Critical Protection Item classification for a waste processing facility at Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ades, M.J.; Garrett, R.J.
1993-10-01
This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less
Data Management Facility Operations Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, Nicole N
2014-06-30
The Data Management Facility (DMF) is the data center that houses several critical Atmospheric Radiation Measurement (ARM) Climate Research Facility services, including first-level data processing for the ARM Mobile Facilities (AMFs), Eastern North Atlantic (ENA), North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) sites, as well as Value-Added Product (VAP) processing, development systems, and other network services.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... critical use included ``processed food, cheese, herbs and spices, and spaces and equipment in associated... inadequately justified and recommended only cheese storage facilities for consideration by the Parties as a... include only ``Members of the National Pest Management Association treating cheese storage facilities...
Ground Handling of Batteries at Test and Launch-site Facilities
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Hohl, Alan R.
2008-01-01
Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.
NASA Astrophysics Data System (ADS)
Loginov, E. L.; Raikov, A. N.
2015-04-01
The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.
2008-05-01
building up to and beyond the 2013 time frame. However, in October 2007, the Defense Nuclear Facilities Safety Board, which monitors safety...manufacturing. They said that NNSA is still working through this process with the Defense Nuclear Facilities Safety Board. Processing of waste
TEMPUS: A facility for containerless electromagnetic processing onboard spacelab
NASA Technical Reports Server (NTRS)
Lenski, H.; Willnecker, R.
1990-01-01
The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... (NPMA) post harvest fumigations. Past critical uses for NPMA included ``processed food, cheese, herbs... cheese storage facilities for consideration by the Parties as a critical use. MBTOC's comments can be... NPMA critical use to include only ``Members of the National Pest Management Association treating cheese...
Nuclear Criticality Safety Data Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbach, D. F.
The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.
Vibration isolation in a free-piston driven expansion tube facility
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.
2013-09-01
The stress waves produced by rapid piston deceleration are a fundamental feature of free-piston driven expansion tubes, and wave propagation has to be considered in the design process. For lower enthalpy test conditions, these waves can traverse the tube ahead of critical flow processes, severely interfering with static pressure measurements of the passing flow. This paper details a new device which decouples the driven tube from the free-piston driver, and thus prevents transmission of stress waves. Following successful incorporation of the concept in the smaller X2 facility, it has now been applied to the larger X3 facility, and results for both facilities are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D.T.; Davis, J.R.
This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less
Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.
2004-02-01
The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
Nwaneshiudu, Ikechukwu C; Ganguly, Indroneil; Pierobon, Francesca; Bowers, Tait; Eastin, Ivan
2016-01-01
Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.
CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, S
2009-04-21
With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5,more » Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified in the applicable new/revised CSE is evaluated via the table. The results of this evaluation are documented in tables attached to the CCR as an appendix, for each CSE, to the base document.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1996-05-01
As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary Mecham
2010-08-01
This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less
The home hemodialysis hub: physical infrastructure and integrated governance structure.
Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M
2015-04-01
An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenfield, Bryce A.
2009-12-01
A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coveragemore » in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.« less
Assessment and speciation of chlorine demand in fresh-cut produce wash water
USDA-ARS?s Scientific Manuscript database
Production of high quality, fresh-cut produce is a key driver for the produce industry. A critical area of concern is the chlorinated wash water used during post-harvest processing in large industrial processing facilities. Predominantly using a batch process, wash water is recycled over 8hr shift...
Integrate Evaluation into the Planning Process.
ERIC Educational Resources Information Center
Camp, William
1985-01-01
In an attempt to correct for limitations in the Program Evaluation and Review Technique-Critical Path Method (PERT-CPM), the Graphical Evaluation and Review Technique (GERT) has been developed. This management tool allows for evaluation during the facilities' development process. Two figures and two references are provided. (DCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sisterson, D. L.
2015-10-01
The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that providemore » ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.« less
A Timeline for Reroofing Success.
ERIC Educational Resources Information Center
Koontz, Jim
1998-01-01
Explains why timing is critical in reroofing educational facilities and saving costs. Provides an example of the planning process in the areas of priority setting, creating construction documents, bidding, and construction. Reroofing tips are highlighted. (GR)
Decontamination of Anthrax spores in critical infrastructure and critical assets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David
2010-05-01
Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to normal operations as quickly as possible, sparing significant economic damage by re-opening critical facilities more rapidly and safely. Facilities and assets contaminated with Bacillus anthracis (i.e., anthrax) spores can be decontaminated with mild chemicals as compared to the harsh chemicals currently needed. Both the 'germination' solution and the 'kill' solution are constructed of 'off-the-shelf,' inexpensive chemicals. The method can be utilized by directly spraying the solutions onto exposed surfaces or by application of the solutions as aerosols (i.e., small droplets), which can also reach hidden surfaces.« less
Keever-Taylor, Carolyn A; Slaper-Cortenbach, Ineke; Celluzzi, Christina; Loper, Kathy; Aljurf, Mahmoud; Schwartz, Joseph; Mcgrath, Eoin; Eldridge, Paul
2015-12-01
Methods for processing products used for hematopoietic progenitor cell (HPC) transplantation must ensure their safety and efficacy. Personnel training and ongoing competency assessment is critical to this goal. Here we present results from a global survey of methods used by a diverse array of cell processing facilities for the initial training and ongoing competency assessment of key personnel. The Alliance for Harmonisation of Cellular Therapy Accreditation (AHCTA) created a survey to identify facility type, location, activity, personnel, and methods used for training and competency. A survey link was disseminated through organizations represented in AHCTA to processing facilities worldwide. Responses were tabulated and analyzed as a percentage of total responses and as a percentage of response by region group. Most facilities were based at academic medical centers or hospitals. Facilities with a broad range of activity, product sources and processing procedures were represented. Facilities reported using a combination of training and competency methods. However, some methods predominated. Cellular sources for training differed for training versus competency and also differed based on frequency of procedures performed. Most facilities had responsibilities for procedures in addition to processing for which training and competency methods differed. Although regional variation was observed, training and competency requirements were generally consistent. Survey data showed the use of a variety of training and competency methods but some methods predominated, suggesting their utility. These results could help new and established facilities in making decisions for their own training and competency programs. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Development of a utility conflict management system.
DOT National Transportation Integrated Search
2009-02-01
A critical process for the timely development and delivery of highway construction projects is the early : identification and depiction of utility interests that may interfere with proposed highway facilities. The : effective management of such utili...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-225; NRC-2008-0277] Rensselaer Polytechnic Institute Critical Experiments Facility; Notice of Issuance of Renewed Facility Operating License No. CX-22 The U.S... of the Rensselaer Polytechnic Institute Critical Experiments Facility (RCF), located in Schenectady...
Development of Army Facility Functionality Assessment Criteria and Procedures
2010-09-01
critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion
Applications of multi-spectral imaging: failsafe industrial flame detector
NASA Astrophysics Data System (ADS)
Wing Au, Kwong; Larsen, Christopher; Cole, Barry; Venkatesha, Sharath
2016-05-01
Industrial and petrochemical facilities present unique challenges for fire protection and safety. Typical scenarios include detection of an unintended fire in a scene, wherein the scene also includes a flare stack in the background. Maintaining a high level of process and plant safety is a critical concern. In this paper, we present a failsafe industrial flame detector which has significant performance benefits compared to current flame detectors. The design involves use of microbolometer in the MWIR and LWIR spectrum and a dual band filter. This novel flame detector can help industrial facilities to meet their plant safety and critical infrastructure protection requirements while ensuring operational and business readiness at project start-up.
Sapphire Energy - Integrated Algal Biorefinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Rebecca L.; Tyler, Mike
2015-07-22
Sapphire Energy, Inc. (SEI) is a leader in large-scale photosynthetic algal biomass production, with a strongly cohesive research, development, and operations program. SEI takes a multidiscipline approach to integrate lab-based strain selection, cultivation and harvest and production scale, and extraction for the production of Green Crude oil, a drop in replacement for traditional crude oil.. SEI’s technical accomplishments since 2007 have produced a multifunctional platform that can address needs for fuel, feed, and other higher value products. Figure 1 outlines SEI’s commercialization process, including Green Crude production and refinement to drop in fuel replacements. The large scale algal biomass productionmore » facility, the SEI Integrated Algal Biorefinery (IABR), was built in Luna County near Columbus, New Mexico (see fig 2). The extraction unit was located at the existing SEI facility in Las Cruces, New Mexico, approximately 95 miles from the IABR. The IABR facility was constructed on time and on budget, and the extraction unit expansion to accommodate the biomass output from the IABR was completed in October 2012. The IABR facility uses open pond cultivation with a proprietary harvesting method to produce algal biomass; this biomass is then shipped to the extraction facility for conversion to Green Crude. The operation of the IABR and the extraction facilities has demonstrated the critical integration of traditional agricultural techniques with algae cultivation knowledge for algal biomass production, and the successful conversion of the biomass to Green Crude. All primary unit operations are de-risked, and at a scale suitable for process demonstration. The results are stable, reliable, and long-term cultivation of strains for year round algal biomass production. From June 2012 to November 2014, the IABR and extraction facilities produced 524 metric tons (MT) of biomass (on a dry weight basis), and 2,587 gallons of Green Crude. Additionally, the IABR demonstrated significant year over year yield improvements (2013 to 2014), and reduction in the cost of biomass production. Therefore, the IABR fulfills a number of critical functions in SEI’s integrated development pipeline. These functions are critical in general for the commercialization of algal biomass production and production of biofuels from algal biomass.« less
Orbiter processing facility service platform failure and redesign
NASA Technical Reports Server (NTRS)
Harris, Jesse L.
1988-01-01
In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.
An overview of the on-orbit contamination of the Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
Stuckey, W. K.
1993-01-01
Contamination that leads to degradation of critical surfaces becomes a vital design issue for many spacecraft programs. One of the processes that must be considered is the on-orbit accumulation of contaminants. The Long Duration Exposure Facility (LDEF) has presented an opportunity to examine the deposits on surfaces returned from orbit in order to help in understanding the deposition processes and the current models used to predict spacecraft contamination levels. The results from various investigators on the contamination of LDEF have implications for material selection, contamination models, and contamination control plans for the design of future spacecraft.
ITS logical architecture : volume II, process specifications.
DOT National Transportation Integrated Search
1981-07-01
Author's abstract: This report identifies 24 critical issues related to pedestrian and bicycle facilities and programs, summarizes the state-of-the-art on each issue as it is contained in the published literature, and provides a concise commentary on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1993-09-01
The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutoniummore » products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KESSLER, S.F.
This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weldmore » station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.« less
ERIC Educational Resources Information Center
Woodell, Eric A.
2013-01-01
Information Technology (IT) professionals use the Information Technology Infrastructure Library (ITIL) process to better manage their business operations, measure performance, improve reliability and lower costs. This study examined the operational results of those data centers using ITIL against those that do not, and whether the results change…
The transportation depot: An orbiting vehicle support facility
NASA Technical Reports Server (NTRS)
Kaszubowski, Martin J.; Ayers, J. Kirk
1992-01-01
This paper describes the details of an effort to produce conceptual designs for an orbiting platform, called a transportation depot, to handle assembly and processing of lunar, Martian, and related vehicles. High-level requirements for such a facility were established, and several concepts were developed to meet those requirements. By showing that the critical rigid-body momentum characteristics of each concept are similar to those of the dual-keel space station, some insight was gained about the controllability and utility of this type of facility. Finally, several general observations were made that highlight the advantages and disadvantages of particular design features.
NASA AETC Test Technology Subproject
NASA Technical Reports Server (NTRS)
Bell, James
2017-01-01
Funds directed to improve measurement capabilities (pressure, force, flow, and temperature), test techniques and processes, and develop technologies critical to meeting NASA research needs and applicable to a multitude of facilities. Primarily works by funding small ($40K - $400K) tasks which result in a demonstration or initial capability of a new technology in an AETC facility.TT research and development tasks are generally TRL 3-6; they should be things which work in small scale or lab environments but need further development for use in production facilities.TT differs from CA in its focus on smaller-scale tasks and on instrumentation. Technologies developed by TT may become CA projects in order be fully realized within a facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heubach, J.G.; Weimer, W.C.; Bruce, W.A.
Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific,more » organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.« less
NASA Astrophysics Data System (ADS)
Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian
1999-01-01
The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkle, Paige Elizabeth; Zhang, Ning
Nuclear Criticality Safety (NCS) has reviewed the fissionable material small sample preparation and NDA operations in Wing 7 Basement of the CMR Facility. This is a Level-1 evaluation conducted in accordance with NCS-AP-004 [Reference 1], formerly NCS-GUIDE-01, and the guidance set forth on use of the Standard Criticality Safety Requirements (SCSRs) [Reference 2]. As stated in Reference 2, the criticality safety evaluation consists of both the SCSR CSED and the SCSR Application CSED. The SCSR CSED is a Level-3 CSED [Reference 3]. This Level-1 CSED is the SCSR Application CSED. This SCSR Application (Level-1) evaluation does not derive controls, itmore » simply applies controls derived from the SCSR CSED (Level-3) for the application of operations conducted here. The controls derived in the SCSR CSED (Level-3) were evaluated via the process described in Section 6.6.5 of SD-130 (also reproduced in Section 4.3.5 of NCS-AP-004 [Reference 1]) and were determined to not meet the requirements for consideration of elevation into the safety basis documentation for CMR. According to the guidance set forth on use of the SCSRs [Reference 2], the SCSR CSED (Level-3) is also applicable to the CMR Facility because the process and the normal and credible abnormal conditions in question are bounded by those that are described in the SCSR CSED. The controls derived in the SCSR CSED include allowances for solid materials and solution operations. Based on the operations conducted at this location, there are less-than-accountable (LTA) amounts of 233U. Based on the evaluation documented herein, the normal and credible abnormal conditions that might arise during the execution of this process will remain subcritical with the following recommended controls.« less
INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Hamm, L.; Garcia, H.
2011-07-18
Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less
Tank Pressure Control Experiment on the Space Shuttle
NASA Technical Reports Server (NTRS)
1989-01-01
The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.
Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.
Yang, Yang; Farid, Suzanne S; Thornhill, Nina F
2014-06-10
Higher titre processes can pose facility fit challenges in legacy biopharmaceutical purification suites with capacities originally matched to lower titre processes. Bottlenecks caused by mismatches in equipment sizes, combined with process fluctuations upon scale-up, can result in discarding expensive product. This paper describes a data mining decisional tool for rapid prediction of facility fit issues and debottlenecking of biomanufacturing facilities exposed to batch-to-batch variability and higher titres. The predictive tool comprised advanced multivariate analysis techniques to interrogate Monte Carlo stochastic simulation datasets that mimicked batch fluctuations in cell culture titres, step yields and chromatography eluate volumes. A decision tree classification method, CART (classification and regression tree) was introduced to explore the impact of these process fluctuations on product mass loss and reveal the root causes of bottlenecks. The resulting pictorial decision tree determined a series of if-then rules for the critical combinations of factors that lead to different mass loss levels. Three different debottlenecking strategies were investigated involving changes to equipment sizes, using higher capacity chromatography resins and elution buffer optimisation. The analysis compared the impact of each strategy on mass output, direct cost of goods per gram and processing time, as well as consideration of extra capital investment and space requirements. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-12
... suitable for MOX fuel fabrication is disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico... Waste Processing Facility at SRS or disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. On... are safety (criticality) limits on how much plutonium can be sent to the Defense Waste Processing...
De Gisi, Sabino; Sabia, Gianpaolo; Casella, Patrizia; Farina, Roberto
2015-08-01
WISE, the Water Information System for Europe, is the web-portal of the European Commission (EU) that disseminates the quality state of the receiving water bodies and the efficiency of the municipal wastewater treatment plants (WWTPs) in order to monitor advances in the application of both the Water Framework Directive (WFD) as well as the Urban Wastewater Treatment Directive (UWWTD). With the intention to develop WISE applications, the aim of the work was to define and apply an integrated approach capable of monitoring the efficiency and investments of activated sludge-based WWTPs located in a large spatial area, providing the following outcomes useful to the decision-makers: (i) the identification of critical facilities and their critical processes by means of a Performance Assessment System (PAS), (ii) the choice of the most suitable upgrading actions, through a scenario analysis. (iii) the assessment of the investment costs to upgrade the critical WWTPs and (iv) the prioritization of the critical facilities by means of a multi-criteria approach which includes the stakeholders involvement, along with the integration of some technical, environmental, economic and health aspects. The implementation of the proposed approach to a high number of municipal WWTPs highlighted how the PAS developed was able to identify critical processes with a particular effectiveness in identifying the critical nutrient removal ones. In addition, a simplified approach that considers the cost related to a basic-configuration and those for the WWTP integration, allowed to link the critical processes identified and the investment costs. Finally, the questionnaire for the acquisition of data such as that provided by the Italian Institute of Statistics, the PAS defined and the database on the costs, if properly adapted, may allow for the extension of the integrated approach on an EU-scale by providing useful information to water utilities as well as institutions. Copyright © 2015 Elsevier B.V. All rights reserved.
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
14 CFR 415.109 - Launch description.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Identification of any facilities at the launch site that will be used for launch processing and flight. (b... dimensions and weight; (iii) Location of all safety critical systems, including any flight termination hardware, tracking aids, or telemetry systems; (iv) Location of all major launch vehicle control systems...
The aerospace energy systems laboratory: Hardware and software implementation
NASA Technical Reports Server (NTRS)
Glover, Richard D.; Oneil-Rood, Nora
1989-01-01
For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.
Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)
NASA Technical Reports Server (NTRS)
1992-01-01
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.
Improving animal research facility operations through the application of lean principles.
Khan, Nabeel; Umrysh, Brian M
2008-06-01
Animal research is a vital component of US research and well-functioning animal research facilities are critical both to the research itself and to the housing and feeding of the animals. The Office of Animal Care (OAC) at Seattle Children's Hospital Research Institute realized it had to improve the efficiency and safety of its animal research facility (ARF) to prepare for expansion and to advance the Institute's mission. The main areas for improvement concerned excessive turnaround time to process animal housing and feeding equipment; the movement and flow of equipment and inventory; and personnel safety. To address these problems, management held two process improvement workshops to educate employees about lean principles. In this article we discuss the application of these principles and corresponding methods to advance Children's Research Institute's mission of preventing, treating, and eliminating childhood diseases.
Error detection and reduction in blood banking.
Motschman, T L; Moore, S B
1996-12-01
Error management plays a major role in facility process improvement efforts. By detecting and reducing errors, quality and, therefore, patient care improve. It begins with a strong organizational foundation of management attitude with clear, consistent employee direction and appropriate physical facilities. Clearly defined critical processes, critical activities, and SOPs act as the framework for operations as well as active quality monitoring. To assure that personnel can detect an report errors they must be trained in both operational duties and error management practices. Use of simulated/intentional errors and incorporation of error detection into competency assessment keeps employees practiced, confident, and diminishes fear of the unknown. Personnel can clearly see that errors are indeed used as opportunities for process improvement and not for punishment. The facility must have a clearly defined and consistently used definition for reportable errors. Reportable errors should include those errors with potentially harmful outcomes as well as those errors that are "upstream," and thus further away from the outcome. A well-written error report consists of who, what, when, where, why/how, and follow-up to the error. Before correction can occur, an investigation to determine the underlying cause of the error should be undertaken. Obviously, the best corrective action is prevention. Correction can occur at five different levels; however, only three of these levels are directed at prevention. Prevention requires a method to collect and analyze data concerning errors. In the authors' facility a functional error classification method and a quality system-based classification have been useful. An active method to search for problems uncovers them further upstream, before they can have disastrous outcomes. In the continual quest for improving processes, an error management program is itself a process that needs improvement, and we must strive to always close the circle of quality assurance. Ultimately, the goal of better patient care will be the reward.
77 FR 34390 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... the NSP) at a health care facility with a critical shortage of nurses as defined by the program. NSP... facility with a critical shortage of nurses in the United States, which includes, in addition to the States... health care facility with a critical shortage of nurses in the United States or these territories are...
Factors determining the viability of radiation processing in developing countries
NASA Astrophysics Data System (ADS)
van der Linde, HJ; Basson, RA
In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determing the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commisioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization.
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2011 CFR
2011-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2012 CFR
2012-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2010 CFR
2010-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
10 CFR Appendix A to Part 725 - Categories of Restricted Data Available
Code of Federal Regulations, 2014 CFR
2014-01-01
... centrifuge or gaseous diffusion processes. b. Design, construction, and operation of any plant, facility or..., design, criticality studies and operation of reactors, reactor systems and reactor components. d... aqueous lithium hydroxide solution in packed columns. Not included is information regarding plant design...
Aerospace Energy Systems Laboratory - Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, P. L.; Hanan, N. A.
2005-12-02
Calculations have been performed for postulated transients in the Critical Facility at the Tajoura Nuclear Research Center (TNRC) in Libya. These calculations have been performed at the request of staff of the Renewable Energy and Water Desalinization Research Center (REWDRC) who are performing similar calculations. The transients considered were established during a working meeting between ANL and REWDRC staff on October 1-2, 2005 and subsequent email correspondence. Calculations were performed for the current high-enriched uranium (HEU) core and the proposed low-enriched uranium (LEU) core. These calculations have been performed independently from those being performed by REWDRC and serve as onemore » step in the verification process.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-21
... Status Piramal Critical Care, Inc., (Inhalation Anesthetics), Bethlehem, PA Pursuant to its authority... anesthetic manufacturing and distribution facilities of Piramal Critical Care, Inc., located in Bethlehem... inhalation anesthetics at the facilities of Piramal Critical Care, Inc., located in Bethlehem, Pennsylvania...
NREL, Abengoa Making Concentrating Solar Power System Manufacturing More
Cost Effective | Energy Systems Integration Facility | NREL Abengoa NREL, Abengoa Making Concentrating Solar Power System Manufacturing More Cost Effective Abengoa is working with NREL researchers to develop a new and more cost-effective manufacturing process for critical components of concentrating solar
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.
1977-01-01
Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.
Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation.
Hwang, Insung; Jeong, Inyoung; Lee, Jinwoo; Ko, Min Jae; Yong, Kijung
2015-08-12
In this study, a novel and facile passivation process for a perovskite solar cell is reported. Poor stability in ambient atmosphere, which is the most critical demerit of a perovskite solar cell, is overcome by a simple passivation process using a hydrophobic polymer layer. Teflon, the hydrophobic polymer, is deposited on the top of a perovskite solar cell by a spin-coating method. With the hydrophobic passivation, the perovskite solar cell shows negligible degradation after a 30 day storage in ambient atmosphere. Suppressed degradation of the perovskite film is proved in various ways: X-ray diffraction, light absorption spectrum, and quartz crystal microbalance. This simple but effective passivation process suggests new kind of approach to enhance stability of perovskite solar cells to moisture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Christopher; Hampel, Kristin; Rismani-Yazdi, Hamid
DOE DE-FE0001888 Award, Phase 2, funded research, development, and deployment (RD&D) of Phycal’s pilot-scale, algae to biofuels, bioproducts, and processing facility in Hawai’i. Phycal’s algal-biofuel and bioproducts production system integrates several novel and mature technologies into a system that captures and reuses industrially produced carbon dioxide emissions, which would otherwise go directly to the atmosphere, for the manufacture of renewable energy products and bioproducts from algae (note that these algae are not genetically engineered). At the end of Phase 2, the project as proposed was to encompass 34 acres in Central Oahu and provide large open ponds for algal massmore » culturing, heterotrophic reactors for the Heteroboost™ process, processing facilities, water recycling facilities, anaerobic digestion facilities, and other integrated processes. The Phase 2 award was divided into two modules, Modules 1 & 2, where the Module 1 effort addressed critical scaling issues, tested highest risk technologies, and set the overall infrastructure needed for a Module 2. Phycal terminated the project prior to executing construction of the first Module. This Final Report covers the development research, detailed design, and the proposed operating strategy for Module 1 of Phase 2.« less
Monitoring quality of care at dialysis facilities: a case for regulatory parsimony--and beyond.
Stivelman, John C
2012-10-01
With the issuance of the new Conditions for Coverage in 2008 and the implementation of the Prospective Payment System in 2011, the Centers for Medicare & Medicaid Services has fundamentally altered the regulatory landscape of quality in the ESRD program. Although these changes-largely through use of tools comparing individual facility performance to regional and national quality expectations-have increased facility accountability for the quality of patient care in many quarters, they have also complicated both substance and process of facility adherence to quality rules in that component of the program. This editorial critically assesses the main quality tools now in use for dialysis facilities and reviews the issues arising from their conjoint use. A scheme for improving the effectiveness of each quality tool is proposed, and an assessment of their future value and effectiveness in quality improvement is offered.
Aerospace energy systems laboratory: Requirements and design approach
NASA Technical Reports Server (NTRS)
Glover, Richard D.
1988-01-01
The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.
Fisher, Ronald E; Norman, Michael
2010-07-01
The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, C.E.
The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficientmore » mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.« less
Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan
2016-11-01
Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.
Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James
2016-01-01
Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220
[Design of an HACCP program for a cocoa processing facility].
López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar
2012-12-01
The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well
2004-09-18
KENNEDY SPACE CENTER, FLA. - NASA Administrator Sean O’Keefe looks at equipment moved from the Thermal Protection System Facility to the RLV Hangar. AT right is Martin Wilson, manager of TPS operations for United Space Alliance. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
2004-09-18
KENNEDY SPACE CENTER, FLA. - - NASA Administrator Sean O’Keefe (right) looks at equipment moved from the Thermal Protection System Facility to the RLV Hangar. At left are United Space Alliance technicians Shelly Kipp and Eric Moss. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
Where Do I Start (Beginning the Investigation)?
NASA Astrophysics Data System (ADS)
Kornacki, Jeffrey L.
No doubt some will open directly to this chapter, because your product is contaminated with an undesirable microbe, or perhaps you have been asked to do such an investigation for another company's facility not previously observed by you and naturally you want tips on how to find where the contaminant is getting into the product stream. This chapter takes the reader through the process of beginning the investigation including understanding the process including the production schedule and critically reviewing previously generated laboratory data. Understanding the critical control points and validity of their critical limits is also important. Scoping the extent of the problem is next. It is always a good idea for the factory to have a rigorously validated cleaning and sanitation procedure that provides a documented "sanitation breakpoint," which can be useful in the "scoping" process, although some contamination events may extend past these "break-points." Touring the facility is next wherein preliminary pre-selection of areas for future sampling can be done. Operational samples and observations in non-food contact areas can be taken at this time. Then the operations personnel need to be consulted and plans made for an appropriate amount of time to observe equipment break down for "post-operational" sampling and "pre-operational" investigational sampling. Hence the chapter further discusses preparing operations personnel for the disruptions that go along with these investigations and assembling the sampling team. The chapter concludes with a discussion of post-startup observations after an investigation and sampling.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-14
... would use a combination of partial credit for soluble boron, Boral\\TM\\ for Region 1, burnup, rod cluster... storage racks or the new fuel handling processes. Operation of the SFP utilizes soluble boron; crediting this boron for criticality control does not change the probability of any accident. The proposed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Nancy J.; Brown, Gordon E.; Plata, Charity
2014-02-21
As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description ofmore » critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).« less
University education and nuclear criticality safety professionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R.E.; Stachowiak, R.V.; Knief, R.A.
1996-12-31
The problem of developing a productive criticality safety specialist at a nuclear fuel facility has long been with us. The normal practice is to hire a recent undergraduate or graduate degree recipient and invest at least a decade in on-the-job training. In the early 1980s, the U.S. Department of Energy (DOE) developed a model intern program in an attempt to speed up the process. The program involved working at assigned projects for extended periods at a working critical mass laboratory, a methods development group, and a fuel cycle facility. This never gained support as it involved extended time away frommore » the job. At the Rocky Flats Environmental Technology Site, the training method is currently the traditional one involving extensive experience. The flaw is that the criticality safety staff turnover has been such that few individuals continue for the decade some consider necessary for maturity in the discipline. To maintain quality evaluations and controls as well as interpretation decisions, extensive group review is used. This has proved costly to the site and professionally unsatisfying to the current staff. The site contractor has proposed a training program to remedy the basic problem.« less
Investigation of criticality safety control infraction data at a nuclear facility
Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...
2014-10-27
Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less
6 CFR 27.215 - Security vulnerability assessments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of potential critical assets; identification of hazards and consequences of concern for the facility, its surroundings, its identified critical asset(s), and its supporting infrastructure; and... determination of the relative degree of risk to the facility in terms of the expected effect on each critical...
6 CFR 27.215 - Security vulnerability assessments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of potential critical assets; identification of hazards and consequences of concern for the facility, its surroundings, its identified critical asset(s), and its supporting infrastructure; and... determination of the relative degree of risk to the facility in terms of the expected effect on each critical...
6 CFR 27.215 - Security vulnerability assessments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of potential critical assets; identification of hazards and consequences of concern for the facility, its surroundings, its identified critical asset(s), and its supporting infrastructure; and... determination of the relative degree of risk to the facility in terms of the expected effect on each critical...
6 CFR 27.215 - Security vulnerability assessments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of potential critical assets; identification of hazards and consequences of concern for the facility, its surroundings, its identified critical asset(s), and its supporting infrastructure; and... determination of the relative degree of risk to the facility in terms of the expected effect on each critical...
2004-09-18
KENNEDY SPACE CENTER, FLA. - Looking at damage inside the hurricane-ravaged Thermal Protection System Facility are KSC Director of Spaceport Services Scott Kerr (left) and NASA Associate Administrator of Space Operations Mission Directorate William Readdy (right). The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. Readdy and NASA Administrator Sean O’Keefe are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.
1979-07-13
A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel
2008-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady simulations have been carried out to study the engine shutdown process in the facility and understand the physics behind the interactions between the steam ejectors, the test cell and the supersonic diffuser. As a first approximation, to understand the dominant unsteady mechanisms in the engine test cell and the supersonic diffuser, the turning duct in the facility was removed. As the engine loses power a rarefaction wave travels downstream that disrupts the shock cell structure in the supersonic diffuser. Flow from the test cell is seen to expand into the supersonic diffuser section and re-pressurizes the area around the nozzle along with a upstream traveling compression wave that emanates from near the first stage ejectors. Flow from the first stage ejector expands to the center of the duct and a new shock train is formed between the first and second stage ejectors. Both stage ejectors keep the facility pressurized and prevent any large amplitude pressure fluctuations from affecting the engine nozzle. The resultant pressure loads the nozzle experiences in the shutdown process are small.
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2014 CFR
2014-10-01
... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
... State owned or operated buildings, infrastructure, and critical facilities located in the identified... vulnerable to damage and loss associated with hazard events. State owned or operated critical facilities...
Recent Productivity Improvements to the National Transonic Facility
NASA Technical Reports Server (NTRS)
Popernack, Thomas G., Jr.; Sydnor, George H.
1998-01-01
Productivity gains have recently been made at the National Transonic Facility wind tunnel at NASA Langley Research Center. A team was assigned to assess and set productivity goals to achieve the desired operating cost and output of the facility. Simulations have been developed to show the sensitivity of selected process productivity improvements in critical areas to reduce overall test cycle times. The improvements consist of an expanded liquid nitrogen storage system, a new fan drive, a new tunnel vent stack heater, replacement of programmable logic controllers, an increased data communications speed, automated test sequencing, and a faster model changeout system. Where possible, quantifiable results of these improvements are presented. Results show that in most cases, improvements meet the productivity gains predicted by the simulations.
Comprehensive integrated planning: A process for the Oak Ridge Reservation, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Oak Ridge Comprehensive Integrated Plan is intended to assist the US Department of Energy (DOE) and contractor personnel in implementing a comprehensive integrated planning process consistent with DOE Order 430.1, Life Cycle Asset Management and Oak Ridge Operations Order 430. DOE contractors are charged with developing and producing the Comprehensive Integrated Plan, which serves as a summary document, providing information from other planning efforts regarding vision statements, missions, contextual conditions, resources and facilities, decision processes, and stakeholder involvement. The Comprehensive Integrated Plan is a planning reference that identifies primary issues regarding major changes in land and facility use andmore » serves all programs and functions on-site as well as the Oak Ridge Operations Office and DOE Headquarters. The Oak Ridge Reservation is a valuable national resource and is managed on the basis of the principles of ecosystem management and sustainable development and how mission, economic, ecological, social, and cultural factors are used to guide land- and facility-use decisions. The long-term goals of the comprehensive integrated planning process, in priority order, are to support DOE critical missions and to stimulate the economy while maintaining a quality environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, J.S.
Several factors in the development of the East Wilmington oil field by THUMS Long Beach Co. are described. These include: critical path scheduling, complex stratigraphy, reservoir engineering, drilling program, production methods, pressure maintenance, crude oil processing, automation, transportation facilities, service lines, and electrical facilities. The complexity and closely scheduled operational events interwoven in the THUMS project demands a method for the carefully planned sequence of jobs to be done, beginning with island construction up through routine production and to the LACT system. These demanding requirements necessitated the use of a critical path scheduling program. It was decided to use themore » program evaluation technique. This technique is used to assign responsibilities for individual assignments to time assignments, and to keep the overall program on schedule. The stratigraphy of East Wilmington complicates all engineering functions associated with recovery methods and reservoir evaluation. At least 5 major faults are anticipated.« less
Application of a neural network as a potential aid in predicting NTF pump failure
NASA Technical Reports Server (NTRS)
Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.
1993-01-01
The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.
NASA Astrophysics Data System (ADS)
Pfurtscheller, Clemens; Vetter, Michael; Werthmann, Markus
2010-05-01
In times of increasing scarcity of private or public resources and uncertain changes in natural environment caused by climate variations, prevention and risk management against floods and coherent processes in mountainous regions, like debris flows or log jams, should be faced as a main challenge for globalised enterprises whose production facilities are located in flood-prone areas. From an entrepreneurial perspective, vulnerability of production facilities which causes restrictions or a total termination of production processes has to be optimised by means of cost-benefit-principles. Modern production enterprises are subject to globalisation and accompanying aspects, like short order and delivery periods, interlinking production processes and just-in-time manufacturing, so a breakdown of production provokes substantial financial impacts, unemployment and a decline of gross regional product. The aim of the presented project is to identify weak and critical points of the corporate emergency planning ("hot spots") and to assess possible losses triggered by mountainous flood processes using high-resolution digital terrain models (DTM) from airborne LiDAR (ALS). We derive flood-hot spots and model critical locations where the risk of natural hazards is very high. To model those hot spots a flood simulation based on an ALS-DTM has to be calculated. Based on that flood simulation, the flood heights of the overflowed locations which are lower than a threshold are mapped as flood-hot-spots. Then the corporate critical infrastructure, e.g. production facilities or lifelines, which are affected by the flooding, can be figured out. After the identification of hot spots and possible damage potential, the implementation of the results into corporate risk and emergency management guarantees the transdisciplinary approach involving stakeholders, risk and safety management officers and corporate fire brigade. Thus, the interdisciplinary analysis, including remote sensing techniques, like LiDAR, and economic assessment of natural hazards, combining with corporate acting secures production, guarantees income and helps to stabilise region's wealth after major flood events. Beyond that, the assessment of hot spots could be raised as locational issue for greenfield strategy or company foundation.
2010-01-01
Planning Chapters Chapter 5 provides DSCA planning factors for response to all hazard events. Chapter 6 is a review of safety and operational/composite...risk management processes. Chapters 7 through 11 contain the Concepts of Operation (CONOPS) and details five natural hazards /disasters and the...Restoring critical public services and facilities through temporary measures • Identifying hazard mitigation opportunities 3.3.1.5 Rehabilitation
ANL Critical Assembly Covariance Matrix Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKnight, Richard D.; Grimm, Karl N.
2014-01-15
This report discusses the generation of a covariance matrix for selected critical assemblies that were carried out by Argonne National Laboratory (ANL) using four critical facilities-all of which are now decommissioned. The four different ANL critical facilities are: ZPR-3 located at ANL-West (now Idaho National Laboratory- INL), ZPR-6 and ZPR-9 located at ANL-East (Illinois) and ZPPr located at ANL-West.
2004-09-18
KENNEDY SPACE CENTER, FLA. - Martin Wilson (left, in foreground), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), gives a tour of the hurricane-ravaged Thermal Protection System Facility to (from center) NASA Associate Administrator of Space Operations Mission Directorate William Readdy, NASA Administrator Sean O’Keefe, Center Director James Kennedy and Director of Shuttle Processing Michael E. Wetmore. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. O’Keefe and Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
NASA Technical Reports Server (NTRS)
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
77 FR 20645 - Agency Information Collection Activities: Proposed Collection: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... care facility with a critical shortage of nurses as defined by the program. NSP recipients must be... critical shortage of nurses in the United States, which includes, in addition to the several States, only... health care facility with a critical shortage of nurses in the United States or these territories are...
Engineering study for closure of 209E facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, C.H.; Heys, W.H.; Johnson, E.D.
1997-07-07
This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.
1996-01-01
failure as due to an adhesive layer between the foil and inner polypropylene layers. "* Under subcontract, NFPA provided HACCP draft manuals for the...parameters of the production process and to ensure that they are within their target values. In addition, a HACCP program was used to assure product...played an important part in implementing Hazard Analysis Critical Control Points ( HACCP ) as part of the Process and Quality Control manual. The National
ERIC Educational Resources Information Center
Rivera, Marialena D.
2018-01-01
In an era of expanding global educational privatization and shifting policies on how to fund educational facilities in many states in the US, this study engages the lenses of critical policy analysis and fiscal sociology to examine educational privatization in the school facilities industry in California. Employing critical policy document…
A Proposed Approach for Prioritizing Maintenance at NASA Centers
NASA Technical Reports Server (NTRS)
Dunn, Steven C.; Sawyer, Melvin H.
2013-01-01
The National Aeronautics and Space Administration (NASA) manages a vast array of infrastructure assets across ten National Centers with a worth of at least 30 billion dollars. Eighty percent of this infrastructure is greater than 40 years old and is in degraded condition. Maintenance budgets are typically less than one percent of current replacement value (CRV), much less than the 2-4% recommended by the National Research Council. The maintenance backlog was 2.55 billion dollars in FY10 and growing. NASA s annual budgets have flattened and are at risk of being reduced, so the problem is becoming even more difficult. NASA Centers utilize various means to prioritize and accomplish maintenance within available budgets, though data is suspect and processes are variable. This paper offers a structured means to prioritize maintenance based on mission criticality and facility performance (ability of the facility to deliver on its purpose). Mission alignment is assessed using the current timeframe Mission Dependence Index and a measure of facility alignment with the 2011 NASA Strategic Plan for the long-term perspective. Facility performance is assessed by combining specific findings from a structured facility condition assessment and an assessment of actual functional output. These are then combined in a matrix to identify the facilities most critical to mission and able to deliver services. The purpose of this approach is to provide the best benefits for the available funding. Additionally, this rationale can also be applied to the prioritization of investment (recapitalization) projects so that the ultimate customers of this paper, the senior infrastructure managers at each NASA Center, are better able to strategically manage their capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDBERG, H.J.
1999-05-18
The Waste Receiving and Processing (WRAP) Facility will store uranium and transuranic (TRU) sources and standards for certification that WRAP meets the requirements of the Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP). In addition, WRAP must meet internal requirements for testing and validation of measuring instruments for nondestructive assay (NDA). In order to be certified for WIPP, WRAP will participate in the NDA Performance Demonstration Program (PDP). This program is a blind test of the NDA capabilities for TRU waste. It is intended to ensure that the NDA capabilities of this facility satisfy the requirementsmore » of the quality assurance program plan for the WIPP. The PDP standards have been provided by the Los Alamos National Laboratory (LANL) for this program. These standards will be used in the WRAP facility.« less
NASA Astrophysics Data System (ADS)
Garcia Payne, D. G.; Novelo-Casanova, D. A.; Ponce-Pacheco, A. B.; Espinosa-Campos, O.; Huerta-Parra, M.; Reyes-Pimentel, T.; Rodriguez, F.; Benitez-Olivares, I.
2010-12-01
Valle de Chalco Solidaridad is located in Mexico City Metropolitan Area in Estado de Mexico, Mexico. In this town there is a sewage canal called “La Compañía”. A wall of this canal collapsed on February 5, 2010 due to heavy rains creating the flooding of four surrounding communities. It is important to point out that this area is frequently exposed to floods. In this work, we consider a critical facility as an essential structure for performance, health care and welfare within a community or/and as a place that can be used as shelter in case of emergency or disaster. Global vulnerability (the sum of the three measured vulnerabilities) of the 25 critical facilities identified in the locations of Avándaro, San Isidro and El Triunfo was assessed using the Community Vulnerability Assessment Tool developed by the National Oceanic and Atmospheric Administration (NOAA). For each critical facility we determined its operational, structural and physical vulnerabilities. For our analysis, we considered the four main natural hazards to which Valle de Chalco is exposed: earthquakes, floods, landslides and sinking. We considered five levels of vulnerability using a scale from 1 to 5, where values range from very low to very high vulnerability, respectively. A critical facilities database was generated by collecting general information for three categories: schools, government and church. Each facility was evaluated considering its location in relation to identified high-risk areas. Our results indicate that in average, the global vulnerability of all facilities is low, however, there are particular cases in which this global vulnerability is high. The average operational vulnerability of the three communities is moderate. The global structural vulnerability (sum of the structural vulnerability for the four analyzed hazards) is moderate. In particular, the structural vulnerability to earthquakes is low, to landslides is very low, to flooding is moderate and to sinking is low. Due to the location of the critical facilities, its global physical vulnerability (sum of the physical vulnerability to the four analyzed hazards) is moderate. Only three facilities have very high physical vulnerability to floods. Churches (six facilities) have the highest operational vulnerability, whereas its structural vulnerability is the lowest. Schools (13 facilities) have the lowest operational vulnerability, nevertheless, there are two schools with very high vulnerability. Regarding the six government facilities, we identified that their structural vulnerability range from moderate to high. As a result of this work, we believe in the importance of strengthening the culture of civil protection within the critical facilities of the communities of Valle de Chalco.
2012-01-01
Background Medication incident reporting (MIR) is a key safety critical care process in residential aged care facilities (RACFs). Retrospective studies of medication incident reports in aged care have identified the inability of existing MIR processes to generate information that can be used to enhance residents’ safety. However, there is little existing research that investigates the limitations of the existing information exchange process that underpins MIR, despite the considerable resources that RACFs’ devote to the MIR process. The aim of this study was to undertake an in-depth exploration of the information exchange process involved in MIR and identify factors that inhibit the collection of meaningful information in RACFs. Methods The study was undertaken in three RACFs (part of a large non-profit organisation) in NSW, Australia. A total of 23 semi-structured interviews and 62 hours of observation sessions were conducted between May to July 2011. The qualitative data was iteratively analysed using a grounded theory approach. Results The findings highlight significant gaps in the design of the MIR artefacts as well as information exchange issues in MIR process execution. Study results emphasized the need to: a) design MIR artefacts that facilitate identification of the root causes of medication incidents, b) integrate the MIR process within existing information systems to overcome key gaps in information exchange execution, and c) support exchange of information that can facilitate a multi-disciplinary approach to medication incident management in RACFs. Conclusions This study highlights the advantages of viewing MIR process holistically rather than as segregated tasks, as a means to identify gaps in information exchange that need to be addressed in practice to improve safety critical processes. PMID:23122411
Transitioning to a New Facility: The Crucial Role of Employee Engagement.
Slosberg, Meredith; Nejati, Adeleh; Evans, Jennie; Nanda, Upali
Transitioning to a new facility can be challenging for employees and detrimental to operations. A key aspect of the transition is employee understanding of, and involvement in, the design of the new facility. The literature lacks a comprehensive study of the impact of change engagement throughout the design, construction, and activation of a project as well as how that can affect perceptions, expectations, and, eventually, satisfaction of employees. The purpose of this research was to examine employee perceptions and satisfaction throughout a hospital design, construction, and activation process. Three pulse-point surveys were administered throughout the transition of a children's hospital emergency department and neonatal intensive care unit to a new facility. We also administered a postoccupancy survey 3 months after the move into the new facility. We received 544 responses and analyzed them to assess the relationship between involvement in design or change engagement initiatives and overall perceptions. The results revealed a strong relationship between employee engagement and their level of preparedness to move, readiness to adapt, and satisfaction. Early involvement in the design of a facility or new processes can significantly affect staff preparedness and readiness to adapt as well as employees' overall satisfaction with the building after occupancy. In addition, our findings suggest that keeping a finger on the pulse of employee perceptions and expectations throughout the design, construction, and activation phase is critical to employee preparedness and satisfaction in transitioning to a new facility.
Stormwater Pollutant Control from Critical Source Areas
Critical source areas include: vehicular maintenance facilities, parking lots and bus terminals, junk and lumber yards, industrial storage facilities, loading docks and refueling areas, manufacturing sites, etc. Addressing pollutant runoff from these areas is an important compon...
Low-Activity Waste Pretreatment System Additional Engineering-Scale Integrated Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, Matt R.; Wilson, Robert A.
Washington River Protections Solutions, LLC’s (WRPS) Low Activity Waste Pretreatment System (LAWPS) Project provides for the early production of immobilized low-activity waste (ILAW) by feeding LAW directly from Tank Farms to the Waste Treatment and Immobilization Plant (WTP) LAW Facility, bypassing the WTP Pretreatment Facility. Prior to the transfer of feed to the WTP LAW Vitrification Facility, tank supernatant waste will be pretreated in the LAWPS to meet the WTP LAW waste acceptance criteria (WAC). Full-scale and engineering-scale testing of critical technology elements, as part of the technology maturation process, are components of the overall LAWPS Project. WRPS awarded themore » engineering-scale integrated testing scope to AECOM via WRPS Subcontract 58349. This report is deliverable MSR-008 of the subcontract.« less
A Framework for Revitalizing American Manufacturing
2009-12-01
remedial education and support services, modernize facilities, and expand high-quality online course offerings. Invest in high-quality job... risk , high-reward research in areas of critical national need. One 17 current area of focus is research on advanced manufacturing processes and...competitiveness. The Department is working to streamline the delivery of government services to businesses so that they can better assess their needs
Identifying Critical Manufacturing Technologies Required for Transforming the Army Industrial Base
2014-04-01
mechanism, 1 = least common mechanism)? ................................................................... 29 Figure 5 – Which Technology “ Test Beds...facilities, produce new designs , and incorporate efficient manufacturing processes. The value and continued success of the Army Industrial Base depends on...in materiel supplies to troops. Specific programs, described in AR 700-09, that are designed to transition manufacturing technology into the Army
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Support.
The selection and planning of sites for school facilities can be critical and difficult due to the varied and complex demands schools must satisfy. This publication addresses the many factors that need consideration during the process of site selection, planning, development, and use. The report examines not only the site selection and planning…
VerifEYE: a real-time meat inspection system for the beef processing industry
NASA Astrophysics Data System (ADS)
Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula
2003-02-01
Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M.; Jantzen, C.; Burket, P.
The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H 2 gas which requires monitoring of certain vessel’s vapor spaces.more » A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H 2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H 2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.« less
The implementation of tissue banking experiences for setting up a cGMP cell manufacturing facility.
Arjmand, Babak; Emami-Razavi, Seyed Hassan; Larijani, Bagher; Norouzi-Javidan, Abbas; Aghayan, Hamid Reza
2012-12-01
Cell manufacturing for clinical applications is a unique form of biologics manufacturing that relies on maintenance of stringent work practices designed to ensure product consistency and prevent contamination by microorganisms or by another patient's cells. More extensive, prolonged laboratory processes involve greater risk of complications and possibly adverse events for the recipient, and so the need for control is correspondingly greater. To minimize the associate risks of cell manufacturing adhering to international quality standards is critical. Current good tissue practice (cGTP) and current good manufacturing practice (cGMP) are examples of general standards that draw a baseline for cell manufacturing facilities. In recent years, stem cell researches have found great public interest in Iran and different cell therapy projects have been started in country. In this review we described the role of our tissue banking experiences in establishing a new cGMP cell manufacturing facility. The authors concluded that, tissue banks and tissue banking experts can broaden their roles from preparing tissue grafts to manufacturing cell and tissue engineered products for translational researches and phase I clinical trials. Also they can collaborate with cell processing laboratories to develop SOPs, implement quality management system, and design cGMP facilities.
Kassie, Getnet M; Belay, Teklu; Sharma, Anjali; Feleke, Getachew
2018-01-01
Focus on improving access and quality of HIV care and treatment gained acceptance in Ethiopia through the work of the International Training and Education Center for Health. The initiative deployed mobile field-based teams and capacity building teams to mentor health care providers on clinical services and program delivery in three regions, namely Tigray, Amhara, and Afar. Transitioning of the clinical mentoring program (CMP) began in 2012 through capacity building and transfer of skills and knowledge to local health care providers and management. The initiative explored the process of transitioning a CMP on HIV care and treatment to local ownership and documented key lessons learned. A mixed qualitative design was used employing focus group discussions, individual in-depth interviews, and review of secondary data. The participants included regional focal persons, mentors, mentees, multidisciplinary team members, and International Training and Education Center for Health (I-TECH) staff. Three facilities were selected in each region. Data were collected by trained research assistants using customized guides for interviews and with data extraction format. The interviews were recorded and fully transcribed. Open Code software was used for coding and categorizing the data. A total of 16 focus group discussions and 20 individual in-depth interviews were conducted. The critical processes for transitioning a project were: establishment of a mentoring transition task force, development of a roadmap to define steps and directions for implementing the transition, and signing of a memorandum of understanding (MOU) between the respective regional health bureaus and I-TECH Ethiopia to formalize the transition. The elements of implementation included mentorship and capacity building, joint mentoring, supportive supervision, review meetings, and independent mentoring supported by facility-based mechanisms: multidisciplinary team meetings, case-based discussions, and catchment area meetings. The process of transitioning the CMP to local ownership involved signing an MOU, training of mentors, and building capacity of mentoring in each region. The experience shed light on how to transition donor-supported work to local country ownership, with key lessons related to strengthening the structures of regional health bureaus, and other facilities addressing critical issues and ensuring continuity of the facility-based activities.
Reese, Erika M; Nelson, Randin C; Flegel, Willy A; Byrne, Karen M; Booth, Garrett S
2017-05-01
While critical value procedures have been adopted in most areas of the clinical laboratory, their use in transfusion medicine has not been reviewed in detail. The results of this study present a comprehensive overview of critical value reporting and communication practices in transfusion medicine in the United States. A web-based survey was developed to collect data on the prevalence of critical value procedures and practices of communicating results. The survey was distributed via email to US hospital-based blood banks. Of 123 facilities surveyed, 84 (68.3%) blood banks had a critical value procedure. From a panel of 23 common blood bank results, nine results were selected by more than 70% of facilities as either a critical value or requiring rapid communication as defined by an alternate procedure. There was overlap among results communicated by facilities with and without a critical value procedure. The most frequently communicated results, such as incompatible crossmatch for RBC units issued uncrossmatched, delay in finding compatible blood due to a clinically significant antibody, and transfusion reaction evaluation suggestive of a serious adverse event, addressed scenarios associated with the leading reported causes of transfusion-related fatalities. American Society for Clinical Pathology, 2017. This work is written by US Government employees and is in the public domain in the US.
Biochar from Biosolids Pyrolysis: A Review.
Paz-Ferreiro, Jorge; Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel
2018-05-10
Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil.
Biochar from Biosolids Pyrolysis: A Review
Nieto, Aurora; Méndez, Ana; Askeland, Matthew Peter James; Gascó, Gabriel
2018-01-01
Ever increasing volumes of biosolids (treated sewage sludge) are being produced by municipal wastewater facilities. This is a consequence of the continued expansion of urban areas, which in turn require the commissioning of new treatment plants or upgrades to existing facilities. Biosolids contain nutrients and energy which can be used in agriculture or waste-to-energy processes. Biosolids have been disposed of in landfills, but there is an increasing pressure from regulators to phase out landfilling. This article performs a critical review on options for the management of biosolids with a focus on pyrolysis and the application of the solid fraction of pyrolysis (biochar) into soil. PMID:29748488
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is moved across facility toward space shuttle Endeavour. The MISSE is part of the payload onboard Endeavour for mission STS-123 and will be installed in the payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
Multi-criteria analysis of potential recovery facilities in a reverse supply chain
NASA Astrophysics Data System (ADS)
Nukala, Satish; Gupta, Surendra M.
2005-11-01
Analytic Hierarchy Process (AHP) has been employed by researchers for solving multi-criteria analysis problems. However, AHP is often criticized for its unbalanced scale of judgments and failure to precisely handle the inherent uncertainty and vagueness in carrying out the pair-wise comparisons. With an objective to address these drawbacks, in this paper, we employ a fuzzy approach in selecting potential recovery facilities in the strategic planning of a reverse supply chain network that addresses the decision maker's level of confidence in the fuzzy assessments and his/her attitude towards risk. A numerical example is considered to illustrate the methodology.
Nyandieka, Lilian Nyamusi; Kombe, Yeri; Ng'ang'a, Zipporah; Byskov, Jens; Njeru, Mercy Karimi
2015-01-01
In spite of the critical role of Emergency Obstetric Care in treating complications arising from pregnancy and childbirth, very few facilities are equipped in Kenya to offer this service. In Malindi, availability of EmOC services does not meet the UN recommended levels of at least one comprehensive and four basic EmOC facilities per 500,000 populations. This study was conducted to assess priority setting process and its implication on availability, access and use of EmOC services at the district level. A qualitative study was conducted both at health facility and community levels. Triangulation of data sources and methods was employed, where document reviews, in-depth interviews and focus group discussions were conducted with health personnel, facility committee members, stakeholders who offer and/ or support maternal health services and programmes; and the community members as end users. Data was thematically analysed. Limitations in the extent to which priorities in regard to maternal health services can be set at the district level were observed. The priority setting process was greatly restricted by guidelines and limited resources from the national level. Relevant stakeholders including community members are not involved in the priority setting process, thereby denying them the opportunity to contribute in the process. The findings illuminate that consideration of all local plans in national planning and budgeting as well as the involvement of all relevant stakeholders in the priority setting exercise is essential in order to achieve a consensus on the provision of emergency obstetric care services among other health service priorities.
2004-09-18
KENNEDY SPACE CENTER, FLA. - Martin Wilson (second from right), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), briefs NASA Administrator Sean O’Keefe, KSC Director of Shuttle Processing Michael E. Wetmore and Center Director James Kennedy about the temporary tile shop set up in the RLV hangar. At far right is USA Manager of Soft Goods Production in the TPSF, Kevin Harrington. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
Anthropometric Accommodation in Space Suit Design
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Thaxton, Sherry
2007-01-01
Design requirements for next generation hardware are in process at NASA. Anthropometry requirements are given in terms of minimum and maximum sizes for critical dimensions that hardware must accommodate. These dimensions drive vehicle design and suit design, and implicitly have an effect on crew selection and participation. At this stage in the process, stakeholders such as cockpit and suit designers were asked to provide lists of dimensions that will be critical for their design. In addition, they were asked to provide technically feasible minimum and maximum ranges for these dimensions. Using an adjusted 1988 Anthropometric Survey of U.S. Army (ANSUR) database to represent a future astronaut population, the accommodation ranges provided by the suit critical dimensions were calculated. This project involved participation from the Anthropometry and Biomechanics facility (ABF) as well as suit designers, with suit designers providing expertise about feasible hardware dimensions and the ABF providing accommodation analysis. The initial analysis provided the suit design team with the accommodation levels associated with the critical dimensions provided early in the study. Additional outcomes will include a comparison of principal components analysis as an alternate method for anthropometric analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne, David Matthew; Rowland, Joel C.
2015-02-01
The question of oxide containment during processing and storage has become a primary concern when considering the continued operability of the Plutonium Facility (PF-4) at Los Alamos National Laboratory (LANL). An Evaluation of the Safety of the Situation (ESS), “Potential for Criticality in a Glovebox Due to a Fire” (TA55-ESS-14-002-R2, since revised to R3) first issued in May, 2014 summarizes these concerns: “The safety issue of fire water potentially entering a glovebox is: the potential for the water to accumulate in the bottom of a glovebox and result in an inadvertent criticality due to the presence of fissionable materials inmore » the glovebox locations and the increased reflection and moderation of neutrons from the fire water accumulation.” As a result, the existing documented safety analysis (DSA) was judged inadequate and, while it explicitly considered the potential for criticality resulting from water intrusion into gloveboxes, criticality safety evaluation documents (CSEDs) for the affected locations did not evaluate the potential for fire water intrusion into a glovebox.« less
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Experimental Fuels Facility Re-categorization Based on Facility Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, Troy P.; Andrus, Jason
The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less
NASA Technical Reports Server (NTRS)
Carsey, Frank D.
1989-01-01
Science objectives, opportunities and requirements are discussed for the utilization of data from the Synthetic Aperture Radar (SAR) on the European First Remote Sensing Satellite, to be flown by the European Space Agency in the early 1990s. The principal applications of the imaging data are in studies of geophysical processes taking place within the direct-reception area of the Alaska SAR Facility in Fairbanks, Alaska, essentially the area within 2000 km of the receiver. The primary research that will be supported by these data include studies of the oceanography and sea ice phenomena of Alaskan and adjacent polar waters and the geology, glaciology, hydrology, and ecology of the region. These studies focus on the area within the reception mask of ASF, and numerous connections are made to global processes and thus to the observation and understanding of global change. Processes within the station reception area both affect and are affected by global phenomena, in some cases quite critically. Requirements for data processing and archiving systems, prelaunch research, and image processing for geophysical product generation are discussed.
NFL Films audio, video, and film production facilities
NASA Astrophysics Data System (ADS)
Berger, Russ; Schrag, Richard C.; Ridings, Jason J.
2003-04-01
The new NFL Films 200,000 sq. ft. headquarters is home for the critically acclaimed film production that preserves the NFL's visual legacy week-to-week during the football season, and is also the technical plant that processes and archives football footage from the earliest recorded media to the current network broadcasts. No other company in the country shoots more film than NFL Films, and the inclusion of cutting-edge video and audio formats demands that their technical spaces continually integrate the latest in the ever-changing world of technology. This facility houses a staggering array of acoustically sensitive spaces where music and sound are equal partners with the visual medium. Over 90,000 sq. ft. of sound critical technical space is comprised of an array of sound stages, music scoring stages, audio control rooms, music writing rooms, recording studios, mixing theaters, video production control rooms, editing suites, and a screening theater. Every production control space in the building is designed to monitor and produce multi channel surround sound audio. An overview of the architectural and acoustical design challenges encountered for each sophisticated listening, recording, viewing, editing, and sound critical environment will be discussed.
Manufacturing Demonstration Facility: Roll-to-Roll Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious
This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less
ERIC Educational Resources Information Center
Dembo, Richard; Walters, Wansley; Meyers, Kathleen
2005-01-01
Effectively identifying and responding to the psychosocial problems and recidivism risk of arrested youths remain critical needs in the field. Centralized intake facilities, such as juvenile assessment centers (JACs), can play a key role in this process. As part of a U.S. National Demonstration Project, the Miami-Dade JAC, serving a…
Computer Aided Process Planning of Machined Metal Parts
1984-09-01
the manufac- turer to accentuate the positive to assist marketing . Machine usage costs and facility loadings are frequently critical. For example...Variant systems currently on the market include Multiplan (TM of OIR, Inc.), CY-Miplan (TM of Computervision), PICAPP (TM of PICAPP, Inc.) and CSD...Multiproduct, Multistage Manufacturing Systems, Journal of Engineering for Industry, ASME, August 1977. Hitomi, K. and I. Ham, Product Mix and Machine Loading
Defense Mapping Agency (DMA) Raster-to-Vector Analysis
1984-11-30
model) to pinpoint critical deficiencies and understand trade-offs between alternative solutions. This may be exemplified by the allocation of human ...process, prone to errors (i.e., human operator eye/motor control limitations), and its time consuming nature (as a function of data density). It should...achieved through the facilities of coinputer interactive graphics. Each error or anomaly is individually identified by a human operator and corrected
Wireless remote monitoring of critical facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.
A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less
Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations
NASA Technical Reports Server (NTRS)
Gonzalez, Steven A.
2002-01-01
The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
10 CFR 216.4 - Evaluation by DOE of applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy DEPARTMENT OF ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS... described supplies of materials and equipment, services, or facilities are critical and essential to the... and equipment, services, or facilities described in the application are critical and essential to an...
Mundoma, Claudius
2013-01-01
As organizations expand and grow, the core facilities have become more dispersed disconnected. This is happening at a time when collaborations within the organization is a driver to increased productivity. Stakeholders are looking at the best way to bring the pieces together. It is inevitable that core facilities at universities and research institutes have to be integrated in order to streamline services and facilitate ease of collaboration. The path to integration often goes through consolidation, merging and shedding of redundant services. Managing this process requires a delicate coordination of two critical factors: the human (lab managers) factor and the physical assets factor. Traditionally more emphasis has been placed on reorganizing the physical assets without paying enough attention to the professionals who have been managing the assets for years, if not decades. The presentation focuses on how a systems approach can be used to effect a smooth core facility integration process. Managing the human element requires strengthening existing channels of communication and if necessary, creating new ones throughout the organization to break cultural and structural barriers. Managing the physical assets requires a complete asset audit and this requires direct input from the administration as well as the facility managers. Organizations can harness the power of IT to create asset visibility. Successfully managing the physical assets and the human assets increases productivity and efficiency within the organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrack, A.G.
The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less
Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Huang, Hai
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanismsmore » of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.« less
1991-09-01
System ( CAPMS ) in lieu of using DODI 4151.15H. Facility utilization rate computation is not explicitly defined; it is merely identified as a ratio of...front of a bottleneck buffers the critical resource and protects against disruption of the system. This approach optimizes facility utilization by...run titled BUFFERED BASELINE. Three different levels of inventory were used to evaluate the effect of increasing the inventory level on critical
Dormedy, E S; Brashears, M M; Cutter, C N; Burson, D E
2000-12-01
A 2% lactic acid wash used in a large meat-processing facility was validated as an effective critical control point (CCP) in a hazard analysis and critical control point (HACCP) plan. We examined the microbial profiles of beef carcasses before the acid wash, beef carcasses immediately after the acid wash, beef carcasses 24 h after the acid wash, beef subprimal cuts from the acid-washed carcasses, and on ground beef made from acid-washed carcasses. Total mesophilic, psychrotrophic, coliforms, generic Escherichia coli, lactic acid bacteria, pseudomonads, and acid-tolerant microorganisms were enumerated on all samples. The presence of Salmonella spp. was also determined. Acid washing significantly reduced all counts except for pseudomonads that were present at very low numbers before acid washing. All other counts continued to stay significantly lower (P < 0.05) than those on pre-acid-washed carcasses throughout all processing steps. Total bacteria, coliforms, and generic E. coli enumerated on ground beef samples were more than 1 log cycle lower than those reported in the U.S. Department of Agriculture Baseline data. This study suggests that acid washes may be effective CCPs in HACCP plans and can significantly reduce the total number of microorganisms present on the carcass and during further processing.
Data Quality Objectives Process for Designation of K Basins Debris
DOE Office of Scientific and Technical Information (OSTI.GOV)
WESTCOTT, J.L.
2000-05-22
The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less
Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.
Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.
15 CFR 700.30 - Priorities and allocations in a national emergency.
Code of Federal Regulations, 2011 CFR
2011-01-01
... industrial response and the timely availability of critical industrial items and facilities to meet the... ensure the timely availability of these items and facilities for approved programs, and to provide for an... be used to assure the availability of any scarce and critical item for approved programs. Currently...
Gandara, Esteban; Ungar, Jonathan; Lee, Jason; Chan-Macrae, Myrna; O'Malley, Terrence; Schnipper, Jeffrey L
2010-06-01
Effective communication among physicians during hospital discharge is critical to patient care. Partners Healthcare (Boston) has been engaged in a multi-year process to measure and improve the quality of documentation of all patients discharged from its five acute care hospitals to subacute facilities. Partners first engaged stakeholders to develop a consensus set of 12 required data elements for all discharges to subacute facilities. A measurement process was established and later refined. Quality improvement interventions were then initiated to address measured deficiencies and included education of physicians and nurses, improvements in information technology, creation of or improvements in discharge documentation templates, training of hospitalists to serve as role models, feedback to physicians and their service chiefs regarding reviewed cases, and case manager review of documentation before discharge. To measure improvement in quality as a result of these efforts, rates of simultaneous inclusion of all 12 applicable data elements ("defect-free rate") were analyzed over time. Some 3,101 discharge documentation packets of patients discharged to subacute facilities from January 1, 2006, through September 2008 were retrospectively studied. During the 11 monitored quarters, the defect-free rate increased from 65% to 96% (p < .001 for trend). The largest improvements were seen in documentation of preadmission medication lists, allergies, follow-up, and warfarin information. Institution of rigorous measurement, feedback, and multidisciplinary, multimodal quality improvement processes improved the inclusion of data elements in discharge documentation required for safe hospital discharge across a large integrated health care system.
Covert, Michael
2012-01-01
Hospital construction is a significant event in any health system. The financial implications are great, especially at a time of shrinking capital resources. Personnel are affected, as are the processes to perform their tasks. Often, new facilities are catalysts that change organizational culture; it has been clearly shown that new facilities have a positive impact on patient satisfaction scores. The members of the C-suite of a hospital/health system play important roles in construction projects. However, no one is more critical to the success of such major endeavors than the chief executive officer (CEO). The CEO sets the tone for the project, giving direction to the design and construction process that may have implications for the rest of the organization. Palomar Pomerado Health (PPH) is the largest public health district in California. In 2002, the PPH governing board authorized the creation of a new facility master plan for the district, which included the construction of a replacement facility for its tertiary care trauma center. The new Palomar Medical Center is slated to open in August 2012. HERD had the opportunity to speak with PPH CEO Michael H. Covert on the role of the CEO in the building of this "fable hospital".
2004-09-18
KENNEDY SPACE CENTER, FLA. - Martin Wilson (far left), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA), leads NASA Administrator Sean O’Keefe (second from left) on a tour of the hurricane-ravaged Thermal Protection System Facility. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the RLV hangar. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
2004-09-18
KENNEDY SPACE CENTER, FLA. - - United Space Alliance technician Shelly Kipp (right) shows some of the material salvaged from the storm-ravaged Thermal Protection System Facility (TPSF) to NASA Administrator Sean O’Keefe (left). Martin Wilson (center), manager of TPS operations for USA, looks on. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. Undamaged equipment was removed from the TPSF and stored in the RLV hangar. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
NASA Technical Reports Server (NTRS)
1971-01-01
The development of commercial manufacturing and research activities in space is discussed. The capability is to be installed in space stations in order to exploit the extended free fall which makes many novel manipulations of materials possible and alters the behavior of certain chemical and physical processes. The broad objectives are: (1) to develop technical basis required for commercial use of manned space facilities, (2) to provide indirect economic benefits by exploiting advantages of space laboratory facilities to solve critical experimental problems, and (3) to initiate manufacturing operations in space by private enterprise for commercial purposes and by agencies of the Government for public purposes.
Close to real life. [solving for transonic flow about lifting airfoils using supercomputers
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Bailey, F. Ron
1988-01-01
NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.
Financial arrangement selection for energy management projects
NASA Astrophysics Data System (ADS)
Woodroof, Eric Aubrey
Scope and method of study. The purpose of this study was to develop a model (E-FUND) to help facility managers select financial arrangements for energy management projects (EMPs). The model was developed with the help of a panel of expert financiers. The panel also helped develop a list of key objectives critical to the decision process. The E-FUND model was tested by a population of facility managers in four case studies. Findings and conclusions. The results may indicate that having a high economic benefit (from an EMP) is not overwhelmingly important, when compared to other qualitative objectives. The results may also indicate that the true lease and performance contract may be the most applicable financial arrangements for EMPs.
Chemical facility vulnerability assessment project.
Jaeger, Calvin D
2003-11-14
Sandia National Laboratories, under the direction of the Office of Science and Technology, National Institute of Justice, conducted the chemical facility vulnerability assessment (CFVA) project. The primary objective of this project was to develop, test and validate a vulnerability assessment methodology (VAM) for determining the security of chemical facilities against terrorist or criminal attacks (VAM-CF). The project also included a report to the Department of Justice for Congress that in addition to describing the VAM-CF also addressed general observations related to security practices, threats and risks at chemical facilities and chemical transport. In the development of the VAM-CF Sandia leveraged the experience gained from the use and development of VAs in other areas and the input from the chemical industry and Federal agencies. The VAM-CF is a systematic, risk-based approach where risk is a function of the severity of consequences of an undesired event, the attack potential, and the likelihood of adversary success in causing the undesired event. For the purpose of the VAM-CF analyses Risk is a function of S, L(A), and L(AS), where S is the severity of consequence of an event, L(A) is the attack potential and L(AS) likelihood of adversary success in causing a catastrophic event. The VAM-CF consists of 13 basic steps. It involves an initial screening step, which helps to identify and prioritize facilities for further analysis. This step is similar to the prioritization approach developed by the American Chemistry Council (ACC). Other steps help to determine the components of the risk equation and ultimately the risk. The VAM-CF process involves identifying the hazardous chemicals and processes at a chemical facility. It helps chemical facilities to focus their attention on the most critical areas. The VAM-CF is not a quantitative analysis but, rather, compares relative security risks. If the risks are deemed too high, recommendations are developed for measures to reduce the risk. This paper will briefly discuss the CFVA project and VAM-CF process.
A Probabilistic, Facility-Centric Approach to Lightning Strike Location
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.
2012-01-01
A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
Facile Dry Surface Cleaning of Graphene by UV Treatment
NASA Astrophysics Data System (ADS)
Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk
2018-05-01
Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.
SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAY TH; GEHNER PD; STEGEN GARY
2009-12-28
This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in additionmore » to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.« less
2016-03-01
wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g...dams, energy infrastructure, banks, farms, food processing facilities, hospitals, nuclear reactors, transportation carriers, and water treatment... food and agriculture sector” is, “almost entirely under private ownership and is comprised of an estimated 2.2 million farms, 900,000 restaurants, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, David; Petrone, Floriana; Buckle, Ian
The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less
Overview of the NASA Wallops Flight Facility Mobile Range Control System
NASA Technical Reports Server (NTRS)
Davis, Rodney A.; Semancik, Susan K.; Smith, Donna C.; Stancil, Robert K.
1999-01-01
The NASA GSFC's Wallops Flight Facility (WFF) Mobile Range Control System (MRCS) is based on the functionality of the WFF Range Control Center at Wallops Island, Virginia. The MRCS provides real time instantaneous impact predictions, real time flight performance data, and other critical information needed by mission and range safety personnel in support of range operations at remote launch sites. The MRCS integrates a PC telemetry processing system (TELPro), a PC radar processing system (PCDQS), multiple Silicon Graphics display workstations (IRIS), and communication links within a mobile van for worldwide support of orbital, suborbital, and aircraft missions. This paper describes the MRCS configuration; the TELPro's capability to provide single/dual telemetry tracking and vehicle state data processing; the PCDQS' capability to provide real time positional data and instantaneous impact prediction for up to 8 data sources; and the IRIS' user interface for setup/display options. With portability, PC-based data processing, high resolution graphics, and flexible multiple source support, the MRCS system is proving to be responsive to the ever-changing needs of a variety of increasingly complex missions.
Adams, Farzana; Nolte, Fred; Colton, James; De Beer, John; Weddig, Lisa
2018-02-23
An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna ( Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.
Imanaka, T
2001-09-01
A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Douglas G.; Clements, Samuel L.; Patrick, Scott W.
Securing high value and critical assets is one of the biggest challenges facing this nation and others around the world. In modern integrated systems, there are four potential modes of attack available to an adversary: • physical only attack, • cyber only attack, • physical-enabled cyber attack, • cyber-enabled physical attack. Blended attacks involve an adversary working in one domain to reduce system effectiveness in another domain. This enables the attacker to penetrate further into the overall layered defenses. Existing vulnerability assessment (VA) processes and software tools which predict facility vulnerabilities typically evaluate the physical and cyber domains separately. Vulnerabilitiesmore » which result from the integration of cyber-physical control systems are not well characterized and are often overlooked by existing assessment approaches. In this paper, we modified modification of the timely detection methodology, used for decades in physical security VAs, to include cyber components. The Physical and Cyber Risk Analysis Tool (PACRAT) prototype illustrates an integrated vulnerability assessment that includes cyber-physical interdependencies. Information about facility layout, network topology, and emplaced safeguards is used to evaluate how well suited a facility is to detect, delay, and respond to attacks, to identify the pathways most vulnerable to attack, and to evaluate how often safeguards are compromised for a given threat or adversary type. We have tested the PACRAT prototype on critical infrastructure facilities and the results are promising. Future work includes extending the model to prescribe the recommended security improvements via an automated cost-benefit analysis.« less
Soares, Filipa A.C.; Chandra, Amit; Thomas, Robert J.; Pedersen, Roger A.; Vallier, Ludovic; Williams, David J.
2014-01-01
The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes. PMID:24440272
An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.
Valderrama, Wladir B; Cutter, Catherine N
2013-01-01
Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.
Cyber Mutual Assistance Workshop Report
2018-02-01
Information Technology, Nuclear Reactors, Materials/Waste, Defense Industrial Base, Critical Manufacturing, Food/ Agriculture Government Facilities and...Manufacturing, Food/ Agriculture Government Facilities and Chemical, Commercial Facilities [DHS 2017c]. Distributed Energy Resources (DER) are
Precision Cleaning - Path to Premier
NASA Technical Reports Server (NTRS)
Mackler, Scott E.
2008-01-01
ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.
2004-09-18
KENNEDY SPACE CENTER, FLA. - Martin Wilson (second from right), manager of Thermal Protection System (TPS) operations for United Space Alliance (USA) , introduces Kevin Harrington, manager of Soft Goods Production in the TPSF, during a briefing to (from left) NASA Administrator Sean O’Keefe, KSC Director of Shuttle Processing Michael E. Wetmore, Center Director James Kennedy and KSC Director of the Spaceport Services Scott Kerr (behind Kennedy), on the temporary tile shop set up in the RLV hangar. O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from Hurricane Frances. The Thermal Protection System Facility (TPSF), which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof in the storm, which blew across Central Florida Sept. 4-5. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. Undamaged equipment was removed from the TPSF and stored in the hangar. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters -- Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
Industrialization of the mirror plate coatings for the ATHENA mission
NASA Astrophysics Data System (ADS)
Massahi, S.; Christensen, F. E.; Ferreira, D. D. M.; Shortt, B.; Collon, M.; Sforzini, J.; Landgraf, B.; Hinze, F.; Aulhorn, S.; Biedermann, R.
2017-08-01
In the frame of the development of the Advanced Telescope for High-ENergy Astrophysics (Athena) mission, currently in phase A, ESA is continuing to mature the optics technology and the associated mass production techniques. These efforts are driven by the programmatic and technical requirement of reaching TRL 6 prior to proposing the mission for formal adoption (planned for 2020). A critical part of the current phase A preparation activities is addressing the industrialization of the Silicon Pore Optics mirror plates coating. This include the transfer of the well-established coating processes and techniques, performed at DTU Space, to an industrial scale facility suitable for coating the more than 100,000 mirror plates required for Athena. In this paper, we explain the considerations for the planned coating facility including, requirement specification, equipment and supplier selection, preparing the coating facility for the deposition equipment, designing and fabrication.
ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, A.; Wilmarth, W.; Marra, J.
2013-05-16
The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE’s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.« less
Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.E.; Murray, A.M.; McGuire, P.W.
2013-07-01
The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in amore » relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). The demonstration can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current CANMPER activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing CANMPER with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs of three major program offices: DOE-EM, DOE-Nuclear Energy (DOE-NE), and the NNSA. Given the modular design of H-Canyon, the demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less
Enterprise SRS: leveraging ongoing operations to advance radioactive waste management technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Alice M.; Wilmarth, William; Marra, John E.
2013-07-01
The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less
ETR CRITICAL FACILITY (ETRCF), TRA654. SOUTH SIDE. CAMERA FACING NORTH ...
ETR CRITICAL FACILITY (ETR-CF), TRA-654. SOUTH SIDE. CAMERA FACING NORTH AND ROLL-UP DOOR. ORIGINAL SIDING HAS BEEN REPLACED WITH STUCCO-LIKE MATERIAL. INL NEGATIVE NO. HD46-40-1. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE standard 3009 - a reasoned, practical approach to integrating criticality safety into SARs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vessard, S.G.
1995-12-31
In the past there have been efforts by the U.S. Department of Energy (DOE) to provide guidance on those elements that should be included in a facility`s safety analysis report (SAR). In particular, there are two DOE Orders (5480.23, {open_quotes}Nuclear Safety Analysis Reports,{close_quotes} and 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), an interpretive guidance document (NE-70, Interpretive Guidance for DOE Order 5480.24, {open_quotes}Nuclear Criticality Safety{close_quotes}), and DOE Standard DOE-STD-3009-94 {open_quotes}Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports.{close_quotes} Of these, the most practical and useful (pertaining to the application of criticality safety) is DOE-STD-3009-94. This paper is a reviewmore » of Chapters 3, 4, and 6 of this standard and how they provide very clear, helpful, and reasoned criticality safety guidance.« less
Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng
2012-04-01
As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.
Critical Value Reporting in Transfusion Medicine
Reese, Erika M.; Nelson, Randin C.; Flegel, Willy A.; Byrne, Karen M.; Booth, Garrett S.
2017-01-01
Abstract Objectives: While critical value procedures have been adopted in most areas of the clinical laboratory, their use in transfusion medicine has not been reviewed in detail. The results of this study present a comprehensive overview of critical value reporting and communication practices in transfusion medicine in the United States. Methods: A web-based survey was developed to collect data on the prevalence of critical value procedures and practices of communicating results. The survey was distributed via email to US hospital-based blood banks. Results: Of 123 facilities surveyed, 84 (68.3%) blood banks had a critical value procedure. From a panel of 23 common blood bank results, nine results were selected by more than 70% of facilities as either a critical value or requiring rapid communication as defined by an alternate procedure. Conclusions: There was overlap among results communicated by facilities with and without a critical value procedure. The most frequently communicated results, such as incompatible crossmatch for RBC units issued uncrossmatched, delay in finding compatible blood due to a clinically significant antibody, and transfusion reaction evaluation suggestive of a serious adverse event, addressed scenarios associated with the leading reported causes of transfusion-related fatalities. PMID:28371931
Application of the API/NPRA SVA methodology to transportation security issues.
Moore, David A
2006-03-17
Security vulnerability analysis (SVA) is becoming more prevalent as the issue of chemical process security is of greater concern. The American Petroleum Institute (API) and the National Petrochemical and Refiner's Association (NPRA) have developed a guideline for conducting SVAs of petroleum and petrochemical facilities in May 2003. In 2004, the same organizations enhanced the guidelines by adding the ability to evaluate transportation security risks (pipeline, truck, and rail). The importance of including transportation and value chain security in addition to fixed facility security in a SVA is that these issues may be critically important to understanding the total risk of the operation. Most of the SVAs done using the API/NPRA SVA and other SVA methods were centered on the fixed facility and the operations within the plant fence. Transportation interfaces alone are normally studied as a part of the facility SVA, and the entire transportation route impacts and value chain disruption are not commonly considered. Particularly from a national, regional, or local infrastructure analysis standpoint, understanding the interdependencies is critical to the risk assessment. Transportation risks may include weaponization of the asset by direct attack en route, sabotage, or a Trojan Horse style attack into a facility. The risks differ in the level of access control and the degree of public exposures, as well as the dynamic nature of the assets. The public exposures along the transportation route need to be carefully considered. Risks may be mitigated by one of many strategies including internment, staging, prioritization, conscription, or prohibition, as well as by administrative security measures and technology for monitoring and isolating the assets. This paper illustrates how these risks can be analyzed by the API/NPRA SVA methodology. Examples are given of a pipeline operation, and other examples are found in the guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.
1996-12-31
During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less
Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahook, S.D.
1994-04-01
Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.
B Plant Complex preclosure work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADLER, J.G.
1999-02-02
This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less
Leiva, A; Granados-Chinchilla, F; Redondo-Solano, M; Arrieta-González, M; Pineda-Salazar, E; Molina, A
2018-06-01
Animal by-product rendering establishments are still relevant industries worldwide. Animal by-product meal safety is paramount to protect feed, animals, and the rest of the food chain from unwanted contamination. As microbiological contamination may arise from inadequate processing of slaughterhouse waste and deficiencies in good manufacturing practices within the rendering facilities, we conducted an overall establishment's inspection, including the product in several parts of the process.An evaluation of the Good Manufacturing Practices (GMP) was carried out, which included the location and access (i.e., admission) to the facilities, integrated pest management programs, physical condition of the facilities (e.g., infrastructure), equipments, vehicles and transportation, as well as critical control points (i.e., particle size and temperature set at 50 mm, 133°C at atmospheric pressure for 20 min, respectively) recommended by the OIE and the European Commission. The most sensitive points according to the evaluation are physical structure of the facilities (avg 42.2%), access to the facilities (avg 48.6%), and cleaning procedures (avg 51.4%).Also, indicator microorganisms (Salmonella spp., Clostridium spp., total coliforms, E. coli, E. coli O157:H7) were used to evaluate the safety in different parts of the animal meal production process. There was a prevalence of Salmonella spp. of 12.9, 14.3, and 33.3% in Meat and Bone Meal (MBM), poultry by-products, and fish meal, respectively. However, there were no significant differences (P = 0.73) in the prevalence between the different animal meals, according to the data collected.It was also observed that renderings associated with the poultry industry (i.e., 92.0%) obtained the best ratings overall, which reflects a satisfactory development of this sector and the integration of its production system as a whole.
Hazard Categorization Reduction via Nature of the Process Argument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor
2012-05-01
This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235more » (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Smith, D. L.; Nuclear Engineering Division
2010-04-28
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried outmore » there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. King
2011-06-27
Summary of recent ORAU decommissioning activities at the Oak Ridge National Laboratory (ORNL) and the East Tennessee Technology Park (ETTP). Project objective was to generate approved Waste Lot Profiles for legacy facilities scheduled for demolition and shipment to the Environmental Management Waste Management Facility (EMWMF) or appropriate alternate facility. The form and content of process knowledge (PK) reports were developed with input from the EMWMF Waste Acceptance Criteria (WAC) Attainment Team and regulators. PK may be defined as the knowledge of the design and the history of operations that occurs during the life cycle of a facility (paraphrased from SRNLmore » guidance) - similar to the MARSSIM historical site assessment. Some types of PK data used to decommission ORNL and ETTP facilities include: (1) Design drawings; (2) Historical documents [e.g., History of the Oak Ridge National Laboratory by Thomas (1963) and A Brief History of the Chemical Technical Division (ORNL/M-2733)]; (3) Historical photographs; (4) Radiological survey reports; (5) Facility-specific databases - (a) Spill history, (b) Waste Information Tracking System (WITS), and (c) Hazardous Materials Management Information System (HMMIS); (6) Facility walkdown summary reports; and (7) Living memory data. Facility walkdowns are critical for worker safety planning and to assure on-the-ground-conditions match historical descriptions. For Oak Ridge operations, investigators also document the nature and number of items requiring special handling or disposition planning, such as the following: (1) Items containing polychlorinated biphenyls, asbestos, lead, or refrigerants; (2) Items with physical WAC restriction (e.g., large items, pipes, and concrete); and (3) Too 'hot' for EMWMF. Special emphasis was made to interview facility managers, scientists, technicians, or anyone with direct knowledge of process-related activities. Interviews often led to more contact names and reports but also offered anecdotal accounts of releases, process-related operations, maintenance activities, and other relevant information not addressed in the written record. 'Fun' part of PK data gathering. Often got not-so-useful information such as, 'The operations manager was a jerk and we all hated him.' PK data are used to indicate the presence or absence of contaminants. Multiple lines of investigation are necessary for characterization planning and to help determine which disposal facility is best suited for targeted wastes. The model used by ORAU assisted remediation contractors and EMWMF managers by identifying anomalous waste and items requiring special handling.« less
Using Firn Air for Facility Cooling at the WAIS Divide Site
2014-09-17
reduce logistics costs at remote field camps where it is critical to maintain proper temperatures to preserve sensitive deep ice cores. We assessed the...feasibility of using firn air for cooling at the West Antarc- tic Ice Sheet (WAIS) Divide ice core drilling site as a means to adequately and...efficiently refrigerate ice cores during storage and processing. We used estimates of mean annual temperature, temperature variations, and firn
Ameh, Soter; Gómez-Olivé, Francesc Xavier; Kahn, Kathleen; Tollman, Stephen M; Klipstein-Grobusch, Kerstin
2017-03-23
South Africa faces a complex dual burden of chronic communicable and non-communicable diseases (NCDs). In response, the Integrated Chronic Disease Management (ICDM) model was initiated in primary health care (PHC) facilities in 2011 to leverage the HIV/ART programme to scale-up services for NCDs, achieve optimal patient health outcomes and improve the quality of medical care. However, little is known about the quality of care in the ICDM model. The objectives of this study were to: i) assess patients' and operational managers' satisfaction with the dimensions of ICDM services; and ii) evaluate the quality of care in the ICDM model using Avedis Donabedian's theory of relationships between structure (resources), process (clinical activities) and outcome (desired result of healthcare) constructs as a measure of quality of care. A cross-sectional study was conducted in 2013 in seven PHC facilities in the Bushbuckridge municipality of Mpumalanga Province, north-east South Africa - an area underpinned by a robust Health and Demographic Surveillance System (HDSS). The patient satisfaction questionnaire (PSQ-18), with measures reflecting structure/process/outcome (SPO) constructs, was adapted and administered to 435 chronic disease patients and the operational managers of all seven PHC facilities. The adapted questionnaire contained 17 dimensions of care, including eight dimensions identified as priority areas in the ICDM model - critical drugs, equipment, referral, defaulter tracing, prepacking of medicines, clinic appointments, waiting time, and coherence. A structural equation model was fit to operationalise Donabedian's theory, using unidirectional, mediation, and reciprocal pathways. The mediation pathway showed that the relationships between structure, process and outcome represented quality systems in the ICDM model. Structure correlated with process (0.40) and outcome (0.75). Given structure, process correlated with outcome (0.88). Of the 17 dimensions of care in the ICDM model, three structure (equipment, critical drugs, accessibility), three process (professionalism, friendliness and attendance to patients) and three outcome (competence, confidence and coherence) dimensions reflected their intended constructs. Of the priority dimensions, referrals, defaulter tracing, prepacking of medicines, appointments, and patient waiting time did not reflect their intended constructs. Donabedian's theoretical framework can be used to provide evidence of quality systems in the ICDM model.
Onsite and Electric Backup Capabilities at Critical Infrastructure Facilities in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Julia A.; Wallace, Kelly E.; Kudo, Terence Y.
2016-04-01
The following analysis, conducted by Argonne National Laboratory’s (Argonne’s) Risk and Infrastructure Science Center (RISC), details an analysis of electric power backup of national critical infrastructure as captured through the Department of Homeland Security’s (DHS’s) Enhanced Critical Infrastructure Program (ECIP) Initiative. Between January 1, 2011, and September 2014, 3,174 ECIP facility surveys have been conducted. This study focused first on backup capabilities by infrastructure type and then expanded to infrastructure type by census region.
Raterink, Ginger
2008-09-01
Critical thinking has been an outcome of nursing education since the 1980s. There remains a lack of agreement on definitions, methods of teaching, and methods of evaluation among practicing nurses. This study asked practicing nurses to define critical thinking. It also asked nurses to describe what work-related factors enhanced or posed barriers to the use of critical thinking in practice. Elements of the definitions presented were found to be consistent with current nursing definitions of critical thinking. Enhancers and barriers overlapped and were found to be consistent among the nurses at all facilities studied, with implications for continuing education and staff development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Alice M.; Marra, John E.; Wilmarth, William R.
2013-07-03
The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.« less
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, has been uncovered and is ready for processing in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
The Department of Energy Nuclear Criticality Safety Program
NASA Astrophysics Data System (ADS)
Felty, James R.
2005-05-01
This paper broadly covers key events and activities from which the Department of Energy Nuclear Criticality Safety Program (NCSP) evolved. The NCSP maintains fundamental infrastructure that supports operational criticality safety programs. This infrastructure includes continued development and maintenance of key calculational tools, differential and integral data measurements, benchmark compilation, development of training resources, hands-on training, and web-based systems to enhance information preservation and dissemination. The NCSP was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 97-2, Criticality Safety, and evolved from a predecessor program, the Nuclear Criticality Predictability Program, that was initiated in response to Defense Nuclear Facilities Safety Board Recommendation 93-2, The Need for Critical Experiment Capability. This paper also discusses the role Dr. Sol Pearlstein played in helping the Department of Energy lay the foundation for a robust and enduring criticality safety infrastructure.
Scheduling Software for Complex Scenarios
NASA Technical Reports Server (NTRS)
2006-01-01
Preparing a vehicle and its payload for a single launch is a complex process that involves thousands of operations. Because the equipment and facilities required to carry out these operations are extremely expensive and limited in number, optimal assignment and efficient use are critically important. Overlapping missions that compete for the same resources, ground rules, safety requirements, and the unique needs of processing vehicles and payloads destined for space impose numerous constraints that, when combined, require advanced scheduling. Traditional scheduling systems use simple algorithms and criteria when selecting activities and assigning resources and times to each activity. Schedules generated by these simple decision rules are, however, frequently far from optimal. To resolve mission-critical scheduling issues and predict possible problem areas, NASA historically relied upon expert human schedulers who used their judgment and experience to determine where things should happen, whether they will happen on time, and whether the requested resources are truly necessary.
Campus Facilities: A Diminishing Endowment.
ERIC Educational Resources Information Center
Rush, Sean; Johnson, Sandra
1990-01-01
Alarming findings were reported in a recent study of facility conditions. Two of the more common terms for describing the facilities problem are "capital renewal" and "deferred maintenance." How and why higher education reached this critical point is discussed. (MLW)
Implications of system usability on intermodal facility design.
DOT National Transportation Integrated Search
2010-08-01
Ensuring good design of intermodal transportation facilities is critical for effective and : satisfactory operation. Passenger use of the facilities is often hindered by inadequate space, a poor : layout, or lack of signage. This project aims to impr...
Applications of ERTS data to resource surveys of Alaska
NASA Technical Reports Server (NTRS)
Belon, A. E.; Miller, J. M.
1974-01-01
ERTS data affords a unique opportunity to perform urgently needed resource surveys and land use planning at a critical juncture in the history of Alaska's social and economic development. The available facilities for photographic, optical and digital processing of ERTS data are described, along with the interpretive techniques which have been developed. Examples of the applications of these facilities and techniques are given for three environmental disciplines: vegetation mapping for potential archeological sites; marine and sea ice surveys on the Alaskan continental shelf for the determination of surface circulation and sedimentation patterns and their effects on navigation, pollution assessment, fisheries, location of habors and construction of off-shore structures; snow surveys for inventories of water resources and flood potential in Alaska watersheds.
Removal of the Plutonium Recycle Test Reactor - 13031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herzog, C. Brad; Guercia, Rudolph; LaCome, Matt
2013-07-01
The 309 Facility housed the Plutonium Recycle Test Reactor (PRTR), an operating test reactor in the 300 Area at Hanford, Washington. The reactor first went critical in 1960 and was originally used for experiments under the Hanford Site Plutonium Fuels Utilization Program. The facility was decontaminated and decommissioned in 1988-1989, and the facility was deactivated in 1994. The 309 facility was added to Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response actions as established in an Interim Record of Decision (IROD) and Action Memorandum (AM). The IROD directs a remedial action for the 309 facility, associated waste sites, associatedmore » underground piping and contaminated soils resulting from past unplanned releases. The AM directs a removal action through physical demolition of the facility, including removal of the reactor. Both CERCLA actions are implemented in accordance with U.S. EPA approved Remedial Action Work Plan, and the Remedial Design Report / Remedial Action Report associated with the Hanford 300-FF-2 Operable Unit. The selected method for remedy was to conventionally demolish above grade structures including the easily distinguished containment vessel dome, remove the PRTR and a minimum of 300 mm (12 in) of shielding as a single 560 Ton unit, and conventionally demolish the below grade structure. Initial sample core drilling in the Bio-Shield for radiological surveys showed evidence that the Bio-Shield was of sound structure. Core drills for the separation process of the PRTR from the 309 structure began at the deck level and revealed substantial thermal degradation of at least the top 1.2 m (4LF) of Bio-Shield structure. The degraded structure combined with the original materials used in the Bio-Shield would not allow for a stable structure to be extracted. The water used in the core drilling process proved to erode the sand mixture of the Bio-Shield leaving the steel aggregate to act as ball bearings against the core drill bit. A redesign is being completed to extract the 309 PRTR and entire Bio-Shield structure together as one monolith weighing 1100 Ton by cutting structural concrete supports. In addition, the PRTR has hundreds of contaminated process tubes and pipes that have to be severed to allow for a uniformly flush fit with a lower lifting frame. Thirty-two 50 mm (2 in) core drills must be connected with thirty-two wire saw cuts to allow for lifting columns to be inserted. Then eight primary saw cuts must be completed to severe the PRTR from the 309 Facility. Once the weight of the PRTR is transferred to the lifting frame, then the PRTR may be lifted out of the facility. The critical lift will be executed using four 450 Ton strand jacks mounted on a 9 m (30 LF) tall mobile lifting frame that will allow the PRTR to be transported by eight 600 mm (24 in) Slide Shoes. The PRTR will then be placed on a twenty-four line, double wide, self powered Goldhofer for transfer to the onsite CERCLA Disposal Cell (ERDF Facility), approximately 33 km (20 miles) away. (authors)« less
Papp, John F.
2014-01-01
Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas is presented in the tungsten fact sheet. This fact sheet, the second in a series about 3TG minerals, focuses on the tantalum supply chain by listing selected processors that produced tantalum materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of material processed in these facilities.
2004-09-18
KENNEDY SPACE CENTER, FLA. - Looking at damage on the second floor of the hurricane-ravaged Thermal Protection System Facility (TPSF) are (from left) Kevin Harrington, manager of Soft Goods Production, TPSF ; Martin Wilson, manager of Thermal Protection System operations for USA; Scott Kerr, KSC director of Spaceport Services; and James Kennedy, Center director. The TPSF, which creates the TPS tiles, blankets and all the internal thermal control systems for the Space Shuttles, is almost totally unserviceable at this time after losing approximately 35 percent of its roof during Hurricane Frances, which blew across Central Florida Sept. 4-5. Undamaged equipment was removed from the TPSF and stored in the RLV hangar. NASA Administrator Sean O’Keefe and NASA Associate Administrator of Space Operations Mission Directorate William Readdy are visiting KSC to survey the damage sustained by KSC facilities from the hurricane. The Labor Day storm also caused significant damage to the Vehicle Assembly Building and Processing Control Center. Additionally, the Operations and Checkout Building, Vertical Processing Facility, Hangar AE, Hangar S and Hangar AF Small Parts Facility each received substantial damage. However, well-protected and unharmed were NASA’s three Space Shuttle orbiters - Discovery, Atlantis and Endeavour - along with the Shuttle launch pads, all of the critical flight hardware for the orbiters and the International Space Station, and NASA’s Swift spacecraft that is awaiting launch in October.
NASA Technical Reports Server (NTRS)
1994-01-01
The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.
Supporting the Future Air Traffic Control Projection Process
NASA Technical Reports Server (NTRS)
Davison, Hayley J.; Hansman, R. John, Jr.
2002-01-01
In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.
NASA Technical Reports Server (NTRS)
Carsey, F. D.; Weeks, W.
1988-01-01
The Alaska SAR Facility (ASF) program for the acquisition and processing of data from the ESA ERS-1, the NASDA ERS-1, and Radarsat and to carry out a program of science investigations using the data is introduced. Agreements for data acquisition and analysis are in place except for the agreement between NASA and Radarsat which is in negotiation. The ASF baseline system, consisting of the Receiving Ground System, the SAR Processor System and the Archive and Operations System, passed critical design review and is fully in implementation phase. Augments to the baseline system for systems to perform geophysical processing and for processing of J-ERS-1 optical data are in the design and implementation phase. The ASF provides a very effective vehicle with which to prepare for the Earth Observing System (EOS) in that it will aid the development of systems and technologies for handling the data volumes produced by the systems of the next decades, and it will also supply some of the data types that will be produced by EOS.
NASA Astrophysics Data System (ADS)
Keck, N. N.; Macduff, M.; Martin, T.
2017-12-01
The Atmospheric Radiation Measurement's (ARM) Data Management Facility (DMF) plays a critical support role in processing and curating data generated by the Department of Energy's ARM Program. Data are collected near real time from hundreds of observational instruments spread out all over the globe. Data are then ingested hourly to provide time series data in NetCDF (network Common Data Format) and includes standardized metadata. Based on automated processes and a variety of user reviews the data may need to be reprocessed. Final data sets are then stored and accessed by users through the ARM Archive. Over the course of 20 years, a suite of data visualization tools have been developed to facilitate the operational processes to manage and maintain the more than 18,000 real time events, that move 1.3 TB of data each day through the various stages of the DMF's data system. This poster will present the resources and methodology used to capture metadata and the tools that assist in routine data management and discoverability.
Taylor, Christine; Angel, Liz; Nyanga, Lucy; Dickson, Cathy
2017-10-01
To describe the process and challenges from a project that aimed to develop processes, source new placements and place students primarily in the discipline of nursing, but also occupational therapy, physiotherapy, podiatry, social work, and speech therapy. Clinical experience in health facilities is an essential element of health professional education, yet globally, there is a lack of clinical placements to meet demands. Educational providers are seeking placements in nontraditional facilities, yet little has been reported on the challenges in the process of procuring clinical placements. The project used a descriptive approach within a quality implementation framework. The project was guided by the quality implementation framework that included four critical steps: considerations of the host setting, structuring the implementation, supporting the implementation and improving future applications. A total of 115 new student placements were finalised across six health disciplines, including elderly care, nongovernment organisations and general practice. Sixty-two nursing students were placed in the new placements during the project. Challenges included communication, the time-consuming nature of the process and 'gatekeeping' blocks to obtaining placements. Recommendations included the importance of personal interaction in developing and maintaining relationships, and the need for clear communication processes and documentation. Potential areas for research are also given. There is great potential for growth in establishing new placements outside the traditional placement facilities for nursing and allied health and for expanding already existing nonhospital placements. Clinical professional experiences are essential to any nursing or allied health programme. There is an increasing demand for, and global lack of, clinical placements for nursing and allied health students. The results provide nursing and allied health educators and managers a framework for planning clinical placement procurement, and assisting in decision-making and developing strategies and processes for practice. © 2016 John Wiley & Sons Ltd.
Materials sciences programs: Fiscal year 1994
NASA Astrophysics Data System (ADS)
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.
Materials sciences programs, fiscal year 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance andmore » other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.« less
Giamalva, J N; Redfern, M; Bailey, W C
1998-08-01
To survey dietitians in health care facilities about the acceptability of alternative meat and poultry processing methods designed to reduce the risk of foodborne disease and their willingness to pay for these processes. A geographically representative sample of 600 members of The American Dietetic Association who work in health care facilities. The response rate was 250 completed questionnaires from 592 eligible subjects (42%). A mail survey was used to gather information on the acceptability of a Hazard Analysis and Critical Control Point (HACCP) system, chemical rinses, and irradiation for increasing the safety of food. Discrete choice contingent valuation was used to determine the acceptability at current prices and at 5, 10, and 25 cents per pound above current prices. Logistic regression was used to estimate mean willingness to pay (the maximum amount respondents are willing to pay) for each process. A simultaneous equations regression model was used to estimate the effects of other variables on acceptability. Respondents expressed a high level of concern for food safety in health care facilities. The estimated mean willingness to pay was highest for a HACCP system and lowest for chemical rinses. The successful adoption of alternative methods to increase food safety depends on their acceptance by foodservice professionals. The professionals sampled were most accepting of a HACCP system, somewhat less accepting of irradiation, and least accepting of new chemical rinses. Poultry and beef processors and government agencies concerned with food safety may want to take into account the attitudes of foodservice professionals.
Cherlin, Emily J; Allam, Adel A; Linnander, Erika L; Wong, Rex; El-Toukhy, Essam; Sipsma, Heather; Krumholz, Harlan M; Curry, Leslie A; Bradley, Elizabeth H
2011-10-20
As low- and middle-income countries experience economic development, ensuring quality of health care delivery is a central component of health reform. Nevertheless, health reforms in low- and middle-income countries have focused more on access to services rather than the quality of these services, and reporting on quality has been limited. In the present study, we sought to examine the prevalence and regional variation in key management practices in Egyptian health facilities within three domains: supervision of the facility from the Ministry of Health and Population (MOHP), managerial processes, and patient and community involvement in care. We conducted a cross-sectional analysis of data from 559 facilities surveyed with the Egyptian Service Provision Assessment (ESPA) survey in 2004, the most recent such survey in Egypt. We registered on the Measure Demographic and Health Survey (DHS) website http://legacy.measuredhs.com/login.cfm to gain access to the survey data. From the ESPA sampled 559 MOHP facilities, we excluded a total of 79 facilities because they did not offer facility-based 24-hour care or have at least one physician working in the facility, resulting in a final sample of 480 facilities. The final sample included 76 general service hospitals, 307 rural health units, and 97 maternal and child health and urban health units (MCH/urban units). We used standard frequency analyses to describe facility characteristics and tested the statistical significance of regional differences using chi-square statistics. Nearly all facilities reported having external supervision within the 6 months preceding the interview. In contrast, key facility-level managerial processes, such as having routine and documented management meetings and applying quality assurance approaches, were uncommon. Involvement of communities and patients was also reported in a minority of facilities. Hospitals and health units located in Urban Egypt compared with more rural parts of Egypt were significantly more likely to have management committees that met at least monthly, to keep official records of the meetings, and to have an approach for reviewing quality assurance activities. Although the data precede the recent reform efforts of the MOHP, they provide a baseline against which future progress can be measured. Targeted efforts to improve facility-level management are critical to supporting quality improvement initiatives directed at improving the quality of health care throughout the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis ofmore » experiments on measurement of efficiency of control rods mockups and protection system (CPS).« less
Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi
2014-06-01
Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. Copyright © 2014 Elsevier B.V. All rights reserved.
48 CFR 222.101-4 - Removal of items from contractors' facilities affected by work stoppages.
Code of Federal Regulations, 2011 CFR
2011-10-01
... contractors' facilities affected by work stoppages. 222.101-4 Section 222.101-4 Federal Acquisition... contractors' facilities affected by work stoppages. (a) When a contractor is unable to deliver urgent and critical items because of a work stoppage at its facility, the contracting officer, before removing any...
Häberle, Johannes; Huemer, Martina
2015-01-01
Implementation of guidelines and assessment of their adaptation is not an extensively investigated process in the field of rare diseases. However, whether targeted recipients are reached and willing and able to follow the recommendations has significant impact on the efficacy of guidelines. In 2012, a guideline for the management of urea cycle disorders (UCDs) has been published. We evaluate the efficacy of implementation, adaptation, and use of the UCD guidelines by applying different strategies. (i) Download statistics from online sources were recorded. (ii) Facilities relevant for the implementation of the guidelines were assessed in pediatric units in Germany and Austria. (iii) The guidelines were evaluated by targeted recipients using the AGREE instrument. (iv) A regional networking-based implementation process was evaluated. (i) Download statistics revealed high access with an increase in downloads over time. (ii) In 18% of hospitals ammonia testing was not available 24/7, and emergency drugs were often not available. (iii) Recipient criticism expressed in the AGREE instrument focused on incomplete inclusion of patients' perspectives. (iv) The implementation process improved the availability of ammonia measurements and access to emergency medication, patient care processes, and cooperation between nonspecialists and specialists. Interest in the UCD guidelines is high and sustained, but more precise targeting of the guidelines is advisable. Surprisingly, many hospitals do not possess all facilities necessary to apply the guidelines. Regional network and awareness campaigns result in the improvement of both facilities and knowledge.
Nuclear Criticality Experimental Research Center (NCERC) Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk
The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less
Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem
2016-02-01
Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ohio School Facilities Commission, Columbus.
This manual presents guidance to facility designers, school administrators, staff, and students for the development of school facilities being constructed under Ohio's Classroom Facilities Assistance Program. It provides critical analysis of individual spaces and material/system components necessary for the construction of elementary and secondary…
Fuel conditioning facility zone-to-zone transfer administrative controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.
2000-06-21
The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less
Naval Research Laboratory Major Facilities 2008
2008-10-01
Development Laboratory • Secure Supercomputing Facility • CBD/Tilghman Island IR Field Evaluation Facility • Ultra-Short-Pulse Laser Effects Research...EMI Test Facility • Proximity Operations Testbed GENERAL INFORMATION • Maps EX EC U TI V E D IR EC TO RA TE Code 1100 – Institute for Nanoscience...facility: atomic force microscope (AFM); benchtop transmission electron microscope (TEM); cascade probe station; critical point dryer ; dual beam focused
Anderson, Charles
2015-03-24
Post-beneficiation processing plants (generally called smelters and refineries) for 3TG mineral ores and concentrates were identified by company and industry association representatives as being a link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine). The determination of the source of origin is critical to the development of a complete and transparent conflict-free mineral supply chain. Tungsten processing plants were the subject of the first fact sheet in this series published by the USGS NMIC in August 2014. Background information about historical conditions and multinational stakeholders’ voluntary due diligence guidance for minerals from conflict-affected and high-risk areas was presented in the tungsten fact sheet. Tantalum processing plants were the subject of the second fact sheet in this series published by the USGS NMIC in December 2014. This fact sheet, the third in the series about 3TG minerals, focuses on the tin supply chain by listing selected processors that produced tin materials commercially worldwide during 2013–14. It does not provide any information regarding the sources of the material processed in these facilities.
NASA Technical Reports Server (NTRS)
Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke
1991-01-01
The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.
Sendlhofer, Gerald; Eder, Harald; Leitgeb, Karina; Gorges, Roland; Jakse, Heidelinde; Raiger, Marianne; Türk, Silvia; Petschnig, Walter; Pregartner, Gudrun; Kamolz, Lars-Peter; Brunner, Gernot
2018-01-01
Incident reporting systems or so-called critical incident reporting systems (CIRS) were first recommended for use in health care more than 15 years ago. The uses of these CIRS are highly variable among countries, ranging from being used to report critical incidents, falls, or sentinel events resulting in death. In Austria, CIRS have only been introduced to the health care sector relatively recently. The goal of this work, therefore, was to determine whether and specifically how CIRS are used in Austria. A working group from the Austrian Society for Quality and Safety in Healthcare (ASQS) developed a survey on the topic of CIRS to collect information on penetration of CIRS in general and on how CIRS reports are used to increase patient safety. Three hundred seventy-one health care professionals from 274 health care facilities were contacted via e-mail. Seventy-eight respondents (21.0%) completed the online survey, thereof 66 from hospitals and 12 from other facilities (outpatient clinics, nursing homes). In all, 64.1% of the respondents indicated that CIRS were used in the entire health care facility; 20.6% had not yet introduced CIRS and 15.4% used CIRS only in particular areas. Most often, critical incidents without any harm to patients were reported (76.9%); however, some health care facilities also use their CIRS to report patient falls (16.7%), needle stick injuries (17.9%), technical problems (51.3%), or critical incidents involving health care professionals. CIRS are not yet extensively or homogeneously used in Austria. Inconsistencies exist with respect to which events are reported as well as how they are followed up and reported to health care professionals. Further recommendations for general use are needed to support the dissemination in Austrian health care environments. PMID:29310496
Sendlhofer, Gerald; Eder, Harald; Leitgeb, Karina; Gorges, Roland; Jakse, Heidelinde; Raiger, Marianne; Türk, Silvia; Petschnig, Walter; Pregartner, Gudrun; Kamolz, Lars-Peter; Brunner, Gernot
2018-01-01
Incident reporting systems or so-called critical incident reporting systems (CIRS) were first recommended for use in health care more than 15 years ago. The uses of these CIRS are highly variable among countries, ranging from being used to report critical incidents, falls, or sentinel events resulting in death. In Austria, CIRS have only been introduced to the health care sector relatively recently. The goal of this work, therefore, was to determine whether and specifically how CIRS are used in Austria. A working group from the Austrian Society for Quality and Safety in Healthcare (ASQS) developed a survey on the topic of CIRS to collect information on penetration of CIRS in general and on how CIRS reports are used to increase patient safety. Three hundred seventy-one health care professionals from 274 health care facilities were contacted via e-mail. Seventy-eight respondents (21.0%) completed the online survey, thereof 66 from hospitals and 12 from other facilities (outpatient clinics, nursing homes). In all, 64.1% of the respondents indicated that CIRS were used in the entire health care facility; 20.6% had not yet introduced CIRS and 15.4% used CIRS only in particular areas. Most often, critical incidents without any harm to patients were reported (76.9%); however, some health care facilities also use their CIRS to report patient falls (16.7%), needle stick injuries (17.9%), technical problems (51.3%), or critical incidents involving health care professionals. CIRS are not yet extensively or homogeneously used in Austria. Inconsistencies exist with respect to which events are reported as well as how they are followed up and reported to health care professionals. Further recommendations for general use are needed to support the dissemination in Austrian health care environments.
Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque
2018-06-01
An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhili; Miller, Roger G.; Chen, Jian
This report summarizes recent welding activities on irradiated alloys in the advanced welding facility at the Radiochemical Engineering Development Center of Oak Ridge National Laboratory and the development of post-weld characterization capabilities and procedures that will be critical for assessing the ability of the advanced welding processes housed within the facility to make successful repairs on irradiated alloys. This facility and its capabilities were developed jointly by the U.S. Department of Energy, Office of Nuclear Energy, Light Water Reactor Sustainability Program and the Electric Power Research Institute, Long Term Operations Program (and the Welding and Repair Technology Center), with additionalmore » support from Oak Ridge National Laboratory. The significant, on-going effort to weld irradiated alloys with high Helium concentrations and comprehensively analyze the results will eventually yield validated repair techniques and guidelines for use by the nuclear industry in extending the operational lifetimes of nuclear power plants.« less
Prediction Interval Development for Wind-Tunnel Balance Check-Loading
NASA Technical Reports Server (NTRS)
Landman, Drew; Toro, Kenneth G.; Commo, Sean A.; Lynn, Keith C.
2014-01-01
Results from the Facility Analysis Verification and Operational Reliability project revealed a critical gap in capability in ground-based aeronautics research applications. Without a standardized process for check-loading the wind-tunnel balance or the model system, the quality of the aerodynamic force data collected varied significantly between facilities. A prediction interval is required in order to confirm a check-loading. The prediction interval provides an expected upper and lower bound on balance load prediction at a given confidence level. A method has been developed which accounts for sources of variability due to calibration and check-load application. The prediction interval method of calculation and a case study demonstrating its use is provided. Validation of the methods is demonstrated for the case study based on the probability of capture of confirmation points.
Understanding the Role of Numeracy in Health: Proposed Theoretical Framework and Practical Insights
Lipkus, Isaac M.; Peters, Ellen
2009-01-01
Numeracy, that is how facile people are with mathematical concepts and their applications, is gaining importance in medical decision making and risk communication. This paper proposes six critical functions of health numeracy. These functions are integrated into a theoretical framework on health numeracy that has implications for risk-communication and medical-decision-making processes. We examine practical underpinnings for targeted interventions aimed at improving such processes as a function of health numeracy. It is hoped that the proposed functions and theoretical framework will spur more research to determine how an understanding of health numeracy can lead to more effective communication and decision outcomes. PMID:19834054
Definition of smolder experiments for Spacelab
NASA Technical Reports Server (NTRS)
Summerfield, M.; Messina, N. A.; Ingram, L. S.
1979-01-01
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities.
2010-08-10
CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, thermal protection system technicians work on replacing some of space shuttle Endeavour's heat shield tiles. As the final planned mission of the Space Shuttle Program, Endeavour and its crew will deliver the Alpha Magnetic Spectrometer, as well as critical spare components to the station on the STS-134 mission targeted for launch Feb. 26, 2011. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
2009-08-01
fouling due to the buildup of algae and other microbiological growth, which can cause corrosion, reduce energy efficiency, and spread disease. A new...cooling of DoD facilities is critical to mission ex- ecution. Cooling tower systems are susceptible to fouling due to the buil- dup of algae and other...microbiological growth. The biofilm can harbor disease-causing bacteria. The development of a biofilm can increase corro- sion rates, and decrease the
A new paradigm for retrieval medicine.
Moloney, John
2018-06-12
A number of new time critical medical interventions are highly specialised. As such, they are not available in many hospitals and EDs. This necessitates transfer to another facility, which is often associated with some degree of delay. Processes to facilitate timely access to these interventions should aim to replicate or improve on that which would have been available should the patient have been in the community, and responded to, primarily, by an emergency medical service. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
ETR CRITICAL FACILITY, TRA654. SCIENTISTS STAND AT EDGE OF TANK ...
ETR CRITICAL FACILITY, TRA-654. SCIENTISTS STAND AT EDGE OF TANK AND LIFT REMOVABLE BRIDGE ABOVE THE REACTOR. CONTROL RODS AND FUEL RODS ARE BELOW ENOUGH WATER TO SHIELD WORKERS ABOVE. NOTE CRANE RAILS ALONG WALLS, PUMICE BLOCK WALLS. INL NEGATIVE NO. 57-3690. R.G. Larsen, Photographer, 7/29/1957 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.
2012-07-01
Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)
Cost (non)-recovery by platform technology facilities in the Bio21 Cluster.
Gibbs, Gerard; Clark, Stella; Quinn, Julieanne; Gleeson, Mary Joy
2010-04-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution. Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients.
Cost (Non)-Recovery by Platform Technology Facilities in the Bio21 Cluster
Gibbs, Gerard; Clark, Stella; Quinn, JulieAnne; Gleeson, Mary Joy
2010-01-01
Platform technologies (PT) are techniques or tools that enable a range of scientific investigations and are critical to today's advanced technology research environment. Once installed, they require specialized staff for their operations, who in turn, provide expertise to researchers in designing appropriate experiments. Through this pipeline, research outputs are raised to the benefit of the researcher and the host institution.1 Platform facilities provide access to instrumentation and expertise for a wide range of users beyond the host institution, including other academic and industry users. To maximize the return on these substantial public investments, this wider access needs to be supported. The question of support and the mechanisms through which this occurs need to be established based on a greater understanding of how PT facilities operate. This investigation was aimed at understanding if and how platform facilities across the Bio21 Cluster meet operating costs. Our investigation found: 74% of platforms surveyed do not recover 100% of direct operating costs and are heavily subsidized by their home institution, which has a vested interest in maintaining the technology platform; platform managers play a major role in establishing the costs and pricing of the facility, normally in a collaborative process with a management committee or institutional accountant; and most facilities have a three-tier pricing structure recognizing internal academic, external academic, and commercial clients. PMID:20357980
Davis, Jullet A
For many service-oriented firms, knowledge is a key commodity, and the process by which knowledge is codified is critical for firm survival. The administrator or top manager acts as the repository and disseminator of organizational knowledge. The purpose of this project is to examine the association between the administrator's educational attainment and innovation in residential care facilities. The study hypothesized that administrator academic education and certification or licensure would be positively associated with facility innovation. Data for this project comes from the 2010 National Survey of Residential Care Facilities. There were 2277 facilities included in the sample (weighted 30 811). Innovation, the dependent variable, was operationalized using 5 dichotomized measures: clinical information systems, pharmaceutical information systems, electronic health records, providing adult day care, and providing respite care. The data were analyzed using logistic regression. Overall, the results reveal that college education or certification/licensure increased the likelihood of technology use. In addition, those with a high school diploma and certification/licensure were more likely to use technology than were individuals who had, at a minimum, some college. The services models were not significant. It may be that the resources necessary to implement information systems vary substantially from the resources necessary to provide services.
Gaythorpe, Katy; Adams, Ben
2016-05-21
Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Measurement of the heaviest β-delayed 2-neutron emitter: 136Sb
NASA Astrophysics Data System (ADS)
Caballero-Folch, R.; Dillmann, I.; Taín, J. L.; Agramunt, J.; Domingo-Pardo, C.; Algora, A.; Äystö, J.; Calviño, F.; Canete, L.; Cortès, G.; Eronen, T.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Guadilla, V.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Marta, M.; Mendoza, E.; Montaner-Pizá, A.; Moore, I.; Nobs, Ch.; Orrigo, S.; Penttilä, H.; Pohjalainen, I.; Reinikainen, J.; Riego, A.; Rinta-Antila, S.; Rubio, B.; Salvador-Castiñeira, P.; Simutkin, V.; Voss, A.
2017-09-01
The β-delayed neutron emission probability, Pn, of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition β-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of β-delayed one-neutron emitters (β1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, which can be studied and analyzed using specific detection systems. This contribution reports two recent measurements of β-delayed neutron emitters which allowed the determination of half-lives and the neutron branching ratio of isotopes in the mass region above A = 200 and N > 126, and a second experiment which confirmed 136Sb as the heaviest double neutron emitter (β2n) measured so far.
Design and optimization of integrated gas/condensate plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Root, C.R.; Wilson, J.L.
1995-11-01
An optimized design is demonstrated for combining gas processing and condensate stabilization plants into a single integrated process facility. This integrated design economically provides improved condensate recovery versus use of a simple stabilizer design. A selection matrix showing likely application of this integrated process is presented for use on future designs. Several methods for developing the fluid characterization and for using a process simulator to predict future design compositions are described, which could be useful in other designs. Optimization of flowsheet equipment choices and of design operating pressures and temperatures is demonstrated including the effect of both continuous and discretemore » process equipment size changes. Several similar designs using a turboexpander to provide refrigeration for liquids recovery and stabilizer reflux are described. Operating overthrust and from the P/15-D platform in the Dutch sector of the North Sea has proven these integrated designs are effective. Concerns do remain around operation near or above the critical pressure that should be addressed in future work including providing conservative separator designs, providing sufficient process design safety margin to meet dew point specifications, selecting the most conservative design values of predicted gas dew point and equipment size calculated with different Equations-of-State, and possibly improving the accuracy of PVT calculations in the near critical area.« less
Preliminary Results of Cleaning Process for Lubricant Contamination
NASA Astrophysics Data System (ADS)
Eisenmann, D.; Brasche, L.; Lopez, R.
2006-03-01
Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.
Potential occupational risk of amines in carbon capture for power generation.
Gentry, P Robinan; House-Knight, Tamara; Harris, Angela; Greene, Tracy; Campleman, Sharan
2014-08-01
While CO2 capture and storage (CCS) technology has been well studied in terms of its efficacy and cost of implementation, there is limited available data concerning the potential for occupational exposure to amines, mixtures of amines, or degradation of by-products from the CCS process. This paper is a critical review of the available data concerning the potential effects of amines and CCS-degradation by-products. A comprehensive review of the occupational health and safety issues associated with exposure to amines and amine by-products at CCS facilities was performed, along with a review of the regulatory status and guidelines of amines, by-products, and CCS process vapor mixtures. There are no specific guidelines or regulations regarding permissible levels of exposure via air for amines and degradation products that could form atmospheric oxidation of amines released from post-combustion CO2 capture plants. While there has been a worldwide effort to develop legal and regulatory frameworks for CCS, none are directly related to occupational exposures. By-products of alkanolamine degradation may pose the most significant health hazard to workers in CCS facilities, with several aldehydes, amides, nitramines, and nitrosamines classified as either known or potential/possible human carcinogens. The absence of large-scale CCS facilities; absence and unreliability of reported data in the literature from pilot facilities; and proprietary amine blends make it difficult to estimate potential amine exposures and predict formation and exposure to degradation products.
“This is Our Last Stop”: Negotiating End of Life Transitions in Assisted Living
Ball, Mary M.; Kemp, Candace L.; Hollingsworth, Carole; Perkins, Molly M.
2014-01-01
Where people die has important implications for end-of-life (EOL) care. Assisted living (AL) increasingly is becoming a site of EOL care and a place where people die. AL residents are moving in older and sicker and with more complex care needs, yet AL remains largely a non-medical care setting that subscribes to a social rather than medical model of care. The aims of this paper are to add to the limited knowledge of how EOL is perceived, experienced, and managed in AL and to learn how individual, facility, and community factors influence these perceptions and experiences. Using qualitative methods and a grounded theory approach to study eight diverse AL settings, we present a preliminary model for how EOL care transitions are negotiated in AL that depicts the range of multilevel intersecting factors that shape EOL processes and events in AL. Facilities developed what we refer to as an EOL presence, which varied across and within settings depending on multiple influences, including, notably, the dying trajectories and care arrangements of residents at EOL, the prevalence of death and dying in a facility, and the attitudes and responses of individuals and facilities towards EOL processes and events, including how deaths were communicated and formally acknowledged and the impact of death and dying on residents and staff. Our findings indicate that in the majority of cases, EOL care must be supported by collaborative arrangements of care partners and that hospice care is a critical component. PMID:24984903
Ausserhofer, Dietmar; Rakic, Severin; Novo, Ahmed; Dropic, Emira; Fisekovic, Eldin; Sredic, Ana; Van Malderen, Greet
2016-06-01
We explored how selected 'positive deviant' healthcare facilities in Bosnia and Herzegovina approach the continuous development, adaptation, implementation, monitoring and evaluation of nursing-related standard operating procedures. Standardized nursing care is internationally recognized as a critical element of safe, high-quality health care; yet very little research has examined one of its key instruments: nursing-related standard operating procedures. Despite variability in Bosnia and Herzegovina's healthcare and nursing care quality, we assumed that some healthcare facilities would have developed effective strategies to elevate nursing quality and safety through the use of standard operating procedures. Guided by the 'positive deviance' approach, we used a multiple-case study design to examine a criterion sample of four facilities (two primary healthcare centres and two hospitals), collecting data via focus groups and individual interviews. In each studied facility, certification/accreditation processes were crucial to the initiation of continuous development, adaptation, implementation, monitoring and evaluation of nursing-related SOPs. In one hospital and one primary healthcare centre, nurses working in advanced roles (i.e. quality coordinators) were responsible for developing and implementing nursing-related standard operating procedures. Across the four studied institutions, we identified a consistent approach to standard operating procedures-related processes. The certification/accreditation process is enabling necessary changes in institutions' organizational cultures, empowering nurses to take on advanced roles in improving the safety and quality of nursing care. Standardizing nursing procedures is key to improve the safety and quality of nursing care. Nursing and Health Policy are needed in Bosnia and Herzegovina to establish a functioning institutional framework, including regulatory bodies, educational systems for developing nurses' capacities or the inclusion of nursing-related standard operating procedures in certification/accreditation standards. © 2016 International Council of Nurses.
Preschool Facilities: Are States Providing Adequate Guidance?
ERIC Educational Resources Information Center
Lea, Dennis R.; Polster, Patty Poppe
2010-01-01
The preschool facility is a critical element of an effective preschool program. The recent economic downturn in the United States makes it difficult for states and individual school districts to consider developing new preschool programs or enhancing current programs or facilities. Yet many Americans still agree that public investment in preschool…
Facilities Spending Criticized as Uneven
ERIC Educational Resources Information Center
Greifner, Laura
2006-01-01
This article features a report on states and school districts spending almost $600 billion on building and renovating schools from 1995 to 2004, an amount that far exceed earlier expectations. The report also emphasized the uneven facilities spending between minority and affluent districts. Besides receiving the least money for facilities, the…
School Building Designs: Principles and Challenges of the 21st Century.
ERIC Educational Resources Information Center
Chan, T. C.
2002-01-01
Reviews school-facility challenges and design principles described in 2000 U.S. Department of Education report on school planning and design. Describes additional school-facility design challenges and planning principles. Describes five critical facility-planning issues for the 21st Century. (Contains 14 references.) (PKP)
ERIC Educational Resources Information Center
US Department of Homeland Security, 2010
2010-01-01
Critical infrastructure and key resources (CIKR) provide the essential services that support basic elements of American society. Compromise of these CIKR could disrupt key government and industry activities, facilities, and systems, producing cascading effects throughout the Nation's economy and society and profoundly affecting the national…
Saito, Takeshi; Tominaga, Aya; Nozawa, Mayu; Unei, Hiroko; Hatano, Yayoi; Fujita, Yuji; Iseki, Ken; Hori, Yasushi
2013-09-01
In a 2008 survey of the 73 emergency and critical care centers around the nation that were equipped with the drug and chemical analytical instrument provided by the Ministry of Welfare (currently the Ministry of Health, Labour, and Welfare) in 1998, 36 of those facilities were using the analytical instruments. Of these 36 facilities, a follow-up survey of the 17 facilities that recorded 50 or analyses per year. Responses were gained from 16 of the facilities and we learned that of those, 14 facilities (87.5%) were conducting analyses using the instrument. There was a positive mutual correlation between the annual number of cases of the 14 facilities conducting analyses with the instrument and the number of work hours. Depending on the instrument in use, average analytical instrument parts and maintenance expenses were roughly three million yen and consumables required a maximum three million yen for analysis of 51-200 cases per year. From this, we calculate that such expenses can be covered under the allowed budget for advanced emergency and critical care centers of 5,000 NHI points (1 point = 10 yen). We found there were few facilities using the instrument for all 15 of the toxic substances recommended for testing by the Japanese Society for Clinical Toxicology. There tended to be no use of the analytical instrument for compounds with no toxicology cases. However, flexible responses were noted at each facility in relation to frequently analyzed compounds. It is thought that a reevaluation of compounds subject to analysis is required.
Leiva, A; Granados-Chinchilla, F; Redondo-Solano, M; Arrieta-González, M; Pineda-Salazar, E; Molina, A
2018-01-01
ABSTRACT Animal by-product rendering establishments are still relevant industries worldwide. Animal by-product meal safety is paramount to protect feed, animals, and the rest of the food chain from unwanted contamination. As microbiological contamination may arise from inadequate processing of slaughterhouse waste and deficiencies in good manufacturing practices within the rendering facilities, we conducted an overall establishment's inspection, including the product in several parts of the process. An evaluation of the Good Manufacturing Practices (GMP) was carried out, which included the location and access (i.e., admission) to the facilities, integrated pest management programs, physical condition of the facilities (e.g., infrastructure), equipments, vehicles and transportation, as well as critical control points (i.e., particle size and temperature set at 50 mm, 133°C at atmospheric pressure for 20 min, respectively) recommended by the OIE and the European Commission. The most sensitive points according to the evaluation are physical structure of the facilities (avg 42.2%), access to the facilities (avg 48.6%), and cleaning procedures (avg 51.4%). Also, indicator microorganisms (Salmonella spp., Clostridium spp., total coliforms, E. coli, E. coli O157:H7) were used to evaluate the safety in different parts of the animal meal production process. There was a prevalence of Salmonella spp. of 12.9, 14.3, and 33.3% in Meat and Bone Meal (MBM), poultry by-products, and fish meal, respectively. However, there were no significant differences (P = 0.73) in the prevalence between the different animal meals, according to the data collected. It was also observed that renderings associated with the poultry industry (i.e., 92.0%) obtained the best ratings overall, which reflects a satisfactory development of this sector and the integration of its production system as a whole. PMID:29562297
Caballero Mesa, J M; Alonso Marrero, S; González Weller, D M; Afonso Gutiérrez, V L; Rubio Armendariz, C; Hardisson de la Torre, A
2006-01-01
To satisfactorily implement the critical hazards and check points analysis. Tenerife Island Subjects: 15 industries visits to gofio-manufacturing industries were done with the aim of giving advice to employers and workers, and thereafter, the intervention was assessed verifying the hygiene and sanitary conditions of the industry and the correct application of the established auto-control system. After the advising intervention, we observed that certain parameters taken into account from the hygiene and sanitary perspective have been corrected, such as modifying the facilities to adapt them to in force regulations, or asking the suppliers to certify raw materials. With regards to food production process, the intervention was effective in such a way that more than have of the industries reduced the time of those phases with higher contamination susceptibility and to carry out the control registries that were established. All industries implemented the auto-control system by means of registration charts of each one of the elaboration phases. 86% of the industries have introduced more hygienic materials. 60% implemented a reduction in intermediate times of production phases. 26% perfmored some obsolete machinery replacement modernaizing the facilities.
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
Nace, David A; Handler, Steven M; Hoffman, Erika L; Perera, Subashan
2012-11-01
National influenza immunization rates for healthcare workers (HCW) in long-term care (LTC) remain unacceptably low. This poses a serious public health threat to residents. Prior work has suggested high staff turnover rates as a contributing factor to low immunization rates. There is a critical need to identify and deploy successful models of HCW influenza immunization programs to LTC facilities. This report describes one potential model that has been successfully initiated in a network of LTC facilities. All facilities served by a single regional LTC pharmacy were invited to participate in a HCW influenza immunization program. This voluntary immunization program began in 2005 and continues to the present. As part of the program, the pharmacy promoted organizational change by assuming oversight and control of HCW immunization policies and processes for all facilities. Primary and secondary outcomes are the number of facilities reaching HCW influenza immunization rates of 60% and 80%. Fourteen of the 16 LTC facilities participated. Facilities were diverse and included both nursing and assisted living facilities; unionized and nonunionized facilities; and urban, suburban, and rural facilities. The pharmacy provided educational and communication materials, centralized data collection using a standardized definition for HCW immunization rates, and facility feedback. All 14 LTC facilities achieved the primary goal of 60% and nearly two thirds reached the secondary goal of 80%. Twenty percent reached the new Healthy People 2020 goal of 90%. It is possible for LTC facilities to improve HCW immunization rates using a pharmacy based, voluntary HCW influenza immunization approach. Such an approach may help attenuate the negative influence of staff turnover on HCW immunizations. Attainment of the new Health People 2020 goals still remains a challenge and may require mandatory programs. Copyright © 2012 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Demonstration of the feasibility of automated silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Taylor, W. E.; Schwartz, F. M.
1975-01-01
A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.
A rule-based system for real-time analysis of control systems
NASA Astrophysics Data System (ADS)
Larson, Richard R.; Millard, D. Edward
1992-10-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
A rule-based system for real-time analysis of control systems
NASA Technical Reports Server (NTRS)
Larson, Richard R.; Millard, D. Edward
1992-01-01
An approach to automate the real-time analysis of flight critical health monitoring and system status is being developed and evaluated at the NASA Dryden Flight Research Facility. A software package was developed in-house and installed as part of the extended aircraft interrogation and display system. This design features a knowledge-base structure in the form of rules to formulate interpretation and decision logic of real-time data. This technique has been applied for ground verification and validation testing and flight testing monitoring where quick, real-time, safety-of-flight decisions can be very critical. In many cases post processing and manual analysis of flight system data are not required. The processing is described of real-time data for analysis along with the output format which features a message stack display. The development, construction, and testing of the rule-driven knowledge base, along with an application using the X-31A flight test program, are presented.
Key ecological challenges for closed systems facilities
NASA Astrophysics Data System (ADS)
Nelson, Mark; Dempster, William F.; Allen, John P.
2013-07-01
Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet, recycling nutrients and maintaining soil fertility, the maintenance of healthy air and water and preventing the loss of critical elements from active circulation. In biospheric facilities, the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and backup technologies and strategic options which may be necessary to ensure long-term operation of closed ecological systems.
Trap, Birna; Kikule, Kate; Vialle-Valentin, Catherine; Musoke, Richard; Lajul, Grace Otto; Hoppenworth, Kim; Konradsen, Dorthe
2016-01-01
Since its inception, the Uganda National Drug Authority (NDA) has regularly inspected private sector pharmacies to monitor adherence to Good Pharmacy Practices (GPP). This study reports findings from the first public facility inspections following an intervention (SPARS: Supervision, Performance Assessment, and Recognition Strategy) to build GPP and medicines management capacity in the public sector. The study includes 455 public facilities: 417 facilities were inspected after at least four SPARS visits by trained managerial district staff (SPARS group), 38 before any exposure to SPARS. NDA inspectors measured 10 critical, 20 major, and 37 minor GPP indicators in every facility and only accredited facilities that passed all 10 critical and failed no more than 7 major indicators. Lack of compliance for a given indicator was defined as less than 75 % facilities passing that indicator. We assessed factors associated with certification using logistic regression analysis and compared number of failed indicators between the SPARS and comparative groups using two sample t-tests with equal or unequal variance. 57.4 % of inspected facilities obtained GPP certification: 57.1 % in the SPARS and 60.5 % in the comparative group (Adj. OR = 0.91, 95 % CI 0.45-1.85, p = 0.802). Overall, facilities failed an average of 10 indicators. SPARS facilities performed better than comparative facilities (9 (SD 6.1) vs. 13 (SD 7.7) failed indicators respectively; p = 0.017), and SPARS supported facilities scored better on indicators covered by SPARS. For all indicators but one minor, performance in the SPARS group was equal to or significantly better than in unsupervised facilities. Within the SPARS (intervention) group, certified facilities had < 75 % compliance on 7 indicators (all minor), and uncertified facilities on 19 (4 critical, 2 major, and 13 minor) indicators. Half of the Ugandan population obtains medicines from the public sector. Yet, we found only 3/5 of inspected public health facilities meet GPP standards. SPARS facilities tended to perform better than unsupervised facilities, substantiating the value of supporting supervision interventions in GPP areas that need strengthening. None compliant indicators can be improved through practices and behavioral changes; some require infrastructure investments. We conclude that regular NDA inspections of public sector pharmacies in conjunction with interventions to improve GPP adherence can revolutionize patient care in Uganda.
Capacity planning for batch and perfusion bioprocesses across multiple biopharmaceutical facilities.
Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S
2014-01-01
Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2014 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Capacity Planning for Batch and Perfusion Bioprocesses Across Multiple Biopharmaceutical Facilities
Siganporia, Cyrus C; Ghosh, Soumitra; Daszkowski, Thomas; Papageorgiou, Lazaros G; Farid, Suzanne S
2014-01-01
Production planning for biopharmaceutical portfolios becomes more complex when products switch between fed-batch and continuous perfusion culture processes. This article describes the development of a discrete-time mixed integer linear programming (MILP) model to optimize capacity plans for multiple biopharmaceutical products, with either batch or perfusion bioprocesses, across multiple facilities to meet quarterly demands. The model comprised specific features to account for products with fed-batch or perfusion culture processes such as sequence-dependent changeover times, continuous culture constraints, and decoupled upstream and downstream operations that permit independent scheduling of each. Strategic inventory levels were accounted for by applying cost penalties when they were not met. A rolling time horizon methodology was utilized in conjunction with the MILP model and was shown to obtain solutions with greater optimality in less computational time than the full-scale model. The model was applied to an industrial case study to illustrate how the framework aids decisions regarding outsourcing capacity to third party manufacturers or building new facilities. The impact of variations on key parameters such as demand or titres on the optimal production plans and costs was captured. The analysis identified the critical ratio of in-house to contract manufacturing organization (CMO) manufacturing costs that led the optimization results to favor building a future facility over using a CMO. The tool predicted that if titres were higher than expected then the optimal solution would allocate more production to in-house facilities, where manufacturing costs were lower. Utilization graphs indicated when capacity expansion should be considered. © 2013 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 30:594–606, 2014 PMID:24376262
What Medical Directors Need to Know about Dialysis Facility Water Management.
Kasparek, Ted; Rodriguez, Oscar E
2015-06-05
The medical directors of dialysis facilities have many operational clinic responsibilities, which on first glance, may seem outside the realm of excellence in patient care. However, a smoothly running clinic is integral to positive patient outcomes. Of the conditions for coverage outlined by the Centers for Medicare and Medicaid Services, one most critical to quality dialysis treatment is the provision of safe purified dialysis water, because there are many published instances where clinic failure in this regard has resulted in patient harm. As the clinical leader of the facility, the medical director is obliged to have knowledge of his/her facility's water treatment system to reliably ensure that the purified water used in dialysis will meet the standards for quality set by the Association for the Advancement of Medical Instrumentation and used by the Centers for Medicare and Medicaid Services for conditions for coverage. The methods used to both achieve and maintain these quality standards should be a part of quality assessment and performance improvement program meetings. The steps for water treatment, which include pretreatment, purification, and distribution, are largely the same, regardless of the system used. Each water treatment system component has a specific role in the process and requires individualized maintenance and monitoring. The medical director should provide leadership by being engaged with the process, knowing the facility's source water, and understanding water treatment system operation as well as the clinical significance of system failure. Successful provision of quality water will be achieved by those medical directors who learn, know, and embrace the requirements of dialysis water purification and system maintenance. Copyright © 2015 by the American Society of Nephrology.
This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
7 CFR Appendix A to Subpart E of... - Hazard Potential Classification for Civil Works Projects
Code of Federal Regulations, 2010 CFR
2010-01-01
... essential facilities and access Disruption of critical facilities and access. Property Losses 4 Private..., communications, power supply, etc. 4 Direct economic impact of value of property damages to project facilities and down stream property and indirect economic impact due to loss of project services, i.e., impact on...
ERIC Educational Resources Information Center
Davenport, Mona Yvette
2010-01-01
This study tested the perceptions of involvement components (Non-Academic Facility Usage, Intra-Racial Relations, Campus and Charleston Involvement, Faculty Interaction, Academic Facility Usage, Inter-Racial Relations, Cultural Center Usage, and Athletic Facilities Usage) for first generation and non-first generation African American and Hispanic…
PK-12 Public Educational Facilities Master Plan Evaluation Guide
ERIC Educational Resources Information Center
21st Century School Fund, 2011
2011-01-01
Proper planning of school facilities is critical for all school districts no matter how large or small, whether major construction is in the works or the district is managing enrollment declines. When school districts properly plan for their school facilities they have better schools, more public use and higher value for public spending. This…
DOT National Transportation Integrated Search
1997-11-06
Gretna and Governor Nicholls Light facilities are two manned shore side : facilities mounted in critical areas on the banks of the Mississippi River in : the port of New Orleans, Louisiana. Coast Guard plans call for the lights to : be remotely contr...
A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies
Samuel V. Glass
2010-01-01
Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.
Contracting for Facilities Services. Critical Issues in Facilities Management. No. 9.
ERIC Educational Resources Information Center
APPA: Association of Higher Education Facilities Officers, Alexandria, VA.
This book has been designed to provide practical information to managers on how to work with outside contractors in the higher education facilities area, and provides "real world" advice on the opportunities and pitfalls of privatization. Overviews and detailed case studies of contracting-out for services such as custodial services and…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... qualified and willing to serve at, often remote, IHS health care facilities. Under the program, eligible... indebtedness for professional training time in IHS health care facilities. This program is necessary to augment the critically low health professional staff at IHS health care facilities. Any health professional...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... qualified and willing to serve at, often remote, IHS health care facilities. Under the program, eligible... indebtedness for professional training time in IHS health care facilities. This program is necessary to augment the critically low health professional staff at IHS health care facilities. Any health professional...
Use of the Homeland-Defense Operational Planning System (HOPS) for Emergency Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durling, Jr., R L; Price, D E
2005-12-16
The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less
Risk Assessment Using The Homeland-Defense Operational Planning System (HOPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, D E; Durling, R L
2005-10-10
The Homeland-Defense Operational Planning System (HOPS), is a new operational planning tool leveraging Lawrence Livermore National Laboratory's expertise in weapons systems and in sparse information analysis to support the defense of the U.S. homeland. HOPS provides planners with a basis to make decisions to protect against acts of terrorism, focusing on the defense of facilities critical to U.S. infrastructure. Criticality of facilities, structures, and systems is evaluated on a composite matrix of specific projected casualty, economic, and sociopolitical impact bins. Based on these criteria, significant unidentified vulnerabilities are identified and secured. To provide insight into potential successes by malevolent actors,more » HOPS analysts strive to base their efforts mainly on unclassified open-source data. However, more cooperation is needed between HOPS analysts and facility representatives to provide an advantage to those whose task is to defend these facilities. Evaluated facilities include: refineries, major ports, nuclear power plants and other nuclear licensees, dams, government installations, convention centers, sports stadiums, tourist venues, and public and freight transportation systems. A generalized summary of analyses of U.S. infrastructure facilities will be presented.« less
Petabyte Class Storage at Jefferson Lab (CEBAF)
NASA Technical Reports Server (NTRS)
Chambers, Rita; Davis, Mark
1996-01-01
By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the experimental program at Jefferson Lab (JLab) is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. The design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS). Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered allow seamless access to specific data sets for the researcher, synchronize data retrievals with the scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability to perform data reconstruction and reduction at the same overall rate at which new data is being collected. The current implementation employs state-of-the-art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager (OSM) Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scalability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.
Progress Report on the US Critical Zone Observatory Program
NASA Astrophysics Data System (ADS)
Barrera, E. C.
2014-12-01
The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.
High temperature superconductor materials and applications
NASA Technical Reports Server (NTRS)
Doane, George B., III. (Editor); Banks, Curtis; Golben, John
1991-01-01
One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.
US-CERT Control System Center Input/Output (I/O) Conceputal Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-02-01
This document was prepared for the US-CERT Control Systems Center of the National Cyber Security Division (NCSD) of the Department of Homeland Security (DHS). DHS has been tasked under the Homeland Security Act of 2002 to coordinate the overall national effort to enhance the protection of the national critical infrastructure. Homeland Security Presidential Directive HSPD-7 directs the federal departments to identify and prioritize critical infrastructure and protect it from terrorist attack. The US-CERT National Strategy for Control Systems Security was prepared by the NCSD to address the control system security component addressed in the National Strategy to Secure Cyberspace andmore » the National Strategy for the Physical Protection of Critical Infrastructures and Key Assets. The US-CERT National Strategy for Control Systems Security identified five high-level strategic goals for improving cyber security of control systems; the I/O upgrade described in this document supports these goals. The vulnerability assessment Test Bed, located in the Information Operations Research Center (IORC) facility at Idaho National Laboratory (INL), consists of a cyber test facility integrated with multiple test beds that simulate the nation's critical infrastructure. The fundamental mission of the Test Bed is to provide industry owner/operators, system vendors, and multi-agency partners of the INL National Security Division a platform for vulnerability assessments of control systems. The Input/Output (I/O) upgrade to the Test Bed (see Work Package 3.1 of the FY-05 Annual Work Plan) will provide for the expansion of assessment capabilities within the IORC facility. It will also provide capabilities to connect test beds within the Test Range and other Laboratory resources. This will allow real time I/O data input and communication channels for full replications of control systems (Process Control Systems [PCS], Supervisory Control and Data Acquisition Systems [SCADA], and components). This will be accomplished through the design and implementation of a modular infrastructure of control system, communications, networking, computing and associated equipment, and measurement/control devices. The architecture upgrade will provide a flexible patching system providing a quick ''plug and play''configuration through various communication paths to gain access to live I/O running over specific protocols. This will allow for in-depth assessments of control systems in a true-to-life environment. The full I/O upgrade will be completed through a two-phased approach. Phase I, funded by DHS, expands the capabilities of the Test Bed by developing an operational control system in two functional areas, the Science & Technology Applications Research (STAR) Facility and the expansion of various portions of the Test Bed. Phase II (see Appendix A), funded by other programs, will complete the full I/O upgrade to the facility.« less
LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adu-Wusu, K.
2012-05-10
Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporatormore » serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDade, Mark
2016-12-01
The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessarymore » to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.« less
2014-11-20
CAPE CANAVERAL, Fla. – NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, has been uncovered and is ready for processing in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida. To learn more about DSCOVR, visit http://www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Kim Shiflett
Integrated manufacturing approach to attain benchmark team performance
NASA Astrophysics Data System (ADS)
Chen, Shau-Ron; Nguyen, Andrew; Naguib, Hussein
1994-09-01
A Self-Directed Work Team (SDWT) was developed to transfer a polyimide process module from the research laboratory to our wafer fab facility for applications in IC specialty devices. The SDWT implemented processes and tools based on the integration of five manufacturing strategies for continuous improvement. These were: Leadership Through Quality (LTQ), Total Productive Maintenance (TMP), Cycle Time Management (CTM), Activity-Based Costing (ABC), and Total Employee Involvement (TEI). Utilizing these management techniques simultaneously, the team achieved six sigma control of all critical parameters, increased Overall Equipment Effectiveness (OEE) from 20% to 90%, reduced cycle time by 95%, cut polyimide manufacturing cost by 70%, and improved its overall team member skill level by 33%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, G; Bale, J; Moran, K
Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security, and way of life. One particular type of CI--that relating to chemicals--constitutes both an important element of our nation's infrastructure and a particularly attractive set of potential targets. This is primarily because of the large quantities of toxic industrial chemicals (TICs) it employs in various operations and because of the essential economic functions it serves. This study attempts to minimize some of the ambiguities that presently impede chemical infrastructure threat assessments by providing new insight into the key motivational factors that affect terrorist organizations propensity to attackmore » chemical facilities. Prepared as a companion piece to the Center for Nonproliferation Studies August 2004 study--''Assessing Terrorist Motivations for Attacking Critical Infrastructure''--it investigates three overarching research questions: (1) why do terrorists choose to attack chemical-related infrastructure over other targets; (2) what specific factors influence their target selection decisions concerning chemical facilities; and (3) which, if any, types of groups are most inclined to attack chemical infrastructure targets? The study involved a multi-pronged research design, which made use of four discrete investigative techniques to answer the above questions as comprehensively as possible. These include: (1) a review of terrorism and threat assessment literature to glean expert consensus regarding terrorist interest in targeting chemical facilities; (2) the preparation of case studies to help identify internal group factors and contextual influences that have played a significant role in leading some terrorist groups to attack chemical facilities; (3) an examination of data from the Critical Infrastructure Terrorist Incident Catalog (CrITIC) to further illuminate the nature of terrorist attacks against chemical facilities to date; and (4) the refinement of the DECIDe--the Determinants Effecting Critical Infrastructure Decisions--analytical framework to make the factors and dynamics identified by the study more ''usable'' in future efforts to assess terrorist intentions to target chemical-related infrastructure.« less
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
Foglia, Mary Beth; Pearlman, Robert A; Bottrell, Melissa M; Altemose, Jane A; Fox, Ellen
2008-01-01
Setting priorities and the subsequent allocation of resources is a major ethical issue facing healthcare facilities, including the Veterans Health Administration (VHA), the largest integrated healthcare delivery network in the United States. Yet despite the importance of priority setting and its impact on those who receive and those who provide care, we know relatively little about how clinicians and managers view allocation processes within their facilities. The purpose of this secondary analysis of survey data was to characterize staff members' perceptions regarding the fairness of healthcare ethics practices related to resource allocation in Veterans Administration (VA) facilities. The specific aim of the study was to compare the responses of clinicians, clinician managers, and non-clinician managers with respect to these survey items. We utilized a paper and web-based survey and a cross-sectional design of VHA clinicians and managers. Our sample consisted of a purposive stratified sample of 109 managers and a stratified random sample of 269 clinicians employed 20 or more hours per week in one of four VA medical centers. The four medical centers were participating as field sites selected to test the logistics of administering and reporting results of the Integrated Ethics Staff Survey, an assessment tool aimed at characterizing a broad range of ethical practices within a healthcare organization. In general, clinicians were more critical than clinician managers or non-clinician managers of the institutions' allocation processes and of the impact of resource decisions on patient care. Clinicians commonly reported that they did not (a) understand their facility's decision-making processes, (b) receive explanations from management regarding the reasons behind important allocation decisions, or (b) perceive that they were influential in allocation decisions. In addition, clinicians and managers both perceived that education related to the ethics of resource allocation was insufficient and that their facilities could increase their effectiveness in identifying and resolving ethical problems related to resource allocation. How well a healthcare facility ensures fairness in the way it allocates its resources across programs and services depends on multiple factors, including awareness by decision makers that setting priorities and allocating resources is a moral enterprise (moral awareness), the availability of a consistent process that includes important stakeholder groups (procedural justice), and concurrence by stakeholders that decisions represent outcomes that fairly balance competing interests and have a positive net effect on the quality of care (distributive justice). In this study, clinicians and managers alike identified the need for improvement in healthcare ethics practices related to resource allocation.
Strengthening health facilities for maternal and newborn care: experiences from rural eastern Uganda
Namazzi, Gertrude; Waiswa, Peter; Nakakeeto, Margaret; Nakibuuka, Victoria K.; Namutamba, Sarah; Najjemba, Maria; Namusaabi, Ruth; Tagoola, Abner; Nakate, Grace; Ajeani, Judith; Peterson, Stefan; Byaruhanga, Romano N.
2015-01-01
Background In Uganda maternal and neonatal mortality remains high due to a number of factors, including poor quality of care at health facilities. Objective This paper describes the experience of building capacity for maternal and newborn care at a district hospital and lower-level health facilities in eastern Uganda within the existing system parameters and a robust community outreach programme. Design This health system strengthening study, part of the Uganda Newborn Study (UNEST), aimed to increase frontline health worker capacity through district-led training, support supervision, and mentoring at one district hospital and 19 lower-level facilities. A once-off supply of essential medicines and equipment was provided to address immediate critical gaps. Health workers were empowered to requisition subsequent supplies through use of district resources. Minimal infrastructure adjustments were provided. Quantitative data collection was done within routine process monitoring and qualitative data were collected during support supervision visits. We use the World Health Organization Health System Building Blocks to describe the process of district-led health facility strengthening. Results Seventy two per cent of eligible health workers were trained. The mean post-training knowledge score was 68% compared to 32% in the pre-training test, and 80% 1 year later. Health worker skills and competencies in care of high-risk babies improved following support supervision and mentoring. Health facility deliveries increased from 3,151 to 4,115 (a 30% increase) in 2 years. Of 547 preterm babies admitted to the newly introduced kangaroo mother care (KMC) unit, 85% were discharged alive to continue KMC at home. There was a non-significant declining trend for in-hospital neonatal deaths across the 2-year study period. While equipment levels remained high after initial improvement efforts, maintaining supply of even the most basic medications was a challenge, with less than 40% of health facilities reporting no stock-outs. Conclusion Health system strengthening for care at birth and the newborn period is possible even in low-resource settings and can be associated with improved utilisation and outcomes. Through a participatory process with wide engagement, training, and improvements to support supervision and logistics, health workers were able to change behaviours and practices for maternal and newborn care. Local solutions are needed to ensure sustainability of medical commodities. PMID:25843496
Hirschhorn, Lisa Ruth; Semrau, Katherine; Kodkany, Bhala; Churchill, Robyn; Kapoor, Atul; Spector, Jonathan; Ringer, Steve; Firestone, Rebecca; Kumar, Vishwajeet; Gawande, Atul
2015-08-14
Pragmatic and adaptive trial designs are increasingly used in quality improvement (QI) interventions to provide the strongest evidence for effective implementation and impact prior to broader scale-up. We previously showed that an on-site coaching intervention focused on the World Health Organization Safe Childbirth Checklist (SCC) improved performance of essential birth practices (EBPs) in one facility in Karnataka, India. We report on the process and outcomes of adapting the intervention prior to larger-scale implementation in a randomized controlled trial in Uttar Pradesh (UP), India. Initially, we trained a local team of physicians and nurses to coach birth attendants in SCC use at two public facilities for 4-6 weeks. Trained observers evaluated adherence to EBPs before and after coaching. Using mixed methods and a systematic adaptation process, we modified and strengthened the intervention. The modified intervention was implemented in three additional facilities. Pre/post-change in EBP prevalence aggregated across facilities was analyzed. In the first two facilities, limited improvement was seen in EBPs with the exception of post-partum oxytocin. Checklists were used <25 % of observations. We identified challenges in physicians coaching nurses, need to engage district and facility leadership to address system gaps, and inadequate strategy for motivating SCC uptake. Revisions included change to peer-to-peer coaching (nurse to nurse, physician to physician); strengthened coach training on behavior and system change; adapted strategy for effective leadership engagement; and an explicit motivation strategy to enhance professional pride and effectiveness. These modifications resulted in improvement in multiple EBPs from baseline including taking maternal blood pressure (0 to 16 %), post-partum oxytocin (36 to 97 %), early breastfeeding initiation (3 to 64 %), as well as checklist use (range 32 to 88 %), all p < 0.01. Further adaptations were implemented to increase the effectiveness prior to full trial launch. The adaptive study design of implementation, evaluation, and feedback drove iterative redesign and successfully developed a SCC-focused coaching intervention that improved EBPs in UP facilities. This work was critical to develop a replicable BetterBirth package tailored to the local context. The multi-center pragmatic trial is underway measuring impact of the BetterBirth program on EBP and maternal-neonatal morbidity and mortality. NCT02148952 .
Testing of electrical equipment for a commercial grade dedication program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.L.; Srinivas, N.
1995-10-01
The availability of qualified safety related replacement parts for use in nuclear power plants has decreased over time. This has caused many nuclear power plants to purchase commercial grade items (CGI) and utilize the commercial grade dedication process to qualify the items for use in nuclear safety related applications. The laboratories of Technical and Engineering Services (the testing facility of Detroit Edison) have been providing testing services for verification of critical characteristics of these items. This paper presents an overview of the experience in testing electrical equipment with an emphasis on fuses.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Workers align NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, onto a portable work stand at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Satellite Deploy & Light Test
2014-11-24
Workers deploy the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Satellite Deploy & Light Test
2014-11-24
The solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, are unfurled in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
2007-08-20
KENNEDY SPACE CENTER, FLA. -- A poster in the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center illustrates the assembled Dextre, the third and final component of the mobile servicing system on the International Space Station. The Special Purpose Dexterous Manipulator will work with the mobile base and Canadarm2 on the station to perform critical construction and maintenance tasks. The poster sits in front of the draped sections in the SSPF. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14, 2008. Photo credit: NASA/George Shelton
2007-08-20
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, or SSPF, at NASA's Kennedy Space Center, sections of the Special Purpose Dexterous Manipulator, known as Dextre, are lined up under cover. In front of them is a poster that illustrates the assembled third and final component of the mobile servicing system on the International Space Station. Dextre will work with the mobile base and Canadarm2 on the station to perform critical construction and maintenance tasks. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14, 2008. Photo credit: NASA/George Shelton
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians install the second Materials International Space Station Experiments, or MISSE, in space shuttle Endeavour's payload bay. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
Human factors in spacecraft design
NASA Technical Reports Server (NTRS)
Harrison, Albert A.; Connors, Mary M.
1990-01-01
This paper describes some of the salient implications of evolving mission parameters for spacecraft design. Among the requirements for future spacecraft are new, higher standards of living, increased support of human productivity, and greater accommodation of physical and cultural variability. Design issues include volumetric allowances, architecture and layouts, closed life support systems, health maintenance systems, recreational facilities, automation, privacy, and decor. An understanding of behavioral responses to design elements is a precondition for critical design decisions. Human factors research results must be taken into account early in the course of the design process.
Practice management/role of the medical director.
Merrill, Douglas G
2014-06-01
Although the nature of ambulatory surgery has changed over the years, the ideal role of the medical director mirrors its earliest iterations, focusing on excellent customer service and high quality of care. These efforts are supported by 3 modern methods of quality management borrowed from industry: intentional process improvement, standard care pathways, and monitoring outcomes to determine the efficacy of each. These methods are critical to master in order to lead the facility and providers to the highest quality of care and service. Copyright © 2014 Elsevier Inc. All rights reserved.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Preparations are underway to remove a protective shipping container from around NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, enclosed in a protective shipping container, is delivered by truck to the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
1980-05-01
York 10598 Technical assistance of F.L. Pesavento and J.A. Calse Typed by Steila B. Havreluk (3277) Abstract: Chemically vapor deposited (CVD) Si rich...wish to acknowledge the critical reading of this manuscript by D.R. Young and M.I. Nathan; the technical assistance of F.L. Pesavento and L.A. Calise...rendered by J.A. Calise and F.L. Pesavento . Samples have been prepared by the I.B.M. Yorktown Si Process Facility and the work has been supported in part
Johnson Space Center: Workmanship Training
NASA Technical Reports Server (NTRS)
Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Becky
2015-01-01
Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Agency-wide NASA Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include "hands-on" training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, surface mount technology (SMT), crimping, conformal coating, and fiber-optic terminations.
NASA Technical Reports Server (NTRS)
Patterson, Ashley; Sikes, Larry; Corbin, Cheryl; Rucka, Rebecca
2015-01-01
Special processes require special skills, knowledge and experienced application. For over 15 years, the NASA Johnson Space Center's Receiving, Inspection and Test Facility (RITF) has provided Workmanship Standards compliance training, issuing more than 500 to 800 training completion certificates annually. It is critical that technicians and inspectors are trained and that they maintain their proficiency to implement the applicable standards and specifications. Training services include 'hands-on' training to engineers, technicians, and inspectors in the areas of electrostatic discharge (ESD), soldering, fiber optics, lithium battery handling, torque and wire safety, and wire wrapping.
2010-08-10
CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA's Kennedy Space Center in Florida, a thermal protection system technician points to an area on space shuttle Endeavour's underside that may require tile replacement. As the final planned mission of the Space Shuttle Program, Endeavour and its crew will deliver the Alpha Magnetic Spectrometer, as well as critical spare components to the station on the STS-134 mission targeted for launch Feb. 26, 2011. For more information visit, http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Frankie Martin
Basic Energy Sciences Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2016-01-04
The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less
NASA's Software Safety Standard
NASA Technical Reports Server (NTRS)
Ramsay, Christopher M.
2005-01-01
NASA (National Aeronautics and Space Administration) relies more and more on software to control, monitor, and verify its safety critical systems, facilities and operations. Since the 1960's there has hardly been a spacecraft (manned or unmanned) launched that did not have a computer on board that provided vital command and control services. Despite this growing dependence on software control and monitoring, there has been no consistent application of software safety practices and methodology to NASA's projects with safety critical software. Led by the NASA Headquarters Office of Safety and Mission Assurance, the NASA Software Safety Standard (STD-18l9.13B) has recently undergone a significant update in an attempt to provide that consistency. This paper will discuss the key features of the new NASA Software Safety Standard. It will start with a brief history of the use and development of software in safety critical applications at NASA. It will then give a brief overview of the NASA Software Working Group and the approach it took to revise the software engineering process across the Agency.
NASA Technical Reports Server (NTRS)
1986-01-01
The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.
Methods for nuclear air-cleaning-system accident-consequence assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrae, R.W.; Bolstad, J.W.; Gregory, W.S.
1982-01-01
This paper describes a multilaboratory research program that is directed toward addressing many questions that analysts face when performing air cleaning accident consequence assessments. The program involves developing analytical tools and supportive experimental data that will be useful in making more realistic assessments of accident source terms within and up to the atmospheric boundaries of nuclear fuel cycle facilities. The types of accidents considered in this study includes fires, explosions, spills, tornadoes, criticalities, and equipment failures. The main focus of the program is developing an accident analysis handbook (AAH). We will describe the contents of the AAH, which include descriptionsmore » of selected nuclear fuel cycle facilities, process unit operations, source-term development, and accident consequence analyses. Three computer codes designed to predict gas and material propagation through facility air cleaning systems are described. These computer codes address accidents involving fires (FIRAC), explosions (EXPAC), and tornadoes (TORAC). The handbook relies on many illustrative examples to show the analyst how to approach accident consequence assessments. We will use the FIRAC code and a hypothetical fire scenario to illustrate the accident analysis capability.« less
Influencial factors in thermographic analysis in substations
NASA Astrophysics Data System (ADS)
Zarco-Periñán, Pedro J.; Martínez-Ramos, José L.
2018-05-01
Thermography is one of the best predictive maintenance tools available due to its low cost, fast implementation and effectiveness of the results obtained. The detected hot spots enable serious incidents to be prevented, both in the facilities and equipment where they have been located. In accordance with the criticality of such points, the repair is carried out with greater or lesser urgency. However, for detection to remain reliable, the facility must meet a set of requirements that are normally assumed, otherwise hot spots cannot be detected correctly and will subsequently cause unwanted defects. This paper analyses three aspects that influence the reliability of the results obtained: the minimum percentage of load that a circuit must contain in order to be able to locate all the hot spots therein; the minimum waiting time from when an item of equipment or facility is energized until a thermographic inspection can be carried out with a complete guarantee of hot spot detection; and the influence on the generation of hot spots exerted by the tightening torque realized in the assembly process.
Ponce-de-Leon, Samuel; Velazquez-Fernandez, Ruth; Bugarin-González, Jose; García-Bañuelos, Pedro; Lopez-Sotelo, Angelica; Jimenez-Corona, María-Eugenia; Padilla-Catalan, Francisco; Cervantes-Rosales, Rocio
2011-07-01
The Mexican Government developed a plan in 2004 for pandemic influenza preparedness that included local production of influenza vaccine. To achieve this, an agreement was concluded between Birmex - a state-owned vaccine manufacturer - and sanofi pasteur, a leading developer of vaccine technology. Under this agreement, sanofi pasteur will establish a facility in Mexico to produce antigen for up to 30 million doses of egg-based seasonal vaccine per year, and Birmex will build a facility to formulate, fill and package the inactivated split-virion influenza vaccine. As at November 2010, the sanofi pasteur facility has been completed and the Birmex plant is under construction. Most of the critical equipment has been purchased and is in the process of validation. In addition to intensive support from sanofi pasteur for the transfer of the technology, the project is supported by the Mexican Ministry of Health, complemented by Birmex's own budget and grants from the WHO developing country influenza technology transfer project. Copyright © 2011. Published by Elsevier Ltd.
Low-background Gamma Spectroscopy at Sanford Underground Laboratory
NASA Astrophysics Data System (ADS)
Chiller, Christopher; Alanson, Angela; Mei, Dongming
2014-03-01
Rare-event physics experiments require the use of material with unprecedented radio-purity. Low background counting assay capabilities and detectors are critical for determining the sensitivity of the planned ultra-low background experiments. A low-background counting, LBC, facility has been built at the 4850-Level Davis Campus of the Sanford Underground Research Facility to perform screening of material and detector parts. Like many rare event physics experiments, our LBC uses lead shielding to mitigate background radiation. Corrosion of lead brick shielding in subterranean installations creates radon plate-out potential as well as human risks of ingestible or respirable lead compounds. Our LBC facilities employ an exposed lead shield requiring clean smooth surfaces. A cleaning process of low-activity silica sand blasting and borated paraffin hot coating preservation was employed to guard against corrosion due to chemical and biological exposures. The resulting lead shield maintains low background contribution integrity while fully encapsulating the lead surface. We report the performance of the current LBC and a plan to develop a large germanium well detector for PMT screening. Support provided by Sd governors research center-CUBED, NSF PHY-0758120 and Sanford Lab.
Lea, Emma J; Andrews, Sharon; Stronach, Megan; Marlow, Annette; Robinson, Andrew L
2017-07-01
To describe whether an action research approach can be used to build capacity of residential aged care facility staff to support undergraduate nursing students' clinical placements in residential aged care facilities, using development of an orientation programme as an exemplar. Aged care facilities are unpopular sites for nursing students' clinical placements. A contributing factor is the limited capacity of staff to provide students with a positive placement experience. Strategies to build mentor capability to shape student placements and support learning and teaching are critical if nursing students are to have positive placements that attract them to aged care after graduation, an imperative given the increasing care needs of the ageing population worldwide. Action research approach employing mixed-methods data collection (primarily qualitative with a quantitative component). Aged care facility staff (n = 32) formed a mentor group at each of two Tasmanian facilities and met regularly to support undergraduate nursing students (n = 40) during placements. Group members planned, enacted, reviewed and reflected on orientation procedures to welcome students, familiarise them with the facility and prepare them for their placement. Data comprised transcripts from these and parallel student meetings, and orientation data from student questionnaires from two successive placement periods (2011/2012). Problems were identified in the orientation processes for the initial student placements. Mentors implemented a revised orientation programme. Evaluation demonstrated improved programme outcomes for students regarding knowledge of facility operations, their responsibilities and emergency procedures. Action research provides an effective approach to engage aged care facility staff to build their capacity to support clinical placements. Building capacity in the aged care workforce is vital to provide appropriate care for residents with increasing care needs. © 2016 John Wiley & Sons Ltd.
An, Selena J; George, Asha S; LeFevre, Amnesty E; Mpembeni, Rose; Mosha, Idda; Mohan, Diwakar; Yang, Ann; Chebet, Joy; Lipingu, Chrisostom; Baqui, Abdullah H; Killewo, Japhet; Winch, Peter J; Kilewo, Charles
2015-10-04
Integration of HIV into RMNCH (reproductive, maternal, newborn and child health) services is an important process addressing the disproportionate burden of HIV among mothers and children in sub-Saharan Africa. We assess the structural inputs and processes of care that support HIV testing and counselling in routine antenatal care to understand supply-side dynamics critical to scaling up further integration of HIV into RMNCH services prior to recent changes in HIV policy in Tanzania. This study, as a part of a maternal and newborn health program evaluation in Morogoro Region, Tanzania, drew from an assessment of health centers with 18 facility checklists, 65 quantitative and 57 qualitative provider interviews, and 203 antenatal care observations. Descriptive analyses were performed with quantitative data using Stata 12.0, and qualitative data were analyzed thematically with data managed by Atlas.ti. Limitations in structural inputs, such as infrastructure, supplies, and staffing, constrain the potential for integration of HIV testing and counselling into routine antenatal care services. While assessment of infrastructure, including waiting areas, appeared adequate, long queues and small rooms made private and confidential HIV testing and counselling difficult for individual women. Unreliable stocks of HIV test kits, essential medicines, and infection prevention equipment also had implications for provider-patient relationships, with reported decreases in women's care seeking at health centers. In addition, low staffing levels were reported to increase workloads and lower motivation for health workers. Despite adequate knowledge of counselling messages, antenatal counselling sessions were brief with incomplete messages conveyed to pregnant women. In addition, coping mechanisms, such as scheduling of clinical activities on different days, limited service availability. Antenatal care is a strategic entry point for the delivery of critical tests and counselling messages and the framing of patient-provider relations, which together underpin care seeking for the remaining continuum of care. Supply-side deficiencies in structural inputs and processes of delivering HIV testing and counselling during antenatal care indicate critical shortcomings in the quality of care provided. These must be addressed if integrating HIV testing and counselling into antenatal care is to result in improved maternal and newborn health outcomes.
Relevance of an academic GMP Pan-European vector infra-structure (PEVI).
Cohen-Haguenauer, O; Creff, N; Cruz, P; Tunc, C; Aïuti, A; Baum, C; Bosch, F; Blomberg, P; Cichutek, K; Collins, M; Danos, O; Dehaut, F; Federspiel, M; Galun, E; Garritsen, H; Hauser, H; Hildebrandt, M; Klatzmann, D; Merten, O W; Montini, E; O'Brien, T; Panet, A; Rasooly, L; Scherman, D; Schmidt, M; Schweitzer, M; Tiberghien, P; Vandendriessche, T; Ziehr, H; Ylä-Herttuala, S; von Kalle, C; Gahrton, G; Carrondo, M
2010-12-01
In the past 5 years, European investigators have played a major role in the development of clinical gene therapy. The provision of substantial funds by some individual member states to construct GMP facilities makes it an opportune time to network available gene therapy GMP facilities at an EU level. The integrated coordination of GMP production facilities and human skills for advanced gene and genetically-modified (GM) cell therapy, can dramatically enhance academic-led "First-in-man" gene therapy trials. Once proof of efficacy is gathered, technology can be transferred to the private sector which will take over further development taking advantage of knowledge and know-how. Complex technical challenges require existing production facilities to adapt to emerging technologies in a coordinated manner. These include a mandatory requirement for the highest quality of production translating gene-transfer technologies with pharmaceutical-grade GMP processes to the clinic. A consensus has emerged on the directions and priorities to adopt, applying to advanced technologies with improved efficacy and safety profiles, in particular AAV, lentivirus-based and oncolytic vectors. Translating cutting-edge research into "First-in-man" trials require that pre-normative research is conducted which aims to develop standard assays, processes and candidate reference materials. This research will help harmonise practices and quality in the production of GMP vector lots and GM-cells. In gathering critical expertise in Europe and establish conditions for interoperability, the PEVI infrastructure will contribute to the demands of the advanced therapy medicinal products* regulation and to both health and quality of life of EU-citizens.
Interactive dependency curves for resilience management.
Petit, Frédéric; Wallace, Kelly; Phillip, Julia
Physical dependencies are a fundamental consideration when assessing the resilience of an organisation and, ultimately, the resilience of a region. Every organisation needs specific resources for supporting its operations. A disruption in the supply of these resources can severely impact business continuity. It is important to characterise dependencies thoroughly when seeking to reduce the extent an organisation is directly affected by the missions, functions and operations of other organisations. The general protocol when addressing each critical resource is to determine the use for the resource, whether there are redundant services providing the resource, and what protections, backup equipment and arrangements are in place to maintain service. Finally, the criticality of the resource is determined by estimating the time it will take for the facility to experience a severe impact once primary service is lost and what percentage of facility operations can be maintained without backup service in place, as well as identifying whether any external regulations/policies are in place that require shutdown of the facility because of service disruption owing to lack of a critical resource. All of this information can be presented in the form of interactive dependency curves that help anticipate and manage the effect(s) of a disruption on critical resources supply.
47 CFR 12.4 - Reliability of covered 911 service providers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... electronic records, as long as they reflect whether critical 911 circuits are physically diverse. (7... calls and associated number or location information to the appropriate PSAP. (5) Critical 911 circuits... calls to the PSAP(s). Critical 911 circuits also include ALI and ANI facilities that originate at the...
Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish
2017-10-01
In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.
Reinforcing marginality? Maternal health interventions in rural Nicaragua.
Kvernflaten, Birgit
2017-06-23
To achieve Millennium Development Goal 5 on maternal health, many countries have focused on marginalized women who lack access to care. Promoting facility-based deliveries to ensure skilled birth attendance and emergency obstetric care has become a main measure for preventing maternal deaths, so women who opt for home births are often considered 'marginal' and in need of targeted intervention. Drawing upon ethnographic data from Nicaragua, this paper critically examines the concept of marginality in the context of official efforts to increase institutional delivery amongst the rural poor, and discusses lack of access to health services among women living in peripheral areas as a process of marginalization. The promotion of facility birth as the new norm, in turn, generates a process of 're-marginalization', whereby public health officials morally disapprove of women who give birth at home, viewing them as non-compliers and a problem to the system. In rural Nicaragua, there is a discrepancy between the public health norm and women's own preferences and desires for home birth. These women live at the margins also in spatial and societal terms, and must relate to a health system they find incapable of providing good, appropriate care. Strong public pressure for institutional delivery makes them feel distressed and pressured. Paradoxically then, the aim of including marginal groups in maternal health programmes engenders resistance to facility birth.
Safeguards Approaches for Black Box Processes or Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John
2013-09-25
The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. Thismore » analysis identified the necessary conditions for safeguardability of black box processes and facilities.« less
Scientific Computing Strategic Plan for the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, Eric Todd
Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less
Strategic workforce planning for a multihospital, integrated delivery system.
Datz, David; Hallberg, Colleen; Harris, Kathy; Harrison, Lisa; Samples, Patience
2012-01-01
Banner Health has long recognized the need to anticipate, beyond the immediate operational realities or even the annual budgeting projection exercises, the necessary workforce needs of the future. Thus, in 2011, Banner implemented a workforce planning model that included structures, processes, and tools for predicting workforce needs, with particular focus on identified critical systemwide practice areas. The model represents the incorporation of labor management tools and processes with more strategic, broad-view, long-term assessment and planning mechanisms. The sequential tying of the workforce planning lifecycle with the organization's strategy and financial planning process supports alignment of goals, objectives, and resource allocation. Collaboration among strategy, finance, human resources, and operations has provided us with the ability to identify critical position groups based on 3-year strategic priorities. By engaging leaders from across the organization, focusing on activities at facility, regional, and system levels, and building in mechanisms for accountability, we are now engaged in continuous evaluations of our delivery models, the competencies and preparations necessary for the staff to effectively function within those delivery models, and developing and implementing action plans designed to ensure adequate numbers of the staff whose competencies will be suited to the work expected of them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, Calvin Mitchell
In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less
2003-01-10
This final rule amends the fire safety standards for hospitals, long-term care facilities, intermediate care facilities for the mentally retarded, ambulatory surgery centers, hospices that provide inpatient services, religious nonmedical health care institutions, critical access hospitals, and Programs of All-Inclusive Care for the Elderly facilities. Further, this final rule adopts the 2000 edition of the Life Safety Code and eliminates references in our regulations to all earlier editions.
Extreme plasma states in laser-governed vacuum breakdown.
Efimenko, Evgeny S; Bashinov, Aleksei V; Bastrakov, Sergei I; Gonoskov, Arkady A; Muraviev, Alexander A; Meyerov, Iosif B; Kim, Arkady V; Sergeev, Alexander M
2018-02-05
Triggering vacuum breakdown at laser facility is expected to provide rapid electron-positron pair production for studies in laboratory astrophysics and fundamental physics. However, the density of the produced plasma may cease to increase at a relativistic critical density, when the plasma becomes opaque. Here, we identify the opportunity of breaking this limit using optimal beam configuration of petawatt-class lasers. Tightly focused laser fields allow generating plasma in a small focal volume much less than λ 3 and creating extreme plasma states in terms of density and produced currents. These states can be regarded to be a new object of nonlinear plasma physics. Using 3D QED-PIC simulations we demonstrate a possibility of reaching densities over 10 25 cm -3 , which is an order of magnitude higher than expected earlier. Controlling the process via initial target parameters provides an opportunity to reach the discovered plasma states at the upcoming laser facilities.
Understanding Risk Tolerance and Building an Effective Safety Culture
NASA Technical Reports Server (NTRS)
Loyd, David
2018-01-01
Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...
2018-02-05
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications
NASA Technical Reports Server (NTRS)
Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.
2002-01-01
Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less
Improving and analyzing signage within a healthcare setting.
Rousek, J B; Hallbeck, M S
2011-11-01
Healthcare facilities are increasingly utilizing pictograms rather than text signs to help direct people. The purpose of this study was to analyze a wide variety of standardized healthcare pictograms and the effects of color contrasts and complexity for participants with both normal and impaired vision. Fifty (25 males, 25 females) participants completed a signage recognition questionnaire and identified pictograms while wearing vision simulators to represent specific visual impairment. The study showed that certain color contrasts, complexities and orientations can help or hinder comprehension of signage for people with and without visual impairment. High contrast signage with consistent pictograms involving human figures (not too detailed or too abstract) is most identifiable. Standardization of healthcare signage is recommended to speed up and aid the cognitive thought process in detecting signage and determining meaning. These fundamental signage principles are critical in producing an efficient, universal wayfinding system for healthcare facilities. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
International Ultraviolet Explorer Observatory operations
NASA Technical Reports Server (NTRS)
1985-01-01
This volume contains the final report for the International Ultraviolet Explorer IUE Observatory Operations contract. The fundamental operational objective of the International Ultraviolet Explorer (IUE) program is to translate competitively selected observing programs into IUE observations, to reduce these observations into meaningful scientific data, and then to present these data to the Guest Observer in a form amenable to the pursuit of scientific research. The IUE Observatory is the key to this objective since it is the central control and support facility for all science operations functions within the IUE Project. In carrying out the operation of this facility, a number of complex functions were provided beginning with telescope scheduling and operation, proceeding to data processing, and ending with data distribution and scientific data analysis. In support of these critical-path functions, a number of other significant activities were also provided, including scientific instrument calibration, systems analysis, and software support. Routine activities have been summarized briefly whenever possible.
Key Value Considerations for Consultant Pharmacists.
Meyer, Lee; Perry, Ronald G; Rhodus, Susan M; Stearns, Wendy
2016-07-01
Managing the efficiency and costs of residents' drug regimens outside the acute-care hospital and through transitions of care requires a toolbox filled with cost-control tools and careful collaboration among the pharmacy provider(s), facility staff, and the consultant/senior care pharmacist. This article will provide the reader with key long-term care business strategies that affect the profitability of the pharmacy provider in various care settings while, at the same time, ensuring optimal therapy for residents as they transition across levels of care. Readers can take away ideas on how to access critical information, what they can do with this information, and how they can improve the overall care process. Four experts in various aspects of pharmacy management share their insights on pharmacy practice issues including formulary management, performance metrics, short-cycle dispensing challenges/solutions, cost-control measures, facility surveys, billing practices, medication reconciliation, prospective medication reviews, and transitions of care.
Gianico, Andrea; Bertanza, Giorgio; Braguglia, Camilla M; Canato, Matteo; Gallipoli, Agata; Laera, Giuseppe; Levantesi, Caterina; Mininni, Giuseppe
2016-05-01
Sewage sludge processing is a key issue in water resource recovery facilities due to the inefficacy of conventional treatments to produce high quality biosolids to be safely used in agriculture. Under this framework, the performances of several enhanced stabilization processes, namely ultrasound-pretreated Mesophilic Anaerobic Digestion (US+MAD), thermophilic anaerobic digestion (TAD), thermal-pretreated TAD (TH+TAD) and ultrasound-pretreated inverse Temperature Phased Anaerobic Digestion (US+iTPAD) have been investigated. Such enhanced processes resulted in higher biogas yields and higher destruction of pathogens with respect to conventional MAD process, thus suggesting their feasibility in full-scale implementation perspectives. A procedure for technical-economic comparison of new sludge processing lines against conventional ones (benchmarking) was developed, based on the definition of technical issues (e.g. reliability, complexity, etc.) which are rated for each situation. Moreover, capital and operating costs were estimated. The enhanced processes analyzed in this work showed some potentially critical items, mainly related to energy balance and reagent consumption.
Using Simulation to Implement an OR Cardiac Arrest Crisis Checklist.
Dagey, Darleen
2017-01-01
Crisis checklists are cognitive aids used to coordinate care during critical events. Simulation training is a method to validate process improvement initiatives such as checklist implementation. In response to concerns staff members expressed regarding their comfort level when responding to infrequent occurrences such as cardiac arrest and other OR emergencies, the OR Comprehensive Unit-based Safety Program team at our facility decided to institute the use of crisis checklists in the OR during critical events. We provided 90-minute education sessions, simulation opportunities, and debriefings to help staff members become more comfortable using these checklists. Based on program evaluations, 80% of staff members who participated in the training expressed an increased comfort level when caring for a patient in cardiac arrest. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Access Control Management for SCADA Systems
NASA Astrophysics Data System (ADS)
Hong, Seng-Phil; Ahn, Gail-Joon; Xu, Wenjuan
The information technology revolution has transformed all aspects of our society including critical infrastructures and led a significant shift from their old and disparate business models based on proprietary and legacy environments to more open and consolidated ones. Supervisory Control and Data Acquisition (SCADA) systems have been widely used not only for industrial processes but also for some experimental facilities. Due to the nature of open environments, managing SCADA systems should meet various security requirements since system administrators need to deal with a large number of entities and functions involved in critical infrastructures. In this paper, we identify necessary access control requirements in SCADA systems and articulate access control policies for the simulated SCADA systems. We also attempt to analyze and realize those requirements and policies in the context of role-based access control that is suitable for simplifying administrative tasks in large scale enterprises.
40 CFR 52.279 - Food processing facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...
40 CFR 52.279 - Food processing facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...
40 CFR 52.279 - Food processing facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities... emissions from food processing facilities without any accompanying analyses demonstrating that these...
40 CFR 52.279 - Food processing facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions from food processing facilities without any accompanying analyses demonstrating that these... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Food processing facilities. 52.279... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.279 Food processing facilities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowes, Elizabeth A.
2012-07-01
Evaluating operational incidents can provide a window into the drivers most critical to establishing and maintaining a strong safety culture, thereby minimizing the potential project risk associated with safety incidents. By examining U.S. Department of Energy (DOE) versus U.S. Army drivers in terms of regulatory and contract requirements, programs implemented to address the requirements, and example case studies of operational events, a view of the elements most critical to making a positive influence on safety culture is presented. Four case studies are used in this evaluation; two from DOE and two from U.S. Army experiences. Although the standards guiding operationsmore » at these facilities are different, there are many similarities in the level of hazards, as well as the causes and the potential consequences of the events presented. Two of the incidents examined, one from a DOE operation and the other from a U.S. Army facility, resulted in workers receiving chemical burns. The remaining two incidents are similar in that significant conduct of operations failures occurred resulting in high-level radioactive waste (in the case of the DOE facility) or chemical agent (in the case of the Army facility) being transferred outside of engineering controls. A review of the investigation reports for all four events indicates the primary causes to be failures in work planning leading to ineffective hazard evaluation and control, lack of procedure adherence, and most importantly, lack of management oversight to effectively reinforce expectations for safe work planning and execution. DOE and Army safety programs are similar, and although there are some differences in contractual requirements, the expectations for safe performance are essentially the same. This analysis concludes that instilling a positive safety culture comes down to management leadership and engagement to (1) cultivate an environment that values a questioning attitude and (2) continually reinforce expectations for the appropriate level of rigor in work planning and procedure adherence. A review of the root causes and key contributing causes to the events indicate: - Three of the four root cause analyses cite lack of management engagement (oversight, involvement, ability to recognize issues, etc.) as a root cause to the events. - Two of the four root cause analyses cite work planning failures as a root cause to the events and all cause analyses reflect work planning failures as contributing factors to the events. - All events with the exception of the Tuba City plant shutdown indicate procedure noncompliance as a key contributor; in the case of Tuba City the procedure issues were primarily related to a lack of procedures, or a lack of sufficiently detailed procedures. - All events included discussion or suggestion of a lack of a questioning attitude, either on the part of management/supervision, work planners, or workers. This analysis suggests that the most critical drivers to safety culture are: - Management engagement, - Effective work planning and procedures, and - Procedure adherence with a questioning attitude to ensure procedural problems are identified and fixed. In high-hazard operational environments the importance of robust work planning processes and procedure adherence cannot be overstated. However, having the processes by themselves is not enough. Management must actively engage in expectation setting and ensure work planning that meets expectations for hazard analysis and control, develop a culture that encourages incident reporting and a questioning attitude, and routinely observe work performance to reinforce expectations for adherence to procedures/work control documents. In conclusion, the most critical driver to achieving a workforce culture that supports safe and effective project performance can be summarized as follows: 'Management engagement to continually reinforce expectations for work planning processes and procedure adherence in an environment that cultivates a questioning attitude'. (authors)« less
Improved shallow trench isolation and gate process control using scatterometry based metrology
NASA Astrophysics Data System (ADS)
Rudolph, P.; Bradford, S. M.
2005-05-01
The ability to control critical dimensions of structures on semiconductor devices is essential to improving die yield and device performance. As geometries shrink, accuracy of the metrology equipment has increasingly become a contributing factor to the inability to detect shifts which result in yield loss. Scatterometry provides optical measurement that better enables process control of critical dimensions. Superior precision, accuracy, and higher throughput can be achieved more cost effectively through the use of this technology in production facilities. This paper outlines the implementation of Scatterometry based metrology in a production facility. The accuracy advantage it has over conventional Scanning Electron Microscope (SEM) measurement is presented. The Scatterometry tool used has demonstrated repeatability on the order of 3σ < 1 nm at STI-Etch-FICD for CD and Trench Depth (TD), and Side Wall Angle (SWA) measurements to within 0.1 degrees. Poly CD also shows 3σ < 1 nm, and poly thickness measurement 3σ < 2.5 Å. Scatterometry has capabilities which include measurement of CD, structure height and trench depth, Sidewall angle (SWA), and film thickness. The greater accuracy and the addition of in-situ Trench depth and sidewall angle have provided new measurement capabilities. There are inherent difficulties in implementing scatterometry in production wafer fabs. Difficulties with photo resist measurements, film characterization and stack set-up will be discussed. In addition, there are challenges due to the quantity data generated, in how to organize and store this data effectively. A comparison of the advantages and shortcomings of the method are presented.
NASA Astrophysics Data System (ADS)
de Alwis Pitts, Dilkushi A.; So, Emily
2017-12-01
The availability of Very High Resolution (VHR) optical sensors and a growing image archive that is frequently updated, allows the use of change detection in post-disaster recovery and monitoring for robust and rapid results. The proposed semi-automated GIS object-based method uses readily available pre-disaster GIS data and adds existing knowledge into the processing to enhance change detection. It also allows targeting specific types of changes pertaining to similar man-made objects such as buildings and critical facilities. The change detection method is based on pre/post normalized index, gradient of intensity, texture and edge similarity filters within the object and a set of training data. More emphasis is put on the building edges to capture the structural damage in quantifying change after disaster. Once the change is quantified, based on training data, the method can be used automatically to detect change in order to observe recovery over time in potentially large areas. Analysis over time can also contribute to obtaining a full picture of the recovery and development after disaster, thereby giving managers a better understanding of productive management and recovery practices. The recovery and monitoring can be analyzed using the index in zones extending from to epicentre of disaster or administrative boundaries over time.
Field calibration of orifice meters for natural gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, V.C.; Shen, J.J.S.
1989-03-01
This paper presents the orifice calibration results for nominal 15.24, 10.16, and 5.08-cm (6,4,2-in.) orifice meters conducted at the Chevron's Sand Hills natural gas flow measurement facility in Crane, Texas. Over 200 test runs were collected in a field environment to study the accuracy of the orifice meters. Data were obtained at beta ratios ranging from 0.12 to 0.74 at the nominal conditions of 4576 kPa and 27{sup 0}C (650 psig and 80{sup 0}F) with a 0.57 specific gravity processed, pipeline quality natural gas. A bank of critical flow nozzles was used as the flow rate proving device to calibratemore » the orifice meters. Orifice discharge coefficients were computed with ANSI/API 2530-1985 (AGA3) and ISO 5167/ASME MFC-3M-1984 equations for every set of data points. With the orifice bore Reynolds numbers ranging from 1 to 9 million, the Sand Hills calibration data bridge the gap between the Ohio State water data at low Reynolds numbers and Chevron's high Reynolds number test data taken at a large test facility in Venice, Louisiana. The test results also successfully demonstrate that orifice meters can be accurately proved with critical flow nozzles under realistic field conditions.« less
Leith, William S.; Benz, Harley M.; Herrmann, Robert B.
2011-01-01
Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.
An effective combined environment test facility
NASA Technical Reports Server (NTRS)
Deitch, A.
1980-01-01
A critical missile component required operational verification while subjected to combined environments within and beyond flight parameters. The testing schedule necessitated the design and fabrication of a test facility in order to provide the specified temperatures combined with humidity, altitude and vibration.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
... being treated/produced. List how many mills have been fumigated with methyl bromide over the last three... facilities. Dried Cured Pork Applicants must list how many facilities have been fumigated with methyl bromide...
Characterizing Chain Processes in Visible Light Photoredox Catalysis
Cismesia, Megan A.
2015-01-01
The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708
Faster, better, cheaper: lean labs are the key to future survival.
Bryant, Patsy M; Gulling, Richard D
2006-03-28
Process improvement techniques have been used in manufacturing for many years to rein in costs and improve quality. Health care is now grappling with similar challenges. The Department of Laboratory Services at Good Samaritan Hospital, a 560-bed facility in Dayton, OH, used the Lean process improvement method in a 12-week project to streamline its core laboratory processes. By analyzing the flow of samples through the system and identifying value-added and non-value-added steps, both in the laboratory and during the collection process, Good Samaritan's project team redesigned systems and reconfigured the core laboratory layout to trim collection-to-results time from 65 minutes to 40 minutes. As a result, virtually all morning results are available to physicians by 7 a.m., critical values are called to nursing units within 30 minutes, and core laboratory services are optimally staffed for maximum cost-effectiveness.
Nuclear criticality safety staff training and qualifications at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monahan, S.P.; McLaughlin, T.P.
1997-05-01
Operations involving significant quantities of fissile material have been conducted at Los Alamos National Laboratory continuously since 1943. Until the advent of the Laboratory`s Nuclear Criticality Safety Committee (NCSC) in 1957, line management had sole responsibility for controlling criticality risks. From 1957 until 1961, the NCSC was the Laboratory body which promulgated policy guidance as well as some technical guidance for specific operations. In 1961 the Laboratory created the position of Nuclear Criticality Safety Office (in addition to the NCSC). In 1980, Laboratory management moved the Criticality Safety Officer (and one other LACEF staff member who, by that time, wasmore » also working nearly full-time on criticality safety issues) into the Health Division office. Later that same year the Criticality Safety Group, H-6 (at that time) was created within H-Division, and staffed by these two individuals. The training and education of these individuals in the art of criticality safety was almost entirely self-regulated, depending heavily on technical interactions between each other, as well as NCSC, LACEF, operations, other facility, and broader criticality safety community personnel. Although the Los Alamos criticality safety group has grown both in size and formality of operations since 1980, the basic philosophy that a criticality specialist must be developed through mentoring and self motivation remains the same. Formally, this philosophy has been captured in an internal policy, document ``Conduct of Business in the Nuclear Criticality Safety Group.`` There are no short cuts or substitutes in the development of a criticality safety specialist. A person must have a self-motivated personality, excellent communications skills, a thorough understanding of the principals of neutron physics, a safety-conscious and helpful attitude, a good perspective of real risk, as well as a detailed understanding of process operations and credible upsets.« less
ETR CRITICAL FACILITY, TRA654. CONTEXTUAL VIEW. CAMERA ON ROOF OF ...
ETR CRITICAL FACILITY, TRA-654. CONTEXTUAL VIEW. CAMERA ON ROOF OF MTR BUILDING AND FACING SOUTH. ETR AND ITS COOLANT BUILDING AT UPPER PART OF VIEW. ETR COOLING TOWER NEAR TOP EDGE OF VIEW. EXCAVATION AT CENTER IS FOR ETR CF. CENTER OF WHICH WILL CONTAIN POOL FOR REACTOR. NOTE CHOPPER TUBE PROCEEDING FROM MTR IN LOWER LEFT OF VIEW, DIAGONAL TOWARD LEFT. INL NEGATIVE NO. 56-4227. Jack L. Anderson, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
15 CFR 923.13 - Energy facility planning process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy facilities...
NASA/Air Force/Environmental Protection Agency Interagency Depainting Study
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia
1998-01-01
Many popular and widely used paint stripping products have traditionally contained methylene chloride as their main active ingredient. However, the Environmental Protection Agency (EPA) has critically curved the allowable use of methylene chloride under the National Emission Standard for Hazardous Air Pollutants regulating Aerospace Manufacturing and Rework Facilities . Compliance with this rule was mandatory by September 1998 for affected facilities. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed both effective and environmentally benign. On behalf of the EPA and in cooperation with the United States Air Force, the National Aeronautics and Space Administration is conducting a technical assessment of several alternative technologies ( i.e. : chemical stripping, two CO2 blasting processes, CO2 xenon lamp coating removal, CO2 Laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens. Each depainting process has been assigned a specimen lot, all of which have completed three to five stripping cycles. Numerous metallurgical evaluations are underway to assess the impact of these alternative depainting processes upon the structural integrity of the substrate.
Evaluation of Cask Drop Criticality Issues at K Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDMANN, L.H.
An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuummore » Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.« less
ERIC Educational Resources Information Center
Gagnon, Joseph C.; Read, Nicholas W.; Gonsoulin, Simon
2015-01-01
Access to high-quality education for youth is critical to their long-term success as adults. Youth in juvenile justice secure care facilities, however, too often do not have access to the high-quality education and related supports and services that they need, particularly youth with disabilities residing in such facilities. This brief discusses…
Launch Pad Coatings for Smart Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.
2010-01-01
Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.
Dense GeV electron–positron pairs generated by lasers in near-critical-density plasmas
Zhu, Xing-Long; Yu, Tong-Pu; Sheng, Zheng-Ming; Yin, Yan; Turcu, Ion Cristian Edmond; Pukhov, Alexander
2016-01-01
Pair production can be triggered by high-intensity lasers via the Breit–Wheeler process. However, the straightforward laser–laser colliding for copious numbers of pair creation requires light intensities several orders of magnitude higher than possible with the ongoing laser facilities. Despite the numerous proposed approaches, creating high-energy-density pair plasmas in laboratories is still challenging. Here we present an all-optical scheme for overdense pair production by two counter-propagating lasers irradiating near-critical-density plasmas at only ∼1022 W cm−2. In this scheme, bright γ-rays are generated by radiation-trapped electrons oscillating in the laser fields. The dense γ-photons then collide with the focused counter-propagating lasers to initiate the multi-photon Breit–Wheeler process. Particle-in-cell simulations indicate that one may generate a high-yield (1.05 × 1011) overdense (4 × 1022 cm−3) GeV positron beam using 10 PW scale lasers. Such a bright pair source has many practical applications and could be basis for future compact high-luminosity electron–positron colliders. PMID:27966530
Highly effective cystic fibrosis clinical research teams: critical success factors.
Retsch-Bogart, George Z; Van Dalfsen, Jill M; Marshall, Bruce C; George, Cynthia; Pilewski, Joseph M; Nelson, Eugene C; Goss, Christopher H; Ramsey, Bonnie W
2014-08-01
Bringing new therapies to patients with rare diseases depends in part on optimizing clinical trial conduct through efficient study start-up processes and rapid enrollment. Suboptimal execution of clinical trials in academic medical centers not only results in high cost to institutions and sponsors, but also delays the availability of new therapies. Addressing the factors that contribute to poor outcomes requires novel, systematic approaches tailored to the institution and disease under study. To use clinical trial performance metrics data analysis to select high-performing cystic fibrosis (CF) clinical research teams and then identify factors contributing to their success. Mixed-methods research, including semi-structured qualitative interviews of high-performing research teams. CF research teams at nine clinical centers from the CF Foundation Therapeutics Development Network. Survey of site characteristics, direct observation of team meetings and facilities, and semi-structured interviews with clinical research team members and institutional program managers and leaders in clinical research. Critical success factors noted at all nine high-performing centers were: 1) strong leadership, 2) established and effective communication within the research team and with the clinical care team, and 3) adequate staff. Other frequent characteristics included a mature culture of research, customer service orientation in interactions with study participants, shared efficient processes, continuous process improvement activities, and a businesslike approach to clinical research. Clinical research metrics allowed identification of high-performing clinical research teams. Site visits identified several critical factors leading to highly successful teams that may help other clinical research teams improve clinical trial performance.
Bermúdez-Lugo, Omayra
2014-01-01
The U.S. Geological Survey (USGS) analyzes supply chains to identify and define major components of mineral and material flows from ore extraction, through intermediate forms, to a final product. Two major reasons necessitate these analyses: (1) to identify risks associated with the supply of critical and strategic minerals to the United States and (2) to provide greater supply chain transparency so that policymakers have the information necessary to ensure domestic legislation compliance. This fact sheet focuses on the latter. The USGS National Minerals Information Center has been asked by governmental and non-governmental organizations to provide information on tin, tantalum, tungsten, and gold (collectively known as “3TG minerals”) processing facilities worldwide in response to U.S. legislation aimed at removing the link between the trade in these minerals and civil unrest in the Democratic Republic of the Congo. Post beneficiation processing plants (smelters and refineries) of 3TG mineral ores and concentrates were identified by company and industry association representatives as being the link in the 3TG mineral supply chain through which these minerals can be traced to their source of origin (mine); determining the point of origin is critical to establishing a transparent conflict mineral supply chain. This fact sheet, the first in a series of 3TG mineral fact sheets, focuses on the tungsten supply chain by listing plants that consume tungsten concentrates to produce ammonium paratungstate and ferrotungsten worldwide.
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Contamination Impact of Station Brush Fire on Cleanroom Facilities
NASA Technical Reports Server (NTRS)
Carey, Phil; Blakkolb, Brian
2010-01-01
Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation.On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visualinspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments andhardware were minimally effected.Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was inimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.
Contamination impact of station brush fire on cleanroom facilities
NASA Astrophysics Data System (ADS)
Carey, Philip A.; Blakkolb, Brian K.
2010-08-01
Brush and forest fires, both naturally occurring and anthropogenic in origin, in proximity to space flight hardware processing facilities raise concerns about the threat of contamination resulting from airborne particulate and molecular components of smoke. Perceptions of the severity of the threat are possibly heightened by the high sensitivity of the human sense of smell to some components present in the smoke of burning vegetation. On August 26th, 2009, a brushfire broke out north of Pasadena, California, two miles from the Jet Propulsion Laboratory. The Station Fire destroyed over 160,000 acres, coming within a few hundred yards of JPL. Smoke concentrations on Lab were very heavy over several days. All Lab operations were halted, and measures were taken to protect personnel, critical hardware, and facilities. Evaluation of real-time cleanroom monitoring data, visual inspection of facilities, filter systems, and analysis of surface cleanliness samples revealed facility environments and hardware were minimally effected. Outside air quality easily exceeded Class Ten Million. Prefilters captured most large ash and soot; multi-stage filtration greatly minimized the impact on the HEPA/ULPA filters. Air quality in HEPA filtered spacecraft assembly cleanrooms remained within Class 10,000 specification throughout. Surface cleanliness was minimally affected, as large particles were effectively removed from the airstream, and sub-micron particles have extremely long settling rates. Approximate particulate fallout within facilities was 0.00011% area coverage/day compared to 0.00038% area coverage/day during normal operations. Deposition of condensable airborne components, as measured in real time, peaked at approximately 1.0 ng/cm2/day compared to 0.05 ng/cm2/day nominal.
Is bigger better? Driving factors of POTW performance in New York.
Rahm, Brian G; Morse, Natalie; Bowen, Michelle; Choi, Jun; Mehta, Dhaval; Vedachalam, Sridhar
2018-05-15
Like many regions around the world, New York State, USA, faces challenges in meeting wastewater treatment quality standards because of aging infrastructure, limited funding, shifting demographics and increasingly stringent environmental regulations. In recent decades construction of new wastewater treatment and distribution infrastructure in NY has most often occurred in exurban communities and suburban developments that are less dense than traditional urban cores. Here, we examine the role of size and capacity utilization on wastewater treatment effectiveness with respect to critical effluent parameters, and additionally explore which common facility engineering controls influence water quality treatment using a unique dataset of descriptive information. Our results challenge conventional wisdom, suggesting that the largest facilities (>30,000 m 3 /d), not the smallest (<300 m 3 /d), discharge TSS, BOD, and coliform at significantly higher relative effluent concentrations (i.e., the ratio of discharged concentrations to allowable limits). Capacity utilization was also positively correlated to higher concentrations of TSS, BOD, and coliform effluent concentrations in larger facilities, though those concentrations were often within regulated limits. This implies that smaller-sized facilities may perform better in terms of environmental quality, but that the largest facilities demonstrate efficiency in the sense that they are not "over-treating" wastewater while avoiding violations. Results from NY suggest that medium sized facilities (300-30,000 m 3 /d) are sophisticated enough to incorporate appropriate unit processes, and employ operators with sufficient training and oversight, to reach treatment outcomes that are both reliable and of high quality. Copyright © 2018 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2011 CFR
2011-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2010 CFR
2010-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2013 CFR
2013-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
Code of Federal Regulations, 2014 CFR
2014-07-01
... an energy or mining facility, a storage facility or a seafood processing facility, or when secured to a storage facility or a seafood processing facility, or when secured to the bed of the ocean...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.
Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less
Becker, S; Pristave, R J
1995-01-01
This article provides an overview of the critical business and legal issues encountered in sales of practices, ambulatory surgery centers, and dialysis facilities. Specifically, it discusses prototypical valuations, transaction structures, and the principal legal issues that must be addressed.
DETECTION OF TOXICANT(S) ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack is monitoring for toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after building decontaminatio...
DETECTION OF TOXICANTS ON BUILDING SURFACES FOLLOWING CHEMICAL ATTACK
A critical step prior to reoccupation of any facility following a chemical attack will be the monitoring of toxic compounds on surfaces within that facility. Low level detection of toxicant(s) is necessary to ensure that these compounds have been eliminated after decontamination...
36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology and blast standards. Immediate review of ongoing projects may generate savings in the... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...
36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities
Code of Federal Regulations, 2013 CFR
2013-07-01
... construction projects should be reviewed if possible, to incorporate current technology and blast standards... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...
36 CFR Appendix A to Part 1234 - Minimum Security Standards for Level III Federal Facilities
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology and blast standards. Immediate review of ongoing projects may generate savings in the... critical systems (alarm systems, radio communications, computer facilities, etc.) Required. Occupant... all exterior windows (shatter protection) Recommended. Review current projects for blast standards...
NAS-current status and future plans
NASA Technical Reports Server (NTRS)
Bailey, F. R.
1987-01-01
The Numerical Aerodynamic Simulation (NAS) has met its first major milestone, the NAS Processing System Network (NPSN) Initial Operating Configuration (IOC). The program has met its goal of providing a national supercomputer facility capable of greatly enhancing the Nation's research and development efforts. Furthermore, the program is fulfilling its pathfinder role by defining and implementing a paradigm for supercomputing system environments. The IOC is only the begining and the NAS Program will aggressively continue to develop and implement emerging supercomputer, communications, storage, and software technologies to strengthen computations as a critical element in supporting the Nation's leadership role in aeronautics.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Workers remove the plastic cover from NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Satellite Deploy & Light Test
2014-11-24
Workers conduct a light test on the solar arrays on NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, in the Building 1 high bay at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is targeted for early 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Preparations are underway to lift NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
A lifting device is attached to NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, to remove it from its transportation pallet at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, the second of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, one of two Materials International Space Station Experiments, or MISSE, is lowered into space shuttle Endeavour's payload bay for installation. The MISSE is part of the payload onboard Endeavour for mission STS-123. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, comes into view as the protective shipping container is lifted from around the spacecraft at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic, is transferred from its transportation pallet to a portable work stand at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Facility (SCF) turnaround Standard Mail® pieces accepted at origin before the day-zero Critical Entry Time... origin before the day-zero Critical Entry Time is 4 days when the OPD&C/F and the ADC are the same... before the day-zero Critical Entry Time is 5 days for each remaining 3-digit ZIP Code origin-destination...
State machine analysis of sensor data from dynamic processes
Cook, William R.; Brabson, John M.; Deland, Sharon M.
2003-12-23
A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Gary A.; Ford, John T.; Barber, Allison Delo
2010-11-01
Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.« less
Errors in patient specimen collection: application of statistical process control.
Dzik, Walter Sunny; Beckman, Neil; Selleng, Kathleen; Heddle, Nancy; Szczepiorkowski, Zbigniew; Wendel, Silvano; Murphy, Michael
2008-10-01
Errors in the collection and labeling of blood samples for pretransfusion testing increase the risk of transfusion-associated patient morbidity and mortality. Statistical process control (SPC) is a recognized method to monitor the performance of a critical process. An easy-to-use SPC method was tested to determine its feasibility as a tool for monitoring quality in transfusion medicine. SPC control charts were adapted to a spreadsheet presentation. Data tabulating the frequency of mislabeled and miscollected blood samples from 10 hospitals in five countries from 2004 to 2006 were used to demonstrate the method. Control charts were produced to monitor process stability. The participating hospitals found the SPC spreadsheet very suitable to monitor the performance of the sample labeling and collection and applied SPC charts to suit their specific needs. One hospital monitored subcategories of sample error in detail. A large hospital monitored the number of wrong-blood-in-tube (WBIT) events. Four smaller-sized facilities, each following the same policy for sample collection, combined their data on WBIT samples into a single control chart. One hospital used the control chart to monitor the effect of an educational intervention. A simple SPC method is described that can monitor the process of sample collection and labeling in any hospital. SPC could be applied to other critical steps in the transfusion processes as a tool for biovigilance and could be used to develop regional or national performance standards for pretransfusion sample collection. A link is provided to download the spreadsheet for free.
Elwy, A Rani; Bokhour, Barbara G; Maguire, Elizabeth M; Wagner, Todd H; Asch, Steven M; Gifford, Allen L; Gallagher, Thomas H; Durfee, Janet M; Martinello, Richard A; Schiffner, Susan; Jesse, Robert L
2014-12-01
The Department of Veterans Affairs (VA) mandates disclosure of large-scale adverse events to patients, even if risk of harm is not clearly present. Concerns about past disclosures warranted further examination of the impact of this policy. Through a collaborative partnership between VA leaders, policymakers, researchers and stakeholders, the objective was to empirically identify critical aspects of disclosure processes as a first step towards improving future disclosures. Semi-structured interviews were conducted with participants at nine VA facilities where recent disclosures took place. Ninety-seven stakeholders participated in the interviews: 38 employees, 28 leaders (from facilities, regions and national offices), 27 Veteran patients and family members, and four congressional staff members. Facility and regional leaders were interviewed by telephone, followed by a two-day site visit where employees, patients and family members were interviewed face-to-face. National leaders and congressional staff also completed telephone interviews. Interviews were analyzed using rapid qualitative assessment processes. Themes were mapped to the stages of the Crisis and Emergency Risk Communication model: pre-crisis, initial event, maintenance, resolution and evaluation. Many areas for improvement during disclosure were identified, such as preparing facilities better (pre-crisis), creating rapid communications, modifying disclosure language, addressing perceptions of harm, reducing complexity, and seeking assistance from others (initial event), managing communication with other stakeholders (maintenance), minimizing effects on staff and improving trust (resolution), and addressing facilities' needs (evaluation). Through the partnership, five recommendations to improve disclosures during each stage of communication have been widely disseminated throughout the VA using non-academic strategies. Some improvements have been made; other recommendations will be addressed through implementation of a large-scale adverse event disclosure toolkit. These toolkit strategies will enable leaders to provide timely and transparent information to patients and families, while reducing the burden on employees and the healthcare system during these events.
The Impact of Declining Navy Budgets on United States Shipyards
1992-12-01
and the Department of Energy Defense Nuclear Facilities Panel in April 1991 that the nuclear industrial base is being crippled with the reduction in...Seapower and Strategic and Critical Materials Subcommittee and Department of Energy Defense Nuclear Facilities Panel, 102 Congress, 1st Session, Government
ERIC Educational Resources Information Center
Gettelman, Alan
2006-01-01
Public or private, K-12, college or university, no one knows their facilities better than school maintenance and operations staff--from the front-line custodians to facility managers. When it comes to planning restrooms for new construction and renovation, operational experience is especially critical. Applying best practices in advance can save…
The science of laboratory and project management in regulated bioanalysis.
Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward
2014-05-01
Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Joseph K.; Chostner, Stephen M.
Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping andmore » equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when breaking into lines is great. Incidents of personnel exposure to liquids during draining are likely. Records from the initial 1990 deactivation led early work planners to assume the facility was cold, dark and dry. This turned out to be a poor assumption. Work instructions had to be modified to require that engineers evaluate each of several hundred process lines to identify the low point, where a tap and drain system could be installed to allow positive verification that the line was empty before the line was cut for removal. During the period between facility shut down in 1990 and the start of final deactivation in 2003, roof leaks had developed, allowing rain water to enter building 247-F, which provided an environment for mold growth. Sampling confirmed the presence of Stachybotrys chartarum, a toxic indoor mold that grows on wet cellulosic material, such as drywall paper. D and D workers in areas where this hazard was identified were required to where proper personal protective equipment, which complicated work execution. Discovery of the potential presence of uniquely hazardous chemicals such as shock sensitive compounds and toxic uranium hexafluoride became issues which required investigation and special handling strategies. Team access to subject matter experts, who could quickly provide the required guidance for safe material handling, was critical to keeping the project on schedule. In old legacy facilities, it is possible that the D and D workers will be exposed to undocumented energy sources such as energized electrical conductors and pipes containing hazardous materials that originate outside the boundaries of the facility. Significant effort must be expended on adequate mechanical and electrical isolation. Subdividing the facility into well defined zones for which detailed zone-specific end points could be developed proved to be a highly effective project management strategy. Waste management must be carefully planned. The rate of waste generation as the facility is converted from a structure to waste can frequently exceed the D and D team's resources to characterize, package, store and transport the waste to a disposal facility in a timely manner. This can lead to schedule delays and/or increased project cost.« less
Downey, Erin L; Andress, Knox; Schultz, Carl H
2013-06-01
The 2005 Gulf Coast hurricane season was one of the most costly and deadly in US history. Hurricane Rita stressed hospitals and led to multiple, simultaneous evacuations. This study systematically identified community factors associated with patient movement out of seven hospitals evacuated during Hurricane Rita. This study represents the second of two systematic, observational, and retrospective investigations of seven acute care hospitals that reported off-site evacuations due to Hurricane Rita. Participants from each hospital included decision makers that comprised the Incident Management Team (IMT). Investigators applied a standardized interview process designed to assess evacuation factors related to external situational awareness of community activities during facility evacuation due to hurricanes. The measured outcomes were responses to 95 questions within six sections of the survey instrument. Investigators identified two factors that significantly impacted hospital IMT decision making: (1) incident characteristics affecting a facility's internal resources and challenges; and (2) incident characteristics affecting a facility's external evacuation activities. This article summarizes the latter and reports the following critical decision making points: (1) Emergency Operations Plans (EOP) were activated an average of 85 hours (3 days, 13 hours) prior to Hurricane Rita's landfall; (2) the decision to evacuate the hospital was made an average of 30 hours (1 day, 6 hours) from activation of the EOP; and (3) the implementation of the evacuation process took an average of 22 hours. Coordination of patient evacuations was most complicated by transportation deficits (the most significant of the 11 identified problem areas) and a lack of situational awareness of community response activities. All evacuation activities and subsequent evacuation times were negatively impacted by an overall lack of understanding on the part of hospital staff and the IMT regarding how to identify and coordinate with community resources. Hospital evacuation requires coordinated processes and resources, including situational awareness that reflects the condition of the community as a result of the incident. Successful hospital evacuation decision making is influenced by community-wide situational awareness and transportation deficits. Planning with the community to create realistic EOPs that accurately reflect available resources and protocols is critical to informing hospital decision making during a crisis. Knowledge of these factors could improve decision making and evacuation practices, potentially reducing evacuation times in future hurricanes.
Integration of design and inspection
NASA Astrophysics Data System (ADS)
Simmonds, William H.
1990-08-01
Developments in advanced computer integrated manufacturing technology, coupled with the emphasis on Total Quality Management, are exposing needs for new techniques to integrate all functions from design through to support of the delivered product. One critical functional area that must be integrated into design is that embracing the measurement, inspection and test activities necessary for validation of the delivered product. This area is being tackled by a collaborative project supported by the UK Government Department of Trade and Industry. The project is aimed at developing techniques for analysing validation needs and for planning validation methods. Within the project an experimental Computer Aided Validation Expert system (CAVE) is being constructed. This operates with a generalised model of the validation process and helps with all design stages: specification of product requirements; analysis of the assurance provided by a proposed design and method of manufacture; development of the inspection and test strategy; and analysis of feedback data. The kernel of the system is a knowledge base containing knowledge of the manufacturing process capabilities and of the available inspection and test facilities. The CAVE system is being integrated into a real life advanced computer integrated manufacturing facility for demonstration and evaluation.
Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin
2016-01-01
Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212
Detonation Synthesis of Alpha-Variant Silicon Carbide
NASA Astrophysics Data System (ADS)
Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym
2017-06-01
A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.
Separation processes during binary monotectic alloy production
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1984-01-01
Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.
NASA Technical Reports Server (NTRS)
Ramsey, J. W., Jr.; Taylor, J. T.; Wilson, J. F.; Gray, C. E., Jr.; Leatherman, A. D.; Rooker, J. R.; Allred, J. W.
1976-01-01
The results of extensive computer (finite element, finite difference and numerical integration), thermal, fatigue, and special analyses of critical portions of a large pressurized, cryogenic wind tunnel (National Transonic Facility) are presented. The computer models, loading and boundary conditions are described. Graphic capability was used to display model geometry, section properties, and stress results. A stress criteria is presented for evaluation of the results of the analyses. Thermal analyses were performed for major critical and typical areas. Fatigue analyses of the entire tunnel circuit are presented.
Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.
Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo
2008-01-01
Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.
PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.
This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. Themore » special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.« less
77 FR 823 - Guidance for Fuel Cycle Facility Change Processes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes... Fuel Cycle Facility Change Processes.'' This regulatory guide describes the types of changes for which fuel cycle facility licensees should seek prior approval from the NRC and discusses how licensees can...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.
2015-02-28
Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less
Boateng, Millicent Addai; Danso-Appiah, Anthony; Turkson, Bernard Kofi; Tersbøl, Britt Pinkowski
2016-07-07
Over the past decade there has been growing interest in the use of herbal medicine both in developed and developing countries. Given the high proportion of patients using herbal medicine in Ghana, some health facilities have initiated implementation of herbal medicine as a component of their healthcare delivery. However, the extent to which herbal medicine has been integrated in Ghanaian health facilities, how integration is implemented and perceived by different stakeholders has not been documented. The study sought to explore these critical issues at the Kumasi South Hospital (KSH) and outline the challenges and motivations of the integration process. Qualitative phenomenological exploratory study design involving fieldwork observations, focus group discussion, in-depth interviews and key informants' interviews was employed to collect data. Policies and protocols outlining the definition, process and goals of integration were lacking, with respondents sharing different views about the purpose and value of integration of herbal medicine within public health facilities. Key informants were supportive of the initiative. Whilst biomedical health workers perceived the system to be parallel than integrated, health personnel providing herbal medicine perceived the system as integrated. Most patients were not aware of the herbal clinic in the hospital but those who had utilized services of the herbal clinic viewed the clinic as part of the hospital. The lack of a regulatory policy and protocol for the integration seemed to have led to the different perception of the integration. Policy and protocol to guide the integration are key recommendations.
Overview on the target fabrication facilities at ELI-NP and ongoing strategies
NASA Astrophysics Data System (ADS)
Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.
2016-10-01
Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.
Waste biomass-to-energy supply chain management: a critical synthesis.
Iakovou, E; Karagiannidis, A; Vlachos, D; Toka, A; Malamakis, A
2010-10-01
The development of renewable energy sources has clearly emerged as a promising policy towards enhancing the fragile global energy system with its limited fossil fuel resources, as well as for reducing the related environmental problems. In this context, waste biomass utilization has emerged as a viable alternative for energy production, encompassing a wide range of potential thermochemical, physicochemical and bio-chemical processes. Two significant bottlenecks that hinder the increased biomass utilization for energy production are the cost and complexity of its logistics operations. In this manuscript, we present a critical synthesis of the relative state-of-the-art literature as this applies to all stakeholders involved in the design and management of waste biomass supply chains (WBSCs). We begin by presenting the generic system components and then the unique characteristics of WBSCs that differentiate them from traditional supply chains. We proceed by discussing state-of-the-art energy conversion technologies along with the resulting classification of all relevant literature. We then recognize the natural hierarchy of the decision-making process for the design and planning of WBSCs and provide a taxonomy of all research efforts as these are mapped on the relevant strategic, tactical and operational levels of the hierarchy. Our critical synthesis demonstrates that biomass-to-energy production is a rapidly evolving research field focusing mainly on biomass-to-energy production technologies. However, very few studies address the critical supply chain management issues, and the ones that do that, focus mainly on (i) the assessment of the potential biomass and (ii) the allocation of biomass collection sites and energy production facilities. Our analysis further allows for the identification of gaps and overlaps in the existing literature, as well as of critical future research areas. (c) 2010 Elsevier Ltd. All rights reserved.
Health manpower development in Bayelsa State, Nigeria.
McFubara, Kalada G; Edoni, Elizabeth R; Ezonbodor-Akwagbe, Rose E
2012-01-01
Health manpower is one of the critical factors in the development of a region. This is because health is an index of development. Bayelsa State has a low level of health manpower. Thus, in this study, we sought to identify factors necessary for effective development of health manpower. Three methods were used to gather information, ie, face-to-face interviews, postal surveys, and documentary analysis. Critical incidents were identified, and content and thematic analyses were conducted. There is no full complement of a primary health care workforce in any of the health centers in the state. The three health manpower training institutions have the limitations of inadequate health care educators and other manpower training facilities, including lack of a teaching hospital. Accreditation of health manpower training institutions is a major factor for effective development of health manpower. Public officers can contribute to the accreditation process by subsuming their personal interest into the state's common interest. Bayelsa is a fast-growing state and needs a critical mass of health care personnel. To develop this workforce requires a conscious effort rich in common interests in the deployment of resources.
Spacelab Data Processing Facility
NASA Technical Reports Server (NTRS)
1983-01-01
The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.
The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...
ERIC Educational Resources Information Center
Kennedy, Mike
2010-01-01
When schools and universities look at saving energy in their facilities, they are likely to review the efficiency of their heating and cooling systems, or the quality of their building envelopes. When facility managers focus attention on school bathrooms, they are more likely to consider issues such as cleanliness and safety as more critical than…
NETL- High-Pressure Combustion Research Facility
None
2018-02-14
NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.
Theaters and Auditoriums. Second Edition.
ERIC Educational Resources Information Center
Burris-Meyer, Harold; Cole, Edward C.
Facilities for the performing arts are examined as to associated problems and possible design solutions. Also included are auditoriums which may not be directly related to theater functions but have similar problems and needs. Existing facilities serve as a basis for the subsequent critical analysis of certain areas and development of optimal…
Facilities Guidelines. North Carolina Public Schools.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
In July 1987, the North Carolina General Assembly enacted legislation to provide funds for public school construction to assist county governments in meeting their capital building needs and to provide additional funds for selected counties with the most critical school facility needs. This document, in accordance with the legislation's direction,…
Edwin H. Ketchledge
1971-01-01
Restoration of vegetation on damaged sites is the most perplexing challenge in facility rehabilitation. In the Adirondack Mountains, the ecological impact of recreationists on the natural environment has become critical in two high-quality interior areas: on the steep higher slopes where trails soon become eroding stream channels, washing away the thin mountain soils;...
sustainable facilities vs. Sustainable Facilities
ERIC Educational Resources Information Center
Folsom, Kevin
2008-01-01
Being environmentally responsible is a hot topic and critical issue. Many in the scientific community estimate we are slowly destroying the Earth's climate and landscape as we know it today. However, not all scientists agree with this theory, as a significant number of people have been environmentally responsible for a long time, recognizing…
On the Viability of Supporting Institutional Sharing of Remote Laboratory Facilities
ERIC Educational Resources Information Center
Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan
2015-01-01
Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that--for the right learning…
A Distributed Model of Oilseed Biorefining, via Integrated Industrial Ecology Exchanges
NASA Astrophysics Data System (ADS)
Ferrell, Jeremy C.
As the demand for direct petroleum substitutes increases, biorefineries are poised to become centers for conversion of biomass into fuels, energy, and biomaterials. A distributed model offers reduced transportation, tailored process technology to available feedstock, and increased local resilience. Oilseeds are capable of producing a wide variety of useful products additive to food, feed, and fuel needs. Biodiesel manufacturing technology lends itself to smaller-scale distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for basic municipal services, safety, sanitation, infrastructure repair, and food production. Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel approach for synergistic energy and material exchanges whereby environmental and economic metrics can be significantly improved upon compared to stand alone models. This research is based on the Catawba County NC EcoComplex and the oilseed crushing and biodiesel processing facilities (capacity-433 tons biodiesel per year) located within. Technical and environmental analyses of the biorefinery components as well as agronomic and economic models are presented. The life cycle assessment for the two optimal biodiesel feedstocks, soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon intensity values of 12.51 gCO2-eq/MJ and 7.93 gCO2-eq/MJ, respectively within the industrial ecology system. Economic modeling resulted in a biodiesel conversion cost of 1.43 per liter of fuel produced with used cooking oil, requiring a subsidy of 0.58 per liter to reach the break-even point. As subsidies continue significant fluctuation, metrics other than operating costs are required to justify small-scale biofuel projects.
Criticality assessment of LLRWDF closure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrack, A.G.; Weber, J.H.; Woody, N.D.
1992-10-06
During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of themore » LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ethan W. Brown
2001-09-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less
French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guiberteau, Ph.; Nokhamzon, J.G.
Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future.more » Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA comes from the diversity of facilities to be dismantled, which are predominantly research facilities and therefore have no series advantage. There is tremendous operating feedback, however. For more than twenty years in all its centres, the CEA has acquired experience and know-how through dismantling research reactors or critical models and laboratories or plants. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing from two dedicated funds, close to euro 15,000 Millions for the next thirty years, for current or projected dismantling operations, the Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2020, the dismantling of the UP1 plant at Marcoule, one of the largest dismantling works in the world, will be well advanced, with all the process equipment dismantled. (authors)« less
Ground test facility for SEI nuclear rocket engines
NASA Astrophysics Data System (ADS)
Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.
1992-07-01
Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.
NASA Technical Reports Server (NTRS)
Heizer, Barbara L.
1992-01-01
The Crystals by Vapor Transport Experiment (CVTE) and Space Experiments Facility (SEF) are materials processing facilities designed and built for use on the Space Shuttle mid deck. The CVTE was built as a commercial facility owned by the Boeing Company. The SEF was built under contract to the UAH Center for Commercial Development of Space (CCDS). Both facilities include up to three furnaces capable of reaching 850 C minimum, stand-alone electronics and software, and independent cooling control. In addition, the CVTE includes a dedicated stowage locker for cameras, a laptop computer, and other ancillary equipment. Both systems are designed to fly in a Middeck Accommodations Rack (MAR), though the SEF is currently being integrated into a Spacehab rack. The CVTE hardware includes two transparent furnaces capable of achieving temperatures in the 850 to 870 C range. The transparent feature allows scientists/astronauts to directly observe and affect crystal growth both on the ground and in space. Cameras mounted to the rack provide photodocumentation of the crystal growth. The basic design of the furnace allows for modification to accommodate techniques other than vapor crystal growth. Early in the CVTE program, the decision was made to assign a principal scientist to develop the experiment plan, affect the hardware/software design, run the ground and flight research effort, and interface with the scientific community. The principal scientist is responsible to the program manager and is a critical member of the engineering development team. As a result of this decision, the hardware/experiment requirements were established in such a way as to balance the engineering and science demands on the equipment. Program schedules for hardware development, experiment definition and material selection, flight operations development and crew training, both ground support and astronauts, were all planned and carried out with the understanding that the success of the program science was as important as the hardware functionality. How the CVTE payload was designed and what it is capable of, the philosophy of including the scientists in design and operations decisions, and the lessons learned during the integration process are descussed.
Particle damage sources for fused silica optics and their mitigation on high energy laser systems.
Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S
2017-05-15
High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.
NASA Technical Reports Server (NTRS)
Singh, Bhim S.
1999-01-01
This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.
Impact of Operating Context on the Use of Structure in Air Traffic Controller Cognitive Processes
NASA Technical Reports Server (NTRS)
Davison, Hayley J.; Histon, Jonathan M.; Ragnarsdottir, Margret Dora; Major, Laura M.; Hansman, R. John
2004-01-01
This paper investigates the influence of structure on air traffic controllers cognitive processes in the TRACON, En Route, and Oceanic environments. Radar data and voice command analyses were conducted to support hypotheses generated through observations and interviews conducted at the various facilities. Three general types of structure-based abstractions (standard flows, groupings, and critical points) have been identified as being used in each context, though the details of their application varied in accordance with the constraints of the particular operational environment. Projection emerged as a key cognitive process aided by the structure-based abstractions, and there appears to be a significant difference between how time-based versus spatial-based projection is performed by controllers. It is recommended that consideration be given to the value provided by the structure-based abstractions to the controller as well as to maintain consistency between the type (time or spatial) of information support provided to the controller.
B-HIT - A Tool for Harvesting and Indexing Biodiversity Data
Barker, Katharine; Braak, Kyle; Cawsey, E. Margaret; Coddington, Jonathan; Robertson, Tim; Whitacre, Jamie
2015-01-01
With the rapidly growing number of data publishers, the process of harvesting and indexing information to offer advanced search and discovery becomes a critical bottleneck in globally distributed primary biodiversity data infrastructures. The Global Biodiversity Information Facility (GBIF) implemented a Harvesting and Indexing Toolkit (HIT), which largely automates data harvesting activities for hundreds of collection and observational data providers. The team of the Botanic Garden and Botanical Museum Berlin-Dahlem has extended this well-established system with a range of additional functions, including improved processing of multiple taxon identifications, the ability to represent associations between specimen and observation units, new data quality control and new reporting capabilities. The open source software B-HIT can be freely installed and used for setting up thematic networks serving the demands of particular user groups. PMID:26544980
B-HIT - A Tool for Harvesting and Indexing Biodiversity Data.
Kelbert, Patricia; Droege, Gabriele; Barker, Katharine; Braak, Kyle; Cawsey, E Margaret; Coddington, Jonathan; Robertson, Tim; Whitacre, Jamie; Güntsch, Anton
2015-01-01
With the rapidly growing number of data publishers, the process of harvesting and indexing information to offer advanced search and discovery becomes a critical bottleneck in globally distributed primary biodiversity data infrastructures. The Global Biodiversity Information Facility (GBIF) implemented a Harvesting and Indexing Toolkit (HIT), which largely automates data harvesting activities for hundreds of collection and observational data providers. The team of the Botanic Garden and Botanical Museum Berlin-Dahlem has extended this well-established system with a range of additional functions, including improved processing of multiple taxon identifications, the ability to represent associations between specimen and observation units, new data quality control and new reporting capabilities. The open source software B-HIT can be freely installed and used for setting up thematic networks serving the demands of particular user groups.
NASA Technical Reports Server (NTRS)
Mogilevsky, M.
1973-01-01
The Category A computer systems at KSC (Al and A2) which perform scientific and business/administrative operations are described. This data division is responsible for scientific requirements supporting Saturn, Atlas/Centaur, Titan/Centaur, Titan III, and Delta vehicles, and includes realtime functions, Apollo-Soyuz Test Project (ASTP), and the Space Shuttle. The work is performed chiefly on the GEL-635 (Al) system located in the Central Instrumentation Facility (CIF). The Al system can perform computations and process data in three modes: (1) real-time critical mode; (2) real-time batch mode; and (3) batch mode. The Division's IBM-360/50 (A2) system, also at the CIF, performs business/administrative data processing such as personnel, procurement, reliability, financial management and payroll, real-time inventory management, GSE accounting, preventive maintenance, and integrated launch vehicle modification status.
2007-11-30
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of space shuttle Endeavour's STS-123 crew get ready to inspect part of the payload for the mission, the Special Purpose Dexterous Manipulator, known as Dextre. Seen in front are Pilot Gregory Johnson and Mission Specialist Takao Doi, who represents the Japanese Aerospace and Exploration Agency. Dextre will work with the mobile base and Canadarm2 on the International Space Station to perform critical construction and maintenance tasks. The crew is at Kennedy for crew equipment interface test, a process of familiarization with payloads, hardware and the space shuttle. The STS-123 mission is targeted for launch on Feb. 14. It will be the 25th assembly flight of the station. Photo credit: NASA/Kim Shiflett
Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility
NASA Astrophysics Data System (ADS)
Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.
2018-05-01
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.
Integrated homeland security system with passive thermal imaging and advanced video analytics
NASA Astrophysics Data System (ADS)
Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert
2007-04-01
A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.
Fluid-flow-rate metrology: laboratory uncertainties and traceabilities
NASA Astrophysics Data System (ADS)
Mattingly, G. E.
1991-03-01
Increased concerns for improved fluid flowrate measurement are driving the fluid metering community-meter manufacturers and users alike-to search for better verification and documentation for their fluid measurements. These concerns affect both our domestic and international market places they permeate our technologies - aerospace chemical processes automotive bioengineering etc. They involve public health and safety and they impact our national defense. These concerns are based upon the rising value of fluid resources and products and the importance of critical material accountability. These values directly impact the accuracy needs of fluid buyers and sellers in custody transfers. These concerns impact the designers and operators of chemical process systems where control and productivity optimization depend critically upon measurement precision. Public health and safety depend upon the quality of numerous pollutant measurements - both liquid and gaseous. The performance testing of engines - both automotive and aircraft are critically based upon accurate fuel measurements - both liquid and oxidizer streams. Fluid flowrate measurements are established differently from counterparts in length and mass measurement systems because these have the benefits of " identity" standards. For rate measurement systems the metrology is based upon " derived standards" . These use facilities and transfer standards which are designed built characterized and used to constitute basic measurement capabilities and quantify performance - accuracy and precision. Because " identity standards" do not exist for flow measurements facsimiles or equivalents must
Critical Issues for Dentistry: PGD Program Directors Respond.
ERIC Educational Resources Information Center
Atchison, Kathryn A.; Cheffetz, Susan E.
2002-01-01
Surveyed directors of programs in postgraduate education in general dentistry (PGD) about critical issues facing their programs. Identified 12 themes: lack of postdoctoral applicants; student quality; professionalism and attitudes; number of postdoctoral positions; lack of funding; quality of facilities; special patient care; program curriculum;…
Code of Federal Regulations, 2014 CFR
2014-01-01
... ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC... that such supplies of materials and equipment, services, or facilities are critical and essential to... are critical and essential was delegated to the Secretary of Energy pursuant to E.O. 12919 (59 FR...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC... that such supplies of materials and equipment, services, or facilities are critical and essential to... are critical and essential was delegated to the Secretary of Energy pursuant to E.O. 12919 (59 FR...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC... that such supplies of materials and equipment, services, or facilities are critical and essential to... are critical and essential was delegated to the Secretary of Energy pursuant to E.O. 12919 (59 FR...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC... that such supplies of materials and equipment, services, or facilities are critical and essential to... are critical and essential was delegated to the Secretary of Energy pursuant to E.O. 12919 (59 FR...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY OIL MATERIALS ALLOCATION AND PRIORITY PERFORMANCE UNDER CONTRACTS OR ORDERS TO MAXIMIZE DOMESTIC... that such supplies of materials and equipment, services, or facilities are critical and essential to... are critical and essential was delegated to the Secretary of Energy pursuant to E.O. 12919 (59 FR...
Dhawan, Atam P
2016-01-01
Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.
McLaughlan, Rebecca; Pert, Alan
2017-11-25
As the dominant research paradigm within the construction of contemporary healthcare facilities, evidence-based design (EBD) will increasingly impact our expectations of what hospital architecture should be. Research methods within EBD focus on prototyping incremental advances and evaluating what has already been built. Yet medical care is a rapidly evolving system; changes to technology, workforce composition, patient demographics and funding models can create rapid and unpredictable changes to medical practice and modes of care. This dynamism has the potential to curtail or negate the usefulness of current best practice approaches. To imagine new directions for the role of the hospital in society, or innovative ways in which the built environment might support well-being, requires a model that can project beyond existing constraints. Speculative design employs a design-based research methodology to imagine alternative futures and uses the artefacts created through this process to enable broader critical reflection on existing practices. This paper examines the contribution of speculative design within the context of the paediatric hospital as a means of facilitating critical reflection regarding the design of new healthcare facilities. While EBD is largely limited by what has already been built, speculative design offers a complementary research method to meet this limitation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Guillory, Charleta; Gong, Alice; Livingston, Judith; Creel, Liza; Ocampo, Elena; McKee-Garrett, Tiffany
2017-07-01
Objective Critical congenital heart disease (CCHD) is a leading cause of death in infants. Newborn screening (NBS) by pulse oximetry allows early identification of CCHD in asymptomatic newborns. To improve readiness of hospital neonatal birthing facilities for mandatory screening in Texas, an educational and quality improvement (QI) project was piloted to identify an implementation strategy for CCHD NBS in a range of birthing hospitals. Study Design Thirteen Texas hospitals implemented standardized CCHD screening by pulse oximetry. An educational program was devised and a tool kit was created to facilitate education and implementation. Newborn nursery nurses' knowledge was assessed using a pre- and posttest instrument. Results The nurses' knowledge assessment improved from 71 to 92.5% ( p < 0.0001). Of 11,322 asymptomatic newborns screened after 24 hours of age, 11 had a positive screen, with 1 confirmed case of CCHD. Pulse oximetry CCHD NBS had sensitivity of 100%, specificity of 99.91%, false-positive rate of 0.088%, positive predictive value of 9.09%, and negative predictive value of 100%. Conclusion Our educational program, including a tool kit, QI processes, and standardized pulse oximetry CCHD NBS, is applicable for a range of hospital birthing facilities and may facilitate wide-scale implementation, thereby improving newborn health. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, J. P.; Lebrat, J. F.; Soule, R.
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment ismore » planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...
NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities
NASA Technical Reports Server (NTRS)
Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.
2015-01-01
Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult to achieve using LabVIEW. The
Performance testing of a prototype Pd-Ag diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, G. A.; Hodge, B. J.
The fusion fuel cycle has gained significant attention over the last decade as interest in fusion programs has increased. One of the critical components of the fusion process is the tritium fuel cycle. The tritium fuel cycle is designed to supply and recycle process tritium at a specific throughput rate. One of the most important processes within the tritium fuel cycle is the clean-up of the of the process tritium. This step will initially separate the hydrogen isotopes (H2, D2, and T2) from the rest of the process gas using Pd-Ag diffusers or permeators. The Pd-Ag diffuser is an integralmore » component for any tritium purification system; whether part of the United States’ defense mission or fusion programs. Domestic manufacturers of Pd-Ag diffusers are extremely limited and only a few manufacturers exist. Johnson-Matthey (JM) Pd-Ag diffusers (permeators) have previously been evaluated for the separation of hydrogen isotopes from non-hydrogen gas species in the process. JM is no longer manufacturing Pd-Ag diffusers and a replacement vendor needs to be identified to support future needs. A prototype Pd-Ag diffuser has been manufactured by Power and Energy, and is considered a potential replacement for the JM diffuser for tritium service. New diffuser designs for a tritium facility for any fusion energy applications must be characterized by evaluating their operating envelope prior to installation in a tritium processing facility. The prototype Pd-Ag diffuser was characterized to determine the overall performance as a function of the permeation of hydrogen through the membrane. The tests described in this report consider the effects of feed gas compositions, feed flow rates, pump configuration and internal tube pressure on the permeation of H2 through the Pd-Ag tubes.« less
Analysis of Critical Parts and Materials
1980-12-01
1 1 1% 1% 1% 1% Large Orders Manual Ordering of Some Critical Parts Order Spares with Original Order Incentives Belter Capital Investment...demand 23 Large orders 24 Long lead procurement funding (including raw materials, facility funding) 25 Manpower analysis and training 26 Manual ... ordering of some critical parts 27 More active role in schedule negotiation 28 Multiple source procurements 29 Multi-year program funding 30 Order
Tank waste remediation system nuclear criticality safety program management review
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADY RAAP, M.C.
1999-06-24
This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-04
... facilities. The draft guidance discusses the process for registration of outsourcing facilities. The draft... outsourcing facilities that will participate in the process. Estimated reporting burden until September 30...] Draft Guidance for Industry on Registration for Human Drug Compounding Outsourcing Facilities Under...
Tropical Rainfall Measuring Mission (TRMM). Phase B: Data capture facility definition study
NASA Technical Reports Server (NTRS)
1990-01-01
The National Aeronautics and Aerospace Administration (NASA) and the National Space Development Agency of Japan (NASDA) initiated the Tropical Rainfall Measuring Mission (TRMM) to obtain more accurate measurements of tropical rainfall then ever before. The measurements are to improve scientific understanding and knowledge of the mechanisms effecting the intra-annual and interannual variability of the Earth's climate. The TRMM is largely dependent upon the handling and processing of the data by the TRMM Ground System supporting the mission. The objective of the TRMM is to obtain three years of climatological determinations of rainfall in the tropics, culminating in data sets of 30-day average rainfall over 5-degree square areas, and associated estimates of vertical distribution of latent heat release. The scope of this study is limited to the functions performed by TRMM Data Capture Facility (TDCF). These functions include capturing the TRMM spacecraft return link data stream; processing the data in the real-time, quick-look, and routine production modes, as appropriate; and distributing real time, quick-look, and production data products to users. The following topics are addressed: (1) TRMM end-to-end system description; (2) TRMM mission operations concept; (3) baseline requirements; (4) assumptions related to mission requirements; (5) external interface; (6) TDCF architecture and design options; (7) critical issues and tradeoffs; and (8) recommendation for the final TDCF selection process.
The use of nuclear data in the field of nuclear fuel recycling
NASA Astrophysics Data System (ADS)
Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick
2017-09-01
AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.
Leonard, M; Graham, S; Bonacum, D
2004-10-01
Effective communication and teamwork is essential for the delivery of high quality, safe patient care. Communication failures are an extremely common cause of inadvertent patient harm. The complexity of medical care, coupled with the inherent limitations of human performance, make it critically important that clinicians have standardised communication tools, create an environment in which individuals can speak up and express concerns, and share common "critical language" to alert team members to unsafe situations. All too frequently, effective communication is situation or personality dependent. Other high reliability domains, such as commercial aviation, have shown that the adoption of standardised tools and behaviours is a very effective strategy in enhancing teamwork and reducing risk. We describe our ongoing patient safety implementation using this approach within Kaiser Permanente, a non-profit American healthcare system providing care for 8.3 million patients. We describe specific clinical experience in the application of surgical briefings, properties of high reliability perinatal care, the value of critical event training and simulation, and benefits of a standardised communication process in the care of patients transferred from hospitals to skilled nursing facilities. Additionally, lessons learned as to effective techniques in achieving cultural change, evidence of improving the quality of the work environment, practice transfer strategies, critical success factors, and the evolving methods of demonstrating the benefit of such work are described.
Optimal Facility Location Tool for Logistics Battle Command (LBC)
2015-08-01
64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems
USDA-ARS?s Scientific Manuscript database
Livestock facilities have received numerous criticisms due to their emissions of odorous air and chemicals. Hence, there is a significant need for odor emission factors and identification of principle odorous chemicals. Odor emission factors are used as inputs to odor setback models, while chemica...
Critical Issues in Education Facilities and Business
ERIC Educational Resources Information Center
Agron, Joe
2006-01-01
This article presents a roundtable discussion by a panel of professionals--Carl Larson, Scott E. Little, James Reny, and Roger Young. They share creative solutions to many of the facilities and business operations challenges faced by education institutions nationwide. Among the issues discussed is the effect of the No Child Left Behind (NCLB) on…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
...: NSA Bethesda is a 243-acre health care, medical education and research installation located in... tertiary medical services to NNMC and its transformation to WRNMMCB, the facility will become the premier... training and post-graduate level education to the military medical community and serve as a critical...
Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauschild, Veronique; Watson, Annetta Paule
2013-01-01
Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facilitymore » recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.« less
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
A facile strategy for rapid preparation of graphene spongy balls
NASA Astrophysics Data System (ADS)
Wan, Shu; Bi, Hengchang; Xie, Xiao; Su, Shi; Du, Kai; Jia, Haiyang; Xu, Tao; He, Longbing; Yin, Kuibo; Sun, Litao
2016-09-01
Porous three dimensional (3D) graphene macrostructures have demonstrated the potential in versatile applications in recent years, including energy storage, sensors, and environment protection, etc. However, great research attention has been focused on the optimization of the structure and properties of graphene-based materials. Comparatively, there are less reports on how to shape 3D graphene macrostructures rapidly and effortlessly, which is critical for mass production in industry. Here, we introduce a facile and efficient method, low temperature frying to form graphene-based spongy balls in liquid nitrogen with a yield of ~400 balls min-1. Moreover, the fabrication process can be easily accelerated by using multi pipettes working at the same time. The graphene spongy balls show energy storage with a specific capacitance of 124 F g-1 and oil adsorbing with a capacity of 105.4 times its own weight. This strategy can be a feasible approach to overcome the low efficiency in production and speed up the development of porous 3D graphene-based macrostructures in industrial applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-08
... Valley, Pennsylvania, Application for Subzone, Piramal Critical Care, Inc. (Inhalation Anesthetics...), grantee of FTZ 272, requesting special-purpose subzone status for the inhalation anesthetics manufacturing.... The facilities are used for the manufacture and distribution of inhalation anesthetics Sevoflurane and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... technology has the same definition as this term is defined at 45 CFR 170.102. Critical access hospital (CAH) means a facility that has been certified as a critical access hospital under section 1820(e) of the Act... AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM General...
Code of Federal Regulations, 2010 CFR
2010-10-01
... technology has the same definition as this term is defined at 45 CFR 170.102. Critical access hospital (CAH) means a facility that has been certified as a critical access hospital under section 1820(e) of the Act... AND CERTIFICATION STANDARDS FOR THE ELECTRONIC HEALTH RECORD TECHNOLOGY INCENTIVE PROGRAM General...
76 FR 41266 - Critical Path Manufacturing Sector Research Initiative (U01)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... under the ``Regulatory Information'' section. The title of the page is ``Research Acquisitions... the Critical Path. Research into methods for laboratory synthesis of molecules that have been designed... accelerated by better design of the facilities where this research is conducted. Creating and making these...
Superfluid Helium Tanker (SFHT) study
NASA Technical Reports Server (NTRS)
Eberhardt, Ralph N.; Dominick, Sam M.; Anderson, John E.; Gille, John P.; Martin, Tim A.; Marino, John S.; Paynter, Howard L.; Traill, R. Eric; Herzl, Alfred; Gotlib, Sam
1988-01-01
Replenishment of superfluid helium (SFHe) offers the potential of extending the on-orbit life of observatories, satellite instruments, sensors and laboratories which operate in the 2 K temperature regime. A reference set of resupply customers was identified as representing realistic helium servicing requirements and interfaces for the first 10 years of superfluid helium tanker (SFHT) operations. These included the Space Infrared Telescope Facility (SIRTF), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (Astromag), and the Microgravity and Materials Processing Sciences Facility (MMPS)/Critical Point Phenomena Facility (CPPF). A mixed-fleet approach to SFHT utilization was considered. The tanker permits servicing from the Shuttle cargo bay, in situ when attached to the OMV and carried to the user spacecraft, and as a depot at the Space Station. A SFHT Dewar ground servicing concept was developed which uses a dedicated ground cooling heat exchanger to convert all the liquid, after initial fill as normal fluid, to superfluid for launch. This concept permits the tanker to be filled to a near full condition, and then cooled without any loss of fluid. The final load condition can be saturated superfluid with any desired ullage volume, or the tank can be totally filed and pressurized. The SFHT Dewar and helium plumbing system design has sufficient component redundancy to meet fail-operational, fail-safe requirements, and is designed structurally to meet a 50 mission life usage requirement. Technology development recommendations were made for the selected SFHT concept, and a Program Plan and cost estimate prepared for a phase C/D program spanning 72 months from initiation through first launch in 1997.
A management, leadership, and board road map to transforming care for patients.
Toussaint, John
2013-01-01
Over the last decade I have studied 115 healthcare organizations in II countries, examining them from the boardroom to the patient bedside. In that time, I have observed one critical element missing from just about every facility: a set of standards that could reliably produce zero-defect care for patients. This lack of standards is largely rooted in the Sloan management approach, a top-down management and leadership structure that is void of standardized accountability. This article offers an alternative approach: management by process--an operating system that engages frontline staff in decisions and imposes standards and processes on the act of managing. Organizations that have adopted management by process have seen quality improve and costs decrease because the people closest to the work are expected to identify problems and solve them. Also detailed are the leadership behaviors required for an organization to successfully implement the management-by-process operating system and the board of trustees' role in supporting the transformation.
An Application of Business Process Management to Health Care Facilities.
Hassan, Mohsen M D
The purpose of this article is to help health care facility managers and personnel identify significant elements of their facilities to address, and steps and actions to follow, when applying business process management to them. The ABPMP (Association of Business Process Management Professionals) life-cycle model of business process management is adopted, and steps from Lean, business process reengineering, and Six Sigma, and actions from operations management are presented to implement it. Managers of health care facilities can find in business process management a more comprehensive approach to improving their facilities than Lean, Six Sigma, business process reengineering, and ad hoc approaches that does not conflict with them because many of their elements can be included under its umbrella. Furthermore, the suggested application of business process management can guide and relieve them from selecting among these approaches, as well as provide them with specific steps and actions that they can follow. This article fills a gap in the literature by presenting a much needed comprehensive application of business process management to health care facilities that has specific steps and actions for implementation.
Polymer materials and component evaluation in acidic-radiation environments
NASA Astrophysics Data System (ADS)
Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.
2001-07-01
Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.D. Stine
1996-01-23
The purpose of this analysis is to select the critical characteristics to be verified for steel sets and accessories and the verification methods to be implemented through a material dedication process for the procurement and use of commercial grade structural steel sets and accessories (which have a nuclear safety function) to be used in ground support (with the exception of alcove ground support and alcove opening framing, which are not addressed in this analysis) for the Exploratory Studies Facility (ESF) Topopah Spring (TS) Loop. The ESF TS Loop includes the North Ramp, Main Drift, and South Ramp underground openings.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
NOAA’s newly arrived Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, is delivered to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians help lift the first of the Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove another Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
2007-11-14
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, technicians get ready to remove one of two Materials International Space Station Experiments, or MISSE, from a shipping container. The MISSE is part of the payload onboard space shuttle Endeavour for mission STS-123. It will be installed in Endeavour's payload bay. The MISSE project is a NASA/Langley Research Center-managed cooperative endeavor to fly materials and other types of space exposure experiments on the International Space Station. The objective is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components planned for use on future spacecraft. Photo credit: NASA/Kim Shiflett
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Workers are on hand to receive NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, into the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
2002-05-24
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-107 Payload Commander Michael Anderson (left) and 107 Payload Specialist Ilan Ramon, with the Israeli Space Agency, look at one of the main engines on Columbia. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
2002-05-24
KENNEDY SPACE CENTER, FLA. - STS-107 Payload Specialist Ilan Ramon (left), with the Israeli Space Agency, and Payload Commander Michael Anderson pause during a payload check in the Orbiter Processing Facility. A research mission, STS-107 will carry as the primary payload the first flight of the SHI Research Double Module (SHI/RDM), also known as SPACEHAB. The experiments range from material sciences to life sciences. Another payload is FREESTAR (Fast Reaction Experiments Enabling Science, Technology, Applications and Research) comprising Mediterranean Israeli Dust, Solar Constant, Shuttle Ozone Limb Sounding, Critical Viscosity of Xenon, Low Power, and Space Experimental Module experiments. STS-107 is scheduled to launch July 11, 2002
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. --- Loaded on a transporter, the payload faring containing the Landsat Data Continuity Mission LDCM spacecraft departs the Astrotech processing facility at Vandenberg Air Force Base in California and heads toward the launch pad at Space Launch Complex-3E. There it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
The truck delivering NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, enclosed in a protective shipping container, backs up to the door of the airlock of Building 2 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DSCOVR Spacecraft Arrival, Offload, & Unpacking
2014-11-20
Workers transfer NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, wrapped in plastic and secured onto a portable work stand, from the airlock of Building 2 to the high bay of Building 1 at the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force. DSCOVR will maintain the nation's real-time solar wind monitoring capabilities which are critical to the accuracy and lead time of NOAA's space weather alerts and forecasts. Launch is currently scheduled for January 2015 aboard a SpaceX Falcon 9 v 1.1 launch vehicle from Cape Canaveral Air Force Station, Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
Multi-year Content Analysis of User Facility Related Publications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, Robert M; Stahl, Christopher G; Hines, Jayson
2013-01-01
Scientific user facilities provide resources and support that enable scientists to conduct experiments or simulations pertinent to their respective research. Consequently, it is critical to have an informed understanding of the impact and contributions that these facilities have on scientific discoveries. Leveraging insight into scientific publications that acknowledge the use of these facilities enables more informed decisions by facility management and sponsors in regard to policy, resource allocation, and influencing the direction of science as well as more effectively understand the impact of a scientific user facility. This work discusses preliminary results of mining scientific publications that utilized resources atmore » the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL). These results show promise in identifying and leveraging multi-year trends and providing a higher resolution view of the impact that a scientific user facility may have on scientific discoveries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less
2016-05-04
This final rule will amend the fire safety standards for Medicare and Medicaid participating hospitals, critical access hospitals (CAHs), long-term care facilities, intermediate care facilities for individuals with intellectual disabilities (ICF-IID), ambulatory surgery centers (ASCs), hospices which provide inpatient services, religious non-medical health care institutions (RNHCIs), and programs of all-inclusive care for the elderly (PACE) facilities. Further, this final rule will adopt the 2012 edition of the Life Safety Code (LSC) and eliminate references in our regulations to all earlier editions of the Life Safety Code. It will also adopt the 2012 edition of the Health Care Facilities Code, with some exceptions.
NASA Astrophysics Data System (ADS)
Franke, M.; Skolnik, D. A.; Harvey, D.; Lindquist, K.
2014-12-01
A novel and robust approach is presented that provides near real-time earthquake alarms for critical structures at distributed locations and large facilities using real-time estimation of response spectra obtained from near free-field motions. Influential studies dating back to the 1980s identified spectral response acceleration as a key ground motion characteristic that correlates well with observed damage in structures. Thus, monitoring and reporting on exceedance of spectra-based thresholds are useful tools for assessing the potential for damage to facilities or multi-structure campuses based on input ground motions only. With as little as one strong-motion station per site, this scalable approach can provide rapid alarms on the damage status of remote towns, critical infrastructure (e.g., hospitals, schools) and points of interests (e.g., bridges) for a very large number of locations enabling better rapid decision making during critical and difficult immediate post-earthquake response actions. Details on the novel approach are presented along with an example implementation for a large energy company. Real-time calculation of PSA exceedance and alarm dissemination are enabled with Bighorn, an extension module based on the Antelope software package that combines real-time spectral monitoring and alarm capabilities with a robust built-in web display server. Antelope is an environmental data collection software package from Boulder Real Time Technologies (BRTT) typically used for very large seismic networks and real-time seismic data analyses. The primary processing engine produces continuous time-dependent response spectra for incoming acceleration streams. It utilizes expanded floating-point data representations within object ring-buffer packets and waveform files in a relational database. This leads to a very fast method for computing response spectra for a large number of channels. A Python script evaluates these response spectra for exceedance of one or more specified spectral limits, reporting any such exceedances via alarm packets that are put in the object ring-buffer for use by any alarm processes that need them. The web-display subsystem allows alert dissemination, interactive exploration, and alarm cancellation via the WWW.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; Ahuja, Vineet; Hosangadi, Ashvin
2010-01-01
Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. Advanced numerical tools assume greater significance in supporting testing and design of high altitude testing facilities and plume induced testing environments of high thrust engines because of the greater inter-dependence and synergy in the functioning of the different sub-systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Facility designs in this case will require a complex network of diffuser ducts, steam ejector trains, fast operating valves, cooling water systems and flow diverters that need to be characterized for steady state performance. In this paper, we will demonstrate with the use of CFD analyses s advanced capability to evaluate supersonic diffuser and steam ejector performance in a sub-scale A-3 facility at NASA Stennis Space Center (SSC) where extensive testing was performed. Furthermore, the focus in this paper relates to modeling of critical sub-systems and components used in facilities such as the A-3 facility. The work here will address deficiencies in empirical models and current CFD analyses that are used for design of supersonic diffusers/turning vanes/ejectors as well as analyses for confined plumes and venting processes. The primary areas that will be addressed are: (1) supersonic diffuser performance including analyses of thermal loads (2) accurate shock capturing in the diffuser duct; (3) effect of turning duct on the performance of the facility (4) prediction of mass flow rates and performance classification for steam ejectors (5) comparisons with test data from sub-scale diffuser testing and assessment of confidence levels in CFD based flowpath modeling of the facility. The analyses tools used here expand on the multi-element unstructured CFD which has been tailored and validated for impingement dynamics of dry plumes, complex valve/feed systems, and high pressure propellant delivery systems used in engine and component test stands at NASA SSC. The analyses performed in the evaluation of the sub-scale diffuser facility explored several important factors that influence modeling and understanding of facility operation such as (a) importance of modeling the facility with Real Gas approximation, (b) approximating the cluster of steam ejector nozzles as a single annular nozzle, (c) existence of mixed subsonic/supersonic flow downstream of the turning duct, and (d) inadequacy of two-equation turbulence models in predicting the correct pressurization in the turning duct and expansion of the second stage steam ejectors. The procedure used for modeling the facility was as follows: (i) The engine, test cell and first stage ejectors were simulated with an axisymmetric approximation (ii) the turning duct, second stage ejectors and the piping downstream of the second stage ejectors were analyzed with a three-dimensional simulation utilizing a half-plane symmetry approximation. The solution i.e. primitive variables such as pressure, velocity components, temperature and turbulence quantities were passed from the first computational domain and specified as a supersonic boundary condition for the second simulation. (iii) The third domain comprised of the exit diffuser and the region in the vicinity of the facility (primary included to get the correct shock structure at the exit of the facility and entrainment characteristics). The first set of simulations comprising the engine, test cell and first stage ejectors was carried out both as a turbulent real gas calculation as well as a turbulent perfect gas calculation. A comparison for the two cases (Real Turbulent and Perfect gas turbulent) of the Ma Number distribution and temperature distributions are shown in Figures 1 and 2 respectively.
Integration Process for Payloads in the Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
Free, James M.; Nall, Marsha M.
2001-01-01
The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.
U.S.-EU Cooperation Against Terrorism
2014-12-01
Administration continues to support the VWP as a key facilitator of transatlantic commerce and tourism , and rejects calls from some critics to suspend it...were subject to widespread criticism in Europe; these included the U.S.-run detention facility at Guantánamo Bay, Cuba ; U.S. plans to try enemy
39 CFR 121.4 - Package Services.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Center Facility (SCF) turnaround Package Services mail accepted at the origin SCF before the day-zero...) Package Services mail accepted at origin before the day-zero Critical Entry Time is 3 days, for each... Center (NDC) Package Services mail accepted at origin before the day-zero Critical Entry Time is 4 days...
Satellite Power System (SPS) resource requirements (critical materials, energy, and land)
NASA Technical Reports Server (NTRS)
Kotin, A. D.
1978-01-01
The resource impacts of the proposed satellite power system (SPS) were reviewed. Three classes of resource impacts were considered separately: critical materials, energy and land use. The analysis focused on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.
Satellite Power System (SPS) resource requirements (critical materials, energy and land)
NASA Technical Reports Server (NTRS)
Kotin, A. D.
1978-01-01
The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.
Monitoring agricultural processing electrical energy use and efficiency
USDA-ARS?s Scientific Manuscript database
Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 make the first run past the Orbiter Processing Facility and Thermal Protection System Facility in Launch Complex 39 at NASA’s Kennedy Space Center in Florida during the Rail Vibration Test for the Canaveral Port Authority. Seismic monitors are collecting data as the train passes by. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
Increasing Registered Nurse Retention Using Mentors in Critical Care Services.
Schroyer, Coreena C; Zellers, Rebecca; Abraham, Sam
2016-01-01
Recruiting and training 1 newly hired registered nurse can cost thousands of dollars. With a high percentage of these newly hired nurses leaving their first place of employment within their first year, the financial implications may be enormous. It is imperative that health care facilities invest in recruiting and retention programs that retain high-quality nurses. Mentorship programs in retaining and easing the transition to practice for new graduate nurses, re-entry nurses, and nurses new to a specialty area are critical in nurse retention. Discussion in this study includes the effect of implementing a mentor program into the critical care services area of a 325-bed not-for-profit community hospital in northern Indiana. Based on this study, nurses with a mentor were retained at a 25% higher rate than those not mentored. Implementation of a mentor program reduced the training cost to the facility and increased retention and morale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan Gray; Robert Anderson; Julio G. Rodriguez
Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energymore » Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.« less
10 CFR 1016.9 - Processing security facility approval.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Processing security facility approval. 1016.9 Section 1016... § 1016.9 Processing security facility approval. The following receipt of an acceptable request for... granted pursuant to § 1016.6 of this part. ...
10 CFR 1016.9 - Processing security facility approval.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Processing security facility approval. 1016.9 Section 1016... § 1016.9 Processing security facility approval. The following receipt of an acceptable request for... granted pursuant to § 1016.6 of this part. ...
ERIC Educational Resources Information Center
Ndirangu, Waweru Peter; Thinguri, Ruth; Chui, Mary Mugwe
2016-01-01
This paper is premised on the background that the majority of researchers and educationists who have contributed to the discourse on education for sustainability seem to be in agreement that management of physical facilities are critical ingredients in achieving holistic and sustainable education. The study examined the application of physical…
TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giordano, Anthony P.
The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.
Frequency choice of eRHIC SRF linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, W.; Ben-Zvi, I.; Roser, T.
2016-01-05
eRHIC is a FFAG lattice-based multipass ERL. The eRHIC SRF linac has been decided to change from 422 MHz 5-cell cavity to 647 MHz 5-cell cavity. There are several considerations affecting the frequency choice for a high-current multipass-ERL: the beam structure, bunch length, energy spread, beam-break-up (BBU) threshold, SRF loss considerations. Beyond the physics considerations, cost and complexity or risk is an important consideration for the frequency choice, especially when we are designing a machine to be built in a few years. Although there are some benefits of using a 422 MHz cavity for eRHIC ERL, however, there are somemore » very critical drawbacks, including lack of facilities to fabricate a 422 MHz 5-cell cavity, very few facilities to process such a cavity and no existing facility to test the cavity anywhere. As the cavity size is big and its weight is large, it is difficult to handle it during fabrication, processing and testing, and no one has experience in this area. As the cavity size is large, the cryomodule becomes big as well. All of these considerations drive the risk of building eRHIC ERL with 422 MHz cavities to a very high level. Therefore, a decision was made to change the frequency of main linac to be 647 MHz 5-cell cavities. This note will compare these two linacs: 422MHz 5-cell cavity linac and 647Mz 5-cell cavity SRF linac, from both practical point of view and physics point of view.« less
Liu, Kung-Ming; Lin, Sheng-Hau; Hsieh, Jing-Chzi; Tzeng, Gwo-Hshiung
2018-05-01
With the growth of population and the development of urbanization, waste management has always been a critical global issue. Recently, more and more countries have found that food waste constitutes the majority of municipal waste, if they are disposed of properly, will bring more benefits in sustainable development. Regarding the issue of selecting and improving the location to make the disposal facility towards achieving the aspiration level for sustainable development, since it involves multiple and complicated interaction factors about environment, society, and economy which have to be considered properly in the decision-making process of mutual influence relationship. It is basically a multiple attribute decision making (MADM) issue, a difficult problem which has been obsessing the governments of many countries is widely studied and discussed. This study uses the new hybrid modified MADM model, as follows, first to build an influential network relation map (INRM) via DEMATEL technique, next to confirm the influential weightings via DANP (DEMATEL-based ANP), and then to construct a decision-making model via a hybrid modified VIKOR method to improve and select the location for remaining the best disposal facilities. Finally, an empirical case study is illustrated to demonstrate that the proposed model can be effective and useful. In finding the process of decision making, environmental pollution is the main concern of many people in the area, but actually it is the resistance by the general public that has to be considered with first priority. Copyright © 2018. Published by Elsevier Ltd.