Sample records for process equipment design

  1. Efficiency improvement of technological preparation of power equipment manufacturing

    NASA Astrophysics Data System (ADS)

    Milukov, I. A.; Rogalev, A. N.; Sokolov, V. P.; Shevchenko, I. V.

    2017-11-01

    Competitiveness of power equipment primarily depends on speeding-up the development and mastering of new equipment samples and technologies, enhancement of organisation and management of design, manufacturing and operation. Actual political, technological and economic conditions cause the acute need in changing the strategy and tactics of process planning. At that the issues of maintenance of equipment with simultaneous improvement of its efficiency and compatibility to domestically produced components are considering. In order to solve these problems, using the systems of computer-aided process planning for process design at all stages of power equipment life cycle is economically viable. Computer-aided process planning is developed for the purpose of improvement of process planning by using mathematical methods and optimisation of design and management processes on the basis of CALS technologies, which allows for simultaneous process design, process planning organisation and management based on mathematical and physical modelling of interrelated design objects and production system. An integration of computer-aided systems providing the interaction of informative and material processes at all stages of product life cycle is proposed as effective solution to the challenges in new equipment design and process planning.

  2. [A design of software for management of hospital equipment maintenance process].

    PubMed

    Xie, Haiyuan; Liu, Yiqing

    2010-03-01

    According to the circumstance of hospital equipment maintenance, we designed a computer program for management of hospital equipment maintenance process by Java programming language. This program can control the maintenance process, increase the efficiency; and be able to fix the equipment location.

  3. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  4. 21 CFR 211.63 - Equipment design, size, and location.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Equipment design, size, and location. 211.63 Section 211.63 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....63 Equipment design, size, and location. Equipment used in the manufacture, processing, packing, or...

  5. 21 CFR 211.63 - Equipment design, size, and location.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Equipment design, size, and location. 211.63 Section 211.63 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....63 Equipment design, size, and location. Equipment used in the manufacture, processing, packing, or...

  6. 21 CFR 211.63 - Equipment design, size, and location.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Equipment design, size, and location. 211.63 Section 211.63 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....63 Equipment design, size, and location. Equipment used in the manufacture, processing, packing, or...

  7. 21 CFR 211.63 - Equipment design, size, and location.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Equipment design, size, and location. 211.63 Section 211.63 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....63 Equipment design, size, and location. Equipment used in the manufacture, processing, packing, or...

  8. 21 CFR 211.63 - Equipment design, size, and location.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Equipment design, size, and location. 211.63 Section 211.63 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES....63 Equipment design, size, and location. Equipment used in the manufacture, processing, packing, or...

  9. David A. Sievers | NREL

    Science.gov Websites

    fermentation and refining process. One of his favorite topics is in the design and commissioning of custom research equipment. His areas of expertise include: Project management Process design, equipment design , and fabrication Instrumentation and controls design and programming Data analysis and presentation

  10. Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.

    1974-01-01

    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.

  11. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.

  12. UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction

    NASA Astrophysics Data System (ADS)

    Delistoian, Dmitri; Chirchor, Mihael

    2017-12-01

    UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.

  13. RDX/HMX Plant Design

    DTIC Science & Technology

    1981-05-01

    coating process in Explosives Manufacturing Line 2. The end products of the initial design effort are process flow diagrams, piping and...instrumentation diagrams, motor control schedules, interlock logic diagrams, piping installation drawings, typical instrument Installation details, equipment...structures, equipment, utilities, and process piping extending 1.5 m (5 ft) beyond the building or area were not included in the scope of work. Nitrolysis

  14. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  15. Design and optimization of integrated gas/condensate plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, C.R.; Wilson, J.L.

    1995-11-01

    An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less

  16. A Preliminary Anthropometry Standard for Australian Army Equipment Evaluation

    DTIC Science & Technology

    2014-08-01

    UNCLASSIFIED Authors Mark Edwards Land Division Mark Edwards holds an undergraduate degree in Industrial Design , a Masters in Ergonomics ...equipment. Given that a built system is not a requirement of the processes described, this standard can also be used early in the design process to de...risk the design process. It must be noted that the data provided in this report are representative of the 2012 ADF Army population. The impacts

  17. NASA-STD-(I)-6016, Standard Materials and Processes Requirements for Spacecraft

    NASA Technical Reports Server (NTRS)

    Pedley, Michael; Griffin, Dennis

    2006-01-01

    This document is directed toward Materials and Processes (M&P) used in the design, fabrication, and testing of flight components for all NASA manned, unmanned, robotic, launch vehicle, lander, in-space and surface systems, and spacecraft program/project hardware elements. All flight hardware is covered by the M&P requirements of this document, including vendor designed, off-the-shelf, and vendor furnished items. Materials and processes used in interfacing ground support equipment (GSE); test equipment; hardware processing equipment; hardware packaging; and hardware shipment shall be controlled to prevent damage to or contamination of flight hardware.

  18. 40 CFR 63.1013 - Sampling connection systems standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 1 § 63.1013 Sampling connection... container are not required to be collected or captured. (c) Equipment design and operation. Each closed... process fluid to a process; or (3) Be designed and operated to capture and transport all the purged...

  19. Improvements to the Processing and Characterization of Needled Composite Laminates

    DTIC Science & Technology

    2014-01-01

    the automated processing equipment are shown and discussed. The modifications allow better spatial control at the penetration sites and the ability... automated processing equipment are shown and discussed. The modifications allow better spatial control at the penetration sites and the ability to...semi- automated processing equipment, commercial off-the-shelf (COTS) needles and COTS aramid mat designed for other applications. Needled material

  20. Typical uses of NASTRAN in a petrochemical industry

    NASA Technical Reports Server (NTRS)

    Winter, J. R.

    1978-01-01

    NASTRAN was principally used to perform failure analysis and redesign process equipment. It was also employed in the evaluation of vendor designs and proposed design modifications to existing process equipment. Stress analysis of forced draft fans, distillation trays, metal stacks, jacketed pipes, heat exchangers, large centrifugal fans, and agitator support structures are described.

  1. 40 CFR 65.3 - Compliance with standards and operation and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...)(4)(i) and (ii) do not apply to Group 2A or Group 2B process vents. Compliance with design, equipment, work practice, and operational standards, including those for equipment leaks, shall be determined... this part. (5) Design, equipment, work practice, or operational standards. Paragraphs (b)(5)(i) and (ii...

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  3. Playground Facilities and Equipment. ACSA School Management Digest, Series 1, Number 7. ERIC/CEM Research Analysis Series, Number 34.

    ERIC Educational Resources Information Center

    Coursen, David

    Modern educators and playground designers are increasingly recognizing that play is a part, perhaps the decisive part, of the entire learning process. Theories of playground equipment design, planning the playground, financial considerations, and equipment suggestions are featured in this review. Examples of playgrounds include innovative…

  4. Automatic hot wire GTA welding of pipe offers speed and increased deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykes, I.; Digiacomo, J.

    1995-07-01

    Heavy-wall pipe welding for the power and petrochemical industry must meet code requirements. Contractors strive to meet these requirements in the most productive way possible. The challenge put to orbital welding equipment manufacturers is to produce pipe welding equipment that cost-effectively produces code-quality welds. Orbital welding equipment using the GTA process has long produced outstanding quality results but has lacked the deposition rate to compete cost effectively with other manual and semiautomatic processes such as SMAW, FCAW and GMAW. In recent years, significant progress has been made with the use of narrow-groove weld joint designs to reduce weld joint volumemore » and improve welding times. Astro Arc Polysoude, an orbital welding equipment manufacturer based in Sun Valley, Calif., and Nantes, France, has combined the hot wire GTAW process with orbital welding equipment using a narrow-groove weld joint design. Field test results show this process and procedure is a good alternative for many heavy-wall-pipe welding applications.« less

  5. 21 CFR 226.30 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CURRENT GOOD MANUFACTURING PRACTICE FOR TYPE A MEDICATED ARTICLES Construction and Maintenance of Facilities and Equipment § 226.30 Equipment. Equipment used for the manufacture, processing, packaging, bulk... maintained in a clean and orderly manner and shall be of suitable design, size, construction, and location to...

  6. LSA silicon material task closed-cycle process development

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.

    1979-01-01

    The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.

  7. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  8. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Chemical engineering analysis of the HSC process (Hemlock Semiconductor Corporation) for producing silicon from dichlorosilane in a 1,000 MT/yr plant was continued. Progress and status for the chemical engineering analysis of the HSC process are reported for the primary process design engineering activities: base case conditions (85%), reaction chemistry (85%), process flow diagram (60%), material balance (60%), energy balance (30%), property data (30%), equipment design (20%) and major equipment list (10%). Engineering design of the initial distillation column (D-01, stripper column) in the process was initiated. The function of the distillation column is to remove volatile gases (such as hydrogen and nitrogen) which are dissolved in liquid chlorosilanes. Initial specifications and results for the distillation column design are reported including the variation of tray requirements (equilibrium stages) with reflux ratio for the distillation.

  9. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  10. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  11. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the technology of the process, and information pertaining to the equipment in the process. (b...) Information pertaining to the technology of the process. (1) Information concerning the technology of the...) Electrical classification; (iv) Relief system design and design basis; (v) Ventilation system design; (vi...

  12. Design and implementation for integrated UAV multi-spectral inspection system

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, X.; Yan, F.

    2018-04-01

    In order to improve the working efficiency of the transmission line inspection and reduce the labour intensity of the inspectors, this paper presents an Unmanned Aerial Vehicle (UAV) inspection system architecture for the transmission line inspection. In this document, the light-duty design for different inspection equipment and processing terminals is completed. It presents the reference design for the information-processing terminal, supporting the inspection and interactive equipment accessing, and obtains all performance indicators of the inspection information processing through the tests. Practical application shows that the UAV inspection system supports access and management of different types of mainstream fault detection equipment, and can implement the independent diagnosis of the detected information to generate inspection reports in line with industry norms, which can meet the fast, timely, and efficient requirements for the power line inspection work.

  13. Coal feed component testing for CDIF

    NASA Technical Reports Server (NTRS)

    Pearson, C. V.; Snyder, B. K.; Fornek, T. E.

    1977-01-01

    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.

  14. Better Work Environments.

    ERIC Educational Resources Information Center

    Murray, Chris

    2002-01-01

    Looks at equipment, process, and training aspects of backpack vacuum cleaners that facilitate good ergonomics and high productivity levels, focusing on: designing new equipment for bodies and productivity; creating comfortable backpack harnesses; improving the work process via team training; and providing ergonomic training to ensure that backpack…

  15. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  16. Automating the Air Force Retail-Level Equipment Management Process: An Application of Microcomputer-Based Information Systems Techniques

    DTIC Science & Technology

    1988-09-01

    could use the assistance of a microcomputer-based management information system . However, adequate system design and development requires an in-depth...understanding of the Equipment Management Section and the environment in which it functions were asked and answered. Then, a management information system was...designed, developed, and tested. The management information system is called the Equipment Management Information System (EMIS).

  17. Design and Analysis of a Two-Stage Adsorption Air Chiller

    NASA Astrophysics Data System (ADS)

    Benrajesh, P.; Rajan, A. John

    2017-05-01

    The objective of this article is to design and build a bio-friendly air-conditioner, by using adsorption method in the presence of 15% of calcium carbide in water. Aluminum sheet metals are used to form three identical tunnels, to pass the air for processing. Exhaust heat generated from the dairy sterilizing unit process is reutilized, for cooling the environment through this equipment. This equipment is designed, and the analysis is carried out to quantify the COP, SCP, and cooling power. Heat exchangers are designed; its Performance Parameters are quantified and correlated with the conventional designs. It is observed that the new adsorption chiller can produce the coefficient of performance of chiller as 1.068; the Specific cooling power of 10.66 (W/Kg); and the Cooling power of 4.2 KW. This equipment needs 0 to 15 minutes to reach the desired cool breeze (24°c) from the existing room temperature (29°c).

  18. The Design of Pressure Safety Systems in the Alumina Industry

    NASA Astrophysics Data System (ADS)

    Haneman, Brady

    The alumina refinery presents the designer with multiple challenges. For a given process flowsheet, the mechanical equipment installed must be routinely inspected and maintained. Piping systems must also be inspected routinely for signs of erosion and/or corrosion. Rapid deposits of chemical species such as lime, silica, and alumina on equipment and piping need special consideration in the mechanical design of the facilities, such that fluid flows are not unduly interrupted. Above and beyond all else, the process plant must be a safe place of work for refinery personnel.

  19. 40 CFR 60.480 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart. (c) Addition or replacement of equipment for the purpose of process improvement which is... all equipment (defined in § 60.481) within a process unit is an affected facility. (b) Any affected... the definition of “process unit” in § 60.481 and the requirements in § 60.482-1(g) of this subpart...

  20. Pesticide-sampling equipment, sample-collection and processing procedures, and water-quality data at Chicod Creek, North Carolina, 1992

    USGS Publications Warehouse

    Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.

    1994-01-01

    Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.

  1. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Mathews, Roger E.

    2014-01-01

    This standard establishes requirements and guidance for design and fabrication of ground systems (GS) that includes: ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F GSS) to provide uniform methods and processes for design and development of robust, safe, reliable, maintainable, supportable, and cost-effective GS in support of space flight and institutional programs and projects.

  2. Innovation design of medical equipment based on TRIZ.

    PubMed

    Gao, Changqing; Guo, Leiming; Gao, Fenglan; Yang, Bo

    2015-01-01

    Medical equipment is closely related to personal health and safety, and this can be of concern to the equipment user. Furthermore, there is much competition among medical equipment manufacturers. Innovative design is the key to success for those enterprises. The design of medical equipment usually covers vastly different domains of knowledge. The application of modern design methodology in medical equipment and technology invention is an urgent requirement. TRIZ (Russian abbreviation of what can be translated as `theory of inventive problem solving') was born in Russia, which contain some problem-solving methods developed by patent analysis around the world, including Conflict Matrix, Substance Field Analysis, Standard Solution, Effects, etc. TRIZ is an inventive methodology for problems solving. As an Engineering example, infusion system is analyzed and re-designed by TRIZ. The innovative idea is generated to liberate the caretaker from the infusion bag watching out. The research in this paper shows the process of the application of TRIZ in medical device inventions. It is proved that TRIZ is an inventive methodology for problems solving and can be used widely in medical device development.

  3. The interplanetary Pioneers. Volume 2: System design and development

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1972-01-01

    The Pioneer systems, subsystems, and ground support activities are described. Details are given on the launch trajectory and solar orbit plans, spacecraft design approach and evolution, scientific instrument, test and ground support equipment, Delta launch vehicle, tracking and communication, and data processing equipment. Pioneer specifications, and reliability and quality assurance are also included.

  4. Design and validation of a tissue bath 3-D printed with PLA for optically mapping suspended whole heart preparations.

    PubMed

    Entz, Michael; King, D Ryan; Poelzing, Steven

    2017-12-01

    With the sudden increase in affordable manufacturing technologies, the relationship between experimentalists and the designing process for laboratory equipment is rapidly changing. While experimentalists are still dependent on engineers and manufacturers for precision electrical, mechanical, and optical equipment, it has become a realistic option for in house manufacturing of other laboratory equipment with less precise design requirements. This is possible due to decreasing costs and increasing functionality of desktop three-dimensional (3-D) printers and 3-D design software. With traditional manufacturing methods, iterative design processes are expensive and time consuming, and making more than one copy of a custom piece of equipment is prohibitive. Here, we provide an overview to design a tissue bath and stabilizer for a customizable, suspended, whole heart optical mapping apparatus that can be produced significantly faster and less expensive than conventional manufacturing techniques. This was accomplished through a series of design steps to prevent fluid leakage in the areas where the optical imaging glass was attached to the 3-D printed bath. A combination of an acetone dip along with adhesive was found to create a water tight bath. Optical mapping was used to quantify cardiac conduction velocity and action potential duration to compare 3-D printed baths to a bath that was designed and manufactured in a machine shop. Importantly, the manufacturing method did not significantly affect conduction, action potential duration, or contraction, suggesting that 3-D printed baths are equally effective for optical mapping experiments. NEW & NOTEWORTHY This article details three-dimensional printable equipment for use in suspended whole heart optical mapping experiments. This equipment is less expensive than conventional manufactured equipment as well as easily customizable to the experimentalist. The baths can be waterproofed using only a three-dimensional printer, acetone, a glass microscope slide, c-clamps, and adhesive. Copyright © 2017 the American Physiological Society.

  5. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  6. Application of the Deming management method to equipment-inspection processes.

    PubMed

    Campbell, C A

    1996-01-01

    The Biomedical Engineering staff at the Washington Hospital Center has designed an inspection process that optimizes timely completion of scheduled equipment inspections. The method used to revise the process was primarily Deming, but certainly the method incorporates the re-engineering concept of questioning the basic assumptions around which the original process was designed. This effort involved a review of the existing process in its entirety by task groups made up of representatives from all involved departments. Complete success in all areas has remained elusive. However, the lower variability of inspection completion ratios follows Deming's description of a successfully revised process. Further CQI efforts targeted at specific areas with low completion ratios will decrease this variability even further.

  7. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Astrophysics Data System (ADS)

    Clark, T. L.; McCollum, M. B.; Trout, D. H.; Javor, K.

    1995-06-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  8. Marshall Space Flight Center Electromagnetic Compatibility Design and Interference Control (MEDIC) handbook

    NASA Technical Reports Server (NTRS)

    Clark, T. L.; Mccollum, M. B.; Trout, D. H.; Javor, K.

    1995-01-01

    The purpose of the MEDIC Handbook is to provide practical and helpful information in the design of electrical equipment for electromagnetic compatibility (EMS). Included is the definition of electromagnetic interference (EMI) terms and units as well as an explanation of the basic EMI interactions. An overview of typical NASA EMI test requirements and associated test setups is given. General design techniques to minimize the risk of EMI and EMI suppression techniques at the board and equipment interface levels are presented. The Handbook contains specific EMI test compliance design techniques and retrofit fixes for noncompliant equipment. Also presented are special tests that are useful in the design process or in instances of specification noncompliance.

  9. Lessons learned: design, start-up, and operation of cryogenic systems

    NASA Astrophysics Data System (ADS)

    Bell, W. M.; Bagley, R. E.; Motew, S.; Young, P.-W.

    2014-11-01

    Cryogenic systems involving a pumped cryogenic fluid, such as liquid nitrogen (LN2), require careful design since the cryogen is close to its boiling point and cold. At 1 atmosphere, LN2 boils at 77.4 K (-320.4 F). These systems, typically, are designed to transport the cryogen, use it for process heat removal, or for generation of gas (GN2) for process use. As the design progresses, it is important to consider all aspects of the design including, cryogen storage, pressure control and safety relief systems, thermodynamic conditions, equipment and instrument selection, materials, insulation, cooldown, pump start-up, maximum design and minimum flow rates, two phase flow conditions, heat flow, process control to meet and maintain operating conditions, piping integrity, piping loads on served equipment, warm-up, venting, and shut-down. "Cutting corners" in the design process can result in stalled start-ups, field rework, schedule hits, or operational restrictions. Some of these "lessoned learned" are described in this paper.

  10. A practitioner's perspective on the application and research needs of membrane bioreactors for municipal wastewater treatment.

    PubMed

    Kraemer, Jeremy T; Menniti, Adrienne L; Erdal, Zeynep K; Constantine, Timothy A; Johnson, Bruce R; Daigger, Glen T; Crawford, George V

    2012-10-01

    The application of membrane bioreactors (MBRs) for municipal wastewater treatment has increased dramatically over the last decade. From a practitioner's perspective, design practice has evolved over five "generations" in the areas of biological process optimization, separating process design from equipment supply, and reliability/redundancy thereby facilitating "large" MBRs (e.g. 150,000 m(3)/day). MBR advantages and disadvantages, and process design to accommodate biological nutrient removal, high mixed liquor suspended solids concentrations, operation and maintenance, peak flows, and procurement are reviewed from the design practitioner's perspective. Finally, four knowledge areas are identified as important to practitioners meriting further research and development: (i) membrane design and performance such as improving peak flow characteristics and decreasing operating costs; (ii) process design and performance such as managing the fluid properties of the biological solids, disinfection, and microcontaminant removal; (iii) facility design such as equipment standardization and decreasing mechanical complexity; and (iv) sustainability such as anaerobic MBRs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 40 CFR 63.7957 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... removed from process equipment; residues removed from air pollution control equipment; and debris removed..., concrete, steel, fiberglass, or plastic) which provide structural support and is designed to hold an...

  12. Advances in the Systems and Processes for the Production of Gamma Titanium Aluminide Bars and Powder

    NASA Astrophysics Data System (ADS)

    Haun, Robert E.

    2017-12-01

    A historical look at the melt processing of gamma titanium aluminides is presented first, followed by recent advances in melting equipment design by Retech to produce 50-mm and 100-mm-diameter ingots up to 1000 mm long. Equipment design for the economical production of gamma titanium aluminide powder is then discussed. The focus in industry has shifted away from basic research to cost-effective production of these titanium alloys for aerospace and automotive engine applications.

  13. Built-In Diagnostics (BID) Of Equipment/Systems

    NASA Technical Reports Server (NTRS)

    Granieri, Michael N.; Giordano, John P.; Nolan, Mary E.

    1995-01-01

    Diagnostician(TM)-on-Chip (DOC) technology identifies faults and commands systems reconfiguration. Smart microcontrollers operating in conjunction with other system-control circuits, command self-correcting system/equipment actions in real time. DOC microcontroller generates commands for associated built-in test equipment to stimulate unit of equipment diagnosed, collects and processes response data obtained by built-in test equipment, and performs diagnostic reasoning on response data, using diagnostic knowledge base derived from design data.

  14. 40 CFR 63.10001 - Affirmative defense for exceedence of emission limit during malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... unavoidable failure of air pollution control and monitoring equipment, process equipment, or a process to..., proper design or better operation and maintenance practices; and (iii) Did not stem from any activity or... ambient air quality, the environment and human health; and (6) All emissions monitoring and control...

  15. 40 CFR 63.11226 - Affirmative defense for violation of emission standards during malfunction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to..., proper design or better operation and maintenance practices; and (iii) Did not stem from any activity or... minimize the impact of the violation on ambient air quality, the environment, and human health; and (6) All...

  16. 40 CFR 62.14470 - When must I comply with this subpart if I plan to continue operation of my HMIWI?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious... air pollution control equipment or process changes such that the HMIWI is brought on line, and ensuring that all necessary process changes and air pollution control equipment are operating properly. (3...

  17. 40 CFR 62.14470 - When must I comply with this subpart if I plan to continue operation of my HMIWI?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Hospital/Medical/Infectious... air pollution control equipment or process changes such that the HMIWI is brought on line, and ensuring that all necessary process changes and air pollution control equipment are operating properly. (3...

  18. Indigenous lunar construction materials

    NASA Technical Reports Server (NTRS)

    Rogers, Wayne; Sture, Stein

    1991-01-01

    The objectives are the following: to investigate the feasibility of the use of local lunar resources for construction of a lunar base structure; to develop a material processing method and integrate the method with design and construction of a pressurized habitation structure; to estimate specifications of the support equipment necessary for material processing and construction; and to provide parameters for systems models of lunar base constructions, supply, and operations. The topics are presented in viewgraph form and include the following: comparison of various lunar structures; guidelines for material processing methods; cast lunar regolith; examples of cast basalt components; cast regolith process; processing equipment; mechanical properties of cast basalt; material properties and structural design; and future work.

  19. The stem cell laboratory: design, equipment, and oversight.

    PubMed

    Wesselschmidt, Robin L; Schwartz, Philip H

    2011-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources.

  20. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, A.; Ruth, M.; Ibsen, K.

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update ofmore » the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.« less

  1. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    NASA Astrophysics Data System (ADS)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  2. Analysis of flow field characteristics in IC equipment chamber based on orthogonal design

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Yang, Y. Y.; Wang, C. N.

    2017-01-01

    This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.

  3. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  4. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Astrophysics Data System (ADS)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  5. 75 FR 66319 - State Systems Advance Planning Document (APD) Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ...) equipment and services. The APD process was designed to mitigate financial risks, avoid incompatibilities... develop a General Systems Design (GSD). Implementation APD means a recorded plan of action to request Federal financial participation (FFP) in the costs of designing, developing and implementing the system...

  6. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  7. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... performance and safety during reactor operation. Also, in all cases precise control of processes, procedures... elements include equipment that: (1) Normally comes in direct contact with, or directly processes or... pellets; (2) Automatic welding machines especially designed or prepared for welding end caps onto the fuel...

  8. 40 CFR 63.1503 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is contained. Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum..., or processes clean charge with reactive fluxing. Group 2 furnace means a furnace of any design that...-on air pollution control device means equipment installed on a process vent that reduces the quantity...

  9. 40 CFR 63.1503 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is contained. Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum..., or processes clean charge with reactive fluxing. Group 2 furnace means a furnace of any design that...-on air pollution control device means equipment installed on a process vent that reduces the quantity...

  10. Aerospace electrode line

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1980-01-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  11. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  12. GREENING STANDARDS FOR GREEN STRUCTURES: PROCESS AND PRODUCTS

    EPA Science Inventory

    The goal of this project is to provide a mechanism that equips consumers with the means for encouraging the homebuilding industry—designers, homebuilders, retail suppliers—to use environmentally preferable products (ENP) and processes in the design and con...

  13. The Stem Cell Laboratory: Design, Equipment, and Oversight

    PubMed Central

    Wesselschmidt, Robin L.; Schwartz, Philip H.

    2013-01-01

    This chapter describes some of the major issues to be considered when setting up a laboratory for the culture of human pluripotent stem cells (hPSCs). The process of establishing a hPSC laboratory can be divided into two equally important parts. One is completely administrative and includes developing protocols, seeking approval, and establishing reporting processes and documentation. The other part of establishing a hPSC laboratory involves the physical plant and includes design, equipment and personnel. Proper planning of laboratory operations and proper design of the physical layout of the stem cell laboratory so that meets the scope of planned operations is a major undertaking, but the time spent upfront will pay long-term returns in operational efficiency and effectiveness. A well-planned, organized, and properly equipped laboratory supports research activities by increasing efficiency and reducing lost time and wasted resources. PMID:21822863

  14. A definition study of the on-orbit assembly operations for the outboard photovoltaic power modules for Space Station Freedom. M.S. Thesis - Toledo Univ.

    NASA Technical Reports Server (NTRS)

    Sours, Thomas J.

    1989-01-01

    A concept is described for the assembly of the outboard PV modules for Space Station Freedom. Analysis of the on-orbit assembly operations was performed using CADAM design graphics software. A scenario for assembly using the various assembly equipment, as currently defined, is described in words, tables and illustrations. This work is part of ongoing studies in the area of space station assembly. The outboard PV module and the assembly equipment programs are all in definition and preliminary design phases. An input is provided to the design process of assembly equipment programs. It is established that the outboard PV module assembly operations can be performed using the assembly equipment currently planned in the Space Station Freedom Program.

  15. Analog to digital converter system for temperature monitoring -- B, C, D, DR, F, and H reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballowe, J.W.

    1961-03-23

    This document discusses a proposal that certain presently installed reactor process water outlet temperature data logging equipment in subject reactors to be replaced with new functionally simplified equipment of a more adequate design. The primary purpose of the proposed installation is to replace existing equipment which is obsolete and in three reactors is worn out to the point where the equipment is out of service frequently for periods of time up to 8 hours or more. The new equipment will provide reliable process tube temperature information for use in the functions of reactor control and product accountability. Based upon anticipatedmore » incremental production gains resulting from use of the new equipment, the amortization period for the project is calculated at 2.7 years.« less

  16. 40 CFR 63.1503 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... is contained. Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum..., or processes clean charge with reactive fluxing. Group 2 furnace means a furnace of any design that... section as follows: Add-on air pollution control device means equipment installed on a process vent that...

  17. 40 CFR 63.1503 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is contained. Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum..., or processes clean charge with reactive fluxing. Group 2 furnace means a furnace of any design that... section as follows: Add-on air pollution control device means equipment installed on a process vent that...

  18. 40 CFR 63.1503 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... is contained. Group 1 furnace means a furnace of any design that melts, holds, or processes aluminum..., or processes clean charge with reactive fluxing. Group 2 furnace means a furnace of any design that... section as follows: Add-on air pollution control device means equipment installed on a process vent that...

  19. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  20. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  1. 40 CFR 65.113 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be collected or captured. (c) Equipment design and operation. Each closed-purge, closed-loop, or... system; or (2) Collect and recycle the purged process fluid to a process; or (3) Be designed and operated to capture and transport all the purged process fluid to a control device that meets the requirements...

  2. 47 CFR 18.107 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... connection with industrial heating operations utilized in a manufacturing or production process. (e) Medical.... (c) Industrial, scientific, and medical (ISM) equipment. Equipment or appliances designed to generate... applications in the field of telecommunication. Typical ISM applications are the production of physical...

  3. Strategic planning toolset for reproduction of machinebuilding engines and equipment

    NASA Astrophysics Data System (ADS)

    Boyko, A. A.; Kukartsev, V. V.; Lobkov, K. Y.; Stupina, A. A.

    2018-05-01

    This article illustrates a replica of a dynamic model of machine-building equipment. The model was designed on the basis of a ‘system dynamics method’ including the Powersim Studio toolset. The given model provides the basis and delineates the reproduction process of equipment in its natural as well as appraisal forms. The presented model was employed as a tool to explore reproduction of a wide range of engines and equipment in machine-building industry. As a result of these experiments, a variety of reproducible options were revealed which include productive capacity and distribution of equipment among technology groups. The authors’ research concludes that the replica of the dynamic model designed by us has proved to be universal. This also opens the way for further research exploring a wide range of industrial equipment reproduction.

  4. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  5. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  6. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  7. Space processes for extended low-G testing

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.; Gorham, D. J.

    1973-01-01

    Results of an investigation of verifying the capabilities of space processes in ground based experiments at low-g periods are presented. Limited time experiments were conducted with the processes. A valid representation of the complete process cycle was achieved at low-g periods ranging from 40 to 390 seconds. A minimum equipment inventory, is defined. A modular equipment design, adopted to assure low cost and high program flexibility, is presented as well as procedures and data established for the synthesis and definition of dedicated and mixed rocket payloads.

  8. Advanced in-duct sorbent injection for SO{sub 2} control. Topical report No. 2, Subtask 2.2: Design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenhoover, W.A.; Stouffer, M.R.; Withum, J.A.

    1994-12-01

    The objective of this research project is to develop second-generation duct injection technology as a cost-effective SO{sub 2} control option for the 1990 Clean Air Act Amendments. Research is focused on the Advanced Coolside process, which has shown the potential for achieving the performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. In Subtask 2.2, Design Optimization, process improvement was sought by optimizing sorbent recycle and by optimizing process equipment for reduced cost. The pilot plant recycle testing showed that 90% SO{sub 2} removal could be achieved at sorbent utilizations up to 75%. This testing also showed thatmore » the Advanced Coolside process has the potential to achieve very high removal efficiency (90 to greater than 99%). Two alternative contactor designs were developed, tested and optimized through pilot plant testing; the improved designs will reduce process costs significantly, while maintaining operability and performance essential to the process. Also, sorbent recycle handling equipment was optimized to reduce cost.« less

  9. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  10. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Post Occupancy Evaluation of Educational Buildings and Equipment.

    ERIC Educational Resources Information Center

    Watson, Chris

    1997-01-01

    Details the post occupancy evaluation (POE) process for public buildings. POEs are used to improve design and optimize educational building and equipment use. The evaluation participants, the method used, the results and recommendations, model schools, and classroom alterations using POE are described. (9 references.) (RE)

  12. Research on the Mean Logistic Delay Time of the Development Phrass

    NASA Astrophysics Data System (ADS)

    Na, Hou; Yi, Li; Wang, Yi-Gang; Liu, Jun-jie; Bo, Zhang; Lv, Xue-Zhi

    MIDT is a key parameter affecting operational availability though equipment designing, operation and support management. In operation process, how to strengthen the support management, layout rationally supports resource, provide support resource of the equipment maintenance, in order to avoid or reduce support; ensure MLDT satisfied to Ao's requests. It's an urgently solved question that how to assort with the RMS of equipment.

  13. New Materials for Electric Drive Vehicles - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J. David

    This project was sponsored by the US DOE Global Initiatives for Proliferation Prevention. The object was for Ukrainian and US partners, including Argonne, AETC, and Dontech to develop special carbon materials and factory production equipment with the goal of making better car batteries to achieve DOE's goals for all-electric and plug-in hybrid electric vehicles. Carbon materials are used in designs for lithium-ion batteries and metal-air batteries, both leading contenders for future electric cars. Specifically, the collaborators planned to use the equipment derived from this project to develop a rechargeable battery system that will use the carbon materials produced by themore » innovative factory process equipment. The final outcome of the project was that the Ukrainian participants consisting of the Kharkov Institute of Physics and Technology (KIPT), the Institute of Gas of National Academy of Sciences of Ukraine and the Materials Research Center, Ltd. designed, built, tested and delivered 14 pieces of processing equipment for pilot scale carbon production lines at the AETC, Arlington Heights facilities. The pilot scale equipment will be used to process materials such as activated carbon, thermally expanded graphite and carbon coated nano-particles. The equipment was shipped from Ukraine to the United States and received by AETC on December 3, 2013. The equipment is on loan from Argonne, control # 6140. Plug-in hybrid electric vehicles (PHEV) and all-electric vehicles have already demostrated success in the U.S. as they begin to share the market with older hybrid electric designs. When the project was conceived, PHEV battery systems provided a ~40 mile driving range (2011 figures). DOE R&D targets increased this to >100 miles at reduced cost less than $250/kWh (2011 figures.) A 2016 Tesla model S has boasted 270 miles. The project object was to develop pilot-production line equipment for advanced hybrid battery system that achieves cycle life of 1000, an energy density of 280 Wh/kg and specific density of 600Wh/l. This project delivers factory equipment to produce these advanced battery materials.« less

  14. Crew interface specifications preparation for in-flight maintenance and stowage functions

    NASA Technical Reports Server (NTRS)

    Parker, F. W.; Carlton, B. E.

    1972-01-01

    The findings and data products developed during the Phase 2 crew interface specification study are presented. Five new NASA general specifications were prepared: operations location coding system for crew interfaces; loose equipment and stowage management requirements; loose equipment and stowage data base information requirements; spacecraft loose equipment stowage drawing requirements; and inflight stowage management data requirements. Additional data was developed defining inflight maintenance processes and related data concepts for inflight troubleshooting, remove/repair/replace and scheduled maintenance activities. The process of maintenance task and equipment definition during spacecraft design and development was also defined and related data concepts were identified for futher development into formal NASA specifications during future follow-on study phases of the contract.

  15. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979... contrivances designed for processing continuous web, strip, or wire that emit organic materials in the course... articles, machines, equipment, or other contrivances designed for processing a continuous web, strip, or...

  16. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979... contrivances designed for processing continuous web, strip, or wire that emit organic materials in the course... articles, machines, equipment, or other contrivances designed for processing a continuous web, strip, or...

  17. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979... contrivances designed for processing continuous web, strip, or wire that emit organic materials in the course... articles, machines, equipment, or other contrivances designed for processing a continuous web, strip, or...

  18. 40 CFR 52.254 - Organic solvent usage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Control Regions (the “Regions”), as described in 40 CFR part 81, dated July 1, 1979... contrivances designed for processing continuous web, strip, or wire that emit organic materials in the course... articles, machines, equipment, or other contrivances designed for processing a continuous web, strip, or...

  19. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analysis was continued for the HSC process (Hemlock Semiconductor Corporation) in which solar cell silicon is produced in a 1,000 MT/yr plant. Progress and status are reported for the primary engineering activities involved in the preliminary process engineering design of the plant base case conditions (96%), reaction chemistry (96%), process flow diagram (85%), material balance (85%), energy balance (60%), property data (60%), equipment design (40%), major equipment list (30%) and labor requirements (10%). Engineering design of the second distillation column (D-02, TCS column) in the process was completed. The design is based on a 97% recovery of the light key (TCS, trichlorosilane) in the distillate and a 97% recovery of the heavy key (TET, silicon tetrachloride) in the bottoms. At a reflux ratio of 2, the specified recovery of TCS and TET is achieved with 20 trays (equilibrium stages, N=20). Respective feed tray locations are 9, 12 and 15 (NF sub 1 = 9, NF sub 2 = 12,, and NF sub 3 = 15). A total condenser is used for the distillation which is conducted at a pressure of 90 psia.

  20. Innovated Conceptual Design of Loading Unloading Tool for Livestock at the Port

    NASA Astrophysics Data System (ADS)

    Mustakim, Achmad; Hadi, Firmanto

    2018-03-01

    The condition of loading and unloading process of livestock in a number of Indonesian ports doesn’t meet the principle of animal welfare, which makes cattle lose weight and injury when unloaded. Livestock loading and unloading is done by throwing cattle into the sea one by one, tying cattle hung with a sling strap and push the cattle to the berth directly. This process is against PP. 82 year 2000 on Article 47 and 55 about animal welfare. Innovation of loading and unloading tools design offered are loading and unloading design with garbarata. In the design of loading and unloading tools with garbarata, apply the concept of semi-horizontal hydraulic ladder that connects the ship and truck directly. This livestock unloading equipment design innovation is a combination of fire extinguisher truck design and bridge equipped with weightlifting equipment. In 10 years of planning garbarata, requires a total cost of IDR 321,142,921; gets benefits IDR 923,352,333; and BCR (Benefit-Cost Ratio) Value worth 2.88. BCR value >1 means the tool is feasible applied. The designs of this loading and unloading tools are estimated up to 1 hour faster than existing way. It can also minimize risks such as injury and also weight reduction livestock agencies significantly.

  1. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  2. Laser communication experiment. Volume 1: Design study report: Spacecraft transceiver. Part 2: Appendices

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The application of a carbon dioxide laser for optical communication with ATS satellites is discussed. The following elements of the laser communication equipment are reported: (1) operational ground equipment, (2) data acquisition plan, and (3) data processing, reduction, and analysis plan.

  3. 7 CFR 2902.31 - Greases.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... using soaps, polymers or other solids, or other thickeners. (2) Greases for which preferred procurement applies are: (i) Food grade greases. Lubricants that are designed for use on food-processing equipment as... parts and equipment in locations in which there is exposure of the lubricated part to food. (ii...

  4. 7 CFR 2902.31 - Greases.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... using soaps, polymers or other solids, or other thickeners. (2) Greases for which preferred procurement applies are: (i) Food grade greases. Lubricants that are designed for use on food-processing equipment as... parts and equipment in locations in which there is exposure of the lubricated part to food. (ii...

  5. 47 CFR 6.7 - Product design, development, and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Manufacturers and service providers shall evaluate the accessibility, usability, and compatibility of equipment... identify barriers to accessibility and usability as part of such a product design and development process...

  6. 47 CFR 6.7 - Product design, development, and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Manufacturers and service providers shall evaluate the accessibility, usability, and compatibility of equipment... identify barriers to accessibility and usability as part of such a product design and development process...

  7. 77 FR 31828 - Notice of Request for Extension of a Currently Approved Information Collection for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... equipment used in dairy, meat or poultry industries for evaluation regarding sanitary design and... Processed Dairy Products AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice and request for... of Manufactured or Processed Dairy Products, and the Certification of Sanitary Design and Fabrication...

  8. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  9. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  10. 42 CFR 421.210 - Designations of regional carriers to process claims for durable medical equipment, prosthetics...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Mississippi, Louisiana, Texas, Arkansas, Oklahoma, New Mexico, Colorado, Puerto Rico, and the Virgin Islands... criteria— (1) Timeliness of claim processing; (2) Cost per claim; (3) Claim processing quality; (4...

  11. 42 CFR 421.210 - Designations of regional carriers to process claims for durable medical equipment, prosthetics...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Mississippi, Louisiana, Texas, Arkansas, Oklahoma, New Mexico, Colorado, Puerto Rico, and the Virgin Islands... criteria— (1) Timeliness of claim processing; (2) Cost per claim; (3) Claim processing quality; (4...

  12. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, July 1--September 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-10-01

    The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less

  13. The application of statistically designed experiments to resistance spot welding

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Hales, Stephen J.

    1991-01-01

    State-of-the-art Resistance Spot Welding (RSW) equipment has the potential to permit realtime monitoring of operations through advances in computerized process control. In order to realize adaptive feedback capabilities, it is necessary to establish correlations among process variables, welder outputs, and weldment properties. The initial step toward achieving this goal must involve assessment of the effect of specific process inputs and the interactions among these variables on spot weld characteristics. This investigation evaluated these effects through the application of a statistically designed experiment to the RSW process. A half-factorial, Taguchi L sub 16 design was used to understand and refine a RSW schedule developed for welding dissimilar aluminum-lithium alloys of different thickness. The baseline schedule had been established previously by traditional trial and error methods based on engineering judgment and one-factor-at-a-time studies. A hierarchy of inputs with respect to each other was established, and the significance of these inputs with respect to experimental noise was determined. Useful insight was gained into the effect of interactions among process variables, particularly with respect to weldment defects. The effects of equipment related changes associated with disassembly and recalibration were also identified. In spite of an apparent decrease in equipment performance, a significant improvement in the maximum strength for defect-free welds compared to the baseline schedule was achieved.

  14. Development of a plan for automating integrated circuit processing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The operations analysis and equipment evaluations pertinent to the design of an automated production facility capable of manufacturing beam-lead CMOS integrated circuits are reported. The overall plan shows approximate cost of major equipment, production rate and performance capability, flexibility, and special maintenance requirements. Direct computer control is compared with supervisory-mode operations. The plan is limited to wafer processing operations from the starting wafer to the finished beam-lead die after separation etching. The work already accomplished in implementing various automation schemes, and the type of equipment which can be found for instant automation are described. The plan is general, so that small shops or large production units can perhaps benefit. Examples of major types of automated processing machines are shown to illustrate the general concepts of automated wafer processing.

  15. Architecture for distributed design and fabrication

    NASA Astrophysics Data System (ADS)

    McIlrath, Michael B.; Boning, Duane S.; Troxel, Donald E.

    1997-01-01

    We describe a flexible, distributed system architecture capable of supporting collaborative design and fabrication of semi-conductor devices and integrated circuits. Such capabilities are of particular importance in the development of new technologies, where both equipment and expertise are limited. Distributed fabrication enables direct, remote, physical experimentation in the development of leading edge technology, where the necessary manufacturing resources are new, expensive, and scarce. Computational resources, software, processing equipment, and people may all be widely distributed; their effective integration is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages is essential in order to achieve the realization of new technologies for specific product requirements. Our architecture leverages current vendor and consortia developments to define software interfaces and infrastructure based on existing and merging networking, CIM, and CAD standards. Process engineers and product designers access processing and simulation results through a common interface and collaborate across the distributed manufacturing environment.

  16. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    NASA Astrophysics Data System (ADS)

    Adkins, Harold E.; Bearden, Thomas E.

    The present transportation system for radioisotope thermoelectric generators and heater units is being developed to comply with all applicable U.S. DOT regulations, including a doubly-contained 'bell jar' concept for the required double-containment of plutonium. Modifications in handling equipment and procedures are entailed by this novel packaging design, and will affect high-capacity forklifts, overhead cranes, He-backfilling equipment, etc. Attention is given to the design constraints involved, and to the Federal procurement process.

  17. Semiautomated, Reproducible Batch Processing of Soy

    NASA Technical Reports Server (NTRS)

    Thoerne, Mary; Byford, Ivan W.; Chastain, Jack W.; Swango, Beverly E.

    2005-01-01

    A computer-controlled apparatus processes batches of soybeans into one or more of a variety of food products, under conditions that can be chosen by the user and reproduced from batch to batch. Examples of products include soy milk, tofu, okara (an insoluble protein and fiber byproduct of soy milk), and whey. Most processing steps take place without intervention by the user. This apparatus was developed for use in research on processing of soy. It is also a prototype of other soy-processing apparatuses for research, industrial, and home use. Prior soy-processing equipment includes household devices that automatically produce soy milk but do not automatically produce tofu. The designs of prior soy-processing equipment require users to manually transfer intermediate solid soy products and to press them manually and, hence, under conditions that are not consistent from batch to batch. Prior designs do not afford choices of processing conditions: Users cannot use previously developed soy-processing equipment to investigate the effects of variations of techniques used to produce soy milk (e.g., cold grinding, hot grinding, and pre-cook blanching) and of such process parameters as cooking times and temperatures, grinding times, soaking times and temperatures, rinsing conditions, and sizes of particles generated by grinding. In contrast, the present apparatus is amenable to such investigations. The apparatus (see figure) includes a processing tank and a jacketed holding or coagulation tank. The processing tank can be capped by either of two different heads and can contain either of two different insertable mesh baskets. The first head includes a grinding blade and heating elements. The second head includes an automated press piston. One mesh basket, designated the okara basket, has oblong holes with a size equivalent to about 40 mesh [40 openings per inch (.16 openings per centimeter)]. The second mesh basket, designated the tofu basket, has holes of 70 mesh [70 openings per inch (.28 openings per centimeter)] and is used in conjunction with the press-piston head. Supporting equipment includes a soy-milk heat exchanger for maintaining selected coagulation temperatures, a filter system for separating okara from other particulate matter and from soy milk, two pumps, and various thermocouples, flowmeters, level indicators, pressure sensors, valves, tubes, and sample ports

  18. Small Column Ion Exchange Design and Safety Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, T.; Rios-Armstrong, M.; Edwards, R.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streamsmore » for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and includes provisions for equipment maintenance including remote handling. The design includes a robust set of nuclear safety controls compliant with DOE Standard (STD)-1189, Integration of Safety into the Design Process. The controls cover explosions, spills, boiling, aerosolization, and criticality. Natural Phenomena Hazards (NPH) including seismic event, tornado/high wind, and wildland fire are considered. In addition, the SCIX process equipment was evaluated for impact to existing facility safety equipment including the waste tank itself. SCIX is an innovative program which leverages DOE's technology development capabilities to provide a basis for a successful field deployment.« less

  19. The Architecture Design of Detection and Calibration System for High-voltage Electrical Equipment

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, Y.; Yang, Y.; Gu, Ch; Yang, F.; Zou, L. D.

    2018-01-01

    With the construction of Material Quality Inspection Center of Shandong electric power company, Electric Power Research Institute takes on more jobs on quality analysis and laboratory calibration for high-voltage electrical equipment, and informationization construction becomes urgent. In the paper we design a consolidated system, which implements the electronic management and online automation process for material sampling, test apparatus detection and field test. In the three jobs we use QR code scanning, online Word editing and electronic signature. These techniques simplify the complex process of warehouse management and testing report transferring, and largely reduce the manual procedure. The construction of the standardized detection information platform realizes the integrated management of high-voltage electrical equipment from their networking, running to periodic detection. According to system operation evaluation, the speed of transferring report is doubled, and querying data is also easier and faster.

  20. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.

  1. Perspectives on the design of safer nanomaterials and manufacturing processes

    NASA Astrophysics Data System (ADS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-09-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  2. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  3. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  4. Improvements in the efficiency of turboexpanders in cryogenic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agahi, R.R.; Lin, M.C.; Ershaghi, B.

    1996-12-31

    Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.

  5. KSC-08pd0089

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd0092

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  7. KSC-08pd0087

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd0090

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician (right) adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  9. KSC-08pd0088

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians monitor equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  10. KSC-08pd0085

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician monitors equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  11. KSC-08pd0091

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, a technician adjusts equipment during testing of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  12. Anthropometric Procedures for Protective Equipment Sizing and Design

    PubMed Central

    Hsiao, Hongwei

    2015-01-01

    Objectives This article presented four anthropometric theories (univariate, bivariate/probability distribution, multivariate, and shape-based methods) for protective equipment design decisions. Background While the significance of anthropometric information for product design is well recognized, designers continue to face challenges in selecting efficient anthropometric data processing methods and translating the acquired information into effective product designs. Methods For this study, 100 farm tractor operators, 3,718 respirator users, 951 firefighters, and 816 civilian workers participated in four studies on the design of tractor roll-over protective structures (ROPS), respirator test panels, fire truck cabs, and fall-arrest harnesses, respectively. Their anthropometry and participant-equipment interfaces were evaluated. Results Study 1 showed a need to extend the 90-cm vertical clearance for tractor ROPS in the current industrial standards to 98.3 to 101.3 cm. Study 2 indicated that current respirator test panel would have excluded 10% of the male firefighter population; a systematic adjustment to the boundaries of test panel cells was suggested. Study 3 provided 24 principal component analysis-based firefighter body models to facilitate fire truck cab design. Study 4 developed an improved gender-based fall-arrest harness sizing scheme to supplant the current unisex system. Conclusions This article presented four anthropometric approaches and a six-step design paradigm for ROPS, respirator test panel, fire truck cab, and fall-arrest harness applications, which demonstrated anthropometric theories and practices for defining protective equipment fit and sizing schemes. Applications The study provided a basis for equipment designers, standards writers, and industry manufacturers to advance anthropometric applications for product design and improve product efficacy. PMID:23516791

  13. PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.

    2009-12-04

    Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes.more » The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.« less

  14. GREENSCOPE Technical User’s Guide

    EPA Pesticide Factsheets

    GREENSCOPE’s methodology has been developed and its software tool designed such that it can be applied to an entire process, to a piece of equipment or process unit, or at the investigatory bench scale.

  15. 40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process flow diagram) of the process in which the materials are burned, highlighting the type, design, and operation of the equipment used in this process. (4) A description (including a process flow diagram) of the...

  16. 40 CFR 60.2558 - What if a chemical recovery unit is not listed in § 60.2555(n)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process flow diagram) of the process in which the materials are burned, highlighting the type, design, and operation of the equipment used in this process. (4) A description (including a process flow diagram) of the...

  17. Fluid dynamics simulation for design on sludge drying equipment

    NASA Astrophysics Data System (ADS)

    Li, Shuiping; Liang, Wang; Kai, Zhang

    2017-10-01

    Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.

  18. Use of a Modern Polymerization Pilot-Plant for Undergraduate Control Projects.

    ERIC Educational Resources Information Center

    Mendoza-Bustos, S. A.; And Others

    1991-01-01

    Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)

  19. SKYLAB (SL)-3 - EXPERIMENT HARDWARE

    NASA Image and Video Library

    1973-11-08

    S74-19675 (1974) --- Medium close-up view of the M512 materials processing equipment storage assembly and the M518 electric furnace in the Multiple Docking Adapter (MDA), one of the primary elements of the Skylab space station. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Photo credit: NASA

  20. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  1. Use of Computational Fluid Dynamics for improving freeze-dryers design and process understanding. Part 1: Modelling the lyophilisation chamber.

    PubMed

    Barresi, Antonello A; Rasetto, Valeria; Marchisio, Daniele L

    2018-05-15

    This manuscript shows how computational models, mainly based on Computational Fluid Dynamics (CFD), can be used to simulate different parts of an industrial freeze-drying equipment and to properly design them; in particular, the freeze-dryer chamber and the duct connecting the chamber with the condenser, with the valves and vanes eventually present are analysed in this work. In Part 1, it will be shown how CFD can be employed to improve specific designs, to perform geometry optimization, to evaluate different design choices and how it is useful to evaluate the effect on product drying and batch variance. Such an approach allows an in-depth process understanding and assessment of the critical aspects of lyophilisation. This can be done by running either steady-state or transient simulations with imposed sublimation rates or with multi-scale approaches. This methodology will be demonstrated on freeze-drying equipment of different sizes, investigating the influence of the equipment geometry and shelf inter-distance. The effect of valve type (butterfly and mushroom) and shape on duct conductance and critical flow conditions will be instead investigated in Part 2. Copyright © 2018. Published by Elsevier B.V.

  2. Optimizing longwall mine layouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minkel, M.J.

    1996-12-31

    Before spending the time to design an underground mine in detail, the mining engineer should be assured of the economic viability of the location of the layout. This has historically been a trial-and-error, iterative process. Traditional underground mine planning usually bases the layout on the geological characteristics of a deposit such as minimum seam height, quality, and the absence of faults. Whether one attempts to make a decision manually. or use traditional mine planning software, the process works something like this: First you build geological model. Then you impose a {open_quotes}best guess{close_quotes} as to which geological layers will become partmore » of the mined product, or will influence mining. Next you place your design where you believe is the best location to make a mine. Then you select equipment which you believe will cost-effectively mine the area. Finally, you schedule your equipment selection through the design over the mine life, run financial analyses and see if the rate of return is acceptable. If the NPV is acceptable, the design is accepted. If the NPV is not acceptable, the engineer has to restart the cycle of redesigning the layout, rescheduling the equipment, and restudying the economics again.« less

  3. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  4. Hanford spent nuclear fuel hot conditioning system test procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, K.J.

    1997-09-16

    This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.

  5. Normal accidents: human error and medical equipment design.

    PubMed

    Dain, Steven

    2002-01-01

    High-risk systems, which are typical of our technologically complex era, include not just nuclear power plants but also hospitals, anesthesia systems, and the practice of medicine and perfusion. In high-risk systems, no matter how effective safety devices are, some types of accidents are inevitable because the system's complexity leads to multiple and unexpected interactions. It is important for healthcare providers to apply a risk assessment and management process to decisions involving new equipment and procedures or staffing matters in order to minimize the residual risks of latent errors, which are amenable to correction because of the large window of opportunity for their detection. This article provides an introduction to basic risk management and error theory principles and examines ways in which they can be applied to reduce and mitigate the inevitable human errors that accompany high-risk systems. The article also discusses "human factor engineering" (HFE), the process which is used to design equipment/ human interfaces in order to mitigate design errors. The HFE process involves interaction between designers and endusers to produce a series of continuous refinements that are incorporated into the final product. The article also examines common design problems encountered in the operating room that may predispose operators to commit errors resulting in harm to the patient. While recognizing that errors and accidents are unavoidable, organizations that function within a high-risk system must adopt a "safety culture" that anticipates problems and acts aggressively through an anonymous, "blameless" reporting mechanism to resolve them. We must continuously examine and improve the design of equipment and procedures, personnel, supplies and materials, and the environment in which we work to reduce error and minimize its effects. Healthcare providers must take a leading role in the day-to-day management of the "Perioperative System" and be a role model in promoting a culture of safety in their organizations.

  6. Hynol Process Engineering: Process Configuration, Site Plan, and Equipment Design

    DTIC Science & Technology

    1996-02-01

    feed stock. Compared with other methanol production processes, direct emissions of carbon dioxide can be substantially reduced by using the Hynol...A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the ...Hynol process. The plant is being designed to convert 50 lb./hr of biomass to methanol. The biomass consists of wood, and natural gas is used as a co

  7. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  8. Chemical Equilibrium And Transport (CET)

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.

    1991-01-01

    Powerful, machine-independent program calculates theoretical thermodynamic properties of chemical systems. Aids in design of compressors, turbines, engines, heat exchangers, and chemical processing equipment.

  9. 40 CFR 60.482-2 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; or (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas... in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect failure of...) Designate the visual indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph...

  10. 40 CFR 60.482-2 - Standards: Pumps in light liquid service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; or (ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas... in VOC service. (3) Each barrier fluid system is equipped with a sensor that will detect failure of...) Designate the visual indications of liquids dripping as a leak. (5)(i) Each sensor as described in paragraph...

  11. The efficiency evaluation of support vibration isolation with mechanic inertial motion converter for vibroactive process equipment

    NASA Astrophysics Data System (ADS)

    Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.

    2017-08-01

    This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.

  12. Payload transportation system study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A standard size set of shuttle payload transportation equipment was defined that will substantially reduce the cost of payload transportation and accommodate a wide range of payloads with minimum impact on payload design. The system was designed to accommodate payload shipments between the level 4 payload integration sites and the launch site during the calendar years 1979-1982. In addition to defining transportation multi-use mission support equipment (T-MMSE) the mode of travel, prime movers, and ancillary equipment required in the transportation process were also considered. Consistent with the STS goals of low cost and the use of standardized interfaces, the transportation system was designed to commercial grade standards and uses the payload flight mounting interfaces for transportation. The technical, cost, and programmatic data required to permit selection of a baseline system of MMSE for intersite movement of shuttle payloads were developed.

  13. Environmental Engineering Unit Operations and Unit Processes Laboratory Manual.

    ERIC Educational Resources Information Center

    O'Connor, John T., Ed.

    This manual was prepared for the purpose of stimulating the development of effective unit operations and unit processes laboratory courses in environmental engineering. Laboratory activities emphasizing physical operations, biological, and chemical processes are designed for various educational and equipment levels. An introductory section reviews…

  14. A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2010-01-01

    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed

  15. Zero-G life support for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kolodney, Matthew; Dall-Bauman, L.

    1992-01-01

    Optimal design of spacecraft environmental control and life support systems (ECLSS) for long duration missions requires an understanding of microgravity and its long-term influence on ECLSS performance characteristics. This understanding will require examination of the fundamental processes associated with air revitalization and water recovery in a microgravity environment. Short term testing can be performed on NASA's reduced gravity aircraft (a KC-135), but longer tests will need to be conducted on the shuttle or Space Station Freedom. Conceptual designs have been prepared for ECLSS test beds that will allow extended testing of equipment under microgravity conditions. Separate designs have been formulated for air revitalization and water recovery test beds. In order to allow testing of a variety of hardware with minimal alteration of the beds themselves, the designs include storage tanks, plumbing, and limited instrumentation that would be expected to be common to all air (or water) treatment equipment of interest. In the interest of minimizing spacecraft/test bed interface requirements, the beds are designed to recycle process fluids to the greatest extent possible. In most cases, only cooling water and power interfaces are required. A volume equal to that of two SSF lockers was allowed for each design. These bed dimensions would limit testing to equipment with a 0.5- to 1.5-person-equivalent throughput. The mass, volume, and power requirements for the air revitalization test bed are estimated at 125-280 kg, 1.0- 1.4 cubic meters, and 170 min 1070 W. Corresponding ranges for the water recovery test bed are 325-375 kg, 1.0- 1.1 cubic meters, and 350-850 W. These figures include individual test articles and accompanying hardware as well as the tanks, plumbing, and instrumentation included in the bed designs. Process fluid weight (i.e., water weight) is also included.

  16. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogenmore » from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.« less

  17. Design of a compact low-power human-computer interaction equipment for hand motion

    NASA Astrophysics Data System (ADS)

    Wu, Xianwei; Jin, Wenguang

    2017-01-01

    Human-Computer Interaction (HCI) raises demand of convenience, endurance, responsiveness and naturalness. This paper describes a design of a compact wearable low-power HCI equipment applied to gesture recognition. System combines multi-mode sense signals: the vision sense signal and the motion sense signal, and the equipment is equipped with the depth camera and the motion sensor. The dimension (40 mm × 30 mm) and structure is compact and portable after tight integration. System is built on a module layered framework, which contributes to real-time collection (60 fps), process and transmission via synchronous confusion with asynchronous concurrent collection and wireless Blue 4.0 transmission. To minimize equipment's energy consumption, system makes use of low-power components, managing peripheral state dynamically, switching into idle mode intelligently, pulse-width modulation (PWM) of the NIR LEDs of the depth camera and algorithm optimization by the motion sensor. To test this equipment's function and performance, a gesture recognition algorithm is applied to system. As the result presents, general energy consumption could be as low as 0.5 W.

  18. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    PubMed

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  19. Applications of Modeling and Simulation for Flight Hardware Processing at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Marshall, Jennifer L.

    2010-01-01

    The Boeing Design Visualization Group (DVG) is responsible for the creation of highly-detailed representations of both on-site facilities and flight hardware using computer-aided design (CAD) software, with a focus on the ground support equipment (GSE) used to process and prepare the hardware for space. Throughout my ten weeks at this center, I have had the opportunity to work on several projects: the modification of the Multi-Payload Processing Facility (MPPF) High Bay, weekly mapping of the Space Station Processing Facility (SSPF) floor layout, kinematics applications for the Orion Command Module (CM) hatches, and the design modification of the Ares I Upper Stage hatch for maintenance purposes. The main goal of each of these projects was to generate an authentic simulation or representation using DELMIA V5 software. This allowed for evaluation of facility layouts, support equipment placement, and greater process understanding once it was used to demonstrate future processes to customers and other partners. As such, I have had the opportunity to contribute to a skilled team working on diverse projects with a central goal of providing essential planning resources for future center operations.

  20. Corps of Engineers National Automation Team (CENAT) Technology Transfer Test Bed (T(3)B) Demonstration of the Design 4D Program

    DTIC Science & Technology

    1989-11-01

    other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training

  1. 46 CFR 164.019-9 - Procedure for acceptance of revisions of design, process, or materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Procedure for acceptance of revisions of design, process, or materials. 164.019-9 Section 164.019-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-9 Procedure fo...

  2. 46 CFR 164.019-9 - Procedure for acceptance of revisions of design, process, or materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Procedure for acceptance of revisions of design, process, or materials. 164.019-9 Section 164.019-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-9 Procedure fo...

  3. 46 CFR 164.019-9 - Procedure for acceptance of revisions of design, process, or materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Procedure for acceptance of revisions of design, process, or materials. 164.019-9 Section 164.019-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-9 Procedure fo...

  4. Introduced Species: Can We Balance Human Systems with Natural Processes? Global Environmental Change Series.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Arlington, VA.

    The seven activities contained in this book are designed to equip students (grades 9-12) with scientific tools and skills for understanding what introduced species are, how they impact natural processes and human systems, and what may be done about them. The activities are designed to link the biology and ecology of introduced species with…

  5. Technology Demonstration Summary, Chemfix Solidification/Stabilization Process, Clackamas, Oregon

    EPA Science Inventory

    ChemfIx's* patented stabilization/solidification technology was demonstrated at the Portable Equipment Salvage Company (PESC) site in Clackamas, Oregon, as part of the Superfund Innovative Technology Evaluation (SITE) program. The Chemfix process is designed to solidify and sta...

  6. Three dimensional geometric modeling of processing-tomatoes

    USDA-ARS?s Scientific Manuscript database

    Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...

  7. Design and process aspects of laboratory scale SCF particle formation systems.

    PubMed

    Vemavarapu, Chandra; Mollan, Matthew J; Lodaya, Mayur; Needham, Thomas E

    2005-03-23

    Consistent production of solid drug materials of desired particle and crystallographic morphologies under cGMP conditions is a frequent challenge to pharmaceutical researchers. Supercritical fluid (SCF) technology gained significant attention in pharmaceutical research by not only showing a promise in this regard but also accommodating the principles of green chemistry. Given that this technology attained commercialization in coffee decaffeination and in the extraction of hops and other essential oils, a majority of the off-the-shelf SCF instrumentation is designed for extraction purposes. Only a selective few vendors appear to be in the early stages of manufacturing equipment designed for particle formation. The scarcity of information on the design and process engineering of laboratory scale equipment is recognized as a significant shortcoming to the technological progress. The purpose of this article is therefore to provide the information and resources necessary for startup research involving particle formation using supercritical fluids. The various stages of particle formation by supercritical fluid processing can be broadly classified into delivery, reaction, pre-expansion, expansion and collection. The importance of each of these processes in tailoring the particle morphology is discussed in this article along with presenting various alternatives to perform these operations.

  8. Co-Simulation for Advanced Process Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen E. Zitney

    2009-01-01

    Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelitymore » process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.« less

  9. Tracking reliability for space cabin-borne equipment in development by Crow model.

    PubMed

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  10. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of the design of the equipment can make such operational effort unnecessary. Finally, this paper addresses processes of tying resources to a timeline of tasks performed in ground operations: this enables various overarching analyses, e.g., a summarization of all resources used for a given piece of equipment. Quality Control of data will also be discussed: importing and exporting data from product teams, including spreadsheets-todatabase or data exchange between databases.

  11. Onsite biological treatment of an industrial landfill leachate: Microbiological and engineering considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skladany, G.J.

    Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less

  12. Experience with case tools in the design of process-oriented software

    NASA Astrophysics Data System (ADS)

    Novakov, Ognian; Sicard, Claude-Henri

    1994-12-01

    In Accelerator systems such as the CERN PS complex, process equipment has a life time which may exceed the typical life cycle of its related software. Taking into account the variety of such equipment, it is important to keep the analysis and design of the software in a system-independent form. This paper discusses the experience gathered in using commercial CASE tools for analysis, design and reverse engineering of different process-oriented software modules, with a principal emphasis on maintaining the initial analysis in a standardized form. Such tools have been in existence for several years, but this paper shows that they are not fully adapted to our needs. In particular, the paper stresses the problems of integrating such a tool into an existing data-base-dependent development chain, the lack of real-time simulation tools and of Object-Oriented concepts in existing commercial packages. Finally, the paper gives a broader view of software engineering needs in our particular context.

  13. Floor vibration evaluations for medical facilities

    NASA Astrophysics Data System (ADS)

    Himmel, Chad N.

    2003-10-01

    The structural floor design for new medical facilities is often selected early in the design phase and in renovation projects, the floor structure already exists. Because the floor structure can often have an influence on the location of vibration sensitive medical equipment and facilities, it is becoming necessary to identify the best locations for equipment and facilities early in the design process. Even though specific criteria for vibration-sensitive uses and equipment may not always be available early in the design phase, it should be possible to determine compatible floor structures for planned vibration-sensitive uses by comparing conceptual layouts with generic floor vibration criteria. Relatively simple evaluations of planned uses and generic criteria, combined with on-site vibration and noise measurements early in design phase, can significantly reduce future design problems and expense. Concepts of evaluation procedures and analyses will be presented in this paper. Generic floor vibration criteria and appropriate parameters to control resonant floor vibration and noise will be discussed for typical medical facilities and medical research facilities. Physical, economic, and logistical limitations that affect implementation will be discussed through case studies.

  14. Optimizing process and equipment efficiency using integrated methods

    NASA Astrophysics Data System (ADS)

    D'Elia, Michael J.; Alfonso, Ted F.

    1996-09-01

    The semiconductor manufacturing industry is continually riding the edge of technology as it tries to push toward higher design limits. Mature fabs must cut operating costs while increasing productivity to remain profitable and cannot justify large capital expenditures to improve productivity. Thus, they must push current tool production capabilities to cut manufacturing costs and remain viable. Working to continuously improve mature production methods requires innovation. Furthermore, testing and successful implementation of these ideas into modern production environments require both supporting technical data and commitment from those working with the process daily. At AMD, natural work groups (NWGs) composed of operators, technicians, engineers, and supervisors collaborate to foster innovative thinking and secure commitment. Recently, an AMD NWG improved equipment cycle time on the Genus tungsten silicide (WSi) deposition system. The team used total productive manufacturing (TPM) to identify areas for process improvement. Improved in-line equipment monitoring was achieved by constructing a real time overall equipment effectiveness (OEE) calculator which tracked equipment down, idle, qualification, and production times. In-line monitoring results indicated that qualification time associated with slow Inspex turn-around time and machine downtime associated with manual cleans contributed greatly to reduced availability. Qualification time was reduced by 75% by implementing a new Inspex monitor pre-staging technique. Downtime associated with manual cleans was reduced by implementing an in-situ plasma etch back to extend the time between manual cleans. A designed experiment was used to optimize the process. Time between 18 hour manual cleans has been improved from every 250 to every 1500 cycles. Moreover defect density realized a 3X improvement. Overall, the team achieved a 35% increase in tool availability. This paper details the above strategies and accomplishments.

  15. Trends and problems in development of the power plants electrical part

    NASA Astrophysics Data System (ADS)

    Gusev, Yu. P.

    2015-03-01

    The article discusses some problems relating to development of the electrical part of modern nuclear and thermal power plants, which are stemming from the use of new process and electrical equipment, such as gas turbine units, power converters, and intellectual microprocessor devices in relay protection and automated control systems. It is pointed out that the failure rates of electrical equipment at Russian and foreign power plants tend to increase. The ongoing power plant technical refitting and innovative development processes generate the need to significantly widen the scope of research works on the electrical part of power plants and rendering scientific support to works on putting in use innovative equipment. It is indicated that one of main factors causing the growth of electrical equipment failures is that some of components of this equipment have insufficiently compatible dynamic characteristics. This, in turn may be due to lack or obsolescence of regulatory documents specifying the requirements for design solutions and operation of electric power equipment that incorporates electronic and microprocessor control and protection devices. It is proposed to restore the system of developing new and updating existing departmental regulatory technical documents that existed in the 1970s, one of the fundamental principles of which was placing long-term responsibility on higher schools and leading design institutions for rendering scientific-technical support to innovative development of components and systems forming the electrical part of power plants. This will make it possible to achieve lower failure rates of electrical equipment and to steadily improve the competitiveness of the Russian electric power industry and energy efficiency of generating companies.

  16. The Design of Software for Three-Phase Induction Motor Test System

    NASA Astrophysics Data System (ADS)

    Haixiang, Xu; Fengqi, Wu; Jiai, Xue

    2017-11-01

    The design and development of control system software is important to three-phase induction motor test equipment, which needs to be completely familiar with the test process and the control procedure of test equipment. In this paper, the software is developed according to the national standard (GB/T1032-2005) about three-phase induction motor test method by VB language. The control system and data analysis software and the implement about motor test system are described individually, which has the advantages of high automation and high accuracy.

  17. Lunar-base construction equipment and methods evaluation

    NASA Technical Reports Server (NTRS)

    Boles, Walter W.; Ashley, David B.; Tucker, Richard L.

    1993-01-01

    A process for evaluating lunar-base construction equipment and methods concepts is presented. The process is driven by the need for more quantitative, systematic, and logical methods for assessing further research and development requirements in an area where uncertainties are high, dependence upon terrestrial heuristics is questionable, and quantitative methods are seldom applied. Decision theory concepts are used in determining the value of accurate information and the process is structured as a construction-equipment-and-methods selection methodology. Total construction-related, earth-launch mass is the measure of merit chosen for mathematical modeling purposes. The work is based upon the scope of the lunar base as described in the National Aeronautics and Space Administration's Office of Exploration's 'Exploration Studies Technical Report, FY 1989 Status'. Nine sets of conceptually designed construction equipment are selected as alternative concepts. It is concluded that the evaluation process is well suited for assisting in the establishment of research agendas in an approach that is first broad, with a low level of detail, followed by more-detailed investigations into areas that are identified as critical due to high degrees of uncertainty and sensitivity.

  18. Automated space processing payloads study. Volume 2, book 1: Technical report. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The extent was investigated to which experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts that make extensive use of automation technology are defined. Hardware requirements for each experiment were established and tabulated, and investigations of applicable existing hardware were documented. The capabilities and characteristics of industrial automation equipment, controls, and techniques are presented in the form of a summary of applicable equipment characteristics in three basic mutually-supporting formats. Facilities for performing groups of experiments are defined along with four levitation groups and three furnace groups; major hardware elements required to implement them were identified. A conceptual design definition of ten different automated processing facilities is presented along with the specific equipment to implement each facility and the design layouts of the different units. Constraints and packaging, weight, and power requirements for six payloads postulated for shuttle missions in the 1979 to 1982 time period were examined.

  19. Signal processing and display interface studies. [performance tests - design analysis/equipment specifications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.

  20. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  1. A Selected Bibliography on Microbiological Laboratory Design.

    ERIC Educational Resources Information Center

    Laboratory Design Notes, 1967

    1967-01-01

    Reference sources on microbiological laboratory design are cited. Subjects covered include--(1) policies and general requirements, (2) ventilated cabinets, (3) animal isolation equipment, (4) air handling, ventilation, and filtration, (5) germicidal ultraviolet irradiation, (6) aerosol test facilities, (7) process production of microorganisms, and…

  2. Equipment management user's handbook for property custodians

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The NASA Equipment Management User's Handbook for Property Custodians is issued as an instructional guide for personnel designated as property custodians and technical personnel involved in the acquisition, management, and use of NASA-owned equipment. This handbook provides general information and basic operational procedures for processing equipment transactions through the agency-wide NASA Equipment Management System (NEMS). Each NASA installation must prepare supplementary instructions for local requirements beyond the scope of NASA-wide policies and procedures contained herein, or as specified for local implementation in NHB 4200.1, 'NASA Equipment Management Manual.' NHB 4200.1 sets forth policy, uniform performance standards, and procedural guidance to NASA personnel for the acquisition, management, and use of NASA-owned equipment. This handbook is a controlled document, issued in loose-leaf form and revised by page changes. Additional copies for internal use may be obtained through normal distribution.

  3. 49 CFR 178.706 - Standards for rigid plastic IBCs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than production residues or regrind from the same manufacturing process may be used in the manufacture... those used in the manufacture of the tested design type, retesting may be omitted if changes in the... types are designated: (1) 11H1 fitted with structural equipment designed to withstand the whole load...

  4. Master Classrooms: Classroom Design with Technology in Mind.

    ERIC Educational Resources Information Center

    Conway, Kathryn

    Technology is changing the classroom requiring new design features and considerations to make the classroom flexible and interactive with the teaching process. The design of a Master Classroom, a product of the Classroom Improvement Project at the University of North Carolina at Chapel Hill, is described. These classrooms are specially-equipped to…

  5. Military applications of emission and susceptibility data

    NASA Astrophysics Data System (ADS)

    Kohlbacher, Howard; Walker, William

    A basic design consideration for new military communications-electronics (C-E) equipment is that it be electromagnetically compatible with the environment in which it will operate. A military standard (MIL-STD-461B) describes the design requirements for the control of the unintentional electromagnetic emission and susceptibility characteristics of electronic equipment and subsystems designed or procured by the US Department of Defense. For new systems which fail the test standards of MIL-STD-461B with regard to radiated susceptibility (RSO3) or radiated emissions (RE02), a decision must be made to fix the new system or to field it without a fix. A procedure to aid in the decision process is outlined. The minimum separation distances required between a failed test system and other C-E equipment in its environment to avoid interference are determined. If this distance is operationally acceptable, the failed unit may be considered to be operationally compatible with its electromagnetic environment.

  6. Heat Treatment of Iron-Carbon Alloys in a Magnetic Field (Phase 2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael

    Thermomagnetic processing was shown to shift the phase transformation temperatures and therefore microstructural evolution in the high performance engine valve spring 9254 steel alloy by applying a high magnetic field during cooling. These effects would be anticipated to improve performance such as high cycle fatigue as demonstrated in prior projects. Thermomagnetic processing of gears and crank shafts was constrained by the size of the prototype equipment currently available at ORNL. However, the commercial procurement viability of production scale 9-Tesla, 16-inch diameter bore thermomagnetic processing equipment for truck idler gears up to ~11-inch diameter and potential crank shaft applications was shown,more » as multiple superconducting magnet manufacturing companies (in conjunction with an induction heat treating company, AjaxTOCCO Magnethermic) offered cryogen-free or cryocooler equipment designs to Cummins.« less

  7. Offering integrated medical equipment management in an application service provider model.

    PubMed

    Cruz, Antonio Miguel; Barr, Cameron; Denis, Ernesto Rodríguez

    2007-01-01

    With the advancement of medical technology and thus the complexity of the equipment under their care, clinical engineering departments (CEDs) must continue to make use of computerized tools in the management of departmental activities. Authors of this paper designed, installed, and implemented an application service provider (ASP) model at the laboratory level to offer value added management tools in an online format to CEDs. The project, designed to investigate how to help meet demands across multiple healthcare organizations and provide a means of access for organizations that otherwise might not be able to take advantage of the benefits of those tools, has been well received. Ten hospitals have requested the service, and five of those are ready to proceed with the implementation of the ASP. With the proposed centralized system architecture, the model has shown promise in reducing network infrastructure labor and equipment costs, benchmarking of equipment performance indicators, and developing avenues for proper and timely problem reporting. The following is a detailed description of the design process from conception to implementation of the five main software modules and supporting system architecture.

  8. Automated processing of forensic casework samples using robotic workstations equipped with nondisposable tips: contamination prevention.

    PubMed

    Frégeau, Chantal J; Lett, C Marc; Elliott, Jim; Yensen, Craig; Fourney, Ron M

    2008-05-01

    An automated process has been developed for the analysis of forensic casework samples using TECAN Genesis RSP 150/8 or Freedom EVO liquid handling workstations equipped exclusively with nondisposable tips. Robot tip cleaning routines have been incorporated strategically within the DNA extraction process as well as at the end of each session. Alternative options were examined for cleaning the tips and different strategies were employed to verify cross-contamination. A 2% sodium hypochlorite wash (1/5th dilution of the 10.8% commercial bleach stock) proved to be the best overall approach for preventing cross-contamination of samples processed using our automated protocol. The bleach wash steps do not adversely impact the short tandem repeat (STR) profiles developed from DNA extracted robotically and allow for major cost savings through the implementation of fixed tips. We have demonstrated that robotic workstations equipped with fixed pipette tips can be used with confidence with properly designed tip washing routines to process casework samples using an adapted magnetic bead extraction protocol.

  9. Automated and comprehensive link engineering supporting branched, ring, and mesh network topologies

    NASA Astrophysics Data System (ADS)

    Farina, J.; Khomchenko, D.; Yevseyenko, D.; Meester, J.; Richter, A.

    2016-02-01

    Link design, while relatively easy in the past, can become quite cumbersome with complex channel plans and equipment configurations. The task of designing optical transport systems and selecting equipment is often performed by an applications or sales engineer using simple tools, such as custom Excel spreadsheets. Eventually, every individual has their own version of the spreadsheet as well as their own methodology for building the network. This approach becomes unmanageable very quickly and leads to mistakes, bending of the engineering rules and installations that do not perform as expected. We demonstrate a comprehensive planning environment, which offers an efficient approach to unify, control and expedite the design process by controlling libraries of equipment and engineering methodologies, automating the process and providing the analysis tools necessary to predict system performance throughout the system and for all channels. In addition to the placement of EDFAs and DCEs, performance analysis metrics are provided at every step of the way. Metrics that can be tracked include power, CD and OSNR, SPM, XPM, FWM and SBS. Automated routine steps assist in design aspects such as equalization, padding and gain setting for EDFAs, the placement of ROADMs and transceivers, and creating regeneration points. DWDM networks consisting of a large number of nodes and repeater huts, interconnected in linear, branched, mesh and ring network topologies, can be designed much faster when compared with conventional design methods. Using flexible templates for all major optical components, our technology-agnostic planning approach supports the constant advances in optical communications.

  10. Manufacturing engineering: Principles for optimization

    NASA Astrophysics Data System (ADS)

    Koenig, Daniel T.

    Various subjects in the area of manufacturing engineering are addressed. The topics considered include: manufacturing engineering organization concepts and management techniques, factory capacity and loading techniques, capital equipment programs, machine tool and equipment selection and implementation, producibility engineering, methods, planning and work management, and process control engineering in job shops. Also discussed are: maintenance engineering, numerical control of machine tools, fundamentals of computer-aided design/computer-aided manufacture, computer-aided process planning and data collection, group technology basis for plant layout, environmental control and safety, and the Integrated Productivity Improvement Program.

  11. Microwave heating: Industrial applications. Citations from the Engineering Index data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-06-01

    Industrialized uses of microwave heating are covered in 225 citations, 22 of which are new entries. The topics include industrial heating and drying for processes such as paper drying, vulcanization, and textile processing. Equipment design and safety are also cited.

  12. Panel discussion summary: do we need a revolution in design and process integration to enable sub-100-nm technology nodes?

    NASA Astrophysics Data System (ADS)

    Grobman, Warren D.

    2002-07-01

    Dramatically increasing mask set costs, long-loop design-fabrication iterations, and lithography of unprecedented complexity and cost threaten to disrupt time-accepted IC industry progression as described by Moore"s Law. Practical and cost-effective IC manufacturing below the 100nm technology node presents significant and unique new challenges spanning multiple disciplines and overlapping traditionally separable components of the design-through-chip manufacturing flow. Lithographic and other process complexity is compounded by design, mask, and infrastructure technologies, which do not sufficiently account for increasingly stringent and complex manufacturing issues. Deep subwavelength and atomic-scale process and device physics effects increasingly invade and impact the design flow strongly at a time when the pressures for increased design productivity are escalating at a superlinear rate. Productivity gaps, both upstream in design and downstream in fabrication, are anticipated by many to increase due to dramatic increases in inherent complexity of the design-to-chip equation. Furthermore, the cost of lithographic equipment is increasing at an aggressive compound growth rate so large that we can no longer economically derive the benefit of the increased number of circuits per unit area unless we extend the life of lithographic equipment for more generations, and deeper into the subwavelength regime. Do these trends unambiguously lead to the conclusion that we need a revolution in design and design-process integration to enable the sub-100nm nodes? Or is such a premise similar to other well-known predictions of technology brick walls that never came true?

  13. A Scale-up Approach for Film Coating Process Based on Surface Roughness as the Critical Quality Attribute.

    PubMed

    Yoshino, Hiroyuki; Hara, Yuko; Dohi, Masafumi; Yamashita, Kazunari; Hakomori, Tadashi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-01

    Scale-up approaches for film coating process have been established for each type of film coating equipment from thermodynamic and mechanical analyses for several decades. The objective of the present study was to establish a versatile scale-up approach for film coating process applicable to commercial production that is based on critical quality attribute (CQA) using the Quality by Design (QbD) approach and is independent of the equipment used. Experiments on a pilot scale using the Design of Experiment (DoE) approach were performed to find a suitable CQA from surface roughness, contact angle, color difference, and coating film properties by terahertz spectroscopy. Surface roughness was determined to be a suitable CQA from a quantitative appearance evaluation. When surface roughness was fixed as the CQA, the water content of the film-coated tablets was determined to be the critical material attribute (CMA), a parameter that does not depend on scale or equipment. Finally, to verify the scale-up approach determined from the pilot scale, experiments on a commercial scale were performed. The good correlation between the surface roughness (CQA) and the water content (CMA) identified at the pilot scale was also retained at the commercial scale, indicating that our proposed method should be useful as a scale-up approach for film coating process.

  14. Bidirectional power converter control electronics

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.

    1987-01-01

    The object of this program was to design, build, test, and deliver a set of control electronics suitable for control of bidirectional resonant power processing equipment of the direct output type. The program is described, including the technical background, and results discussed. Even though the initial program tested only the logic outputs, the hardware was subsequently tested with high-power breadboard equipment, and in the testbed of NASA contract NAS3-24399. The completed equipment is now operating as part of the Space Station Power System Test Facility at NASA Lewis Research Center.

  15. Redefinition of Space and Equipment in the Kindergarten and Involving the Children in the Process of Designing.

    ERIC Educational Resources Information Center

    Bika, Anastasia

    This research examined the extent to which 2.5- to 5-year-old children in three Kindergarten classrooms in Thessaloniki, Greece could be taught about the use of classroom space and equipment. The study combined the theoretical perspectives of Piaget, Vygotsky, Bruner, and Frangos with the views of theater director Peter Brook. Mixed-age groups of…

  16. 10 CFR 434.601 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... innovative designs, materials, and equipment such as daylighting, passive solar heating, and heat recovery... select the fuel source for the HVAC systems, service hot water, and process loads from available...

  17. Throughput Optimization of Continuous Biopharmaceutical Manufacturing Facilities.

    PubMed

    Garcia, Fernando A; Vandiver, Michael W

    2017-01-01

    In order to operate profitably under different product demand scenarios, biopharmaceutical companies must design their facilities with mass output flexibility in mind. Traditional biologics manufacturing technologies pose operational challenges in this regard due to their high costs and slow equipment turnaround times, restricting the types of products and mass quantities that can be processed. Modern plant design, however, has facilitated the development of lean and efficient bioprocessing facilities through footprint reduction and adoption of disposable and continuous manufacturing technologies. These development efforts have proven to be crucial in seeking to drastically reduce the high costs typically associated with the manufacturing of recombinant proteins. In this work, mathematical modeling is used to optimize annual production schedules for a single-product commercial facility operating with a continuous upstream and discrete batch downstream platform. Utilizing cell culture duration and volumetric productivity as process variables in the model, and annual plant throughput as the optimization objective, 3-D surface plots are created to understand the effect of process and facility design on expected mass output. The model shows that once a plant has been fully debottlenecked it is capable of processing well over a metric ton of product per year. Moreover, the analysis helped to uncover a major limiting constraint on plant performance, the stability of the neutralized viral inactivated pool, which may indicate that this should be a focus of attention during future process development efforts. LAY ABSTRACT: Biopharmaceutical process modeling can be used to design and optimize manufacturing facilities and help companies achieve a predetermined set of goals. One way to perform optimization is by making the most efficient use of process equipment in order to minimize the expenditure of capital, labor and plant resources. To that end, this paper introduces a novel mathematical algorithm used to determine the most optimal equipment scheduling configuration that maximizes the mass output for a facility producing a single product. The paper also illustrates how different scheduling arrangements can have a profound impact on the availability of plant resources, and identifies limiting constraints on the plant design. In addition, simulation data is presented using visualization techniques that aid in the interpretation of the scientific concepts discussed. © PDA, Inc. 2017.

  18. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  19. ERGONOMICS ABSTRACTS 48983-49619.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    THE LITERATURE OF ERGONOMICS, OR BIOTECHNOLOGY, IS CLASSIFIED INTO 15 AREAS--METHODS, SYSTEMS OF MEN AND MACHINES, VISUAL AND AUDITORY AND OTHER INPUTS AND PROCESSES, INPUT CHANNELS, BODY MEASUREMENTS, DESIGN OF CONTROLS AND INTEGRATION WITH DISPLAYS, LAYOUT OF PANELS AND CONSOLES, DESIGN OF WORK SPACE, CLOTHING AND PERSONAL EQUIPMENT, SPECIAL…

  20. 7 CFR 54.1021 - Request for appeal service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Sanitary Design and Fabrication of Equipment Used in the Slaughter, Processing, and Packaging of Livestock... appeal service shall be filed with the Chief, directly or through the design review specialist who... telephone) or in writing (including by facsimile transmission). If made orally, the Dairy Grading Branch...

  1. 7 CFR 54.1021 - Request for appeal service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Sanitary Design and Fabrication of Equipment Used in the Slaughter, Processing, and Packaging of Livestock... appeal service shall be filed with the Chief, directly or through the design review specialist who... telephone) or in writing (including by facsimile transmission). If made orally, the Dairy Grading Branch...

  2. 7 CFR 54.1021 - Request for appeal service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Sanitary Design and Fabrication of Equipment Used in the Slaughter, Processing, and Packaging of Livestock... appeal service shall be filed with the Chief, directly or through the design review specialist who... telephone) or in writing (including by facsimile transmission). If made orally, the Dairy Grading Branch...

  3. 7 CFR 54.1021 - Request for appeal service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Sanitary Design and Fabrication of Equipment Used in the Slaughter, Processing, and Packaging of Livestock... appeal service shall be filed with the Chief, directly or through the design review specialist who... telephone) or in writing (including by facsimile transmission). If made orally, the Dairy Grading Branch...

  4. 7 CFR 54.1021 - Request for appeal service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sanitary Design and Fabrication of Equipment Used in the Slaughter, Processing, and Packaging of Livestock... appeal service shall be filed with the Chief, directly or through the design review specialist who... telephone) or in writing (including by facsimile transmission). If made orally, the Dairy Grading Branch...

  5. Preliminary Solar Sail Design and Fabrication Assessment: Spinning Sail Blade, Square Sail Sheet

    NASA Technical Reports Server (NTRS)

    Daniels, J. B.; Dowdle, D. M.; Hahn, D. W.; Hildreth, E. N.; Lagerquist, D. R.; Mahaonoul, E. J.; Munson, J. B.; Origer, T. F.

    1977-01-01

    Blade design aspects most affecting producibility and means of measurement and control of length, scallop, fullness and straightness requirements and tolerances were extensively considered. Alternate designs of the panel seams and edge reinforcing members are believed to offer advantages of seam integrity, producibility, reliability, cost and weight. Approaches to and requirements for highly specialized metalizing methods, processes and equipment were studied and identified. Alternate methods of sail blade fabrication and related special machinery, tooling, fixtures and trade offs were examined. A preferred and recommended approach is also described. Quality control plans, inspection procedures, flow charts and special test equipment associated with the preferred manufacturing method were analyzed and are discussed.

  6. Benchmark Lisp And Ada Programs

    NASA Technical Reports Server (NTRS)

    Davis, Gloria; Galant, David; Lim, Raymond; Stutz, John; Gibson, J.; Raghavan, B.; Cheesema, P.; Taylor, W.

    1992-01-01

    Suite of nonparallel benchmark programs, ELAPSE, designed for three tests: comparing efficiency of computer processing via Lisp vs. Ada; comparing efficiencies of several computers processing via Lisp; or comparing several computers processing via Ada. Tests efficiency which computer executes routines in each language. Available for computer equipped with validated Ada compiler and/or Common Lisp system.

  7. 40 CFR 60.103a - Design, equipment, work practice or operational standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...

  8. 40 CFR 60.103a - Design, equipment, work practice or operational standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Description and simple process flow diagram showing the interconnection of the following components of the... rate. (iv) Description and simple process flow diagram showing all gas lines (including flare, purge... which lines are monitored and identify on the process flow diagram the location and type of each monitor...

  9. Process optimization using combinatorial design principles: parallel synthesis and design of experiment methods.

    PubMed

    Gooding, Owen W

    2004-06-01

    The use of parallel synthesis techniques with statistical design of experiment (DoE) methods is a powerful combination for the optimization of chemical processes. Advances in parallel synthesis equipment and easy to use software for statistical DoE have fueled a growing acceptance of these techniques in the pharmaceutical industry. As drug candidate structures become more complex at the same time that development timelines are compressed, these enabling technologies promise to become more important in the future.

  10. Study of water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R. E.

    1972-01-01

    The manner in which current and advanced technology can be applied to develop practical solutions to existing and emerging water supply and waste disposal problems is evaluated. An overview of water resource factors as they affect new community planning, and requirements imposed on residential waste treatment systems are presented. The results of equipment surveys contain information describing: commercially available devices and appliances designed to conserve water; devices and techniques for monitoring water quality and controlling back contamination; and advanced water and waste processing equipment. System concepts are developed and compared on the basis of current and projected costs. Economic evaluations are based on community populations of from 2,000 to 250,000. The most promising system concept is defined in sufficient depth to initiate detailed design.

  11. Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Rahman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.

    1980-01-01

    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems.

  12. 40 CFR 792.61 - Equipment design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Equipment design. 792.61 Section 792... (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Equipment § 792.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  13. 40 CFR 160.61 - Equipment design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Equipment design. 160.61 Section 160... LABORATORY PRACTICE STANDARDS Equipment § 160.61 Equipment design. Equipment used in the generation... appropriate design and adequate capacity to function according to the protocol and shall be suitably located...

  14. [Development of a High Power Green Laser Therapeutic Equipment for Hyperplasia of Prostate].

    PubMed

    Liang, Jie; Kang, Hongxiang; Shen, Benjian; Zhao, Lusheng; Wu, Xinshe; Chen, Peng; Chang, Aihong; Guo Hua; Guo, Jiayu

    2015-09-01

    The basic theory of high power green laser equipment for prostate hyperplasia therapy and the components of the system developed are introduced. Considering the requirements of the clinical therapy, the working process of the high power green laser apparatus are designed and the laser with stable output at 120 W is achieved. The controlling hardware and application software are developed, and the safety step is designed. The high power green laser apparatus manufactured with characteristics of stable output, multifunctional and friendly interface provides a choices of prostate hyperplasia therapy for using nationalization instrument.

  15. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  16. The Homemade Alternative: Teaching Human Neurophysiology with Instrumentation Made (Almost) from Scratch

    PubMed Central

    Hauptman, Stephen; Du Bois, Katherine; Johnson, Bruce R.

    2012-01-01

    Recording human neurophysiological data in the teaching laboratory generally requires expensive instrumentation. From our experience in developing inexpensive equipment used in teaching neurophysiology laboratory exercises, we offer a strategy for the development of affordable and safe recording of human neurophysiological parameters. There are many resources available to guide the design and construction of electronic equipment that will record human biopotentials. An important consideration is subject safety, and the electrical characteristics of any equipment must meet strict galvanic isolation standards. Wireless data gathering offers the most complete isolation from 120VAC current. As an example, we present a homemade electrocardiogram recording circuit using only inexpensive and readily available components. We outline the feasibility of constructing equipment that meets the needs of the student laboratory for good data collection, and we consider the obstacles likely to be encountered in these projects. If students actively participate in the equipment design and construction, the process can also be a teaching tool. Students may gain a deeper understanding of the human neurobiology by making the electronic data acquisition and its presentation more transparent. PMID:23493343

  17. Trade Study of Excavation Tools and Equipment for Lunar Outpost Development and ISRU

    NASA Astrophysics Data System (ADS)

    Mueller, R. P.; King, R. H.

    2008-01-01

    The NASA Lunar Architecture Team (LAT) has developed a candidate architecture to establish a lunar outpost that includes in-situ resource utilization (ISRU). Outpost development requires excavation for landing and launch sites, roads, trenches, foundations, radiation and thermal shielding, etc. Furthermore, ISRU requires excavation as feed stock for water processing and oxygen production plants. The design environment for lunar excavation tools and equipment including low gravity, cost of launching massive equipment, limited power, limited size, high reliability, and extreme temperatures is significantly different from terrestrial excavation equipment design environment. Consequently, the lunar application requires new approaches to developing excavation tools and equipment in the context of a systems engineering approach to building a Lunar Outpost. Several authors have proposed interesting and innovative general excavation approaches in the literature, and the authors of this paper will propose adaptations and/or new excavation concepts specific to the Lunar Outpost. The requirements for excavation from the LAT architecture will be examined and quantified with corresponding figures of merit and evaluation criteria. This paper will evaluate the proposed approaches using traditional decision making with uncertainty techniques.

  18. KSC-08pd0081

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, elements of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0084

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians get ready to begin testing elements of the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  20. 21 CFR 58.61 - Equipment design.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Equipment design. 58.61 Section 58.61 Food and... PRACTICE FOR NONCLINICAL LABORATORY STUDIES Equipment § 58.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  1. 21 CFR 58.61 - Equipment design.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Equipment design. 58.61 Section 58.61 Food and... PRACTICE FOR NONCLINICAL LABORATORY STUDIES Equipment § 58.61 Equipment design. Equipment used in the... of appropriate design and adequate capacity to function according to the protocol and shall be...

  2. Intentional defect array wafers: their practical use in semiconductor control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Emami, Iraj; McIntyre, Michael; Retersdorf, Michael

    2003-07-01

    In the competitive world of semiconductor manufacturing today, control of the process and manufacturing equipment is paramount to success of the business. Consistent with the need for rapid development of process technology, is a need for development wiht respect to equipment control including defect metrology tools. Historical control methods for defect metrology tools included a raw count of defects detected on a characterized production or test wafer with little or not regard to the attributes of the detected defects. Over time, these characterized wafers degrade with multiple passes on the tools and handling requiring the tool owner to create and characterize new samples periodically. With the complex engineering software analysis systems used today, there is a strong reliance on the accuracy of defect size, location, and classification in order to provide the best value when correlating the in line to sort type of data. Intentional Defect Array (IDA) wafers were designed and manufacturered at International Sematech (ISMT) in Austin, Texas and is a product of collaboration between ISMT member companies and suppliers of advanced defect inspection equipment. These wafers provide the use with known defect types and sizes in predetermined locations across the entire wafer. The wafers are designed to incorporate several desired flows and use critical dimensions consistent with current and future technology nodes. This paper briefly describes the design of the IDA wafer and details many practical applications in the control of advanced defect inspection equipment.

  3. Automated Space Processing Payloads Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An investigation is described which examined the extent to which the experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts are defined which make extensive use of automation technology. Topics covered include experiment requirements and hardware data, capabilities and characteristics of industrial automation equipment and controls, payload grouping, automated payload conceptual design, space processing payload preliminary design, automated space processing payloads for early shuttle missions, and cost and scheduling.

  4. Software service history report

    DOT National Transportation Integrated Search

    2002-01-01

    The safe and reliable operation of software within civil aviation systems and equipment has historically been assured through the application of rigorous design assurance applied during the software development process. Increasingly, manufacturers ar...

  5. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  6. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    NASA Astrophysics Data System (ADS)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  7. 46 CFR 153.486 - Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.486 Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D. (a) If NLS... 46 Shipping 5 2014-10-01 2014-10-01 false Design and equipment for removing NLS residue by...

  8. 46 CFR 153.486 - Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.486 Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D. (a) If NLS... 46 Shipping 5 2013-10-01 2013-10-01 false Design and equipment for removing NLS residue by...

  9. 46 CFR 153.486 - Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.486 Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D. (a) If NLS... 46 Shipping 5 2012-10-01 2012-10-01 false Design and equipment for removing NLS residue by...

  10. 46 CFR 153.486 - Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.486 Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D. (a) If NLS... 46 Shipping 5 2010-10-01 2010-10-01 false Design and equipment for removing NLS residue by...

  11. 46 CFR 153.486 - Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.486 Design and equipment for removing NLS residue by ventilation: Categories A, B, C, and D. (a) If NLS... 46 Shipping 5 2011-10-01 2011-10-01 false Design and equipment for removing NLS residue by...

  12. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Holen, J. T.; Royer, E. R.

    1976-01-01

    A card configuration which combines the functions of identification, enumeration and antibiotic sensitivity into one card was developed. An instrument package was designed around the card to integrate the card filling, incubation reading, computation and decision making process into one compact unit. Support equipment was also designed to prepare the expandable material used in the MLM.

  13. 40 CFR 63.1032 - Sampling connection systems standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) [Reserved] (3) Be designed and operated to capture and transport all the purged process fluid to a control... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1032 Sampling... design and operation. Each closed-purge, closed-loop, or closed vent system as required in paragraph (b...

  14. 40 CFR 63.1032 - Sampling connection systems standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) [Reserved] (3) Be designed and operated to capture and transport all the purged process fluid to a control... (CONTINUED) National Emission Standards for Equipment Leaks-Control Level 2 Standards § 63.1032 Sampling... design and operation. Each closed-purge, closed-loop, or closed vent system as required in paragraph (b...

  15. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.

  16. Immunity of medical electrical equipment to radiated RF disturbances

    NASA Astrophysics Data System (ADS)

    Mocha, Jan; Wójcik, Dariusz; Surma, Maciej

    2018-04-01

    Immunity of medical equipment to radiated radio frequency (RF) electromagnetic (EM) fields is a priority issue owing to the functions that the equipment is intended to perform. This is reflected in increasingly stringent normative requirements that medical electrical equipment has to conform to. A new version of the standard concerning electromagnetic compatibility of medical electrical equipment IEC 60601-1-2:2014 has recently been published. The paper discusses major changes introduced in this edition of the standard. The changes comprise more rigorous immunity requirements for medical equipment as regards radiated RF EM fields and a new requirement for testing the immunity of medical electrical equipment to disturbances coming from digital radio communication systems. Further on, the paper presents two typical designs of the input block: involving a multi-level filtering and amplification circuit and including a solution which integrates an input amplifier and an analog-to-digital converter in one circuit. Regardless of the applied solution, presence of electromagnetic disturbances in the input block leads to demodulation of the disturbance signal envelope. The article elaborates on mechanisms of amplitude detection occurring in such cases. Electromagnetic interferences penetration from the amplifier's input to the output is also described in the paper. If the aforementioned phenomena are taken into account, engineers will be able to develop a more conscious approach towards the issue of immunity to RF EM fields in the process of designing input circuits in medical electrical equipment.

  17. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Richard

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process controlmore » Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.« less

  18. TDRSS S-shuttle unique receiver equipment

    NASA Astrophysics Data System (ADS)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  19. Automatic data-processing equipment of moon mark of nail for verifying some experiential theory of Traditional Chinese Medicine.

    PubMed

    Niu, Renjie; Fu, Chenyu; Xu, Zhiyong; Huang, Jianyuan

    2016-04-29

    Doctors who practice Traditional Chinese Medicine (TCM) diagnose using four methods - inspection, auscultation and olfaction, interrogation, and pulse feeling/palpation. The shape and shape changes of the moon marks on the nails are an important indication when judging the patient's health. There are a series of classical and experimental theories about moon marks in TCM, which does not have support from statistical data. To verify some experiential theories on moon mark in TCM by automatic data-processing equipment. This paper proposes the equipment that utilizes image processing technology to collect moon mark data of different target groups conveniently and quickly, building a database that combines this information with that gathered from the health and mental status questionnaire in each test. This equipment has a simple design, a low cost, and an optimized algorithm. The practice has been proven to quickly complete automatic acquisition and preservation of key data about moon marks. In the future, some conclusions will likely be obtained from these data; some changes of moon marks related to a special pathological change will be established with statistical methods.

  20. CORSE-81: The 1981 Conference on Remote Sensing Education

    NASA Technical Reports Server (NTRS)

    Davis, S. M. (Compiler)

    1981-01-01

    Summaries of the presentations and tutorial workshops addressing various strategies in remote sensing education are presented. Course design from different discipline perspectives, equipment requirements for image interpretation and processing, and the role of universities, private industry, and government agencies in the education process are covered.

  1. 40 CFR 68.77 - Pre-startup review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.77 Pre-startup review. (a) The... stationary sources when the modification is significant enough to require a change in the process safety... substances to a process: (1) Construction and equipment is in accordance with design specifications; (2...

  2. Orbiter processing facility: Access platforms Kennedy Space Center, Florida, from challenge to achievement

    NASA Technical Reports Server (NTRS)

    Haratunian, M.

    1985-01-01

    A system of access platforms and equipment within the space shuttle orbiter processing facility at Kennedy Space Center is described. The design challenges of the platforms, including clearance envelopes, load criteria, and movement, are discussed. Various applications of moveable platforms are considered.

  3. Meatcutter (AFSC 61250).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This student text is designed for use by Air Force personnel enrolled in a self-study extension course for meat cutters. Covered in the individual chapters are careers in meat processing, operation and maintenance of meat cutting equipment, receipt and storage, procedures for processing and preparing meats, techniques for wrapping and pricing…

  4. Models of determining deformations

    NASA Astrophysics Data System (ADS)

    Gladilin, V. N.

    2016-12-01

    In recent years, a lot of functions designed to determine deformation values that occur mostly as a result of settlement of structures and industrial equipment. Some authors suggest such advanced mathematical functions approximating deformations as general methods for the determination of deformations. The article describes models of deformations as physical processes. When comparing static, cinematic and dynamic models, it was found that the dynamic model reflects the deformation of structures and industrial equipment most reliably.

  5. Study directed at development of an implantable biotelemetry ion detector

    NASA Technical Reports Server (NTRS)

    Hanley, L. D.; Kress, D.

    1971-01-01

    A literature search was conducted to currently update known information in the field of ion-selective electrodes. The review attempts to identify present trends in cation and anions selective electrodes pertinent to the area of bioimplantable units. An electronic circuit was designed to provide the high impedance interface between the ion-selective sensors and signal-processing equipment. The resulting design emphasized the need for low power and miniaturization. Many of the circuits were constructed and used to evaluate the ion-selective electrodes. A cuvette capable of holding the ion-selective and the reference electrodes was designed and constructed. This equipment was used to evaluate commercially available ion-selective electrodes and the electrodes designed and constructed in the study. The results of the electrode tests are included.

  6. Instrumentation complex for Langley Research Center's National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Russell, C. H.; Bryant, C. S.

    1977-01-01

    The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.

  7. 40 CFR 160.61 - Equipment design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Equipment design. 160.61 Section 160.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS GOOD LABORATORY PRACTICE STANDARDS Equipment § 160.61 Equipment design. Equipment used in the generation...

  8. Multi-Machine Scheduler

    DTIC Science & Technology

    1981-10-01

    unique alphanumeric designation assigned by the performing orga- nization or provided by the sponsoring organization in accordance with American...for cataloging. (b). Identifiers and Open-Ended Terms. Use identifiers for project names, code names, equipment designators , etc. Use open- ended...spool. Note. These components ae designed to function together or with the BASS alone, if internal control of job processing is not a requirement at a

  9. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... A major design concern is to avoid contamination of the process streams with certain metal ions... internal turbine mixers), especially designed or prepared for uranium enrichment using the chemical...) or glass. The stage residence time of the columns is designed to be short (30 seconds or less). (2...

  10. 40 CFR 60.590 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or replacement of equipment (defined in § 60.591) for the purpose of process improvement which is... in § 60.591) within a process unit is an affected facility. (b) Any affected facility under paragraph... “process unit” in § 60.590 of this subpart until the EPA takes final action to require compliance and...

  11. 40 CFR 792.61 - Equipment design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Equipment design. 792.61 Section 792.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Equipment § 792.61 Equipment design. Equipment used in the...

  12. Methodologies for processing plant material into acceptable food on a small scale

    NASA Technical Reports Server (NTRS)

    Parks, Thomas R.; Bindon, John N.; Bowles, Anthony J. G.; Golbitz, Peter; Lampi, Rauno A.; Marquardt, Robert F.

    1994-01-01

    Based on the Controlled Environment Life Support System (CELSS) production of only four crops, wheat, white potatoes, soybeans, and sweet potatoes; a crew size of twelve; a daily planting/harvesting regimen; and zero-gravity conditions, estimates were made on the quantity of food that would need to be grown to provide adequate nutrition; and the corresponding amount of biomass that would result. Projections were made of the various types of products that could be made from these crops, the unit operations that would be involved, and what menu capability these products could provide. Equipment requirements to perform these unit operations were screened to identify commercially available units capable of operating (or being modified to operate) under CELSS/zero-gravity conditions. Concept designs were developed for those equipment needs for which no suitable units were commercially available. Prototypes of selected concept designs were constructed and tested on a laboratory scale, as were selected commercially available units. This report discusses the practical considerations taken into account in the various design alternatives, some of the many product/process factors that relate to equipment development, and automation alternatives. Recommendations are made on both general and specific areas in which it was felt additional investigation would benefit CELSS missions.

  13. KSC-04PD-1133

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. -- Technicians in the Orbiter Processing Facility attach a crane to Discoverys airlock before lifting it for installation. The airlock is located inside the orbiters payload bay and is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, and communications. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005. STS-114 mission is Logistics Flight 1, which is scheduled to deliver supplies and equipment plus the external stowage platform to the International Space Station.

  14. Study of injection molded microcellular polyamide-6 nanocomposites

    Treesearch

    Mingjun Yuan; Lih-Sheng Turng; Shaoqin Gong; Daniel Caulfield; Chris Hunt; Rick Spindler

    2004-01-01

    This study aims to explore the processing benefits and property improvements of combining nanocomposites with microcellular injection molding. The microcellular nanocomposite processing was performed on an injection-molding machine equipped with a commercially available supercritical fluid (SCF) system. The molded samples produced based on the Design of Experiments (...

  15. Prospects for constructing cogeneration stations equipped with back-pressure steam turbines

    NASA Astrophysics Data System (ADS)

    Ivanovskii, A. A.; Kultyshev, A. Yu.; Stepanov, M. Yu.

    2014-12-01

    The possibilities of using back-pressure cogeneration turbines developed on the basis of serially produced ones are considered together with the thermal process circuits in which such turbines are applied. Design versions and advantages of cogeneration stations in which the proposed process circuits are implemented are described.

  16. Use telecommunications for real-time process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zilberman, I.; Bigman, J.; Sela, I.

    1996-05-01

    Process operators design real-time accurate information to monitor and control product streams and to optimize unit operations. The challenge is how to cost-effectively install sophisticated analytical equipment in harsh environments such as process areas and maintain system reliability. Incorporating telecommunications technology with near infrared (NIR) spectroscopy may be the bridge to help operations achieve their online control goals. Coupling communications fiber optics with NIR analyzers enables the probe and sampling system to remain in the field and crucial analytical equipment to be remotely located in a general purpose area without specialized protection provisions. The case histories show how two refineriesmore » used NIR spectroscopy online to track octane levels for reformate streams.« less

  17. Equipment and Analytical Companies Meeting Continuous Challenges May 20-21 2014 Continuous Manufacturing Symposium.

    PubMed

    Page, Trevor; Dubina, Henry; Fillipi, Gabriele; Guidat, Roland; Patnaik, Saroj; Poechlauer, Peter; Shering, Phil; Guinn, Martin; Mcdonnell, Peter; Johnston, Craig

    2015-03-01

    This white paper focuses on equipment, and analytical manufacturers' perspectives, regarding the challenges of continuous pharmaceutical manufacturing across five prompt questions. In addition to valued input from several vendors, commentary was provided from experienced pharmaceutical representatives, who have installed various continuous platforms. Additionally, a small medium enterprise (SME) perspective was obtained through interviews. A range of technical challenges is outlined, including: the presence of particles, equipment scalability, fouling (and cleaning), technology derisking, specific analytical challenges, and the general requirement of improved technical training. Equipment and analytical companies can make a significant contribution to help the introduction of continuous technology. A key point is that many of these challenges exist in batch processing and are not specific to continuous processing. Backward compatibility of software is not a continuous issue per se. In many cases, there is available learning from other industries. Business models and opportunities through outsourced development partners are also highlighted. Agile smaller companies and academic groups have a key role to play in developing skills, working collaboratively in partnerships, and focusing on solving relevant industry challenges. The precompetitive space differs for vendor companies compared with large pharmaceuticals. Currently, there is no strong consensus around a dominant continuous design, partly because of business dynamics and commercial interests. A more structured common approach to process design and hardware and software standardization would be beneficial, with initial practical steps in modeling. Conclusions include a digestible systems approach, accessible and published business cases, and increased user, academic, and supplier collaboration. This mirrors US FDA direction. The concept of silos in pharmaceutical companies is a common theme throughout the white papers. In the equipment domain, this is equally prevalent among a broad range of companies, mainly focusing on discrete areas. As an example, the flow chemistry and secondary drug product communities are almost entirely disconnected. Control and Process Analytical Technologies (PAT) companies are active in both domains. The equipment actors are a very diverse group with a few major Original Equipment Manufacturers (OEM) players and a variety of SME, project providers, integrators, upstream downstream providers, and specialist PAT. In some cases, partnerships or alliances are formed to increase critical mass. This white paper has focused on small molecules; equipment associated with biopharmaceuticals is covered in a separate white paper. More specifics on equipment detail are provided in final dosage form and drug substance white papers. The equipment and analytical development from laboratory to pilot to production is important, with a variety of sensors and complexity reducing with scale. The importance of robust processing rather than overcomplex control strategy mitigation is important. A search of nonacademic literature highlights, with a few notable exceptions, a relative paucity of material. Much focuses on the economics and benefits of continuous, rather than specifics of equipment issues. The disruptive nature of continuous manufacturing represents either an opportunity or a threat for many companies, so the incentive to change equipment varies. Also, for many companies, the pharmaceutical sector is not actually the dominant sector in terms of sales. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Equipment and analytical companies meeting continuous challenges. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Page, Trevor; Dubina, Henry; Fillipi, Gabriele; Guidat, Roland; Patnaik, Saroj; Poechlauer, Peter; Shering, Phil; Guinn, Martin; Mcdonnell, Peter; Johnston, Craig

    2015-03-01

    This white paper focuses on equipment, and analytical manufacturers' perspectives, regarding the challenges of continuous pharmaceutical manufacturing across five prompt questions. In addition to valued input from several vendors, commentary was provided from experienced pharmaceutical representatives, who have installed various continuous platforms. Additionally, a small medium enterprise (SME) perspective was obtained through interviews. A range of technical challenges is outlined, including: the presence of particles, equipment scalability, fouling (and cleaning), technology derisking, specific analytical challenges, and the general requirement of improved technical training. Equipment and analytical companies can make a significant contribution to help the introduction of continuous technology. A key point is that many of these challenges exist in batch processing and are not specific to continuous processing. Backward compatibility of software is not a continuous issue per se. In many cases, there is available learning from other industries. Business models and opportunities through outsourced development partners are also highlighted. Agile smaller companies and academic groups have a key role to play in developing skills, working collaboratively in partnerships, and focusing on solving relevant industry challenges. The precompetitive space differs for vendor companies compared with large pharmaceuticals. Currently, there is no strong consensus around a dominant continuous design, partly because of business dynamics and commercial interests. A more structured common approach to process design and hardware and software standardization would be beneficial, with initial practical steps in modeling. Conclusions include a digestible systems approach, accessible and published business cases, and increased user, academic, and supplier collaboration. This mirrors US FDA direction. The concept of silos in pharmaceutical companies is a common theme throughout the white papers. In the equipment domain, this is equally prevalent among a broad range of companies, mainly focusing on discrete areas. As an example, the flow chemistry and secondary drug product communities are almost entirely disconnected. Control and Process Analytical Technologies (PAT) companies are active in both domains. The equipment actors are a very diverse group with a few major Original Equipment Manufacturers (OEM) players and a variety of SME, project providers, integrators, upstream downstream providers, and specialist PAT. In some cases, partnerships or alliances are formed to increase critical mass. This white paper has focused on small molecules; equipment associated with biopharmaceuticals is covered in a separate white paper. More specifics on equipment detail are provided in final dosage form and drug substance white papers. The equipment and analytical development from laboratory to pilot to production is important, with a variety of sensors and complexity reducing with scale. The importance of robust processing rather than overcomplex control strategy mitigation is important. A search of nonacademic literature highlights, with a few notable exceptions, a relative paucity of material. Much focuses on the economics and benefits of continuous, rather than specifics of equipment issues. The disruptive nature of continuous manufacturing represents either an opportunity or a threat for many companies, so the incentive to change equipment varies. Also, for many companies, the pharmaceutical sector is not actually the dominant sector in terms of sales. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Design Engineering of Biomaterials for Medical Devices

    NASA Astrophysics Data System (ADS)

    Hill, David

    1998-10-01

    Written by an exceptionally experienced author in the area of medical equipment product design, this text presents a comprehensive overview of such sound principles and state-of-the-art techniques covering a whole host of material types, biocompatability, the design process and future trends within this exciting field. An all-in-one reference text, concise and easy-to-read. Wide audience appeal, from industry professionals to students of design.

  20. Conceptual design of modular fixture for frame welding and drilling process integration case study: Student chair in UNS industrial engineering integrated practicum

    NASA Astrophysics Data System (ADS)

    Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes

    2018-02-01

    Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.

  1. Aquatic Equipment Information.

    ERIC Educational Resources Information Center

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  2. Avionics system design for high energy fields: A guide for the designer and airworthiness specialist

    NASA Technical Reports Server (NTRS)

    Mcconnell, Roger A.

    1987-01-01

    Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included.

  3. Design Process of a Goal-Based Scenario on Computing Fundamentals

    ERIC Educational Resources Information Center

    Beriswill, Joanne Elizabeth

    2014-01-01

    In this design case, an instructor developed a goal-based scenario (GBS) for undergraduate computer fundamentals students to apply their knowledge of computer equipment and software. The GBS, entitled the MegaTech Project, presented the students with descriptions of the everyday activities of four persons needing to purchase a computer system. The…

  4. Space Spurred Computer Graphics

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Dicomed Corporation was asked by NASA in the early 1970s to develop processing capabilities for recording images sent from Mars by Viking spacecraft. The company produced a film recorder which increased the intensity levels and the capability for color recording. This development led to a strong technology base resulting in sophisticated computer graphics equipment. Dicomed systems are used to record CAD (computer aided design) and CAM (computer aided manufacturing) equipment, to update maps and produce computer generated animation.

  5. Localized coating removal using plastic media blasting

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Wyckoff, Michael G.; Zook, Lee M.

    1988-01-01

    Steps taken to qualify the use of plastic media blasting for safely and effectively removing paint and other coatings from solid rocket booster aluminum structures are described. As a result of the effort, an improvement was made in the design of surface finishing equipment for processing flight hardware, in addition to a potentially patentable idea on improved plastic media composition. The general arrangement of the blast equipment and the nozzle configuration are presented.

  6. Spray-congealed microparticles for drug delivery - an overview of factors influencing their production and characteristics.

    PubMed

    Oh, Ching Mien; Guo, Qiyun; Wan Sia Heng, Paul; Chan, Lai Wah

    2014-07-01

    In any manufacturing process, the success of producing an end product with the desired properties and yield depends on a range of factors that include the equipment, process and formulation variables. It is the interest of manufacturers and researchers to understand each manufacturing process better and ascertain the effects of various manufacturing-associated factors on the properties of the end product. Unless the manufacturing process is well understood, it would be difficult to set realistic limits for the process variables and raw material specifications to ensure consistently high-quality and reproducible end products. Over the years, spray congealing has been used to produce particulates by the food and pharmaceutical industries. The latter have used this technology to develop specialized drug delivery systems. In this review, basic principles as well as advantages and disadvantages of the spray congealing process will be covered. Recent developments in spray congealing equipment, process variables and formulation variables such as the matrix material, encapsulated material and additives will also be discussed. Innovative equipment designs and formulations for spray congealing have emerged. Judicious choice of atomizers, polymers and additives is the key to achieve the desired properties of the microparticles for drug delivery.

  7. Lessons learned for improving spacecraft ground operations

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Stambolian, Damon; Henderson, Gena

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  8. Lessons Learned for Improving Spacecraft Ground Operations

    NASA Technical Reports Server (NTRS)

    Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.

    2012-01-01

    NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.

  9. A Holistic Approach to Systems Development

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2008-01-01

    Introduces a Holistic and Iterative Design Process. Continuous process but can be loosely divided into four stages. More effort spent early on in the design. Human-centered and Multidisciplinary. Emphasis on Life-Cycle Cost. Extensive use of modeling, simulation, mockups, human subjects, and proven technologies. Human-centered design doesn t mean the human factors discipline is the most important Disciplines should be involved in the design: Subsystem vendors, configuration management, operations research, manufacturing engineering, simulation/modeling, cost engineering, hardware engineering, software engineering, test and evaluation, human factors, electromagnetic compatibility, integrated logistics support, reliability/maintainability/availability, safety engineering, test equipment, training systems, design-to-cost, life cycle cost, application engineering etc. 9

  10. The role of the clinical engineer in the design of new hospitals.

    PubMed

    Decouvelaere, M; Berrard, E; Fabrega, D

    2007-01-01

    Hospital construction projects take place over several years, from the initial decision to build to their completion and start of service. The owner and his building and civil engineering department have to face many administrative processes and complex techniques. It is the role of the clinical engineer to furnish the new structure with medical equipment, by integrating the constraints of these devices in the building. At each stage of the building process, the clinical engineer must contribute to a specific mission of interface between the building and the equipment, identifying and anticipating constraints, and taking care of the good preparation of the integration of this equipment in existing buildings or buildings yet to be created. If the objective of optimal compatibility between the building and its equipment is not reached, then adaptations will have to be carried out either in progress, or after the completion of work, and will be opposed to the factors of success implemented by the actors.

  11. Using simulation to design a central sterilization department.

    PubMed

    Lin, Feng; Lawley, Mark; Spry, Charlie; McCarthy, Kelly; Coyle-Rogers, Patricia G; Yih, Yuehwern

    2008-10-01

    A simulation project was performed to assist with redesign of the surgery department of a large tertiary hospital and to help administrators make the best decisions about relocating, staffing, and equipping the central sterilization department. A simulation model was created to analyze department configurations, staff schedules, equipment capacities, and cart-washing requirements. Performance measures examined include tray turnaround time, surgery-delay rate, and work-in-process levels. The analysis provides significant insight into how the proposed system will perform, allowing planning for expected patient volume increases. This work illustrates how simulation can facilitate the design of a central sterilization department and improve surgical sterilization operations.

  12. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2010-10-01 2010-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  13. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2014-10-01 2014-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  14. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2013-10-01 2013-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  15. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2012-10-01 2012-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  16. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2011-10-01 2011-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  17. Statistical analysis of field data for aircraft warranties

    NASA Astrophysics Data System (ADS)

    Lakey, Mary J.

    Air Force and Navy maintenance data collection systems were researched to determine their scientific applicability to the warranty process. New and unique algorithms were developed to extract failure distributions which were then used to characterize how selected families of equipment typically fails. Families of similar equipment were identified in terms of function, technology and failure patterns. Statistical analyses and applications such as goodness-of-fit test, maximum likelihood estimation and derivation of confidence intervals for the probability density function parameters were applied to characterize the distributions and their failure patterns. Statistical and reliability theory, with relevance to equipment design and operational failures were also determining factors in characterizing the failure patterns of the equipment families. Inferences about the families with relevance to warranty needs were then made.

  18. Life sciences payload definition and integration study. Volume 2: Requirements, design, and planning studies for the carry-on laboratories. [for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.

  19. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Fang, C. S.; Hansen, K. C.; Miller, J. W., Jr.; Yaws, C. L.

    1978-01-01

    Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from $19,094,000 to $11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme.

  20. Optimization of the Manufacturing Process of Conical Shell Structures Using Prepreg Laminatees

    NASA Astrophysics Data System (ADS)

    Khakimova, Regina; Zimmermann, Rolf; Burau, Florian; Siebert, Marc; Arbelo, Mariano; Castro, Saullo; Degenhardt, Richard

    2014-06-01

    The design and manufacture of an unstiffened composite conical structure which is a scaled-down version of the Ariane 5 Midlife Evolution Equipment Bay Structure is presented. For such benchmarking structures the fiber orientation error is critical and then the manufacturing process becomes a big challenge. The paper therefore is focused on the implementation of a tailoring study and on the manufacturing process. The conical structure will be tested to validate a new design approach.This study contributes to the European Union (EU) project DESICOS, whose aim is to develop less conservative design guidelines for imperfection sensitive thin-walled structures.

  1. Cleaning Up.

    ERIC Educational Resources Information Center

    Musgrave, Chuck; Spencer-Workman, Sarah

    2000-01-01

    Provides a nine-step process in designing athletic facility laundry rooms that are attractive and functional. Steps include determining the level of laundry services needed, ensuring adequate storage and compatible delivery systems, selecting laundry equipment, and choosing suitable flooring. (GR)

  2. Office Automation Boosts University's Productivity.

    ERIC Educational Resources Information Center

    School Business Affairs, 1986

    1986-01-01

    The University of Pittsburgh has a 2-year agreement designating the Xerox Corporation as the primary supplier of word processing and related office automation equipment in order to increase productivity and more efficient use of campus resources. (MLF)

  3. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  4. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured reactive distillation consisted of packing distillation columns equipped with a reboiler and condenser, with the prototype made of stainless steel material equipped with sigh glass. The filling column expands the contact of liquid-vapor phase so that the two reactants between methanol and oil would be converted into methyl ester and glycerol. The initial results of the study indicated that the relatively good condition is reached at the peak temperature and the base of the column of 62°C and 71°C with NaOH 2% of methanol weight as the catalyst at the feed ratio of methanol and the sunan pecan oil 4:1. The result of the performance test of the diesel engine indicated that the efficiency of the biodiesel fuel was achieved relatively good at 1.7% with 2500 rpm engine speed.

  5. Process Feasibility Study in Support of Silicon Material, Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.

  6. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering analysis. During the International Space Station's (ISS's) on-orbit assembly and outfitting, a series of engineering analyses were conducted to evaluate how effective the passive TCC methods were relative to providing adequate operational margin for the active TCC equipment's capabilities aboard the ISS. These analyses were based on habitable module and cargo vehicle offgassing test results. The offgassing test for a fully assembled module or cargo vehicle is an important preflight spacecraft evaluation method that has been used successfully during all crewed spacecraft programs to provide insight into how effectively the passive contamination control methods limit the equipment offgassing component of the overall trace contaminant generation load. The progression of TCC assessments beginning in 1998 with the ISS's first habitable element launch and continuing through the final pressurized element's arrival in 2010 are presented. Early cargo vehicle flight assessments between 2008 and 2011 are also presented as well as a discussion on predictive methods for assessing cargo via a purely analytical technique. The technical approach for TCC employed during this 13-year period successfully maintained the cabin atmospheric quality within specified parameters during the technically challenging ISS assembly and outfitting stages. The following narrative provides details on the important role of spacecraft offgassing testing, trace contaminant performance requirements, and flight rules for achieving the ultimate result-a cabin environment that enables people to live and work safely in space.

  7. Gas Hydrate Storage of Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less

  8. Consolidated fuel reprocessing program

    NASA Astrophysics Data System (ADS)

    1985-02-01

    Improved processes and components for the Breeder Reprocessing Engineering Test (BRET) were identified and developed as well as the design, procurement and development of prototypic equipment. The integrated testing of process equipment and flowsheets prototypical of a pilot scale full reprocessing plant, and also for testing prototypical remote features of specific complex components in the system are provided. Information to guide the long range activities of the Consolidated Fuel Reprocessing Program (CERP), a focal point for foreign exchange activities, and support in specialized technical areas are described. Research and development activities in HTGR fuel treatment technology are being conducted. Head-end process and laboratory scale development efforts, as well as studies specific to HTGR fuel, are reported. The development of off-gas treatment processes has generic application to fuel reprocessing, progress in this work is also reported.

  9. The effect of using bomb calorimeter in improving science process skills of physics students

    NASA Astrophysics Data System (ADS)

    Edie, S. S.; Masturi; Safitri, H. N.; Alighiri, D.; Susilawati; Sari, L. M. E. K.; Marwoto, P.; Iswari, R. S.

    2018-03-01

    The bomb calorimeter is laboratory equipment which serves to calculate the value of combustion heat or heat capacity of a sample in excess oxygen combustion. This study aims to determine the effect of using bomb calorimeter on science process skill of physics students. Influences include the effectiveness of using the equipment and knowing the improvement of students’ science process skills before and after using tools. The sample used simple random sampling with one group pretest-posttest research design. The instrument that used is written test that adjusts with science process skills aspect. Analysis of the effectiveness of bomb calorimeter showed useful result 87.88%, while the study of science skill improvement showed n-gain value 0.64 that is the medium category.

  10. PRA (Probabilistic Risk Assessments) Participation versus Validation

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Banke, Richard

    2013-01-01

    Probabilistic Risk Assessments (PRAs) are performed for projects or programs where the consequences of failure are highly undesirable. PRAs primarily address the level of risk those projects or programs posed during operations. PRAs are often developed after the design has been completed. Design and operational details used to develop models include approved and accepted design information regarding equipment, components, systems and failure data. This methodology basically validates the risk parameters of the project or system design. For high risk or high dollar projects, using PRA methodologies during the design process provides new opportunities to influence the design early in the project life cycle to identify, eliminate or mitigate potential risks. Identifying risk drivers before the design has been set allows the design engineers to understand the inherent risk of their current design and consider potential risk mitigation changes. This can become an iterative process where the PRA model can be used to determine if the mitigation technique is effective in reducing risk. This can result in more efficient and cost effective design changes. PRA methodology can be used to assess the risk of design alternatives and can demonstrate how major design changes or program modifications impact the overall program or project risk. PRA has been used for the last two decades to validate risk predictions and acceptability. Providing risk information which can positively influence final system and equipment design the PRA tool can also participate in design development, providing a safe and cost effective product.

  11. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  12. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the presence of a pilot flame. (3) Where a boiler or process heater of less than 44 megawatts design... series are used, a scrubbing liquid flow rate meter, or a pressure monitoring device, equipped with a continuous recorder, is required for each absorber in the series. An owner or operator may submit a request...

  13. Puerto Rico's PLATO Learning Program: An Independent Evaluation of the PLATO Learning Model

    ERIC Educational Resources Information Center

    Shillady, Lucinda; Miller, Libbie

    2004-01-01

    The Comprehensive School Reform (CSR) program has become a valuable resource in the implementation of the Puerto Rico Department of Education's educational reform process. To support the process, the Commonwealth of Puerto Rico granted computerized equipment, reading and mathematics software and training designed for schools. This included reading…

  14. Sanitary Engineering Unit Operations and Unit Processes Laboratory Manual.

    ERIC Educational Resources Information Center

    American Association of Professors in Sanitary Engineering.

    This manual contains a compilation of experiments in Physical Operations, Biological and Chemical Processes for various education and equipment levels. The experiments are designed to be flexible so that they can be adapted to fit the needs of a particular program. The main emphasis is on hands-on student experiences to promote understanding.…

  15. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...

  16. Reflectance measurements

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1982-01-01

    The productivity of spectroreflectometer equipment and operating personnel and the accuracy and sensitivity of the measurements were investigated. Increased optical sensitivity and better design of the data collection and processing scheme to eliminate some of the unnecessary present operations were conducted. Two promising approaches to increased sensitivity were identified, conventional processing with error compensation and detection of random noise modulation.

  17. Research and design of portable photoelectric rotary table data-acquisition and analysis system

    NASA Astrophysics Data System (ADS)

    Yang, Dawei; Yang, Xiufang; Han, Junfeng; Yan, Xiaoxu

    2015-02-01

    Photoelectric rotary table as the main test tracking measurement platform, widely use in shooting range and aerospace fields. In the range of photoelectric tracking measurement system, in order to meet the photoelectric testing instruments and equipment of laboratory and field application demand, research and design the portable photoelectric rotary table data acquisition and analysis system, and introduces the FPGA device based on Xilinx company Virtex-4 series and its peripheral module of the system hardware design, and the software design of host computer in VC++ 6.0 programming platform and MFC package based on class libraries. The data acquisition and analysis system for data acquisition, display and storage, commission control, analysis, laboratory wave playback, transmission and fault diagnosis, and other functions into an organic whole, has the advantages of small volume, can be embedded, high speed, portable, simple operation, etc. By photoelectric tracking turntable as experimental object, carries on the system software and hardware alignment, the experimental results show that the system can realize the data acquisition, analysis and processing of photoelectric tracking equipment and control of turntable debugging good, and measurement results are accurate, reliable and good maintainability and extensibility. The research design for advancing the photoelectric tracking measurement equipment debugging for diagnosis and condition monitoring and fault analysis as well as the standardization and normalization of the interface and improve the maintainability of equipment is of great significance, and has certain innovative and practical value.

  18. Implementation and adoption of mechanical patient lift equipment in the hospital setting: The importance of organizational and cultural factors.

    PubMed

    Schoenfisch, Ashley L; Myers, Douglas J; Pompeii, Lisa A; Lipscomb, Hester J

    2011-12-01

    Work focused on understanding implementation and adoption of interventions designed to prevent patient-handling injuries in the hospital setting is lacking in the injury literature and may be more insightful than more traditional evaluation measures. Data from focus groups with health care workers were used to describe barriers and promoters of the adoption of patient lift equipment and a shift to a "minimal-manual lift environment" at two affiliated hospitals. Several factors influencing the adoption of the lift equipment and patient-handling policy were noted: time, knowledge/ability, staffing, patient characteristics, and organizational and cultural aspects of work. The adoption process was complex, and considerable variability by hospital and across units was observed. The use of qualitative data can enhance the understanding of factors that influence implementation and adoption of interventions designed to prevent patient-handling injuries among health care workers. Copyright © 2011 Wiley Periodicals, Inc.

  19. Army Sustainability Modelling Analysis and Reporting Tool Phase 1: User Manual and Results Interpretation Guide

    DTIC Science & Technology

    2009-11-01

    force structure liability analysis tool, designed to forecast the dynamics of personnel and equipment populations over time for a particular scenario...it is intended that it will support analysis of the sustainability of planned Army force structures against a range of possible scenarios, as well as...the force options testing process. A-SMART Phase 1 has been limited to the development of personnel, major equipment and supplies/strategic lift

  20. The new international certification and design principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heijnen, W.H.P.M.; Heineman, H.

    1995-12-01

    ISO/TC 67 deals with standardization of Equipment for the Petroleum and Natural Gas Industries at a global level. The paper will provide the reader with insight in the Certification system as well as its link with Design. It will explain how the total process fits in the business structure of the Petroleum and Natural Gas Industry, with the focus on the emerging concepts such as partnering, turn key contracts, the developments in the EC and the need to reduce costs at a global basis. The paper will also address the topic of Design Principles based on the results of themore » study performed for ISO/TC 67. The paper will provide a framework that can be used by the industry in how to deal with issues such as, there shall the activity of the Operator be focused on when ordering equipment or services and how the manufacturer or service provider should prepare himself to become an equal partner with regard to the required equipment, service and its associated technology now and in the future. In the changing world with ever increasing focus on Health, Safety and Environment (HSE), the topic efficiency, technology, equipment performance and functionality should not be overlooked or been given less attention. The Certification and Design principles, implemented in standards, aim predominantly at Fitness for Purpose of equipment and/or services to regain the balance. A further aim is to limit consequential costs due to deficiencies in the broadest sense, allowing the Petroleum and Natural Gas Industry to produce oil and gas in a cost effective manner with the highest possible HSE targets.« less

  1. Ontology-Based Gap Analysis for Technology Selection: A Knowledge Management Framework for the Support of Equipment Purchasing Processes

    NASA Astrophysics Data System (ADS)

    Macris, Aristomenis M.; Georgakellos, Dimitrios A.

    Technology selection decisions such as equipment purchasing and supplier selection are decisions of strategic importance to companies. The nature of these decisions usually is complex, unstructured and thus, difficult to be captured in a way that will be efficiently reusable. Knowledge reusability is of paramount importance since it enables users participate actively in process design/redesign activities stimulated by the changing technology selection environment. This paper addresses the technology selection problem through an ontology-based approach that captures and makes reusable the equipment purchasing process and assists in identifying (a) the specifications requested by the users' organization, (b) those offered by various candidate vendors' organizations and (c) in performing specifications gap analysis as a prerequisite for effective and efficient technology selection. This approach has practical appeal, operational simplicity, and the potential for both immediate and long-term strategic impact. An example from the iron and steel industry is also presented to illustrate the approach.

  2. KSC-08pd0083

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, technicians look at some of the elements to be tested in the Ares I-X Roll Control System, or RoCS. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd0082

    NASA Image and Video Library

    2008-01-24

    KENNEDY SPACE CENTER, FLA. -- In the hypergolic maintenance facility at NASA's Kennedy Space Center, some of the internal elements seen here of the ARES I-X Roll Control System, or RoCS, will undergo testing. The RoCS Servicing Simulation Test is to gather data that will be used to help certify the ground support equipment design and validate the servicing requirements and processes. The RoCS is part of the Interstage structure, the lowest axial segment of the Upper Stage Simulator. In an effort to reduce costs and meet the schedule, most of the ground support equipment that will be used for the RoCS servicing is of space shuttle heritage. This high-fidelity servicing simulation will provide confidence that servicing requirements can be met with the heritage system. At the same time, the test will gather process data that will be used to modify or refine the equipment and processes to be used for the actual flight element. Photo credit: NASA/Kim Shiflett

  4. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  5. Integrated Glass Coating Manufacturing Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor

    2015-09-30

    This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less

  6. Plasma Diagnostics: Use and Justification in an Industrial Environment

    NASA Astrophysics Data System (ADS)

    Loewenhardt, Peter

    1998-10-01

    The usefulness and importance of plasma diagnostics have played a major role in the development of plasma processing tools in the semiconductor industry. As can be seen through marketing materials from semiconductor equipment manufacturers, results from plasma diagnostic equipment can be a powerful tool in selling the technological leadership of tool design. Some diagnostics have long been used for simple process control such as optical emission for endpoint determination, but in recent years more sophisticated and involved diagnostic tools have been utilized in chamber and plasma source development and optimization. It is now common to find an assortment of tools at semiconductor equipment companies such as Langmuir probes, mass spectrometers, spatial optical emission probes, impedance, ion energy and ion flux probes. An outline of how the importance of plasma diagnostics has grown at an equipment manufacturer over the last decade will be given, with examples of significant and useful results obtained. Examples will include the development and optimization of an inductive plasma source, trends and hardware effects on ion energy distributions, mass spectrometry influences on process development and investigations of plasma-wall interactions. Plasma diagnostic focus, in-house development and proliferation in an environment where financial justification requirements are both strong and necessary will be discussed.

  7. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Design of equipment for cooking and heating. 130.220 Section 130.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Miscellaneous Equipment and Systems § 130.220 Design of equipment for cooking and heating....

  8. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Design of equipment for cooking and heating. 130.220 Section 130.220 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS VESSEL CONTROL, AND MISCELLANEOUS EQUIPMENT AND SYSTEMS Miscellaneous Equipment and Systems § 130.220 Design of equipment for cooking and heating....

  9. Environmental considerations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A comparison was made between the environmental impact of the present nuclear-heated process and the currently commercial hydrogen-producing process utilizing coal for heating, i.e., the Lurgi coal gasification process. This comparison is based on the assumption that both plants produce the same quantity of H2, i.e., 269 cu m/sec of approximately the same purity, that all pollution abatement equipment is of the same design and efficiency for both the Lurgi process and the nuclear process, and that the energy required for the fresh nuclear fuel and the fuel recycle is generated in a power plant which is also provided with pollution abatement equipment. The pollution caused by the auxiliary units is also taken into account. As regards process water usage, the data show that the water required for the nuclear route, including the nuclear fuel production, is approximately 78% of that required for the Lurgi route.

  10. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... non-air quality health and environmental impacts) and are commonly referred to as maximum achievable... process, stack, storage, or fugitive emissions point, (D) are design, equipment, work practice, or... combination of the above. CAA section 112(d)(2)(A)-(E). The MACT standard may take the form of a design...

  11. Investigation of Truck Size and Weight Limits - Technical Supplement. Vol. 1. Analysis of Truck Payloads Under Various Limits of Size, Weight and Configuration

    DOT National Transportation Integrated Search

    1981-02-01

    This volume documents the results of an analysis of the impact that various truck size and weight limits have on the carrier equipment selection process as a result of changes, in the design payload and design density of individual trucks. An analysi...

  12. 10 CFR Appendix O to Part 110 - Illustrative List of Fuel Element Fabrication Plant Equipment and Components Under NRC's Export...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... performance and safety during reactor operation. Also, in all cases precise control of processes, procedures... performance. (a) Items that are considered especially designed or prepared for the fabrication of fuel... pellets; (2) Automatic welding machines especially designed or prepared for welding end caps onto the fuel...

  13. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  14. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  15. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  16. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  17. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  18. Planting Seeds in Young Minds.

    ERIC Educational Resources Information Center

    Pugh, Ava F.; Dukes-Bevans, Lenell

    1987-01-01

    Provides some teaching tips for elementary teachers that are designed to enhance the natural interests of young children in science and help equip them with important science processing skills. Contains activities related to observation, classification, measurement, and communication. (TW)

  19. 40 CFR Appendix B to Part 63 - Sources Defined for Early Reduction Provisions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Location of definition 1. Organic Process Equipment in Volatile Hazardous Air Pollutant Service at Chemical Plants and Other Designated Facilities 56 FR 9315, March 6, 1991, Announcement of Negotiated Rulemaking a...

  20. 40 CFR Appendix B to Part 63 - Sources Defined for Early Reduction Provisions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Location of definition 1. Organic Process Equipment in Volatile Hazardous Air Pollutant Service at Chemical Plants and Other Designated Facilities 56 FR 9315, March 6, 1991, Announcement of Negotiated Rulemaking a...

  1. 40 CFR Appendix B to Part 63 - Sources Defined for Early Reduction Provisions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Location of definition 1. Organic Process Equipment in Volatile Hazardous Air Pollutant Service at Chemical Plants and Other Designated Facilities 56 FR 9315, March 6, 1991, Announcement of Negotiated Rulemaking a...

  2. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  3. Block 2 SRM conceptual design studies. Volume 1, Book 2: Preliminary development and verification plan

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Activities that will be conducted in support of the development and verification of the Block 2 Solid Rocket Motor (SRM) are described. Development includes design, fabrication, processing, and testing activities in which the results are fed back into the project. Verification includes analytical and test activities which demonstrate SRM component/subassembly/assembly capability to perform its intended function. The management organization responsible for formulating and implementing the verification program is introduced. It also identifies the controls which will monitor and track the verification program. Integral with the design and certification of the SRM are other pieces of equipment used in transportation, handling, and testing which influence the reliability and maintainability of the SRM configuration. The certification of this equipment is also discussed.

  4. Structure-borne noise at hotels

    NASA Astrophysics Data System (ADS)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  5. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  6. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  7. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  8. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet.more » The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks using feasibly-implementable rate adaptivity. • A buffer-management algorithm that is designed to reduce the size of router buffers, and hence energy consumed. • A packet-scheduling algorithm designed to minimize packet-processing energy requirements. Additional research is recommended in at least two areas: further exploration of rate-adaptation in network switching equipment, including incorporation of rate-adaptation in actual hardware, allowing experimentation in operational networks; and development of control protocols that allow parts of networks to be shut down while minimizing disruption to traffic flow in the network. The research is an integral part of a large effort within Bell Laboratories, Alcatel-Lucent, aimed at dramatic improvements in the energy efficiency of telecommunication networks. This Study did not explicitly consider any commercialization opportunities.« less

  9. Setting new standards in MEMS

    NASA Astrophysics Data System (ADS)

    Rimskog, Magnus; O'Loughlin, Brian J.

    2007-02-01

    Silex Microsystems handles a wide range of customized MEMS components. This speech will be describing Silex's MEMS foundry work model for providing customized solutions based on MEMS in a cost effective and well controlled manner. Factors for success are the capabilities to reformulate a customer product concept to manufacturing processes in the wafer fab, using standard process modules and production equipment. A well-controlled system increases the likelihood of a first batch success and enables fast ramp-up into volume production. The following success factors can be listed: strong enduring relationships with the customers; highly qualified well-experienced specialists working close with the customer; process solutions and building blocks ready to use out of a library; addressing manufacturing issues in the early design phase; in-house know how to meet demands for volume manufacturing; access to a wafer fab with high capacity, good organization, high availability of equipment, and short lead times; process development done in the manufacturing environment using production equipment for easy ramp-up to volume production. The article covers a method of working to address these factors: to have a long and enduring relationships with customers utilizing MEMS expertise and working close with customers, to translate their product ideas to MEMS components; to have stable process solutions for features such as Low ohmic vias, Spiked electrodes, Cantilevers, Silicon optical mirrors, Micro needles, etc, which can be used and modified for the customer needs; to use a structured development and design methodology in order to handle hundreds of process modules, and setting up standard run sheets. It is also very important to do real time process development in the manufacturing line. It minimizes the lead-time for the ramp-up of production; to have access to a state of the art Wafer Fab which is well organized, controlled and flexible, with high capacity and short lead-time for prototypes. It is crucial to have intimate control of processes, equipment, organization, production flow control and WIP. This has been addressed by using a fully computerized control and reporting system.

  10. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.

    PubMed

    Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G

    2013-10-01

    A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. High Strength P/M Gears for Vehicle Transmissions - Phase 2

    DTIC Science & Technology

    2008-08-15

    and while it was considered amenable to standard work material transfer ("blue steel" chutes for example) from other P/M processing equipment, no...depend of the machine design but should be kept to a minimum in order to minimize part transfer times. Position control of the linear axis is...Establish design of ausform gear finishing machine for P/M gears: The "Focus" part identified in phase I (New Process Planet gear P/N 17864, component

  12. Design of model experiments for melt flow and solidification in a square container under time-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Meier, D.; Lukin, G.; Thieme, N.; Bönisch, P.; Dadzis, K.; Büttner, L.; Pätzold, O.; Czarske, J.; Stelter, M.

    2017-03-01

    This paper describes novel equipment for model experiments designed for detailed studies on electromagnetically driven flows as well as solidification and melting processes with low-melting metals in a square-based container. Such model experiments are relevant for a validation of numerical flow simulation, in particular in the field of directional solidification of multi-crystalline photovoltaic silicon ingots. The equipment includes two square-shaped electromagnetic coils and a melt container with a base of 220×220 mm2 and thermostat-controlled heat exchangers at top and bottom. A system for dual-plane, spatial- and time-resolved flow measurements as well as for in-situ tracking of the solid-liquid interface is developed on the basis of the ultrasound Doppler velocimetry. The parameters of the model experiment are chosen to meet the scaling laws for a transfer of experimental results to real silicon growth processes. The eutectic GaInSn alloy and elemental gallium with melting points of 10.5 °C and 29.8 °C, respectively, are used as model substances. Results of experiments for testing the equipment are presented and discussed.

  13. Discrepancy Reporting Management System

    NASA Technical Reports Server (NTRS)

    Cooper, Tonja M.; Lin, James C.; Chatillon, Mark L.

    2004-01-01

    Discrepancy Reporting Management System (DRMS) is a computer program designed for use in the stations of NASA's Deep Space Network (DSN) to help establish the operational history of equipment items; acquire data on the quality of service provided to DSN customers; enable measurement of service performance; provide early insight into the need to improve processes, procedures, and interfaces; and enable the tracing of a data outage to a change in software or hardware. DRMS is a Web-based software system designed to include a distributed database and replication feature to achieve location-specific autonomy while maintaining a consistent high quality of data. DRMS incorporates commercial Web and database software. DRMS collects, processes, replicates, communicates, and manages information on spacecraft data discrepancies, equipment resets, and physical equipment status, and maintains an internal station log. All discrepancy reports (DRs), Master discrepancy reports (MDRs), and Reset data are replicated to a master server at NASA's Jet Propulsion Laboratory; Master DR data are replicated to all the DSN sites; and Station Logs are internal to each of the DSN sites and are not replicated. Data are validated according to several logical mathematical criteria. Queries can be performed on any combination of data.

  14. A design of camera simulator for photoelectric image acquisition system

    NASA Astrophysics Data System (ADS)

    Cai, Guanghui; Liu, Wen; Zhang, Xin

    2015-02-01

    In the process of developing the photoelectric image acquisition equipment, it needs to verify the function and performance. In order to make the photoelectric device recall the image data formerly in the process of debugging and testing, a design scheme of the camera simulator is presented. In this system, with FPGA as the control core, the image data is saved in NAND flash trough USB2.0 bus. Due to the access rate of the NAND, flash is too slow to meet the requirement of the sytsem, to fix the problem, the pipeline technique and the High-Band-Buses technique are applied in the design to improve the storage rate. It reads image data out from flash in the control logic of FPGA and output separately from three different interface of Camera Link, LVDS and PAL, which can provide image data for photoelectric image acquisition equipment's debugging and algorithm validation. However, because the standard of PAL image resolution is 720*576, the resolution is different between PAL image and input image, so the image can be output after the resolution conversion. The experimental results demonstrate that the camera simulator outputs three format image sequence correctly, which can be captured and displayed by frame gather. And the three-format image data can meet test requirements of the most equipment, shorten debugging time and improve the test efficiency.

  15. Origins of eponymous orthopaedic equipment.

    PubMed

    Meals, Clifton; Wang, Jeffrey

    2010-06-01

    Orthopaedists make great use of eponymous equipment, however the origins of these tools are unknown to many users. This history enriches, enlightens, and enhances surgical education, and may inspire modern innovation. We explored the origins of common and eponymous orthopaedic equipment. We selected pieces of equipment named for their inventors and in the broadest use by modern orthopaedists. We do not describe specialized orthopaedic implants and instruments owing to the overwhelming number of these devices. The history of this equipment reflects the coevolution of orthopaedics and battlefield medicine. Additionally, these stories evidence the primacy of elegant design and suggest that innovation is often a process of revision and refinement rather than sudden inspiration. Their history exposes surgical innovators as brilliant, lucky, hardworking, and sometimes odd. These stories amuse, enlighten, and may inspire modern orthopaedists to develop creative solutions of their own. The rich history of the field's eponymous instruments informs an ongoing tradition of innovation in orthopaedics.

  16. If we designed airplanes like we design drugs…

    NASA Astrophysics Data System (ADS)

    Woltosz, Walter S.

    2012-01-01

    In the early days, airplanes were put together with parts designed for other purposes (bicycles, farm equipment, textiles, automotive equipment, etc.). They were then flown by their brave designers to see if the design would work—often with disastrous results. Today, airplanes, helicopters, missiles, and rockets are designed in computers in a process that involves iterating through enormous numbers of designs before anything is made. Until very recently, novel drug-like molecules were nearly always made first like early airplanes, then tested to see if they were any good (although usually not on the brave scientists who created them!). The resulting extremely high failure rate is legendary. This article describes some of the evolution of computer-based design in the aerospace industry and compares it with the progress made to date in computer-aided drug design. Software development for pharmaceutical research has been largely entrepreneurial, with only relatively limited support from government and industry end-user organizations. The pharmaceutical industry is still about 30 years behind aerospace and other industries in fully recognizing the value of simulation and modeling and funding the development of the tools needed to catch up.

  17. If we designed airplanes like we design drugs....

    PubMed

    Woltosz, Walter S

    2012-01-01

    In the early days, airplanes were put together with parts designed for other purposes (bicycles, farm equipment, textiles, automotive equipment, etc.). They were then flown by their brave designers to see if the design would work--often with disastrous results. Today, airplanes, helicopters, missiles, and rockets are designed in computers in a process that involves iterating through enormous numbers of designs before anything is made. Until very recently, novel drug-like molecules were nearly always made first like early airplanes, then tested to see if they were any good (although usually not on the brave scientists who created them!). The resulting extremely high failure rate is legendary. This article describes some of the evolution of computer-based design in the aerospace industry and compares it with the progress made to date in computer-aided drug design. Software development for pharmaceutical research has been largely entrepreneurial, with only relatively limited support from government and industry end-user organizations. The pharmaceutical industry is still about 30 years behind aerospace and other industries in fully recognizing the value of simulation and modeling and funding the development of the tools needed to catch up.

  18. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    NASA Astrophysics Data System (ADS)

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui

    2017-08-01

    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  19. Space Shuttle SRM development. [Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Brinton, B. C.; Kilminster, J. C.

    1979-01-01

    The successful static test of the fourth Development Space Shuttle Solid Rocket Motor (SRM) in February 1979 concluded the development testing phase of the SRM Project. Qualification and flight motors are currently being fabricated, with the first qualification motor to be static tested. Delivered thrust-time traces on all development motors were very close to predicted values, and both specific and total impulse exceeded specification requirements. 'All-up' static tests conducted with a solid rocket booster equipment on development motors achieved all test objectives. Transportation and support equipment concepts have been proven, baselining is complete, and component reusability has been demonstrated. Evolution of the SRM transportation support equipment, and special test equipment designs are reviewed, and development activities discussed. Handling and processing aspects of large, heavy components are described.

  20. Reverse osmosis water purification system

    NASA Technical Reports Server (NTRS)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  1. The 26-meter S-X Conversion Project. [Deep Space Network stations

    NASA Technical Reports Server (NTRS)

    Lobb, V. B.

    1977-01-01

    The 26-meter S-X conversion project provides for the conversion of an existing 26-meter S-band subnet to a 34-meter S- and X-band subnet. The subnet chosen for conversion consists of the following stations: DSS 12 near Barstow, DSS 44 in Australia, and DSS 62 in Spain. The main subsystems effected by this project are the antenna mechanical, antenna microwave, and receiver-exciter. In addition to these, there are many project-related electronic equipments that have been added to the existing station equipment. The major subsystems are essentially through the design stage with the antenna mechanical subsystem completed through detail design with procurement in process.

  2. Integrating human factors knowledge into certification: The point of view of the Internatioanal Civil Aviation Organization (ICAO)

    NASA Technical Reports Server (NTRS)

    Maurino, Daniel; Galotti, Vincent

    1994-01-01

    It is appropriate here to repeat the analogy described in the introduction to this paper which is that: The consideration of human factors requirements during the design stage of advanced, new technology systems may be seen as resting over a three-legged stool. The first leg, the equipment that a system will utilize to achieve its goals, has traditionally attracted ergonomic considerations associated with equipment design, usually centered around 'knobs and dials.' Lately, this view has expanded to include the so-called other important aspect of Human Factor's study which deals with the cognitive, behaviorial and social processes of the human operators. Study in this area must be furthered. The second leg of the stool, the procedures to operate the equipment, however, has been largely unaddressed. Procedures are not inherent to equipment, but must be developed. The importance of proper human factors consideration in the design of procedures can not be overstated. Lastly, the third leg of the stool, the certification of personnel who will operate the equipment, is very much underway, but far from being complete. The real quest now, however, is to integrate these three legs into an indivisible one. Finally, and most importantly, this workshop and its topic are extremely timely in that we are at the dawn of the most ambitious development ever undertaken in international civil aviation. This would allow us the rather unique opportunity to put theory into practice in the near future by ensuring that the concepts developed and furthered by this workshop and the follow-up are implemented in the design and certification of the ICAO future CNS/ATM systems described earlier in this paper. Now is the time to incorporate human factors requirements during the certification processes of these systems. This might act as a test to the feasibility of these ideas. Such endeavors represent a challenge for the research, engineering, training, operational and regulatory communities. But there is certainly more to be gained by attempting to meet the challenge rather than refraining from progress by decrying the difficulties involved.

  3. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (ii) Transformed by chemical reaction into materials that are not regulated materials; (iii... section for a storage vessel, the owner or operator shall prepare a design evaluation (or engineering...

  4. Choosing a Geothermal as an HVAC System.

    ERIC Educational Resources Information Center

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  5. Implementation of Testing Equipment for Asphalt Materials : Tech Summary

    DOT National Transportation Integrated Search

    2009-05-01

    Three new automated methods for related asphalt material and mixture testing were evaluated under this study. Each of these devices is designed to reduce testing time considerably and reduce operator error by automating the testing process. The Thery...

  6. Implementation of testing equipment for asphalt materials : tech summary.

    DOT National Transportation Integrated Search

    2009-05-01

    Three new automated methods for related asphalt material and mixture testing were evaluated : under this study. Each of these devices is designed to reduce testing time considerably and reduce : operator error by automating the testing process. The T...

  7. The evolution of a health hazard assessment database management system for military weapons, equipment, and materiel.

    PubMed

    Murnyak, George R; Spencer, Clark O; Chaney, Ann E; Roberts, Welford C

    2002-04-01

    During the 1970s, the Army health hazard assessment (HHA) process developed as a medical program to minimize hazards in military materiel during the development process. The HHA Program characterizes health hazards that soldiers and civilians may encounter as they interact with military weapons and equipment. Thus, it is a resource for medical planners and advisors to use that can identify and estimate potential hazards that soldiers may encounter as they train and conduct missions. The U.S. Army Center for Health Promotion and Preventive Medicine administers the program, which is integrated with the Army's Manpower and Personnel Integration program. As the HHA Program has matured, an electronic database has been developed to record and monitor the health hazards associated with military equipment and systems. The current database tracks the results of HHAs and provides reporting designed to assist the HHA Program manager in daily activities.

  8. Flexible, FEP-Teflon covered solar cell module development

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.; Cannady, M. D.

    1976-01-01

    Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.

  9. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Treesearch

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  10. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  11. SKYLAB (SL) PRIME CREW - BLDG. 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20759 (1 March 1973) --- Astronaut Charles Conrad Jr., commander of the first manned Skylab mission, takes items from the M512 materials processing equipment storage assembly during Skylab training at Johnson Space Center. Conrad is standing in the Multiple Docking Adapter (MDA) trainer in the JSC Mission Simulation and Training Facility. The assembly holds equipment designed to explore space manufacturing capability in a weightless state. Conrad is holding one of the experiment parts in his left hand. Photo credit: NASA

  12. Addition of Electrostatic Forces to EDEM with Applications to Triboelectrically Charged Particles

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Calle, Carlos; Curry, David

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carryout experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM Tm, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. In this paper we will present overview of the theoretical calculations and experimental data and their comparison to the results of the DEM simulations. We will also discuss current plans to revise the DEM software with advanced electrodynamic and mechanical algorithms.

  13. 46 CFR 153.484 - Prewash equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.484 Prewash equipment. Unless the ship operator shows that the prewash...

  14. 46 CFR 153.484 - Prewash equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.484 Prewash equipment. Unless the ship operator shows that the prewash...

  15. 46 CFR 153.484 - Prewash equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.484 Prewash equipment. Unless the ship operator shows that the prewash...

  16. 46 CFR 153.484 - Prewash equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.484 Prewash equipment. Unless the ship operator shows that the prewash...

  17. 46 CFR 153.484 - Prewash equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.484 Prewash equipment. Unless the ship operator shows that the prewash...

  18. Overview of the production of sintered SiC optics and optical sub-assemblies

    NASA Astrophysics Data System (ADS)

    Williams, S.; Deny, P.

    2005-08-01

    The following is an overview on sintered silicon carbide (SSiC) material properties and processing requirements for the manufacturing of components for advanced technology optical systems. The overview will compare SSiC material properties to typical materials used for optics and optical structures. In addition, it will review manufacturing processes required to produce optical components in detail by process step. The process overview will illustrate current manufacturing process and concepts to expand the process size capability. The overview will include information on the substantial capital equipment employed in the manufacturing of SSIC. This paper will also review common in-process inspection methodology and design rules. The design rules are used to improve production yield, minimize cost, and maximize the inherent benefits of SSiC for optical systems. Optimizing optical system designs for a SSiC manufacturing process will allow systems designers to utilize SSiC as a low risk, cost competitive, and fast cycle time technology for next generation optical systems.

  19. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.

  20. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  1. [Research and realization of signal processing algorithms based on FPGA in digital ophthalmic ultrasonography imaging].

    PubMed

    Fang, Simin; Zhou, Sheng; Wang, Xiaochun; Ye, Qingsheng; Tian, Ling; Ji, Jianjun; Wang, Yanqun

    2015-01-01

    To design and improve signal processing algorithms of ophthalmic ultrasonography based on FPGA. Achieved three signal processing modules: full parallel distributed dynamic filter, digital quadrature demodulation, logarithmic compression, using Verilog HDL hardware language in Quartus II. Compared to the original system, the hardware cost is reduced, the whole image shows clearer and more information of the deep eyeball contained in the image, the depth of detection increases from 5 cm to 6 cm. The new algorithms meet the design requirements and achieve the system's optimization that they can effectively improve the image quality of existing equipment.

  2. Computer methods in designing tourist equipment for people with disabilities

    NASA Astrophysics Data System (ADS)

    Zuzda, Jolanta GraŻyna; Borkowski, Piotr; Popławska, Justyna; Latosiewicz, Robert; Moska, Eleonora

    2017-11-01

    Modern technologies enable disabled people to enjoy physical activity every day. Many new structures are matched individually and created for people who fancy active tourism, giving them wider opportunities for active pastime. The process of creating this type of devices in every stage, from initial design through assessment to validation, is assisted by various types of computer support software.

  3. An Introduction to the Sexual Reproduction of Flowering Plants. Ornamental Horticulture I, Lesson Plan No. 5.

    ERIC Educational Resources Information Center

    Ideoka, Keith

    Developed as part of a 90-hour high school course in ornamental horticulture, this 50-minute lesson plan is designed to explain the process of pollination and fertilization of flowering plants. The lesson plan begins with information on the course for which the lesson was designed; equipment and audio-visual aids needed; required student…

  4. Network-based production quality control

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  5. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  6. 75 FR 76930 - Amendment to the International Traffic in Arms Regulations: Revision of U.S. Munitions List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... equipment. (1) (Tier 2) Production equipment, tooling, and test equipment ``specially designed'' for armored... designed'' for the articles controlled in this Category. Note 1 to paragraph (b): For production of major..., inspection and production equipment ``specially designed'' for a subsystem or component not specifically...

  7. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  8. Organization of project works in Industry 4.0 digital item designing companies

    NASA Astrophysics Data System (ADS)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-05-01

    The task of the project works organization in the Industry 4.0 item designing digital factories is being studied. There is a scheme of the item designing component life cycle. There is also a scheme how to develop and confirm the quality of the item designing component documentation using the mathematical modelling. There is a description of the self-organization principles for the cyber and physical technological equipment in the Industry 4.0 «smart factory» company during the manufacturing process.

  9. A Design Basis for Spacecraft Cabin Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2009-01-01

    Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.

  10. The Impact of Environmental Regulation on Defense System Acquisition Management

    DTIC Science & Technology

    1976-05-01

    producer, had been the sole source for the fuel. The process of manufacturing the fuel also produced a toxic ~arcinogenic byproduct. This condition caused...minimized. Could the design be quieter? Does the maintenance of the system require environmentally sensitive equipment, processes , or material? For ... Of particular interest to this report is the effect of such regulation on the defense system acquisition process . There is a direct impact on the

  11. Magnetic pulse cleaning of products

    NASA Astrophysics Data System (ADS)

    Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.

    2016-04-01

    The article deals with the application of a magnetic impact for inventing new equipment and methods of cleaning cast precision blanks from fragile or granular thickened surface coatings, which are difficult to remove and highly resistant to further mechanical processing. The issues relating to a rational use of the new method for typical products and auxiliary operations have been studied. The calculation and design methods have been elaborated for load-carrying elements of the equipment created. It has been shown, that the application of the magnetic pulse method, combined with a low-frequency vibration process is perspective at enterprises of general and special machine construction, for cleaning lightweight blanks and containers, used for transporting bulk goods.

  12. Design and performance of the VLT 8-m coating unit

    NASA Astrophysics Data System (ADS)

    Schneermann, Michael W.; Groessl, M.; Nienaber, U.; Ettlinger, E.; Spiteri, J. A.; Clow, H.

    1997-03-01

    The 8 m coating unit for the VLT mirrors is designed for the deposition of high reflective, homogeneous aluminum coatings. For the process of the film deposition the sputter technology is utilized. The design of the following major subsystems is completed: the vacuum vessel and the vacuum generation system, the thin film deposition equipment and the glow discharge cleaning device, the substrate support and rotation system as well as the supporting framework and the auxiliary equipment. Manufacturing of the coating unit has started. The pre- assembly and testing activities, which will take place prior to the shipment to the site, are defined. This paper describes the design features and the major performance requirements of the 8 m coating unit. The performance of the sputter source design has been verified in a qualification test. The deposition rate, the film thickness and reflectance, as well as the film purity have been measured. The test set-up and the results of the qualification tests of the selected magnetron type are presented and discussed.

  13. Process and equipment development for hot isostatic pressing treatability study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP withinmore » INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.« less

  14. Flight Computer Processing Avionics for Space Station Microgravity Experiments: A Risk Assessment of Commercial Off-the-Shelf Utilization

    NASA Technical Reports Server (NTRS)

    Estes, Howard; Liggin, Karl; Crawford, Kevin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for ways to reduce the costs and schedule and minimize the technical risks during the development of microgravity programs. One of the more prominent ways to minimize the cost and schedule is to use off-the-shelf hardware (OTS). However, the use of OTS often increases the risk. This paper addresses relevant factors considered during the selection and utilization of commercial off-the-shelf (COTS) flight computer processing equipment for the control of space station microgravity experiments. The paper will also discuss how to minimize the technical risks when using COTS processing hardware. Two microgravity experiments for which the COTS processing equipment is being evaluated for are the Equiaxed Dendritic Solidification Experiment (EDSE) and the Self-diffusion in Liquid Elements (SDLE) experiment. Since MSFC is the lead center for Microgravity research, EDSE and SDLE processor selection will be closely watched by other experiments that are being designed to meet payload carrier requirements. This includes the payload carriers planned for the International Space Station (ISS). The purpose of EDSE is to continue to investigate microstructural evolution of, and thermal interactions between multiple dendrites growing under diffusion controlled conditions. The purpose of SDLE is to determine accurate self-diffusivity data as a function of temperature for liquid elements selected as representative of class-like structures. In 1999 MSFC initiated a Center Director's Discretionary Fund (CDDF) effort to investigate and determine the optimal commercial data bus architecture that could lead to faster, better, and lower cost data acquisition systems for the control of microgravity experiments. As part of this effort various commercial data acquisition systems were acquired and evaluated. This included equipment with various form factors, (3U, 6U, others) and equipment that utilized various bus structures, (VME, PC104, STD bus). This evaluation of hardware was performed in conjunction with a trade study that considered over twenty (20) different factors relevant to the selection of an optimum design approach. These factors included; safety, sizing and timing, radiation hardness and single event upset, power consumption, heat dissipation, size and volume, expected service life, maintainability, heritage, operating systems, requirements for software reuse, availability of compatible interface boards, relative cost, schedule, reliability, EMI/EMC factors, "hot swap" capability, standards for conduction cooling, I/O capabilities, unique carrier requirements and operating system considerations. The approach to evaluate Safety as part of this study included a review of the Preliminary Hazard Analysis (PHA) for each of the experiment designs and a determination of how each hazard could be addressed and eliminated when different processors were selected. This included evaluating various design approaches and trade-offs between fault tolerant designs and fail-safe designs in accordance with NSTS 1700.7B. This will include the results of radiation testing where available. Various operating systems, such as VxWorks, Linux, QNX, and Embedded NT are evaluated and the advantages and disadvantages of their utilization are also addressed. Design implementation strategies for the various operating systems are considered and discussed. This paper presents the results and recommendations from this trade study. Preliminary conclusions from this study are that safety concerns from lack or radiation testing on COTS equipment can be addressed by additional testing and design considerations, the PC104 bus provided adequate I/O for the SDLE and EDSE microgravity experiments, and PC104 bus components offered significant advantages over VME and cPCI for weight and space reductions.

  15. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  16. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  17. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  18. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  19. 46 CFR 153.491 - Waiver of certain equipment for dedicated cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.491 Waiver of certain equipment for...

  20. Conceptual overview and preliminary risk assessment of cryogen use in deep underground mine production

    NASA Astrophysics Data System (ADS)

    Sivret, J.; Millar, D. L.; Lyle, G.

    2017-12-01

    This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.

  1. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  2. Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, R.A.; Dhooge, P.M.

    1994-04-01

    Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less

  3. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  4. Processes of Skill Performance: A Foundation for the Design and Use of Training Equipment

    DTIC Science & Technology

    1983-11-01

    F. I. M., & Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11. 671-784...knowledge regarding the basic processes , the kinds and levels of information to be sought in examining individual skills can be Identified. Analysis of...explaining what is involved In even the simple compass example would require analyses of cognitive processes that go far beyond the level of

  5. Transition process from emerging NDT technology to production inspection application

    NASA Astrophysics Data System (ADS)

    Jappe, William; Wood, Nancy; Johnson, Maurice

    1995-07-01

    The successful application of emerging NDT technologies for specific aging aircraft inspections requires an integration of efforts between aircraft operators, airframe manufacturers, NDT equipment designers, and government regulators. This paper describes the development process that was followed to establish an alternate inspection technique for a DC-10 crown skin butt joint inspection. Initial investigation, intermediate development, and final evaluations are discussed.

  6. Computational Modeling as a Design Tool in Microelectronics Manufacturing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Plans to introduce pilot lines or fabs for 300 mm processing are in progress. The IC technology is simultaneously moving towards 0.25/0.18 micron. The convergence of these two trends places unprecedented stringent demands on processes and equipments. More than ever, computational modeling is called upon to play a complementary role in equipment and process design. The pace in hardware/process development needs a matching pace in software development: an aggressive move towards developing "virtual reactors" is desirable and essential to reduce design cycle and costs. This goal has three elements: reactor scale model, feature level model, and database of physical/chemical properties. With these elements coupled, the complete model should function as a design aid in a CAD environment. This talk would aim at the description of various elements. At the reactor level, continuum, DSMC(or particle) and hybrid models will be discussed and compared using examples of plasma and thermal process simulations. In microtopography evolution, approaches such as level set methods compete with conventional geometric models. Regardless of the approach, the reliance on empricism is to be eliminated through coupling to reactor model and computational surface science. This coupling poses challenging issues of orders of magnitude variation in length and time scales. Finally, database development has fallen behind; current situation is rapidly aggravated by the ever newer chemistries emerging to meet process metrics. The virtual reactor would be a useless concept without an accompanying reliable database that consists of: thermal reaction pathways and rate constants, electron-molecule cross sections, thermochemical properties, transport properties, and finally, surface data on the interaction of radicals, atoms and ions with various surfaces. Large scale computational chemistry efforts are critical as experiments alone cannot meet database needs due to the difficulties associated with such controlled experiments and costs.

  7. Impact of the digital revolution on the future of pharmaceutical formulation science.

    PubMed

    Leuenberger, Hans; Leuenberger, Michael N

    2016-05-25

    The ongoing digital revolution is no longer limited to the application of apps on the smart phone for daily needs but starts to affect also our professional life in formulation science. The software platform F-CAD (Formulation-Computer Aided Design) of CINCAP can be used to develop and test in silico capsule and tablet formulations. Such an approach allows the pharmaceutical industry to adopt the workflow of the automotive and aircraft industry. Thus, the first prototype of the drug delivery vehicle is prepared virtually by mimicking the composition (particle size distribution of the active drug substance and of the excipients within the tablet) and the process such as direct compression to obtain a defined porosity. The software is based on a cellular automaton (CA) process mimicking the dissolution profile of the capsule or tablet formulation. To take account of the type of dissolution equipment and all SOPs (Standard Operation Procedures) such as a single punch press to manufacture the tablet, a calibration of the F-CAD dissolution profile of the virtual tablet is needed. Thus, the virtual tablet becomes a copy of the real tablet. This statement is valid for all tablets manufactured within the same formulation design space. For this reason, it is important to define already for Clinical Phase I the formulation design space and to work only within this formulation design space consisting of the composition and the processes during all the Clinical Phases. Thus, it is not recommended to start with a simple capsule formulation as service dosage form and to change later to a market ready tablet formulation. The availability of F-CAD is a necessary, but not a sufficient condition to implement the workflow of the automotive and aircraft industry for developing and testing drug delivery vehicles. For a successful implementation of the new workflow, a harmonization of the equipment and the processes between the development and manufacturing departments is a must. In this context, the clinical samples for Clinical Phases I and II should be prepared with a mechanical simulator of the high-speed rotary press used for large batches for Clinical Phases III & IV. If not, the problem of working practically and virtually in different formulation design spaces will remain causing worldwide annually billion of $ losses according to the study of Benson and MacCabe. The harmonization of equipment and processes needs a close cooperation between the industrial pharmacist and the pharmaceutical engineer. In addition, Virtual Equipment Simulators (VESs) of small and large scale equipment for training and computer assisted scale-up would be desirable. A lean and intelligent management information and documentation system will improve the connectivity between the different work stations. Thus, in future, it may be possible to rent at low costs F-CAD as an IT (Information Technology) platform based on a cloud computing solution. By the adoption of the workflow of the automotive and aircraft industry significant savings, a reduced time to market, a lower attrition rate, and a much higher quality of the final marketed dosage form can be achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Integrated Building Management System (IBMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anita Lewis

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment withoutmore » interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.« less

  9. Common modular avionics - Partitioning and design philosophy

    NASA Astrophysics Data System (ADS)

    Scott, D. M.; Mulvaney, S. P.

    The design objectives and definition criteria for common modular hardware that will perform digital processing functions in multiple avionic subsystems are examined. In particular, attention is given to weapon system-level objectives, such as increased supportability, reduced life cycle costs, and increased upgradability. These objectives dictate the following overall modular design goals: reduce test equipment requirements; have a large number of subsystem applications; design for architectural growth; and standardize for technology transparent implementations. Finally, specific partitioning criteria are derived on the basis of the weapon system-level objectives and overall design goals.

  10. 46 CFR 154.625 - Design temperature below 0 °C (32 °F) and down to −165 °C (−265 °F).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Design temperature below 0 °C (32 °F) and down to â165... LIQUEFIED GASES Design, Construction and Equipment Materials § 154.625 Design temperature below 0 °C (32 °F... process piping for a design temperature below 0 °C (32 °F) and down to −165 °C (−265 °F) must meet § 56.50...

  11. 46 CFR 154.625 - Design temperature below 0 °C (32 °F) and down to −165 °C (−265 °F).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Design temperature below 0 °C (32 °F) and down to â165... LIQUEFIED GASES Design, Construction and Equipment Materials § 154.625 Design temperature below 0 °C (32 °F... process piping for a design temperature below 0 °C (32 °F) and down to −165 °C (−265 °F) must meet § 56.50...

  12. A senior manufacturing laboratory for determining injection molding process capability

    NASA Technical Reports Server (NTRS)

    Wickman, Jerry L.; Plocinski, David

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This subject material is directed at an upper level undergraduate/graduate student in an Engineering or Engineering Technology program. It is assumed that the student has a thorough understanding of the process and quality control. The format of this laboratory does not follow that which is normally recommended because of the nature of process capability and that of the injection molding equipment and tooling. This laboratory is instead developed to be used as a point of departure for determining process capability for any process in either a quality control laboratory or a manufacturing environment where control charts, process capability, and experimental or product design are considered important topics.

  13. COMPUTER-AIDED SOLVENT DESIGN FOR POLLUTION PREVENTION: PARIS II

    EPA Science Inventory

    Solvent substitution is an attractive way of elijminating the use of regulated solvents because it usually does not require major chanages in existing processes, equipment or operations. Successful solvent substitution is dependent on finding solvents that are as effective or be...

  14. 50 CFR 260.102 - Equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., packaging, or storing any processed products or any ingredients used in the manufacture or production thereof, shall be of such design, material, and construction as will: (a) Enable the examination... with Good Manufacturing Practice Regulations, 21 CFR part 128. [36 FR 21041, Nov. 3, 1971] ...

  15. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  16. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  17. 30 CFR 250.1910 - What safety and environmental information is required?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appropriate, a simplified process flow diagram and acceptable upper and lower limits, where applicable, for items such as temperature, pressure, flow and composition; and (3) mechanical design information including, as appropriate, piping and instrument diagrams; electrical area classifications; equipment...

  18. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as themore » need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.« less

  19. KSC-2012-1852

    NASA Image and Video Library

    2012-02-17

    Industrial Area Construction: Located 5 miles south of Launch Complex 39, construction of the main buildings -- Operations and Checkout Building, Headquarters Building, and Central Instrumentation Facility – began in 1963. In 1992, the Space Station Processing Facility was designed and constructed for the pre-launch processing of International Space Station hardware that was flown on the space shuttle. Along with other facilities, the industrial area provides spacecraft assembly and checkout, crew training, computer and instrumentation equipment, hardware preflight testing and preparations, as well as administrative offices. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA

  20. The Design, Implementation, and Evaluation of a Digital Interactive Globe System Integrated into an Earth Science Course

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2018-01-01

    The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…

  1. Flowability of granular materials with industrial applications - An experimental approach

    NASA Astrophysics Data System (ADS)

    Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo

    2017-06-01

    Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.

  2. Training Manual for Elements of Interface Definition and Control

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Kastner, Robert E. (Editor); Hartt, Henry N. (Editor)

    1997-01-01

    The primary thrust of this manual is to ensure that the format and information needed to control interfaces between equipment are clear and understandable. The emphasis is on controlling the engineering design of the interface and not on the functional performance requirements of the system or the internal workings of the interfacing equipment. Interface control should take place, with rare exception, at the interfacing elements and no further. There are two essential sections of the manual. Chapter 2, Principles of Interface Control, discusses how interfaces are defined. It describes different types of interfaces to be considered and recommends a format for the documentation necessary for adequate interface control. Chapter 3, The Process: Through the Design Phases, provides tailored guidance for interface definition and control. This manual can be used to improve planned or existing interface control processes during system design and development. It can also be used to refresh and update the corporate knowledge base. The information presented herein will reduce the amount of paper and data required in interface definition and control processes by as much as 50 percent and will shorten the time required to prepare an interface control document. It also highlights the essential technical parameters that ensure that flight subsystems will indeed fit together and function as intended after assembly and checkout.

  3. Pilot scale system for the production of palm-based Monoester-OH

    NASA Astrophysics Data System (ADS)

    Ngah, Muhammad Syukri; Badri, Khairiah Haji

    2016-11-01

    A mechanically agitate reactor vessel in a moderate scale size of 500 L has been developed. This vessel was constructed to produce palm-based polyurethane polyol with a capacity of maximum 400 L. This is to accomodate the demand required for marketing trial run as part of the commercialization intention. The chemistry background of the process design was thoroughly studied. The esterification and condensation in batch process was maintained from the laboratory scale. Only RBD palm kernel oil was used in this study. This paper will describe the engineering design for the reactor vessel development beginning at the stoichiometric equations for the production process to the detail engineering including the equipment selection and fabrication in order to meet the design and objective specifications.

  4. DHM simulation in virtual environments: a case-study on control room design.

    PubMed

    Zamberlan, M; Santos, V; Streit, P; Oliveira, J; Cury, R; Negri, T; Pastura, F; Guimarães, C; Cid, G

    2012-01-01

    This paper will present the workflow developed for the application of serious games in the design of complex cooperative work settings. The project was based on ergonomic studies and development of a control room among participative design process. Our main concerns were the 3D human virtual representation acquired from 3D scanning, human interaction, workspace layout and equipment designed considering ergonomics standards. Using Unity3D platform to design the virtual environment, the virtual human model can be controlled by users on dynamic scenario in order to evaluate the new work settings and simulate work activities. The results obtained showed that this virtual technology can drastically change the design process by improving the level of interaction between final users and, managers and human factors team.

  5. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  6. Optical system for UV-laser technological equipment

    NASA Astrophysics Data System (ADS)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  7. A Systematic Approach to Optimize Organizations Operating in Uncertain Environments: Design Methodology and Applications

    DTIC Science & Technology

    2002-09-01

    sub-goal can lead to achieving different goals (e.g., automation of on-line order processing may lead to both reducing the storage cost and reducing...equipment Introduce new technology Find cheaper supplier Sign a contract Introduce cheaper materials Set up and automate on-line order processing Integrate... order processing with inventory and shipping Set up company’s website Freight consolidation Just-in-time versus pre-planned balance

  8. Deburring: an annotated bibliography. Volume V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, L.K.

    1978-01-01

    An annotated summary of 204 articles and publications on burrs, burr prevention and deburring is presented. Thirty-seven deburring processes are listed. Entries cited include English, Russian, French, Japanese and German language articles. Entries are indexed by deburring processes, author, and language. Indexes also indicate which references discuss equipment and tooling, how to use a process, economics, burr properties, and how to design to minimize burr problems. Research studies are identified as are the materials deburred.

  9. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, andmore » models for process design and optimization.« less

  10. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  11. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  12. 7 CFR 54.1024 - Who shall perform appeal service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Appeal service for equipment or utensils shall be performed by the Chief or a design review specialist designated by the Chief. No design review specialist may perform appeal service for any piece of equipment, portion of a piece of equipment or utensil for which the original design review specialist performed the...

  13. Analysis of commercial equipment and instrumentation for Spacelab payloads, volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical results are presented of a study to investigate analytically the feasibility of using commercially available laboratory equipment and instrumentation in the spacelab in support of various experiments. The feasibility is demonstrated by the breadth of application of commercial, airborne, and military equipment to experiment equipment requirements in the spacelab, and the cost effectiveness of utilizing this class of equipment instead of custom-built aerospace equipment typical of past designs. Equipment design and specifications are discussed.

  14. LBR-2 Earth stations for the ACTS program

    NASA Technical Reports Server (NTRS)

    Oreilly, Michael; Jirberg, Russell; Spisz, Ernie

    1990-01-01

    The Low Burst Rate-2 (LBR-2) earth station being developed for NASA's Advanced Communications Technology Satellite (ACTS) is described. The LBR-2 is one of two earth station types that operate through the satellite's baseband processor. The LBR-2 is a small earth terminal (VSAT)-like earth station that is easily sited on a user's premises, and provides up to 1.792 megabits per second (MBPS) of voice, video, and data communications. Addressed here is the design of the antenna, the rf subsystems, the digital processing equipment, and the user interface equipment.

  15. A novel variable baseline visibility detection system and its measurement method

    NASA Astrophysics Data System (ADS)

    Li, Meng; Jiang, Li-hui; Xiong, Xing-long; Zhang, Guizhong; Yao, JianQuan

    2017-10-01

    As an important meteorological observation instrument, the visibility meter can ensure the safety of traffic operation. However, due to the optical system contamination as well as sample error, the accuracy and stability of the equipment are difficult to meet the requirement in the low-visibility environment. To settle this matter, a novel measurement equipment was designed based upon multiple baseline, which essentially acts as an atmospheric transmission meter with movable optical receiver, applying weighted least square method to process signal. Theoretical analysis and experiments in real atmosphere environment support this technique.

  16. [Hydrotherapy equipment].

    PubMed

    Tsibikov, V B; Ragozin, S I; Mikheeva, L V

    1985-01-01

    A flow-chart is developed demonstrating the relation between medical and prophylactic institutions within the organizational structure of the rehabilitation system and main types of rehabilitation procedures. In order to ascertain the priority in equipping rehabilitation services with adequate hardware the special priority criterion is introduced. The highest priority is assigned to balneotherapeutic and fangotherapeutic services. Based on the operation-by-operation analysis of clinical processes related to service and performance of balneologic procedures the preliminary set of clinical devices designed for baths, basins and showers in hospitals and rehabilitation departments is defined in a generalized form.

  17. View of equipment used for Heat Flow and Convection Experiment

    NASA Image and Video Library

    1972-12-17

    AS17-162-24063 (7-19 Dec. 1972) --- A close-up view of the equipment used for the Heat Flow and Convection Experiment, an engineering and operational test and demonstration carried out aboard the Apollo 17 command module during the final lunar landing mission in NASA's Apollo program. Three test cells were used in the demonstration for measuring and observing fluid flow behavior in the absence of gravity in space flight. Data obtained from such demonstrations will be valuable in the design of future science experiments and for manufacturing processes in space.

  18. 21 CFR 211.68 - Automatic, mechanical, and electronic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS... satisfactorily, may be used in the manufacture, processing, packing, and holding of a drug product. If such... designed to assure proper performance. Written records of those calibration checks and inspections shall be...

  19. 40 CFR 52.134 - Compliance schedules.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... beyond July 31, 1975, shall apply any reasonable interim measures of control designed to reduce the... progress shall include, but not be limited to: Submittal of the final control plan to the Administrator... of component parts to accomplish emission control equipment or process modification; completion of...

  20. 40 CFR 52.134 - Compliance schedules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... beyond July 31, 1975, shall apply any reasonable interim measures of control designed to reduce the... progress shall include, but not be limited to: Submittal of the final control plan to the Administrator... of component parts to accomplish emission control equipment or process modification; completion of...

  1. 40 CFR 52.134 - Compliance schedules.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... beyond July 31, 1975, shall apply any reasonable interim measures of control designed to reduce the... progress shall include, but not be limited to: Submittal of the final control plan to the Administrator... of component parts to accomplish emission control equipment or process modification; completion of...

  2. 40 CFR 52.134 - Compliance schedules.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... beyond July 31, 1975, shall apply any reasonable interim measures of control designed to reduce the... progress shall include, but not be limited to: Submittal of the final control plan to the Administrator... of component parts to accomplish emission control equipment or process modification; completion of...

  3. 40 CFR 52.134 - Compliance schedules.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... beyond July 31, 1975, shall apply any reasonable interim measures of control designed to reduce the... progress shall include, but not be limited to: Submittal of the final control plan to the Administrator... of component parts to accomplish emission control equipment or process modification; completion of...

  4. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo

    2013-09-01

    This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.

  5. Structural Analysis of Lightning Protection System for New Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cope, Anne; Moore, Steve; Pruss, Richard

    2008-01-01

    This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.

  6. 33 CFR 149.660 - What are the requirements for emergency power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and... complex must have emergency power equipment including power source, associated transforming equipment, and...; (4) Radar equipment; (5) Alarm systems; (6) Electrically operated fire pumps; and (7) Other...

  7. 33 CFR 149.660 - What are the requirements for emergency power?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and... complex must have emergency power equipment including power source, associated transforming equipment, and...; (4) Radar equipment; (5) Alarm systems; (6) Electrically operated fire pumps; and (7) Other...

  8. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of this program is to demonstrate the technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per watt peak. Program efforts included: preliminary design review, preliminary cell fabrication using the proposed process sequence, verification of sandblasting back cleanup, study of resist parameters, evaluation of pull strength of the proposed metallization, measurement of contact resistance of Electroless Ni contacts, optimization of process parameter, design of the MEPSDU module, identification and testing of insulator tapes, development of a lamination process sequence, identification, discussions, demonstrations and visits with candidate equipment vendors, evaluation of proposals for tabbing and stringing machine.

  9. Enhancing DSN Operations Efficiency with the Discrepancy Reporting Management System (DRMS)

    NASA Technical Reports Server (NTRS)

    Chatillon, Mark; Lin, James; Cooper, Tonja M.

    2003-01-01

    The DRMS is the Discrepancy Reporting Management System used by the Deep Space Network (DSN). It uses a web interface and is a management tool designed to track and manage: data outage incidents during spacecraft tracks against equipment and software known as DRs (discrepancy Reports), to record "out of pass" incident logs against equipment and software in a Station Log, to record instances where equipment has be restarted or reset as Reset records, and to electronically record equipment readiness status across the DSN. Tracking and managing these items increases DSN operational efficiency by providing: the ability to establish the operational history of equipment items, data on the quality of service provided to the DSN customers, the ability to measure service performance, early insight into processes, procedures and interfaces that may need updating or changing, and the capability to trace a data outage to a software or hardware change. The items listed above help the DSN to focus resources on areas of most need.

  10. Comparative analysis of numerical models of pipe handling equipment used in offshore drilling applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlus, Witold, E-mail: witold.p.pawlus@ieee.org; Ebbesen, Morten K.; Hansen, Michael R.

    Design of offshore drilling equipment is a task that involves not only analysis of strict machine specifications and safety requirements but also consideration of changeable weather conditions and harsh environment. These challenges call for a multidisciplinary approach and make the design process complex. Various modeling software products are currently available to aid design engineers in their effort to test and redesign equipment before it is manufactured. However, given the number of available modeling tools and methods, the choice of the proper modeling methodology becomes not obvious and – in some cases – troublesome. Therefore, we present a comparative analysis ofmore » two popular approaches used in modeling and simulation of mechanical systems: multibody and analytical modeling. A gripper arm of the offshore vertical pipe handling machine is selected as a case study for which both models are created. In contrast to some other works, the current paper shows verification of both systems by benchmarking their simulation results against each other. Such criteria as modeling effort and results accuracy are evaluated to assess which modeling strategy is the most suitable given its eventual application.« less

  11. Orbital transfer vehicle launch operations study. Volume 2: Detailed summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A series of Operational Design Drivers were identified. Several of these could have significant impact(s) on program costs. These recommendations, for example, include such items as: complete factory assembly and checkout prior to shipment to the ground launch site to make significant reductions in time required at the launch site as well as overall manpower required to do this work; minimize use of nonstandard equipment when orbiter provided equipment is available; and require commonality (or interchangeability) of subsystem equipment elements that are common to the space station, Orbit Maneuvering Vehicles, and/or Orbit Transfer Vehicles. Several additional items were identified that will require a significant amount of management attention (and direction) to resolve. Key elements of the space based processing plans are discussed.

  12. Space transportation system payload interface verification

    NASA Technical Reports Server (NTRS)

    Everline, R. T.

    1977-01-01

    The paper considers STS payload-interface verification requirements and the capability provided by STS to support verification. The intent is to standardize as many interfaces as possible, not only through the design, development, test and evaluation (DDT and E) phase of the major payload carriers but also into the operational phase. The verification process is discussed in terms of its various elements, such as the Space Shuttle DDT and E (including the orbital flight test program) and the major payload carriers DDT and E (including the first flights). Five tools derived from the Space Shuttle DDT and E are available to support the verification process: mathematical (structural and thermal) models, the Shuttle Avionics Integration Laboratory, the Shuttle Manipulator Development Facility, and interface-verification equipment (cargo-integration test equipment).

  13. Shuttle payload S-band communications study

    NASA Technical Reports Server (NTRS)

    Springett, J. C.

    1979-01-01

    The work to identify, evaluate, and make recommendations concerning the functions and interfaces of those orbiter avionic subsystems which are dedicated to, or play some part in, handling communication signals (telemetry and command) to/from payloads (spacecraft) that will be carried into orbit by the shuttle is reported. Some principal directions of the research are: (1) analysis of the ability of the various avionic equipment to interface with and appropriately process payload signals; (2) development of criteria which will foster equipment compatibility with diverse types of payloads and signals; (3) study of operational procedures, especially those affecting signal acquisition; (4) trade-off analysis for end-to-end data link performance optimization; (5) identification of possible hardware design weakness which might degrade signal processing performance.

  14. 78 FR 15755 - Proposed Revision to Design of Structures, Components, Equipment and Systems; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0041] Proposed Revision to Design of Structures, Components, Equipment and Systems; Correction AGENCY: Nuclear Regulatory Commission. ACTION: Standard review... for comments of the proposed revision in Chapter 3, ``Design of Structures, Components, Equipment, and...

  15. 78 FR 19541 - Proposed Revision to Design of Structures, Components, Equipment and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0041] Proposed Revision to Design of Structures, Components, Equipment and Systems AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft..., ``Design of Structures, Components, Equipment, and Systems;'' and the request for comment on NUREG-0800...

  16. 33 CFR 143.120 - Floating OCS facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) OUTER CONTINENTAL SHELF ACTIVITIES DESIGN AND EQUIPMENT OCS Facilities § 143.120 Floating OCS facilities... (Marine Engineering) and J (Electrical Engineering) of 46 CFR chapter I and 46 CFR part 108 (Design and Equipment). Where unusual design or equipment needs make compliance impracticable, alternative proposals...

  17. APS deposition facility upgrades and future plans

    NASA Astrophysics Data System (ADS)

    Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth

    2014-09-01

    The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.

  18. Selecting an oxygen plant for a copper smelter modernization

    NASA Astrophysics Data System (ADS)

    Larson, Kenneth H.; Hutchison, Robert L.

    1994-10-01

    The selection of an oxygen plant for the Cyprus Miami smelter modernization project began with a good definition of the use requirements and the smelter process variables that can affect oxygen demand. To achieve a reliable supply of oxygen with a reasonable amount of capital, critical equipment items were reviewed and reliability was added through the use of installed spares, purchase of insurance spare parts or the installation of equipment design for 50 percent of the production design such that the plant could operate with one unit while the other unit is being maintained. The operating range of the plant was selected to cover variability in smelter oxygen demand, and it was recognized that the broader operating range sacrificed about two to three percent in plant power consumption. Careful consideration of the plant "design point" was important to both the capital and operating costs of the plant, and a design point was specified that allowed a broad range of operation for maximum flexibility.

  19. A New Process for the Acceleration Test and Evaluation of Aeromedical Equipment for U.S. Air Force Safe-To-Fly Certification

    DTIC Science & Technology

    2010-10-01

    4 8 4 | A Publication of the Defense Acquisition University http://www.dau.mil image designed by Miracle Riese » Keywords: Acceleration Test...Std Z39-18 4 8 6 | A Publication of the Defense Acquisition University http://www.dau.mil Generally speaking, medical devices are designed to...However, because the devices are designed for a controlled environment, concerns they may adversely affect the operation of aircraft systems must be

  20. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  1. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical... questions that affect the level of export controls applicable to materials processing equipment and related...

  2. A Critical Review of Options for Tool and Workpiece Sensing

    DTIC Science & Technology

    1989-06-02

    Tool Temperature Control ." International Machine Tool Design Res., Vol. 7, pp. 465-75, 1967. 5. Cook, N. H., Subramanian, K., and Basile, S. A...if necessury and identify by block riumber) FIELD GROUP SUB-GROUP 1. Detectors 3. Control Equipment 1 08 2. Sensor Characteristics 4. Process Control ...will provide conceptual designs and recommend a system (Continued) 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 0

  3. Grain Refinement of Steels through Solidification Modification

    DTIC Science & Technology

    2017-09-14

    each student work on some type of design project related to the research project. This ranges from new equipment to fixlures. Through the project a...addressed via this process. Finally, the students build their design by themselves or with their peers. This results in immediate feedback on the...using the various CNC mills to create experimental apparatus. Students receive training on bow to use drill presses, grinding benches, lathes. mills

  4. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  5. A Selected Bibliography of On-Line Visual Displays and Their Applications.

    ERIC Educational Resources Information Center

    Braidwood, J.

    Contained in this bibliography are 312 references as they related to general principles and problems of information display, man-computer interaction, present and possible future display equipment, ergonomic aspects of display design, and current and potential applications, especially to information processing. (Author/MM)

  6. Preliminary investigation of the relationship between capillary pore pressure and early shrinkage cracking of concrete.

    DOT National Transportation Integrated Search

    1997-01-01

    The purpose of this study was to design experimental laboratory equipment and perform experiments to investigate the basic physical processes that occur in concrete for periods of several hours to several days after mixing. The study was conducted in...

  7. Performance modeling & simulation of complex systems (A systems engineering design & analysis approach)

    NASA Technical Reports Server (NTRS)

    Hall, Laverne

    1995-01-01

    Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.

  8. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.

    PubMed

    Pendola, Martin; Saha, Subrata

    2015-01-01

    Because of their favorable mechanical properties and natural esthetics, ceramics are widely used in restorative dentistry. The conventional ceramic sintering process required for their use is usually slow, however, and the equipment has an elevated energy consumption. Sintering processes that use microwaves have several advantages compared to regular sintering: shorter processing times, lower energy consumption, and the capacity for volumetric heating. The objective of this study was to test the mechanical properties of a dental ceramic used in computer-aided design/computer-aided manufacturing (CAD/CAM) after the specimens were processed with microwave hybrid sintering. Density, hardness, and bending strength were measured. When ceramic specimens were sintered with microwaves, the processing times were reduced and protocols were simplified. Hardness was improved almost 20% compared to regular sintering, and flexural strength measurements suggested that specimens were approximately 50% stronger than specimens sintered in a conventional system. Microwave hybrid sintering may preserve or improve the mechanical properties of dental ceramics designed for CAD/CAM processing systems, reducing processing and waiting times.

  9. EQUIP Healthcare: An overview of a multi-component intervention to enhance equity-oriented care in primary health care settings.

    PubMed

    Browne, Annette J; Varcoe, Colleen; Ford-Gilboe, Marilyn; Wathen, C Nadine

    2015-12-14

    The primary health care (PHC) sector is increasingly relevant as a site for population health interventions, particularly in relation to marginalized groups, where the greatest gains in health status can be achieved. The purpose of this paper is to provide an overview of an innovative multi-component, organizational-level intervention designed to enhance the capacity of PHC clinics to provide equity-oriented care, particularly for marginalized populations. The intervention, known as EQUIP, is being implemented in Canada in four diverse PHC clinics serving populations who are impacted by structural inequities. These PHC clinics serve as case studies for the implementation and evaluation of the EQUIP intervention. We discuss the evidence and theory that provide the basis for the intervention, describe the intervention components, and discuss the methods used to evaluate the implementation and impact of the intervention in diverse contexts. Research and theory related to equity-oriented care, and complexity theory, are central to the design of the EQUIP intervention. The intervention aims to enhance capacity for equity-oriented care at the staff level, and at the organizational level (i.e., policy and operations) and is novel in its dual focus on: (a) Staff education: using standardized educational models and integration strategies to enhance staff knowledge, attitudes and practices related to equity-oriented care in general, and cultural safety, and trauma- and violence-informed care in particular, and; (b) Organizational integration and tailoring: using a participatory approach, practice facilitation, and catalyst grants to foster shifts in organizational structures, practices and policies to enhance the capacity to deliver equity-oriented care, improve processes of care, and shift key client outcomes. Using a mixed methods, multiple case-study design, we are examining the impact of the intervention in enhancing staff knowledge, attitudes and practices; improving processes of care; shifting organizational policies and structures; and improving selected client outcomes. The multiple case study design provides an ideal opportunity to study the contextual factors shaping the implementation, uptake and impact of our tailored intervention within diverse PHC settings. The EQUIP intervention illustrates the complexities involved in enhancing the PHC sector's capacity to provide equity-oriented care in real world clinical contexts.

  10. Issues and Design Drivers for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Rucker, Michelle A.

    2011-01-01

    A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble a 5-module vehicle for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues include: a) Launch loads: Potentially drives layout of equipment mounted to module floors or walls, and whether temporary internal structure is required to distribute launch loads to minimize shell mass; b) Unmanned loiter time: When added to an already lengthy mission, loiter time further drives risk and reliability, and poses issues for equipment shelf life such as material degradation or cryogenic fluids boil-off; c) Pointing and Visibility: A habitat embedded in a 5-module stack may drive Communications, Tracking, Guidance, and Navigation equipment out onto long booms to maintain line-of-sight visibility with targets. However, long booms will be more susceptible to disruption from exercise-induced vibration, potential damage during docking/undocking operations, and increased power distribution mass; d) Water: although it is assumed that a water processor will collect and recycle water, several interesting question were posed, such as: How much water to start with? Should potable water serve double-duty as radiation protection? And if so, should it be stowed in a single large tank, or smaller, portable containers? e) Design for repairability: one of the worst-case scenarios identified was a cabin depressurization that required suited repair from inside the module, potentially driving the need for long umbilical hoses or special equipment to allow smaller, mated modules to be used as safe havens for up to 180 days;

  11. EVA Design, Verification, and On-Orbit Operations Support Using Worksite Analysis

    NASA Technical Reports Server (NTRS)

    Hagale, Thomas J.; Price, Larry R.

    2000-01-01

    The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.

  12. 47 CFR 2.937 - Equipment defect and/or design change.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Equipment defect and/or design change. 2.937 Section 2.937 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Equipment Authorization Procedures Conditions Attendant to An Equipment Authorization § 2.937...

  13. 48 CFR 1852.245-74 - Contractor accountable on-site Government property.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Management System (NEMS)) of all equipment costing $1000 and over, plus that equipment designated as...-through utilization inspections; (8) Screen NEMS before acquiring any equipment costing $1000 or over, plus equipment designated by the installation as sensitive and costing $500 and over; (9) Support the...

  14. 40 CFR 203.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1958; or (ii)(a) Any military weapons or equipment which are designed for combat use; (b) any rockets or equipment which are designed for research, experimental or developmental work to be performed by... Administrator, any other machinery or equipment designed for use in experimental work done by or for the Federal...

  15. 40 CFR 203.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1958; or (ii)(a) Any military weapons or equipment which are designed for combat use; (b) any rockets or equipment which are designed for research, experimental or developmental work to be performed by... Administrator, any other machinery or equipment designed for use in experimental work done by or for the Federal...

  16. 40 CFR 203.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1958; or (ii)(a) Any military weapons or equipment which are designed for combat use; (b) any rockets or equipment which are designed for research, experimental or developmental work to be performed by... Administrator, any other machinery or equipment designed for use in experimental work done by or for the Federal...

  17. 40 CFR 203.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1958; or (ii)(a) Any military weapons or equipment which are designed for combat use; (b) any rockets or equipment which are designed for research, experimental or developmental work to be performed by... Administrator, any other machinery or equipment designed for use in experimental work done by or for the Federal...

  18. 46 CFR 162.050-25 - Cargo monitor: Design specification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Cargo monitor: Design specification. 162.050-25 Section 162.050-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-25 Cargo monitor: Design specification. (...

  19. 46 CFR 162.050-21 - Separator: Design specification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Separator: Design specification. 162.050-21 Section 162.050-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-21 Separator: Design specification. (a) A...

  20. 46 CFR 162.050-25 - Cargo monitor: Design specification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Cargo monitor: Design specification. 162.050-25 Section 162.050-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-25 Cargo monitor: Design specification. (...

  1. 46 CFR 162.050-21 - Separator: Design specification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Separator: Design specification. 162.050-21 Section 162.050-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-21 Separator: Design specification. (a) A...

  2. 75 FR 47546 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  3. 75 FR 66356 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  4. 78 FR 13625 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  5. 77 FR 65857 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  6. 76 FR 20949 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  7. 77 FR 42483 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  8. 78 FR 24160 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  9. 77 FR 25960 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  10. 78 FR 42754 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  11. 76 FR 42678 - Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment; Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  12. 78 FR 63161 - Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... questions that affect the level of export controls applicable to materials processing equipment and related... DEPARTMENT OF COMMERCE Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical...

  13. The historical development and basis of human factors guidelines for automated systems in aeronautical operations

    NASA Technical Reports Server (NTRS)

    Ciciora, J. A.; Leonard, S. D.; Johnson, N.; Amell, J.

    1984-01-01

    In order to derive general design guidelines for automated systems a study was conducted on the utilization and acceptance of existing automated systems as currently employed in several commercial fields. Four principal study area were investigated by means of structured interviews, and in some cases questionnaires. The study areas were aviation, a both scheduled airline and general commercial aviation; process control and factory applications; office automation; and automation in the power industry. The results of over eighty structured interviews were analyzed and responses categoried as various human factors issues for use by both designers and users of automated equipment. These guidelines address such items as general physical features of automated equipment; personnel orientation, acceptance, and training; and both personnel and system reliability.

  14. Cost containment and KSC Shuttle facilities or cost containment and aerospace construction

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1985-01-01

    This presentation has the objective to show examples of Cost Containment of Aerospace Construction at Kennedy Space Center (KSC), taking into account four major levels of Project Development of the Space Shuttle Facilities. The levels are related to conceptual criteria and site selection, the design of construction and ground support equipment, the construction of facilities and ground support equipment (GSE), and operation and maintenance. Examples of cost containment are discussed. The continued reduction of processing time from landing to launching represents a demonstration of the success of the cost containment methods. Attention is given to the factors which led to the selection of KSC, the use of Cost Engineering, the employment of the Construction Management Concept, and the use of Computer Aided Design/Drafting.

  15. Model of Fluidized Bed Containing Reacting Solids and Gases

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A mathematical model has been developed for describing the thermofluid dynamics of a dense, chemically reacting mixture of solid particles and gases. As used here, "dense" signifies having a large volume fraction of particles, as for example in a bubbling fluidized bed. The model is intended especially for application to fluidized beds that contain mixtures of carrier gases, biomass undergoing pyrolysis, and sand. So far, the design of fluidized beds and other gas/solid industrial processing equipment has been based on empirical correlations derived from laboratory- and pilot-scale units. The present mathematical model is a product of continuing efforts to develop a computational capability for optimizing the designs of fluidized beds and related equipment on the basis of first principles. Such a capability could eliminate the need for expensive, time-consuming predesign testing.

  16. RAMI Analysis for Designing and Optimizing Tokamak Cooling Water System (TCWS) for the ITER's Fusion Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrada, Juan J; Reiersen, Wayne T

    U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C andmore » 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.« less

  17. Visit from JAXA to NASA MSFC: The Engines Element & Ideas for Collaboration

    NASA Technical Reports Server (NTRS)

    Greene, William D.

    2013-01-01

    System Design, Development, and Fabrication: Design, develop, and fabricate or procure MB-60 component hardware compliant with the imposed technical requirements and in sufficient quantities to fulfill the overall MB-60 development effort. System Development, Assembly, and Test: Manage the scope of the development, assembly, and test-related activities for MB-60 development. This scope includes engine-level development planning, engine assembly and disassembly, test planning, engine testing, inspection, anomaly resolution, and development of necessary ground support equipment and special test equipment. System Integration: Provide coordinated integration in the realms of engineering, safety, quality, and manufacturing disciplines across the scope of the MB-60 design and associated products development Safety and Mission Assurance, structural design, fracture control, materials and processes, thermal analysis. Systems Engineering and Analysis: Manage and perform Systems Engineering and Analysis to provide rigor and structure to the overall design and development effort for the MB-60. Milestone reviews, requirements management, system analysis, program management support Program Management: Manage, plan, and coordinate the activities across all portions of the MB-60 work scope by providing direction for program administration, business management, and supplier management.

  18. The development of a specialized processor for a space-based multispectral earth imager

    NASA Astrophysics Data System (ADS)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  19. Design of forging process variables under uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2005-02-01

    Forging is a complex nonlinear process that is vulnerable to various manufacturing anomalies, such as variations in billet geometry, billet/die temperatures, material properties, and workpiece and forging equipment positional errors. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion, and reduced productivity. Identifying, quantifying, and controlling the uncertainties will reduce variability risk in a manufacturing environment, which will minimize the overall production cost. In this article, various uncertainties that affect the forging process are identified, and their cumulative effect on the forging tool life is evaluated. Because the forging process simulation is time-consuming, a response surface model is used to reduce computation time by establishing a relationship between the process performance and the critical process variables. A robust design methodology is developed by incorporating reliability-based optimization techniques to obtain sound forging components. A case study of an automotive-component forging-process design is presented to demonstrate the applicability of the method.

  20. Making Toys through Teamwork.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    The guide is designed to engage fifth and sixth grade students in learning experiences intended to acquaint them with wood construction and mass production. In addition to developing carpentry skills, students learn the safe use of tools, equipment, and materials. While simulating a toy company, they inductively develop processes for the mass…

  1. 9 CFR 71.21 - Tissue and blood testing at slaughter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., taking into account whether APHIS will be conducting complete tests at the facility, or only collecting..., until after the post-mortem examination is completed; (4) Includes tables, benches, and other equipment on which sample collection and processing are to be performed, of such design, material, and...

  2. Basic Laboratory Skills for Water and Wastewater Analysis. Report No. 125.

    ERIC Educational Resources Information Center

    Clark, Douglas W.

    Designed for individuals wanting to acquire an introductory knowledge of basic skills necessary to function in a water or wastewater laboratory, this handbook emphasizes current use of routine equipment and proper procedures. Explanations and illustrations focus on underlying techniques and principles rather than processes for conducting specific…

  3. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps and...

  4. 150-nm DR contact holes die-to-database inspection

    NASA Astrophysics Data System (ADS)

    Kuo, Shen C.; Wu, Clare; Eran, Yair; Staud, Wolfgang; Hemar, Shirley; Lindman, Ofer

    2000-07-01

    Using a failure analysis-driven yield enhancements concept, based on an optimization of the mask manufacturing process and UV reticle inspection is studied and shown to improve the contact layer quality. This is achieved by relating various manufacturing processes to very fine tuned contact defect detection. In this way, selecting an optimized manufacturing process with fine-tuned inspection setup is achieved in a controlled manner. This paper presents a study, performed on a specially designed test reticle, which simulates production contact layers of design rule 250nm, 180nm and 150nm. This paper focuses on the use of advanced UV reticle inspection techniques as part of the process optimization cycle. Current inspection equipment uses traditional and insufficient methods of small contact-hole inspection and review.

  5. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  6. Analysis of Work Design in Rubber Processing Plant

    NASA Astrophysics Data System (ADS)

    Wahyuni, Dini; Nasution, Harmein; Budiman, Irwan; Wijaya, Khairini

    2018-02-01

    The work design illustrates how structured jobs, tasks, and roles are defined and modified and their impact on individuals, groups, and organizations. If the work is not designed well, the company must pay greater costs for workers' health, longer production processes or even penalties for not being able to meet the delivery schedule. This is visible to the condition in a rubber processing factory in North Sumatra. Work design aspects such as layouts, machinery and equipment, worker's physical working environment, work methods, and organizational policies have not been well-organized. Coagulum grinding machines into sheets are often damaged, resulting in 4 times the delay of product delivery in 2016, the presence of complaints of heat exposure submitted by workers, and workstation that has not been properly arranged is an indication of the need for work design. The research data will be collected through field observation, and distribution of questionnaires related aspects of work design. The result of the analysis depends on the respondent's answer from the distributed questionnaire regarding the 6 aspects studied.

  7. 40 CFR 60.5402 - What are the alternative emission limitations for equipment leaks from onshore natural gas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Transmission and Distribution § 60.5402 What are the alternative emission limitations for equipment leaks from... emissions achieved under any design, equipment, work practice or operational standard, the Administrator... to the reduction in VOC emissions achieved under the design, equipment, work practice or operational...

  8. 40 CFR 60.5402 - What are the alternative emission limitations for equipment leaks from onshore natural gas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Transmission and Distribution § 60.5402 What are the alternative emission limitations for equipment leaks from... emissions achieved under any design, equipment, work practice or operational standard, the Administrator... to the reduction in VOC emissions achieved under the design, equipment, work practice or operational...

  9. 46 CFR 130.220 - Design of equipment for cooking and heating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Design of equipment for cooking and heating. 130.220... Design of equipment for cooking and heating. (a) Doors on each cooking appliance must be provided with heavy-duty hinges and locking-devices to prevent accidental opening in heavy weather. (b) Each cooking...

  10. Gas processing developments. Why not use methanol for hydrate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, R.B.; Bucklin, R.W.

    1983-04-01

    Hydrate formation in turboexpander plants can be avoided more economically by using methanol than by using solid bed dehydration. Although the first turboexpander plant used methanol, most expander installations now have used solid bed dehydration. The reasons are obscure, since methanol often grants greater ease of operation as well as lower capital and operating costs, especially when the water in the feed gas is low or when recompression is required. Natural gas generally contains water before processing. High pressure, low temperature, or both favor the combination of water with light gases to form hydrates. Free water always must be presentmore » for hydrates to form. Hydrates cause problems by plugging pipelines, valves, and other process equipment. Therefore, proper equipment design requires accurate prediction of the limiting conditions at which hydrates are formed anytime a gas stream containing hydrate formers and free water is cooled below 80 F. (16 refs.)« less

  11. Study on processing immiscible materials in zero gravity

    NASA Technical Reports Server (NTRS)

    Reger, J. L.; Mendelson, R. A.

    1975-01-01

    An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.

  12. Corporate ergonomics programme at BCM Airdrie. Boots Contract Manufacturing.

    PubMed

    Smyth, Joanne

    2003-01-01

    The production processes at the BCM Airdrie site range from manual loading tasks in the manufacturing areas to high frequency packaging assembly tasks on the production lines. Both are jobs that are known to carry risk to musculoskeletal health, so an ergonomist was appointed to design and co-ordinate an ergonomics programme for the site to control these risks. This paper details the programme that has evolved to proactively manage musculoskeletal risks in the design of both new and existing equipment and processes. The ergonomics procedures described primarily involve the engineers from all areas of the factory, and the process for ergonomics involvement with engineering design projects is described. Shop-floor personnel involvement is considered to be an essential part of the programme and 'Ergonomics Champions' are being trained on the packing lines to monitor the risks that are sometimes introduced with the different designs of product packaging.

  13. Shuttle orbiter S-band communications equipment design evaluation

    NASA Technical Reports Server (NTRS)

    Springett, J. C.

    1979-01-01

    An assessment of S-band communication equipment includes: (1) the review and analysis of the ability of the various subsystem avionic equipment designs to interface with, and operate on signals from/to adjoining equipment; (2) the performance peculiarities of the hardware against the overall specified system requirements; and (3) the evaluation of EMC EMI test results of the various equipment with respect to the possibility of mutual interferences.

  14. Effect of fossil fuels on the parameters of CO2 capture.

    PubMed

    Nagy, Tibor; Mizsey, Peter

    2013-08-06

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  15. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  16. Process Research ON Semix Silicon Materials (PROSSM)

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, J. H.; Warfield, D. B.

    1982-02-01

    A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.

  17. Process Research ON Semix Silicon Materials (PROSSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Warfield, D. B.

    1982-01-01

    A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.

  18. Dynamic load simulator

    NASA Technical Reports Server (NTRS)

    Joncas, K. P.

    1972-01-01

    Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.

  19. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  20. Acceptance Equipment System Data Acquisition and Processing Utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhro, Rowan

    2015-02-01

    My internship at Sandia National Laboratories took place in the Department of Sensors and Embedded Systems, which is tasked with, among many things, the non-destructive testing of thermal batteries. The Acceptance Equipment System (AES) is a flexible rack system designed to electrically test thermal batteries individually for internal defects before they are stored in the battery stock pile. Aside from individual testing, data acquired by the AES is used for many things including trending and catching outliers within the tolerance levels of a particular battery type, allowing for the development of more refined acceptance requirements and testing procedures.

Top