 1,140 K. Considerations are given of the effect of the power production on turbopump operation, ZrH moderator dissociation, creep strain in the tie tubes, hydrogen permeation through the containment materials, requirements for a backup battery system, and the effects of potential design changes on reactor size and criticality. Nuclear considerations include changing tie tube materials to TZM, changing the moderator to low vapor-pressure yttrium hydride, and changing the fuel form from graphite matrix to a carbon-carbide composite.

  5. Energy reduction for the spot welding process in the automotive industry

    NASA Astrophysics Data System (ADS)

    Cullen, J. D.; Athi, N.; Al-Jader, M. A.; Shaw, A.; Al-Shamma'a, A. I.

    2007-07-01

    When performing spot welding on galvanised metals, higher welding force and current are required than on uncoated steels. This has implications for the energy usage when creating each spot weld, of which there are approximately 4300 in each passenger car. The paper presented is an overview of electrode current selection and its variance over the lifetime of the electrode tip. This also describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.

  6. Total energy food plant 21 million gallon ethanol facility

    NASA Astrophysics Data System (ADS)

    1981-10-01

    The Phase I Engineering study includes the following: process description, waste water treatment plant, material summary, energy chart, capital cost estimate, equipment list, personnel requirements, drawings list, specifications list, and project schedule. The economic and financial feasibility of the technical process, and environmental, health, safety, and socio-economic assessments for the project are reported. The costs for extending the following utilities to the property line of the selected site are presented: potable water, sewer system, electricity, roads for truck traffic, and rail service.

  7. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.

  8. Biomass waste-to-energy valorisation technologies: a review case for banana processing in Uganda.

    PubMed

    Gumisiriza, Robert; Hawumba, Joseph Funa; Okure, Mackay; Hensel, Oliver

    2017-01-01

    Uganda's banana industry is heavily impeded by the lack of cheap, reliable and sustainable energy mainly needed for processing of banana fruit into pulp and subsequent drying into chips before milling into banana flour that has several uses in the bakery industry, among others. Uganda has one of the lowest electricity access levels, estimated at only 2-3% in rural areas where most of the banana growing is located. In addition, most banana farmers have limited financial capacity to access modern solar energy technologies that can generate sufficient energy for industrial processing. Besides energy scarcity and unreliability, banana production, marketing and industrial processing generate large quantities of organic wastes that are disposed of majorly by unregulated dumping in places such as swamps, thereby forming huge putrefying biomass that emit green house gases (methane and carbon dioxide). On the other hand, the energy content of banana waste, if harnessed through appropriate waste-to-energy technologies, would not only solve the energy requirement for processing of banana pulp, but would also offer an additional benefit of avoiding fossil fuels through the use of renewable energy. The potential waste-to-energy technologies that can be used in valorisation of banana waste can be grouped into three: Thermal (Direct combustion and Incineration), Thermo-chemical (Torrefaction, Plasma treatment, Gasification and Pyrolysis) and Biochemical (Composting, Ethanol fermentation and Anaerobic Digestion). However, due to high moisture content of banana waste, direct application of either thermal or thermo-chemical waste-to-energy technologies is challenging. Although, supercritical water gasification does not require drying of feedstock beforehand and can be a promising thermo-chemical technology for gasification of wet biomass such as banana waste, it is an expensive technology that may not be adopted by banana farmers in Uganda. Biochemical conversion technologies are reported to be more eco-friendly and appropriate for waste biomass with high moisture content such as banana waste. Uganda's banana industrialisation is rural based with limited technical knowledge and economic capability to setup modern solar technologies and thermo-conversions for drying banana fruit pulp. This review explored the advantages of various waste-to-energy technologies as well as their shortfalls. Anaerobic digestion stands out as the most feasible and appropriate waste-to-energy technology for solving the energy scarcity and waste burden in banana industry. Finally, potential options for the enhancement of anaerobic digestion of banana waste were also elucidated.

  9. TruMicro Series 2000 sub-400 fs class industrial fiber lasers: adjustment of laser parameters to process requirements

    NASA Astrophysics Data System (ADS)

    Kanal, Florian; Kahmann, Max; Tan, Chuong; Diekamp, Holger; Jansen, Florian; Scelle, Raphael; Budnicki, Aleksander; Sutter, Dirk

    2017-02-01

    The matchless properties of ultrashort laser pulses, such as the enabling of cold processing and non-linear absorption, pave the way to numerous novel applications. Ultrafast lasers arrived in the last decade at a level of reliability suitable for the industrial environment.1 Within the next years many industrial manufacturing processes in several markets will be replaced by laser-based processes due to their well-known benefits: These are non-contact wear-free processing, higher process accuracy or an increase of processing speed and often improved economic efficiency compared to conventional processes. Furthermore, new processes will arise with novel sources, addressing previously unsolved challenges. One technical requirement for these exciting new applications will be to optimize the large number of available parameters to the requirements of the application. In this work we present an ultrafast laser system distinguished by its capability to combine high flexibility and real time process-inherent adjustments of the parameters with industry-ready reliability. This industry-ready reliability is ensured by a long experience in designing and building ultrashort-pulse lasers in combination with rigorous optimization of the mechanical construction, optical components and the entire laser head for continuous performance. By introducing a new generation of mechanical design in the last few years, TRUMPF enabled its ultrashort-laser platforms to fulfill the very demanding requirements for passively coupling high-energy single-mode radiation into a hollow-core transport fiber. The laser architecture presented here is based on the all fiber MOPA (master oscillator power amplifier) CPA (chirped pulse amplification) technology. The pulses are generated in a high repetition rate mode-locked fiber oscillator also enabling flexible pulse bursts (groups of multiple pulses) with 20 ns intra-burst pulse separation. An external acousto-optic modulator (XAOM) enables linearization and multi-level quad-loop stabilization of the output power of the laser.2 In addition to the well-established platform latest developments addressed single-pulse energies up to 50 μJ and made femtosecond pulse durations available for the TruMicro Series 2000. Beyond these stabilization aspects this laser architecture together with other optical modules and combined with smart laser control software enables process-driven adjustments of the parameters (e. g. repetition rate, multi-pulse functionalities, pulse energy, pulse duration) by external signals, which will be presented in this work.

  10. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOEpatents

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  11. Homogenous Nucleation and Crystal Growth in a Model Liquid from Direct Energy Landscape Sampling Simulation

    NASA Astrophysics Data System (ADS)

    Walter, Nathan; Zhang, Yang

    Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex

  12. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Lazim; Najib, Liana

    2016-04-01

    Energy consumption for developing countries is sharply increasing due to the higher economic growth due to industrialisation along with population growth and urbanisation. The increasing demand of energy leads to global energy crisis. Selecting the best energy technology and conservation requires both quantitative and qualitative evaluation criteria. The fuzzy set-based approach is one of the well-known theories to handle fuzziness, uncertainty in decision-making and vagueness of information. This paper proposes a new method of intuitionistic fuzzy analytic hierarchy process (IF-AHP) to deal with the uncertainty in decision-making. The new IF-AHP is applied to establish a preference in the sustainable energy planning decision-making problem. Three decision-makers attached with Malaysian government agencies were interviewed to provide linguistic judgement prior to analysing with the new IF-AHP. Nuclear energy has been decided as the best alternative in energy planning which provides the highest weight among all the seven alternatives.

  13. On the enhanced sampling over energy barriers in molecular dynamics simulations.

    PubMed

    Gao, Yi Qin; Yang, Lijiang

    2006-09-21

    We present here calculations of free energies of multidimensional systems using an efficient sampling method. The method uses a transformed potential energy surface, which allows an efficient sampling of both low and high energy spaces and accelerates transitions over barriers. It allows efficient sampling of the configuration space over and only over the desired energy range(s). It does not require predetermined or selected reaction coordinate(s). We apply this method to study the dynamics of slow barrier crossing processes in a disaccharide and a dipeptide system.

  14. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  15. Towards sustainable and renewable systems for electrochemical energy storage.

    PubMed

    Tarascon, Jean-Marie

    2008-01-01

    Renewable energy sources and electric automotive transportation are popular topics in our belated energy-conscious society, placing electrochemical energy management as one of the major technological developments for this new century. Besides efficiency, any new storage technologies will have to provide advantages in terms of cost and environmental footprint and thus rely on sustainable materials that can be processed at low temperature. To meet such challenges future devices will require inspiration from living organisms and rely on either bio-inspired or biomimetic approaches.

  16. Energy Efficiency Model for Induction Furnace

    NASA Astrophysics Data System (ADS)

    Dey, Asit Kr

    2018-01-01

    In this paper, a system of a solar induction furnace unit was design to find out a new solution for the existing AC power consuming heating process through Supervisory control and data acquisition system. This unit can be connected directly to the DC system without any internal conversion inside the device. The performance of the new system solution is compared with the existing one in terms of power consumption and losses. This work also investigated energy save, system improvement, process control model in a foundry induction furnace heating framework corresponding to PV solar power supply. The results are analysed for long run in terms of saving energy and integrated process system. The data acquisition system base solar foundry plant is an extremely multifaceted system that can be run over an almost innumerable range of operating conditions, each characterized by specific energy consumption. Determining ideal operating conditions is a key challenge that requires the involvement of the latest automation technologies, each one contributing to allow not only the acquisition, processing, storage, retrieval and visualization of data, but also the implementation of automatic control strategies that can expand the achievement envelope in terms of melting process, safety and energy efficiency.

  17. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    PubMed

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimal Energy Measurement in Nonlinear Systems: An Application of Differential Geometry

    NASA Technical Reports Server (NTRS)

    Fixsen, Dale J.; Moseley, S. H.; Gerrits, T.; Lita, A.; Nam, S. W.

    2014-01-01

    Design of TES microcalorimeters requires a tradeoff between resolution and dynamic range. Often, experimenters will require linearity for the highest energy signals, which requires additional heat capacity be added to the detector. This results in a reduction of low energy resolution in the detector. We derive and demonstrate an algorithm that allows operation far into the nonlinear regime with little loss in spectral resolution. We use a least squares optimal filter that varies with photon energy to accommodate the nonlinearity of the detector and the non-stationarity of the noise. The fitting process we use can be seen as an application of differential geometry. This recognition provides a set of well-developed tools to extend our work to more complex situations. The proper calibration of a nonlinear microcalorimeter requires a source with densely spaced narrow lines. A pulsed laser multi-photon source is used here, and is seen to be a powerful tool for allowing us to develop practical systems with significant detector nonlinearity. The combination of our analysis techniques and the multi-photon laser source create a powerful tool for increasing the performance of future TES microcalorimeters.

  19. Inspection of the Department`s export licensing process for dual-use and munitions commodities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-10

    The purpose of our inspection was to review the Department of Energy`s (Energy) export licensing process for dual-use and military (munitions) commodities subject to nuclear nonproliferation controls. Specifically, we reviewed Energy`s authorities, procedures, and policies pertaining to the export licensing process and examined procedures for safeguarding data transmitted between Energy and other agencies involved in the export licensing process. We also reviewed Energy`s role as a member of the Subgroup on Nuclear Export Coordination. Our review of the sample of 60 export cases did not find evidence to lead us to believe that Energy`s recommendations for these cases were inappropriatemore » or incorrect. We identified, however, problems regarding management systems associated with the export license review process. We found that without documentation supporting export licensing decisions by the Export Control Operations Division (ECOD), we could not determine whether ECOD analysts considered all required criteria in their review of export cases referred to Energy. For example, we found that the ECOD did not retain records documenting the bases for its advice, recommendations, or decisions regarding its reviews of export license cases or revisions to lists of controlled commodities and, therefore, was not in compliance with certain provisions of the Export Administration Act, as amended, and Energy records management directives. Additionally, we found that the degree of compliance by Energy with the export licensing review criteria contained in the Export Administration Regulations and the Nuclear Non-Proliferation Act of 1978 could not be determined because ECOD did not retain records documenting the bases for its advice and recommendations on export cases.« less

  20. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1983-01-01

    Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.

  1. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae.

    PubMed

    Hara, Kiyotaka Y; Kim, Songhee; Kiriyama, Kentaro; Yoshida, Hideyo; Arai, Shogo; Ishii, Jun; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2012-05-01

    Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is industrially produced by fermentation using Saccharomyces cerevisiae. Before the glutathione fermentation process with S. cerevisiae, a glucose extraction process from starchy materials is required. This glucose extraction is usually carried out by converting starchy materials to starch using high-temperature cooking and subsequent hydrolysis by amylases to convert starch to glucose. In this study, to develop an energy-saving glutathione production process by reducing energy consumption during the cooking step, we efficiently produced glutathione from low-temperature cooked rice using amylase-expressing S. cerevisiae. The combination of the amylase-expressing yeast with low-temperature cooking is potentially applicable to a variety of energy-saving bio-production methods of chemicals from starchy bio-resources. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Balancing glycolysis and mitochondrial OXPHOS: lessons from the hematopoietic system and exercising muscles.

    PubMed

    Haran, Michal; Gross, Atan

    2014-11-01

    Living organisms require a constant supply of safe and efficient energy to maintain homeostasis and to allow locomotion of single cells, tissues and the entire organism. The source of energy can be glycolysis, a simple series of enzymatic reactions in the cytosol, or a much more complex process in the mitochondria, oxidative phosphorylation (OXPHOS). In this review we will examine how does the organism balance its source of energy in two seemingly distinct and unrelated processes: hematopoiesis and exercise. In both processes we will show the importance of the metabolic program and its regulation. We will also discuss the importance of oxygen availability not as a sole determinant, but in the context of the nutrient and cellular state, and address the emerging role of lactate as an energy source and signaling molecule in health and disease. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. Processing of solid fossil-fuel deposits by electrical induction heating

    NASA Astrophysics Data System (ADS)

    Fisher, S. T.

    1980-02-01

    A study has been made to determine the feasibility of extracting the energy commodities electricity, gas, petroleum, chemical feedstocks, and coke from the solid fossil fuels coal, oil shale, oil sand, and heavy oil by the electrical induction heating of the deposits. Available electrical, physical, and chemical data indicate that this process may be technically and economically feasible. Some basic data are missing, and it has been necessary to indicate possible ranges of values for some parameters. The tentative conclusions drawn are the following. All four solid fossil fuels can be processed successfully underground. All five energy commodities can be produced economically in adequate quantities for a period of a century or more in North America, without recourse to any other major energy source. The development and construction time required is short enough to permit an uninterrupted supply of all energy commodities as present sources decline

  4. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice.

    PubMed

    Demas, G E; Chefer, V; Talan, M I; Nelson, R J

    1997-11-01

    Animals must balance their energy budget despite seasonal changes in both energy availability and physiological expenditures. Immunity, in addition to growth, thermoregulation, and cellular maintenance, requires substantial energy to maintain function, although few studies have directly tested the energetic cost of immunity. The present study assessed the metabolic costs of an antibody response. Adult and aged male C5BL/6J mice were implanted with either empty Silastic capsules or capsules filled with melatonin and injected with either saline or keyhole limpet hemocyanin (KLH). O2 consumption was monitored periodically throughout antibody production using indirect calorimetry. KLH-injected mice mounted significant immunoglobulin G (IgG) responses and consumed more O2 compared with animals injected with saline. Melatonin treatment increased O2 consumption in mice injected with saline but suppressed the increased metabolic rate associated with an immune response in KLH-injected animals. Melatonin had no effect on immune response to KLH. Adult and aged mice did not differ in antibody response or metabolic activity. Aged mice appear unable to maintain sufficient heat production despite comparable O2 production to adult mice. These results suggest that mounting an immune response requires significant energy and therefore requires using resources that could otherwise be allocated to other physiological processes. Energetic trade-offs are likely when energy demands are high (e.g., during winter, pregnancy, or lactation). Melatonin appears to play an adaptive role in coordinating reproductive, immunologic, and energetic processes.

  5. WIRE: Weather Intelligence for Renewable Energies

    NASA Astrophysics Data System (ADS)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of power plants and electricity grids and second from the meteorological measurement community to deliver suitable, short term high quality forecasts to fulfill these requests with emphasis on highly variable weather conditions and spatially distributed energy productions often located in complex terrain. This topic has been submitted for a new COST Action under the title "Short-Term High Resolution Wind and Solar Energy Production Forecasts".

  6. Development of a low energy micro sheet forming machine

    NASA Astrophysics Data System (ADS)

    Razali, A. R.; Ann, C. T.; Shariff, H. M.; Kasim, N. I.; Musa, M. A.; Ahmad, A. F.

    2017-10-01

    It is expected that with the miniaturization of materials being processed, energy consumption is also being `miniaturized' proportionally. The focus of this study was to design a low energy micro-sheet-forming machine for thin sheet metal application and fabricate a low direct current powered micro-sheet-forming machine. A prototype of low energy system for a micro-sheet-forming machine which includes mechanical and electronic elements was developed. The machine was tested for its performance in terms of natural frequency, punching forces, punching speed and capability, energy consumption (single punch and frequency-time based). Based on the experiments, the machine can do 600 stroke per minute and the process is unaffected by the machine's natural frequency. It was also found that sub-Joule of power was required for a single stroke of punching/blanking process. Up to 100micron thick carbon steel shim was successfully tested and punched. It concludes that low power forming machine is feasible to be developed and be used to replace high powered machineries to form micro-products/parts.

  7. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  8. Process configuration of Liquid-nitrogen Energy Storage System (LESS) for maximum turnaround efficiency

    NASA Astrophysics Data System (ADS)

    Dutta, Rohan; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2017-12-01

    Diverse power generation sector requires energy storage due to penetration of variable renewable energy sources and use of CO2 capture plants with fossil fuel based power plants. Cryogenic energy storage being large-scale, decoupled system with capability of producing large power in the range of MWs is one of the options. The drawback of these systems is low turnaround efficiencies due to liquefaction processes being highly energy intensive. In this paper, the scopes of improving the turnaround efficiency of such a plant based on liquid Nitrogen were identified and some of them were addressed. A method using multiple stages of reheat and expansion was proposed for improved turnaround efficiency from 22% to 47% using four such stages in the cycle. The novelty here is the application of reheating in a cryogenic system and utilization of waste heat for that purpose. Based on the study, process conditions for a laboratory-scale setup were determined and presented here.

  9. On the hydrophilicity of electrodes for capacitive energy extraction

    NASA Astrophysics Data System (ADS)

    Lian, Cheng; Kong, Xian; Liu, Honglai; Wu, Jianzhong

    2016-11-01

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In this work, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. In agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.

  10. On the hydrophilicity of electrodes for capacitive energy extraction

    DOE PAGES

    Lian, Cheng; East China Univ. of Science and Technology, Shanghai; Kong, Xian; ...

    2016-09-14

    The so-called Capmix technique for energy extraction is based on the cyclic expansion of electrical double layers to harvest dissipative energy arising from the salinity difference between freshwater and seawater. Its optimal performance requires a careful selection of the electrical potentials for the charging and discharging processes, which must be matched with the pore characteristics of the electrode materials. While a number of recent studies have examined the effects of the electrode pore size and geometry on the capacitive energy extraction processes, there is little knowledge on how the surface properties of the electrodes affect the thermodynamic efficiency. In thismore » paper, we investigate the Capmix processes using the classical density functional theory for a realistic model of electrolyte solutions. The theoretical predictions allow us to identify optimal operation parameters for capacitive energy extraction with porous electrodes of different surface hydrophobicity. Finally, in agreement with recent experiments, we find that the thermodynamic efficiency can be much improved by using most hydrophilic electrodes.« less

  11. Thermodynamics of saline and fresh water mixing in estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2018-03-01

    The mixing of saline and fresh water is a process of energy dissipation. The freshwater flow that enters an estuary from the river contains potential energy with respect to the saline ocean water. This potential energy is able to perform work. Looking from the ocean to the river, there is a gradual transition from saline to fresh water and an associated rise in the water level in accordance with the increase in potential energy. Alluvial estuaries are systems that are free to adjust dissipation processes to the energy sources that drive them, primarily the kinetic energy of the tide and the potential energy of the river flow and to a minor extent the energy in wind and waves. Mixing is the process that dissipates the potential energy of the fresh water. The maximum power (MP) concept assumes that this dissipation takes place at maximum power, whereby the different mixing mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with respect to the dispersion coefficient that reflects the combined mixing processes. The resulting equation is an additional differential equation that can be solved in combination with the advection-dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different parts of the world and performs very well.

  12. Low-energy route for alcohol/gasohol recovery from fermentor beer. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mix, T.W.

    1982-03-01

    The production of gasohol directly from fermentor beer and gasoline is feasible and will enable a major reduction in the energy requirements for gasohol production. The fermentor beer is first enriched in a beer still to a 69 mol % ethanol, 31 mol % water product which is then dehydrated by extractive distillation with gasoline as the extractive agent. Gasohol is produced directly. In one version of the process, a heavy cut of gasoline, presumed available at a refinery before blending in of light components, is used as the extractive agent. The enriching column overhead vapors are used to reboilmore » the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light components are blended into the heavy cut-ethanol bottom product from the extractive distillation column to form the desired gasohol. Energy requirements, including feed preheat, are 11,000 Btu per gallon of ethanol in the product gasohol. One hundred and fifty pound steam is required. In a second version, full range gasoline is used as the extractive agent. The enriching column overhead vapors are again used to reboil the extractive distillation and steam stripping columns and to contribute to the preheating of the fermentor beer feed. Light gasoline components recovered from the decanter following the overhead condenser of the extractive distillation column are blended in with the gasoline-ethanol product leaving the bottom of the extractive distillation column to form the desired gasohol. Energy requirements in this case are 13,000 Btu/gallon of ethanol in the product gasohol. In both of the above cases it is energy-conservative and desirable from a process standpoint to feed the enriched alcohol to the extractive distillation column as a liquid rather than as a vapor.« less

  13. Environmental considerations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comparison was made between the environmental impact of the present nuclear-heated process and the currently commercial hydrogen-producing process utilizing coal for heating, i.e., the Lurgi coal gasification process. This comparison is based on the assumption that both plants produce the same quantity of H2, i.e., 269 cu m/sec of approximately the same purity, that all pollution abatement equipment is of the same design and efficiency for both the Lurgi process and the nuclear process, and that the energy required for the fresh nuclear fuel and the fuel recycle is generated in a power plant which is also provided with pollution abatement equipment. The pollution caused by the auxiliary units is also taken into account. As regards process water usage, the data show that the water required for the nuclear route, including the nuclear fuel production, is approximately 78% of that required for the Lurgi route.

  14. A critical review on factors influencing fermentative hydrogen production.

    PubMed

    Kothari, Richa; Kumar, Virendra; Pathak, Vinayak V; Ahmad, Shamshad; Aoyi, Ochieng; Tyagi, V V

    2017-03-01

    Biohydrogen production by dark fermentation of different waste materials is a promising approach to produce bio-energy in terms of renewable energy exploration. This communication has reviewed various influencing factors of dark fermentation process with detailed account of determinants in biohydrogen production. It has also focused on different factors such as improved bacterial strain, reactor design, metabolic engineering and two stage processes to enhance the bioenergy productivity from substrate. The study also suggest that complete utilization of substrates for biological hydrogen production requires the concentrated research and development for efficient functioning of microorganism with integrated application for energy production and bioremediation. Various studies have been taken into account here, to show the comparative efficiency of different substrates and operating conditions with inhibitory factors and pretreatment option for biohydrogen production. The study reveals that an extensive research is needed to observe field efficiency of process using low cost substrates and integration of dark and photo fermentation process. Integrated approach of fermentation process will surely compete with conventional hydrogen process and replace it completely in future.

  15. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  16. Benchmark requirements for the the Energy Emergency Management Information System (EEMIS). Phase 1: Work plan

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The energy emergency management information system (EEMIS) has responsibility for providing special information and communication services to government officials at Federal and state levels, who must deal with energy emergencies. Because of proprietary information residing in the data base used for federal purposes, a special system (EEMIS-S) must be established for use by the states. It is planned to acquire teleprocessing services for EEMIS-S from a time-sharing commercial vendor, and the process for procurement must meet guidelines for approval. The work plan and schedule for meeting these guidelines are discussed. Tasks to be included contain estimates of time, cost, and resources required, all of which are briefly described.

  17. Novel Round Energy Director for Use with Servo-driven Ultrasonic Welder

    NASA Astrophysics Data System (ADS)

    Savitski, Alex; Klinstein, Leo; Holt, Kenneth

    Increasingly stringent process repeatability and precision of assembly requirements are common for high-volume manufacturing for electronic, automotive and especially medical device industries, in which components for disposable medication delivery devices are produced in hundreds of millions annually. Ultrasonic welding, one of the most efficient of plastic welding processes often joins these small plastic parts together, and quite possibly, the one most broadly adopted for high volume assembly. The very fundamental factor in ultrasonic welding process performance is a proper joint design, the most common of which is a design utilizing an energy director. Keeping the energy director size and shape consistent on a part-to-part basis in high volume, multi-cavity operations presents a constant challenge to molded part vendors, as dimensional variations from cavity to cavity and variations in the molding process are always present. A newly developed concept of energy director design, when the tip of the energy director is round, addresses these problems, as the round energy director is significantly easier to mold and maintain its dimensional consistency. It also eliminates a major source of process variability for assembly operations. Materializing the benefits of new type of joint design became possible with the introduction of servo-driven ultrasonic welders, which allow an unprecedented control of material flow during the welding cycle and results in significantly improved process repeatability. This article summarizes results of recent studies focused on evaluating performance of round energy director and investigating the main factors responsible for the joint quality.

  18. Methodology for reducing energy and resource costs in construction of trenchless crossover of pipelines

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.

    2018-05-01

    The paper suggests a set of measures to select the equipment and its components in order to reduce energy costs in the process of pulling the pipeline into the well in the constructing the trenchless pipeline crossings of various materials using horizontal directional drilling technology. A methodology for reducing energy costs has been developed by regulating the operation modes of equipment during the process of pulling the working pipeline into a drilled and pre-expanded well. Since the power of the drilling rig is the most important criterion in the selection of equipment for the construction of a trenchless crossover, an algorithm is proposed for calculating the required capacity of the rig when operating in different modes in the process of pulling the pipeline into the well.

  19. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less

  20. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer.

  1. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  2. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  3. Gamma-ray momentum reconstruction from Compton electron trajectories by filtered back-projection

    DOE PAGES

    Haefner, A.; Gunter, D.; Plimley, B.; ...

    2014-11-03

    Gamma-ray imaging utilizing Compton scattering has traditionally relied on measuring coincident gamma-ray interactions to map directional information of the source distribution. This coincidence requirement makes it an inherently inefficient process. We present an approach to gamma-ray reconstruction from Compton scattering that requires only a single electron tracking detector, thus removing the coincidence requirement. From the Compton scattered electron momentum distribution, our algorithm analytically computes the incident photon's correlated direction and energy distributions. Because this method maps the source energy and location, it is useful in applications, where prior information about the source distribution is unknown. We demonstrate this method withmore » electron tracks measured in a scientific Si charge coupled device. While this method was demonstrated with electron tracks in a Si-based detector, it is applicable to any detector that can measure electron direction and energy, or equivalently the electron momentum. For example, it can increase the sensitivity to obtain energy and direction in gas-based systems that suffer from limited efficiency.« less

  4. Utilization of methanol for polymer electrolyte fuel cells in mobile systems

    NASA Astrophysics Data System (ADS)

    Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.

    1994-04-01

    The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.

  5. 30 CFR 285.648 - How will MMS process my GAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How will MMS process my GAP? 285.648 Section 285.648 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT... CONTINENTAL SHELF Plans and Information Requirements Contents of the General Activities Plan § 285.648 How...

  6. 30 CFR 285.628 - How will MMS process my COP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How will MMS process my COP? 285.628 Section 285.628 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT... CONTINENTAL SHELF Plans and Information Requirements Contents of the Construction and Operations Plan § 285...

  7. 10 CFR 70.23 - Requirements for the approval of applications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... be used for the conduct of research or development activities of a type specified in section 31 of... types of research and development activities specified in section 31 are those relating to: (1) Nuclear processes; (2) The theory and production of atomic energy, including processes, materials, and devices...

  8. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  9. 25 CFR 224.55 - Is information a tribe submits throughout the TERA process under this part subject to disclosure...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy... required the information to be submitted, and, if so, how substantial competitive harm or other business harm would likely result from release of the information; or (ii) Whether the tribe provided the...

  10. 25 CFR 224.55 - Is information a tribe submits throughout the TERA process under this part subject to disclosure...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy... required the information to be submitted, and, if so, how substantial competitive harm or other business harm would likely result from release of the information; or (ii) Whether the tribe provided the...

  11. 25 CFR 224.55 - Is information a tribe submits throughout the TERA process under this part subject to disclosure...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy... required the information to be submitted, and, if so, how substantial competitive harm or other business harm would likely result from release of the information; or (ii) Whether the tribe provided the...

  12. 25 CFR 224.55 - Is information a tribe submits throughout the TERA process under this part subject to disclosure...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy... required the information to be submitted, and, if so, how substantial competitive harm or other business harm would likely result from release of the information; or (ii) Whether the tribe provided the...

  13. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  14. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case.

    PubMed

    García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A

    2018-06-15

    Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Energy from Water and Sunlight: Affordable Energy from Water and Sunlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: Sun Catalytix is developing wireless energy-storage devices that convert sunlight and water into renewable fuel. Learning from nature, one such device mimics the ability of a tree leaf to convert sunlight into storable energy. It is comprised of a silicon solar cell coated with catalytic materials, which help speed up the energy conversion process. When this cell is placed in a container of water and exposed to sunlight, it splits the water into bubbles of oxygen and hydrogen. The hydrogen and oxygen can later be recombined to create electricity, when the sun goes down formore » example. The Sun Catalytix device is novel in many ways: it consists primarily of low-cost, earth-abundant materials where other attempts have required more expensive materials like platinum. Its operating conditions also facilitate the use of less costly construction materials, whereas other efforts have required extremely corrosive conditions.« less

  16. Electrochemical disinfection of repeatedly recycled blackwater in a free-standing, additive-free toilet.

    PubMed

    Hawkins, Brian T; Sellgren, Katelyn L; Klem, Ethan J D; Piascik, Jeffrey R; Stoner, Brian R

    2017-11-01

    Decentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.50 and 0.65% and conductivity between 20 and 23 mS/cm through many flush cycles over 15 weeks. The increase in accumulated solids was associated with increased energy demand and wide variation in the free chlorine contact time required to achieve complete disinfection. Further studies on the system at steady state revealed that running at higher voltage modestly improves energy efficiency, and established running parameters that reliably achieve disinfection at fixed run times. These results will guide prototype testing in the field.

  17. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing.

    PubMed

    Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun

    2018-01-30

    This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.

  18. Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)

    NASA Astrophysics Data System (ADS)

    Raskovic, Dejan

    Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.

  19. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    PubMed

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  20. Global Genetic Profiles of Gene Network Disruption in Bovine Peripheral Blood Mononuclear Cells Induced Bovine Leukemia Virus (BLV) Infection

    USDA-ARS?s Scientific Manuscript database

    Efficient nutrient assimilation into useful animal-derived products is the ultimate requirement for successful animal production. Infection in young growing animals can decrease energy and nutrient use required for growth rate by redirection of nutrients to support immune defense processes. Bovine l...

  1. Model-based Assessment for Balancing Privacy Requirements and Operational Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knirsch, Fabian; Engel, Dominik; Frincu, Marc

    2015-02-17

    The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increasemore » of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and – if feasible – an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.« less

  2. Implementation of ionizing radiation environment requirements for Space Station

    NASA Technical Reports Server (NTRS)

    Boeder, Paul A.; Watts, John W.

    1993-01-01

    Proper functioning of Space Station hardware requires that the effects of high-energy ionizing particles from the natural environment and (possibly) from man-made sources be considered during design. At the Space Station orbit of 28.5-deg inclination and 330-440 km altitude, geomagnetically trapped protons and electrons contribute almost all of the dose, while galactic cosmic rays and anomalous cosmic rays may produce Single Event Upsets (SEUs), latchups, and burnouts of microelectronic devices. Implementing ionizing radiation environment requirements for Space Station has been a two part process, including the development of a description of the environment for imposing requirements on the design and the development of a control process for assessing how well the design addresses the effects of the ionizing radiation environment. We will review both the design requirements and the control process for addressing ionizing radiation effects on Space Station.

  3. Creosote bush (Larrea tridentata) resin increases water demands and reduces energy availability in desert woodrats (Neotoma lepida).

    PubMed

    Mangione, Antonio M; Dearing, M Denise; Karasov, William H

    2004-07-01

    Although many plant secondary compounds are known to have serious consequences for herbivores, the costs of processing them are generally unknown. Two potential costs of ingestion and detoxification of secondary compounds are elevation of the minimum drinking water requirement and excretion of energetically expensive metabolites (i.e., glucuronides) in the urine. To address these impacts, we studied the costs of ingestion of resin from creosote bush (Larrea tridentata) on desert woodrats (Neotoma lepida). The following hypotheses were tested: ingestion of creosote resin by woodrats (1) increases minimum water requirement and (2) reduces energy available by increasing fecal and urinary energy losses. We tested the first hypothesis, by measuring the minimum water requirement of woodrats fed a control diet with and without creosote resin. Drinking water was given in decreasing amounts until woodrats could no longer maintain constant body mass. In two separate experiments, the minimum drinking water requirement of woodrats fed resin was higher than that of controls by 18-30% (about 1-1.7 ml/d). We tested several potential mechanisms of increased water loss associated with the increase in water requirement. The rate of fecal water loss was higher in woodrats consuming resin. Neither urinary water nor evaporative water loss was affected by ingestion of resin. Hypothesis 2 was tested by measuring energy fluxes of woodrats consuming control vs. resin-treated diets. Woodrats on a resin diet had higher urinary energy losses and, thus, metabolized a lower proportion of the dietary energy than did woodrats on control diet. Fecal energy excretion was not affected by resin. The excretion of glucuronic acid represented almost half of the energy lost as a consequence of resin ingestion. The increased water requirement and energy losses of woodrats consuming a diet with resin could have notable ecological consequences.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.W.

    This paper identifies a number of developments which are prominent during the urbanization of a country and which have particularly strong implications for energy use. Concomitant with urbanization, the industrial composition of the economy's production shifts, with reductions in agriculture and increases in the importance of primary metals, chemicals, and cement, all of which are relatively energy-intensive sectors. Evidence from India indicates that the movement of a worker from agriculture to the least energy-intensive urban activity other than services will quadruple per worker production energy requirements. Next, population concentration associated with urbanization facilitates increases in the scale of production whichmore » in turn encourages the substitution of modern energy for traditional fuels and requires energy for longer deliveries. Also, concentrated, off-farm populations require processing and delivery of food, which are not required for largely agricultural countries. Domestic activity changes send activities which were formerly conducted in the household with little or no energy use, outside, usually into firms, where fuels are used. Urban households also use considerably more transportation than do rural households. Evidence from Hong Kong indicates that pure urban density increases encourage substitutions of modern energy for traditional fuels. Finally, increased real incomes associated with urbanization increase energy consumption, with an elasticity of roughly unity. Aggregate cross-sectional data evidence from sixty developing countries was used to examine the overall magnitude of the effects of urbanization and associated developmental changes on per capita energy use. Controlling for industrial structure, per capita income (per capita gross domestic product), and several other variables, a one-percent increase in urbanization will cause a one-half percent increase in per capita energy use. 81 refs., 5 figs., 63 tabs.« less

  5. Microbial desulfurization of coal

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  6. Engineering Design Elements of a Two-Phase Thermosyphon to Trannsfer NGNP Nuclear Thermal Energy to a Hydrogen Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwal

    2009-07-01

    Two hydrogen production processes, both powered by a Next Generation Nuclear Plant (NGNP), are currently under investigation at Idaho National Laboratory. The first is high-temperature steam electrolysis, which uses both heat and electricity; the second is thermo-chemical production through the sulfur iodine process primarily using heat. Both processes require a high temperature (>850°C) for enhanced efficiency; temperatures indicative of the NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100 m.

  7. Hadronic Origin of Prompt High-energy Emission of Gamma-ray Bursts Revisited: In the Case of a Limited Maximum Proton Energy

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Ruo-Yu; Dai, Zi-Gao; Asano, Katsuaki

    2018-04-01

    The high-energy (>100 MeV) emission observed by the Fermi Large Area Telescope during the prompt phase of some luminous gamma-ray bursts (GRBs) could arise from the cascade induced by interactions between accelerated protons and the radiation field of GRBs. The photomeson process, which is usually suggested to operate in such a hadronic explanation, requires a rather high proton energy (>1017 eV) for an efficient interaction. However, whether GRBs can accelerate protons to such a high energy is far from guaranteed, although they have been suggested as the candidate source for ultrahigh-energy cosmic rays. In this work, we revisit the hadronic model for the prompt high-energy emission of GRBs with a smaller maximum proton energy than the usually adopted value estimated from the Bohm condition. In this case, the Bethe–Heitler pair production process becomes comparably important or even dominates over the photomeson process. We show that with a relatively low maximum proton energy with a Lorentz factor of 105 in the comoving frame, the cascade emission can still reproduce various types of high-energy spectra of GRBs. For most GRBs without high-energy emission detected, the maximum proton energy could be even lower and relax the constraints on the parameters of the GRB jet resulting from the nondetection of GRB neutrinos by IceCube.

  8. Risk analysis for renewable energy projects due to constraints arising

    NASA Astrophysics Data System (ADS)

    Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.

    2016-02-01

    Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.

  9. Radiation energy conversion in space; Conference, 3rd, NASA Ames Research Center, Moffett Field, Calif., January 26-28, 1978, Technical Papers

    NASA Technical Reports Server (NTRS)

    Billman, K. W.

    1978-01-01

    Concepts for space-based conversion of space radiation energy into useful energy for man's needs are developed and supported by studies of costs, material and size requirements, efficiency, and available technology. Besides the more studied solar power satellite system using microwave transmission, a number of alternative space energy concepts are considered. Topics covered include orbiting mirrors for terrestrial energy supply, energy conversion at a lunar polar site, ultralightweight structures for space power, radiatively sustained cesium plasmas for solar electric conversion, solar pumped CW CO2 laser, superelastic laser energy conversion, laser-enhanced dynamics in molecular rate processes, and electron beams in space for energy storage.

  10. Energy conservation through sealing technology

    NASA Technical Reports Server (NTRS)

    Stair, W. K.; Ludwig, L. P.

    1978-01-01

    Improvements in fluid film sealing resulting from a proposed research program could lead to an annual energy saving, on a national basis, equivalent to about 37 million bbl of oil or 0.3% of the total U.S. energy consumption. Further, the application of known sealing technology can result in an annual saving of an additional 10 million bbl of oil. The energy saving would be accomplished by reduction in process heat energy loss, reduction of frictional energy generated, and minimization of energy required to operate ancillary equipment associated with the seal system. In addition to energy saving, cost effectiveness is further enhanced by reduction in maintenance and in minimization of equipment for collecting leakage and for meeting environmental pollution standards.

  11. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    NASA Astrophysics Data System (ADS)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  12. Consolidation of lunar regolith: Microwave versus direct solar heating

    NASA Technical Reports Server (NTRS)

    Kunitzer, J.; Strenski, D. G.; Yankee, S. J.; Pletka, B. J.

    1991-01-01

    The production of construction materials on the lunar surface will require an appropriate fabrication technique. Two processing methods considered as being suitable for producing dense, consolidated products such as bricks are direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various size. The regolith was considered to be a mare basalt with an overall density of 60 pct. of theoretical. Densification was assumed to take place by vitrification since this process requires moderate amounts of energy and time while still producing dense products. Microwave heating was shown to be significantly faster compared to solar furnace heating for rapid production of realistic-size bricks.

  13. Method And Apparatus For Launching Microwave Energy Into A Plasma Processing Chamber

    DOEpatents

    DOUGHTY, FRANK C.; [et al

    2001-05-01

    A method and apparatus for launching microwave energy to a plasma processing chamber in which the required magnetic field is generated by a permanent magnet structure and the permanent magnet material effectively comprises one or more surfaces of the waveguide structure. The waveguide structure functions as an impedance matching device and controls the field pattern of the launched microwave field to create a uniform plasma. The waveguide launcher may comprise a rectangular waveguide, a circular waveguide, or a coaxial waveguide with permanent magnet material forming the sidewalls of the guide and a magnetization pattern which produces the required microwave electron cyclotron resonance magnetic field, a uniform field absorption pattern, and a rapid decay of the fields away from the resonance zone. In addition, the incorporation of permanent magnet material as a portion of the waveguide structure places the magnetic material in close proximity to the vacuum chamber, allowing for a precisely controlled magnetic field configuration, and a reduction of the amount of permanent magnet material required.

  14. Detectability of Light Dark Matter with Superfluid Helium.

    PubMed

    Schutz, Katelin; Zurek, Kathryn M

    2016-09-16

    We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100  keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.

  15. Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits

    PubMed Central

    Hong, Jeongmin; Lambson, Brian; Dhuey, Scott; Bokor, Jeffrey

    2016-01-01

    Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least kBT ln(2) of heat be dissipated from the memory into the environment, where kB is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between “information thermodynamics” and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology. PMID:26998519

  16. Mass production of silicon pore optics for ATHENA

    NASA Astrophysics Data System (ADS)

    Wille, Eric; Bavdaz, Marcos; Collon, Maximilien

    2016-07-01

    Silicon Pore Optics (SPO) provide high angular resolution with low effective area density as required for the Advanced Telescope for High Energy Astrophysics (Athena). The x-ray telescope consists of several hundreds of SPO mirror modules. During the development of the process steps of the SPO technology, specific requirements of a future mass production have been considered right from the beginning. The manufacturing methods heavily utilise off-the-shelf equipment from the semiconductor industry, robotic automation and parallel processing. This allows to upscale the present production flow in a cost effective way, to produce hundreds of mirror modules per year. Considering manufacturing predictions based on the current technology status, we present an analysis of the time and resources required for the Athena flight programme. This includes the full production process starting with Si wafers up to the integration of the mirror modules. We present the times required for the individual process steps and identify the equipment required to produce two mirror modules per day. A preliminary timeline for building and commissioning the required infrastructure, and for flight model production of about 1000 mirror modules, is presented.

  17. Blanking and piercing theory, applications and recent experimental results

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan l. O.

    2014-06-01

    Blanking and piercing are manufacturing processes by which certain geometrical shapes are sheared off a sheet metal. If the sheared off part is the one required, the processes referred to as blanking and if the remaining part in the sheet is the one required, the process is referred to as piercing. In this paper, the theory and practice of these processes are reviewed and discussed The main parameters affecting these processes are presented and discussed. These include: the radial clearance percentage, punch and die geometrical parameters, for example punch and die profile radii. The abovementioned parameters on the force and energy required to effect blanking together with their effect on the quality of the products are also presented and discussed. Recent experimental results together with photomacrographs and photomicrographs are also included and discussed. Finally, the effect of punch and die wear on the quality of the blanks is alsogiven and discussed.

  18. Evaluation of reinitialization-free nonvolatile computer systems for energy-harvesting Internet of things applications

    NASA Astrophysics Data System (ADS)

    Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro

    2017-08-01

    In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.

  19. Federal Ocean Energy Technology

    NASA Astrophysics Data System (ADS)

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY86. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  20. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    PubMed

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  1. CFD simulation of fluid dynamic and biokinetic processes within activated sludge reactors under intermittent aeration regime.

    PubMed

    Sánchez, F; Rey, H; Viedma, A; Nicolás-Pérez, F; Kaiser, A S; Martínez, M

    2018-08-01

    Due to the aeration system, biological reactors are the most energy-consuming facilities of convectional WWTPs. Many biological reactors work under intermittent aeration regime; the optimization of the aeration process (air diffuser layout, air flow rate per diffuser, aeration length …) is necessary to ensure an efficient performance; satisfying the effluent requirements with the minimum energy consumption. This work develops a CFD modelling of an activated sludge reactor (ASR) which works under intermittent aeration regime. The model considers the fluid dynamic and biological processes within the ASR. The biological simulation, which is transient, takes into account the intermittent aeration regime. The CFD modelling is employed for the selection of the aeration system of an ASR. Two different aeration configurations are simulated. The model evaluates the aeration power consumption necessary to satisfy the effluent requirements. An improvement of 2.8% in terms of energy consumption is achieved by modifying the air diffuser layout. An analysis of the influence of the air flow rate per diffuser on the ASR performance is carried out. The results show a reduction of 14.5% in the energy consumption of the aeration system when the air flow rate per diffuser is reduced. The model provides an insight into the aeration inefficiencies produced within ASRs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas to ethylene and propylene in a most energy-efficient and safe manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.

    1997-06-01

    Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.

  3. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  4. Supply and Demand of Energy in the Oocyte and the Role of Mitochondria.

    PubMed

    Martin, Wilding

    2017-01-01

    The sole purpose of any mammalian oocyte is to combine with a spermatozoon and form a viable embryo that implants into the uterus and forms a viable foetus. Most of the structures and mechanisms for this reside within the oocyte itself. The sperm limits itself to fertilisation of the oocyte; apart from this, its only contribution is the male genome and the centrosome, required for cell division. Both intrinsic and extrinsic factors determine the formation of a viable embryo. However, the fundamental necessity for successful reproduction resides within the capacity for the developing embryo to generate sufficient levels of energy for optimal development to occur. Energy is generated principally within mitochondria. In this chapter, we discuss some of the fundamental processes of preimplantation embryo development and the role of mitochondria in providing sufficient energy for the successful completion of these processes. We discuss mitochondrial genetics, replication and energy production. Ageing appears to affect the capacity of the mitochondrion to produce sufficient energy to balance the requirements of the embryo. We discuss some of the theories of the effect of maternal age on mitochondrial physiology and the role this plays in reproduction. We propose that maternal age has longer-term effects on individuals than simply on the efficiency of reproduction. We also discuss some of the procedures assisted reproduction has proposed to alleviate the effect of maternal age on reproduction.

  5. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  6. Methodological Guidelines on Net Energy Analysis of Photovoltaic Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raugei, Marco; Frischknecht, Rolf; Olson, Carol

    Net Energy Analysis (NEA) is a structured, comprehensive method of quantifying the extent to which a given energy source is able to provide a net energy gain (i.e., an energy surplus) to the end user, after accounting for all the energy losses occurring along the chain of processes that are required to exploit it (i.e., for its extraction, processing and transformation into a usable energy carrier, and delivery to the end user), as well as for all the additional energy 'investments' that are required in order to carry out the same chain of processes. However, this general framework leaves themore » individual practitioner with a range of choices that can affect the results and thus, the conclusions of a NEA study. The current IEA PVPS guidelines were developed to provide guidance on assuring consistency, balance, and quality to enhance the credibility and reliability of the results from photovoltaic (PV) NEAs. The guidelines represent a consensus among the authors -- PV NEA experts in North America, Europe, and Asia -- for assumptions made on PV performance, process inputs and outputs, methods of analysis, and reporting of the results. Guidance is given on photovoltaic-specific parameters used as inputs in NEA and on choices and assumptions in inventory data analysis and on implementation of modelling approaches. A consistent approach towards system modelling, the functional unit, the system boundaries and allocation aspects enhances the credibility of PV electricity NEA studies and enables balanced NEA-based comparisons of different electricity producing technologies. This document provides an in-depth discussion of a common metric of NEA, namely the energy return on investment (EROI), and how this is to be interpreted vis-a-vis the deceptively similar-sounding metrics in the field of Life Cycle Assessment (LCA): cumulative energy demand (CED) and non-renewable cumulative energy demand (nr-CED) per unit output. Specifically, a number of key differences are highlighted between these metrics as applied to electricity production systems. Transparency in reporting is of the utmost importance as parameters vary with geographical zones, and a system's boundary conditions and modelling approach can affect the findings significantly. This guideline lists 16 items that should be reported in every NEA study of PV electricity.« less

  7. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions.

  8. Ultra low power CMOS technology

    NASA Technical Reports Server (NTRS)

    Burr, J.; Peterson, A.

    1991-01-01

    This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation.

  9. Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons

    PubMed Central

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe

    2016-01-01

    In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders. PMID:27688915

  10. Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons.

    PubMed

    Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C

    In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders.

  11. An energy balance concept for habitability.

    PubMed

    Hoehler, Tori M

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use "power" and "voltage" at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  12. Volpe Aircraft Noise Certification DGPS Validation/Audit General Information, Data Submittal Guidelines, and Process Details; Letter Report V324-FB48B3-LR5

    DOT National Transportation Integrated Search

    2018-01-09

    As required by Federal Aviation Administration Order 8110.4C, Type Certification Process, the Volpe Center Acoustics Facility (Volpe), in support of the Federal Aviation Administration Office of Environment and Energy (AEE), has completed valid...

  13. Effect of starch source in pelleted concentrates on fecal bacterial communities in Thoroughbred mares

    USDA-ARS?s Scientific Manuscript database

    High starch concentrates are often added to equine diets to meet digestible energy requirements of some horses, such as broodmares. Starch source has been shown to affect fecal bacterial communities of horses when fed cereal grains with little to no processing. Others suggest that grain processing, ...

  14. 30 CFR 285.613 - How will MMS process my SAP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How will MMS process my SAP? 285.613 Section 285.613 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT... CONTINENTAL SHELF Plans and Information Requirements Contents of the Site Assessment Plan § 285.613 How will...

  15. Method of Moments Applied to the Analysis of Precision Spectra from the Neutron Time-of- flight Diagnostics at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hatarik, Robert; Caggiano, J. A.; Callahan, D.; Casey, D.; Clark, D.; Doeppner, T.; Eckart, M.; Field, J.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hartouni, E.; Hurricane, O.; Kilkenny, J.; Knauer, J.; Ma, T.; Mannion, O.; Munro, D.; Sayre, D.; Spears, B.

    2015-11-01

    The method of moments was introduced by Pearson as a process for estimating the population distributions from which a set of ``random variables'' are measured. These moments are compared with a parameterization of the distributions, or of the same quantities generated by simulations of the process. Most diagnostics processes extract scalar parameters depending on the moments of spectra derived from analytic solutions to the fusion rate, necessarily based on simplifying assumptions of the confined plasma. The precision of the TOF spectra, and the nature of the implosions at the NIF require the inclusion of factors beyond the traditional analysis and require the addition of higher order moments to describe the data. This talk will present a diagnostic process for extracting the moments of the neutron energy spectrum for a comparison with theoretical considerations as well as simulations of the implosions. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  16. Method for materials deposition by ablation transfer processing

    DOEpatents

    Weiner, K.H.

    1996-04-16

    A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.

  17. Investigating the Energy-Water Usage Efficiency of the Reuse of Treated Municipal Wastewater for Artificial Groundwater Recharge.

    PubMed

    Fournier, Eric D; Keller, Arturo A; Geyer, Roland; Frew, James

    2016-02-16

    This project investigates the energy-water usage efficiency of large scale civil infrastructure projects involving the artificial recharge of subsurface groundwater aquifers via the reuse of treated municipal wastewater. A modeling framework is introduced which explores the various ways in which spatially heterogeneous variables such as topography, landuse, and subsurface infiltration capacity combine to determine the physical layout of proposed reuse system components and their associated process energy-water demands. This framework is applied to the planning and evaluation of the energy-water usage efficiency of hypothetical reuse systems in five case study regions within the State of California. Findings from these case study analyses suggest that, in certain geographic contexts, the water requirements attributable to the process energy consumption of a reuse system can exceed the volume of water that it is able to recover by as much as an order of magnitude.

  18. ISO 50001 for US Commercial Buildings - Current Status and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jingjing; Sheaffer, Paul

    ''ISO 50001: 2011 Energy management systems – Requirements with guidance for use'' is a voluntary International Standard which provides organizations a proven framework to manage energy and continuously improve their energy performance. Implementing ISO 50001 in the commercial building sector has its unique opportunities and challenges in comparison with the industrial sector. The energy footprint of a portfolio of commercial buildings can be just as significant as a large industrial facility in comparison. There are many energy-saving opportunities in commercial buildings that can be addressed without capital investments, and the perceived risks for making energy improvements can be lower thanmore » in the industrial sector. In addition, the energy-consuming systems in commercial buildings are limited in types and have many similarities across buildings, which makes it much easier to standardize many ISO 50001 required processes, 5 procedures and documents to simplify implementation. There are also some sector-unique challenges, such as less familiar with ISO systems and the certification process. Another challenge arises from the complexity in some buildings’ ownership, tenancy, and O&M responsibilities. This whitepaper discusses these opportunities and issues in detail. The paper also recommends the characteristics of organizations in the commercial building sector that can benefit the most from adopting the ISO 50001 standard – namely the “suitable market”. Eight segments (education, food sales, retail, inpatient health care, hospitality, office buildings, laboratories and data centers) within the commercial building sector are highlighted.« less

  19. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  20. Biocrude crop production in arid lands. [Calotropis procera, Chrysothamus paniculatus, Euphorbia lathyris, Grindelia camporum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, S.P.; Kingsolver, B.E.; Hoffmann, J.J.

    1983-01-01

    Published and unpublished estimates of land and water requirements and energy yield were used to prepare energy budgets for 4 potential biocrude (liquid fuel) crops in the SW USA: the perennials Calotropis procera and Chrysothamnus paniculatus and the annuals Euphorbia lathyris and Grindelia camporum. Estimated annual costs are examined and discussed for an operation processing 300,000 t/yr. The cheapest energy was produced by C. paniculatus, although it required the largest land area. The paper emphasizes that selecting for biocrude content (biomass quality) of plants may be at the expense of productivity (quantity) since the 2 have been shown to bemore » inversely related in many cases. 8 references.« less

  1. ENERGY SYSTEM DEVELOPMENT AND LOAD MANAGEMENT THROUGH THE REHABILITATION AND RETURN TO PLAY PROCESS.

    PubMed

    Morrison, Scot; Ward, Patrick; duManoir, Gregory R

    2017-08-01

    Return-to-play from injury is a complex process involving many factors including the balancing of tissue healing rates with the development of biomotor abilities. This process requires interprofessional cooperation to ensure success. An often-overlooked aspect of return-to-play is the development and maintenance of sports specific conditioning while monitoring training load to ensure that the athlete's training stimulus over the rehabilitation period is appropriate to facilitate a successful return to play. The purpose of this clinical commentary is to address the role of energy systems training as part of the return-to-play process. Additionally the aim is to provide practitioners with an overview of practical sports conditioning training methods and monitoring strategies to allow them to direct and quantify the return-to-play process. 5.

  2. Conformal doping of topographic silicon structures using a radial line slot antenna plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Horigome, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro; Nozawa, Toshihisa; Kawakami, Satoru

    2014-06-01

    Fin extension doping for 10 nm front end of line technology requires ultra-shallow high dose conformal doping. In this paper, we demonstrate a new radial line slot antenna plasma source based doping process that meets these requirements. Critical to reaching true conformality while maintaining fin integrity is that the ion energy be low and controllable, while the dose absorption is self-limited. The saturated dopant later is rendered conformal by concurrent amorphization and dopant containing capping layer deposition followed by stabilization anneal. Dopant segregation assists in driving dopants from the capping layer into the sub silicon surface. Very high resolution transmission electron microscopy-Energy Dispersive X-ray spectroscopy, used to prove true conformality, was achieved. We demonstrate these results using an n-type arsenic based plasma doping process on 10 to 40 nm high aspect ratio fins structures. The results are discussed in terms of the different types of clusters that form during the plasma doping process.

  3. 75 FR 65310 - Pine Prairie Energy Center, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... existing systems; (v) construct approximately 2.50 miles of 24, 20, and 16-inch diameter leaching pipeline... with the Commission's environmental review process. Environmental commenters will not be required to...

  4. Physics and psychophysics of color reproduction

    NASA Astrophysics Data System (ADS)

    Giorgianni, Edward J.

    1991-08-01

    The successful design of a color-imaging system requires knowledge of the factors used to produce and control color. This knowledge can be derived, in part, from measurements of the physical properties of the imaging system. Color itself, however, is a perceptual response and cannot be directly measured. Though the visual process begins with physics, as radiant energy reaching the eyes, it is in the mind of the observer that the stimuli produced from this radiant energy are interpreted and organized to form meaningful perceptions, including the perception of color. A comprehensive understanding of color reproduction, therefore, requires not only a knowledge of the physical properties of color-imaging systems but also an understanding of the physics, psychophysics, and psychology of the human observer. The human visual process is quite complex; in many ways the physical properties of color-imaging systems are easier to understand.

  5. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  6. Heat pipes for low-humidity applications

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1989-01-01

    A novel application of an air-to-air heat pipe heat exchanger (HPHX) in a cooling and dehumidification process of an air-conditioning system is described which provides significant energy savings in applications requiring reheat of cold supply air to maintain low humidity. The efficiency of the system has been demonstrated in an application requiring a humidity of 40 percent. The use of the HPHX and fine tuning of the air-conditioning system and controls has resulted in significant energy savings. The technology can be advantageously used in many low-humidity applications commonly encountered in high-tech and aerospace facilities.

  7. Verification of a rapid mooring and foundation design tool

    DOE PAGES

    Weller, Sam D.; Hardwick, Jon; Gomez, Steven; ...

    2018-02-15

    Marine renewable energy devices require mooring and foundation systems that suitable in terms of device operation and are also robust and cost effective. In the initial stages of mooring and foundation development a large number of possible configuration permutations exist. Filtering of unsuitable designs is possible using information specific to the deployment site (i.e. bathymetry, environmental conditions) and device (i.e. mooring and/or foundation system role and cable connection requirements). The identification of a final solution requires detailed analysis, which includes load cases based on extreme environmental statistics following certification guidance processes. Static and/or quasi-static modelling of the mooring and/or foundationmore » system serves as an intermediate design filtering stage enabling dynamic time-domain analysis to be focused on a small number of potential configurations. Mooring and foundation design is therefore reliant on logical decision making throughout this stage-gate process. The open-source DTOcean (Optimal Design Tools for Ocean Energy Arrays) Tool includes a mooring and foundation module, which automates the configuration selection process for fixed and floating wave and tidal energy devices. As far as the authors are aware, this is one of the first tools to be developed for the purpose of identifying potential solutions during the initial stages of marine renewable energy design. While the mooring and foundation module does not replace a full design assessment, it provides in addition to suitable configuration solutions, assessments in terms of reliability, economics and environmental impact. This article provides insight into the solution identification approach used by the module and features the verification of both the mooring system calculations and the foundation design using commercial software. Several case studies are investigated: a floating wave energy converter and several anchoring systems. It is demonstrated that the mooring and foundation module is able to provide device and/or site developers with rapid mooring and foundation design solutions to appropriate design criteria.« less

  8. Verification of a rapid mooring and foundation design tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, Sam D.; Hardwick, Jon; Gomez, Steven

    Marine renewable energy devices require mooring and foundation systems that suitable in terms of device operation and are also robust and cost effective. In the initial stages of mooring and foundation development a large number of possible configuration permutations exist. Filtering of unsuitable designs is possible using information specific to the deployment site (i.e. bathymetry, environmental conditions) and device (i.e. mooring and/or foundation system role and cable connection requirements). The identification of a final solution requires detailed analysis, which includes load cases based on extreme environmental statistics following certification guidance processes. Static and/or quasi-static modelling of the mooring and/or foundationmore » system serves as an intermediate design filtering stage enabling dynamic time-domain analysis to be focused on a small number of potential configurations. Mooring and foundation design is therefore reliant on logical decision making throughout this stage-gate process. The open-source DTOcean (Optimal Design Tools for Ocean Energy Arrays) Tool includes a mooring and foundation module, which automates the configuration selection process for fixed and floating wave and tidal energy devices. As far as the authors are aware, this is one of the first tools to be developed for the purpose of identifying potential solutions during the initial stages of marine renewable energy design. While the mooring and foundation module does not replace a full design assessment, it provides in addition to suitable configuration solutions, assessments in terms of reliability, economics and environmental impact. This article provides insight into the solution identification approach used by the module and features the verification of both the mooring system calculations and the foundation design using commercial software. Several case studies are investigated: a floating wave energy converter and several anchoring systems. It is demonstrated that the mooring and foundation module is able to provide device and/or site developers with rapid mooring and foundation design solutions to appropriate design criteria.« less

  9. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  10. Reducing cooling energy consumption in data centres and critical facilities

    NASA Astrophysics Data System (ADS)

    Cross, Gareth

    Given the rise of our everyday reliance on computers in all walks of life, from checking the train times to paying our credit card bills online, the need for computational power is ever increasing. Other than the ever-increasing performance of home Personal Computers (PC's) this reliance has given rise to a new phenomenon in the last 10 years ago. The data centre. Data centres contain vast arrays of IT cabinets loaded with servers that perform millions of computational equations every second. It is these data centres that allow us to continue with our reliance on the internet and the PC. As more and more data centres become necessary due to the increase in computing processing power required for the everyday activities we all take for granted so the energy consumed by these data centres rises. Not only are more and more data centres being constructed daily, but operators are also looking at ways to squeeze more processing from their existing data centres. This in turn leads to greater heat outputs and therefore requires more cooling. Cooling data centres requires a sizeable energy input, indeed to many megawatts per data centre site. Given the large amounts of money dependant on the successful operation of data centres, in particular for data centres operated by financial institutions, the onus is predominantly on ensuring the data centres operate with no technical glitches rather than in an energy conscious fashion. This report aims to investigate the ways and means of reducing energy consumption within data centres without compromising the technology the data centres are designed to house. As well as discussing the individual merits of the technologies and their implementation technical calculations will be undertaken where necessary to determine the levels of energy saving, if any, from each proposal. To enable comparison between each proposal any design calculations within this report will be undertaken against a notional data facility. This data facility will nominally be considered to require 1000 kW. Refer to Section 2.1 'Outline of Notional data Facility for Calculation Purposes' for details of the design conditions and constraints of the energy consumption calculations.

  11. Development of a low-pressure materials pre-treatment process for improved energy efficiency

    NASA Astrophysics Data System (ADS)

    Lee, Kwanghee; You, Byung Don

    2017-09-01

    Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.

  12. Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase

    PubMed Central

    Mukherjee, Shayantani; Warshel, Arieh

    2011-01-01

    Understanding the nature of energy transduction in life processes requires a quantitative description of the energetics of the conversion of ATP to ADP by ATPases. Previous attempts to do so have provided an interesting insight but could not account for the rotary mechanism by a nonphenomenological structure/energy description. In particular it has been very challenging to account for the observations of the 80° and 40° rotational substates, without any prior information about such states in the simulation procedure. Here we use a coarse-grained model of F1-ATPase and generate, without the adjustment of phenomenological parameters, a structure-based free energy landscape that reproduces the energetics of the mechanochemical process. It is found that the landscape along the relevant rotary path is determined by the electrostatic free energy and not by steric effects. Furthermore, the generated surface and the corresponding Langevin dynamics simulations identify a hidden conformational barrier that provides a new fundamental interpretation of the catalytic dwell and illuminate the nature of the energy conversion process. PMID:22143769

  13. Rock Smelting of Copper Ores with Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad

    It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.

  14. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  15. Development of a Two-Stage Microalgae Dewatering Process – A Life Cycle Assessment Approach

    PubMed Central

    Soomro, Rizwan R.; Zeng, Xianhai; Lu, Yinghua; Lin, Lu; Danquah, Michael K.

    2016-01-01

    Even though microalgal biomass is leading the third generation biofuel research, significant effort is required to establish an economically viable commercial-scale microalgal biofuel production system. Whilst a significant amount of work has been reported on large-scale cultivation of microalgae using photo-bioreactors and pond systems, research focus on establishing high performance downstream dewatering operations for large-scale processing under optimal economy is limited. The enormous amount of energy and associated cost required for dewatering large-volume microalgal cultures has been the primary hindrance to the development of the needed biomass quantity for industrial-scale microalgal biofuels production. The extremely dilute nature of large-volume microalgal suspension and the small size of microalgae cells in suspension create a significant processing cost during dewatering and this has raised major concerns towards the economic success of commercial-scale microalgal biofuel production as an alternative to conventional petroleum fuels. This article reports an effective framework to assess the performance of different dewatering technologies as the basis to establish an effective two-stage dewatering system. Bioflocculation coupled with tangential flow filtration (TFF) emerged a promising technique with total energy input of 0.041 kWh, 0.05 kg CO2 emissions and a cost of $ 0.0043 for producing 1 kg of microalgae biomass. A streamlined process for operational analysis of two-stage microalgae dewatering technique, encompassing energy input, carbon dioxide emission, and process cost, is presented. PMID:26904075

  16. Finite Element Analysis in Concurrent Processing: Computational Issues

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Watson, Brian; Vanderplaats, Garrett

    2004-01-01

    The purpose of this research is to investigate the potential application of new methods for solving large-scale static structural problems on concurrent computers. It is well known that traditional single-processor computational speed will be limited by inherent physical limits. The only path to achieve higher computational speeds lies through concurrent processing. Traditional factorization solution methods for sparse matrices are ill suited for concurrent processing because the null entries get filled, leading to high communication and memory requirements. The research reported herein investigates alternatives to factorization that promise a greater potential to achieve high concurrent computing efficiency. Two methods, and their variants, based on direct energy minimization are studied: a) minimization of the strain energy using the displacement method formulation; b) constrained minimization of the complementary strain energy using the force method formulation. Initial results indicated that in the context of the direct energy minimization the displacement formulation experienced convergence and accuracy difficulties while the force formulation showed promising potential.

  17. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    PubMed Central

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  18. The economical utilization of geothermal energy

    NASA Astrophysics Data System (ADS)

    Rose, G.

    1982-12-01

    The geothermal energy which is stored in hot dry rock could be theoretically utilized for the generation of power. The hot-dry-rock procedure can provide a flow of hot water. The considered binary system can transform the obtained thermal energy into electrical energy. The system makes use of a Rankine cycle with a working fluid having a low boiling point. Heat from the hot water is transferred to the working fluid. The present investigation is concerned with the development of a method for the calculation of the entire process. The results obtained with the computational method are to provide a basis for the determination of the operational characteristics. The development method is used for the study of a process based on the use of carbon dioxide as working fluid. The economics of a use of the hot-dry-rock process with the binary system is also investigated. It is found that the considered procedure is not economical. Economical operation requires, in particular, hot water supplied at a much lower cost.

  19. Energy Requirements for the Transport of Methylthio-β-d-Galactoside by Escherichia coli: Measurement by Microcalorimetry and by Rates of Oxygen Consumption and Carbon Dioxide Production1

    PubMed Central

    Long, Richard A.; Martin, W. G.; Schneider, Henry

    1977-01-01

    The energy cost for maintenance of gradients of methylthio-β-d-galactoside in Escherichia coli was evaluated. Information was also obtained concerning the energy flow associated with gradient establishment under some circumstances. Energy flow was evaluated from transport-induced changes in the rate of heat evolution, oxygen consumption, and carbon dioxide production in metabolically active cells. Heats were measured with an isothermal calorimeter. Energy expenditure behavior was characterized by a transition that depended on the level of accumulation. The data for steady-state maintenance could be rationalized in terms of the Mitchell hypothesis, two models for influx and efflux, and a transition between them. At low levels of uptake, steady-state proton-methylthio-β-d-galactoside (TMG) symport for influx and efflux occurred via a nonenergy-requiring exchange process. The only energy requirement was that necessary to pump back in any TMG exiting via a leakage pathway (model I). Above the transition, all influx occurred with proton symport, but all exit, leak and carrier mediated, occurred without proton symport (model II). The H+/TMG stoichiometric ratio computed for the region of model II applicability (carbon source present, high level of uptake) approached 1. This value agreed with that of other workers for downhill β-galactoside flow, suggesting that the energy cost for both downhill and uphill flow was approximately the same. For low levels of uptake, initial establishment of the gradient was followed by a burst of metabolism that was much larger than that expected on the basis of the chemiosmotic hypothesis. In the absence of carbon source, the stimulation in respiration was sufficient to produce 13 times more protons than are apparently necessary to establish the gradient. The results indicate also that the nature of the biochemical process stimulated by TMG depends on its level of uptake. Insight into several aspects of the nature of these processes was provided through analysis of the heat, oxygen, and CO2 data. The key factor controlling the transition in energy flow behavior is suggested to be rate of flux. The present data suggest that it occurs at a flux of ∼120 nmol/min per mg of protein. PMID:324976

  20. High repetition rate ultrashort laser cuts a path through fog

    NASA Astrophysics Data System (ADS)

    de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre

    2016-12-01

    We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.

  1. Flexible patch composed of PZT thin-film on stainless steel foil for energy harvesting from low-frequency human motions

    NASA Astrophysics Data System (ADS)

    Wang, Yin Jie; Chen, Chao Ting; Chen, Jiun Jung; Yeh, Sou Peng; Wu, Wen Jong

    2015-03-01

    To harvest energy from human motion and generate power for the emerging wearable devices, energy harvesters are required to work at very low frequency. There are several studies based on energy harvesting through human gait, which can generate significant power. However, when wearing these kind of devices, additional effort may be required and the user may feel uncomfortable when moving. The energy harvester developed here is composed of a 10 μm PZT thin-film deposited on 50 μm thick stainless steel foil by the aerosol deposition method. The PZT layer and the stainless steel foil are both very thin, thus the patch is highly flexible. The patch can be attached on the skin to harvester power through human motions such as the expansion of the chest region while breathing. The energy harvester will first be tested with a moving stage for power output measurements. The energy density can be determined for different deformation ranges and frequencies. The fabrication processes and testing results will all be detailed in this paper.

  2. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingersoll, Daniel T

    2007-01-01

    Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less

  3. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  4. Framework and criteria for program evaluation in the Office of Conservation and Renewable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This study addresses the development of a framework and generic criteria for conducting program evaluation in the Office of Conservation and Renewable Energy. The evaluation process is intended to provide the Assistant Secretary with comprehensive and consistent evaluation data for management decisions regarding policy and strategy, crosscutting energy impacts and resource allocation and justification. The study defines evaluation objectives, identifies basic information requirements (criteria), and identifies a process for collecting evaluation results at the basic program level, integrating the results, and summarizing information upward through the CE organization to the Assistant Secretary. Methods are described by which initial criteria weremore » tested, analyzed, and refined for CE program applicability. General guidelines pertaining to evaluation and the Sunset Review requirements are examined and various types, designs, and models for evaluation are identified. Existing CE evaluation reports are reviewed and comments on their adequacy for meeting current needs are provided. An inventory and status survey of CE program evaluation activities is presented, as are issues, findings, and recommendations pertaining to CE evaluation and Sunset Review requirements. Also, sources of data for use in evaluation and the Sunset Review response are identified. An inventory of CE evaluation-related documents and reports is provided.« less

  5. Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.

    PubMed

    Yip, Ngai Yin; Elimelech, Menachem

    2012-05-01

    The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic model for PRO and verify that the theoretical maximum extractable work in a reversible PRO process is identical to the Gibbs free energy of mixing. Work extraction in an irreversible constant-pressure PRO process is then examined. We derive an expression for the maximum extractable work in a constant-pressure PRO process and show that it is less than the ideal work (i.e., Gibbs free energy of mixing) due to inefficiencies intrinsic to the process. These inherent inefficiencies are attributed to (i) frictional losses required to overcome hydraulic resistance and drive water permeation and (ii) unutilized energy due to the discontinuation of water permeation when the osmotic pressure difference becomes equal to the applied hydraulic pressure. The highest extractable work in constant-pressure PRO with a seawater draw solution and river water feed solution is 0.75 kWh/m(3) while the free energy of mixing is 0.81 kWh/m(3)-a thermodynamic extraction efficiency of 91.1%. Our analysis further reveals that the operational objective to achieve high power density in a practical PRO process is inconsistent with the goal of maximum energy extraction. This study demonstrates thermodynamic and energetic approaches for PRO and offers insights on actual energy accessible for utilization in PRO power generation through salinity gradients. © 2012 American Chemical Society

  6. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia: necessary modifications

    NASA Astrophysics Data System (ADS)

    Al-Qudaimi, Abdullah; Kumar, Amit

    2018-05-01

    Recently, Abdullah and Najib (International Journal of Sustainable Energy 35(4): 360-377, 2016) proposed an intuitionistic fuzzy analytic hierarchy process to deal with uncertainty in decision-making and applied it to establish preference in the sustainable energy planning decision-making of Malaysia. This work may attract the researchers of other countries to choose energy technology for their countries. However, after a deep study of the published paper (International Journal of Sustainable Energy 35(4): 362-377, 2016), it is noticed that the expression used by Abdullah and Najib in Step 6 of their proposed method for evaluating the intuitionistic fuzzy entropy of each aggregate of each row of intuitionistic fuzzy matrix is not valid. Therefore, it is not genuine to use the method proposed by Abdullah and Najib for solving real-life problems. The aim of this paper was to suggest the required necessary modifications for resolving the flaws of the Abdullah and Najib method.

  7. Assessment of the Charging Policy in Energy Efficiency of the Enterprise

    NASA Astrophysics Data System (ADS)

    Shutov, E. A.; E Turukina, T.; Anisimov, T. S.

    2017-04-01

    The forecasting problem for energy facilities with a power exceeding 670 kW is currently one of the main. In connection with rules of the retail electricity market such customers also pay for actual energy consumption deviations from plan value. In compliance with the hierarchical stages of the electricity market a guaranteeing supplier is to respect the interests of distribution and generation companies that require load leveling. The answer to this question for industrial enterprise is possible only within technological process through implementation of energy-efficient processing chains with the adaptive function and forecasting tool. In such a circumstance the primary objective of a forecasting is reduce the energy consumption costs by taking account of the energy cost correlation for 24 hours for forming of pumping unit work schedule. The pumping unit virtual model with the variable frequency drive is considered. The forecasting tool and the optimizer are integrated into typical control circuit. Economic assessment of the optimization method was estimated.

  8. Apparent Minimum Free Energy Requirements for Methanogenic Archaea and Sulfate-Reducing Bacteria in an Anoxic Marine Sediment

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.; DeVincenzi, Don (Technical Monitor)

    2000-01-01

    Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2-consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5 C) and August (at 27 C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate reducing bacteria exhibited an asymptote of -19.1 +/- 1.7 kj(mol SO4(2-)(sup -1) while methanogenic archaea were apparently supported by energy yields as small as -10.6 +/- 0.7 kj(mol CH4)(sup -1).

  9. Assessing national nutrition security: The UK reliance on imports to meet population energy and nutrient recommendations

    PubMed Central

    Clark, Heather; Whybrow, Stephen; de Ruiter, Henri; McNeill, Geraldine

    2018-01-01

    Nutrition security describes the adequacy of the food supply to meet not only energy but also macronutrient and micronutrient requirements for the population. The aim of this study was to develop a method to assess trends in national nutrition security and the contribution of imports to nutrition security, using the UK as a case study. Food supply data from FAO food balance sheets and national food composition tables were used to estimate the nutrient content of domestically produced food, imported food and exported food. Nutrition security was defined as the total nutrient supply (domestic production, minus exports, plus imports) to meet population-level nutrient requirements. The results showed that the UK was nutrition secure over the period 1961–2011 for energy, macronutrients and key micronutrients, with the exception of total carbohydrates and fibre, which may be due to the loss of fibre incurred by processing cereals into refined products. The supply of protein exceeded population requirements and could be met with domestic production alone. Even excluding all meat there was sufficient protein for population requirements. The supply of total fat, saturated fat and sugar considerably exceeded the current dietary recommendation. As regards nutrition security in 2010, the UK was reliant on imported foods to meet energy, fibre, total carbohydrate, iron, zinc and vitamin A requirements. This analysis demonstrates the importance of including nutrients other than energy to determine the adequacy of the food supply. The methodology also provides an alternative perspective on food security and self-sufficiency by assessing the dependency on imports to meet population level nutritional requirements. PMID:29489830

  10. Assessing national nutrition security: The UK reliance on imports to meet population energy and nutrient recommendations.

    PubMed

    Macdiarmid, Jennie I; Clark, Heather; Whybrow, Stephen; de Ruiter, Henri; McNeill, Geraldine

    2018-01-01

    Nutrition security describes the adequacy of the food supply to meet not only energy but also macronutrient and micronutrient requirements for the population. The aim of this study was to develop a method to assess trends in national nutrition security and the contribution of imports to nutrition security, using the UK as a case study. Food supply data from FAO food balance sheets and national food composition tables were used to estimate the nutrient content of domestically produced food, imported food and exported food. Nutrition security was defined as the total nutrient supply (domestic production, minus exports, plus imports) to meet population-level nutrient requirements. The results showed that the UK was nutrition secure over the period 1961-2011 for energy, macronutrients and key micronutrients, with the exception of total carbohydrates and fibre, which may be due to the loss of fibre incurred by processing cereals into refined products. The supply of protein exceeded population requirements and could be met with domestic production alone. Even excluding all meat there was sufficient protein for population requirements. The supply of total fat, saturated fat and sugar considerably exceeded the current dietary recommendation. As regards nutrition security in 2010, the UK was reliant on imported foods to meet energy, fibre, total carbohydrate, iron, zinc and vitamin A requirements. This analysis demonstrates the importance of including nutrients other than energy to determine the adequacy of the food supply. The methodology also provides an alternative perspective on food security and self-sufficiency by assessing the dependency on imports to meet population level nutritional requirements.

  11. Examination of the consumer decision process for residential energy use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinan, T.M.

    1987-01-01

    Numerous studies have examined the factors that influence consumers' energy-using behavior. A comprehensive review of these studies was conducted in which articles from different research disciplines (economics, sociology, psychology, and marketing) were examined. This paper provides a discussion of a subset of these studies, and based on findings of the review, offers recommendations for future research. The literature review revealed a need to develop an integrated framework for examining consumers' energy-using behavior. This integrated framework should simultaneously consider both price and nonprice related factors which underlie energy use decisions. It should also examined the process by which decisions are made,more » as well as the factors that affect the decision outcome. This paper provides a suggested integrated framework for future research and discusses the data required to support this framework. 23 references, 3 figures.« less

  12. Project development laboratories energy fuels and oils based on NRU “MPEI”

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Khomenkov, A. M.; Paramonova, A. O.; Khtoo Naing, Aung

    2017-11-01

    In the process of improving the efficiency of power plants a hot topic is the use of high-quality fuels and lubricants. In the process of transportation, preparation for use, storage and maintenance of the properties of fuels and lubricants may deteriorate, which entails a reduction in the efficiency of power plants. One of the ways to prevent the deterioration of the properties is a timely analysis of the relevant laboratories. In this day, the existence of laboratories of energy fuels and energy laboratory oil at thermal power stations is satisfactory character. However, the training of qualified personnel to work in these laboratories is a serious problem, as the lack of opportunities in these laboratories a complete list of required tests. The solution to this problem is to explore the possibility of application of methods of analysis of the properties of fuels and lubricants in the stage of training and re-training of qualified personnel. In this regard, on the basis of MPEI developed laboratory projects of solid, liquid and gaseous fuels, power and energy oils and lubricants. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties. Assess the financial component of the implementation of the developed projects based on the use of modern equipment used for tests. Projects allow for a complete list of tests required for the timely control of properties and prevent the deterioration of these properties.

  13. Effect of fossil fuels on the parameters of CO2 capture.

    PubMed

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  14. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph; Willis, Emily

    2014-01-01

    Internal charging is not generally considered a threat in low Earth orbit due to the relatively short exposure times and low flux of electrons with energies of a few MeV encountered in typical orbits. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. We investigate the conditions required for this internal charging process to occur in low Earth orbit using a one-dimensional charging model and evaluate the environments for which the process may be a threat to spacecraft.

  15. [Guidelines for specialized nutritional and metabolic support in the critically-ill patient. Update. Consensus of the Spanish Society of Intensive Care Medicine and Coronary Units-Spanish Society of Parenteral and Enteral Nutrition (SEMICYUC-SENPE): macro-and micronutrient requirements].

    PubMed

    Bonet Saris, A; Márquez Vácaro, J A; Serón Arbeloa, C

    2011-11-01

    Energy requirements are altered in critically-ill patients and are influenced by the clinical situation, treatment, and phase of the process. Therefore, the most appropriate method to calculate calorie intake is indirect calorimetry. In the absence of this technique, fixed calorie intake (between 25 and 35 kcal/kg/day) or predictive equations such as the Penn State formula can be used to obtain a more accurate evaluation of metabolic rate. Carbohydrate administration should be limited to a maximum of 4 g/kg/day and a minimum of 2g/kg/day. Plasma glycemia should be controlled to avoid hyperglycemia. Fat intake should be between 1 and 1.5 g/kg/day. The recommended protein intake is 1-1.5 g/kg/day but can vary according to the patient's clinical status. Particular attention should be paid to micronutrient intake. Consensus is lacking on micronutrient requirements. Some vitamins (A, B, C, E) are highly important in critically-ill patients, especially those undergoing continuous renal replacement techniques, patients with severe burns and alcoholics, although the specific requirements in each of these types of patient have not yet been established. Energy and protein intake in critically-ill patients is complex, since both clinical factors and the stage of the process must be taken into account. The first step is to calculate each patient's energy requirements and then proceed to distribute calorie intake among its three components: proteins, carbohydrates and fat. Micronutrient requirements must also be considered. Copyright © 2011 Sociedad Española de Medicina Intensiva, Critica y Unidades Coronarias (SEMICYUC) and Elsevier España, S.L. All rights reserved.

  16. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  17. Coupling the Multizone Airflow and Contaminant Transport Software CONTAM with EnergyPlus Using Co-Simulation.

    PubMed

    Dols, W Stuart; Emmerich, Steven J; Polidoro, Brian J

    2016-08-01

    Building modelers need simulation tools capable of simultaneously considering building energy use, airflow and indoor air quality (IAQ) to design and evaluate the ability of buildings and their systems to meet today's demanding energy efficiency and IAQ performance requirements. CONTAM is a widely-used multizone building airflow and contaminant transport simulation tool that requires indoor temperatures as input values. EnergyPlus is a prominent whole-building energy simulation program capable of performing heat transfer calculations that require interzone and infiltration airflows as input values. On their own, each tool is limited in its ability to account for thermal processes upon which building airflow may be significantly dependent and vice versa. This paper describes the initial phase of coupling of CONTAM with EnergyPlus to capture the interdependencies between airflow and heat transfer using co-simulation that allows for sharing of data between independently executing simulation tools. The coupling is accomplished based on the Functional Mock-up Interface (FMI) for Co-simulation specification that provides for integration between independently developed tools. A three-zone combined heat transfer/airflow analytical BESTEST case was simulated to verify the co-simulation is functioning as expected, and an investigation of a two-zone, natural ventilation case designed to challenge the coupled thermal/airflow solution methods was performed.

  18. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  19. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  20. Minimization of power consumption during charging of superconducting accelerating cavities

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Anirban Krishna; Ziemann, Volker; Ruber, Roger; Goryashko, Vitaliy

    2015-11-01

    The radio frequency cavities, used to accelerate charged particle beams, need to be charged to their nominal voltage after which the beam can be injected into them. The standard procedure for such cavity filling is to use a step charging profile. However, during initial stages of such a filling process a substantial amount of the total energy is wasted in reflection for superconducting cavities because of their extremely narrow bandwidth. The paper presents a novel strategy to charge cavities, which reduces total energy reflection. We use variational calculus to obtain analytical expression for the optimal charging profile. Energies, reflected and required, and generator peak power are also compared between the charging schemes and practical aspects (saturation, efficiency and gain characteristics) of power sources (tetrodes, IOTs and solid state power amplifiers) are also considered and analysed. The paper presents a methodology to successfully identify the optimal charging scheme for different power sources to minimize total energy requirement.

  1. De Minimis Thresholds for Federal Building Metering Appropriateness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Jordan W.

    2015-03-31

    The U.S. Department of Energy (DOE) is required by statute and Presidential Memorandum to establish guidelines for agencies to meter their Federal buildings for energy (electricity, natural gas, and steam) and water. See 42 U.S.C. § 8253(e). DOE issued guidance in February 2006 on the installation of electric meters in Federal buildings. A recent update to the 2006 guidance accounts for more current metering practices within the Federal Government. The updated metering guidance specifies that all Federal buildings shall be considered “appropriate” for energy or water metering unless identified for potential exclusion. In developing the updated guidance to carry outmore » the statue, Congress also directed DOE to (among other things) establish exclusions from the metering requirements based on the de minimis quantity of energy use of a Federal building, industrial process, or structure. This paper discusses the method used to identify de minimis values.« less

  2. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjue, S. K. L., E-mail: sjue@lanl.gov; Mariam, F. G.; Merrill, F. E.

    2016-01-15

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the imagemore » plane. Comparison with a series of static calibration images demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  3. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGES

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; ...

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  4. Parametric Cost Analysis: A Design Function

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1989-01-01

    Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.

  5. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    NASA Astrophysics Data System (ADS)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions characterized by water scarcity, such as Southern California, groundwater containing chromophoric dissolved organic matter is a viable source of water supply. However, the seawater intrusion increased the concentration of bromide in extracted groundwater. Bromide, a precursor to bromate formation is regulated by USEPA as a potential carcinogen. This study compares the energy footprint among the two processes utilized for treatment of highly colored groundwater (i.e. nanofiltration and ozone injection coupled with biologically activated carbon) and discusses the impacts of bromate formation among these processes.

  6. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  7. ARRAY OPTIMIZATION FOR TIDAL ENERGY EXTRACTION IN A TIDAL CHANNEL – A NUMERICAL MODELING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea

    This paper presents an application of a hydrodynamic model to simulate tidal energy extraction in a tidal dominated estuary in the Pacific Northwest coast. A series of numerical experiments were carried out to simulate tidal energy extraction with different turbine array configurations, including location, spacing and array size. Preliminary model results suggest that array optimization for tidal energy extraction in a real-world site is a very complex process that requires consideration of multiple factors. Numerical models can be used effectively to assist turbine siting and array arrangement in a tidal turbine farm for tidal energy extraction.

  8. The role of remote sensing in process‐scaling studies of managed forest ecosystems

    Treesearch

    Jeffrey G. Masek; Daniel J. Hayes; M. Joseph Hughes; Sean P. Healey; David P. Turner

    2015-01-01

    Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains...

  9. Solid rocket motors

    NASA Technical Reports Server (NTRS)

    Carpenter, Ronn L.

    1993-01-01

    Structural requirements, materials and, especially, processing are critical issues that will pace the introduction of new types of solid rocket motors. Designers must recognize and understand the drivers associated with each of the following considerations: (1) cost; (2) energy density; (3) long term storage with use on demand; (4) reliability; (5) safety of processing and handling; (6) operability; and (7) environmental acceptance.

  10. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  11. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy.

    PubMed

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-10

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  12. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    NASA Astrophysics Data System (ADS)

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-03-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement.

  13. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy

    PubMed Central

    Lostaglio, Matteo; Jennings, David; Rudolph, Terry

    2015-01-01

    Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774

  14. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less

  15. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  16. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    PubMed

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-05-10

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  17. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  18. ISPE: A knowledge-based system for fluidization studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, S.

    1991-01-01

    Chemical engineers use mathematical simulators to design, model, optimize and refine various engineering plants/processes. This procedure requires the following steps: (1) preparation of an input data file according to the format required by the target simulator; (2) excecuting the simulation; and (3) analyzing the results of the simulation to determine if all specified goals'' are satisfied. If the goals are not met, the input data file must be modified and the simulation repeated. This multistep process is continued until satisfactory results are obtained. This research was undertaken to develop a knowledge based system, IPSE (Intelligent Process Simulation Environment), that canmore » enhance the productivity of chemical engineers/modelers by serving as an intelligent assistant to perform a variety tasks related to process simulation. ASPEN, a widely used simulator by the US Department of Energy (DOE) at Morgantown Energy Technology Center (METC) was selected as the target process simulator in the project. IPSE, written in the C language, was developed using a number of knowledge-based programming paradigms: object-oriented knowledge representation that uses inheritance and methods, rulebased inferencing (includes processing and propagation of probabilistic information) and data-driven programming using demons. It was implemented using the knowledge based environment LASER. The relationship of IPSE with the user, ASPEN, LASER and the C language is shown in Figure 1.« less

  19. Wireless Sensor Node Power Profiling Based on IEEE 802.11 and IEEE 802.15.4 Communication Protocols. Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Richardson, Joseph; Zhang, Yanliang

    Most wireless sensor network (comprising of thousands of WSNs) applications require operation over extended periods of time beginning with their deployment. Network lifetime is extremely critical for most applications and is one of the limiting factors for energy-constrained networks. Based on applications, there are wide ranges of different energy sources suitable for powering WSNs. A battery is traditionally used to power WSNs. The deployed WSN is required to last for long time. Due to finite amount of energy present in batteries, it is not feasible to replace batteries. Recently there has been a new surge in the area of energymore » harvesting were ambient energy in the environment can be utilized to prolong the lifetime of WSNs. Some of the sources of ambient energies are solar power, thermal gradient, human motion and body heat, vibrations, and ambient RF energy. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, and retransmission, which result in unanticipated power losses. This report focuses rigorous stochastic modeling of power demand for a schedule-driven WSN utilizing Institute of Electrical and Electronics Engineers 802.11 and 802.15.4 communication protocols. The model captures the generic operation of a schedule-driven WSN when an external event occurs, i.e., sensing, following by processing, and followed by communication. The report will present development of an expression to compute the expected energy consumption per operational cycle of a schedule-driven WSN by taking into consideration the node level activities, i.e., sensing and processing, and the network level activities, i.e., channel access, packet collision, retransmission attempts, and transmission of a data packet.« less

  20. Establishing a Common Definition for Zero Energy Buildings: Time to Move the Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kent; Torcellini, Paul; Taylor, Cody

    To change the current paradigm from buildings being consumers of energy to producers of energy requires a common language to facilitate market transformation. Common definitions help create market movement by sharing concepts across market actors. While the term 'zero energy buildings' has been in the marketplace for over 20 years, no common definition had been established. US DOE, last year, embarked on a process to evaluate current definitions and solicit industry input to formulate a common definition and nomenclature for zero energy buildings. This definition uses commonly available site measurements and national conversion factors to define zero energy buildings onmore » a source energy basis for a variety of boundary conditions including building, portfolio, campus, and community. Issues addressed include multiple fuel types, cogeneration, and renewable energy certificates. This paper describes the process used to arrive at the definition, looks at methods of calculating site to source energy conversions, and how boundary decisions affect a robust and stable definition that can be used to direct programs and policies for many years to come. This stability is critical to move building investments towards buildings that produce as much energy as they consume.« less

  1. Mapping water consumption for energy production around the Pacific Rim

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbie

    2016-09-07

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium andmore » unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.« less

  2. Mapping water consumption for energy production around the Pacific Rim

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent; Moreland, Barbie

    2016-09-01

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.

  3. Mapping water consumption for energy production around the Pacific Rim

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbie

    World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium andmore » unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. Furthermore, for six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%.« less

  4. The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.

    PubMed

    Schmidt, Markus H

    2014-11-01

    The energy allocation (EA) model defines behavioral strategies that optimize the temporal utilization of energy to maximize reproductive success. This model proposes that all species of the animal kingdom share a universal sleep function that shunts waking energy utilization toward sleep-dependent biological investment. For endotherms, REM sleep evolved to enhance energy appropriation for somatic and CNS-related processes by eliminating thermoregulatory defenses and skeletal muscle tone. Alternating REM with NREM sleep conserves energy by decreasing the need for core body temperature defense. Three EA phenotypes are proposed: sleep-wake cycling, torpor, and continuous (or predominant) wakefulness. Each phenotype carries inherent costs and benefits. Sleep-wake cycling downregulates specific biological processes in waking and upregulates them in sleep, thereby decreasing energy demands imposed by wakefulness, reducing cellular infrastructure requirements, and resulting in overall energy conservation. Torpor achieves the greatest energy savings, but critical biological operations are compromised. Continuous wakefulness maximizes niche exploitation, but endures the greatest energy demands. The EA model advances a new construct for understanding sleep-wake organization in ontogenetic and phylogenetic domains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The final rule of the Energy Policy Act of 2005 and its associated regulations enable covered state and alternative fuel provider fleets to obtain waivers from the alternative fuel vehicle (AFV)-acquisition requirements of Standard Compliance. Under Alternative Compliance, covered fleets instead meet a petroleum-use reduction requirement. This guidance document is designed to help fleets better understand the Alternative Compliance option and successfully complete the waiver application process.

  6. A whole process quality control system for energy measuring instruments inspection based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Liu, Li; Wang, Jiahan; Li, Xiran; Liu, Zhenbo; Li, Dewei; Wang, Jun; Liu, Lu; Wu, Jun; Xu, Tingting; Cui, He

    2017-10-01

    Electric energy measurement as a basic work, an accurate measurements play a vital role for the economic interests of both parties of power supply, the standardized management of the measurement laboratory at all levels is a direct factor that directly affects the fairness of measurement. Currently, the management of metering laboratories generally uses one-dimensional bar code as the recognition object, advances the testing process by manual management, most of the test data requires human input to generate reports. There are many problems and potential risks in this process: Data cannot be saved completely, cannot trace the status of inspection, the inspection process isn't completely controllable and so on. For the provincial metrology center's actual requirements of the whole process management for the performance test of the power measuring appliances, using of large-capacity RF tags as a process management information media, we developed a set of general measurement experiment management system, formulated a standardized full performance test process, improved the raw data recording mode of experimental process, developed a storehouse automatic inventory device, established a strict test sample transfer and storage system, ensured that all the raw data of the inspection can be traced back, achieved full life-cycle control of the sample, significantly improved the quality control level and the effectiveness of inspection work.

  7. Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies.

    PubMed

    Bubnis, Greg; Risselada, Herre Jelger; Grubmüller, Helmut

    2016-10-28

    A complete physical description of membrane remodeling processes, such as fusion or fission, requires knowledge of the underlying free energy landscapes, particularly in barrier regions involving collective shape changes, topological transitions, and high curvature, where Canham-Helfrich (CH) continuum descriptions may fail. To calculate these free energies using atomistic simulations, one must address not only the sampling problem due to high free energy barriers, but also an orthogonal sampling problem of combinatorial complexity stemming from the permutation symmetry of identical lipids. Here, we solve the combinatorial problem with a permutation reduction scheme to map a structural ensemble into a compact, nondegenerate subregion of configuration space, thereby permitting straightforward free energy calculations via umbrella sampling. We applied this approach, using a coarse-grained lipid model, to test the CH description of bending and found sharp increases in the bending modulus for curvature radii below 10 nm. These deviations suggest that an anharmonic bending term may be required for CH models to give quantitative energetics of highly curved states.

  8. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.

  9. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  10. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. A 5 nW Quasi-Linear CMOS Hot-Electron Injector for Self-Powered Monitoring of Biomechanical Strain Variations.

    PubMed

    Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu

    2016-12-01

    Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.

  12. Solar wind: Internal parameters driven by external source

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    A new concept interpreting solar wind parameters is suggested. The process of increasing twofold of a moving volume in the solar wind (with energy transfer across its surface which is comparable with its whole internal energy) is a more rapid process than the relaxation for the pressure. Thus, the solar wind is unique from the point of view of thermodynamics of irreversible processes. The presumptive source of the solar wind creation - the induction electric field of the solar origin - has very low entropy. The state of interplanetary plasma must be very far from the thermodynamic equilibrium. Plasma internal energy is contained mainly in non-degenerate forms (plasma waves, resonant plasma oscillations, electric currents). Microscopic oscillating electric fields in the solar wind plasma should be about 1 V/m. It allows one to describe the solar wind by simple dissipative MHD equations with small effective mean free path (required for hydrodynamical description), low value of electrical conductivity combined with very big apparent thermal conductivity (required for observed solar wind acceleration). These internal parameters are interrelated only due to their origin: they are externally driven. Their relation can change during the interaction of solar wind plasma with an obstacle (planet, spacecraft). The concept proposed can be verified by the special electric field measurements, not ruining the primordial plasma state.

  13. Application of Magnetized Target Fusion to High-Energy Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  14. [Effect of biologically active food additives on energy metabolism and human body weight].

    PubMed

    Gapparov, M M

    1999-01-01

    Review is devoted to analysis of human energy requirements depending on age, sex, occupational and living condition. Special attention was paid to importance of strict balance in organism between consumption and expense of energy. Modern views on mechanism of action food supplements as additional instrument of regulation of energy metabolism for correction of surplus body weight is given. Review is the first attempt of systematisation of biologically active food supplements according to their mechanism of action both on nutrition processes and on biochemical mechanisms of assimilation and utilisation of macronutrients, in particular of fats and carbohydrates.

  15. Magnetically Enhanced Solid-Liquid Separation

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Keller, K.; Fuchs, B.

    2005-07-01

    DuPont is developing an entirely new method of solid-liquid filtration involving the use of magnetic fields and magnetic field gradients. The new hybrid process, entitled Magnetically Enhanced Solid-Liquid Separation (MESLS), is designed to improve the de-watering kinetics and reduce the residual moisture content of solid particulates mechanically separated from liquid slurries. Gravitation, pressure, temperature, centrifugation, and fluid dynamics have dictated traditional solid-liquid separation for the past 50 years. The introduction of an external field (i.e. the magnetic field) offers the promise to manipulate particle behavior in an entirely new manner, which leads to increased process efficiency. Traditional solid-liquid separation typically consists of two primary steps. The first is a mechanical step in which the solid particulate is separated from the liquid using e.g. gas pressure through a filter membrane, centrifugation, etc. The second step is a thermal drying process, which is required due to imperfect mechanical separation. The thermal drying process is over 100-200 times less energy efficient than the mechanical step. Since enormous volumes of materials are processed each year, more efficient mechanical solid-liquid separations can be leveraged into dramatic reductions in overall energy consumption by reducing downstream drying requirements have a tremendous impact on energy consumption. Using DuPont's MESLS process, initial test results showed four very important effects of the magnetic field on the solid-liquid filtration process: 1) reduction of the time to reach gas breakthrough, 2) less loss of solid into the filtrate, 3) reduction of the (solids) residual moisture content, and 4) acceleration of the de-watering kinetics. These test results and their potential impact on future commercial solid-liquid filtration is discussed. New applications can be found in mining, chemical and bioprocesses.

  16. Survey report: study of information/educational discussions with private industries and public institutions on the direct-heat utilization of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davey, J.V.

    1977-03-01

    Results of a study of private and public institutions' responses to the proposed use of geothermal energy in the form of direct heat are summarized. This heat energy would be used as an alternate or supportive source for their process or other heat requirements. The summary includes information from over 75 personal contacts with firms in several categories. No attempt is made to reference specific data to any particular company. Although not necessarily confidential, some financial information concerning energy costs to profits was considered sensitive and is respected as such. The companies contacted are in the following categories: food processing--canning,more » drying, dehydration; chemicals; paper/wood-pulp processing; food machinery; horticulture; and dairy. The area covered in the study was from Seattle, Washington, to San Diego, California, during mid-1976. Industry's response varied from mild interest, as with corporations that had little or no knowledge of geothermal energy (and regard it as a new unproven science), to enthusiasm from corporations that employ their own energy departments. The study clearly indicated the need for a basic educational/promotional program and an operating demonstration project (industrial park) to prove economic feasibility and instill confidence in the potential of geothermal energy.« less

  17. Water use and its recycling in microalgae cultivation for biofuel application.

    PubMed

    Farooq, Wasif; Suh, William I; Park, Min S; Yang, Ji-Won

    2015-05-01

    Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Press fluid pre-treatment optimisation of the integrated generation of solid fuel and biogas from biomass (IFBB) process approach.

    PubMed

    Corton, John; Toop, Trisha; Walker, Jonathan; Donnison, Iain S; Fraser, Mariecia D

    2014-10-01

    The integrated generation of solid fuel and biogas from biomass (IFBB) system is an innovative approach to maximising energy conversion from low input high diversity (LIHD) biomass. In this system water pre-treated and ensiled LIHD biomass is pressed. The press fluid is anaerobically digested to produce methane that is used to power the process. The fibrous fraction is densified and then sold as a combustion fuel. Two process options designed to concentrate the press fluid were assessed to ascertain their influence on productivity in an IFBB like system: sedimentation and the omission of pre-treatment water. By concentrating press fluid and not adding water during processing, energy production from methane was increased by 75% per unit time and solid fuel productivity increased by 80% per unit of fluid produced. The additional energy requirements for pressing more biomass in order to generate equal volumes of feedstock were accounted for in these calculations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. IONAC-Lite

    NASA Technical Reports Server (NTRS)

    Torgerson, Jordan L.; Clare, Loren P.; Pang, Jackson

    2011-01-01

    The Interplanetary Overlay Net - working Protocol Accelerator (IONAC) described previously in The Inter - planetary Overlay Networking Protocol Accelerator (NPO-45584), NASA Tech Briefs, Vol. 32, No. 10, (October 2008) p. 106 (http://www.techbriefs.com/component/ content/article/3317) provides functions that implement the Delay Tolerant Networking (DTN) bundle protocol. New missions that require high-speed downlink-only use of DTN can now be accommodated by the unidirectional IONAC-Lite to support high data rate downlink mission applications. Due to constrained energy resources, a conventional software implementation of the DTN protocol can provide only limited throughput for any given reasonable energy consumption rate. The IONAC-Lite DTN Protocol Accelerator is able to reduce this energy consumption by an order of magnitude and increase the throughput capability by two orders of magnitude. In addition, a conventional DTN implementation requires a bundle database with a considerable storage requirement. In very high downlink datarate missions such as near-Earth radar science missions, the storage space utilization needs to be maximized for science data and minimized for communications protocol-related storage needs. The IONAC-Lite DTN Protocol Accelerator is implemented in a reconfigurable hardware device to accomplish exactly what s needed for high-throughput DTN downlink-only scenarios. The following are salient features of the IONAC-Lite implementation: An implementation of the Bundle Protocol for an environment that requires a very high rate bundle egress data rate. The C&DH (command and data handling) subsystem is also expected to be very constrained so the interaction with the C&DH processor and the temporary storage are minimized. Fully pipelined design so that bundle processing database is not required. Implements a lookup table-based approach to eliminate multi-pass processing requirement imposed by the Bundle Protocol header s length field structure and the SDNV (self-delimiting numeric value) data field formatting. 8-bit parallel datapath to support high data-rate missions. Reduced resource utilization implementation for missions that do not require custody transfer features. There was no known implementation of the DTN protocol in a field programmable gate array (FPGA) device prior to the current implementation. The combination of energy and performance optimization that embodies this design makes the work novel.

  20. Liquid-Desiccant Vapor Separation Reduces the Energy Requirements of Atmospheric Moisture Harvesting.

    PubMed

    Gido, Ben; Friedler, Eran; Broday, David M

    2016-08-02

    An innovative atmospheric moisture harvesting system is proposed, where water vapor is separated from the air prior to cooling and condensation. The system was studied using a model that simulates its three interconnected cycles (air, desiccant, and water) over a range of ambient conditions, and optimal configurations are reported for different operation conditions. Model results were compared to specifications of commercial atmospheric moisture harvesting systems and found to represent saving of 5-65% of the electrical energy requirements due to the vapor separation process. We show that the liquid desiccant separation stage that is integrated into atmospheric moisture harvesting systems can work under a wide range of environmental conditions using low grade or solar heating as a supplementary energy source, and that the performance of the combined system is superior.

  1. Enhancement of the design of a pulsed UV laser system for a laser-desorption mass spectrometer on Mars

    NASA Astrophysics Data System (ADS)

    Kolleck, C.; Büttner, A.; Ernst, M.; Hunnekuhl, M.; Hülsenbusch, T.; Moalem, A.; Priehs, M.; Kracht, D.; Neumann, J.

    2017-11-01

    A laser-desorption mass spectrometer will be part of the ESA-led ExoMars mission with the objective of identifying organic molecules on planet Mars. A UV laser source emitting nanosecond pulses with pulse energy of about 250 μJ at a wavelength of 266 nm is required for the ionization of nonvolatile soil constituents. A passively q-switched, diode-pumped Nd∶YAG laser oscillator with external frequency quadrupling has been developed. The basic optical concept and a previously developed flight-near prototype are redesigned for the engineering qualification model of the laser, mainly due to requirements updated during the development process and necessary system adaptations. Performance issues like pulse energy stability, pulse energy adjustment, and burst mode operation are presented in this paper.

  2. Optimization of permeate flux produced by solar energy driven membrane distillation process using central composite design approach.

    PubMed

    Bouguecha, Salah T; Boubakri, Ali; Aly, Samir E; Al-Beirutty, Mohammad H; Hamdi, Mohamed M

    2016-01-01

    Membrane distillation (MD) is considered as a relatively high-energy requirement. To overcome this drawback, it is recommended to couple the MD process with solar energy as the renewable energy source in order to provide heat energy required to optimize its performance to produce permeate flux. In the present work, an original solar energy driven direct contact membrane distillation (DCMD) pilot plant was built and tested under actual weather conditions at Jeddah, KSA, in order to model and optimize permeate flux. The dependency of permeate flux on various operating parameters such as feed temperature (46.6-63.4°C), permeate temperature (6.6-23.4°C), feed flow rate (199-451L/h) and permeate flow rate (199-451L/h) was studied by response surface methodology based on central composite design approach. The analysis of variance (ANOVA) confirmed that all independent variables had significant influence on the model (where P-value <0.05). The high coefficient of determination (R(2) = 0.9644 and R(adj)(2) = 0.9261) obtained by ANOVA demonstrated good correlation between experimental and predicted values of the response. The optimized conditions, determined using desirability function, were T(f) = 63.4°C, Tp = 6.6°C, Q(f) = 451L/h and Q(p) = 451L/h. Under these conditions, the maximum permeate flux of 6.122 kg/m(2).h was achieved, which was close to the predicted value of 6.398 kg/m(2).h.

  3. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    DOE R&D Accomplishments Database

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  4. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimer, Brandon Walter; Paap, Scott M; Sasan, Koroush

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variabilitymore » in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.« less

  5. High-energy roller injuries to the upper extremity.

    PubMed

    Askins, G; Finley, R; Parenti, J; Bush, D; Brotman, S

    1986-12-01

    Eleven cases of high-energy industrial roller injuries treated between 1980 and 1984 were retrospectively reviewed. The dominant extremity was affected in nine. Six patients sustained fractures and/or dislocations, and three of these patients required fasciotomies for clinical signs of impending compartment syndromes. All fracture/dislocations, with the exception of a scapula fracture, anterior dislocation of a thumb interphalangeal joint, and a fractured coronoid process of the ulna, required open reduction with internal fixation. Three patients required split-thickness skin grafting for extensive skin degloving. Two patients required immediate amputation. Late sequelae included prolonged edema, nutritional depletion, neuroma formation of the superficial branch of the radial nerve, late carpal tunnel syndrome, and partial brachial plexus palsy. Industrial roller injuries continue to be an occupational hazard associated with more severe crushing trauma than the low-energy wringer washer injuries first described by MacCollum (11). Attention must be paid to the treatment of crushed skin, muscle, and nerves, fracture stabilization, nutritional support, and occupational therapy. Concurrent monitoring for signs of a developing compartment syndrome and complications of rhabdomyolysis is essential.

  6. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  7. The Avian Proghrelin System

    USDA-ARS?s Scientific Manuscript database

    To understand how the proghrelin system functions in regulating growth hormone release and food intake as well as defining its pleiotropic roles in such diverse physiological processes as energy homeostasis, gastrointestinal tract function and reproduction requires detailed knowledge of the structur...

  8. The Physics of Popping Corn.

    ERIC Educational Resources Information Center

    Hunt, Robert G.

    1991-01-01

    Presents a framework for teachers to use the thermodynamic system of popping corn to generate student interest. Examines the popping mechanism and the role of steam in, the heat required during, and the energy efficiency of the popping process. (MDH)

  9. Analyzing the requirements for mass production of small wind turbine generators

    NASA Astrophysics Data System (ADS)

    Anuskiewicz, T.; Asmussen, J.; Frankenfield, O.

    Mass producibility of small wind turbine generators to give manufacturers design and cost data for profitable production operations is discussed. A 15 kW wind turbine generator for production in annual volumes from 1,000 to 50,000 units is discussed. Methodology to cost the systems effectively is explained. The process estimate sequence followed is outlined with emphasis on the process estimate sheets compiled for each component and subsystem. These data enabled analysts to develop cost breakdown profiles crucial in manufacturing decision-making. The appraisal also led to various design recommendations including replacement of aluminum towers with cost effective carbon steel towers. Extensive cost information is supplied in tables covering subassemblies, capital requirements, and levelized energy costs. The physical layout of the plant is depicted to guide manufacturers in taking advantage of the growing business opportunity now offered in conjunction with the national need for energy development.

  10. Plug and Process Loads Capacity and Power Requirements Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less

  11. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  12. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  13. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants.

    PubMed

    González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M

    2018-03-14

    The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.

  14. GreenVMAS: Virtual Organization Based Platform for Heating Greenhouses Using Waste Energy from Power Plants

    PubMed Central

    Yoe, Hyun

    2018-01-01

    The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system. PMID:29538351

  15. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  16. Development of an automated energy audit protocol for office buildings

    NASA Astrophysics Data System (ADS)

    Deb, Chirag

    This study aims to enhance the building energy audit process, and bring about reduction in time and cost requirements in the conduction of a full physical audit. For this, a total of 5 Energy Service Companies in Singapore have collaborated and provided energy audit reports for 62 office buildings. Several statistical techniques are adopted to analyse these reports. These techniques comprise cluster analysis and development of prediction models to predict energy savings for buildings. The cluster analysis shows that there are 3 clusters of buildings experiencing different levels of energy savings. To understand the effect of building variables on the change in EUI, a robust iterative process for selecting the appropriate variables is developed. The results show that the 4 variables of GFA, non-air-conditioning energy consumption, average chiller plant efficiency and installed capacity of chillers should be taken for clustering. This analysis is extended to the development of prediction models using linear regression and artificial neural networks (ANN). An exhaustive variable selection algorithm is developed to select the input variables for the two energy saving prediction models. The results show that the ANN prediction model can predict the energy saving potential of a given building with an accuracy of +/-14.8%.

  17. Added sugars and ultra-processed foods in Spanish households (1990-2010).

    PubMed

    Latasa, P; Louzada, M L D C; Martinez Steele, E; Monteiro, C A

    2017-12-26

    To study the association between ultra-processed foods acquisitions and added sugar content of total food purchases in Spanish households in 2010. Changes over time (1990-2000-2010) in ultra-processed food purchases and added sugars content of total food purchases are also compared. We used data from three nationally representative Household Budget Surveys (HBS) conducted in 1990, 2000 and 2010. Number of studied households was 21,012, 33,730 and 22,116, respectively. Purchased foods and drinks were classified according to NOVA food groups as ultra-processed foods, processed foods, unprocessed or minimally processed foods, or processed culinary ingredients. Linear and Poisson regressions were used to estimate the association between quintiles of energy contribution of ultra-processed foods and added sugars contents of total food purchases in 2010. Changes over time were assessed using tests of linear trend and Student's t test. In 2010, ultra-processed foods represented 31.7% of daily energy acquisitions and 80.4% of all added sugars. Added sugars content of food purchases raised from 7.3% in the lowest to 18.2% in the highest quintiles of energy contribution of ultra-processed foods. The risk of exceeding 10% energy from added sugars quadrupled between the lowest and highest quintiles. The percentage of ultra-processed foods on all food purchases almost tripled between 1990 and 2010 (from 11.0 to 31.7%), paralleling the increase of added sugars content (from 8.4 to 13.0%). Cutting down exceeding added sugars availability in Spain may require a reduction in ultra-processed food purchasing.

  18. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    PubMed

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with nanopores and the unique surface structures of metallic clusters offer new opportunities for the production of synthetic fuels.

  19. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less

  20. General lighting requirements for photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, D.R.

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the lightmore » harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.« less

Top