Signori, Marcos R; Garcia, Renato
2010-01-01
This paper presents a model that aids the Clinical Engineering to deal with Risk Management in the Healthcare Technological Process. The healthcare technological setting is complex and supported by three basics entities: infrastructure (IS), healthcare technology (HT), and human resource (HR). Was used an Enterprise Architecture - MODAF (Ministry of Defence Architecture Framework) - to model this process for risk management. Thus, was created a new model to contribute to the risk management in the HT process, through the Clinical Engineering viewpoint. This architecture model can support and improve the decision making process of the Clinical Engineering to the Risk Management in the Healthcare Technological process.
Technology of interdisciplinary open-ended designing in engineering education
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.
2017-11-01
Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.
Information technology security system engineering methodology
NASA Technical Reports Server (NTRS)
Childs, D.
2003-01-01
A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2018-02-01
In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.
A Research Program on Artificial Intelligence in Process Engineering.
ERIC Educational Resources Information Center
Stephanopoulos, George
1986-01-01
Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
Optimization, an Important Stage of Engineering Design
ERIC Educational Resources Information Center
Kelley, Todd R.
2010-01-01
A number of leaders in technology education have indicated that a major difference between the technological design process and the engineering design process is analysis and optimization. The analysis stage of the engineering design process is when mathematical models and scientific principles are employed to help the designer predict design…
Infusing Software Engineering Technology into Practice at NASA
NASA Technical Reports Server (NTRS)
Pressburger, Thomas; Feather, Martin S.; Hinchey, Michael; Markosia, Lawrence
2006-01-01
We present an ongoing effort of the NASA Software Engineering Initiative to encourage the use of advanced software engineering technology on NASA projects. Technology infusion is in general a difficult process yet this effort seems to have found a modest approach that is successful for some types of technologies. We outline the process and describe the experience of the technology infusions that occurred over a two year period. We also present some lessons from the experiences.
ERIC Educational Resources Information Center
Shelby, Kenneth R., Jr.
2013-01-01
Systems engineering teams' value-creation for enterprises is slower than possible due to inefficiencies in communication, learning, common knowledge collaboration and leadership conduct. This dissertation outlines the surrounding people, process and technology dimensions for higher performing engineering teams. It describes a true experiment…
Software development environments: Status and trends
NASA Technical Reports Server (NTRS)
Duffel, Larry E.
1988-01-01
Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.
Don't Just Cover the Engineering Design Process, Patent It!
ERIC Educational Resources Information Center
Reed, Philip A.
2013-01-01
Learning about intellectual property can help students understand the process it takes to bring ideas to fruition. It is very important for technology and engineering students to learn early that technology is not just concrete processes and physical artifacts. Creativity is closely linked to technology and is vital in helping us address perceived…
Foreign Experience in Training Future Engineering Educators for Modeling Technological Processes
ERIC Educational Resources Information Center
Bokhonko, Yevhen
2017-01-01
The article deals with the study of foreign experience in training engineering educators for modeling technological processes. It has been stated that engineering education is a field that is being dramatically developed taking into account the occurring changes in educational paradigms, global higher education space, national higher education…
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
Patent Information Use in Engineering Technology Design: An Analysis of Student Work
ERIC Educational Resources Information Center
Phillips, Margaret; Zwicky, Dave
2017-01-01
How might engineering technology students make use of patent information in the engineering design process? Librarians analyzed team project reports and personal reflections created by students in an undergraduate mechanical engineering technology design course, revealing that the students used patents to consider the patentability of their ideas,…
Primary School Students' Views about Science, Technology and Engineering
ERIC Educational Resources Information Center
Pekmez, Esin
2018-01-01
Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…
Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina
2015-01-01
The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.
7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering
NASA Technical Reports Server (NTRS)
Housch, Helen; Godfrey, Sally
2011-01-01
The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.
Investigating Knowledge Creation Technology in an Engineering Course
ERIC Educational Resources Information Center
Jalonen, Satu; Lakkala, Minna; Paavola, Sami
2011-01-01
The aim of the present study was to examine the technological affordances of a web-based collaborative learning technology, Knowledge Practices Environment (KPE), for supporting different dimensions of knowledge creation processes. KPE was used by engineering students in a practically oriented undergraduate engineering course. The study…
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
Software engineering technology transfer: Understanding the process
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1993-01-01
Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.
Component improvement of free-piston Stirling engine key technology for space power
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1988-01-01
The successful performance of the 25 kW Space Power Demonstrator (SPD) engine during an extensive testing period has provided a baseline of free piston Stirling engine technology from which future space Stirling engines may evolve. Much of the success of the engine was due to the initial careful selection of engine materials, fabrication and joining processes, and inspection procedures. Resolution of the few SPD engine problem areas that did occur has resulted in the technological advancement of certain key free piston Stirling engine components. Derivation of two half-SPD, single piston engines from the axially opposed piston SPD engine, designated as Space Power Research (SPR) engines, has made possible the continued improvement of these engine components. The two SPR engines serve as test bed engines for testing of engine components. Some important fabrication and joining processes are reviewed. Also, some component deficiencies that were discovered during SPD engine testing are described and approaches that were taken to correct these deficiencies are discussed. Potential component design modifications, based upon the SPD and SPR engine testing, are also reported.
Creating Learning Environment Connecting Engineering Design and 3D Printing
NASA Astrophysics Data System (ADS)
Pikkarainen, Ari; Salminen, Antti; Piili, Heidi
Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.
Cheng, Yi-Yu; Qian, Zhong-Zhi; Zhang, Bo-Li
2017-01-01
The current situation, bottleneck problems and severe challenges in quality control technology of Chinese Medicine (CM) are briefly described. It is presented to change the phenomenon related to the post-test as the main means and contempt for process control in drug regulation, reverse the situation of neglecting the development of process control and management technology for pharmaceutical manufacture and reconstruct the technological system for quality control of CM products. The regulation and technology system based on process control and management for controlling CM quality should be established to solve weighty realistic problems of CM industry from the root causes, including backwardness of quality control technology, weakness of quality risk control measures, poor reputation of product quality and so on. By this way, the obstacles from poor controllability of CM product quality could be broken. Concentrating on those difficult problems and weak links in the technical field of CM quality control, it is proposed to build CMC (Chemistry, Manufacturing and Controls) regulation for CM products with Chinese characteristics and promote the regulation international recognition as soon as possible. The CMC technical framework, which is clinical efficacy-oriented, manufacturing manner-centered and process control-focused, was designed. To address the clinical characteristics of traditional Chinese medicine (TCM) and the production feature of CM manufacture, it is suggested to establish quality control engineering for CM manufacturing by integrating pharmaceutical analysis, TCM chemistry, TCM pharmacology, pharmaceutical engineering, control engineering, management engineering and other disciplines. Further, a theoretical model of quality control engineering for CM manufacturing and the methodology of digital pharmaceutical engineering are proposed. A technology pathway for promoting CM standard and realizing the strategic goal of CM internationalization is elaborated. Copyright© by the Chinese Pharmaceutical Association.
A Survey of Computer Use in Associate Degree Programs in Engineering Technology.
ERIC Educational Resources Information Center
Cunningham, Pearley
As part of its annual program review process, the Department of Engineering Technology at the Community College of Allegheny County, in Pennsylvania, conducted a study of computer usage in community college engineering technology programs across the nation. Specifically, the study sought to determine the types of software, Internet access, average…
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.
1992-01-01
To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.
1996 Laboratory directed research and development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.
Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping
2017-01-01
Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
An overview of NASA research on positive displacement general-aviation engines
NASA Technical Reports Server (NTRS)
Kempke, E. E., Jr.
1980-01-01
The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.
ERIC Educational Resources Information Center
Clarke, Katie C.
2010-01-01
A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…
NASA Astrophysics Data System (ADS)
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-11-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain (12-16 years old).This work presents a preliminary evaluation of how relevant is Gardner's multiple intelligence theory (MIT) in the teaching-learning process within the Technology Lessons. In this sense, MIT was considered as an explanation variable of the emotional response within the different educational parts (so-called syllabus units, SU) in the Technology spanish curriculum. Different intelligence style (IS) will orient the student to a vision of the engineering and technology. This work tries to identify which relationships can be established between IS and specific technology and engineering learning. This research involved up to 135 students were subsequently tested about their predominant (IS) and on the emotions that arouse in them when working with each SU. The results were statistically significant and only those with a Logic-arithmetic or Environmental IS were not affected by the SU.Best teaching and learning practicesare required for encouraging further engineering studies.
Software Engineering Technology Infusion Within NASA
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1996-01-01
Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.
2010-08-19
UNCLASSIFIED Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research, Development, and Engineering...DATES COVERED - 4. TITLE AND SUBTITLE Systems Engineering Processes Applied To Ground Vehicle Integration at US Army Tank Automotive Research...release, distribution unlimited 13. SUPPLEMENTARY NOTES Presented at NDIAs Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), 17 22
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1994-01-01
Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.
ERIC Educational Resources Information Center
Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente
2017-01-01
The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain…
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2001-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at KSC because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how KSC has benefited from PE and how KSC has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where KSC's PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
Process Engineering Technology Center Initiative
NASA Technical Reports Server (NTRS)
Centeno, Martha A.
2002-01-01
NASA's Kennedy Space Center (KSC) is developing as a world-class Spaceport Technology Center (STC). From a process engineering (PE) perspective, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are safe, successful shuttle and expendable vehicle launches carrying state-of-the-art payloads. PE is devoted to process design, process management, and process improvement, rather than product design. PE also emphasizes the relationships of workers with systems and processes. Thus, it is difficult to speak of having a laboratory for PE at K.S.C. because the entire facility is practically a laboratory when observed from a macro level perspective. However, it becomes necessary, at times, to show and display how K.S.C. has benefited from PE and how K.S.C. has contributed to the development of PE; hence, it has been proposed that a Process Engineering Technology Center (PETC) be developed to offer a place with a centralized focus on PE projects, and a place where K.S.C.'s PE capabilities can be showcased, and a venue where new Process Engineering technologies can be investigated and tested. Graphics for showcasing PE capabilities have been designed, and two initial test beds for PE technology research have been identified. Specifically, one test bed will look into the use of wearable computers with head mounted displays to deliver work instructions; the other test bed will look into developing simulation models that can be assembled into one to create a hierarchical model.
High School Engineering and Technology Education Integration through Design Challenges
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
Faulkner, Alex; Kent, Julie; Geesink, Ingrid; FitzPatrick, David
2006-11-01
This paper examines the development of innovation in human tissue technologies as a form of regenerative medicine, firstly by applying 'pollution ideas' to contemporary trends in its risk regulation and to the processes of regulatory policy formation, and secondly by analysing the classificatory processes deployed in regulatory policy. The analysis draws upon data from fieldwork and documentary materials with a focus on the UK and EU (2002-05) and explores four arenas: governance and regulatory policy; commercialisation and the market; 'evidentiality' manifest in evidence-based policy; and publics' and technology users' values and ethics. The analysis suggests that there is a trend toward 'purification' across these arenas, both material and socio-political. A common process of partitioning is found in stakeholders' attempts to define a clear terrain, which the field of tissue-engineered technology might occupy. We conclude that pollution ideas and partitioning processes are useful in understanding regulatory ordering and innovation in the emerging technological zone of human tissue engineering.
Integrating Rehabilitation Engineering Technology With Biologics
Collinger, Jennifer L.; Dicianno, Brad E.; Weber, Douglas J.; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M.; Boninger, Michael L.
2017-01-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. PMID:21703573
ERIC Educational Resources Information Center
Kelley, Todd R.; Hill, Roger B.
2007-01-01
The purpose of this study was to better understand cognitive strategies used by high school technology education students who have participated in technology education instruction with an engineering design focus. Specifically, this study evaluated the cognitive strategies of students participating in "Project Lead the Way" curriculum…
1986-08-01
THE SCIENCE OF AND ADVANCED TECHNOLOGY FOR COST-EFFECTIVE MANUFACTURE Lfl OF HIGH PRECISION ENGINEERING PRODUCTS N iA6/*N ONR Contract No. 83K0385...ADVANCED TECHNOLOGY FOR1 COST-EFFECTIVE MANUFACTURE OF1’ HIGH PRECISION ENGINEERING PRODUCTS ONR Contract No. 83K0385 Final Report Vol. 5 AUTOMATIC...Ck 53N Drawing #: 03116-6233 Raw Material: Iiz’ 500mm diameter and 3000mm length Ma, rial Alloy steel. high carbon content, quenched to Min 45Rc
NASA Astrophysics Data System (ADS)
Manske, E.; Froehlich, T.
2012-07-01
The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole Editorial Board of Measurement Science and Technology for their support.
Ceramic Technology For Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-01
Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less
Engineering application of anaerobic ammonium oxidation process in wastewater treatment.
Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke
2017-08-01
Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.
Probabilistic simulation of concurrent engineering of propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Technology readiness and the available infrastructure is assessed for timely computational simulation of concurrent engineering for propulsion systems. Results for initial coupled multidisciplinary, fabrication-process, and system simulators are presented including uncertainties inherent in various facets of engineering processes. An approach is outlined for computationally formalizing the concurrent engineering process from cradle-to-grave via discipline dedicated workstations linked with a common database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, D.N.
1997-02-01
The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.
Chau, Tom; Moghimi, Saba; Popovic, Milos R
2013-01-01
Rehabilitation engineering is concerned with technology innovations and technology-mediated treatments for the improvement of quality of care and quality of life of individuals with disability. Unlike many other fields of health research, the knowledge translation (KT) cycle of rehabilitation engineering research and development (R&D) is often considered incomplete until a technology product or technology-facilitated therapy is available to target clientele. As such, the KT journey of rehabilitation engineering R&D is extremely challenging, necessarily involving knowledge exchange among numerous players across multiple sectors. In this article, we draw on recent literature about the knowledge trichotomy in technology-based rehabilitation R&D and propose a knowledge ecosystem to frame the rehabilitation engineering KT process from need to product. Identifying the principal process of the ecosystem as one of knowledge flow, we elucidate the roles of repository and networked knowledge, identify key consumers and producers in a trinity of communities of practice, and draw on knowledge management literature to describe different knowledge flows. The article concludes with instantiations of this knowledge ecosystem for 2 local rehabilitation engineering research-development-commercialization endeavors. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Improving Teacher-Made Assessments in Technology and Engineering Education
ERIC Educational Resources Information Center
White, Jesse W.; Moye, Johnny J.; Gareis, Christopher R.; Hylton, Sarah P.
2018-01-01
In the interest of learning how to effectively use the technological literacy standards and of adhering to education regulation, this article focuses on efforts to improve the professional teaching practices of Technology and Engineering Education (TEE) teachers by using the Gareis and Grant (2015) process with respect to "Standards for…
Integrated STEM: A New Primer for Teaching Technology Education
ERIC Educational Resources Information Center
Asunda, Paul A.; Mativo, John
2017-01-01
Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…
JPRS Report, Science & Technology, Europe & Latin America
1988-04-06
courses and in polytechnics a growing number of undergraduate research theses [ tesi di laurea] are increasingly coming to resemble authentic feasibility...Information Science Eleven Priorities Research Priority Actions — Microbiological engineering —Enzyme engineering —Biotechnological engineering —Food...Foodstuffs Medicine Human and social sciences Technology, computer-integrated manufacturing Electronics, data processing Microbiological
ERIC Educational Resources Information Center
Zhou, Ninger; Pereira, Nielsen L.; Tarun, Thomas George; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-01-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design…
ERIC Educational Resources Information Center
Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate
2016-01-01
This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…
NASA Technical Reports Server (NTRS)
1991-01-01
Technology 2000 was the first major industrial conference and exposition spotlighting NASA technology and technology transfer. It's purpose was, and continues to be, to increase awareness of existing NASA-developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. Included are sessions on: computer technology and software engineering; human factors engineering and life sciences; materials science; sensors and measurement technology; artificial intelligence; environmental technology; optics and communications; and superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callow, R.A.; Weidner, J.R.; Loehr, C.A.
This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less
ERIC Educational Resources Information Center
Katsioloudis, Petros; Fantz, Todd D.
2012-01-01
In the spring semester of 2010, a materials process course was selected as a means to perform a preferred learning style research study. This course was selected because it contained three groups of students: technology education, engineering technology, and industrial technology. The researchers believed that the differences in the students'…
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
ERIC Educational Resources Information Center
Chen, Woei-Kae; Chang, Liang-Te
A study examined the technological competencies of the electronic engineering departments of junior colleges in Taiwan. It used a combination of two methods--a revised DACUM (Developing a Curriculum) process and a revised V-TECS (Vocational-Technical Education Consortium of States) process--to analyze the duty/task profile and task/element list of…
Thrust Area Report, Engineering Research, Development and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R. T.
1997-02-01
The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Programmore » has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.« less
Integrating rehabilitation engineering technology with biologics.
Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L
2011-06-01
Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
The MSFC Collaborative Engineering Process for Preliminary Design and Concept Definition Studies
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Jones, David; Hopkins, Randy
2011-01-01
This paper describes a collaborative engineering process developed by the Marshall Space Flight Center's Advanced Concepts Office for performing rapid preliminary design and mission concept definition studies for potential future NASA missions. The process has been developed and demonstrated for a broad range of mission studies including human space exploration missions, space transportation system studies and in-space science missions. The paper will describe the design team structure and specialized analytical tools that have been developed to enable a unique rapid design process. The collaborative engineering process consists of integrated analysis approach for mission definition, vehicle definition and system engineering. The relevance of the collaborative process elements to the standard NASA NPR 7120.1 system engineering process will be demonstrated. The study definition process flow for each study discipline will be will be outlined beginning with the study planning process, followed by definition of ground rules and assumptions, definition of study trades, mission analysis and subsystem analyses leading to a standardized set of mission concept study products. The flexibility of the collaborative engineering design process to accommodate a wide range of study objectives from technology definition and requirements definition to preliminary design studies will be addressed. The paper will also describe the applicability of the collaborative engineering process to include an integrated systems analysis approach for evaluating the functional requirements of evolving system technologies and capabilities needed to meet the needs of future NASA programs.
Integrated Tools for Future Distributed Engine Control Technologies
NASA Technical Reports Server (NTRS)
Culley, Dennis; Thomas, Randy; Saus, Joseph
2013-01-01
Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay
2015-01-01
In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Faculty Recommendations for Web Tools: Implications for Course Management Systems
ERIC Educational Resources Information Center
Oliver, Kevin; Moore, John
2008-01-01
A gap analysis of web tools in Engineering was undertaken as one part of the Digital Library Network for Engineering and Technology (DLNET) grant funded by NSF (DUE-0085849). DLNET represents a Web portal and an online review process to archive quality knowledge objects in Engineering and Technology disciplines. The gap analysis coincided with the…
ERIC Educational Resources Information Center
Ku, H.; Fulcher, R.
2007-01-01
The aim of the current paper is to share the processes in revising the courseware of the course of "Engineering Management Science" coded as ENG4004, in the Bachelor of Engineering (Mechanical, Mechatronics, Electrical and Electronic, Computer Systems, Instrumentation and Control), Bachelor of Engineering Technology (Mechanical, Building…
NASA Technical Reports Server (NTRS)
Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.
1999-01-01
In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.
NLS propulsion - Government view
NASA Technical Reports Server (NTRS)
Smelser, Jerry W.
1992-01-01
The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.
Ceramic Technology Project semiannual progress report, April 1992--September 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.
1993-07-01
This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less
75 FR 68806 - Statement of Organization, Functions and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... Agency business applications architectures, the engineering of business processes, the building and... architecture, engineers technology for business processes, builds, deploys, maintains and manages enterprise systems and data collections efforts; (5) applies business applications architecture to process specific...
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity.
An overview of in-flight plume diagnostics for rocket engines
NASA Technical Reports Server (NTRS)
Madzsar, G. C.; Bickford, R. L.; Duncan, D. B.
1992-01-01
An overview and progress report of the work performed or sponsored by LeRC toward the development of in-flight plume spectroscopy technology for health and performance monitoring of liquid propellant rocket engines are presented. The primary objective of this effort is to develop technology that can be utilized on any flight engine. This technology will be validated by a hardware demonstration of a system capable of being retrofitted onto the Space Shuttle Main Engines for spectroscopic measurements during flight. The philosophy on system definition and status on the development of instrumentation, optics, and signal processing with respect to implementation on a flight engine are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, A.K.; Rogers, A.Z.; McCray, J.A.
The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Ceramic Technology for Advanced Heat Engines Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-01
The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less
Biotechnology Process Engineering Center at MIT Home
Bioengineering / Engineering Research Centers Georgia Tech / Emory Center for the Engineering of Living Tissues University of Washington / Engineered Biomaterials Engineering Research Center Vanderbilt University / VaNTH Surgical Systems and Technology Univesity of Hawaii / Marine Bioproducts Engineering Center Funding Sources
Get Students Excited--3D Printing Brings Designs to Life
ERIC Educational Resources Information Center
Lacey, Gary
2010-01-01
Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…
Implications of Technology Transfers for the USSR
1977-01-01
process is primarily a people-process. Technology is best transferred from firm to firm and from country to country by people (managers, engineers, sales ... sales engineers, etc.) rather than by publications (including blueprints) or products themselves. In the postwar period, the Soviets have concentrated on...determined as the residual category of end-use, and Soviet gold sales and imports of grain from the Developed West are exogenous rather than determined
Design, Test, Redesign: Simulation in Technology, Engineering, and Design Education Classrooms
ERIC Educational Resources Information Center
Swinson, Ronnie; Clark, Aaron C.; Ernst, Jeremy V.; Sutton, Kevin
2016-01-01
Today's engineers, designers, and technologists are often thrust into the role of problem solver, from the initial design phase of a product or process all the way to final development. Many engineers in manufacturing environments are tasked with solving problems and continuously improving processes to enhance company profitability, efficiency,…
The Miniaturization of the AFIT Random Noise Radar
2013-03-01
RANDOM NOISE RADAR I. Introduction Recent advances in technology and signal processing techniques have opened thedoor to using an ultra-wide band random...AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training
ERIC Educational Resources Information Center
Khan, Wasi Uz Zaman; AlAjmi, Abdullah Ahmed Ali; Al Zubaidy, Sarim
2018-01-01
This case study was undertaken to assess the effectiveness of the modifications into the engineering programmes adopted by the Military Technological College (MTC) to satisfy the needs of Omani armed forces. It discusses the role of Quality Assurance (QA) in engineering education and accreditation process in the context of four engineering…
International Conference of Applied Science and Technology for Infrastructure Engineering
NASA Astrophysics Data System (ADS)
Elvina Santoso, Shelvy; Hardianto, Ekky
2017-11-01
Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.
Fluidized-Solid-Fuel Injection Process
NASA Technical Reports Server (NTRS)
Taylor, William
1992-01-01
Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.
The development and application of CFD technology in mechanical engineering
NASA Astrophysics Data System (ADS)
Wei, Yufeng
2017-12-01
Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andy; Graham, Bart
2016-01-01
Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.
Systems Engineering in NASA's R&TD Programs
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.
A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology
NASA Astrophysics Data System (ADS)
Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi
2014-03-01
The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Overview of the Integrated Programs for Aerospace Vehicle Design (IPAD) project
NASA Technical Reports Server (NTRS)
Venneri, S. L.
1983-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of data base management technology and associated software for integrated company wide management of engineering and manufacturing information. Results to date on the IPAD project include an in depth documentation of a representative design process for a large engineering project, the definition and design of computer aided design software needed to support that process, and the release of prototype software to manage engineering information. This paper provides an overview of the IPAD project and summarizes progress to date and future plans.
NASA Technical Reports Server (NTRS)
Hyde, Patricia R.; Loftin, R. Bowen
1993-01-01
The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications.
Systems Engineering and Integration for Advanced Life Support System and HST
NASA Technical Reports Server (NTRS)
Kamarani, Ali K.
2005-01-01
Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...
ERIC Educational Resources Information Center
Smirnov, Eugeny; Bogun, Vitali
2011-01-01
New methodologies in science (or mathematics) learning process and scientific thinking in the classroom activity of engineer students with ICT (information and communication technology), including graphic calculator are presented: visual modelling with ICT, action research with graphic calculator, insight in classroom and communications and…
System of Systems Engineering and Integration Process for Network Transport Assessment
2016-09-01
SOSE&I CONCEPTS The DOD-sourced “Systems Engineering Guide for Systems of Systems” provides an overview of the SoS environment and SE considerations...usage as a guide in application of systems engineering processes. They are listed verbatim below as defined in the DOD SE guide (ODUSD[A&T]SSE 2008...Technology (A&T), Systems and Software Engineering (SSE). 2008. Systems Engineering Guide for Systems of Systems. Washington, DC: ODUSD(A&T)SSE
A Decision Analysis Tool for the Source Selection Process
2006-03-01
THE SOURCE SELECTION PROCESS THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of...Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of...the Requirements for the Degree of Master of Science in Engineering Management John R. Trumm, BS Captain, USAF March 2006
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
The Role of Diesel Engines in Early Submarine Development
2010-04-26
advantage of advances in metallurgical technology, could not match the superior technology in casting processes, alloy development, and heat treatments...metallurgical technology. NELSECO had the German plans and assistance from German engineers, but the foundries could not duplicate the casting to German...that the Germans and other European countries possessed. The U.S. commercial foundries did not want to undertake the risky development casting of low
Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology
NASA Technical Reports Server (NTRS)
Griffin, D. E. (Editor); Stanley, D. C. (Editor)
2001-01-01
The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.
Stratified charge rotary aircraft engine technology enablement program
NASA Technical Reports Server (NTRS)
Badgley, P. R.; Irion, C. E.; Myers, D. M.
1985-01-01
The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.
Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency
NASA Astrophysics Data System (ADS)
DeFilippo, Anthony Cesar
The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave-assisted spark technology will benefit from predictive models which include the plasma processes governing the observed combustion enhancement. This dissertation documents the development of a chemical kinetic mechanism for the plasma-assisted combustion processes relevant to microwave-assisted spark ignition. The mechanism includes an existing mechanism for gas-phase methane oxidation, supplemented with electron impact reactions, cation and anion chemical reactions, and reactions involving vibrationally-excited and electronically-excited species. Calculations using the presently-developed numerical model explain experimentally-observed trends, highlighting the relative importance of pressure, temperature, and mixture composition in determining the effectiveness of microwave-assisted ignition enhancement.
Kang, Hyun-Wook
2012-01-01
Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications. PMID:22443315
NASA-HBCU Space Science and Engineering Research Forum Proceedings
NASA Technical Reports Server (NTRS)
Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)
1989-01-01
The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).
Zadran, Sohila; Levine, Raphael D
2013-01-01
Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, D.F.; Taylor, A.J.; Weber, G.W.
Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.
NASA Astrophysics Data System (ADS)
Kondrashov, V. P.; Pogrebisskiy, M. Ya; Lykov, A. G.; Rabinovich, V. L.; Bulgakov, A. S.
2018-02-01
Ways of increase of ore-heating electric furnaces, used for production of silicomanganese, engineering-and-economical performance are analyzed. Questions of data of the electric, thermal and technological modes of the furnace functioning collecting and processing for use in operation of an advanced control system of the furnace providing increase in technical and economic efficiency of technological process and an adaptability to quality of burden stock are considered.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
Re-engineering the process of medical imaging physics and technology education and training.
Sprawls, Perry
2005-09-01
The extensive availability of digital technology provides an opportunity for enhancing both the effectiveness and efficiency of virtually all functions in the process of medical imaging physics and technology education and training. This includes degree granting academic programs within institutions and a wide spectrum of continuing education lifelong learning activities. Full achievement of the advantages of technology-enhanced education (e-learning, etc.) requires an analysis of specific educational activities with respect to desired outcomes and learning objectives. This is followed by the development of strategies and resources that are based on established educational principles. The impact of contemporary technology comes from its ability to place learners into enriched learning environments. The full advantage of a re-engineered and implemented educational process involves changing attitudes and functions of learning facilitators (teachers) and resource allocation and sharing both within and among institutions.
Parametric Cost Analysis: A Design Function
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1989-01-01
Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.
Manufacturing engineering: Principles for optimization
NASA Astrophysics Data System (ADS)
Koenig, Daniel T.
Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.
Chemical Processing Department monthly report, September 1956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1956-10-18
The September, 1956 monthly report for the Chemical Processing Department of Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished products operation, power and general maintenance, financial operation, engineering and research operations, and employee operations. (MB)
Chemical Processing Department monthly report, November 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1957-12-23
The November, 1957 monthly report for the Chemical Processing Department of the Hanford Atomic Products Operation includes information regarding research and engineering efforts with respect to the Purex and Redox process technology. Also discussed is the production operation, finished product operation, power and general maintenance, financial operation, engineering and research operations, and employee operation. (MB)
Tech-Prep Competency Profiles within the Engineering Technologies Cluster.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center on Education and Training for Employment.
This document contains 12 competency profiles for tech prep courses within the engineering technologies cluster. The document consists of the following sections: (1) systemic curriculum reform philosophy--Ohio's vision of tech prep and its six critical components; (2) an explanation of the process of developing the tech prep competencies; (3) a…
1975-05-01
Waste-to-energy systems Recycling of materials from refuse Desulfurization of flue gases from electric power plants Sattelle Specialists...High-Temperature Gas -Turbine Engines for Automotive Applications Initiation of Task II and Task III (Task II: Description of Technologies and...3 - • Mining and Minerals Processing • Ocean Engineering • Transportation • Waste Treatment and Environmental Control The technologies
ERIC Educational Resources Information Center
Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin
2015-01-01
Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…
Technology development life cycle processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, David Franklin
2013-05-01
This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81more » of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.« less
2005-06-01
cognitive task analysis , organizational information dissemination and interaction, systems engineering, collaboration and communications processes, decision-making processes, and data collection and organization. By blending these diverse disciplines command centers can be designed to support decision-making, cognitive analysis, information technology, and the human factors engineering aspects of Command and Control (C2). This model can then be used as a baseline when dealing with work in areas of business processes, workflow engineering, information management,
9th Annual Science and Engineering Technology Conference
2008-04-17
Disks Composite Technology Titanium Aluminides Processing Microstructure Properties Curve Generator Go-Forward: Integrated Materials & Process Models...Initiatives Current DPA/T3s: Atomic Layer Deposition Hermetic Coatings: ...domestic ALD for electronic components; transition to fabrication process ...Production windows estim • Process capability fully established >Production specifications in place >Supply chain established •All necessary property
Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...
Feldhaus, Charles R; Wolter, Robert M; Hundley, Stephen P; Diemer, Tim
2006-04-01
This paper details efforts by the Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis (IUPUI) to create a single instrument for honors science, technology, engineering and mathematics (STEM) students wishing to demonstrate competence in the IUPUI Principles of Undergraduate Learning (PUL's) and Accreditation Board for Engineering and Technology (ABET) Engineering Accreditation Criterion (EAC) and Technology Accreditation Criterion (TAC) 2, a through k. Honors courses in Human Behavior, Ethical Decision-Making, Applied Leadership, International Issues and Leadership Theories and Processes were created along with a specific menu of activities and an assessment rubric based on PUL's and ABET criteria to evaluate student performance in the aforementioned courses. Students who complete the series of 18 Honors Credit hours are eligible for an Honors Certificate in Leadership Studies from the Department of Organizational Leadership and Supervision. Finally, an accounting of how various university assessment criteria, in this case the IUPUI Principles of Undergraduate Learning, can be linked to ABET outcomes and prove student competence in both, using the aforementioned courses, menu of items, and assessment rubrics; these will be analyzed and discussed.
NASA Astrophysics Data System (ADS)
Scribner, J. Adam
Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.
Orbit transfer rocket engine technology program: Automated preflight methods concept definition
NASA Technical Reports Server (NTRS)
Erickson, C. M.; Hertzberg, D. W.
1991-01-01
The possibility of automating preflight engine checkouts on orbit transfer engines is discussed. The minimum requirements in terms of information and processing necessary to assess the engine'e integrity and readiness to perform its mission were first defined. A variety of ways for remotely obtaining that information were generated. The sophistication of these approaches varied from a simple preliminary power up, where the engine is fired up for the first time, to the most advanced approach where the sensor and operational history data system alone indicates engine integrity. The critical issues and benefits of these methods were identified, outlined, and prioritized. The technology readiness of each of these automated preflight methods were then rated on a NASA Office of Exploration scale used for comparing technology options for future mission choices. Finally, estimates were made of the remaining cost to advance the technology for each method to a level where the system validation models have been demonstrated in a simulated environment.
Second International Conference on Accelerating Biopharmaceutical Development
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme “Delivering cost-effective, robust processes and methods quickly and efficiently.” The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development. PMID:20065637
Including natural systems into the system engineering process: benefits to spaceflight and beyond
NASA Astrophysics Data System (ADS)
Studor, George
2014-03-01
How did we get to the point where we don't have time to be inspired by the wonders of Nature? Our office walls, homes and city streets are so plain that even when we do escape to a retreat with nature all around us, we may be blind to its magnificence. Yet there are many who have applied what can be known of natural systems (NS) to create practical solutions, but often definite applications for them are lacking. Mimicry of natural systems is not only more possible than ever before, but the education and research programs in many major universities are churning out graduates with a real appreciation for Nature's complex integrated systems. What if these skills and perspectives were employed in the teams of systems engineers and the technology developers that support them to help the teams think "outside-the-box" of manmade inventions? If systems engineers (SE) and technology developers regularly asked the question, "what can we learn from Nature that will help us?" as a part of their processes, they would discover another set of potential solutions. Biomimicry and knowledge of natural systems is exploding. What does this mean for systems engineering and technology? Some disciplines such as robotics and medical devices must consider nature constantly. Perhaps it's time for all technology developers and systems engineers to perceive natural systems experts as potential providers of the technologies they need.
ERIC Educational Resources Information Center
Abu-Jdayil, Basim; Al-Attar, Hazim
2010-01-01
The chemical engineering programme at the United Arab Emirates University is designed to fulfil the Accreditation Board for Engineering and Technology (ABET) (A-K) EC2000 criteria. The Department of Chemical & Petroleum Engineering has established a well-defined process for outcomes assessment for the chemical engineering programme in order to…
New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary
NASA Technical Reports Server (NTRS)
Liou, Larry C.
2008-01-01
The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.
NASA Astrophysics Data System (ADS)
Gilmanshin, I. R.; Gilmanshina, S. I.
2017-09-01
The urgency of the formation of competence in the field of energy saving in the process of studying engineering and technical disciplines at the university is substantiated. The author’s definition of the competence in the field of energy saving is given, allowing to consider the necessity of its formation among students - future engineers as a way to create technologies of a new generation. The essence of this competence is revealed. The system of work, pedagogical conditions and technologies of its formation in the conditions of the federal university is substantiated.
Applying systems engineering methodologies to the micro- and nanoscale realm
NASA Astrophysics Data System (ADS)
Garrison Darrin, M. Ann
2012-06-01
Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.
Doyle, John
2007-01-01
This paper discusses the topic of judicial execution from the perspective of the intersection of the technological issues and the professional ethics issues. Although physicians are generally ethically forbidden from any involvement in the judicial execution process, this does not appear to be the case for engineering professionals. This creates an interesting but controversial opportunity for the engineering community (especially biomedical engineers) to improve the humaneness and reliability of the judicial execution process.
Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
ETO - ENGINEERING TRADE-OFFS (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)
The ETO - Engineering Trade-Offs program is to develop a new, integrated decision-making approach to compare/contrast two or more states of being: a benchmark and an alternative, a change in a production process, alternative processes or products. ETO highlights the difference in...
MPT_DOE Final Report 12-15-16 rev1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunce, Michael
The goal of this project was to achieve breakthrough thermal efficiency on a light duty passenger car engine, with minimal impact to emissions. The enabling technology or technologies were to be relatively low cost and integrateable into existing production processes. Through the use of Turbulent Jet Ignition (TJI), an enabling technology for ultra-lean engine operation, the project team was able to meet or exceed all technical goals of this program.
ERIC Educational Resources Information Center
Currie, Michelle A.
2012-01-01
Black faculty at predominantly White institutions (PWIs) have historically been underrepresented and made to endure with academic isolation, scholarship marginalization and other challenges to the tenure process. When it comes to science, technology, engineering and math, also known as STEM, as it relates to race and success, little is known of…
FY04 Engineering Technology Reports Technology Base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharpe, R M
2005-01-27
Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technicalmore » resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and exploration of selected technology areas with high strategic potential, such as assessment of university, laboratory, and industrial partnerships. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, focus and guide longer-term investments within Engineering. The Centers attract and retain top staff, develop and maintain critical core technologies, and enable programs. Through their technology-base projects, they oversee the application of known engineering approaches and techniques to scientific and technical problems. The Centers and their Directors are as follows: (1) Center for Computational Engineering: Robert M. Sharpe; (2) Center for Microtechnology and Nanotechnology: Raymond P. Mariella, Jr. (3) Center for Nondestructive Characterization: Harry E. Martz, Jr.; (4) Center for Precision Engineering: Keith Carlisle; and (5) Center for Complex Distributed Systems: Gregory J. Suski, Acting Director.« less
3D engineered models for highway construction : the Iowa experience.
DOT National Transportation Integrated Search
2015-06-01
3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...
Engineering Education for Leadership in the 21st Century.
ERIC Educational Resources Information Center
Wirasinghe, Chan
The engineering profession and, consequently, the education process for engineers must respond to several new realities in order to be successful in the 21st century. Some aspects of the new reality that are relevant to engineering education are as follows: the globalization of commerce; the information revolution; innovations in technology; the…
Analogical Reasoning in the Engineering Design Process and Technology Education Applications
ERIC Educational Resources Information Center
Daugherty, Jenny; Mentzer, Nathan
2008-01-01
This synthesis paper discusses the research exploring analogical reasoning, the role of analogies in the engineering design process, and educational applications for analogical reasoning. Researchers have discovered that analogical reasoning is often a fundamental cognitive tool in design problem solving. Regarding the possible role of analogical…
Establishment of cell surface engineering and its development.
Ueda, Mitsuyoshi
2016-07-01
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
This report summarizes work performed in support of the development and demonstration of a structural ceramic technology for automotive gas turbine engines. The AGT101 regenerated gas turbine engine developed under the previous DOE/NASA Advanced Gas Turbine (AGT) program is being utilized for verification testing of the durability of next-generation ceramic components and their suitability for service at reference powertrain design conditions. Topics covered in this report include ceramic processing definition and refinement, design improvements to the test bed engine and test rigs, and design methodologies related to ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors addressing the development of silicon nitride and silicon carbide families of materials and processes.
Automated inspection of turbine blades: Challenges and opportunities
NASA Technical Reports Server (NTRS)
Mehta, Manish; Marron, Joseph C.; Sampson, Robert E.; Peace, George M.
1994-01-01
Current inspection methods for complex shapes and contours exemplified by aircraft engine turbine blades are expensive, time-consuming and labor intensive. The logistics support of new manufacturing paradigms such as integrated product-process development (IPPD) for current and future engine technology development necessitates high speed, automated inspection of forged and cast jet engine blades, combined with a capability of retaining and retrieving metrology data for process improvements upstream (designer-level) and downstream (end-user facilities) at commercial and military installations. The paper presents the opportunities emerging from a feasibility study conducted using 3-D holographic laser radar in blade inspection. Requisite developments in computing technologies for systems integration of blade inspection in production are also discussed.
Proceedings of the Seventeenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
Proceedings of the Seventeenth Annual Software Engineering Workshop are presented. The software Engineering Laboratory (SEL) is an organization sponsored by NASA/Goddard Space Flight Center and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. Topics covered include: the Software Engineering Laboratory; process measurement; software reuse; software quality; lessons learned; and is Ada dying.
The impact of distributed computing on education
NASA Technical Reports Server (NTRS)
Utku, S.; Lestingi, J.; Salama, M.
1982-01-01
In this paper, developments in digital computer technology since the early Fifties are reviewed briefly, and the parallelism which exists between these developments and developments in analysis and design procedures of structural engineering is identified. The recent trends in digital computer technology are examined in order to establish the fact that distributed processing is now an accepted philosophy for further developments. The impact of this on the analysis and design practices of structural engineering is assessed by first examining these practices from a data processing standpoint to identify the key operations and data bases, and then fitting them to the characteristics of distributed processing. The merits and drawbacks of the present philosophy in educating structural engineers are discussed and projections are made for the industry-academia relations in the distributed processing environment of structural analysis and design. An ongoing experiment of distributed computing in a university environment is described.
Current biotechnological developments in Belgium.
Masschelein, C A; Callegari, J P; Laurent, M; Simon, J P; Taeymans, D
1989-01-01
In recent years, actions have been undertaken by the Belgian government to promote process innovation and technical diversification. Research programs are initiated and coordinated by the study committee for biotechnology setup within the Institute for Scientific Research in Industry and Agriculture (IRSIA). As a result of this action, the main areas where biotechnological processes are developed or commercially exploited include plant genetics, protein engineering, hybridoma technology, biopesticides, production by genetic engineering of vaccines and drugs, monoclonal detection of human and animal deseases, process reactors for aerobic and anaerobic wastewater treatment, and genetic modification of yeast and bacteria as a base for biomass and energy. Development research also includes new fermentation technologies principally based on immobilization of microorganisms, reactor design, and optimization of unit operations involved in downstream processing. Food, pharmaceutical, and chemical industries are involved in genetic engineering and biotechnology and each of these sectors is overviewed in this paper.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
USDA-ARS?s Scientific Manuscript database
Newly emerging nonthermal and advanced thermal processing technologies are now being adopted by the food processing industry for the purpose of providing safe and high quality food products to consumers. Scientists and engineers at USDA’s Eastern Regional Research Center in Wyndmoor, PA are activel...
Applying Technology Ranking and Systems Engineering in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry; Luna, Bernadette (Technical Monitor)
2000-01-01
According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.
EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills
ERIC Educational Resources Information Center
Rose, Mary Annette
2010-01-01
It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…
The Future of Pharmaceutical Manufacturing Sciences
2015-01-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial‐scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state‐of‐art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular‐based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot‐melt processing and printing‐based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3612–3638, 2015 PMID:26280993
The Future of Pharmaceutical Manufacturing Sciences.
Rantanen, Jukka; Khinast, Johannes
2015-11-01
The entire pharmaceutical sector is in an urgent need of both innovative technological solutions and fundamental scientific work, enabling the production of highly engineered drug products. Commercial-scale manufacturing of complex drug delivery systems (DDSs) using the existing technologies is challenging. This review covers important elements of manufacturing sciences, beginning with risk management strategies and design of experiments (DoE) techniques. Experimental techniques should, where possible, be supported by computational approaches. With that regard, state-of-art mechanistic process modeling techniques are described in detail. Implementation of materials science tools paves the way to molecular-based processing of future DDSs. A snapshot of some of the existing tools is presented. Additionally, general engineering principles are discussed covering process measurement and process control solutions. Last part of the review addresses future manufacturing solutions, covering continuous processing and, specifically, hot-melt processing and printing-based technologies. Finally, challenges related to implementing these technologies as a part of future health care systems are discussed. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Technical Reports Server (NTRS)
Fulton, R. E.
1980-01-01
To respond to national needs for improved productivity in engineering design and manufacturing, a NASA supported joint industry/government project is underway denoted Integrated Programs for Aerospace-Vehicle Design (IPAD). The objective is to improve engineering productivity through better use of computer technology. It focuses on development of technology and associated software for integrated company-wide management of engineering information. The project has been underway since 1976 under the guidance of an Industry Technical Advisory Board (ITAB) composed of representatives of major engineering and computer companies and in close collaboration with the Air Force Integrated Computer-Aided Manufacturing (ICAM) program. Results to date on the IPAD project include an in-depth documentation of a representative design process for a large engineering project, the definition and design of computer-aided design software needed to support that process, and the release of prototype software to integrate selected design functions. Ongoing work concentrates on development of prototype software to manage engineering information, and initial software is nearing release.
The effect of fuel processes on heavy duty automotive diesel engine emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, E.G.
1995-12-31
The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less
Reichert, Janice M; Jacob, Nitya; Amanullah, Ashraf
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.
Reichert, Janice M; Jacob, Nitya M; Amanullah, Ashraf
2009-01-01
The Second International Conference on Accelerating Biopharmaceutical Development was held in Coronado, California. The meeting was organized by the Society for Biological Engineering (SBE) and the American Institute of Chemical Engineers (AIChE); SBE is a technological community of the AIChE. Bob Adamson (Wyeth) and Chuck Goochee (Centocor) were co-chairs of the event, which had the theme "Delivering cost-effective, robust processes and methods quickly and efficiently." The first day focused on emerging disruptive technologies and cutting-edge analytical techniques. Day two featured presentations on accelerated cell culture process development, critical quality attributes, specifications and comparability, and high throughput protein formulation development. The final day was dedicated to discussion of technology options and new analysis methods provided by emerging disruptive technologies; functional interaction, integration and synergy in platform development; and rapid and economic purification process development.
Hydrogen combustion in tomorrow's energy technology
NASA Astrophysics Data System (ADS)
Peschka, W.
The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.
Military engine computational structures technology
NASA Technical Reports Server (NTRS)
Thomson, Daniel E.
1992-01-01
Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.
Urban development applications project. Urban technology transfer study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.
NASA Technical Reports Server (NTRS)
Pryor, Donald
1992-01-01
Two aspects of the Office of Science and Technology Policy (OSTP) are discussed: (1) efforts to state the overarching technology policy in which technology transfer plays an important part; and (2) efforts to coordinate federal R&D contracts programs in several technology areas through the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) process.
Lynd; Wyman; Gerngross
1999-10-01
The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of xylose and other nonglucose sugars, and "consolidated bioprocessing" in which cellulase production, cellulose hydrolysis, and fermentation of soluble carbohydrates to desired products occur in a single process step. With respect to product diversification, a distinction is made between replacement of a fossil resource-derived chemical with a biomass-derived chemical of identical composition and substitution of a biomass-derived chemical with equivalent functional characteristics but distinct composition. The substitution strategy involves larger transition issues but is seen as more promising in the long term. Metabolic engineering pursuant to the production of biocommodity products requires host organisms with properties such as the ability to use low-cost substrates, high product yield, competitive fitness, and robustness in industrial environments. In many cases, it is likely to be more successful to engineer a desired pathway into an organism having useful industrial properties rather than trying to engineer such often multi-gene properties into host organisms that do not have them naturally. Identification of host organisms with useful industrial properties and development of genetic systems for these organisms is a research challenge distinctive to biocommodity engineering. Chemical catalysis and separations technologies have important roles to play in downstream processing of biocommodity products and involve a distinctive set of challenges relative to petrochemical processing. At its current nascent state of development, the definition and advancement of the biocommodity field can benefit from integration at multiple levels. These include technical issues associated with integrating unit operations with each other, integrating production of individual products into a multi-product biorefinery, and integrating biorefineries into the broader resource, economic, and environmental systems in which they function. We anticipate that coproduction of multiple products, for example, production of fuels, chemicals, power, and/or feed, is likely to be essential for economic viability. Lifecycle analysis is necessary to verify the sustainability and environmental quality benefits of a particular biocommodity product or process. We see biocommodity engineering as a legitimate focus for graduate study, which is responsive to an established personnel demand in an industry that is expected to grow in the future. Graduate study in biocommodity engineering is supported by a distinctive blend of intellectual elements, including biotechnology, process engineering, and resource and environmental systems.
12th Annual Science and Engineering Technology Conference/DoD TECH Exposition
2011-06-23
compound when planning horizons grow: long design - test - build-field-adapt lead-times exacerbate uncertain futures problems, overload designs , and...ERS Environment ERS: Tools and Technologies to Facilitate Adaptability & Trustability 4. Tying design , physical and computational testing 6...science, engineering concepts, processes, and design tools to: • Continuously coordinate design , testing , and production with warfighter review to
13th Annual Systems Engineering Conference: Tues- Wed
2010-10-28
greater understanding/documentation of lessons learned – Promotes SE within the organization • Justification for continued funding of SE Infrastructure...educational process – Addresses the development of innovative learning tools, strategies, and teacher training • Research and Development – Promotes ...technology, and mathematics • More commitment to engaging young students in science, engineering, technology and mathematics • More rigor in defining
Kalin, Robert M
2004-06-01
Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
SSME leak detection feasibility investigation by utilization of infrared sensor technology
NASA Technical Reports Server (NTRS)
Shohadaee, Ahmad A.; Crawford, Roger A.
1990-01-01
This investigation examined the potential of using state-of-the-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for Space Shuttle Main Engines (SSME) propellant path peak detection as an early warning system of imminent engine failure. A low-cost, laboratory experiment was devised and an experimental approach was established. The system was installed, checked out, and data were successfully acquired demonstrating the proof-of-concept. The conclusion from this investigation is that both numerical and experimental results indicate that the leak detection by using infrared sensor technology proved to be feasible for a rocket engine health monitoring system.
Scientific and Technological Achievement Award (STAA)
Each year since 1980, Agency scientists and engineers have submitted nominated scientific and technological papers through an internal Agency review process managed by the Office of Research and Development.
The Tailoring of Traditional Systems Engineering for the Morpheus Project
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Hart, Jeremy J.
2013-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. The team has produced innovative ways to create an infrastructure and approach that would challenge existing systems engineering processes while still enabling successful implementation of the current Morpheus Project. This paper describes the tailored systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in FY11. Lessons learned from these trials have the potential to be scaled up and improve efficiency on a larger projects or programs.
Advances in Gammalloy Materials-Processes-Application Technology: Successes, Dilemmas, and Future
NASA Astrophysics Data System (ADS)
Kim, Young-Won; Kim, Sang-Lan
2018-04-01
For the last several years, gamma titanium aluminide ( γ-TiAl)-based alloys, called "gammalloys," in specific alloy-microstructure forms began to be implemented in civil aero-engines as cast or wrought low-pressure turbine (LPT) blades and in select ground vehicle engines as cast turbocharger rotors and wrought exhaust valves. Their operation temperatures are approximately up to 750°C for LPT blades and around 1000°C for turbocharger rotors. This article critically assesses current engineering gammalloys and their limitations and introduces eight strengthening pathways that can be adopted immediately for the development of advanced, higher temperature gammalloys. Intelligent integration of the pathways into the emerging application-specific research and development processes is emphasized as the key to the advancement of the gammalloy technology to the next higher engineering performance levels.
Systems Engineering and Integration for Technology Programs
NASA Technical Reports Server (NTRS)
Kennedy, Kruss J.
2006-01-01
The Architecture, Habitability & Integration group (AH&I) is a system engineering and integration test team within the NASA Crew and Thermal Systems Division (CTSD) at Johnson Space Center. AH&I identifies and resolves system-level integration issues within the research and technology development community. The timely resolution of these integration issues is fundamental to the development of human system requirements and exploration capability. The integration of the many individual components necessary to construct an artificial environment is difficult. The necessary interactions between individual components and systems must be approached in a piece-wise fashion to achieve repeatable results. A formal systems engineering (SE) approach to define, develop, and integrate quality systems within the life support community has been developed. This approach will allow a Research & Technology Program to systematically approach the development, management, and quality of technology deliverables to the various exploration missions. A tiered system engineering structure has been proposed to implement best systems engineering practices across all development levels from basic research to working assemblies. These practices will be implemented through a management plan across all applicable programs, projects, elements and teams. While many of the engineering practices are common to other industries, the implementation is specific to technology development. An accounting of the systems engineering management philosophy will be discussed and the associated programmatic processes will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-08-01
Significant accomplishments in fabricating cermaic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, additional research is needed in materials and processing development, design methodology, and data base and life prediction. An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotivemore » heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.« less
NASA Astrophysics Data System (ADS)
Roberts, Simon J.
2014-01-01
The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.
X-33/RLV Program Aerospike Engines
NASA Technical Reports Server (NTRS)
1999-01-01
Substantial progress was made during the past year in support of the X-33/RLV program. X-33 activity was directed towards completing the remaining design work and building hardware to support test activities. RLV work focused on the nozzle ramp and powerpack technology tasks and on supporting vehicle configuration studies. On X-33, the design activity was completed to the detail level and the remainder of the drawings were released. Component fabrication and engine assembly activity was initiated, and the first two powerpacks and the GSE and STE needed to support powerpack testing were completed. Components fabrication is on track to support the first engine assembly schedule. Testing activity included powerpack testing and component development tests consisting of thrust cell single cell testing, CWI system spider testing, and EMA valve flow and vibration testing. Work performed for RLV was divided between engine system and technology development tasks. Engine system activity focused on developing the engine system configuration and supporting vehicle configuration studies. Also, engine requirements were developed, and engine performance analyses were conducted. In addition, processes were developed for implementing reliability, mass properties, and cost controls during design. Technology development efforts were divided between powerpack and nozzle ramp technology tasks. Powerpack technology activities were directed towards the development of a prototype powerpack and a ceramic turbine technology demonstrator (CTTD) test article which will allow testing of ceramic turbines and a close-coupled gas generator design. Nozzle technology efforts were focused on the selection of a composite nozzle supplier and on the fabrication and test of composite nozzle coupons.
An Approach to Help Departments Meet the New ABET Process Safety Requirements
ERIC Educational Resources Information Center
Vaughen, Bruce K.
2012-01-01
The proposed program criteria changes by the Accreditation Board for Engineering and Technology, Inc. (ABET), for chemical, biochemical, biomolecular, and similarly named programs includes a fundamental awareness expectation of the hazards involved in chemical processing for a graduating chemical engineer. As of July 2010, these four new words…
A Place for Art and Design Education in the STEM Conversation
ERIC Educational Resources Information Center
Bequette, James W.; Bequette, Marjorie Bullitt
2012-01-01
The recent push for STEM (Science, Technology, Engineering, and Mathematics) education introduces (through the emphasis on engineering) a "design process" to science classrooms; some educators have also pushed for the "artistic or creative process" becoming a part of STEM education. In certain cases, this might be an opportunity for greater…
Liquid Rocket Engine Testing Overview
NASA Technical Reports Server (NTRS)
Rahman, Shamim
2005-01-01
Contents include the following: Objectives and motivation for testing. Technology, Research and Development Test and Evaluation (RDT&E), evolutionary. Representative Liquid Rocket Engine (LRE) test compaigns. Apollo, shuttle, Expandable Launch Vehicles (ELV) propulsion. Overview of test facilities for liquid rocket engines. Boost, upper stage (sea-level and altitude). Statistics (historical) of Liquid Rocket Engine Testing. LOX/LH, LOX/RP, other development. Test project enablers: engineering tools, operations, processes, infrastructure.
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
NASA Astrophysics Data System (ADS)
Chang, S. S. L.
State of the art technology in circuits, fields, and electronics is discussed. The principles and applications of these technologies to industry, digital processing, microwave semiconductors, and computer-aided design are explained. Important concepts and methodologies in mathematics and physics are reviewed, and basic engineering sciences and associated design methods are dealt with, including: circuit theory and the design of magnetic circuits and active filter synthesis; digital signal processing, including FIR and IIR digital filter design; transmission lines, electromagnetic wave propagation and surface acoustic wave devices. Also considered are: electronics technologies, including power electronics, microwave semiconductors, GaAs devices, and magnetic bubble memories; digital circuits and logic design.
Computer-Aided Software Engineering - An approach to real-time software development
NASA Technical Reports Server (NTRS)
Walker, Carrie K.; Turkovich, John J.
1989-01-01
A new software engineering discipline is Computer-Aided Software Engineering (CASE), a technology aimed at automating the software development process. This paper explores the development of CASE technology, particularly in the area of real-time/scientific/engineering software, and a history of CASE is given. The proposed software development environment for the Advanced Launch System (ALS CASE) is described as an example of an advanced software development system for real-time/scientific/engineering (RT/SE) software. The Automated Programming Subsystem of ALS CASE automatically generates executable code and corresponding documentation from a suitably formatted specification of the software requirements. Software requirements are interactively specified in the form of engineering block diagrams. Several demonstrations of the Automated Programming Subsystem are discussed.
NASA Astrophysics Data System (ADS)
Vessel, Kanika Nicole
2011-12-01
There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.
Knowledge-Based Integrated Information Systems Engineering: Highlights and Bibliography. Volume 1.
1987-12-01
of database technology, 0 communication technology and expert systems technology. , Organizational issues cover the process of making controlled... process of linking strategic goals, technical issues , and organizational aspects can be depicted as shown in Figure 2.2. At the top level, strategic...an integrated information system design and implementation in a short period of time [4]. 2.2.2 Emphasis on Process It was mentioned in Section 1.3
[Pilot plant for microbiological synthesis. Engineer and technological aspects].
Lukanin, A V
2007-01-01
A biotechnological pilot plant (National Research Centre of Antibiotics) and its technical potentialities in production of various biosynthetic products are described. Some engineer and technological aspects of the fermentation equipment and particularly sterilization of the media and apparatus, fermentation broth aeration under sterile conditions and control of biosynthesis technological parameters (t degrees, pO2, P, pH, foaming, etc.) are considered. The pilot plant is designed for fermentation processes under aseptic conditions with the use practically of any object, from bacteria to tissue cultures.
Nanocrystals Technology for Pharmaceutical Science.
Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng
2018-05-17
Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The self-assembling process and applications in tissue engineering
Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.
2018-01-01
Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174
Frontiers in Chemical Engineering. Research Needs and Opportunities.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
Chemical engineers play a key role in industries such as petroleum, food, artificial fibers, petrochemicals, plastics and many others. They are needed to tailor manufacturing technology to the requirements of products and to integrate product and process design. This report discusses how chemical engineers are continuing to address technological…
Reusable rocket engine turbopump condition monitoring
NASA Technical Reports Server (NTRS)
Hampson, M. E.; Barkhoudarian, S.
1985-01-01
Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
A five-year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applicationsmore » in these engines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-03-01
An assessment of needs was completed, and a five-year project plan was developed with extensive input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barriermore » and wear applications in these engines.« less
A Holistic Approach to Systems Development
NASA Technical Reports Server (NTRS)
Wong, Douglas T.
2008-01-01
Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9
Reactor technology assessment and selection utilizing systems engineering approach
NASA Astrophysics Data System (ADS)
Zolkaffly, Muhammed Zulfakar; Han, Ki-In
2014-02-01
The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.
Bridging the Technology Valley of Death in Joint Medical Development
2015-11-01
Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production
NASA Technical Reports Server (NTRS)
Volponi, Al; Simon, Donald L. (Technical Monitor)
2008-01-01
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.
An overview of NASA intermittent combustion engine research
NASA Technical Reports Server (NTRS)
Willis, E. A.; Wintucky, W. T.
1984-01-01
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectedly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts, the stratified-charge, multi-fuel rotary and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants. Previously announced in STAR as N84-24583
An overview of NASA intermittent combustion engine research
NASA Technical Reports Server (NTRS)
Willis, E. A.; Wintucky, W. T.
1984-01-01
This paper overviews the current program, whose objective is to establish the generic technology base for advanced aircraft I.C. engines of the early 1990's and beyond. The major emphasis of this paper is on development of the past two years. Past studies and ongoing confirmatory experimental efforts are reviewed, which show unexpectly high potential when modern aerospace technologies are applied to inherently compact and balanced I.C. engine configurations. Currently, the program is focussed on two engine concepts the stratified-charge, multi-fuel rotary, and the lightweight two-stroke diesel. A review is given of contracted and planned high performance one-rotor and one-cylinder test engine work addressing several levels of technology. Also reviewed are basic supporting efforts, e.g., the development and experimental validation of computerized airflow and combustion process models, being performed in-house at Lewis Research Center and by university grants.
UCS-PROMOVE: The engineer of the future
NASA Astrophysics Data System (ADS)
Villas-Boas, V.
2010-06-01
The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.;
2015-01-01
The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.
Engineering research, development and technology FY99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langland, R T
The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural characterizations and analysis of large bridge structures for the State of California. Initial feasibility investigations into the development of monitoring and detection systems are described in the papers on imaging of underground structures with ground-penetrating radar, and the use of live insects as sensor platforms. These efforts are establishing the basic performance characteristics essential to the decision process for future development of sensor arrays for information gathering related to national security.« less
Metal- matrix composite processing technologies for aircraft engine applications
NASA Astrophysics Data System (ADS)
Pank, D. R.; Jackson, J. J.
1993-06-01
Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.
Aircraft gas turbine materials and processes.
Kear, B H; Thompson, E R
1980-05-23
Materials and processing innovations that have been incorporated into the manufacture of critical components for high-performance aircraft gas turbine engines are described. The materials of interest are the nickel- and cobalt-base superalloys for turbine and burner sections of the engine, and titanium alloys and composites for compressor and fan sections of the engine. Advanced processing methods considered include directional solidification, hot isostatic pressing, superplastic foring, directional recrystallization, and diffusion brazing. Future trends in gas turbine technology are discussed in terms of materials availability, substitution, and further advances in air-cooled hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, P.K.
A total of 48 papers were presented at the Engineering Geology and Geotechnical Engineering 30th Symposium. These papers are presented in this proceedings under the following headings: site characterization--Pocatello area; site characterization--Boise Area; site assessment; Idaho National Engineering Laboratory; geophysical methods; remediation; geotechnical engineering; and hydrogeology, northern and western Idaho. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.
Military Jet Engine Acquisition: Technology Basics and Cost-Estimating Methodology
2002-01-01
aircraft , rather than by these forms of jet engines . Like the turbofan or turbojet , these engines have a nozzle down- stream of the low-pressure...2.5 illustrates the process of turbine blade cooling. Figure 2.6 illustrates the steady and rapid increase in RIT for turbo - jets , turbofans , and...87 B. AN OVERVIEW OF MILITARY JET ENGINE HISTORY ... 97 C. AIRCRAFT TURBINE ENGINE DEVELOPMENT ...... 121 D.
Science and Technology, Autonomous and More Interdependent Every Time
NASA Astrophysics Data System (ADS)
Santilli, Haydée
2012-06-01
In a School of Engineering scientific and technological knowledge live together. Science teachers usually try to understand the role that scientific disciplines have over the engineer training. In this paper are descript three historical case studies that could help teachers and students for better understanding the interdependence between science and technology, and the way in which both are related to society. The cases clearly show that both kind of knowledge, scientific and technological, are autonomous, and that their growths involve complex processes. On this way, learners could have an insight of both, the NOS and the NOT.
Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report
NASA Technical Reports Server (NTRS)
Stotler, C. L., Jr.; Bowden, J. H.
1977-01-01
The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity.
Atomization characteristics of swirl injector sprays
NASA Technical Reports Server (NTRS)
Feikema, Douglas A.
1996-01-01
Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.
Teaching Engineering at the K-12 Level: Two Perspectives
ERIC Educational Resources Information Center
Smith, Kenneth L.; Burghardt, David
2007-01-01
In this article, the authors share their own perspectives regarding engineering education at the K-12 level. Smith believes that there must be a more direct infusion of appropriate mathematics and science with the unique technological content (tools, machines, materials, processes) for an effective engineering education program to exist. He thinks…
Technologies and problems of reengineering of the business processes of company
NASA Astrophysics Data System (ADS)
Silka, Dmitriy
2017-10-01
Management of the combination of business processes is a modern approach in the field of business management. Together with a lot of management approaches business processes allow us to identify all the resultant actions. Article reveals the modern view on the essence of business processes as well as the general approaches of their allocation. Principles of construction and business process re-engineering are proposed. Recommendations on how to perform re-engineering under high cyclic dynamics of business activity are provided.
NASA Astrophysics Data System (ADS)
Huhn, Stefan; Peeling, Derek; Burkart, Maximilian
2017-10-01
With the availability of die face design tools and incremental solver technologies to provide detailed forming feasibility results in a timely fashion, the use of inverse solver technologies and resulting process improvements during the product development process of stamped parts often is underestimated. This paper presents some applications of inverse technologies that are currently used in the automotive industry to streamline the product development process and greatly increase the quality of a developed process and the resulting product. The first focus is on the so-called target strain technology. Application examples will show how inverse forming analysis can be applied to support the process engineer during the development of a die face geometry for Class `A' panels. The drawing process is greatly affected by the die face design and the process designer has to ensure that the resulting drawn panel will meet specific requirements regarding surface quality and a minimum strain distribution to ensure dent resistance. The target strain technology provides almost immediate feedback to the process engineer during the die face design process if a specific change of the die face design will help to achieve these specific requirements or will be counterproductive. The paper will further show how an optimization of the material flow can be achieved through the use of a newly developed technology called Sculptured Die Face (SDF). The die face generation in SDF is more suited to be used in optimization loops than any other conventional die face design technology based on cross section design. A second focus in this paper is on the use of inverse solver technologies for secondary forming operations. The paper will show how the application of inverse technology can be used to accurately and quickly develop trim lines on simple as well as on complex support geometries.
Precision manufacturing for clinical-quality regenerative medicines.
Williams, David J; Thomas, Robert J; Hourd, Paul C; Chandra, Amit; Ratcliffe, Elizabeth; Liu, Yang; Rayment, Erin A; Archer, J Richard
2012-08-28
Innovations in engineering applied to healthcare make a significant difference to people's lives. Market growth is guaranteed by demographics. Regulation and requirements for good manufacturing practice-extreme levels of repeatability and reliability-demand high-precision process and measurement solutions. Emerging technologies using living biological materials add complexity. This paper presents some results of work demonstrating the precision automated manufacture of living materials, particularly the expansion of populations of human stem cells for therapeutic use as regenerative medicines. The paper also describes quality engineering techniques for precision process design and improvement, and identifies the requirements for manufacturing technology and measurement systems evolution for such therapies.
NASA Astrophysics Data System (ADS)
Eibl, R.; Eibl, D.
In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.
Engineering the Lidar In-space Technology Experiment
NASA Technical Reports Server (NTRS)
Couch, Richard H.; Moore, Chris L.
1992-01-01
The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.
Technology Horizons: A Vision for Air Force Science and Technology 2010-30
2011-09-01
software, hardware, and networks, it is now recognized as en- compassing the entire system that couples information flow and decision processes across...acceleration, and scramjet cruise. Inward turning inlets and a dual- flow path design allow high volumetric efficiency, and high cruise speed provides...the same time, emerging “third- stream engine architectures” can enable constant-mass- flow engines that can provide further reductions in fuel
Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.
2011-01-01
Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.
2007-05-01
Organizational Structure 40 6.1.3 Funding Model 40 6.1.4 Role of Information Technology 40 6.2 Considering Process Improvement 41 6.2.1 Dimensions of...to the process definition for resiliency engineering. 6.1.3 Funding Model Just as organizational structures tend to align across security and...responsibility. Adopting an enter- prise view of operational resiliency and a process improvement approach requires that the funding model evolve to one
Robotics technology discipline
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin D.
1990-01-01
Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.
System catalytic neutralization control of combustion engines waste gases in mining technologies
NASA Astrophysics Data System (ADS)
Korshunov, G. I.; Solnitsev, R. I.
2017-10-01
The paper presents the problems solution of the atmospheric air pollution with the exhaust gases of the internal combustion engines, used in mining technologies. Such engines are used in excavators, bulldozers, dump trucks, diesel locomotives in loading and unloading processes and during transportation of minerals. NOx, CO, CH emissions as the waste gases occur during engine operation, the concentration of which must be reduced to the standard limits. The various methods and means are used for the problem solution, one of which is neutralization based on platinum catalysts. A mathematical model of a controlled catalytic neutralization system is proposed. The simulation results confirm the increase in efficiency at start-up and low engine load and the increase in the catalyst lifetime.
Volpe engineers use biometrics to help ease border crush
DOT National Transportation Integrated Search
1997-01-01
Using technology previously reserved for military and other high security applications, engineers from the Safety and Security Systems Division of the Volpe Center have developed a number of automated biometric systems to speed the processing of freq...
Lenas, Petros; Moos, Malcolm; Luyten, Frank P
2009-12-01
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
An assessment of needs was completed, and a five-year project plan was developed with input from private industry. Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work described in this report is organized according to the following WBS project elements: management and coordination; materials and processing (monolithics, ceramic composites, thermal and wear coatings, joining); materials design methodology (contact interfaces, newmore » concepts); data base and life prediction (time-dependent behavior, environmental effects, fracture mechanics, NDE development); and technology transfer. This report includes contributions from all currently active project participants.« less
Additive Manufacturing for Affordable Rocket Engines
NASA Technical Reports Server (NTRS)
West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty
2016-01-01
Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.
Flexible manufacturing of aircraft engine parts
NASA Astrophysics Data System (ADS)
Hassan, Ossama M.; Jenkins, Douglas M.
1992-06-01
GE Aircraft Engines, a major supplier of jet engines for commercial and military aircraft, has developed a fully integrated manufacturing facility to produce aircraft engine components in flexible manufacturing cells. This paper discusses many aspects of the implementation including process technologies, material handling, software control system architecture, socio-technical systems and lessons learned. Emphasis is placed on the appropriate use of automation in a flexible manufacturing system.
Computer Design Technology of the Small Thrust Rocket Engines Using CAE / CAD Systems
NASA Astrophysics Data System (ADS)
Ryzhkov, V.; Lapshin, E.
2018-01-01
The paper presents an algorithm for designing liquid small thrust rocket engine, the process of which consists of five aggregated stages with feedback. Three stages of the algorithm provide engineering support for design, and two stages - the actual engine design. A distinctive feature of the proposed approach is a deep study of the main technical solutions at the stage of engineering analysis and interaction with the created knowledge (data) base, which accelerates the process and provides enhanced design quality. The using multifunctional graphic package Siemens NX allows to obtain the final product -rocket engine and a set of design documentation in a fairly short time; the engine design does not require a long experimental development.
Proceedings of the Fifteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1990-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by GSFC and created for the purpose of investigating the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effect of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. Fifteen papers were presented at the Fifteenth Annual Software Engineering Workshop in five sessions: (1) SEL at age fifteen; (2) process improvement; (3) measurement; (4) reuse; and (5) process assessment. The sessions were followed by two panel discussions: (1) experiences in implementing an effective measurement program; and (2) software engineering in the 1980's. A summary of the presentations and panel discussions is given.
Wind Energy Workforce Development: Engineering, Science, & Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc
2013-03-29
Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Mastersmore » degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.« less
NASA Astrophysics Data System (ADS)
Makarova, A. N.; Makarov, E. I.; Zakharov, N. S.
2018-03-01
In the article, the issue of correcting engineering servicing regularity on the basis of actual dependability data of cars in operation is considered. The purpose of the conducted research is to increase dependability of transport-technological machines by correcting engineering servicing regularity. The subject of the research is the mechanism of engineering servicing regularity influence on reliability measure. On the basis of the analysis of researches carried out before, a method of nonparametric estimation of car failure measure according to actual time-to-failure data was chosen. A possibility of describing the failure measure dependence on engineering servicing regularity by various mathematical models is considered. It is proven that the exponential model is the most appropriate for that purpose. The obtained results can be used as a separate method of engineering servicing regularity correction with certain operational conditions taken into account, as well as for the technical-economical and economical-stochastic methods improvement. Thus, on the basis of the conducted researches, a method of engineering servicing regularity correction of transport-technological machines in the operational process was developed. The use of that method will allow decreasing the number of failures.
2017-03-23
Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Using Markov Decision Processes with Heterogeneous Queueing Systems... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in...POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology
NASA Astrophysics Data System (ADS)
Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi
This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.
Engineering biological systems using automated biofoundries
Chao, Ran; Mishra, Shekhar; Si, Tong; Zhao, Huimin
2017-01-01
Engineered biological systems such as genetic circuits and microbial cell factories have promised to solve many challenges in the modern society. However, the artisanal processes of research and development are slow, expensive, and inconsistent, representing a major obstacle in biotechnology and bioengineering. In recent years, biological foundries or biofoundries have been developed to automate design-build-test engineering cycles in an effort to accelerate these processes. This review summarizes the enabling technologies for such biofoundries as well as their early successes and remaining challenges. PMID:28602523
Proceedings of the ASPE/MSFC Symposium on Engineering and Productivity Gains from Space Technology
NASA Technical Reports Server (NTRS)
1977-01-01
Aerospace technology findings were examined in regard to nonaerospace applications. Studies of energy generation, materials and processes, earth observation as well as advances and benefits of electronics are included.
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Technical Reports Server (NTRS)
Brown, Kendall K.; Nelson, Karl W.
2005-01-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration
NASA Astrophysics Data System (ADS)
Brown, Kendall K.; Nelson, Karl W.
2005-02-01
Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).
The Historical Process of Development of Engineering Sciences as a School Discipline in France
ERIC Educational Resources Information Center
Christian, Hamon; Joël, Lebeaume
2016-01-01
This paper describes the historical process of development of engineering sciences as a school discipline and as an academic subject. It aims to understand the evolution of contents and their structuration, mainly, of the industrial technology for men and of the home economics for women, from the Liberation to today. It contributes to analyze the…
Engineers and Active Responsibility.
Pesch, Udo
2015-08-01
Knowing that technologies are inherently value-laden and systemically interwoven with society, the question is how individual engineers can take up the challenge of accepting the responsibility for their work? This paper will argue that engineers have no institutional structure at the level of society that allows them to recognize, reflect upon, and actively integrate the value-laden character of their designs. Instead, engineers have to tap on the different institutional realms of market, science, and state, making their work a 'hybrid' activity combining elements from the different institutional realms. To deal with this institutional hybridity, engineers develop routines and heuristics in their professional network, which do not allow societal values to be expressed in a satisfactory manner. To allow forms of 'active' responsibility, there have to be so-called 'accountability forums' that guide moral reflections of individual actors. The paper will subsequently look at the methodologies of value-sensitive design (VSD) and constructive technology assessment (CTA) and explore whether and how these methodologies allow engineers to integrate societal values into the design technological artifacts and systems. As VSD and CTA are methodologies that look at the process of technological design, whereas the focus of this paper is on the designer, they can only be used indirectly, namely as frameworks which help to identify the contours of a framework for active responsibility of engineers.
Microbial enhancement of oil recovery: Recent advances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.
1992-01-01
During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendeesmore » from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.« less
Microbial enhancement of oil recovery: Recent advances. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J.
1992-12-31
During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendeesmore » from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.« less
The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program
NASA Technical Reports Server (NTRS)
Layland, J. W.; Rauch, L. L.
1994-01-01
The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN Engineering and Implementation. These contributions are, for the most part, unique capabilities that have met the requirements of flight projects for 45 years. These unique capabilities include not only the world's best deep-space communications system, but also outstanding competency in the fields of radio metric measurement, radar and radio astronomy, and radio science.
Surface thermohardening by the fast-moving electric arch
NASA Astrophysics Data System (ADS)
Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.
2017-01-01
This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.
Study on energy consumption evaluation of mountainous highway based on LCA
NASA Astrophysics Data System (ADS)
Fei, Lunlin; Zhang, Qi; Xie, Yongqing
2017-06-01
For the system to understand the road construction energy consumption process, this paper selects a typical mountainous highway in the south, using the theory and method of Life Cycle Assessment (LCA) to quantitatively study the energy consumption of the whole process of highway raw materials production, construction and operation. The results show that the energy consumption in the raw material production stage is the highest, followed by the highway operation and construction stage. The energy consumption per unit of tunnel engineering, bridge engineering, roadbed engineering and pavement engineering in the construction phase are 2279.00 tce, 1718.07 tce, 542.19 tce and 34.02 tce, and in operational phase, 85.44% of electricity consumption comes from tunnel ventilation and lighting. Therefore, in the bridge and tunnel construction process, we should promote energy-saving innovation of the construction technology and mechanical equipment, and further strengthen the research and development of tunnel ventilation, lighting energy-saving equipment and intelligent control technology, which will help significantly reduce the energy consumption and greenhouse gas emissions of the life cycle of highway.
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
Jacques, Philippe; Béchet, Max; Bigan, Muriel; Caly, Delphine; Chataigné, Gabrielle; Coutte, François; Flahaut, Christophe; Heuson, Egon; Leclère, Valérie; Lecouturier, Didier; Phalip, Vincent; Ravallec, Rozenn; Dhulster, Pascal; Froidevaux, Rénato
2017-02-01
Innovations in novel enzyme discoveries impact upon a wide range of industries for which biocatalysis and biotransformations represent a great challenge, i.e., food industry, polymers and chemical industry. Key tools and technologies, such as bioinformatics tools to guide mutant library design, molecular biology tools to create mutants library, microfluidics/microplates, parallel miniscale bioreactors and mass spectrometry technologies to create high-throughput screening methods and experimental design tools for screening and optimization, allow to evolve the discovery, development and implementation of enzymes and whole cells in (bio)processes. These technological innovations are also accompanied by the development and implementation of clean and sustainable integrated processes to meet the growing needs of chemical, pharmaceutical, environmental and biorefinery industries. This review gives an overview of the benefits of high-throughput screening approach from the discovery and engineering of biocatalysts to cell culture for optimizing their production in integrated processes and their extraction/purification.
NASA Technical Reports Server (NTRS)
Stearns, M.; Wilbers, L.
1982-01-01
Cost benefit studies were conducted on six advanced materials and processes technologies applicable to commercial engines planned for production in the 1985 to 1990 time frame. These technologies consisted of thermal barrier coatings for combustor and high pressure turbine airfoils, directionally solidified eutectic high pressure turbine blades, (both cast and fabricated), and mixers, tail cones, and piping made of titanium-aluminum alloys. A fabricated titanium fan blisk, an advanced turbine disk alloy with improved low cycle fatigue life, and a long-life high pressure turbine blade abrasive tip and ceramic shroud system were also analyzed. Technologies showing considerable promise as to benefits, low development costs, and high probability of success were thermal barrier coating, directionally solidified eutectic turbine blades, and abrasive-tip blades/ceramic-shroud turbine systems.
Proceedings of the 19th Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1994-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are: (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that include this document.
Engineering biological systems using automated biofoundries.
Chao, Ran; Mishra, Shekhar; Si, Tong; Zhao, Huimin
2017-07-01
Engineered biological systems such as genetic circuits and microbial cell factories have promised to solve many challenges in the modern society. However, the artisanal processes of research and development are slow, expensive, and inconsistent, representing a major obstacle in biotechnology and bioengineering. In recent years, biological foundries or biofoundries have been developed to automate design-build-test engineering cycles in an effort to accelerate these processes. This review summarizes the enabling technologies for such biofoundries as well as their early successes and remaining challenges. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Leake, Devin
2015-01-01
As scientists make strides toward the goal of developing a form of biological engineering that's as predictive and reliable as chemical engineering is for chemistry, one technology component has become absolutely critical: gene synthesis. Gene synthesis is the process of building stretches of deoxyribonucleic acid (DNA) to order--some stretches based on DNA that exists already in nature, some based on novel designs intended to accomplish new functions. This process is the foundation of synthetic biology, which is rapidly becoming the engineering counterpart to biology.
Challenges in industrial fermentation technology research.
Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana; Hernandez, Daniela Quintanilla; Hagemann, Timo; Heins, Anna-Lena; Larsson, Hilde; Mears, Lisa; Mauricio-Iglesias, Miguel; Krühne, Ulrich; Gernaey, Krist V
2014-06-01
Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robert L. Smith; Robert J. Bush; Daniel L. Schmoldt
1995-01-01
Bridge design engineers and local highway officials make bridge replacement decisions across the United States. The Analytical Hierarchy Process was used to characterize the bridge material selection decision of these individuals. State Department of Transportation engineers, private consulting engineers, and local highway officials were personally interviewed in...
ERIC Educational Resources Information Center
Mentzer, Nathan
2011-01-01
The objective of this research was to explore the relationship between information access and design solution quality of high school students presented with an engineering design problem. This objective is encompassed in the research question driving this inquiry: How does information access impact the design process? This question has emerged in…
1992-05-01
methodology, knowledge acquisition, 140 requirements definition, information systems, information engineering, 16. PRICE CODE systems engineering...and knowledge resources. Like manpower, materials, and machines, information and knowledge assets are recognized as vital resources that can be...evolve towards an information -integrated enterprise. These technologies are designed to leverage information and knowledge resources as the key
ERIC Educational Resources Information Center
Stricker, David R.
2010-01-01
This study was conducted to describe a teacher developed high school engineering course, to identify teaching strategies used in the process of delivering math and science literacy through this course, to identify challenges and constraints that occurred during its development and delivery, and to describe the strategies that were used to overcome…
Collaboration in Research and Engineering for Advanced Technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieling, P. Douglas
SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.
2010-05-15
flow and decision processes across the air and space domains. It thus comprises traditional wired and fiber-optic computer networks based on...dual flow path design allow high volumetric efficiency, and high cruise speed provides significantly increased survivability. Vertical takeoff...emerging “third-stream engine architectures” can enable for constant mass flow engines that can provide further reductions in fuel consumption. A wide
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
2006-06-01
Headquarters ( MABES TNI) for priority analysis. After that, MABES TNI submits the proposals to the DOD for procurement processes. (Republic of Indonesia... James E., Ernst and Young, “The New Industrial Engineering: Information Technology and Business Process Redesign.” In Business Process Reengineering...The Art of Balancing, Harvard Business Review, November-December 1993. Grover, Varun, Teng, James T.C., and Fiedler, Kirk D., “Technological and
Development of Mechanics in Support of Rocket Technology in Ukraine
NASA Astrophysics Data System (ADS)
Prisnyakov, Vladimir
2003-06-01
The paper analyzes the advances of mechanics made in Ukraine in resolving various problems of space and rocket technology such as dynamics and strength of rockets and rocket engines, rockets of different purpose, electric rocket engines, and nonstationary processes in various systems of rockets accompanied by phase transitions of working media. Achievements in research on the effect of vibrations and gravitational fields on the behavior of space-rocket systems are also addressed. Results obtained in investigating the reliability and structural strength durability conditions for nuclear installations, solid- and liquid-propellant engines, and heat pipes are presented
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.
2016-08-01
The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel assemblies. Based on analysis of modern engineering solutions on SNF regeneration, it has been concluded that new reprocessing technologies should meet the ecological safety requirements, provide a more extensive use of the resource base of nuclear engineering, allow the production of valuable and trace elements on an industrial scale, and decrease radioactive waste release.
NASA Astrophysics Data System (ADS)
Zhou, Ninger; Pereira, Nielsen L.; George, Tarun Thomas; Alperovich, Jeffrey; Booth, Joran; Chandrasegaran, Senthil; Tew, Jeffrey David; Kulkarni, Devadatta M.; Ramani, Karthik
2017-10-01
The societal demand for inspiring and engaging science, technology, engineering, and mathematics (STEM) students and preparing our workforce for the emerging creative economy has necessitated developing students' self-efficacy and understanding of engineering design processes from as early as elementary school levels. Hands-on engineering design activities have shown the potential to promote middle school students' self-efficacy and understanding of engineering design processes. However, traditional classrooms often lack hands-on engineering design experiences, leaving students unprepared to solve real-world design problems. In this study, we introduce the framework of a toy design workshop and investigate the influence of the workshop activities on students' understanding of and self-efficacy beliefs in engineering design. Using a mixed method approach, we conducted quantitative analyses to show changes in students' engineering design self-efficacy and qualitative analyses to identify students' understanding of the engineering design processes. Findings show that among the 24 participants, there is a significant increase in students' self-efficacy beliefs after attending the workshop. We also identified major themes such as design goals and prototyping in students' understanding of engineering design processes. This research provides insights into the key elements of middle school students' engineering design learning and the benefits of engaging middle school students in hands-on toy design workshops.
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
Biosensors for Sustainable Food Engineering: Challenges and Perspectives.
Neethirajan, Suresh; Ragavan, Vasanth; Weng, Xuan; Chand, Rohit
2018-03-12
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized.
77 FR 21087 - Renewal of Department of Defense Federal Advisory Committees
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
..., engineering, and manufacturing, and will ensure the identification of new technologies and new applications of... for Acquisition, Technology and Logistics, the Chairman of the Joint Chiefs of Staff, and as requested..., technology, manufacturing, acquisition process, and other matters of special interest to the DoD. Tasks...
COBRA System Engineering Processes to Achieve SLI Strategic Goals
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2003-01-01
The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.
Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.
Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo
2018-02-01
Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Barak, Moshe; Asad, Khaled
2012-01-01
Background: This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose: The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these…
Leaders in Future and Current Technology Teaming Up to Improve Ethanol
and NREL expertise to: Develop improvements in process throughput and water management for dry mill , Complete an overall process engineering model of the dry mill technology that identifies new ways to and operation of "dry mill" plants that currently produce ethanol from corn starch. Dry
CMMI(Registered) for Development, Version 1.3
2010-11-01
ISO /IEC 15288:2008 Systems and Software Engineering – System Life Cycle Processes [ ISO 2008b] ISO /IEC 27001 :2005 Information technology – Security...IEC 2005 International Organization for Standardization and International Electrotechnical Commission. ISO /IEC 27001 Information Technology...International Electrotechnical Commission ( ISO /IEC) body of standards. CMMs focus on improving processes in an organization. They contain the
CMMI(Registered) for Acquisition, Version 1.3. CMMI-ACQ, V1.3
2010-11-01
and Software Engineering – System Life Cycle Processes [ ISO 2008b] ISO /IEC 27001 :2005 Information technology – Security techniques – Information...International Organization for Standardization and International Electrotechnical Commission. ISO /IEC 27001 Information Technology – Security Techniques...International Organization for Standardization/International Electrotechnical Commission ( ISO /IEC) body of standards. CMMs focus on improving processes
Earth Science Mining Web Services
NASA Astrophysics Data System (ADS)
Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.
2008-12-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
Earth Science Mining Web Services
NASA Technical Reports Server (NTRS)
Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken
2008-01-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
Using New Technologies: A Technology Transfer Guidebook. Version 02.00. 08
1993-12-01
Barton (1990) and Pressman (1992), depend on the concept that improving your overall technology transfer process decreases the amount of time it takes to...Evolutionary Spiral Process Any enactment of the evolutionary spiral model (ESP) which is an adaptation of the basic spiral model pro- posed by Barry Boehm...Innovations in Organizations, 1989 CMU/SEI-89-TR-17, (also NTIS ADA211573). Pittsburgh, Pennsylvania: Software Engineering Institute. Boehm, Barry A
Launch Site Computer Simulation and its Application to Processes
NASA Technical Reports Server (NTRS)
Sham, Michael D.
1995-01-01
This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.
Ethics in published brain-computer interface research
NASA Astrophysics Data System (ADS)
Specker Sullivan, L.; Illes, J.
2018-02-01
Objective. Sophisticated signal processing has opened the doors to more research with human subjects than ever before. The increase in the use of human subjects in research comes with a need for increased human subjects protections. Approach. We quantified the presence or absence of ethics language in published reports of brain-computer interface (BCI) studies that involved human subjects and qualitatively characterized ethics statements. Main results. Reports of BCI studies with human subjects that are published in neural engineering and engineering journals are anchored in the rationale of technological improvement. Ethics language is markedly absent, omitted from 31% of studies published in neural engineering journals and 59% of studies in biomedical engineering journals. Significance. As the integration of technological tools with the capacities of the mind deepens, explicit attention to ethical issues will ensure that broad human benefit is embraced and not eclipsed by technological exclusiveness.
Usability engineering for augmented reality: employing user-based studies to inform design.
Gabbard, Joseph L; Swan, J Edward
2008-01-01
A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanner, F.J.; Moffatt, W.C.
1995-07-01
In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.
NASA's computer science research program
NASA Technical Reports Server (NTRS)
Larsen, R. L.
1983-01-01
Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.
Generic Health Management: A System Engineering Process Handbook Overview and Process
NASA Technical Reports Server (NTRS)
Wilson, Moses Lee; Spruill, Jim; Hong, Yin Paw
1995-01-01
Health Management, a System Engineering Process, is one of those processes-techniques-and-technologies used to define, design, analyze, build, verify, and operate a system from the viewpoint of preventing, or minimizing, the effects of failure or degradation. It supports all ground and flight elements during manufacturing, refurbishment, integration, and operation through combined use of hardware, software, and personnel. This document will integrate Health Management Processes (six phases) into five phases in such a manner that it is never a stand alone task/effort which separately defines independent work functions.
Agile hardware and software systems engineering for critical military space applications
NASA Astrophysics Data System (ADS)
Huang, Philip M.; Knuth, Andrew A.; Krueger, Robert O.; Garrison-Darrin, Margaret A.
2012-06-01
The Multi Mission Bus Demonstrator (MBD) is a successful demonstration of agile program management and system engineering in a high risk technology application where utilizing and implementing new, untraditional development strategies were necessary. MBD produced two fully functioning spacecraft for a military/DOD application in a record breaking time frame and at dramatically reduced costs. This paper discloses the adaptation and application of concepts developed in agile software engineering to hardware product and system development for critical military applications. This challenging spacecraft did not use existing key technology (heritage hardware) and created a large paradigm shift from traditional spacecraft development. The insertion of new technologies and methods in space hardware has long been a problem due to long build times, the desire to use heritage hardware, and lack of effective process. The role of momentum in the innovative process can be exploited to tackle ongoing technology disruptions and allowing risk interactions to be mitigated in a disciplined manner. Examples of how these concepts were used during the MBD program will be delineated. Maintaining project momentum was essential to assess the constant non recurring technological challenges which needed to be retired rapidly from the engineering risk liens. Development never slowed due to tactical assessment of the hardware with the adoption of the SCRUM technique. We adapted this concept as a representation of mitigation of technical risk while allowing for design freeze later in the program's development cycle. By using Agile Systems Engineering and Management techniques which enabled decisive action, the product development momentum effectively was used to produce two novel space vehicles in a fraction of time with dramatically reduced cost.
Delta Clipper vehicle design for supportability
NASA Astrophysics Data System (ADS)
Smiljanic, Ray R.; Klevatt, Paul L.; Steinmeyer, Donald A.
1993-02-01
The paper describes the Single Stage Rocket Technology (SSRT) Delta Clipper vehicle design. As a means of reducing vehicle processing and turnaround times, the SSRT Delta Clipper design, contrary to past practices, incorporates support ability engineering features into its initial set of design requirements. The engineering process used to 'design-in' supportability into the Delta Clipper vehicle is described in detail and is illustrated using diagrams.
Teixeira, Leonor; Ferreira, Carlos; Santos, Beatriz Sousa
2012-06-01
The use of sophisticated information and communication technologies (ICTs) in the health care domain is a way to improve the quality of services. However, there are also hazards associated with the introduction of ICTs in this domain and a great number of projects have failed due to the lack of systematic consideration of human and other non-technology issues throughout the design or implementation process, particularly in the requirements engineering process. This paper presents the methodological approach followed in the design process of a web-based information system (WbIS) for managing the clinical information in hemophilia care, which integrates the values and practices of user-centered design (UCD) activities into the principles of software engineering, particularly in the phase of requirements engineering (RE). This process followed a paradigm that combines a grounded theory for data collection with an evolutionary design based on constant development and refinement of the generic domain model using three well-known methodological approaches: (a) object-oriented system analysis; (b) task analysis; and, (c) prototyping, in a triangulation work. This approach seems to be a good solution for the requirements engineering process in this particular case of the health care domain, since the inherent weaknesses of individual methods are reduced, and emergent requirements are easier to elicit. Moreover, the requirements triangulation matrix gives the opportunity to look across the results of all used methods and decide what requirements are critical for the system success. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Using Six Sigma to Accelerate the Adoption of CMMI for Optimal Results
2004-10-01
Findings Path forward © 2004 by Carnegie Mellon University Version 1.0 page 5 Carnegie Mellon S oftware Engineer ing Inst itute Software & IT Best...Related Technology ( COBIT ) Secondary priority • architecture best practices and Design for Six Sigma Primary audiences • Software Engineering Process Groups...itute Context of Findings While our focus was on CMMI, ITIL, and COBIT , we gathered information on other technologies “in play.” • The list included
Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A
2012-01-01
The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.
Regenerative Engineering and Bionic Limbs.
James, Roshan; Laurencin, Cato T
2015-03-01
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades.
Regenerative Engineering and Bionic Limbs
James, Roshan; Laurencin, Cato T.
2015-01-01
Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next two decades. PMID:25983525
ERIC Educational Resources Information Center
Graham, Nicholas James; Brouillette, Liane
2016-01-01
The Next Generation Science Standards (NGSS) have brought a stronger emphasis on engineering into K-12 STEM (science, technology, engineering and mathematics) instruction. Introducing the design process used in engineering into science classrooms simulated a dialogue among some educators about adding the arts to the mix. This led to proposals for…
ERIC Educational Resources Information Center
Higa, Yoshikazu; Shimojima, Ken
2018-01-01
This report describes a workshop on the Dynamics of Machinery based on the fabrication of a gyro- bicycle in a summer school program for junior high school students. The workshop was conducted by engineering students who had completed "Creative Research", an engineering design course at the National Institute of Technology, Okinawa…
Modeling Primary Atomization Processes
1999-02-01
consumable , catalytic igniter has shown to provide reliable, reproducible ignition in hydrogen peroxide/polyethylene hybrid engines. Currently, a...verified in a hybrid rocket using hydrogen peroxide as oxidizer and polyethylene as fuel. The engine made use of a unique Consumable Catalytic Bed (CCB...interest to the liquid and hybrid rocket engine community. TECHNOLOGY TRANSFER Performer Customer Result Application 1 S. D. Heister Purdue University
A methodology for the comparative evaluation of alternative bioseparation technologies.
Tran, Richard; Zhou, Yuhong; Lacki, Karol M; Titchener-Hooker, Nigel J
2008-01-01
Advances in upstream technologies and growing commercial demand have led to cell culture processes of ever larger volumes and expressing at higher product titers. This has increased the burden on downstream processing. Concerns regarding the capacity limitations of packed-bed chromatography have led process engineers to begin investigating new bioseparation techniques that may be considered as "alternatives" to chromatography, and which could potentially offer higher processing capacities but at a lower cost. With the wide range of alternatives, which are currently available, each with their own strengths and inherent limitations, coupled with the time pressures associated with process development, the challenge for process engineers is to determine which technologies are most worth investigating. This article presents a methodology based on a multiattribute decision making (MADM) analysis approach, utilizing both quantitative and qualitative data, which can be used to determine the "industrial attractiveness" of bioseparation technologies, accounting for trade-offs between their strengths and weaknesses. By including packed-bed chromatography in the analysis as a reference point, it was possible to determine the alternatives, which show the most promise for use in large-scale manufacturing processes. The results of this analysis show that although the majority of alternative techniques offer certain advantages over conventional packed-bed chromatography, their attractiveness overall means that currently none of these technologies may be considered as viable alternatives to chromatography. The methodology introduced in this study may be used to gain significant quantitative insight as to the key areas in which improvements are required for each technique, and thus may be used as a tool to aid in further technological development.
German politics of genetic engineering and its deconstruction.
Gottweis, H
1995-05-01
Policy-making, as exemplified by biotechnology policy, can be understood as an attempt to manage a field of discursivity, to construct regularity in a dispersed multitude of combinable elements. Following this perspective of politics as a textual process, the paper interprets the politicization of genetic engineering in Germany as a defence of the political as a regime of heterogeneity, as a field of 'dissensus' rather than 'consensus', and a rejection of the idea that the framing of technological transformation is an autonomous process. From its beginning in the early 1970s, genetic engineering was symbolically entrenched as a key technology of the future, and as an integral element of the German politics of modernization. Attempts by new social movements and the Green Party to displace the egalitarian imaginary of democratic discourse into the politics of genetic engineering were construed by the political élites as an attack on the political order of post-World War II Germany. The 1990 Genetic Engineering Law attempted a closure of this controversy. But it is precisely the homogenizing idiom of this 'settlement' which continues to nourish the social movements and their radical challenge to the definitions and codings of the politics of genetic engineering.
Advanced engineering environment pilot project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty
2006-10-01
The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solutionmore » to deploy the AEE across the NWC.« less
Critical materials: a reason for sustainable education of industrial designers and engineers
NASA Astrophysics Data System (ADS)
Köhler, Andreas R.; Bakker, Conny; Peck, David
2013-08-01
Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.
CASIS Fact Sheet: Hardware and Facilities
NASA Technical Reports Server (NTRS)
Solomon, Michael R.; Romero, Vergel
2016-01-01
Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS
NASA Technology Transfer System
NASA Technical Reports Server (NTRS)
Tran, Peter B.; Okimura, Takeshi
2017-01-01
NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.
Salvemini, Anthony V; Piza, Eric L; Carter, Jeremy G; Grommon, Eric L; Merritt, Nancy
2015-06-01
Evaluations are routinely conducted by government agencies and research organizations to assess the effectiveness of technology in criminal justice. Interdisciplinary research methods are salient to this effort. Technology evaluations are faced with a number of challenges including (1) the need to facilitate effective communication between social science researchers, technology specialists, and practitioners, (2) the need to better understand procedural and contextual aspects of a given technology, and (3) the need to generate findings that can be readily used for decision making and policy recommendations. Process and outcome evaluations of technology can be enhanced by integrating concepts from human factors engineering and information processing. This systemic approach, which focuses on the interaction between humans, technology, and information, enables researchers to better assess how a given technology is used in practice. Examples are drawn from complex technologies currently deployed within the criminal justice system where traditional evaluations have primarily focused on outcome metrics. Although this evidence-based approach has significant value, it is vulnerable to fully account for human and structural complexities that compose technology operations. Guiding principles for technology evaluations are described for identifying and defining key study metrics, facilitating communication within an interdisciplinary research team, and for understanding the interaction between users, technology, and information. The approach posited here can also enable researchers to better assess factors that may facilitate or degrade the operational impact of the technology and answer fundamental questions concerning whether the technology works as intended, at what level, and cost. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Vdovin, R. A.; Smelov, V. G.
2017-02-01
This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.
ERIC Educational Resources Information Center
Weaver, Kim M.
2005-01-01
In this unit, elementary students design and build a lunar plant growth chamber using the Engineering Design Process. The purpose of the unit is to help students understand and apply the design process as it relates to plant growth on the moon. This guide includes six lessons, which meet a number of national standards and benchmarks in…
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup
2012-05-17
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.
The Application of Sheet Technology in Cartilage Tissue Engineering.
Ge, Yang; Gong, Yi Yi; Xu, Zhiwei; Lu, Yanan; Fu, Wei
2016-04-01
Cartilage tissue engineering started to act as a promising, even essential alternative method in the process of cartilage repair and regeneration, considering adult avascular structure has very limited self-renewal capacity of cartilage tissue in adults and a bottle-neck existed in conventional surgical treatment methods. Recent progressions in tissue engineering realized the development of more feasible strategies to treat cartilage disorders. Of these strategies, cell sheet technology has shown great clinical potentials in the regenerative areas such as cornea and esophagus and is increasingly considered as a potential way to reconstruct cartilage tissues for its non-use of scaffolds and no destruction of matrix secreted by cultured cells. Acellular matrix sheet technologies utilized in cartilage tissue engineering, with a sandwich model, can ingeniously overcome the drawbacks that occurred in a conventional acellular block, where cells are often blocked from migrating because of the non-nanoporous structure. Electrospun-based sheets with nanostructures that mimic the natural cartilage matrix offer a level of control as well as manipulation and make them appealing and widely used in cartilage tissue engineering. In this review, we focus on the utilization of these novel and promising sheet technologies to construct cartilage tissues with practical and beneficial functions.
New Technologies for Smart Grid Operation
NASA Astrophysics Data System (ADS)
Mak, Sioe T.
2015-02-01
This book is a handbook for advanced applications design and integration of new and future technologies into Smart Grids for researchers and engineers in academia and industry, looking to pull together disparate technologies and apply them for greater gains. The book covers Smart Grids as the midpoint in the generation, storage, transmission and distribution process through to database management, communication technologies, intelligent devices and synchronisation.
NASA Astrophysics Data System (ADS)
Borisovich Zelentsov, Leonid; Dmitrievna Mailyan, Liya; Sultanovich Shogenov, Murat
2017-10-01
The article deals with the problems of using the energy-efficient materials and engineering technologies during the construction of buildings and structures. As the analysis showed, one of the most important problems in this sphere is the infringement of production technologies working with energy-efficient materials. To improve the given situation, it is offered to set a technological normal at the design stage by means of working out the technological maps studying the set and the succession of operations in details, taking in mind the properties of energy-efficient materials. At Don State Technical University (DSTU) the intelligent systems of management are being developed providing organizational and technological and also informational integration of design and production stages by means of creating the single database of technological maps, volumes of work and resources.
The Impact Of Optical Storage Technology On Image Processing Systems
NASA Astrophysics Data System (ADS)
Garges, Daniel T.; Durbin, Gerald T.
1984-09-01
The recent announcement of commercially available high density optical storage devices will have a profound impact on the information processing industry. Just as the initial introduction of random access storage created entirely new processing strategies, optical technology will allow dramatic changes in the storage, retrieval, and dissemination of engineering drawings and other pictorial or text-based documents. Storage Technology Corporation has assumed a leading role in this arena with the introduction of the 7600 Optical Storage Subsystem, and the formation of StorageTek Integrated Systems, a subsidiary chartered to incorporate this new technology into deliverable total systems. This paper explores the impact of optical storage technology from the perspective of a leading-edge manufacturer and integrator.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of Vocational Education.
This guide is intended for use in teaching a course to broaden students' appreciation and understanding of constructed items and the construction process. The course focuses on the steps that are taken after the design and engineering phase has been completed. Laboratory assignments allow students to explore the technical processes involved in the…
An economical route to high quality lubricants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andre, J.P.; Hahn, S.K.; Kwon, S.H.
1996-12-01
The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils formore » testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.« less
The Ion Propulsion System on NASA's Space Technology 4/Champollion Comet Rendezvous Mission
NASA Technical Reports Server (NTRS)
Brophy, John R.; Garner, Charles E.; Weiss, Jeffery M.
1999-01-01
The ST4/Champollion mission is designed to rendezvous with and land on the comet Tempel 1 and return data from the first-ever sampling of a comet surface. Ion propulsion is an enabling technology for this mission. The ion propulsion system on ST4 consists of three ion engines each essentially identical to the single engine that flew on the DS1 spacecraft. The ST4 propulsion system will operate at a maximum input power of 7.5 kW (3.4 times greater than that demonstrated on DS1), will produce a maximum thrust of 276 mN, and will provide a total (Delta)V of 11.4 km/s. To accomplish this the propulsion system will carry 385 kg of xenon. All three engines will be operated simultaneously for the first 168 days of the mission. The nominal mission requires that each engine be capable of processing 118 kg. If one engine fails after 168 days, the remaining two engines can perform the mission, but must be capable of processing 160 kg of xenon, or twice the original thruster design requirement. Detailed analyses of the thruster wear-out failure modes coupled with experience from long-duration engine tests indicate that the thrusters have a high probability of meeting the 160-kg throughput requirement.
NASA Astrophysics Data System (ADS)
Sicardi-Segade, A.; Campos-Mejía, A.; Solano, C.
2016-09-01
Innovation through science and technology will be essential to solve important challenges humanity will have to face in the years to come, regarding clean energies, food quality, medicine, communications, etc. To deal with these important issues, it is necessary to promote STEM (Science, Technology, Engineering and Mathematics) education in children. In this work, we present the results of the strategies that we have implemented to increase the elementary and middle school students interest in science and technology by means of activities that allow them to use and develop their creativity, team work, critical thinking, and the use of the scientific method and the engineering design process.
NASA Technical Reports Server (NTRS)
Carrio, Miguel A., Jr.
1988-01-01
Rapidly emerging technology and methodologies have out-paced the systems development processes' ability to use them effectively, if at all. At the same time, the tools used to build systems are becoming obsolescent themselves as a consequence of the same technology lag that plagues systems development. The net result is that systems development activities have not been able to take advantage of available technology and have become equally dependent on aging and ineffective computer-aided engineering tools. New methods and tools approaches are essential if the demands of non-stop and Mission and Safety Critical (MASC) components are to be met.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics and Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
NASA Astrophysics Data System (ADS)
Boerret, Rainer; Burger, Jochen; Bich, Andreas; Gall, Christoph; Hellmuth, Thomas
2005-05-01
The Center of Optics Technology at the University of Applied Science, founded in 2003, is part of the School of Optics & Mechatronics. It completes the existing optical engineering department with a full optical fabrication and metrology chain and serves in parallel as a technology transfer center, to provide area industries with the most up-to-date technology in optical fabrication and engineering. Two examples of research work will be presented. The first example is the optimizing of the grinding process for high precision aspheres, the other is generating and polishing of a freeform optical element which is used as a phase plate.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.
Safer Soldering Guidelines and Instructional Resources
ERIC Educational Resources Information Center
Love, Tyler S.; Tomlinson, Joel
2018-01-01
Soldering is a useful and necessary process for many classroom, makerspace, Fab Lab, technology and engineering lab, and science lab activities. As described in this article, soldering can pose many safety risks without proper engineering controls, standard operating procedures, and direct instructor supervision. There are many safety hazards…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wantuck, P. J.; Hollen, R. M.
2002-01-01
This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less
Stereoscopic construction and practice of optoelectronic technology textbook
NASA Astrophysics Data System (ADS)
Zhou, Zigang; Zhang, Jinlong; Wang, Huili; Yang, Yongjia; Han, Yanling
2017-08-01
It is a professional degree course textbook for the Nation-class Specialty—Optoelectronic Information Science and Engineering, and it is also an engineering practice textbook for the cultivation of photoelectric excellent engineers. The book seeks to comprehensively introduce the theoretical and applied basis of optoelectronic technology, and it's closely linked to the current development of optoelectronic industry frontier and made up of following core contents, including the laser source, the light's transmission, modulation, detection, imaging and display. At the same time, it also embodies the features of the source of laser, the transmission of the waveguide, the electronic means and the optical processing methods.
3D printed porous ceramic scaffolds for bone tissue engineering: a review.
Wen, Yu; Xun, Sun; Haoye, Meng; Baichuan, Sun; Peng, Chen; Xuejian, Liu; Kaihong, Zhang; Xuan, Yang; Jiang, Peng; Shibi, Lu
2017-08-22
This study summarizes the recent research status and development of three-dimensional (3D)-printed porous ceramic scaffolds in bone tissue engineering. Recent literature on 3D-printed porous ceramic scaffolds was reviewed. Compared with traditional processing and manufacturing technologies, 3D-printed porous ceramic scaffolds have obvious advantages, such as enhancement of the controllability of the structure or improvement of the production efficiency. More sophisticated scaffolds were fabricated by 3D printing technology. 3D printed bioceramics have broad application prospects in bone tissue engineering. Through understanding the advantages and limitations of different 3D-printing approaches, new classes of bone graft substitutes can be developed.
Recent developments in photocatalytic water treatment technology: a review.
Chong, Meng Nan; Jin, Bo; Chow, Christopher W K; Saint, Chris
2010-05-01
In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field.
Structural Performance’s Optimally Analysing and Implementing Based on ANSYS Technology
NASA Astrophysics Data System (ADS)
Han, Na; Wang, Xuquan; Yue, Haifang; Sun, Jiandong; Wu, Yongchun
2017-06-01
Computer-aided Engineering (CAE) is a hotspot both in academic field and in modern engineering practice. Analysis System(ANSYS) simulation software for its excellent performance become outstanding one in CAE family, it is committed to the innovation of engineering simulation to help users to shorten the design process, improve product innovation and performance. Aimed to explore a structural performance’s optimally analyzing model for engineering enterprises, this paper introduced CAE and its development, analyzed the necessity for structural optimal analysis as well as the framework of structural optimal analysis on ANSYS Technology, used ANSYS to implement a reinforced concrete slab structural performance’s optimal analysis, which was display the chart of displacement vector and the chart of stress intensity. Finally, this paper compared ANSYS software simulation results with the measured results,expounded that ANSYS is indispensable engineering calculation tools.
Myths and realities: Defining re-engineering for a large organization
NASA Technical Reports Server (NTRS)
Yin, Sandra; Mccreary, Julia
1992-01-01
This paper describes the background and results of three studies concerning software reverse engineering, re-engineering, and reuse (R3) hosted by the Internal Revenue Service in 1991 and 1992. The situation at the Internal Revenue--aging, piecemeal computer systems and outdated technology maintained by a large staff--is familiar to many institutions, especially among management information systems. The IRS is distinctive for the sheer magnitude and diversity of its problems; the country's tax records are processed using assembly language and COBOL and spread across tape and network DBMS files. How do we proceed with replacing legacy systems? The three software re-engineering studies looked at methods, CASE tool support, and performed a prototype project using re-engineering methods and tools. During the course of these projects, we discovered critical issues broader than the mechanical definitions of methods and tool technology.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1979-01-01
The paper describes the computational techniques employed in determining the optimal propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. The computer programs used to perform calculations for all the factors that enter into the selection process of determining the optimum combinations of airplanes and engines are examined. Attention is given to the description of the computer codes including NNEP, WATE, LIFCYC, INSTAL, and POD DRG. A process is illustrated by which turbine engines can be evaluated as to fuel consumption, engine weight, cost and installation effects. Examples are shown as to the benefits of variable geometry and of the tradeoff between fuel burned and engine weights. Future plans for further improvements in the analytical modeling of engine systems are also described.
Concurrency in product realization
NASA Astrophysics Data System (ADS)
Kelly, Michael J.
1994-03-01
Technology per se does not provide a competitive advantage. Timely exploitation of technology is what gives the competitive edge, and this demands a major shift in the product development process and management of the industrial enterprise. `Teaming to win' is more than a management theme; it is the disciplined engineering practice that is essential to success in today's global marketplace. Teaming supports the concurrent engineering practices required to integrate the activities of people responsible for product realization through achievement of shorter development cycles, lower costs, and defect-free products.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Astrophysics Data System (ADS)
Weatherwax Scott, Caroline; Tsareff, Christopher R.
1990-06-01
One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.
Software life cycle methodologies and environments
NASA Technical Reports Server (NTRS)
Fridge, Ernest
1991-01-01
Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.
NASA Astrophysics Data System (ADS)
Anderson, Mark; Bruski, Richard; Groszkiewicz, Daniel; Wagstaff, Bob
A new Direct Chill (DC) casting process is introduced to semi-continuous casting where near net shaped ingots are solidified. This process is currently being used at Alcan Engineered Cast Products (ECP) facility in Jonquiere, Canada, sectioned, then forged at Alcoa Automotive, Kentucky Casting Center (KCC). Finished forgings are machined and assembled into the Ford D/EW98 platform as suspension components. A brief description of the process and the implications on the forging process are presented.
Technology development in support of the TWRS process flowsheet. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washenfelder, D.J.
1995-10-11
The Tank Waste Remediation System is to treat and dispose of Hanford`s Single-Shell and Double-Shell Tank Waste. The TWRS Process Flowsheet, (WHC-SD-WM-TI-613 Rev. 1) described a flowsheet based on a large number of assumptions and engineering judgements that require verification or further definition through process and technology development activities. This document takes off from the TWRS Process Flowsheet to identify and prioritize tasks that should be completed to strengthen the technical foundation for the flowsheet.
NASA Astrophysics Data System (ADS)
Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.
2017-09-01
Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.
Scientific and educational center "space systems and technology"
NASA Astrophysics Data System (ADS)
Kovalev, I. V.; Loginov, Y. Y.; Zelenkov, P. V.
2015-10-01
The issues of engineers training in the aerospace university on the base of Scientific and Educational Center "Space Systems and Technology" are discussed. In order to improve the quality of education in the Siberian State Aerospace University the research work of students, as well as the practice- oriented training of engineers are introduced in the educational process. It was made possible as a result of joint efforts of university with research institutes of the Russian Academy of Science and industrial enterprises. The university experience in this area promotes the development of a new methods and forms of educational activities, including the project-oriented learning technologies, identifying promising areas of specialization and training of highly skilled engineers for aerospace industry and other institutions. It also allows you to coordinate the work of departments and other units of the university to provide the educational process in workshops and departments of the industrial enterprises in accordance with the needs of the target training. Within the framework of scientific and education center the students perform researches, diploma works and master's theses; the postgraduates are trained in advanced scientific and technical areas of enterprise development.
Development of 3D in Vitro Technology for Medical Applications
Ou, Keng-Liang; Hosseinkhani, Hossein
2014-01-01
In the past few years, biomaterials technologies together with significant efforts on developing biology have revolutionized the process of engineered materials. Three dimensional (3D) in vitro technology aims to develop set of tools that are simple, inexpensive, portable and robust that could be commercialized and used in various fields of biomedical sciences such as drug discovery, diagnostic tools, and therapeutic approaches in regenerative medicine. The proliferation of cells in the 3D scaffold needs an oxygen and nutrition supply. 3D scaffold materials should provide such an environment for cells living in close proximity. 3D scaffolds that are able to regenerate or restore tissue and/or organs have begun to revolutionize medicine and biomedical science. Scaffolds have been used to support and promote the regeneration of tissues. Different processing techniques have been developed to design and fabricate three dimensional scaffolds for tissue engineering implants. Throughout the chapters we discuss in this review, we inform the reader about the potential applications of different 3D in vitro systems that can be applied for fabricating a wider range of novel biomaterials for use in tissue engineering. PMID:25299693
Architecture for Survivable System Processing (ASSP)
NASA Astrophysics Data System (ADS)
Wood, Richard J.
1991-11-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Ludikhuyze, L; Van Loey, A; Indrawati; Smout, C; Hendrickx, M
2003-01-01
Throughout the last decade, high pressure technology has been shown to offer great potential to the food processing and preservation industry in delivering safe and high quality products. Implementation of this new technology will be largely facilitated when a scientific basis to assess quantitatively the impact of high pressure processes on food safety and quality becomes available. Besides, quantitative data on the effects of pressure and temperature on safety and quality aspects of foods are indispensable for design and evaluation of optimal high pressure processes, i.e., processes resulting in maximal quality retention within the constraints of the required reduction of microbial load and enzyme activity. Indeed it has to be stressed that new technologies should deliver, apart from the promised quality improvement, an equivalent or preferably enhanced level of safety. The present paper will give an overview from a quantitative point of view of the combined effects of pressure and temperature on enzymes related to quality of fruits and vegetables. Complete kinetic characterization of the inactivation of the individual enzymes will be discussed, as well as the use of integrated kinetic information in process engineering.
Architecture for Survivable System Processing (ASSP)
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1991-01-01
The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.
Metabolic engineering is key to a sustainable chemical industry.
Murphy, Annabel C
2011-08-01
The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.
ERIC Educational Resources Information Center
Rich, Don
1983-01-01
Milwaukee Area Technical College has joined with business and industry to develop training programs for computer-based information processing, and engineering and manufacturing technologies. These partnerships are important as companies look for ways to improve productivity and quality, keep abreast of changing technology, and ensure economic…
78 FR 66949 - Homeland Security Science and Technology Advisory Committee (HSSTAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... Technology, such as new developments in systems engineering, cyber-security, knowledge management and how... Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Science and... also advises the Under Secretary on policies, management processes, and organizational constructs as...
NASA Astrophysics Data System (ADS)
Erickson, C. M.; Martinez, A.
1993-06-01
The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.
3D laser scanning in civil engineering - measurements of volume of earth masses
NASA Astrophysics Data System (ADS)
Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.
2018-03-01
Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.
Pasquali, Irene; Bettini, Ruggero; Giordano, Ferdinando
2006-03-01
The present commentary aims to review the modern and innovative strategies in particle engineering by the supercritical fluid technologies and it is principally concerned with the aspects of solid-state chemistry. Supercritical fluids based processes for particle production have been proved suitable for controlling solid-state, morphology and particle size of pharmaceuticals, in some cases on an industrial scale. Supercritical fluids should be considered in a prominent position in the development processes of drug products for the 21st century. In this respect, this innovative technology will help in meeting the more and more stringent requirements of regulatory authorities in terms of solid-state characterisation and purity, and environmental acceptability.
Engagement in Science and Engineering through Animal-Based Curricula
ERIC Educational Resources Information Center
Mueller, Megan Kiely; Byrnes, Elizabeth M.; Buczek, Danielle; Linder, Deborah E.; Freeman, Lisa M.; Webster, Cynthia R. L.
2018-01-01
One of the persistent challenges in science, technology, engineering, and math (STEM) education is increasing interest, learning, and retention, particularly with regard to girls and students in underserved areas. Educational curricula that promote process and content knowledge development as well as interest and engagement in STEM are critical in…
The ENSR Biovault Treatment Process is an ex-situ bioremediation technology for the treatment of organic contaminated soils. Contaminated soils placed in specially designed soil piles, referred to as biovaults, are remediated by stimulating the indigenous soil microbes to prolife...
Biodiesel Performance, Costs, and Use
2004-01-01
Biodiesel fuel for diesel engines is produced from vegetable oil or animal fat by the chemical process of esterification. This paper presents a brief history of diesel engine technology and an overview of biodiesel, including performance characteristics, economics, and potential demand. The performance and economics of biodiesel are compared with those of petroleum diesel.
Deconstruction Geography: A STEM Approach
ERIC Educational Resources Information Center
Gehlhar, Adam M.; Duffield, Stacy K.
2015-01-01
This article will define the engineering design process used to create an integrated curriculum at STEM Center Middle School, and it features the planning, implementation, and revision of the Deconstruction Geography unit. The Science Technology Engineering and Math (STEM) Center opened in the fall of 2009 as a way to relieve overcrowding at the…
The Need for Plastics Education.
ERIC Educational Resources Information Center
Society of Plastics Engineers, Inc., Stamford, CT.
In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…
The Engineering Design Process as a Model for STEM Curriculum Design
ERIC Educational Resources Information Center
Corbett, Krystal Sno
2012-01-01
Engaging pedagogics have been proven to be effective in the promotion of deep learning for science, technology, engineering, and mathematics (STEM) students. In many cases, academic institutions have shown a desire to improve education by implementing more engaging techniques in the classroom. The research framework established in this…
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Production and use of metals and oxygen for lunar propulsion
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.
1991-01-01
Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.
Biosensors for Sustainable Food Engineering: Challenges and Perspectives
Ragavan, Vasanth; Weng, Xuan; Chand, Rohit
2018-01-01
Current food production faces tremendous challenges from growing human population, maintaining clean resources and food qualities, and protecting climate and environment. Food sustainability is mostly a cooperative effort resulting in technology development supported by both governments and enterprises. Multiple attempts have been promoted in tackling challenges and enhancing drivers in food production. Biosensors and biosensing technologies with their applications, are being widely applied to tackling top challenges in food production and its sustainability. Consequently, a growing demand in biosensing technologies exists in food sustainability. Microfluidics represents a technological system integrating multiple technologies. Nanomaterials, with its technology in biosensing, is thought to be the most promising tool in dealing with health, energy, and environmental issues closely related to world populations. The demand of point of care (POC) technologies in this area focus on rapid, simple, accurate, portable, and low-cost analytical instruments. This review provides current viewpoints from the literature on biosensing in food production, food processing, safety and security, food packaging and supply chain, food waste processing, food quality assurance, and food engineering. The current understanding of progress, solution, and future challenges, as well as the commercialization of biosensors are summarized. PMID:29534552
AAC technology transfer: an AAC-RERC report.
Higginbotham, D Jeffery; Beukelman, David; Blackstone, Sarah; Bryen, Diane; Caves, Kevin; Deruyter, Frank; Jakobs, Thomas; Light, Janice; McNaughton, David; Moulton, Bryan; Shane, Howard; Williams, Michael B
2009-03-01
Transferring innovative technologies from the university to the manufacturing sector can often be an elusive and problematic process. The Rehabilitation and Engineering Research Center on Communication Enhancement (AAC-RERC) has worked with the manufacturing community for the last 10 years. The purpose of this article is to discuss barriers to technology transfer, to outline some technology transfer strategies, and to illustrate these strategies with AAC-RERC related activities.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
Exo-Skeletal Engine: Novel Engine Concept
NASA Technical Reports Server (NTRS)
Chamis, Cristos C.; Blankson, Isaiah M.
2004-01-01
The exo-skeletal engine concept represents a new radical engine technology with the potential to substantially revolutionize engine design. It is an all-composite drum-rotor engine in which conventionally heavy shafts and discs are eliminated and are replaced by rotating casings that support the blades in spanwise compression. Thus the rotating blades are in compression rather than tension. The resulting open channel at the engine centerline has immense potential for jet noise reduction and can also accommodate an inner combined-cycle thruster such as a ramjet. The exo-skeletal engine is described in some detail with respect to geometry, components, and potential benefits. Initial evaluations and results for drum rotors, bearings, and weights are summarized. Component configuration, assembly plan, and potential fabrication processes are also identified. A finite element model of the assembled engine and its major components is described. Preliminary results obtained thus far show at least a 30-percent reduction of engine weight and about a 10-dB noise reduction, compared with a baseline conventional high-bypass-ratio engine. Potential benefits in all aspects of this engine technology are identified and tabulated. Quantitative assessments of potential benefits are in progress.
NASA Astrophysics Data System (ADS)
Miller, S. C.
1989-09-01
With relation to advanced technology for gas turbines, the overall process of product definition and development, concentrating particularly on the integration of activities between engineering design and manufacturing, is surveyed. The development of new philosophies in each of these spheres of activity is concluded to be cost effective technology and to make a highly significant contribution to the competitiveness and profitability of the industry.
NASA Astrophysics Data System (ADS)
Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman
2016-06-01
For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.
Technology for the product and process data base
NASA Technical Reports Server (NTRS)
Barnes, R. D.
1984-01-01
The computerized product and process data base is increasingly recognized to be the cornerstone component of an overall system aimed at the integrated automation of the industrial processes of a given company or enterprise. The technology needed to support these more effective computer integrated design and manufacturing methods, especially the concept of 3-D computer-sensible product definitions rather than engineering drawings, is not fully available and rationalized. Progress is being made, however, in bridging this technology gap with concentration on the modeling of sophisticated information and data structures, high-performance interactive user interfaces and comprehensive tools for managing the resulting computerized product definition and process data base.
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
Advancements Toward Oil-Free Rotorcraft Propulsion
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.
2010-01-01
NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.
Repository-Based Software Engineering Program: Working Program Management Plan
NASA Technical Reports Server (NTRS)
1993-01-01
Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
The present and future role of microfluidics in biomedical research.
Sackmann, Eric K; Fulton, Anna L; Beebe, David J
2014-03-13
Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.
1995-01-01
disputes increased by the fact that the industrial restructuring process coincided with the return of a great number of Spanish workers who were emigrants in...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM January, 1995 NSRP 0439...1995 Ship Production Symposium Paper No . 14: Spanish Shipbuilding: Restructuring Process & Technologi- cal Updating From 1984-1994 U.S. DEPARTMENT OF
Making Technology Ready: Integrated Systems Health Management
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Oliver, Patrick J.
2007-01-01
This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.
Modular extracellular sensor architecture for engineering mammalian cell-based devices.
Daringer, Nichole M; Dudek, Rachel M; Schwarz, Kelly A; Leonard, Joshua N
2014-12-19
Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.
Space sensors for global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canavan, G.H.
1994-02-15
Satellite measurements should contribute to a fuller understanding of the physical processes behind the radiation budget, exchange processes, and global change. Climate engineering requires global observation for early indications of predicted effects, which puts a premium on affordable, distributed constellations of satellites with effective, affordable sensors. Defense has a requirement for continuous global surveillance for warning of aggression, which could evolve from advanced sensors and satellites in development. Many climate engineering needs match those of defense technologies.
Hydrocarbon Rocket Technology Impact Forecasting
NASA Technical Reports Server (NTRS)
Stuber, Eric; Prasadh, Nishant; Edwards, Stephen; Mavris, Dimitri N.
2012-01-01
Ever since the Apollo program ended, the development of launch propulsion systems in the US has fallen drastically, with only two new booster engine developments, the SSME and the RS-68, occurring in the past few decades.1 In recent years, however, there has been an increased interest in pursuing more effective launch propulsion technologies in the U.S., exemplified by the NASA Office of the Chief Technologist s inclusion of Launch Propulsion Systems as the first technological area in the Space Technology Roadmaps2. One area of particular interest to both government agencies and commercial entities has been the development of hydrocarbon engines; NASA and the Air Force Research Lab3 have expressed interest in the use of hydrocarbon fuels for their respective SLS Booster and Reusable Booster System concepts, and two major commercially-developed launch vehicles SpaceX s Falcon 9 and Orbital Sciences Antares feature engines that use RP-1 kerosene fuel. Compared to engines powered by liquid hydrogen, hydrocarbon-fueled engines have a greater propellant density (usually resulting in a lighter overall engine), produce greater propulsive force, possess easier fuel handling and loading, and for reusable vehicle concepts can provide a shorter turnaround time between launches. These benefits suggest that a hydrocarbon-fueled launch vehicle would allow for a cheap and frequent means of access to space.1 However, the time and money required for the development of a new engine still presents a major challenge. Long and costly design, development, testing and evaluation (DDT&E) programs underscore the importance of identifying critical technologies and prioritizing investment efforts. Trade studies must be performed on engine concepts examining the affordability, operability, and reliability of each concept, and quantifying the impacts of proposed technologies. These studies can be performed through use of the Technology Impact Forecasting (TIF) method. The Technology Impact Forecasting method is a normative forecasting technique that allows the designer to quantify the effects of adding new technologies on a given design. This method can be used to assess and identify the necessary technological improvements needed to close the gap that exists between the current design and one that satisfies all constraints imposed on the design. The TIF methodology allows for more design knowledge to be brought to the earlier phases of the design process, making use of tools such as Quality Function Deployments, Morphological Matrices, Response Surface Methodology, and Monte Carlo Simulations.2 This increased knowledge allows for more informed decisions to be made earlier in the design process, resulting in shortened design cycle time. This paper will investigate applying the TIF method, which has been widely used in aircraft applications, to the conceptual design of a hydrocarbon rocket engine. In order to reinstate a manned presence in space, the U.S. must develop an affordable and sustainable launch capability. Hydrocarbon-fueled rockets have drawn interest from numerous major government and commercial entities because they offer a low-cost heavy-lift option that would allow for frequent launches1. However, the development of effective new hydrocarbon rockets would likely require new technologies in order to overcome certain design constraints. The use of advanced design methods, such as the TIF method, enables the designer to identify key areas in need of improvement, allowing one to dial in a proposed technology and assess its impact on the system. Through analyses such as this one, a conceptual design for a hydrocarbon-fueled vehicle that meets all imposed requirements can be achieved.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
This report is the fourth in a series of Annual Technical Summary Reports for the Advanced Turbine Technology Applications Project (ATTAP). This report covers plans and progress on ceramics development for commercial automotive applications over the period 1 Jan. - 31 Dec. 1991. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System program. This program is directed to provide the U.S. automotive industry the high-risk, long-range technology necessary to produce gas turbine engines for automobiles with reduced fuel consumption, reduced environmental impact, and a decreased reliance on scarce materials and resources. The program is oriented toward developing the high-risk technology of ceramic structural component design and fabrication, such that industry can carry this technology forward to production in the 1990s. The ATTAP test bed engine, carried over from the previous AGT101 project, is being used for verification testing of the durability of next-generation ceramic components, and their suitability for service at Reference Powertrain Design conditions. This document reports the technical effort conducted by GAPD and the ATTAP subcontractors during the fourth year of the project. Topics covered include ceramic processing definition and refinement, design improvements to the ATTAP test bed engine and test rigs and the methodology development of ceramic impact and fracture mechanisms. Appendices include reports by ATTAP subcontractors in the development of silicon nitride and silicon carbide families of materials and processes.
Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1
NASA Technical Reports Server (NTRS)
Krishen, Kumar (Compiler)
1994-01-01
This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.
Communications and Intelligent Systems Division Overview
NASA Technical Reports Server (NTRS)
Emerson, Dawn
2017-01-01
Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.
NASA Astrophysics Data System (ADS)
Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar
2017-08-01
This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
JPL Counterfeit Parts Avoidance
NASA Technical Reports Server (NTRS)
Risse, Lori
2012-01-01
SPACE ARCHITECTURE / ENGINEERING: It brings an extreme test bed for both technologies/concepts as well as procedures/processes. Design and construction (engineering) always go together, especially with complex systems. Requirements (objectives) are crucial. More important than the answers are the questions/Requirements/Tools-Techniques/Processes. Different environments force architects and engineering to think out of the box. For instance there might not be gravity forces. Architectural complex problems have common roots: in Space and on Earth. Let us bring Space down on Earth so we can keep sending Mankind to the stars from a better world. Have fun being architects and engineers...!!! This time is amazing and historical. We are changing the way we inhabit the solar systems!
Re-Engineering Complex Legacy Systems at NASA
NASA Technical Reports Server (NTRS)
Ruszkowski, James; Meshkat, Leila
2010-01-01
The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.
Characterization and Evaluation of Lunar Regolith and Simulants
NASA Technical Reports Server (NTRS)
Cross, William M.; Murphy, Gloria A.
2010-01-01
A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.
An overview of thermionic power conversion technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Morgan C.
1996-12-01
Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less
Space Station Freedom as an engineering experiment station: An overview
NASA Technical Reports Server (NTRS)
Rose, M. Frank
1992-01-01
In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.
A High Performance SOAP Engine for Grid Computing
NASA Astrophysics Data System (ADS)
Wang, Ning; Welzl, Michael; Zhang, Liang
Web Service technology still has many defects that make its usage for Grid computing problematic, most notably the low performance of the SOAP engine. In this paper, we develop a novel SOAP engine called SOAPExpress, which adopts two key techniques for improving processing performance: SCTP data transport and dynamic early binding based data mapping. Experimental results show a significant and consistent performance improvement of SOAPExpress over Apache Axis.
Warfighting Concepts to Future Weapon System Designs (WARCON)
2003-09-12
34* Software design documents rise to litigation. "* A Material List "Cost information that may support, or may * Final Engineering Process Maps be...document may include design the system as derived from the engineering design, software development, SRD. MTS Technologies, Inc. 26 FOR OFFICIAL USE...document, early in the development phase. It is software engineers produce the vision of important to establish a standard, formal the design effort. As
Innovative Airbreathing Propulsion Concepts for Access to Space
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow; Blech, Richard A.; Blankson, Isaiah M.
2001-01-01
This paper will present technologies and concepts for novel aeropropulsion systems. These technologies will enhance the safety of operations, reduce life cycle costs, and contribute to reduced costs of air travel and access to space. One of the goals of the NASA program is to reduce the carbon-dioxide emissions of aircraft engines. Engine concepts that use highly efficient fuel cell/electric drive technologies in hydrogen-fueled engines will be presented in the proposed paper. Carbon-dioxide emissions will be eliminated by replacing hydrocarbon fuel with hydrogen, and reduce NOx emissions through better combustion process control. A revolutionary exoskeletal engine concept, in which the engine drum is rotated, will be shown. This concept has the potential to allow a propulsion system that can be used for subsonic through hypersonic flight. Dual fan concepts that have ultra-high bypass ratios, low noise, and low drag will be presented. Flow-controlled turbofans and control-configured turbofans also will be discussed. To increase efficiency, a system of microengines distributed along lifting surfaces and on the fuselage is being investigated. This concept will be presented in the paper. Small propulsion systems for affordable, safe personal transportation vehicles will be discussed. These low-oil/oilless systems use technologies that enable significant cost and weight reductions. Pulse detonation engine-based hybrid-cycle and combined-cycle propulsion systems for aviation and space access will be presented.
Winters, J M
1995-01-01
A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Environment-friendly drilling operation technology
NASA Astrophysics Data System (ADS)
Luo, Huaidong; Jing, Ning; Zhang, Yanna; Huang, Hongjun; Wei, Jun
2017-01-01
Under the circumstance that international safety and environmental standards being more and more stringent, drilling engineering is facing unprecedented challenges, the extensive traditional process flow is no longer accepted, the new safe and environment-friendly process is more suitable to the healthy development of the industry. In 2015, CNPCIC adopted environment-friendly drilling technology for the first time in the Chad region, ensured the safety of well control, at the same time increased the environmental protection measure, reduced the risk of environmental pollution what obtain the ratification from local government. This technology carries out recovery and disposal of crude oil, cuttings and mud without falling on the ground. The final products are used in road and well site construction, which realizes the reutilization of drilling waste, reduces the operating cost, and provides a strong technical support for cost-cutting and performance-increase of drilling engineering under low oil price.
Manufacturing process applications team (MATeam)
NASA Technical Reports Server (NTRS)
Bangs, E. R.; Meyer, J. D.
1978-01-01
Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.
Unit Operations in Microgravity.
ERIC Educational Resources Information Center
Allen, David T.; Pettit, Donald R.
1987-01-01
Presents some of the work currently under way in the development of microgravity chemical processes. Highlights some of the opportunities for materials processing in outer space. Emphasizes some of the contributions that chemical engineers can make in this emerging set of technologies. (TW)
SCIENCE AND TECHNOLOGY OF CLEAN PROCESSING [EDITORIAL
Cleaner production methods, pollution prevention, and industrial ecology are the focuses of several journals in circulation. Aspects of cleaner products and processes are also implicitly covered in many established scientific and engineering journals. This journal has two main o...
Technology in Preparing Teachers for an Information Age.
ERIC Educational Resources Information Center
Bright, Larry K.; And Others
Teacher education can be effectively transformed to prepare educators for the information age. The characteristics of the information age require the application of organization development processes and interactive learning technologies which bring the best results of behavioral and engineering sciences to refocus teacher education structures and…
Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine
NASA Astrophysics Data System (ADS)
Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.
2017-12-01
Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.
Technology Prospecting on Enzymes: Application, Marketing and Engineering
Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning
2012-01-01
Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658
Comparing Traditional versus Alternative Sequencing of Instruction When Using Simulation Modeling
ERIC Educational Resources Information Center
Bowen, Bradley; DeLuca, William
2015-01-01
Many engineering and technology education classrooms incorporate simulation modeling as part of curricula to teach engineering and STEM-based concepts. The traditional method of the learning process has students first learn the content from the classroom teacher and then may have the opportunity to apply the learned content through simulation…
Data management for Computer-Aided Engineering (CAE)
NASA Technical Reports Server (NTRS)
Bryant, W. A.; Smith, M. R.
1984-01-01
Analysis of data flow through the design and manufacturing processes has established specific information management requirements and identified unique problems. The application of data management technology to the engineering/manufacturing environment addresses these problems. An overview of the IPAD prototype data base management system, representing a partial solution to these problems, is presented here.
Making Sense of Curriculum--The Transition into Science and Engineering University Programmes
ERIC Educational Resources Information Center
Ulriksen, Lars; Holmegaard, Henriette T.; Madsen, Lene Møller
2017-01-01
Research on students' transition, retention and experiences in science, technology, engineering and mathematics (STEM) has increasingly focused on identity formation and on students' integration in the study programmes. However, studies focusing on the role of the curriculum in this process at the level of higher education are scarce. The present…
New frontiers in design synthesis
NASA Technical Reports Server (NTRS)
Goldin, D. S.; Venneri, S. L.; Noor, A. K.
1999-01-01
The Intelligent Synthesis Environment (ISE), which is one of the major strategic technologies under development at NASA centers and the University of Virginia, is described. One of the major objectives of ISE is to significantly enhance the rapid creation of innovative affordable products and missions. ISE uses a synergistic combination of leading-edge technologies, including high performance computing, high capacity communications and networking, human-centered computing, knowledge-based engineering, computational intelligence, virtual product development, and product information management. The environment will link scientists, design teams, manufacturers, suppliers, and consultants who participate in the mission synthesis as well as in the creation and operation of the aerospace system. It will radically advance the process by which complex science missions are synthesized, and high-tech engineering Systems are designed, manufactured and operated. The five major components critical to ISE are human-centered computing, infrastructure for distributed collaboration, rapid synthesis and simulation tools, life cycle integration and validation, and cultural change in both the engineering and science creative process. The five components and their subelements are described. Related U.S. government programs are outlined and the future impact of ISE on engineering research and education is discussed.
A unified architecture for biomedical search engines based on semantic web technologies.
Jalali, Vahid; Matash Borujerdi, Mohammad Reza
2011-04-01
There is a huge growth in the volume of published biomedical research in recent years. Many medical search engines are designed and developed to address the over growing information needs of biomedical experts and curators. Significant progress has been made in utilizing the knowledge embedded in medical ontologies and controlled vocabularies to assist these engines. However, the lack of common architecture for utilized ontologies and overall retrieval process, hampers evaluating different search engines and interoperability between them under unified conditions. In this paper, a unified architecture for medical search engines is introduced. Proposed model contains standard schemas declared in semantic web languages for ontologies and documents used by search engines. Unified models for annotation and retrieval processes are other parts of introduced architecture. A sample search engine is also designed and implemented based on the proposed architecture in this paper. The search engine is evaluated using two test collections and results are reported in terms of precision vs. recall and mean average precision for different approaches used by this search engine.
Efficient utilization of graphics technology for space animation
NASA Technical Reports Server (NTRS)
Panos, Gregory Peter
1989-01-01
Efficient utilization of computer graphics technology has become a major investment in the work of aerospace engineers and mission designers. These new tools are having a significant impact in the development and analysis of complex tasks and procedures which must be prepared prior to actual space flight. Design and implementation of useful methods in applying these tools has evolved into a complex interaction of hardware, software, network, video and various user interfaces. Because few people can understand every aspect of this broad mix of technology, many specialists are required to build, train, maintain and adapt these tools to changing user needs. Researchers have set out to create systems where an engineering designer can easily work to achieve goals with a minimum of technological distraction. This was accomplished with high-performance flight simulation visual systems and supercomputer computational horsepower. Control throughout the creative process is judiciously applied while maintaining generality and ease of use to accommodate a wide variety of engineering needs.
ERIC Educational Resources Information Center
Hajjar, David P.; Moran, George W.; Siddiqi, Afreen; Richardson, Joshua E.; Anadon, Laura D.; Narayanamurti, Venkatesh
2014-01-01
Science, technology, engineering and mathematics (STEM) policies in the Gulf Arab States are as diverse as the individual economies and political processes that characterize its member states. During the past decade, a number of expert review groups have argued that science and technology policy needs to be reformed and revitalized in the Gulf…
ERIC Educational Resources Information Center
Lemaire, Gail Schoen; Mallik, Kalisankar; Stoll, Bryan G.
2002-01-01
A model program to promote science, engineering, and technology careers and address academic and vocational needs of low-income youth with learning disabilities includes referral and intake processes and academic and career training and services. Of the 21 first-year participants, 13 were employed (7 in technology-related positions) or enrolled in…
Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2013-09-09
Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.
JOWOG 22/2 - Actinide Chemical Technology (July 9-13, 2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Jay M.; Lopez, Jacquelyn C.; Wayne, David M.
2012-07-05
The Plutonium Science and Manufacturing Directorate provides world-class, safe, secure, and reliable special nuclear material research, process development, technology demonstration, and manufacturing capabilities that support the nation's defense, energy, and environmental needs. We safely and efficiently process plutonium, uranium, and other actinide materials to meet national program requirements, while expanding the scientific and engineering basis of nuclear weapons-based manufacturing, and while producing the next generation of nuclear engineers and scientists. Actinide Process Chemistry (NCO-2) safely and efficiently processes plutonium and other actinide compounds to meet the nation's nuclear defense program needs. All of our processing activities are done in amore » world class and highly regulated nuclear facility. NCO-2's plutonium processing activities consist of direct oxide reduction, metal chlorination, americium extraction, and electrorefining. In addition, NCO-2 uses hydrochloric and nitric acid dissolutions for both plutonium processing and reduction of hazardous components in the waste streams. Finally, NCO-2 is a key team member in the processing of plutonium oxide from disassembled pits and the subsequent stabilization of plutonium oxide for safe and stable long-term storage.« less
NASA Astrophysics Data System (ADS)
Goloshumova, V. N.; Kortenko, V. V.; Pokhoriler, V. L.; Kultyshev, A. Yu.; Ivanovskii, A. A.
2008-08-01
We describe the experience ZAO Ural Turbine Works specialists gained from mastering the series of CAD/CAE/CAM/PDM technologies, which are modern software tools of computer-aided engineering. We also present the results obtained from mathematical simulation of the process through which high-and intermediate-pressure rotors are heated for revealing the most thermally stressed zones, as well as the results from mathematical simulation of a new design of turbine cylinder shells for improving the maneuverability of these turbines.
Personal health technologies, micropolitics and resistance: A new materialist analysis.
Fox, Nick J
2017-03-01
Personal health technologies are near-body devices or applications designed for use by a single individual, principally outside healthcare facilities. They enable users to monitor physiological processes or body activity, are frequently communication-enabled and sometimes also intervene therapeutically. This article explores a range of personal health technologies, from blood pressure or blood glucose monitors purchased in pharmacies and fitness monitors such as Fitbit and Nike+ Fuelband to drug pumps and implantable medical devices. It applies a new materialist analysis, first reverse engineering a range of personal health technologies to explore their micropolitics and then forward engineering personal health technologies to meet, variously, public health, corporate, patient and resisting-citizen agendas. This article concludes with a critical discussion of personal health technologies and the possibilities of designing devices and apps that might foster subversive micropolitics and encourage collective and resisting 'citizen health'.
Tool path strategy and cutting process monitoring in intelligent machining
NASA Astrophysics Data System (ADS)
Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei
2018-06-01
Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.
Engineering the Future: Cell 6
NASA Technical Reports Server (NTRS)
Stahl, P. H.
2010-01-01
This slide presentation reviews the development of the James Webb Space Telescope (JWST), explaining the development using a systems engineering methodology. Included are slides showing the organizational chart, the JWST Science Goals, the size of the primary mirror, and full scale mockups of the JSWT. Also included is a review of the JWST Optical Telescope Requirements, a review of the preliminary design and analysis, the technology development required to create the JWST, with particular interest in the specific mirror technology that was required, and views of the mirror manufacturing process. Several slides review the process of verification and validation by testing and analysis, including a diagram of the Cryogenic Test Facility at Marshall, and views of the primary mirror while being tested in the cryogenic facility.
Optimizing spacecraft design - optimization engine development : progress and plans
NASA Technical Reports Server (NTRS)
Cornford, Steven L.; Feather, Martin S.; Dunphy, Julia R; Salcedo, Jose; Menzies, Tim
2003-01-01
At JPL and NASA, a process has been developed to perform life cycle risk management. This process requires users to identify: goals and objectives to be achieved (and their relative priorities), the various risks to achieving those goals and objectives, and options for risk mitigation (prevention, detection ahead of time, and alleviation). Risks are broadly defined to include the risk of failing to design a system with adequate performance, compatibility and robustness in addition to more traditional implementation and operational risks. The options for mitigating these different kinds of risks can include architectural and design choices, technology plans and technology back-up options, test-bed and simulation options, engineering models and hardware/software development techniques and other more traditional risk reduction techniques.
NASA Astrophysics Data System (ADS)
Sato, Takashi; Honma, Michio; Itoh, Hiroyuki; Iriki, Nobuyuki; Kobayashi, Sachiko; Miyazaki, Norihiko; Onodera, Toshio; Suzuki, Hiroyuki; Yoshioka, Nobuyuki; Arima, Sumika; Kadota, Kazuya
2009-04-01
The category and objective of DFM production management are shown. DFM is not limited to an activity within a particular unit process in design and process. A new framework for DFM is required. DFM should be a total solution for the common problems of all processes. Each of them must be linked to one another organically. After passing through the whole of each process on the manufacturing platform, quality of final products is guaranteed and products are shipped to the market. The information platform is layered with DFM, APC, and AEC. Advanced DFM is not DFM for partial optimization of the lithography process and the design, etc. and it should be Organized DFM. They are managed with high-level organizational IQ. The interim quality between each step of the flow should be visualized. DFM will be quality engineering if it is Organized DFM and common metrics of the quality are provided. DFM becomes quality engineering through effective implementation of common industrial metrics and standardized technology. DFM is differential technology, but can leverage standards for efficient development.
Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.
Khoo, Michael C K
2012-07-01
Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.
NASA Technical Reports Server (NTRS)
Tavana, Madjid
1995-01-01
The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.
Innovations and Challenges in Project-Based STEM Education: Lessons from ITEST
ERIC Educational Resources Information Center
Connors-Kellgren, Alice; Parker, Caroline E.; Blustein, David L.; Barnett, Mike
2016-01-01
For over a decade, the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program has funded researchers and educators to build an understanding of best practices, contexts, and processes contributing to K-12 students' motivation and participation in Science, Technology, Engineering, and Mathematics…
NASA Technical Reports Server (NTRS)
Aguilera, Frank J.
2015-01-01
A guiding principle for conducting research in technology, science, and engineering, leading to innovation is based on our use of research methodology (both qualitative and qualitative). A brief review of research methodology will be presented with an overview of NASA process in developing aeronautics technologies and other things to consider in research including what is innovation.
Egyptology in the Service of Learning Chemistry in Industrial Engineering
ERIC Educational Resources Information Center
Giménez, Javier
2014-01-01
Ancient cultures or civilizations carried out different technological improvements without the knowledge of the scientific processes involved. At the Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB), some courses deal with the technological achievements in the antiquity and, in particular, one course deals with the…
NASA Technical Reports Server (NTRS)
Aguilera, Frank J.
2015-01-01
A guiding principle for conducting research in technology, science, and engineering, leading to innovation is based on our use of research methodology (both qualitative and quantitative). A brief review of research methodology will be presented with an overview of NASA process in developing aeronautics technologies and other things to consider in research including what is innovation.
METAL ATTENUATION PROCESSES AT MINING SITES
The purpose of this Issue Paper is to provide scientists and engineers responsible for assessing remediation technologies with background information on MNA processes at mining-impacted sites. The global magnitude of the acid drainage problem is clear evidence that in most cases...
NASA Astrophysics Data System (ADS)
Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.
1995-10-01
The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.
A Course on Plasma Processing in Integrated Circuit Fabrication.
ERIC Educational Resources Information Center
Sawin, Herbert H.; Reif, Rafael
1983-01-01
Describes a course, taught jointly by electrical/chemical engineering departments at the Massachusetts Institute of Technology, designed to teach the fundamental science of plasma processing as well as to give an overview of the present state of industrial processes. Provides rationale for course development, texts used, class composition, and…
University Capstone Project: Enhanced Initiation Techniques for Thermochemical Energy Conversion
2013-03-01
technologies such as scramjets, gas turbine engines (relight and afterburner ignition), and pulsed detonation engines ( PDEs ) because of the limited...events in a flow tube were recorded, and the PDE engine was fired while monitoring ignition time and wave speed throughout the detonation process...long steel tube fitted with a 36” long, 2” x 2” square polycarbonate test section is used in place of the instrumented detonation tube. The PDE
FY 1999 Laboratory Directed Research and Development annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
PJ Hughes
2000-06-13
A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Krujatz, Felix; Lode, Anja; Seidel, Julia; Bley, Thomas; Gelinsky, Michael; Steingroewer, Juliane
2017-10-25
The diversity and complexity of biotechnological applications are constantly increasing, with ever expanding ranges of production hosts, cultivation conditions and measurement tasks. Consequently, many analytical and cultivation systems for biotechnology and bioprocess engineering, such as microfluidic devices or bioreactors, are tailor-made to precisely satisfy the requirements of specific measurements or cultivation tasks. Additive manufacturing (AM) technologies offer the possibility of fabricating tailor-made 3D laboratory equipment directly from CAD designs with previously inaccessible levels of freedom in terms of structural complexity. This review discusses the historical background of these technologies, their most promising current implementations and the associated workflows, fabrication processes and material specifications, together with some of the major challenges associated with using AM in biotechnology/bioprocess engineering. To illustrate the great potential of AM, selected examples in microfluidic devices, 3D-bioprinting/biofabrication and bioprocess engineering are highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.
Active Combustion Control for Aircraft Gas Turbine Engines
NASA Technical Reports Server (NTRS)
DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.
2000-01-01
Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.
Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1992-01-01
Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
NASA Technical Reports Server (NTRS)
Lucero, John
2016-01-01
The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..
Gupta, Sanjeev K; Shukla, Pratyoosh
2016-12-01
Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.
Engineering Design Education Program for Graduate School
NASA Astrophysics Data System (ADS)
Ohbuchi, Yoshifumi; Iida, Haruhiko
The new educational methods of engineering design have attempted to improve mechanical engineering education for graduate students in a way of the collaboration in education of engineer and designer. The education program is based on the lecture and practical exercises concerning the product design, and has engineering themes and design process themes, i.e. project management, QFD, TRIZ, robust design (Taguchi method) , ergonomics, usability, marketing, conception etc. At final exercise, all students were able to design new product related to their own research theme by applying learned knowledge and techniques. By the method of engineering design education, we have confirmed that graduate students are able to experience technological and creative interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Thomas; Kataria, Atish; Soukri, Mustapha
It is increasingly clear that CO 2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO 2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO 2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO 2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO 2 capture processes – such as RTI’s Advancedmore » Solid Sorbent CO 2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO 2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO 2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO 2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO 2 capture. The overall objective of this project was to mitigate the technical and economic risks associated with the scale-up of solid sorbent-based CO 2 capture processes, enabling subsequent larger pilot demonstrations and ultimately commercial deployment. An integrated development approach has been a key focus of this project in which process development, sorbent development, and economic analyses have informed each of the other development processes. Development efforts have focused on improving the performance stability of sorbent candidates, refining process engineering and design, and evaluating the viability of the technology through detailed economic analyses. Sorbent advancements have led to a next generation, commercially-viable CO 2 capture sorbent exhibiting performance stability in various gas environments and a physically strong fluidizable form. The team has reduced sorbent production costs and optimized the production process and scale-up of PEI-impregnated, fluidizable sorbents. Refinement of the process engineering and design, as well as the construction and operation of a bench-scale research unit has demonstrated promising CO 2 capture performance under simulated coal-fired flue gas conditions. Parametric testing has shown how CO 2 capture performance is impacted by changing process variables, such as Adsorber temperature, Regenerator temperature, superficial flue gas velocity, solids circulation rate, CO 2 partial pressure in the Regenerator, and many others. Long-term testing has generated data for the project team to set the process conditions needed to operate a solids-based system for optimal performance, with continuous 90% CO 2 capture, and no operational interruptions. Data collected from all phases of testing has been used to develop a detailed techno-economic assessment of RTI’s technology. These detailed analyses show that RTI’s technology has significant economic advantages over current amine scrubbing and potential to achieve the DOE’s Carbon Capture Program’s goal of >90% CO 2 capture rate at a cost of < $40/T-CO 2 captured by 2025. Through this integrated technology development approach, the project team has advanced RTI’s CO 2 capture technology to TRL-4 (nearly TRL-5, with the missing variable being testing on actual, coal-fired flue gas), according to the DOE/FE definitions for Technology Readiness Levels. At a broader level, this project has advanced the whole of the solid sorbent CO 2 capture field, with advancements in process engineering and design, technical risk mitigation, sorbent scale-up optimization, and an understanding of the commercial viability and applicability of solid sorbent CO 2 capture technologies for the U.S. existing fleet of coal-fired power plants.« less
Engineers with nozzles fabricated using a freeform-directed ener
2018-03-15
Engineers from NASA Marshall Space Flight Center's Propulsion Department examine nozzles fabricated using a freeform-directed energy wire deposition process. From left are Paul Gradl, Will Brandsmeier, Ian Johnston and Sandy Greene, with the nozzles, which were built using a NASA-patented technology that has the potential to reduce build time from several months to several weeks.
ERIC Educational Resources Information Center
Bünning, Frank
2013-01-01
Pedagogic approaches to TVET offer a limited range of teaching strategies which make use of experimental learning. Thus experiments were developed for teachers of structural engineering and timber processing technologies and were subject to empirical evaluation by a researcher at the Otto-von-Guericke-University Magdeburg and Kassel University.…
ERIC Educational Resources Information Center
Grundbacher, R.; Hoetzel, J. E.; Hierold, C.
2009-01-01
A microelectro-mechanical systems (MEMS) laboratory course (MEMSlab) in the Mechanical and Process Engineering Department at the Swiss Federal Institute of Technology (ETH Zurich), is presented. The course has been taught for four years and has been attended primarily by Master's students from mechanical and electrical engineering; since fall…
A Proposition to Engineer a Bridge: Reconnecting with the Industry-Based Educators
ERIC Educational Resources Information Center
Rigler, Kenny
2017-01-01
The first steps in the engineering design process are to identify and define the problem (Eide, Jenison, Mashaw, & Northup, 2001). The primary purpose of this article is to highlight the problem that has existed for the past three decades (a disconnect between industrial educators and proponents of technological literacy) and to make a…
ERIC Educational Resources Information Center
Tsai, Yea-Ru; Ouyang, Chen-Sen; Chang, Yukon
2016-01-01
The purpose of this study is to propose a diagnostic approach to identify engineering students' English reading comprehension errors. Student data were collected during the process of reading texts of English for science and technology on a web-based cumulative sentence analysis system. For the analysis, the association-rule, data mining technique…
Persistence Factors Associated with First-Year Engineering Technology Learners
ERIC Educational Resources Information Center
Christe, Barbara
2015-01-01
Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…
From magic to technology: materials integration by wafer bonding
NASA Astrophysics Data System (ADS)
Dragoi, Viorel
2006-02-01
Wafer bonding became in the last decade a very powerful technology for MEMS/MOEMS manufacturing. Being able to offer a solution to overcome some problems of the standard processes used for materials integration (e.g. epitaxy, thin films deposition), wafer bonding is nowadays considered an important item in the MEMS engineer toolbox. Different principles governing the wafer bonding processes will be reviewed in this paper. Various types of applications will be presented as examples.
Variable Cycle Engine Technology Program Planning and Definition Study
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Stern, A. M.
1978-01-01
The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.
Improving the quality of learning discipline “Technical thermodynamics and heat exchange” at ONMU
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Malchevsky, V. P.
2017-11-01
Discipline «Technical thermodynamics and heat exchange» creates a theoretical basis for students of ship-engineering faculty of Odessa National Maritime University to learn special subjects such as: Internal Combustion Engines, Steam and Gas Turbines, Steam Boilers, Refrigerating Plants. This course forms future specialist and provides the deep understanding of essence of thermodynamic processes which run in machines and apparatus of ship. Also different kinds of heat exchange in solid, liquid and gaseous bodies which take place almost in all technological processes are considered. The quality of training ship engineers depends on the knowledge of mentioned discipline.
NASA Technical Reports Server (NTRS)
Waligora, Sharon; Bailey, John; Stark, Mike
1995-01-01
The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of applications software. The goals of the SEL are (1) to understand the software development process in the GSFC environment; (2) to measure the effects of various methodologies, tools, and models on this process; and (3) to identify and then to apply successful development practices. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document.
Application of Additively Manufactured Components in Rocket Engine Turbopumps
NASA Technical Reports Server (NTRS)
Calvert, Marty, Jr.; Hanks, Andrew; Schmauch, Preston; Delessio, Steve
2015-01-01
The use of additive manufacturing technology has the potential to revolutionize the development of turbopump components in liquid rocket engines. When designing turbomachinery with the additive process there are several benefits and risks that are leveraged relative to a traditional development cycle. This topic explores the details and development of a 90,000 RPM Liquid Hydrogen Turbopump from which 90% of the parts were derived from the additive process. This turbopump was designed, developed and will be tested later this year at Marshall Space Flight Center.
New Engineering Solutions in Creation of Mini-BOF for Metallic Waste Recycling
NASA Astrophysics Data System (ADS)
Eronko, S. P.; Gorbatyuk, S. M.; Oshovskaya, E. V.; Starodubtsev, B. I.
2017-12-01
New engineering solutions used in design of the mini melting unit capable of recycling industrial and domestic metallic waste with high content of harmful impurities are provided. High efficiency of the process technology implemented with its use is achieved due to the possibility of the heat and mass transfer intensification in the molten metal bath, controlled charge into it of large amounts of reagents in lumps and in fines, and cut-off of remaining process slag during metal tapping into the teeming ladle.
Women as a resource for the flexibility required for high technology innovation
NASA Technical Reports Server (NTRS)
Marlaire, Ruth Dasso
1994-01-01
What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.
Technologies for Turbofan Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis
2005-01-01
An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.
Federal Technology Catalog 1982: Summaries of practical technology
NASA Astrophysics Data System (ADS)
The catalog presents summaries of practical technology selected for commercial potential and/or promising applications to the fields of computer technology, electrotechnology, energy, engineering, life sciences, machinery and tools, manufacturing, materials, physical sciences, and testing and instrumentation. Each summary not only describes a technology, but gives a source for further information. This publication describes some 1,100 new processes, inventions, equipment, software, and techniques developed by and for dozens of Federal agencies during 1982. Included is coverage of NASA Tech Briefs, DOE Energygrams, and Army Manufacturing Notes.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.
NASA Astrophysics Data System (ADS)
Moler, Perry J.
The purpose of this study was to understand what perceptions junior and senior engineering & technology students have about change, change readiness, and selected attributes, skills, and abilities. The selected attributes, skills, and abilities for this study were lifelong learning, leadership, and self-efficacy. The business environment of today is dynamic, with any number of internal and external events requiring an organization to adapt through the process of organizational development. Organizational developments affect businesses as a whole, but these developments are more evident in fields related to engineering and technology. Which require employees working through such developments be flexible and adaptable to a new professional environment. This study was an Explanatory Sequential Mixed Methods design, with Stage One being an online survey that collected individuals' perceptions of change, change readiness, and associated attributes, skills, and abilities. Stage Two was a face-to-face interview with a random sample of individuals who agreed to be interviewed in Stage One. This process was done to understand why students' perceptions are what they are. By using a mixed-method study, a more complete understanding of the current perceptions of students was developed, thus allowing external stakeholders' such as Human Resource managers more insight into the individuals they seek to recruit. The results from Stage One, one sample T-test with a predicted mean of 3.000 for this study indicated that engineering & technology students have a positive perceptions of Change Mean = 3.7024; Change Readiness Mean = 3.9313; Lifelong Learning Mean = 4.571; Leadership = 4.036; and Self-Efficacy Mean = 4.321. A One-way ANOVA was also conducted to understand the differences between traditional and non-traditional student regarding change and change readiness. The results of the ANOVA test indicated there were no significant differences between these two groups. The results from Stage Two showed that students perceived change as both positive and negative. This perception stems from their life experiences rather than from educational or professional experiences. The same can be said for the concepts of change readiness, lifelong learning, leadership, and self-efficacy. This indicates that engineering & technology programs should implement these concepts into their curriculum to better prepare engineering & technology students to enter into professional careers.
NASA Astrophysics Data System (ADS)
Riveiro, B.; DeJong, M.; Conde, B.
2016-06-01
Despite the tremendous advantages of the laser scanning technology for the geometric characterization of built constructions, there are important limitations preventing more widespread implementation in the structural engineering domain. Even though the technology provides extensive and accurate information to perform structural assessment and health monitoring, many people are resistant to the technology due to the processing times involved. Thus, new methods that can automatically process LiDAR data and subsequently provide an automatic and organized interpretation are required. This paper presents a new method for fully automated point cloud segmentation of masonry arch bridges. The method efficiently creates segmented, spatially related and organized point clouds, which each contain the relevant geometric data for a particular component (pier, arch, spandrel wall, etc.) of the structure. The segmentation procedure comprises a heuristic approach for the separation of different vertical walls, and later image processing tools adapted to voxel structures allows the efficient segmentation of the main structural elements of the bridge. The proposed methodology provides the essential processed data required for structural assessment of masonry arch bridges based on geometric anomalies. The method is validated using a representative sample of masonry arch bridges in Spain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Gorokhovsky
2008-03-31
This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less
Focus on: Washington Hospital Center, Biomedical Engineering Department.
Hughes, J D
1995-01-01
The Biomedical Engineering Department of the Washington Hospital Center provides clinical engineering services to an urban 907-bed, tertiary care teaching hospital and a variety of associated healthcare facilities. With an annual budget of over $3,000,000, the 24-person department provides cradle-to-grave support for a host of sophisticated medical devices and imaging systems such as lasers, CT scanners, and linear accelerators as well as traditional patient care instrumentation. Hallmarks of the department include its commitment to customer service and patient care, close collaboration with clinicians and quality assurance teams throughout the hospital system, proactive involvement in all phases of the technology management process, and shared leadership in safety standards with the hospital's risk management group. Through this interactive process, the department has assisted the Center not only in the acquisition of 11,000 active devices with a value of more than $64 million, but also in becoming one of the leading providers of high technology healthcare in the Washington, DC metropolitan area.
The Systems Engineering Process for Human Support Technology Development
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.
Paraffin-based hybrid rocket engines applications: A review and a market perspective
NASA Astrophysics Data System (ADS)
Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano
2016-09-01
Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development.The present study is useful for driving future investigation and testing of paraffin-based fuels as solid fuels for hybrid propulsion technology, taking into account the needs of industrial applications of this technology.
A Global Assessment of Stem Cell Engineering
Loring, Jeanne F.; McDevitt, Todd C.; Palecek, Sean P.; Schaffer, David V.; Zandstra, Peter W.
2014-01-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic–industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms. PMID:24428577
A global assessment of stem cell engineering.
Loring, Jeanne F; McDevitt, Todd C; Palecek, Sean P; Schaffer, David V; Zandstra, Peter W; Nerem, Robert M
2014-10-01
Over the last 2 years a global assessment of stem cell engineering (SCE) was conducted with the sponsorship of the National Science Foundation, the National Cancer Institute at the National Institutes of Health, and the National Institute of Standards and Technology. The purpose was to gather information on the worldwide status and trends in SCE, that is, the involvement of engineers and engineering approaches in the stem cell field, both in basic research and in the translation of research into clinical applications and commercial products. The study was facilitated and managed by the World Technology Evaluation Center. The process involved site visits in both Asia and Europe, and it also included several different workshops. From this assessment, the panel concluded that there needs to be an increased role for engineers and the engineering approach. This will provide a foundation for the generation of new markets and future economic growth. To do this will require an increased investment in engineering, applied research, and commercialization as it relates to stem cell research and technology. It also will require programs that support interdisciplinary teams, new innovative mechanisms for academic-industry partnerships, and unique translational models. In addition, the global community would benefit from forming strategic partnerships between countries that can leverage existing and emerging strengths in different institutions. To implement such partnerships will require multinational grant programs with appropriate review mechanisms.
Development of the platelet micro-orifice injector. [for liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
La Botz, R. J.
1984-01-01
For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.
AGT (Advanced Gas Turbine) technology project
NASA Technical Reports Server (NTRS)
1988-01-01
An overall summary documentation is provided for the Advanced Gas Turbine Technology Project conducted by the Allison Gas Turbine Division of General Motors. This advanced, high risk work was initiated in October 1979 under charter from the U.S. Congress to promote an engine for transportation that would provide an alternate to reciprocating spark ignition (SI) engines for the U.S. automotive industry and simultaneously establish the feasibility of advanced ceramic materials for hot section components to be used in an automotive gas turbine. As this program evolved, dictates of available funding, Government charter, and technical developments caused program emphases to focus on the development and demonstration of the ceramic turbine hot section and away from the development of engine and powertrain technologies and subsequent vehicular demonstrations. Program technical performance concluded in June 1987. The AGT 100 program successfully achieved project objectives with significant technology advances. Specific AGT 100 program achievements are: (1) Ceramic component feasibility for use in gas turbine engines has been demonstrated; (2) A new, 100 hp engine was designed, fabricated, and tested for 572 hour at operating temperatures to 2200 F, uncooled; (3) Statistical design methodology has been applied and correlated to experimental data acquired from over 5500 hour of rig and engine testing; (4) Ceramic component processing capability has progressed from a rudimentary level able to fabricate simple parts to a sophisticated level able to provide complex geometries such as rotors and scrolls; (5) Required improvements for monolithic and composite ceramic gas turbine components to meet automotive reliability, performance, and cost goals have been identified; (6) The combustor design demonstrated lower emissions than 1986 Federal Standards on methanol, JP-5, and diesel fuel. Thus, the potential for meeting emission standards and multifuel capability has been initiated; (7) Small turbine engine aerodynamic and mechanical design capability has been initiated; and (8) An infrastructure of manpower, facilities, materials, and fabrication capabilities has been established which is available for continued development of ceramic component technology in gas turbine and other heat engines.
Engine Seal Technology Requirements to Meet NASA's Advanced Subsonic Technology Program Goals
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Hendricks, Robert C.
1994-01-01
Cycle studies have shown the benefits of increasing engine pressure ratios and cycle temperatures to decrease engine weight and improve performance of commercial turbine engines. NASA is working with industry to define technology requirements of advanced engines and engine technology to meet the goals of NASA's Advanced Subsonic Technology Initiative. As engine operating conditions become more severe and customers demand lower operating costs, NASA and engine manufacturers are investigating methods of improving engine efficiency and reducing operating costs. A number of new technologies are being examined that will allow next generation engines to operate at higher pressures and temperatures. Improving seal performance - reducing leakage and increasing service life while operating under more demanding conditions - will play an important role in meeting overall program goals of reducing specific fuel consumption and ultimately reducing direct operating costs. This paper provides an overview of the Advanced Subsonic Technology program goals, discusses the motivation for advanced seal development, and highlights seal technology requirements to meet future engine performance goals.
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
Particulate emissions from diesel engines: correlation between engine technology and emissions.
Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian
2014-03-07
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.
Particulate emissions from diesel engines: correlation between engine technology and emissions
2014-01-01
In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725
An applied study using systems engineering methods to prioritize green systems options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sonya M; Macdonald, John M
2009-01-01
For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective intomore » how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaskell, D.R.; Hager, J.P.; Hoffmann, J.E.
1987-01-01
This book contains papers that cover the following topics: high intensity smelting, novel aspects of gold recovery, resin membrane applications in hydrometallurgy, process analysis and characterization, fundamental studies in pyrometallurgical systems, advances in electroextraction, new process chemistry, process engineering in pyrometallurgical systems, and developments in hydrometallurgy.
Reducing the Time and Cost of Testing Engines
NASA Technical Reports Server (NTRS)
2004-01-01
Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.
New business opportunity: Green field project with new technology
NASA Astrophysics Data System (ADS)
Lee, Seung Jae; Woo, Jong Hun; Shin, Jong Gye
2014-06-01
Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.
ERIC Educational Resources Information Center
Mitts, Charles R.
2013-01-01
In order for technology and engineering education (T&EE) students to meet the design challenges of this century, T&EE teachers will need to deepen their content pedagogy in the areas of science and math. This raises the question: Will the need to deepen content pedagogy initiate a process of change that transforms technology and engineering…
USDA-ARS?s Scientific Manuscript database
Foodborne pathogens cause millions of illnesses every year. At the US Department of Agriculture’s Eastern Regional Research Center, scientists and engineers have focused on developing new ways to improve food safety and shelf life while retaining quality and nutritional value. A variety of technolog...
A perioperative echocardiographic reporting and recording system.
Pybus, David A
2004-11-01
Advances in video capture, compression, and streaming technology, coupled with improvements in central processing unit design and the inclusion of a database engine in the Windows operating system, have simplified the task of implementing a digital echocardiographic recording system. I describe an application that uses these technologies and runs on a notebook computer.
Small Engine Component Technology (SECT) study
NASA Technical Reports Server (NTRS)
Singh, B.
1986-01-01
Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.
Jones, Michael; Mueller, James; Morris, John
2017-01-01
This article describes a flexible and effective approach to research and development in an era of rapid technological advancement. The approach relies on secondary dispersal of grant funds to commercial developers through a competitive selection process. This "App Factory" model balances the practical reliance on multi-year funding needed to sustain a rehabilitation engineering research center (RERC), with the need for agility and adaptability of development efforts undertaken in a rapidly changing technology environment. This approach also allows us to take advantage of technical expertise needed to accomplish a particular development task, and provides incentives to deliver successful products in a cost-effective manner. In this article, we describe the App Factory structure, process, and results achieved to date; and we discuss the lessons learned and the potential relevance of this approach for other grant-funded research and development efforts. Data presented on the direct costs and number of downloads of the 16 app development projects funded in the App Factory's first 3 years show that it can be an effective means for supporting focused, short-term assistive technology development projects.
Analysis of complex decisionmaking processes. [with application to jet engine development
NASA Technical Reports Server (NTRS)
Hill, J. D.; Ollila, R. G.
1978-01-01
The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.
Engineering and "Standards for Technological Literacy."
ERIC Educational Resources Information Center
Gorham, Douglas
2002-01-01
Describes the relationship between engineering and technological literacy, criteria used by the Accrediting Board for Engineering and Technology, and the role of professional engineering societies in promoting technological literacy. (SK)
78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... processing is a chemical separations process that involves dissolving spent fuel in nitric acid and... Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact... chemical properties, and radionuclide inventory. The fuel groups and the seven technologies that could be...
14 CFR 1240.102 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Contributions Board. (d) Commercial quality refers to computer software that is not in an experimental or beta..., engineering or scientific concept, idea, design, process, or product, reported as new technology on NASA Form...) Invention includes any act, method, process, machine, manufacture, design, or composition of matter, or any...
14 CFR 1240.102 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Contributions Board. (d) Commercial quality refers to computer software that is not in an experimental or beta..., engineering or scientific concept, idea, design, process, or product, reported as new technology on NASA Form...) Invention includes any act, method, process, machine, manufacture, design, or composition of matter, or any...
ERIC Educational Resources Information Center
Haapaniemi, Peter
1990-01-01
Describes imaging technology, which allows huge numbers of words and illustrations to be reduced to tiny fraction of space required by originals and discusses current applications. Highlights include image processing system at National Archives; use by banks for high-speed check processing; engineering document management systems (EDMS); folder…
Modeling of materials supply, demand and prices
NASA Technical Reports Server (NTRS)
1982-01-01
The societal, economic, and policy tradeoffs associated with materials processing and utilization, are discussed. The materials system provides the materials engineer with the system analysis required for formulate sound materials processing, utilization, and resource development policies and strategies. Materials system simulation and modeling research program including assessments of materials substitution dynamics, public policy implications, and materials process economics was expanded. This effort includes several collaborative programs with materials engineers, economists, and policy analysts. The technical and socioeconomic issues of materials recycling, input-output analysis, and technological change and productivity are examined. The major thrust areas in materials systems research are outlined.
Chelation technology: a promising green approach for resource management and waste minimization.
Chauhan, Garima; Pant, K K; Nigam, K D P
2015-01-01
Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from contaminated sites has also been reviewed.
NASA Astrophysics Data System (ADS)
Wang, Xiaoshu; Zhang, Zhijun; Zhang, Peng
Recently, with the rapid upgrading of the equipment in the steel Corp, the rolling technology of TMCP has been rapidly developed and widely applied. A large amount of steel plate has been produced by using the TMCP technology. The TMCP processes have been used more and more widely and replaced the heat treatment technology of normalizing, quenching and tempering heat process. In this paper, low financial input is considered in steel plate production and the composition of the steel has been designed with low C component, a limited alloy element of the Nb, and certain amounts of Mn element. During the continuous casting process, the size of the continuous casting slab section is 300 mm × 2400 mm. The rolling technology of TMCP is controlled at a lower rolling and red temperature to control the transformation of the microstructure. Four different rolling treatments are chosen to test its effects on the 390MPa grade low carbon steel of bainitic microstructure and properties. This test manages to produce a proper steel plate fulfilling the standard mechanical properties. Specifically, low carbon bainite is observed in the microstructure of the steel plate and the maximum thickness of steel plate under this TMCP technology is up to 80mm. The mechanical property of the steel plate is excellent and the KV2 at -40 °C performs more than 200 J. Moreover, the production costs are greatly reduced when the steel plate is produced by this TMCP technology when replacing the current production process of quenching and tempering. The low cost steel plate could well meet the requirements of producing engineering machinery in the steel market.
The FoReVer Methodology: A MBSE Framework for Formal Verification
NASA Astrophysics Data System (ADS)
Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald
2013-08-01
The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.
Investigation of the laser engineered net shaping process for nanostructured cermets
NASA Astrophysics Data System (ADS)
Xiong, Yuhong
Laser Engineered Net Shaping (LENSRTM) is a solid freeform fabrication (SFF) technology that combines high power laser deposition and powder metallurgy technologies. The LENSRTM technology has been used to fabricate a number of metallic alloys with improved physical and mechanical material properties. The successful application provides a motivation to also apply this method to fabricate non-metallic alloys, such as tungsten carbide-cobalt (WC-Co) cermets in a timely and easy way. However, reports on this topic are very limited. In this work, the LENSRTM technology was used to investigate its application to nanostructured WC-Co cermets, including processing conditions, microstructural evolution, thermal behavior, mechanical properties, and environmental and economic benefits. Details of the approaches are described as follows. A comprehensive analysis of the relationships between process parameters, microstructural evolution and mechanical properties was conducted through various analytical techniques. Effects of process parameters on sample profiles and microstructures were analyzed. Dissolution, shape change and coarsening of WC particles were investigated to study the mechanisms of microstructural evolution. The thermal features were correlated with the microstructure and mechanical properties. The special thermal behavior during this process and its relevant effects on the microstructure have been experimentally studied and numerically simulated. A high-speed digital camera was applied to study the temperature profile, temperature gradient and cooling rate in and near the molten pool. Numerical modeling was employed for 3D samples using finite element method with ADINA software for the first time. The validated modeling results were used to interpret microstructural evolution and thermal history. In order to fully evaluate the capability of the LENSRTM technology for the fabrication of cermets, material properties of WC-Co cermets produced by different powder metallurgy technologies were compared. In addition, another cermet system, nanostructured titanium/tungsten carbide-nickel ((Ti,W)C-Ni) powder, prepared using high-energy ball milling process, was also deposited by the LENSRTM technology. Because of the near net shape feature of the LENSRTM process, special emphasis was also placed on its potential environmental and economic benefits by applying life cycle assessment (LCA) and technical cost modeling (TCM). Comparisons were conducted between the conventional powder metallurgy processes and the LENSRTM process.
2017-04-05
Information Technology at Nationwide v Abstract vi 1 Business Imperatives 1 1.1 Deliver the Right Work 1 1.2 Deliver the Right Way 1 1.3 Deliver with...an Engaged Workforce 1 2 Challenges and Opportunities 2 2.1 Responding to Demand 2 2.2 Standards and Capabilities 2 2.3 Information Technology ...release and unlimited distribution. Information Technology at Nationwide Nationwide Information Technology (IT) is comprised of seven offices
Ethical Considerations in Tissue Engineering Research: Case Studies in Translation
Baker, Hannah B.; McQuilling, John P.
2016-01-01
Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of “modest translational distance” and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. PMID:26282436
Ethical considerations in tissue engineering research: Case studies in translation.
Baker, Hannah B; McQuilling, John P; King, Nancy M P
2016-04-15
Tissue engineering research is a complex process that requires investigators to focus on the relationship between their research and anticipated gains in both knowledge and treatment improvements. The ethical considerations arising from tissue engineering research are similarly complex when addressing the translational progression from bench to bedside, and investigators in the field of tissue engineering act as moral agents at each step of their research along the translational pathway, from early benchwork and preclinical studies to clinical research. This review highlights the ethical considerations and challenges at each stage of research, by comparing issues surrounding two translational tissue engineering technologies: the bioartificial pancreas and a tissue engineered skeletal muscle construct. We present relevant ethical issues and questions to consider at each step along the translational pathway, from the basic science bench to preclinical research to first-in-human clinical trials. Topics at the bench level include maintaining data integrity, appropriate reporting and dissemination of results, and ensuring that studies are designed to yield results suitable for advancing research. Topics in preclinical research include the principle of "modest translational distance" and appropriate animal models. Topics in clinical research include key issues that arise in early-stage clinical trials, including selection of patient-subjects, disclosure of uncertainty, and defining success. The comparison of these two technologies and their ethical issues brings to light many challenges for translational tissue engineering research and provides guidance for investigators engaged in development of any tissue engineering technology. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of processing on Polymer/Composite structure and properties
NASA Technical Reports Server (NTRS)
1982-01-01
Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.
Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waugh, William
The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uraniummore » processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.« less
Co-culture systems-based strategies for articular cartilage tissue engineering.
Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi
2018-03-01
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.
Effects of Gas Turbine Component Performance on Engine and Rotary Wing Vehicle Size and Performance
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.; Thurman, Douglas R.
2010-01-01
In support of the Fundamental Aeronautics Program, Subsonic Rotary Wing Project, further gas turbine engine studies have been performed to quantify the effects of advanced gas turbine technologies on engine weight and fuel efficiency and the subsequent effects on a civilian rotary wing vehicle size and mission fuel. The Large Civil Tiltrotor (LCTR) vehicle and mission and a previous gas turbine engine study will be discussed as a starting point for this effort. Methodology used to assess effects of different compressor and turbine component performance on engine size, weight and fuel efficiency will be presented. A process to relate engine performance to overall LCTR vehicle size and fuel use will also be given. Technology assumptions and levels of performance used in this analysis for the compressor and turbine components performances will be discussed. Optimum cycles (in terms of power specific fuel consumption) will be determined with subsequent engine weight analysis. The combination of engine weight and specific fuel consumption will be used to estimate their effect on the overall LCTR vehicle size and mission fuel usage. All results will be summarized to help suggest which component performance areas have the most effect on the overall mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains reports which were presented at the 41st International Society For The Advancement of Material and Process Engineering Symposium and Exhibition. Topics include: structural integrity of aging aircraft; composite materials development; affordable composites and processes; corrosion characterization of aging aircraft; adhesive advances; composite design; dual use materials and processing; repair of aircraft structures; adhesive inspection; materials systems for infrastructure; fire safety; composite impact/energy absorption; advanced materials for space; seismic retrofit; high temperature resins; preform technology; thermoplastics; alternative energy and transportation; manufacturing; and durability. Individual reports have been processed separately for the United States Department of Energy databases.
Second Generation RLV Space Vehicle Concept
NASA Astrophysics Data System (ADS)
Bailey, M. D.; Daniel, C. C.
2002-01-01
NASA has a long history of conducting development programs and projects in a consistant fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At 776M for phase I, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co=located with the respect Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. . Undoubtedly, the program management of SLI and the NIAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
Second Generation RLV Space Vehicle Concept
NASA Technical Reports Server (NTRS)
Bailey, Michelle; Daniel, Charles; Throckmorton, David A. (Technical Monitor)
2002-01-01
NASA has a long history of conducting development programs and projects in a consistent fashion. Systems Engineering within those programs and projects has also followed a given method outlined by such documents as the NASA Systems Engineering Handbook. The relatively new NASA Space Launch Initiative (SLI) is taking a new approach to developing a space vehicle, with innovative management methods as well as new Systems Engineering processes. With the program less than a year into its life cycle, the efficacy of these new processes has yet to be proven or disproven. At $776M for phase 1, SLI represents a major portion of the NASA focus; however, the new processes being incorporated are not reflected in the training provided by NASA to its engineers. The NASA Academy of Program and Project Leadership (APPL) offers core classes in program and project management and systems engineering to NASA employees with the purpose of creating a "knowledge community where ideas, skills, and experiences are exchanged to increase each other's capacity for strong leadership". The SLI program is, in one sense, a combination of a conceptual design program and a technology program. The program as a whole doesn't map into the generic systems engineering project cycle as currently, and for some time, taught. For example, the NASA APPL Systems Engineering training course teaches that the "first step in developing an architecture is to define the external boundaries of the system", which will require definition of the interfaces with other systems and the next step will be to "define all the components that make up the next lower level of the system hierarchy" where fundamental requirements are allocated to each component. Whereas, the SLI technology risk reduction approach develops architecture subsystem technologies prior to developing architectures. The higher level architecture requirements are not allowed to fully develop and undergo decomposition and allocation down to the subsystems before the subsystems must develop allocated requirements based on the highest level of requirements. In the vernacular of the project cycles prior to the mid 1990's, the architecture definition portion of the program appears to be at a generic Phase A stage, while the subsystems are operating at Phase B. Even the management structure of the SLI program is innovative in its approach to Systems Engineering and is not reflected in the APPL training modules. The SLI program has established a Systems Engineering office as an office separate from the architecture development or the subsystem technology development, while that office does have representatives within these other offices. The distributed resources of the Systems Engineering Office are co-located with the respective Project Offices. This template is intended to provide systems engineering as an integrated function at the Program Level. the program management of SLI and the MAT agree that "program/project managers and the systems engineering team must work closely together towards the single objective of delivering quality products that meet the customer needs". This paper will explore the differences between the methods being taught by NASA, which represent decades of ideas, and those currently in practice in SLI. Time will tell if the innovation employed by SLI will prove to be the model of the future. For now, it is suggested that the training of the present exercise the flexibility of recognizing the new processes employed by a major new NASA program.
A comparison of forming technologies for ceramic gas-turbine engine components
NASA Technical Reports Server (NTRS)
Hengst, R. R.; Heichel, D. N.; Holowczak, J. E.; Taglialavore, A. P.; Mcentire, B. J.
1990-01-01
For over ten years, injection molding and slip casting have been actively developed as forming techniques for ceramic gas turbine components. Co-development of these two processes has continued within the U.S. DOE-sponsored Advanced Turbine Technology Application Project (ATTAP). Progress within ATTAP with respect to these two techniques is summarized. A critique and comparison of the two processes are given. Critical aspects of both processes with respect to size, dimensional control, material properties, quality, cost, and potential for manufacturing scale-up are discussed.
Creating technical heritage object replicas in a virtual environment
NASA Astrophysics Data System (ADS)
Egorova, Olga; Shcherbinin, Dmitry
2016-03-01
The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; McArthur, Craig; Leopard, Larry (Technical Monitor)
2000-01-01
This presentation reviews the activities of the Advanced Space Transportation Program (ASTP) in the development of Rocket-Based Combined Cycle (RBCC)technology. The document consist of the presentation slides for a talk scheduled to be given to the World Aviation Congress and Exhibit of SAE. Included in the review is discussion of recent accomplishments in the area of Advanced Reusable technologies (ART), which includes work in flowpath testing, and system studies of the various vehicle/engine combinations including RBCC, Turbine Based Combined Cycle (TBCC) and Pulsed Detonation Engine (PDE). Pictures of the proposed RBCC Flowpaths are included. The next steps in the development process are reviewed.
Silk fibroin in tissue engineering.
Kasoju, Naresh; Bora, Utpal
2012-07-01
Tissue engineering (TE) is a multidisciplinary field that aims at the in vitro engineering of tissues and organs by integrating science and technology of cells, materials and biochemical factors. Mimicking the natural extracellular matrix is one of the critical and challenging technological barriers, for which scaffold engineering has become a prime focus of research within the field of TE. Amongst the variety of materials tested, silk fibroin (SF) is increasingly being recognized as a promising material for scaffold fabrication. Ease of processing, excellent biocompatibility, remarkable mechanical properties and tailorable degradability of SF has been explored for fabrication of various articles such as films, porous matrices, hydrogels, nonwoven mats, etc., and has been investigated for use in various TE applications, including bone, tendon, ligament, cartilage, skin, liver, trachea, nerve, cornea, eardrum, dental, bladder, etc. The current review extensively covers the progress made in the SF-based in vitro engineering and regeneration of various human tissues and identifies opportunities for further development of this field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.
Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona; Gernaey, Krist V; Woodley, John M
2015-05-01
Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been fully exploited. The aim of this review is to shed light on the strategic advantages of this promising technology for the development and realization of biocatalytic processes and subsequent product recovery steps, demonstrated with examples from the literature. Constraints, opportunities, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Mitchell, Tamarra L.
2017-01-01
The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…
Universal Sensor and Actuator Requirements. Chapter 5
NASA Technical Reports Server (NTRS)
Rosenfeld, Taylor; Webster, John; Garg, Sanjay
2009-01-01
The previous chapters have focused on the requirements for sensors and actuators for "More Intelligent Gas Turbine Engines" from the perspective of performance and operating environment. Even if a technology is available, which meets these performance requirements, there are still various hurdles to be overcome for the technology to transition into a real engine. Such requirements relate to TRL (Technology Readiness Level), durability, reliability, volume, weight, cost, etc. This chapter provides an overview of such universal requirements which any sensor or actuator technology will have to meet before it can be implemented on a product. The objective here is to help educate the researchers or technology developers on the extensive process that the technology has to go through beyond just meeting performance requirements. The hope is that such knowledge will help the technology developers as well as decision makers to prevent wasteful investment in developing solutions to performance requirements, which have no potential to meet the "universal" requirements. These "universal" requirements can be divided into 2 broad areas: 1) Technology value proposition; and 2) Technology maturation. These requirements are briefly discussed in the following.
This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...
NASA Astrophysics Data System (ADS)
Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.
2004-08-01
Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.
Laboratory Directed Research and Development Annual Report for 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Pamela J.
2012-04-09
This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.
1+1=3: Cross-Discipline Collaboration Really Adds Up!
ERIC Educational Resources Information Center
Breen, Mindy
2006-01-01
The Department of Engineering & Design at Eastern Washington University (EWU) offers a bachelor of arts degree in visual communication design and bachelor of science degrees in mechanical engineering technology, manufacturing technology, construction technology, design technology, electrical engineering, computer engineering technology and…
Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 2
NASA Technical Reports Server (NTRS)
1991-01-01
Proceedings of the workshop are presented. The mission of the conference was to transfer advanced technologies developed by the Federal government, its contractors, and other high-tech organizations to U.S. industries for their use in developing new or improved products and processes. Volume two presents papers on the following topics: materials science, robotics, test and measurement, advanced manufacturing, artificial intelligence, biotechnology, electronics, and software engineering.
2017-01-31
mapping critical business workflows and then optimizing them with appropriate evolutionary technology choices is often called “ Product Line Architecture... technologies , products , services, and processes, and the USG evaluates them against its 360o requirements objectives, and refines them as appropriate, clarity...in rapidly evolving technological domains (e.g. by applying best commercial practices for open standard product line architecture.) An MP might be
Environmental Restoration - Expedient Methods and Technologies: A User Guide with Case Studies
1998-03-01
benzene, high fructose corn syrup , raw molasses, butane gas, sodium benzoate, or acetate. Enhanced anaerobic biodegradation of jet fuels in ground water...appendix discusses technology applications that are deemed impractical because of high cost, difficulty of use, or other factors. Also included is a...conversations with knowledgeable 1 Technologically sophisticated processes are not addressed in this study because of high cost, which includes the engineering
Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
Trachtenberg, Jordan E; Mountziaris, Paschalia M; Miller, Jordan S; Wettergreen, Matthew; Kasper, Fred K; Mikos, Antonios G
2014-12-01
The fabrication of scaffolds for tissue engineering requires elements of customization depending on the application and is often limited due to the flexibility of the processing technique. This investigation seeks to address this obstacle by utilizing an open-source three-dimensional printing (3DP) system that allows vast customizability and facilitates reproduction of experiments. The effects of processing parameters on printed poly(ε-caprolactone) scaffolds with uniform and gradient pore architectures have been characterized with respect to fiber and pore morphology and mechanical properties. The results demonstrate the ability to tailor the fiber diameter, pore size, and porosity through modification of pressure, printing speed, and programmed fiber spacing. A model was also used to predict the compressive mechanical properties of uniform and gradient scaffolds, and it was found that modulus and yield strength declined with increasing porosity. The use of open-source 3DP technologies for printing tissue-engineering scaffolds provides a flexible system that can be readily modified at a low cost and is supported by community documentation. In this manner, the 3DP system is more accessible to the scientific community, which further facilitates the translation of these technologies toward successful tissue-engineering strategies.
Using Innovative Technologies for Manufacturing and Evaluating Rocket Engine Hardware
NASA Technical Reports Server (NTRS)
Betts, Erin M.; Hardin, Andy
2011-01-01
Many of the manufacturing and evaluation techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing and evaluating hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) and white light scanning are being adopted and evaluated for their use on J-2X, with hopes of employing both technologies on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powdered metal manufacturing process in order to produce complex part geometries. The white light technique is a non-invasive method that can be used to inspect for geometric feature alignment. Both the DMLS manufacturing method and the white light scanning technique have proven to be viable options for manufacturing and evaluating rocket engine hardware, and further development and use of these techniques is recommended.
Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study
NASA Technical Reports Server (NTRS)
Stuckas, K. J.
1980-01-01
The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaedel, K.L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success ismore » changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.« less
NASA Astrophysics Data System (ADS)
Blaedel, K. L.
1993-03-01
The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to do the following: (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the U.S. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.
Education and training for technicians in photonics-enabled technologies
NASA Astrophysics Data System (ADS)
Hull, Daniel M.; Hull, Darrell M.
2005-10-01
Within a few years after lasers were first made operational in 1960, it became apparent that rapid growth in the applications of this new technology in industry, health care, and other fields would require a new generation of technicians in laser/optics engineering. Technicians are the men and women who work alongside scientists and engineers in bringing their ideas, designs, and processes to fruition. In America, most highly qualified technicians are graduates of associate of applied science (AAS) programs in community and technical colleges (two-year postsecondary institutions). Curricula and educational programs designed to prepare technicians in laser/electro-optics technology (LEOT) emerged in the 1970s; today there are over 15 LEOT programs in the United States producing over 100 LEOT graduates each year.
Pacific Northwest National Laboratory institutional plan FY 1997--2002
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected nationalmore » security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.« less
A New Approach to A Science Magnet School - Classroom and Museum Integration
NASA Astrophysics Data System (ADS)
Franklin, Samuel
2009-03-01
The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.; McCorkle, D.; Yang, C.
Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combinesmore » process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.« less
In-Flight Thermal Performance of the Lidar In-Space Technology Experiment
NASA Technical Reports Server (NTRS)
Roettker, William
1995-01-01
The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.
Composing, Songwriting, and Producing: Informing Popular Music Pedagogy
ERIC Educational Resources Information Center
Tobias, Evan S.
2013-01-01
In forwarding comprehensive popular music pedagogies, music educators might acknowledge and address expanded notions of composition in popular music that include processes of recording, engineering, mixing, and producing along with the technologies, techniques, and ways of being musical that encompass these processes. This article advances a…
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique
An, Jia
2016-01-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624
An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.
An, Jia; Chua, Chee Kai
2016-12-01
3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.