Crustal materials are mainly emitted by anthropogenic and windblown fugitive dust, but also may potentially include some fly ash and industrial process emissions which are chemically similar to crustal emissions. Source apportionment studies have shown that anthropogenic fugitive...
40 CFR Table 3 to Subpart Ooo of... - Fugitive Emission Limits
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Fugitive Emission Limits 3 Table 3 to... Mineral Processing Plants Pt. 60, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 60—Fugitive Emission...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 3 to Subpart Ooo of... - Fugitive Emission Limits
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Fugitive Emission Limits 3 Table 3 to... Mineral Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 60—Fugitive Emission Limits... performance test according to § 60.11 of this part and § 60.675 of this subpart; andPeriodic inspections of...
40 CFR Table 3 to Subpart Ooo of... - Fugitive Emission Limits
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Fugitive Emission Limits 3 Table 3 to... Mineral Processing Plants Pt. 60, Subpt. OOO, Table 3 Table 3 to Subpart OOO of Part 60—Fugitive Emission...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
40 CFR Table 3 to Subpart Ooo - Fugitive Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Fugitive Emission Limits 3 Table 3 to... Processing Plants Subpt. OOO, Table 3 Table 3 to Subpart OOO—Fugitive Emission Limits Table 3 to Subpart OOO...; andPeriodic inspections of water sprays according to § 60.674(b) and § 60.676(b); and A repeat...
Modeling of fugitive dust emission for construction sand and gravel processing plant.
Lee, C H; Tang, L W; Chang, C T
2001-05-15
Due to rapid economic development in Taiwan, a large quantity of construction sand and gravel is needed to support domestic civil construction projects. However, a construction sand and gravel processing plant is often a major source of air pollution, due to its associated fugitive dust emission. To predict the amount of fugitive dust emitted from this kind of processing plant, a semiempirical model was developed in this study. This model was developed on the basis of the actual dust emission data (i.e., total suspended particulate, TSP) and four on-site operating parameters (i.e., wind speed (u), soil moisture (M), soil silt content (s), and number (N) of trucks) measured at a construction sand and gravel processing plant. On the basis of the on-site measured data and an SAS nonlinear regression program, the expression of this model is E = 0.011.u2.653.M-1.875.s0.060.N0.896, where E is the amount (kg/ton) of dust emitted during the production of each ton of gravel and sand. This model can serve as a facile tool for predicting the fugitive dust emission from a construction sand and gravel processing plant.
MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION
Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...
Mobile monitoring of fugitive methane emissions from natural gas consumer industries
Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not yet been well quantified. This presentation introduces new m...
The Mobile Monitoring of fugitive methane emissions from natural gas consumer industries
Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools ...
HIGHLIGHTS FROM TECHNICAL MANUAL ON HOOD SYSTEM CAPTURE OF PROCESS FUGITIVE PARTICULATE EMISSIONS
The paper discusses a technical manual whose emphasis is on the design and evaluation of actual hood systems used to control various fugitive particulate emission sources. Engineering analyses of the most important hood types are presented to provide a conceptual understanding of...
Monitoring fugitive methane and natural gas emissions, validation of measurement techniques.
NASA Astrophysics Data System (ADS)
Robinson, Rod; Innocenti, Fabrizio; Gardiner, Tom; Helmore, Jon; Finlayson, Andrew; Connor, Andy
2017-04-01
The detection and quantification of fugitive and diffuse methane emissions has become an increasing priority in recent years. As the requirements for routine measurement to support industry initiatives increase there is a growing requirement to assess and validate the performance of fugitive emission measurement technologies. For reported emissions traceability and comparability of measurements is important. This talk will present recent work addressing these needs. Differential Absorption Lidar (DIAL) is a laser based remote sensing technology, able to map the concentration of gases in the atmosphere and determine emission fluxes for fugitive emissions. A description of the technique and its application for determining fugitive emissions of methane from oil and gas operations and waste management sites will be given. As DIAL has gained acceptance as a powerful tool for the measurement and quantification of fugitive emissions, and given the rich data it produces, it is being increasingly used to assess and validate other measurement approaches. In addition, to support the validation of technologies, we have developed a portable controlled release facility able to simulate the emissions from area sources. This has been used to assess and validate techniques which are used to monitor emissions. The development and capabilities of the controlled release facility will be described. This talk will report on recent studies using DIAL and the controlled release facility to validate fugitive emission measurement techniques. This includes side by side comparisons of two DIAL systems, the application of both the DIAL technique and the controlled release facility in a major study carried out in 2015 by South Coast Air Quality Management District (SCAQMD) in which a number of optical techniques were assessed and the development of a prototype method validation approach for techniques used to measure methane emissions from shale gas sites. In conclusion the talk will provide an update on the current status in the development of a European Standard for the measurement of fugitive emissions of VOCs and the use of validation data in the standardisation process and discuss the application of this to methane measurement.
Assessing fugitive emissions of CH4 from high-pressure gas pipelines
NASA Astrophysics Data System (ADS)
Worrall, Fred; Boothroyd, Ian; Davies, Richard
2017-04-01
The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.
40 CFR 63.544 - Standards for process fugitive sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Smelting furnace and dryer charging hoppers, chutes, and skip hoists; (2) Smelting furnace lead taps, and molds during tapping; (3) Smelting furnace slag taps, and molds during tapping; (4) Refining kettles; (5) Dryer transition pieces; and (6) Agglomerating furnace product taps. (b) Process fugitive emission...
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Rule for limiting fugitive particulate matter emissions. (a) What is the purpose of this section? This section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... source of fugitive particulate matter emissions. (c) What is exempted from this section? This section...
40 CFR 63.544 - Standards for process fugitive sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... National Emission Standards for Hazardous Air Pollutants from Secondary Lead Smelting § 63.544 Standards for process fugitive sources. (a) Each owner or operator of a secondary lead smelter shall control the...) Smelting furnace and dryer charging hoppers, chutes, and skip hoists; (2) Smelting furnace lead taps, and...
EMISSION FACTORS FOR IRON FOUNDRIES - CRITERIA AND TOXIC POLLUTANTS
The report lists criteria and toxic pollutant emission factors or sources commonly found in gray and ductile iron foundries. Emission factors are identified for process source and process fugitive emissions. he emission factors, representing uncontrolled emissions, may be used to...
NASA Astrophysics Data System (ADS)
Englander, J.; Brandt, A. R.
2017-12-01
There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b06068
NASA Astrophysics Data System (ADS)
Atherton, E. E.; Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Williams, J. P.
2015-12-01
Presently, fugitive emissions released into the atmosphere during the completion and production of oil and gas wells are poorly regulated within Canada. Some possible upstream sources of these emissions include flowback during well completions, liquid unloading, chemical injection pumps, and equipment leaks. The environmental benefits of combusting natural gas compared to oil or coal are negated if methane leakages surpass 3.2% of total production, so it is important to have a thorough understanding of these fugitive emissions. This study compares atmospheric leakage pathways of methane and other fugitive gases in both conventional and unconventional oil and gas developments in Western Canada to help fill this knowledge gap. Over 5000 kilometers of mobile survey campaigns were completed in carefully selected developments in the Montney shale play in British Columbia, and in conventional oil fields in Alberta. These sites are developed by more than 25 different operators. High precision laser and UV fluorescence gas analyzers were used to gather geolocated trace gas concentrations at a frequency of 1 Hz while driving. These data were processed with an adaptive technique to compensate for fluctuations in background concentrations for each gas. The residual excess concentrations were compositionally fingerprinted on the basis of the expected gas ratios for potential emission sites in order to definitively attribute anomalies to infrastructural leak sources. Preliminary results from the mobile surveys of both conventional and unconventional oil and gas sites are presented here. Pathways of methane and other fugitive gases are mapped to their respective sources, identifying common causes of emissions leaks across the oil and gas industry. This is the first bottom-up study of fugitive emissions from Canadian energy developments to produce publicly available data. These findings are significant to operators interested in lowering emissions for economic benefit, as well as public and governmental groups looking to become more informed on the impacts of oil and gas developments in Canada.
NASA Astrophysics Data System (ADS)
Mu, Ling; Peng, Lin; Liu, Xiaofeng; Song, Chongfang; Bai, Huiling; Zhang, Jianqiang; Hu, Dongmei; He, Qiusheng; Li, Fan
2014-02-01
Coking is one of the most important emission sources of polycyclic aromatic hydrocarbons (PAHs) in China. However, there is little information available on the emission characteristics of PAHs from fugitive emission during coking, especially on the specific processes dominating the gas-particle partitioning of PAHs. In this study, emission characteristics and gas-particle partitioning of PAHs from fugitive emission in four typical coke plants (CPs) with different scales and techniques were investigated. The average concentrations of total PAHs from fugitive emission at CP2, CP3 and CP4 (stamp charging) were 146.98, 31.82, and 35.20 μg m-3, which were 13.38-, 2.90- and 3.20-fold higher, respectively, than those at CP1 (top charging, 10.98 μg m-3). Low molecular weight PAHs with 2-3 rings made up 75.3% of the total PAHs on average, and the contributions of particulate PAH to the total BaP equivalent concentrations (BaPeq) in each plant were significantly higher than the corresponding contributions to the total PAH mass concentrations. The calculated total BaPeq concentrations varied from 0.19 to 10.86 μg m-3 with an average of 3.14 μg m-3, and more efficient measures to control fugitive emission in coke plants should be employed to prevent or reduce the health risk to workers. Absorption into organic matter dominated the gas-particle partitioning for most of the PAHs including PhA, FluA, Chr, BbF, BkF and BaP, while adsorption on elemental carbon appeared to play a dominant role for AcPy, AcP and Flu.
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with horizontal flues? (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? 63...) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery... meet for fugitive pushing emissions if I have a by-product coke oven battery with vertical flues? (a...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
10 CFR 300.6 - Emissions inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limited to emissions resulting from combustion of fossil fuels, process emissions, and fugitive emissions... forms of purchased energy to reduce demand, an entity must include the indirect emissions from the... report other forms of indirect emissions, such as emissions associated with employee commuting, materials...
NASA Astrophysics Data System (ADS)
Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm
2013-04-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the regions. The fraction of total methane emissions in the Denver-Julesburg basin that can be attributed to natural gas fugitive emissions has been determined to be 71 +/- 9%. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011).
Reducing fugitive emissions of hazardous air pollutants from industrial facilities is an ongoing priority for the U.S. Environmental Protection Agency (EPA). Unlike stack emissions, fugitive releases are difficult to detect due to their spatial extent and inherent temporal variab...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-11
...-AP73 Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review (NSR... Review (NSR): Reconsideration of Fugitive Emissions'' (``Fugitive Emissions Rule''). The Fugitive... whether a physical or operation change results in a major modification only for sources in industries that...
USER'S GUIDE: EMISSION CONTROL TECHNOLOGIES AND EMISSION FACTORS FOR UNPAVED ROAD FUGITIVE EMISSIONS
This document assists control agency personnel in evaluating unpaved road fugitive emissions control plans and helps industry personnel develop effective control strategies for unpaved roads. he brochure describes control techniques for reducing unpaved road emissions and methods...
[Characteristics of fugitive dust emission from paved road near construction activities].
Tian, Gang; Fan, Shou-Bin; Li, Gang; Qin, Jian-Ping
2007-11-01
Because of the mud/dirt carryout from construction activities, the silt loading of paved road nearby is higher and the fugitive dust emission is stronger. By sampling and laboratory analysis of the road surface dust samples, we obtain the silt loading (mass of material equal to or less than 75 micromaters in physical diameter per unit area of travel surface) of paved roads near construction activities. The result show that silt loading of road near construction activities is higher than "normal road", and silt loading is negatively correlated with length from construction's door. According to AP-42 emission factor model of fugitive dust from roads, the emission factor of influenced road is 2 - 10 times bigger than "normal road", and the amount of fugitive dust emission influenced by one construction activity is "equivalent" to an additional road length of approximately 422 - 3 800 m with the baseline silt loading. Based on the spatial and temporal distribution of construction activities, in 2002 the amount of PM10 emission influenced by construction activities in Beijing city areas account of for 59% of fugitive dust from roads.
Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China
NASA Astrophysics Data System (ADS)
Cao, Yiqi; Liu, Tao; He, Jiao
2018-03-01
An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.
40 CFR 63.1543 - Standards for process and process fugitive sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lead metal produced) from the aggregation of emissions discharged from the air pollution control... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Primary Lead Smelting § 63.1543... reconstructed primary lead smelter shall discharge or cause to be discharged into the atmosphere lead compounds...
Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi
2014-12-09
The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH₄ emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH₄ emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH₄ emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH₄ emissions.
OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA
Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...
Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Hassanat, Fadi
2014-01-01
Simple Summary The objectives of this experiment were to investigate the effects of adding corn DDGS to the dairy cow diet as well as the bedding types (wood shavings, straw or peat moss) on manure fugitive CH4 emissions. The incorporation of DDGS in the diet has increased manure methane emission by 15% and the use of peat moss as bedding has increased manure methane emission by 27%. Abstract The specific objectives of this experiment were to investigate the effects of adding 10% or 30% corn dried distillers grains with solubles (DDGS) to the dairy cow diet and the effects of bedding type (wood shavings, straw or peat moss) in dairy slurry on fugitive CH4 emissions. The addition of DDGS10 to the dairy cow diet significantly increased (29%) the daily amount of fat excreted in slurry compared to the control diet. The inclusion of DDGS30 in the diet increased the daily amounts of excreted DM, volatile solids (VS), fat, neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 70%, 30%, 15% and 53%, respectively, compared to the control diet. During the storage experiment, daily fugitive CH4 emissions showed a significant increase of 15% (p < 0.05) for the slurry resulting from the corn DDGS30 diet. The addition of wood shavings and straw did not have a significant effect on daily fugitive CH4 emissions relative to the control diet, whereas the addition of peat moss caused a significant increase of 27% (p < 0.05) in fugitive CH4 emissions. PMID:26479012
Vendors unveil one-step fugitive emissions monitoring, management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, M.
1995-04-01
An alliance of manufacturers has developed a ``single-source solution`` for fugitive emissions monitoring. The LeakTracker{trademark} system combines barcode scans, and vapor detection and data collection capabilities to help companies comply with leak detection and repair requirements as mandated by the Environmental Protection Agency`s Method 21 guidelines. LeakTracker doubles productivity and helps eliminate human-error factors associated with fugitive emissions monitoring. Two-person teams, clipboard-and-pencil data entry, and manual data transcription are eliminated. By automating the process and integrating all components, a technician can monitor 500 points daily following Method 21 guidelines, compared to about 250 readings per day using other systems. LeakTrackermore » includes a handheld workstation, sampling probe and laser-scan barcode reader that fit in a vest worn by a field technician. The technician points the workstation toward a barcode tag and pulls the trigger, which initiates a barcode read and automatically records the time, date and location. While the detachable probe ``sniffs`` for emissions, an analyzer interface module converts the gas detection signal from analog to digital format, allowing data to be recorded by the workstation. LeakTracker has an accuracy rate of 1 part per million.« less
Contribution of Fugitive Emissions for PM10 Concentrations in an Industrial Area of Portugal
NASA Astrophysics Data System (ADS)
Marta Almeida, Susana; Viana Silva, Alexandra; Garcia, Silvia; Miranda, Ana Isabel
2013-04-01
Significant atmospheric dust arises from the mechanical disturbance of granular material exposed to the air. Dust generated from these open sources is termed "fugitive" because it is not discharged to the atmosphere in a confined flow stream. Common sources of fugitive dust include unpaved roads, agricultural tilling operations, aggregate storage piles, heavy construction and harbor operations. The objective of this work was to identify the likeliness and extend of the PM10 limit value exceedences due to fugitive emissions in a particularly zone where PM fugitive emissions are a core of environmental concerns - Mitrena, Portugal. Mitrena, is an industrial area that coexists with a high-density urban region (Setúbal) and areas with an important environmental concern (Sado Estuary and Arrábida which belongs to the protected area Natura 2000 Network). Due to the typology of industry sited in Mitrena (e.g. power plant, paper mill, cement, pesticides and fertilized productions), there are a large uncontrolled PM fugitive emissions, providing from heavy traffic and handling and storage of raw material on uncover stockyards in the harbor and industries. Dispersion modeling was performed with the software TAPM (The Air Pollution Model) and results were mapped over the study area, using GIS (Geographic Information Systems). Results showed that managing local particles concentrations can be a frustrating affair because the weight of fugitive sources is very high comparing with the local anthropogenic stationary sources. In order to ensure that the industry can continue to meet its commitments in protecting air quality, it is essential to warrant that the characteristics of releases from all fugitive sources are fully understood in order to target future investments in those areas where maximum benefit will be achieved.
Implementation of the fugitive emissions system program: The OxyChem experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, A.
An overview is provided for the Fugitive Emissions System (FES) that has been implemented at Occidental Chemical in conjunction with the computer-based maintenance system called PassPort{reg_sign} developed by Indus Corporation. The goal of PassPort{reg_sign} FES program has been to interface with facilities data, equipment information, work standards and work orders. Along the way, several implementation hurdles had to be overcome before a monitoring and regulatory system could be standardized for the appropriate maintenance, process and environmental groups. This presentation includes step-by-step account of several case studies that developed during the implementation of the FES system.
DESIGNING CHEMICAL PROCESSES WITH OPEN AND FUGITIVE EMISSIONS
Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the conomics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. Th...
40 CFR 63.7351 - Who implements and enforces this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and...-product coke oven battery with vertical flues, fugitive pushing emissions in § 63.7292(a) for a by-product coke oven battery with horizontal flues, fugitive pushing emissions in § 63.7293 for a non-recovery...
40 CFR 63.7351 - Who implements and enforces this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and...-product coke oven battery with vertical flues, fugitive pushing emissions in § 63.7292(a) for a by-product coke oven battery with horizontal flues, fugitive pushing emissions in § 63.7293 for a non-recovery...
40 CFR 63.7351 - Who implements and enforces this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and...-product coke oven battery with vertical flues, fugitive pushing emissions in § 63.7292(a) for a by-product coke oven battery with horizontal flues, fugitive pushing emissions in § 63.7293 for a non-recovery...
40 CFR 63.7351 - Who implements and enforces this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and...-product coke oven battery with vertical flues, fugitive pushing emissions in § 63.7292(a) for a by-product coke oven battery with horizontal flues, fugitive pushing emissions in § 63.7293 for a non-recovery...
Measurement of Fugitive Dust Emissions and Visible Emissions.
ERIC Educational Resources Information Center
McKee, Herbert C.
The method of measuring fugitive dust emission utilized by the Texas Air Control Board is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The measuring procedure, precautions, expected results, and legal acceptance of the method are…
CHARACTERIZATION OF THE FUGITIVE MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT. OVERALL STUDY DESIGN
The paper discusses a detailed emissions measurement campaign that was conducted over a 9-day period within a mercury (Hg) cell chlor-alkali plant in the southeastern United States (U.S.). The principal focus of this study was to measure fugitive (non-ducted) airborne Hg emission...
This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.
Investigation of fugitive emissions from petrochemical transport barges using optical remote sensing
Recent airborne remote sensing survey data acquired with passive gas imaging equipment (PGIE), in this case infrared cameras, have shown potentially significant fugitive volatile organic carbon (VOC) emissions from petrochemical transport barges. The experiment found remote sens...
NASA Astrophysics Data System (ADS)
Crosson, E.; Rella, C.
2012-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct measurement of the emission rate. One example of this method is shown in Fig. 1. This method is simple to deploy, does not require an accurate model of atmospheric transport or knowledge of the distance to the emission source or its spatial distribution. Accurate measurements of the emissions can be made with just a few minutes of data collection. Results of controlled release methane experiments are presented, and the strengths and limitations of the methodology are discussed. REFERENCES R. Howarth, R. Santoro, and A. Ingraffea (2011): "Methane and the greenhouse-gas footprint of natural gas from shale formations," Climatic Change 106, 679 - 690. Fig 1: Spatial correlation analysis for two measurement points (or pixels) distributed vertically (A and B) or horizontally (A and C), for measurements at a distance of 21 meters from a methane point source of 650 sccm. The emission rate recovered from this analysis was 496 ± 160 sccm of CH4. The total measurement time was 30 minutes.
Catalytic reforming is an important refinery process for the conversion of low-octane naphtha (mostly paraffins) into high-octane motor fuels (isoparaffins, naphthenes and aromatics), light gases and hydrogen. In this study the catalytic reforming process is analyzed under differ...
DESIGNING ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES WITH FUGITIVE AND OPEN EMISSIONS
Designing a chemical process normally includes aspects of economic and environmental disciplines. In this work we describe methods to quickly and easily evaluate the economics and potential environmental impacts of a process, with the hydrodealkylation of toluene as an example. ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... meet for fugitive pushing emissions if I have a non-recovery coke oven battery? 63.7293 Section 63.7293... Standards for Hazardous Air Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Emission... pushing emissions if I have a non-recovery coke oven battery? (a) You must meet the requirements in...
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
MEASUREMENT OF FUGITIVE EMISSIONS AT A BIOREACTOR LANDFILL
This report focuses on three field campaigns performed in 2002 and 2003 to measure fugitive emissions at a bioreactor landfill in Louisville, KY, using an open-path Fourier transform infrared spectrometer. The study uses optical remote sensing-radial plume mapping. The horizontal...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... non-air quality health and environmental impacts) and are commonly referred to as maximum achievable... process, stack, storage, or fugitive emissions point, (D) are design, equipment, work practice, or... combination of the above. CAA section 112(d)(2)(A)-(E). The MACT standard may take the form of a design...
Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen
2017-01-01
Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain. Copyright © 2016. Published by Elsevier B.V.
FUGITIVE EMISSION SOURCES AND BATCH OPERATIONS IN SYNTHETIC ORGANIC CHEMICAL PRODUCTION
This survey report was developed for the EPA for use in assessing the potential magnitude of fugitive volatile organic compound (VOC) emissions from agitator seals, cooling towers and batch operations in the production of 378 designated chemicals. The information presented in thi...
NASA Astrophysics Data System (ADS)
Park, S.; Gong, S.
2010-12-01
A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust Episode"), Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443, 2007.
Top-down Constraints on Emissions: Example for Oil and Gas Operations
NASA Astrophysics Data System (ADS)
Petron, G.; Sweeney, C.; Karion, A.; Brewer, A.; Hardesty, R.; Banta, R. M.; Frost, G. J.; Trainer, M.; Miller, B. R.; Conley, S. A.; Kofler, J.; Newberger, T.; Higgs, J. A.; Wolter, S.; Guenther, D.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Montzka, S. A.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Helmig, D.; Hueber, J.; Rella, C.; Jacobson, G. A.; Wolfe, D. E.; Bruhwiler, L.; Tans, P. P.; Schnell, R. C.
2012-12-01
In many countries, human-caused emissions of the two major long lived greenhouse gases, carbon dioxide and methane, are primarily linked to the use of fossil fuels (coal, oil and natural gas). Fugitive emissions of natural gas (mainly CH4) from the oil and gas exploration and production sector may also be an important contributor to natural gas life cycle/greenhouse gas footprint. Fuel use statistics have traditionally been used in combination with fuel and process specific emission factors to estimate CO2 emissions from fossil-fuel-based energy systems (power plants, motor vehicles…). Fugitive emissions of CH4, in contrast, are much harder to quantify. Fugitive emission levels may vary substantially from one oil and gas producing basin to another and may not scale with common activity data, such as production numbers. In the USA, recent efforts by the industry, States and the US Environmental Protection Agency have focused on developing new bottom-up inventory methodologies to assess methane and volatile organic compounds emissions from oil and gas producing basins. The underlying assumptions behind these inventories are multiple and result de facto in large uncertainties. Independent atmospheric-based estimates of emissions provide another valuable piece of information that can be used to evaluate inventories. Over the past year, the NOAA Earth System Research Laboratory has used its expertise in high quality GHG and wind measurements to evaluate regional emissions of methane from two oil and gas basins in the Rocky Mountain region. Results from these two campaigns will be discussed and compared with available inventories.
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Approximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use this infor...
DESIGNING EFFICIENT, ECONOMIC AND ENVIRONMENTALLY FRIENDLY CHEMICAL PROCESSES
A catalytic reforming process has been studied using hierarchical design and simulation calculations. Aproximations for the fugitive emissions indicate which streams allow the most value to be lost and which have the highest potential environmental impact. One can use tis inform...
Refinery evaluation of optical imaging to locate fugitive emissions.
Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike
2007-07-01
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.
chemical process designers using simulation software generate alternative designs for one process. One criterion for evaluating these designs is their potential for adverse environmental impacts due to waste generated, energy consumed, and possibilities for fugitive emissions. Co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
...): Reconsideration of Inclusion of Fugitive Emissions; Interim Rule; Stay and Revisions AGENCY: Environmental... (PSD) and Nonattainment New Source Review (NSR): Reconsideration of Inclusion of Fugitive Emissions... inclusion in the public docket. Information so marked will not be disclosed except in accordance with...
Du, Ke; Yuen, Wangki; Wang, Wei; Rood, Mark J; Varma, Ravi M; Hashmonay, Ram A; Kim, Byung J; Kemme, Michael R
2011-01-15
Quantification of emissions of fugitive particulate matter (PM) into the atmosphere from military training operations is of interest by the United States Department of Defense. A new range-resolved optical remote sensing (ORS) method was developed to quantify fugitive PM emissions from puff sources (i.e., artillery back blasts), ground-level mobile sources (i.e., movement of tracked vehicles), and elevated mobile sources (i.e., airborne helicopters) in desert areas that are prone to generating fugitive dust plumes. Real-time, in situ mass concentration profiles for PM mass with particle diameters <10 μm (PM(10)) and <2.5 μm (PM(2.5)) were obtained across the dust plumes that were generated by these activities with this new method. Back blasts caused during artillery firing were characterized as a stationary short-term puff source whose plumes typically dispersed to <10 m above the ground with durations of 10-30 s. Fugitive PM emissions caused by artillery back blasts were related to the zone charge and ranged from 51 to 463 g PM/firing for PM(10) and 9 to 176 g PM/firing for PM(2.5). Movement of tracked vehicles and flying helicopters was characterized as mobile continuous sources whose plumes typically dispersed 30-50 m above the ground with durations of 100-200 s. Fugitive PM emissions caused by moving tracked vehicles ranged from 8.3 to 72.5 kg PM/km for PM(10) and 1.1 to 17.2 kg PM/km for PM(2.5), and there was no obvious correlation between PM emission and vehicle speed. The emission factor for the helicopter flying at 3 m above the ground ranged from 14.5 to 114.1 kg PM/km for PM(10) and 5.0 to 39.5 kg PM/km for PM(2.5), depending on the velocity of the helicopter and type of soil it flies over. Fugitive PM emissions by an airborne helicopter were correlated with helicopter speed for a particular soil type. The results from this range-resolved ORS method were also compared with the data obtained with another path-integrated ORS method and a Flux Tower method.
NASA Astrophysics Data System (ADS)
Brereton, Carol A.; Johnson, Matthew R.
2012-05-01
Fugitive pollutant sources from the oil and gas industry are typically quite difficult to find within industrial plants and refineries, yet they are a significant contributor of global greenhouse gas emissions. A novel approach for locating fugitive emission sources using computationally efficient trajectory statistical methods (TSM) has been investigated in detailed proof-of-concept simulations. Four TSMs were examined in a variety of source emissions scenarios developed using transient CFD simulations on the simplified geometry of an actual gas plant: potential source contribution function (PSCF), concentration weighted trajectory (CWT), residence time weighted concentration (RTWC), and quantitative transport bias analysis (QTBA). Quantitative comparisons were made using a correlation measure based on search area from the source(s). PSCF, CWT and RTWC could all distinguish areas near major sources from the surroundings. QTBA successfully located sources in only some cases, even when provided with a large data set. RTWC, given sufficient domain trajectory coverage, distinguished source areas best, but otherwise could produce false source predictions. Using RTWC in conjunction with CWT could overcome this issue as well as reduce sensitivity to noise in the data. The results demonstrate that TSMs are a promising approach for identifying fugitive emissions sources within complex facility geometries.
Bayesian Estimation of Fugitive Methane Point Source Emission Rates from a Single Downwind High-Frequency Gas Sensor With the tremendous advances in onshore oil and gas exploration and production (E&P) capability comes the realization that new tools are needed to support env...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
.... Mitigation measures, such as operational controls and practices, worker training, use of personal protective... equipment emissions, and fugitive dust caused by earth-moving activities. As stated in the ER for the COL... fugitive dust and vehicle and equipment emissions, including water suppression, covering truck loads and...
The report gives results of a quantification of the level of fugitive emission reductions resulting from the use of enclosed doctor blade (EDB) systems in place of traditional ink feed systems at flexographic and rotogravure printing operations. An EDB system is an innovative ink...
40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...
40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, Garvin; Warner, Ethan; Steinberg, Daniel
A growing number of studies have raised questions regarding uncertainties in our understanding of methane (CH 4) emissions from fugitives and venting along the natural gas (NG) supply chain. In particular, a number of measurement studies have suggested that actual levels of CH 4 emissions may be higher than estimated by EPA" tm s U.S. GHG Emission Inventory. We reviewed the literature to identify the growing number of studies that have raised questions regarding uncertainties in our understanding of methane (CH 4) emissions from fugitives and venting along the natural gas (NG) supply chain.
NASA Astrophysics Data System (ADS)
Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.
2012-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the region. The results are compared to inventories as well as other measurement techniques, and the uncertainty of the measurement is estimated.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
NASA Astrophysics Data System (ADS)
Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.
2015-12-01
Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.
Rubbertown NGEM Demonstration Project Planning meetings, April 18-19, 2017
From the shared perspective of industrial facilities, workers, regulators, and communities, cost-effective detection and assessment of significant onset fugitive leaks or process issues, is a mutually beneficial concept. If emissions that require mitigation can be detected and f...
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang
2017-04-01
Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.
Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK
NASA Astrophysics Data System (ADS)
Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.
2016-12-01
Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 62.6 kt CH4/yr with a CO2 equivalent of 1570 kt CO2eq/yr - this fugitive emission from high pressure pipelines is 0.14% of the annual gas supply.
Fugitive methane assessment with mobile and fence line sensors
There is no published abstract for this short panel talk. The panel presentation titled “Fugitive methane assessment with mobile and fence line sensors” provides a basic introduction to the topic of next generation sensor technologies for identifying and fixing emiss...
Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...
NASA Astrophysics Data System (ADS)
Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric
2014-05-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region.
EPA is taking final action to approve a revision to a portion of the Arizona State Implementation Plan (SIP) concerning emissions of lead-bearing fugitive dust associated with the primary copper smelter located in Hayden, Arizona.
Use of Anthropogenic Radioisotopes to Estimate Rates of Soil Redistribution by Wind
USDA-ARS?s Scientific Manuscript database
Wind erosion results in soil degradation and fugitive dust emissions. The temporal and spatial variability of aeolian processes makes local estimates of long-term average erosion costly and time consuming. Atmospheric testing of nuclear weapons during the 1950s and 1960s resulted in previously non...
Numerical Validation of a Near-Field Fugitive Dust Model for Vehicles Moving on Unpaved Surfaces
2013-09-25
turbulent dissipation rate 1 Introduction Particles suspended in air by vehicular movement on paved and unpaved roads are a major contributor to fugitive...own “ Brownian Motion” type of trajectory, but a group of particles in the same region of space do not follow the same “eddy” and the overall effects...fugitive dust caused by vehicle movement , especially when traveling on unpaved surfaces. Given the needs for particle emission models, there are very
Optical gas imaging (OGI) cameras have the unique ability to exploit the electromagnetic properties of fugitive chemical vapors to make invisible gases visible. This ability is extremely useful for industrial facilities trying to mitigate product losses from escaping gas and fac...
Characterization of the fugitive particulate emissions from construction mud/dirt carryout.
Kinsey, John S; Linna, Kara J; Squier, William C; Muleski, Gregory E; Cowherd, Chatten
2004-11-01
Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in nonattainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles < or =10 and 2.5 microm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with reentrained mud/dirt carryout.
Fugitive Methane Gas Emission Monitoring in oil and gas industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Levente
Identifying fugitive methane leaks allow optimization of the extraction process, can extend gas extraction equipment lifetime, and eliminate hazardous work conditions. We demonstrate a wireless sensor network based on cost effective and robust chemi-resistive methane sensors combined with real time analytics to identify leaks from 2 scfh to 10000 scfh. The chemi-resistive sensors were validated for sensitivity better than 1 ppm of methane plume detection. The real time chemical sensor and wind data is integrated into an inversion models to identify the location and the magnitude of the methane leak. This integrated solution can be deployed in outdoor environment formore » long term monitoring of chemical plumes.« less
Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.
Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P
2014-07-15
The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.
NASA Astrophysics Data System (ADS)
Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.
2017-10-01
Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.
Field Observations of Methane Emissions from Unconventional and Conventional Fossil Fuel Exploration
NASA Astrophysics Data System (ADS)
Dubey, M.; Lindenmaier, R.; Arata, C.; Costigan, K. R.; Frankenberg, C.; Kort, E. A.; Rahn, T. A.; Henderson, B. G.; Love, S. P.; Aubrey, A. D.
2013-12-01
Energy from methane (CH4) has lower carbon dioxide and air pollutant emissions per unit energy produced than coal or oil making it a desirable fossil fuel. Hydraulic fracturing is allowing United States to harvest the nation's abundant domestic shale gas reservoirs to achieve energy independence. However, CH4 is a gas that is hard to contain during mining, processing, transport and end-use. Therefore fugitive CH4 leaks occur that are reported in bottom up inventories by the EPA. Recent targeted field observations at selected plays have provided top down CH4 leak estimates that are larger than the reported EPA inventories. Furthermore, no long-term regional baselines are available to delineate leaks from unconventional mining operations from historical conventional mining. We will report and compare observations of fugitive CH4 leaks from conventional and unconventional mining to understand changes from technology shifts. We will report in situ and regional column measurements of CH4, its isotopologue 13CH4 and ethane (C2H6) at our Four Corners site near Farmington, NM. The region has substantial coal bed methane, conventional oil and gas production, processing and distribution with minimal hydraulic fracturing activity. We observe large enhancements in in situ and regional column CH4 with distinct time dependence. Our in situ 13CH4 observations and remote C2H6/CH4 provide strong evidence of thermogenic sources. Comparisons of WRF-simulations with emissions inventory (Edgar) with our observations show that the fugitive CH4 leaks from conventional mining are 3 times greater than reported. We also compare in situ mobile surveys of fugitive CH4 and 13CH4 leak signals in basins with conventional (San Juan) mining and unconventional (Permian and Powder River) mining. A large number of active and closed wells were sampled in these regions. Furthermore, play scale surveys on public roads allowed us to gain a regional perspective. The composition of atmospheric 13CH4 observed in the Powder River basin was lighter than the Permian and San Juan basins indicating a higher microbial generated fraction. More extensive and larger CH4 enhancements were measured in the Permian basin that could be a result of the large expansion of unconventional oil and gas production in this region. However, there are variations amongst wells and plays suggesting that operator practices and reservoir formation play a role in determining the fugitive leaks.
NASA Astrophysics Data System (ADS)
Wu, Chang-Fu; Wu, Tzong-gang; Hashmonay, Ram A.; Chang, Shih-Ying; Wu, Yu-Syuan; Chao, Chun-Ping; Hsu, Cheng-Ping; Chase, Michael J.; Kagann, Robert H.
2014-01-01
Fugitive emission of air pollutants is conventionally estimated based on standard emission factors. The Vertical Radial Plume Mapping (VRPM) technique, as described in the US EPA OTM-10, is designed to measure emission flux by directly monitoring the concentration of the plume crossing a vertical plane downwind of the site of interest. This paper describes the evaluation results of implementing VRPM in a complex industrial setting (a petrochemical tank farm). The vertical plane was constructed from five retroreflectors and an open-path Fourier transform infrared spectrometer. The VRPM configuration was approximately 189.2 m in width × 30.7 m in height. In the accompanying tracer gas experiment, the bias of the VRPM estimate was less than 2% and its 95% confidence interval contained the true release rate. Emission estimates of the target VOCs (benzene, m-xylene, o-xylene, p-xylene, and toluene) ranged from 0.86 to 2.18 g s-1 during the 14-day field campaign, while estimates based on the standard emission factors were one order of magnitude lower, possibly leading to an underestimation of the impact of these fugitive emissions on air quality and human health. It was also demonstrated that a simplified 3-beam geometry (i.e., without one dimensional scanning lines) resulted in higher uncertainties in the emission estimates.
This work was motivated by the need to better reconcile emission factors for fugitive dust with the amount of geologic material found on ambient filter samples. The deposition of particulate matter with aerodynamic diameter less than or equal to 10 µm (PM10), generated...
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.
Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.
Differential Absorption Lidar Measurements of Fugitive Benzene Emissions
NASA Astrophysics Data System (ADS)
Robinson, R. A.; Innocenti, F.; Helmore, J.; Gardiner, T.; Finlayson, A.; Connor, A.
2016-12-01
The Differential Absorption Lidar (DIAL) technique is based on the optical analogue of radar; lidar (light detection and ranging). It provides the capability to remotely measure the concentration and spatial distribution of compounds in the atmosphere. The ability to scan the optical measurement beam throughout the atmosphere enables pollutant concentrations to be mapped, and emission fluxes to be determined when combined with wind data. The NPL DIAL systems can operate in the UV and infrared spectral, enabling the measurement of a range of air pollutants and GHGs including hazardous air pollutants such as benzene. The mobile ground based DIAL systems developed at NPL for pollution monitoring have been used for over 25 years. They have been deployed for routine monitoring, emission factor studies, research investigations and targeted monitoring campaigns. More recently the NPL DIAL has been used in studies to validate other monitoring techniques. In support of this capability, NPL have developed a portable, configurable controlled release system (CRF) able to simulate emissions from typical sources. This has been developed to enable the validation and assessment of fugitive emission monitoring techniques. Following a brief summary of the technique, we outline recent developments in the use of DIAL for monitoring fugitive and diffuse emissions, including the development of a European Standard Method for fugitive emission monitoring. We will present the results of a number of validation exercises using the CRF presenting an update on the performance of DIAL for emission quantification and discuss the wider validation of novel technologies. We will report on recent measurements of the emissions of benzene from industrial sites including a large scale emissions monitoring study carried out by the South Coast Air Quality Management District (SCAQMD) and will report on the measurement of emissions from petrochemical facilities and examine an example of the identification and quantification of a significant benzene release from a facility in Europe. We will discuss the use of advanced techniques such as DIAL in support of the recently introduced EPA refinery rule (and the long term sampling approach in EPA method 325) and explore the role these techniques can have in providing improved data on emissions.
NASA Astrophysics Data System (ADS)
Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.
2013-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements of methane are shown in red, indicating a strong degree of source heterogeneity. (right panel) Histogram of individual isotopic source signatures, showing distinct signatures for landfills (red) and oil and gas sources (green).
Lin, Chitsan; Liou, Naiwei; Chang, Pao-Erh; Yang, Jen-Chin; Sun, Endy
2007-04-01
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health.
40 CFR 62.14106 - Emission limits for municipal waste combustor fugitive ash emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the atmosphere from that affected facility visible emissions of combustion ash from an ash conveying... paragraph (a) of this section does cover visible emissions discharged to the atmosphere from buildings or...
NASA Astrophysics Data System (ADS)
Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.
2015-12-01
Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability. The current model also does not distinguish between natural gas emissions during the different stages of transportation. We finally discuss the use of additional tracers such as the 13CH4 isotopic ratio and ethane concentrations to separate the various contributors to the regional atmospheric CH4 enhancement.
40 CFR 98.302 - GHGs to report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... must report total SF6 and PFC emissions from your facility (including emissions from fugitive equipment...). For acquisitions of equipment containing or insulated with SF6 or PFCs, you must report emissions from...
40 CFR 98.302 - GHGs to report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... must report total SF6 and PFC emissions from your facility (including emissions from fugitive equipment...). For acquisitions of equipment containing or insulated with SF6 or PFCs, you must report emissions from...
40 CFR 98.302 - GHGs to report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... must report total SF6 and PFC emissions from your facility (including emissions from fugitive equipment...). For acquisitions of equipment containing or insulated with SF6 or PFCs, you must report emissions from...
40 CFR 98.302 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must report total SF6 and PFC emissions from your facility (including emissions from fugitive equipment...). For acquisitions of equipment containing or insulated with SF6 or PFCs, you must report emissions from...
NASA Astrophysics Data System (ADS)
Khuluse-Makhanya, Sibusisiwe; Stein, Alfred; Breytenbach, André; Gxumisa, Athi; Dudeni-Tlhone, Nontembeko; Debba, Pravesh
2017-10-01
In urban areas the deterioration of air quality as a result of fugitive dust receives less attention than the more prominent traffic and industrial emissions. We assessed whether fugitive dust emission sources in the neighbourhood of an air quality monitor are predictors of ambient PM10 concentrations on days characterized by strong local winds. An ensemble maximum likelihood method is developed for land cover mapping in the vicinity of an air quality station using SPOT 6 multi-spectral images. The ensemble maximum likelihood classifier is developed through multiple training iterations for improved accuracy of the bare soil class. Five primary land cover classes are considered, namely built-up areas, vegetation, bare soil, water and 'mixed bare soil' which denotes areas where soil is mixed with either vegetation or synthetic materials. Preliminary validation of the ensemble classifier for the bare soil class results in an accuracy range of 65-98%. Final validation of all classes results in an overall accuracy of 78%. Next, cluster analysis and a varying intercepts regression model are used to assess the statistical association between land cover, a fugitive dust emissions proxy and observed PM10. We found that land cover patterns in the neighbourhood of an air quality station are significant predictors of observed average PM10 concentrations on days when wind speeds are conducive for dust emissions. This study concludes that in the absence of an emissions inventory for ambient particulate matter, PM10 emitted from dust reservoirs can be statistically accounted for by land cover characteristics. This supports the use of land cover data for improved prediction of PM10 at locations without air quality monitoring stations.
Quantifying Fugitive Methane Emissions from Natural Gas Production with Mobile Technology
NASA Astrophysics Data System (ADS)
Tsai, T.; Rella, C.; Crosson, E.
2013-12-01
Quantification of fugitive methane (CH4) emissions to determine the environmental impact of natural gas production is challenging with current methods. We present a new mobile method known as the Plume Scanner that can quickly quantify CH4 emissions of point sources. The Plume Scanner is a direct measurement technique which utilizes a mobile Picarro cavity ring-down spectrometer and a gas sampling system based on AirCore technology [1]. As the Plume Scanner vehicle drives through the plume, the air is simultaneously sampled at four different heights, and therefore, the spatial CH4 distribution can be captured (Fig. 1). The flux of the plume is then determined by multiplying the spatial CH4 distribution data with the anemometer measurements. In this way, fugitive emission rates of highly localized sources such as natural gas production pads can be made quickly (~7 min). Verification with controlled CH4 releases demonstrate that under stable atmospheric conditions (Pasquill stability class is C or greater), the Plume Scanner measurements have an error of 2% and a repeatability of 15% [2]. Under unstable atmospheric conditions (Class A or B), the error is 6%, and the repeatability increases to 70% due to the variability of wind conditions. Over two weeks, 275 facilities in the Barnett Shale were surveyed from public roads by sampling the air for elevations in CH4 concentration, and 77% were found leaking. Emissions from 52 sites have been quantified with the Plume Scanner (Fig. 2), and the total emission is 4,900 liters per min (lpm) or 39,000 metric tons/yr CO2e. 1. Karion, A., C. Sweeney, P. Tans, and T. Newberger (2010), AirCore: An innovative atmospheric sampling system, J. Atmos. Oceanic Tech, 27, 1839-1853. 2. F. Pasquill (1961), The estimation of the dispersion of wind borne material, Meterol. Mag., 90(1063), 33-49 Figure 1. Plume Scanner Cartoon Figure 2. Distribution of methane fugitive emissions with error bars associated with the Pasquill stability classes drawn for reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Eric; Teng, Chu; van Kessel, Theodore
We present a portable optical spectrometer for fugitive emissions monitoring of methane (CH4). The sensor operation is based on tunable diode laser absorption spectroscopy (TDLAS), using a 5 cm open path design, and targets the 2ν3 R(4) CH4 transition at 6057.1 cm-1 (1651 nm) to avoid cross-talk with common interfering atmospheric constituents. Sensitivity analysis indicates a normalized precision of 2.0 ppmv∙Hz-1/2, corresponding to a noise-equivalent absorption (NEA) of 4.4×10-6 Hz-1/2 and minimum detectible absorption (MDA) coefficient of αmin = 8.8×10-7 cm-1∙Hz-1/2. Our TDLAS sensor is deployed at the Methane Emissions Technology Evaluation Center (METEC) at Colorado State University (CSU) formore » initial demonstration of single-sensor based source localization and quantification of CH4 fugitive emissions. The TDLAS sensor is concurrently deployed with a customized chemi-resistive metal-oxide (MOX) sensor for accuracy benchmarking, demonstrating good visual correlation of the concentration time-series. Initial angle-of-arrival (AOA) results will be shown, and development towards source magnitude estimation will be described.« less
Turk, Jeremy K; Reay, David S; Haszeldine, R Stuart
2018-03-01
There is a projected shortcoming in the fourth carbon budget of 7.5%. This shortfall may be increased if the UK pursues a domestic shale gas industry to offset projected decreases in traditional gas supply. Here we estimate that, if the project domestic gas supply gap for power generation were to be met by UK shale gas with low fugitive emissions (0.08%), an additional 20.4MtCO 2 e 1 would need to be accommodated during carbon budget periods 3-6. We find that a modest fugitive emissions rate (1%) for UK shale gas would increase global emissions compared to importing an equal quantity of Qatari liquefied natural gas. Additionally, we estimate that natural gas electricity generation would emit 420-466MtCO 2 e (460 central estimate) during the same time period within the traded EU emissions cap. We conclude that domestic shale gas production with even a modest 1% fugitive emissions rate would risk exceedance of UK carbon budgets. We also highlight that, under the current production-based greenhouse gas accounting system, the UK is incentivized to import natural gas rather than produce it domestically. Copyright © 2017 Elsevier B.V. All rights reserved.
Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher
2017-11-01
Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.
NASA Astrophysics Data System (ADS)
Tsai, Tracy; Rella, Chris; Crosson, Eric
2013-04-01
Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment with known releases from a methane tank, a 2-pixel plume camera measured 496 ± 160 sccm from a release of 650 sccm located 21 m away, and 4,180 ± 962 sccm from a release of 3,400 sccm located 49 m away. These results in addition to results with a higher-pixel camera will be discussed. Field campaign data collected with the plume camera pixels mounted onto a vehicle and driven through the natural gas fields in the Uintah Basin (Utah, United States) will also be presented along with the limitations and advantages of the instrument. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011). 3. U.S. Energy Information Administration. "Number of Producing Wells."
DOE Office of Scientific and Technical Information (OSTI.GOV)
SENUM,G.I.; DIETZ,R.N.
2004-06-30
Recent studies demonstrate the impact of fugitive emissions of reactive alkenes on the atmospheric chemistry of the Houston Texas metropolitan area (1). Petrochemical plants located in and around the Houston area emit atmospheric alkenes, such as ethene, propene and 1,3-butadiene. The magnitude of emissions is a major uncertainty in assessing their effects. Even though the petrochemical industry reports that fugitive emissions of alkenes have been reduced to less than 0.1% of daily production, recent measurement data, obtained during the TexAQS 2000 experiment indicates that emissions are perhaps a factor of ten larger than estimated values. Industry figures for fugitive emissionsmore » are based on adding up estimated emission factors for every component in the plant to give a total estimated emission from the entire facility. The dramatic difference between estimated and measured rates indicates either that calculating emission fluxes by summing estimates for individual components is seriously flawed, possibly due to individual components leaking well beyond their estimated tolerances, that not all sources of emissions for a facility are being considered in emissions estimates, or that there are known sources of emissions that are not being reported. This experiment was designed to confirm estimates of reactive alkene emissions derived from analysis of the TexAQS 2000 data by releasing perfluorocarbon tracers (PFTs) at a known flux from a petrochemical plant and sampling both the perfluorocarbon tracer and reactive alkenes downwind using the Piper-Aztec research aircraft operated by Baylor University. PFTs have been extensively used to determine leaks in pipelines, air infiltration in buildings, and to characterize the transport and dispersion of air parcels in the atmosphere. Over 20 years of development by the Tracer Technology Center (TTC) has produced a range of analysis instruments, field samplers and PFT release equipment that have been successfully deployed in a large variety of experiments. PFTs are inert, nontoxic, noncombustible and nonreactive. Up to seven unique PFTs can be simultaneously released, sampled and analyzed and the technology is well suited for determining emission fluxes from large petrochemical facilities. The PFT experiment described here was designed to quantitate alkene emissions from a single petrochemical facility, but such experiments could be applied to other industrial sources or groups of sources in the Houston area.« less
EFFECT OF VEHICLE CHARACTERISTICS ON UNPAVED ROAD DUST EMISSIONS
This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road.
PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES
The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...
Liu, Yanjun; Liu, Yanting; Li, Hao; Fu, Xindi; Guo, Hanwen; Meng, Ruihong; Lu, Wenjing; Zhao, Ming; Wang, Hongtao
2016-12-01
Aromatic compounds (ACs) emitted from landfills have attracted a lot of attention of the public due to their adverse impacts on the environment and human health. This study assessed the health risk impacts of the fugitive ACs emitted from the working face of a municipal solid waste (MSW) landfill in China. The emission data was acquired by long-term in-situ samplings using a modified wind tunnel system. The uncertainty of aromatic emissions is determined by means of statistics and the emission factors were thus developed. Two scenarios, i.e. 'normal-case' and 'worst-case', were presented to evaluate the potential health risk in different weather conditions. For this typical large anaerobic landfill, toluene was the dominant species owing to its highest releasing rate (3.40±3.79g·m -2 ·d -1 ). Despite being of negligible non-carcinogenic risk, the ACs might bring carcinogenic risks to human in the nearby area. Ethylbenzene was the major health threat substance. The cumulative carcinogenic risk impact area is as far as ~1.5km at downwind direction for the normal-case scenario, and even nearly 4km for the worst-case scenario. Health risks of fugitive ACs emissions from active landfills should be concerned, especially for landfills which still receiving mixed MSW. Copyright © 2016 Elsevier Ltd. All rights reserved.
A tiered observational system for anthropogenic methane emissions
NASA Astrophysics Data System (ADS)
Duren, R. M.; Miller, C. E.; Hulley, G. C.; Hook, S. J.; Sander, S. P.
2014-12-01
Improved understanding of anthropogenic methane emissions is required for closing the global carbon budget and addressing priority challenges in climate policy. Several decades of top-down and bottom-up studies show that anthropogenic methane emissions are systematically underestimated in key regions and economic sectors. These uncertainties have been compounded by the dramatic rise of disruptive technologies (e.g., the transformation in the US energy system due to unconventional gas and oil production). Methane flux estimates derived from inverse analyses and aircraft-based mass balance approaches underscore the disagreement in nationally and regionally reported methane emissions as well as the possibility of a long-tail distribution in fugitive emissions spanning the US natural gas supply chain; i.e. a small number of super-emitters may be responsible for most of the observed anomalies. Other studies highlight the challenges of sectoral and spatial attribution of fugitive emissions - including the relative contributions of dairies vs oil and gas production or disentangling the contributions of natural gas transmission, distribution, and consumption or landfill emissions in complex urban environments. Limited observational data remains a foundational barrier to resolving these challenges. We present a tiered observing system strategy for persistent, high-frequency monitoring over large areas to provide remote detection, geolocation and quantification of significant anthropogenic methane emissions across cities, states, basins and continents. We describe how this would both improve confidence in methane emission estimates and expedite resolution of fugitive emissions and leaks. We summarize recent prototype field campaigns that employ multiple vantage points and measurement techniques (including NASA's CARVE and HyTES aircraft and PanFTS instrument on Mt Wilson). We share preliminary results of this tiered observational approach including examples of individual methane point sources associated with oil and gas production and distribution, feedlots, and urban landfills in California.
Fugitive emissions from nanopowder manufacturing
NASA Astrophysics Data System (ADS)
Trompetter, W. J.; Ancelet, T.; Davy, P. K.; Kennedy, J.
2016-07-01
In response to health and safety questions and concerns regarding particulate matter emissions from equipment used for synthesizing NiFe and TiO2 nanopowders, a study was undertaken to assess their impact on the air quality inside and outside a laboratory where the manufacturing equipment is operated. Elemental concentrations determined by ion beam analysis (IBA) of air particulate matter (PM) samples collected hourly with a StreakerTM sampler were used to identify possible sources and estimate contributions from nanopowder production and other sources. The fugitive nanopowder emissions were the highest at the indoor sampling location when powders were being manufactured. Average fugitive emissions of 210 ng m-3 (1-h average) (maximum 2163 ng m-3 1-h average) represented 2 % (maximum 20 %) of the average PM collected (9359 ng m-3 1-h average). The measured NiFe alloy or TiO2 PM concentrations were much smaller than the 8-h time-weighted average (TWA) workplace exposure standards (WES) for these materials (≥1,000,000 ng m-3). Most PM was found to be from infiltrated outdoor ambient sources. This suggests that nanopowder production in the laboratory is not likely to have adverse health effects on individuals using the equipment, although further improvements can be made to further limit exposure.
There is a lack of information on emissions of ozone precursors, hazardous air pollutants, and greenhouse gases from oil and gas production operations, and measurement of these emissions presents many challenges. Assessment is complicated by the fugitive nature ofthe emissions, v...
Area Source Emission Measurements Using EPA OTM 10
Measurement of air pollutant emissions from area and non-point sources is an emerging environmental concern. Due to the spatial extent and non-homogenous nature of these sources, assessment of fugitive emissions using point sampling techniques can be difficult. To help address th...
Next Generation Emission Measurements for Fugitive, Area Source, and Fence Line Applications?
Next generation emissions measurements (NGEM) is an EPA term for the rapidly advancing field of air pollutant sensor technologies, data integration concepts, and associated geospatial modeling strategies for source emissions measurements. Ranging from low coat sensors to satelli...
Use of Vacuum Degreasing for Precision Cleaning
NASA Technical Reports Server (NTRS)
Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard
2017-01-01
Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.
Fugitive Dust Emissions: Development of a Real-time Monitor
2011-10-01
the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...
40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...
40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...
40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...
40 CFR 63.11526 - What are the standards for new and existing ferroalloys production facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... must not discharge to the atmosphere visible emissions (VE) from the control device that exceed 5... atmosphere fugitive PM emissions from the furnace building containing the electrometallurgical operations...
Activity Area (F03): PM Implementation NRMRL conducts research to improve the techniques used to quantify PM and PM precursor emissions from stationary, mobile, and fugitive sources and investigates the performance and cost of innovative control technology systems. The emission...
The winter gap effect in methane leak detection and repair with optical gas imaging cameras
NASA Astrophysics Data System (ADS)
Fox, T. A.; Barchyn, T.; Hugenholtz, C.
2017-12-01
Implementing effective leak detection and repair (LDAR) programs is essential for mitigating fugitive methane emissions from oil and gas operations. In Canada, newly proposed regulations will require that high-risk facilities be surveyed 3 times/yr for fugitive leaks. Like the United States, Canada promotes the use of Optical Gas Imaging cameras (OGIs) for detecting natural gas leaks during LDAR surveys. However, recent research suggests OGIs may perform poorly under adverse environmental conditions, especially in low temperatures. For regions like Canada that experience cold winters, OGIs may not be reliably used for months at a time, meaning that leaks may accumulate and emit for longer periods before being repaired. While considerable oil and gas activity occurs in high-latitude regions with cold winters, no research has explored how extended cold periods impact OGI-focused LDAR programs. To improve this understanding, we present a simple model exploring relationships among winter gap length, fugitive methane emissions, and investment input for LDAR programs employing OGI instruments in gas producing regions of different latitudes. Preliminary results suggest that longer gaps between LDAR surveys caused by cold temperatures result in either 1) higher total emissions for the year, or 2) greater time and equipment investment in LDAR programs to achieve emissions mitigation equivalent to LDAR programs operating under ideal conditions. When weather constraints are removed and LDAR surveys are evenly spaced throughout the year, emissions mitigation is optimized. However, as the winter gap duration and the size of the implicated area increases, fugitive leaks last longer. Furthermore, a spillover effect is observed as LDAR crews become overwhelmed with the high volume of work required as temperatures increase in the spring. Our model adds weight to the argument that LDAR programs should be tailored to regional needs, and that regulators should be more cognisant of sensor-specific limitations as they develop LDAR protocols.
Emission factors for fugitive dust from bulldozers working on a coal pile.
Mueller, Stephen F; Mallard, Jonathan W; Mao, Qi; Shaw, Stephanie L
2015-01-01
A study of a Powder River Basin (PRB) coal pile found that fugitive emissions from natural and human activity each produced similar levels of downwind fine + coarse (i.e., smaller than 10 µm, or PM10) particle mass concentrations. Natural impacts were statistically removed from downwind measurements to estimate emission factor Ev for bulldozers working on the pile. The Ev determined here was similar in magnitude to emission factors (EFs) computed using a U.S. Environmental Protection Agency (EPA) formulation for unpaved surfaces at industrial sites, even though the latter was not based on data for coal piles. EF formulations from this study and those in the EPA guidance yield values of similar magnitude but differ in the variables used to compute Ev variations. EPA studies included effects of surface silt fraction and vehicle weight, while the present study captured the influence of coal moisture. Our data indicate that the relationship between PRB coal fugitive dust Ev (expressed as mass of PM10 emitted per minute of bulldozer operation) and coal moisture content Mc (in percent) at the study site is best expressed as Ev =10(f(Mc())) where f(Mc) is a function of moisture. This function was determined by statistical regression between log10(Ev) and Mc where both Ev and Mc are expressed as daily averages of observations based on 289 hours sampled during 44 days from late June through mid-November of 2012. A methodology is described that estimates Mc based on available meteorological data (precipitation amount and solar radiation flux). An example is given of computed variations in daily Ev for an entire year. This illustrates the sensitivity of the daily average particulate EF to meteorological variability at one location. Finally, a method is suggested for combining the moisture-sensitive formulation for Ev with the EPA formulation to accommodate a larger number of independent variables that influence fugitive emissions.
NASA Astrophysics Data System (ADS)
Yuen, W.; Du, K.; Rood, M. J.; Kemme, M. R.; Kim, B.; Hashmonay, R. A.
2010-12-01
A summary of the development of a novel optical remote sensing (ORS) method that determined fugitive dust emission factors for unique military activities is described for puff and mobile sources. Four field campaigns characterized artillery back blasts as puff sources (M549A1 and M107), and movement of military vehicles (M1A1, M113, Bradley Fighting Vehicle (BFV), M88, M270, M577, and HEMTT) and an airborne helicopter (Bell 210) as mobile sources. The ORS method includes a Micro-Pulse Lidar (MPL) and a reflective target that determines one-dimensional (1-D) light extinction coefficient profiles. The MPL was mounted on a positioner that allows the MPL to automatically scan vertically, which allowed 1-D extinction coefficient profiles to be measured at select angles from horizontal. Two-dimensional (2-D) light extinction coefficient profiles were then determined by interpolating the 1-D extinction profiles measured at select angles. Dust property, in the form of the mass extinction efficiency (MEE), was measured using Open Path- Fourier Transform Infrared Spectrometry (OP-FTIR) and Open Path- Laser Transmissometry (OP-LT) in the first three field campaigns and an OP-LT and DustTrak™ in the fourth field campaign. MEE was used to convert the 2-D light extinction coefficient profiles to 2-D dust mass concentration profiles. Emission factors were determined by integrating the 2-D mass concentration profiles with measured wind vectors. Results from these field campaigns show that: 1) artillery with stronger recoiling forces generates more fugitive dust; 2) the dust emission factors for tracked vehicles are correlated with vehicle momentum; 3) emission factor decreases with increasing speed for airborne helicopters; and 4) wheeled vehicles (HEMTT) generate more fugitive dust than tracked vehicles (M88, M270, M577).
NASA Astrophysics Data System (ADS)
MacKay, K.; Risk, D. A.; Macintyre, C. M.; O'Connell, E.; Baillie, J.; Fougère, C. R.; Lavoie, M.
2016-12-01
In the oil and gas industry, fugitive and vented releases of trace gases (CO2, CH4 and H2S) are known to originate from many forms of infrastructure including well casings, pipelines and storage tanks. While emission factors for these infrastructure are widely known, we lack a good understanding from top-down studies of how frequently, or infrequently, emissions are present. This study describes an intensive on-wellpad measurement campaign at a large conventional oilfield where fugitive and vented emission frequencies were assessed for over 500 individual producing wells. Using vehicle-based surveys, in which geolocated CO2, CH4 and H2S concentrations were measured at 1 Hz while driving, we conducted full loops around each piece of wellpad infrastructure so that wind was not a factor in detection. Since this oilfield uses pipelines and centralized fluids handling, we hypothesized that on-pad emissions would be much lower than has been reported for other sites with on-pad tank batteries. These intensive on-pad measurements were also used to validate the results of regional on-road campaigns conducted locally. Surveys conducted in fall 2015 estimated that roughly 4.3% of wells had CH4-rich emissions whereas surveys conducted in winter 2016 showed that approximately 7.6% of wells were characteristic of CH4-rich emissions. These figures compared favorably with independent on-road survey programs where detections were measured at distance downwind. Preliminary results suggest that colder climates tended to increase the probability for detection primarily due to increased stability in background values. This study highlights the importance of year-round measurements, as monitoring may underestimate emission frequencies in warmer seasons.
40 CFR 49.124 - Rule for limiting visible emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... emissions. (a) What is the purpose of this section? This section limits the visible emissions of air... residential buildings with four or fewer dwelling units, fugitive dust from public roads owned or maintained... sources. (d) What are the opacity limits for air pollution sources? (1) The visible emissions from an air...
Atmospheric Carbon Tetrachloride: Mysterious Emissions Gap Almost Closed
NASA Astrophysics Data System (ADS)
Liang, Q.; Newman, P. A.; Reimann, S.
2016-12-01
Carbon tetrachloride (CCl4) is a major ozone-depleting substance and its production and consumption is controlled under the Montreal Protocol for emissive uses. The most recent WMO/UNEP Scientific Assessment of Ozone Depletion [WMO, 2014] estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg yr-1, based on country-by-country reports to UNEP, vs. a global top-down emissions estimate of 57 Gg yr-1, based on atmospheric measurements. To understand the gap between the top-down and bottom-up emissions estimates, a CCl4 activity was formed under the auspices of the Stratosphere-Troposphere Processes And their Role in Climate (SPARC) project. Several new findings were brought forward by the SPARC CCl4 activity. CCl4 is destroyed in the stratosphere, oceans, and soils. The total lifetime estimate has been increased from 26 to 33 years. The new 33-year total lifetime lowers the top-down emissions estimate to 40 (25-55) Gg yr-1. In addition, a persistent hemispheric difference implies substantial ongoing Northern Hemisphere emissions, yielding an independent emissions estimate of 30 Gg yr-1. The combination of these two yields an emissions estimate of 35 Gg yr-1. Regional estimates have been made for Australia, North America, East Asia, and Western Europe. The sum of these estimates results in emissions of 21 Gg yr-1, albeit this does not include all regions of the world. Four bottom-up CCl4 emissions pathways have been identified, i.e., fugitive, unreported non-feedstock, unreported inadvertent, and legacy emissions. The new industrial bottom-up emissions estimate includes emissions from chloromethanes plants (13 Gg yr-1) and feedstock fugitive emissions (2 Gg yr-1). When combined with legacy emissions and unreported inadvertent emissions ( 10 Gg yr-1), the total global emissions are 20±5 Gg yr-1. While the new bottom-up value is still less than the aggregated top-down values, these estimates reconcile the CCl4 budget discrepancy when considered at the edges of their uncertainties.
Practical guide: Tools and methodologies for an oil and gas industry emission inventory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, C.C.; Killian, T.L.
1996-12-31
During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results ofmore » this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.« less
Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G
2016-06-01
Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Definitions. 61.111 Section 61.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards. 61.112 Section 61.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive...
Accuracy of vertical radial plume mapping technique in measuring lagoon gas emissions.
Viguria, Maialen; Ro, Kyoung S; Stone, Kenneth C; Johnson, Melvin H
2015-04-01
Recently, the U.S. Environmental Protection Agency (EPA) posted a ground-based optical remote sensing method on its Web site called Other Test Method (OTM) 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to calculate fugitive gas emission mass rates based on measured wind speed profiles and path-integrated gas concentrations (PICs). This study evaluates the accuracy of the VRPM technique in measuring gas emission from animal waste treatment lagoons. A field trial was designed to evaluate the accuracy of the VRPM technique. Control releases of methane (CH4) were made from a 45 m×45 m floating perforated pipe network located on an irrigation pond that resembled typical treatment lagoon environments. The accuracy of the VRPM technique was expressed by the ratio of the calculated emission rates (QVRPM) to actual emission rates (Q). Under an ideal condition of having mean wind directions mostly normal to a downwind vertical plane, the average VRPM accuracy was 0.77±0.32. However, when mean wind direction was mostly not normal to the downwind vertical plane, the emission plume was not adequately captured resulting in lower accuracies. The accuracies of these nonideal wind conditions could be significantly improved if we relaxed the VRPM wind direction criteria and combined the emission rates determined from two adjacent downwind vertical planes surrounding the lagoon. With this modification, the VRPM accuracy improved to 0.97±0.44, whereas the number of valid data sets also increased from 113 to 186. The need for developing accurate and feasible measuring techniques for fugitive gas emission from animal waste lagoons is vital for livestock gas inventories and implementation of mitigation strategies. This field lagoon gas emission study demonstrated that the EPA's vertical radial plume mapping (VRPM) technique can be used to accurately measure lagoon gas emission with two downwind vertical concentration planes surrounding the lagoon.
A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle
Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene
2017-01-01
Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities. PMID:28216557
40 CFR 63.1541 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., preliminary treatment, refining and casting operations, process fugitive sources, and fugitive dust sources... the blast furnace, electric smelting furnace with a converter or reverberatory furnace, and slag fuming furnace process units. The preliminary treatment process includes the drossing kettles and dross...
40 CFR 63.1541 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., preliminary treatment, refining and casting operations, process fugitive sources, and fugitive dust sources... the blast furnace, electric smelting furnace with a converter or reverberatory furnace, and slag fuming furnace process units. The preliminary treatment process includes the drossing kettles and dross...
40 CFR 63.1541 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., preliminary treatment, refining and casting operations, process fugitive sources, and fugitive dust sources... the blast furnace, electric smelting furnace with a converter or reverberatory furnace, and slag fuming furnace process units. The preliminary treatment process includes the drossing kettles and dross...
Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.
2013-04-01
This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposedmore » individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less
NASA Astrophysics Data System (ADS)
Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.
2015-12-01
An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.
77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
..., stack, storage, or fugitive emissions point; and/or are design, equipment, work practice, or operational... procedures designed to minimize emissions of THC for each start-up and shutdown scenario anticipated for all... designed and maintained can sometimes fail and that such failure can sometimes cause an exceedance of the...
Long-term decline of global atmospheric ethane concentrations and implications for methane.
Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R
2012-08-23
After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.
40 CFR 63.549 - Notification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall submit the fugitive dust control standard operating procedures manual required under § 63.545(a) and the standard operating procedures manual for baghouses required under § 63.548(a) to the... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...
40 CFR 63.549 - Notification requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... shall submit the fugitive dust control standard operating procedures manual required under § 63.545(a) and the standard operating procedures manual for baghouses required under § 63.548(a) to the... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...
Development of EPA OTM 10 for Landfill Applications, Interim Report
Quantification of greenhouse gas emissions from area sources is of increasing importance. Due to the spatial extent and non homogenous nature of many area sources, assessment of fugitive emissions using traditional point sampling techniques can be problematic. To address this, th...
40 CFR 52.515 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Natural Resources and Environmental Control. (19) The Plan revision entitled “Revisions to the..., Cylinder wipe, Emission unit, Federally enforceable, Flexography, Fugitive emission, Gas services, Gas..., Freeboard ratio, Mayor, Vehicular fuel tank. Abbreviations: (Degree), VOC, “%”. (ii) Additional material. (A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.
This report documents radionuclide air emissions that result in the highest effective dose equivalent (EDE) to a member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and Washington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. The dose to the PNNL Site MEI due to routine major and minormore » point source emissions in 2013 from PNNL Site sources is 2E-05 mrem (2E-07 mSv) EDE. The dose from fugitive emissions (i.e., unmonitored sources) is 2E-6 mrem (2E-8 mSv) EDE. The dose from radon emissions is 1E-11 mrem (1E-13 mSv) EDE. No nonroutine emissions occurred in 2013. The total radiological dose for 2013 to the MEI from all PNNL Site radionuclide emissions, including fugitive emissions and radon, is 2E-5 mrem (2E-7 mSv) EDE, or 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Site is in compliance« less
MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL
This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...
40 CFR 63.1548 - Notification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... submit the fugitive dust control standard operating procedures manual required under § 63.1544(a) and the standard operating procedures manual for baghouses required under § 63.1547(a) to the Administrator or... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...
40 CFR 63.1548 - Notification requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... submit the fugitive dust control standard operating procedures manual required under § 63.1544(a) and the standard operating procedures manual for baghouses required under § 63.1547(a) to the Administrator or... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...
EPA's mobile monitoring of source emissions and near-source impact
Real-time ambient monitoring onboard a moving vehicle is a unique data collection approach applied to characterize large-area sources, such as major roadways, and detect fugitive emissions from distributed sources, such as leaking oil wells. EPA's Office of Research and Developme...
Portable air pollution control equipment for the control of toxic particulate emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaurushia, A.; Odabashian, S.; Busch, E.
1997-12-31
Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less
Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching
2010-10-01
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.
This report documents radionuclide air emissions that result in the 2014 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI due to routine major andmore » minor point source emissions in 2014 from PNNL Campus sources is 2E 05 mrem (2E-07 mSv) EDE. The dose from all fugitive sources is 3E-6 mrem (3E-8 mSv) EDE. The dose from radon emissions is 1E-6 mrem (1E-8 mSv) EDE. No nonroutine emissions occurred in 2014. The total radiological dose for 2014 to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 3E-5 mrem (3E-7 mSv) EDE, or more than 100,000 times smaller than the federal and state standard of 10 mrem/yr, to which the PNNL Campus is in compliance.« less
Improved mitigation of fugitive emissions of hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and greenhouse gas (GHG) emissions is an important emerging topic in many industrial sectors. Efficacious leak detection and repair (LDAR) programs of the future yiel...
Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla
2008-01-01
Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530
Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.
NASA Astrophysics Data System (ADS)
Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.
2015-12-01
Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.
Western states contain vast amounts of oil and gas production. For example, Weld County Colorado contains approximately 25,000 active oil and gas well sites with associated production operations. There is little information on the air pollutant emission potential from this source...
Code of Federal Regulations, 2013 CFR
2013-07-01
... meters per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the...-8. Use GFAAS or ICP/MS for the analytical finish. Fugitive emissions from ash handling Visible...
Code of Federal Regulations, 2014 CFR
2014-07-01
... meters per run) Performance test (Method 29 at 40 CFR part 60, appendix A-8). Use GFAAS or ICP/MS for the...-8. Use GFAAS or ICP/MS for the analytical finish. Fugitive emissions from ash handling Visible...
40 CFR 63.8184 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2014 CFR
2014-07-01
... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...
40 CFR 63.8184 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...
40 CFR 63.8184 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2012 CFR
2012-07-01
... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...
40 CFR 63.8184 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2013 CFR
2013-07-01
... in the manufacture of product chlorine, product caustic, and by-product hydrogen at a plant site. This subpart covers mercury emissions from by-product hydrogen streams, end box ventilation system vents, and fugitive emission sources associated with cell rooms, hydrogen systems, caustic systems, and...
40 CFR 62.15250 - May I conduct stack testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollutants subject to stack testing requirements: dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, hydrogen chloride, and fugitive ash. (b) You can test less often for dioxins/furans emissions if... municipal waste combustion units have demonstrated levels of dioxins/furans emissions less than or equal to...
CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT
The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...
40 CFR 49.124 - Rule for limiting visible emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...
40 CFR 49.124 - Rule for limiting visible emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...
NASA Astrophysics Data System (ADS)
Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.
2014-12-01
The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.
Albertson, John D; Harvey, Tierney; Foderaro, Greg; Zhu, Pingping; Zhou, Xiaochi; Ferrari, Silvia; Amin, M Shahrooz; Modrak, Mark; Brantley, Halley; Thoma, Eben D
2016-03-01
This paper addresses the need for surveillance of fugitive methane emissions over broad geographical regions. Most existing techniques suffer from being either extensive (but qualitative) or quantitative (but intensive with poor scalability). A total of two novel advancements are made here. First, a recursive Bayesian method is presented for probabilistically characterizing fugitive point-sources from mobile sensor data. This approach is made possible by a new cross-plume integrated dispersion formulation that overcomes much of the need for time-averaging concentration data. The method is tested here against a limited data set of controlled methane release and shown to perform well. We then present an information-theoretic approach to plan the paths of the sensor-equipped vehicle, where the path is chosen so as to maximize expected reduction in integrated target source rate uncertainty in the region, subject to given starting and ending positions and prevailing meteorological conditions. The information-driven sensor path planning algorithm is tested and shown to provide robust results across a wide range of conditions. An overall system concept is presented for optionally piggybacking of these techniques onto normal industry maintenance operations using sensor-equipped work trucks.
Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...
NASA Astrophysics Data System (ADS)
Englander, J. G.; Brodrick, P. G.; Brandt, A. R.
2015-12-01
Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity counts of oilfield surface equipment including tanks, pumpjacks, and holding ponds.
Current sources of carbon tetrachloride (CCl4) in our atmosphere
NASA Astrophysics Data System (ADS)
Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.
2018-02-01
Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.
This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minormore » point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.« less
Consideration of Fugitive Emissions at Oilseed Processing Plants
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
NASA Astrophysics Data System (ADS)
Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich
2015-04-01
Methane (CH4) is the second most important anthropogenic greenhouse gas beside carbon dioxide (CO2). Significant contributors to the global methane budget are fugitive emissions from landfills. Due to the growing world population, it is expected that the amount of waste and, therefore, waste disposal sites will increase in number and size in parts of the world, often adjacent growing megacities. Besides bottom-up modelling, a variety of ground based methods (e.g., flux chambers, trace gases, radial plume mapping, etc.) have been used to estimate (top-down) these fugitive emissions. Because landfills usually are large, sometimes with significant topographic relief, vary temporally, and leak/emit heterogeneously across their surface area, assessing total emission strength by ground-based techniques is often difficult. In this work, we show how airborne based remote sensing measurements of the column-averaged dry air mole fraction of CH4 can be utilized to estimate fugitive emissions from landfills in an urban environment by a mass balance approach. Subsequently, these emission rates are compared to airborne in-situ horizontal cross section measurements of CH4 taken within the planetary boundary layer (PBL) upwind and downwind of the landfill at different altitudes immediately after the remote sensing measurements were finished. Additional necessary parameters (e.g., wind direction, wind speed, aerosols, dew point temperature, etc.) for the data inversion are provided by a standard instrumentation suite for atmospheric measurements aboard the aircraft, and nearby ground-based weather stations. These measurements were part of the CO2 and Methane EXperiment (COMEX), which was executed during the summer 2014 in California and was co-funded by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The remote sensing measurements were taken by the Methane Airborne MAPper (MAMAP) developed and operated by the University of Bremen and the German Research Center for Geoscience (GFZ) in Potsdam. The in-situ measurements were obtained by a greenhouse gas (GHG) in-situ analyser operated by NASA's Ames Research Center (ARC). Both instruments were installed aboard a DHC-6 Twin Otter aircraft operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). Initial results - including estimated fugitive emission rates - will be presented for the landfill Olinda Alpha in Brea, Orange County, Los Angeles Basin, California, which was overflown on four different days during the COMEX field campaign in late summer 2014.
Baselining Fugitive and Vented Emissions Across Canadian Energy Developments
NASA Astrophysics Data System (ADS)
O'Connell, L.; Risk, D. A.; Fougère, C. R.; Atherton, E.; Baillie, J.; Marshall, A. D.
2017-12-01
Nearly half of Alberta's oil and gas related methane emissions are due to fugitives and leaks, which pose significant potential for mitigation. Accurate and spatially-extensive emissions data can help operators and regulators meet reduction targets, and highlight which infrastructure requires immediate attention. This study used a vehicle-based gas monitoring system to detect and quantify methane emissions across large geographic areas in real-time. Our objectives were to quantify methane mixing ratios, determine the drivers of emission variation across several developments, and to evaluate emissions frequency and severity from several thousand wells and facilities. We measured fugitive, un-combusted flaring, and vented emissions within Lloydminster (heavy oil), Peace River (heavy oil), and Medicine Hat (conventional gas), Alberta during fall 2016. During this time, CO2, CH4, H2S, C2H6, and δ13CH4 (Picarro 2210 and Teledyne T101) were recorded from public roads at 1 Hz intervals, collecting over 6.7 million unique measurements in total. Methane anomalies were generally mild (0.2-0.5 ppm) in Peace River and Medicine Hat, but in Lloydminster, CH4 mixing ratios were elevated, and at their worst exceeded 6 ppm over 60 km of driving. We classified oil and gas related plumes based on geochemical emission signatures, and attributed the plumes based on wind direction and proximity to one of the >3200 infrastructural sources we surveyed during the triplicated campaign routes. The relative gas ratios (C1:C2, CO2:CH4) and isotopic signatures of plumes were within expected ranges for each development. Emission frequencies differed amongst developments, but were highest in Lloydminster, where 56% of wells were emitting methane-rich gas above our minimum detection limits. In Medicine Hat and Peace River, 28% and 29% of active wells were tagged as potential emission sources, respectively. Although active wells were the predominant source of emissions, other classes of infrastructure were also tagged as sources. We observed both episodic and persistent emissions in each development, owing to the sporadic and unpredictable nature of oilfield emissions. This study demonstrates the practicality of mobile surveying as both a regional-scale and wellpad-scale screening tool to help manage methane emissions in Alberta.
Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission
USDA-ARS?s Scientific Manuscript database
Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...
40 CFR 60.1305 - May I conduct stack testing less often?
Code of Federal Regulations, 2010 CFR
2010-07-01
...: dioxins/furans, cadmium, lead, mercury, particulate matter, opacity, hydrogen chloride, and fugitive ash. (b) You can test less often for dioxins/furans emissions if you own or operate a municipal waste... levels of dioxins/furans emissions less than or equal to 7 nanograms per dry standard cubic meter (total...
This paper presents a technique for determining the trace gas emission rate from a point source. The technique was tested using data from controlled methane release experiments and from measurement downwind of a natural gas production facility in Wyoming. Concentration measuremen...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-10-02
The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangermentmore » to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.« less
Ozone and its potential control strategy for Chon Buri city, Thailand.
Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Limpaseni, Wongpun; Sukhapan, Jariya; Bonnet, Sebastien
2012-12-01
This work studies O3 pollution for Chon Buri city in the eastern region of Thailand, where O3 has become an increased and serious concern in the last decade. It includes emission estimation and photochemical box modeling in support of investigating the underlying nature of O3 formation over the city and the roles of precursors emitted from sources. The year 2006 was considered and two single-day episodes (January 29 and February 14) were chosen for simulations. It was found that, in the city, the industrial sector is the largest emissions contributor for every O3 precursor (i.e., NO(x), non-methane volatile organic compounds or NMVOC, and CO), followed by on-road mobile group. Fugitive NMVOC is relatively large, emitted mainly from oil refineries and tank farms. Simulated results acceptably agree with observations for daily maximum O3 level in both episodes and evidently indicate the VOC-sensitive regime for O3 formation. This regime is also substantiated by morning NMVOC/NO(x) ratios observed in the city. The corresponding O3 isopleth diagrams suggest NMVOC control alone to lower elevated O3. In seeking a potential O3 control strategy for the city, a combination of brute-force sensitivity tests, an experimental design, statistical modeling, and cost optimization was employed. A number of emission subgroups were found to significantly contribute to O3 formation, based on the February 14 episode, for example, oil refinery (fugitive), tank farm (fugitive), passenger car (gasoline), and motorcycle (gasoline). But the cost-effective strategy suggests control only on the first two subgroups to meet the standard. The cost of implementing the strategy was estimated and found to be small (only 0.2%) compared to the gross provincial product generated by the entire province where the city is located within. These findings could be useful as a needed guideline to support O3 management for the city. Elevated O3 in the urban and industrial city of Chon Buri needs better understanding of the problem and technical guidelines for its management. With a city-specific emission inventory and air quality modeling, O3 formation was found to be VOC sensitive, and a cost-effective control strategy developed highlights fugitive emissions from the industrial sector to be controlled.
Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří
2017-12-01
The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Progress in Evaluating Quantitative Optical Gas Imaging
Development of advanced fugitive emission detection and assessment technologies that facilitate cost effective leak and malfunction mitigation strategies is an ongoing goal shared by industry, regulators, and environmental groups. Optical gas imaging (OGI) represents an importan...
Li, Shanlan; Kim, Jooil; Park, Sunyoung; Kim, Seung-Kyu; Park, Mi-Kyung; Mühle, Jens; Lee, Gangwoong; Lee, Meehye; Jo, Chun Ok; Kim, Kyung-Ryul
2014-01-01
The sources of halogenated compounds in East Asia associated with stratospheric ozone depletion and climate change are relatively poorly understood. High-precision in situ measurements of 18 halogenated compounds and carbonyl sulfide (COS) made at Gosan, Jeju Island, Korea, from November 2007 to December 2011 were analyzed by a positive matrix factorization (PMF). Seven major industrial sources were identified from the enhanced concentrations of halogenated compounds observed at Gosan and corresponding concentration-based source contributions were also suggested: primary aluminum production explaining 37% of total concentration enhancements, solvent usage of which source apportionment is 25%, fugitive emissions from HCFC/HFC production with 11%, refrigerant replacements (9%), semiconductor/electronics industry (9%), foam blowing agents (6%), and fumigation (3%). Statistical trajectory analysis was applied to specify the potential emission regions for seven sources using back trajectories. Primary aluminum production, solvent usage and fugitive emission sources were mainly contributed by China. Semiconductor/electronics sources were dominantly located in Korea. Refrigerant replacement, fumigation and foam blowing agent sources were spread throughout East Asian countries. The specified potential source regions are consistent with country-based consumptions and emission patterns, verifying the PMF analysis results. The industry-based emission sources of halogenated compounds identified in this study help improve our understanding of the East Asian countries' industrial contributions to halogenated compound emissions.
NASA Astrophysics Data System (ADS)
Brereton, Carol A.; Joynes, Ian M.; Campbell, Lucy J.; Johnson, Matthew R.
2018-05-01
Fugitive emissions are important sources of greenhouse gases and lost product in the energy sector that can be difficult to detect, but are often easily mitigated once they are known, located, and quantified. In this paper, a scalar transport adjoint-based optimization method is presented to locate and quantify unknown emission sources from downstream measurements. This emission characterization approach correctly predicted locations to within 5 m and magnitudes to within 13% of experimental release data from Project Prairie Grass. The method was further demonstrated on simulated simultaneous releases in a complex 3-D geometry based on an Alberta gas plant. Reconstructions were performed using both the complex 3-D transient wind field used to generate the simulated release data and using a sequential series of steady-state RANS wind simulations (SSWS) representing 30 s intervals of physical time. Both the detailed transient and the simplified wind field series could be used to correctly locate major sources and predict their emission rates within 10%, while predicting total emission rates from all sources within 24%. This SSWS case would be much easier to implement in a real-world application, and gives rise to the possibility of developing pre-computed databases of both wind and scalar transport adjoints to reduce computational time.
USDA-ARS?s Scientific Manuscript database
The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...
Stochastic industrial source detection using lower cost methods
Hazardous air pollutants (HAPs) can be emitted from a variety of sources in industrial facilities, energy production, and commercial operations. Stochastic industrial sources (SISs) represent a subcategory of emissions from fugitive leaks, variable area sources, malfunctioning p...
77 FR 13150 - Notice of Lodging of Third Amendment to Consent Decree Under the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... adopt facility-wide enhanced benzene waste monitoring and fugitive emission control programs..., $98,500, and $21,000 to resolve alleged Benzene Waste Operations NESHAP (``BWON'') violations at its...
Consideration of Fugitive Emissions at Oilseed Processing Plants
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
2015-09-19
response to shear stress (τ, N m-2) induced by the PI-SWERL®, the viscosity of the fluid exerts a torque (N m-1) that eventually balances with τ. The...Engelbrecht et al. (2012) from CCSEM measurements, report that these silicate mineral particles are largely coated by a veneer of clay minerals and fine...content does not, by itself, contribute to the high emissions observed at YTC. The presence of high clay content can constrain the emissions by
Fugitive greenhouse gas emissions from shale gas activities - a case study of Dish, TX
NASA Astrophysics Data System (ADS)
Khan, A.; Roscoe, B.; Lary, D.; Schaefer, D.; Tao, L.; Sun, K.; Brian, A.; DiGangi, J.; Miller, D. J.; Zondlo, M. A.
2012-12-01
We evaluate new findings on aerial (horizontal and vertical) mapping of methane emissions in the atmospheric boundary layer region to help study fugitive methane emissions from extraction, transmission, and storage of natural gas and oil in Dish, Texas. Dish is located in the Barnett Shale which has seen explosive development of hydraulic fracking activities in recent years. The aerial measurements were performed with a new laser-based methane sensor developed specifically for an unmanned aerial vehicle (UAV). The vertical cavity surface emitting laser (VCSEL) methane sensor, with a mass of 2.5 kg and a precision of < 20 ppbv methane at 1 Hz, was flown on the UT-Dallas ARC Payload Master electronic aircraft at two sites in Texas: one representative of urban emissions of the Dallas-Fort Worth area in Richardson, Texas and another in Dish, Texas, closer to gas and oil activities. Methane mixing ratios at Dish were ubiquitously in the 3.5 - 4 ppmv range which was 1.5 - 2 ppmv higher than methane levels immediately downwind of Dallas. During the flight measurements at Dish, narrow methane plumes exceeding 20 ppmv were frequently observed at altitudes from the surface to 130 m above the ground. Based on the wind speed at the sampling location, the horizontal widths of large methane plumes were of the order of 100 m. The locations of the large methane plumes were variable in space and time over a ~ 1 km2 area sampled from the UAV. Spatial mapping over larger scales (10 km) by ground-based measurements showed similar methane levels as the UAV measurements. To corroborate our measurements, alkane and other hydrocarbon mixing ratios from an on-site TCEQ environmental monitoring station were analyzed and correlated with methane measurements to fingerprint the methane source. We show that fugitive methane emissions at Dish are a significant cause of the large and ubiquitous methane levels on the 1-10 km scale.
40 CFR Table 2 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at New Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... Receivers at New Sources 2 Table 2 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 2 Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources Vessel...
40 CFR Table 2 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at New Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... Receivers at New Sources 2 Table 2 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 2 Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources Vessel...
40 CFR Table 1 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at Existing Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... Receivers at Existing Sources 1 Table 1 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 1 Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources...
40 CFR Table 1 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at Existing Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... Receivers at Existing Sources 1 Table 1 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 1 Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources...
Prevention of unorganized emissions of ammonia in installations of dewaxing of oils
NASA Astrophysics Data System (ADS)
Rehovskaya, E. O.; Nagibina, I. Yu; Ivanov, A. Yu
2018-01-01
The problem of lack of automation devices in oil dewaxing units is considered in this work. As a result, fugitive ammonia emissions that exceed the maximum permissible concentration, which adversely affect the health of personnel and the environment, can occur in the atmospheric air. The device and the operating principle of the automatic air separator are shown.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VHAP service-skip period leak detection and repair. 61.243-2 Section 61.243-2 Protection of Environment... AIR POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) § 61.243-2 Alternative standards for valves in VHAP service—skip period leak detection and repair. (a)(1) An owner or...
40 CFR Table 1 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at Existing Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... Receivers at Existing Sources 1 Table 1 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 1 Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources...
40 CFR Table 1 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at Existing Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... Receivers at Existing Sources 1 Table 1 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 1 Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources...
40 CFR Table 2 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at New Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... Receivers at New Sources 2 Table 2 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 2 Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources Vessel...
40 CFR Table 1 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at Existing Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... Receivers at Existing Sources 1 Table 1 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 1 Table 1 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at Existing Sources...
40 CFR Table 2 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at New Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... Receivers at New Sources 2 Table 2 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 2 Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources Vessel...
40 CFR Table 2 to Subpart V of... - Surge Control Vessels and Bottoms Receivers at New Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... Receivers at New Sources 2 Table 2 to Subpart V of Part 61 Protection of Environment ENVIRONMENTAL... POLLUTANTS National Emission Standard for Equipment Leaks (Fugitive Emission Sources) Pt. 61, Subpt. V, Table 2 Table 2 to Subpart V of Part 61—Surge Control Vessels and Bottoms Receivers at New Sources Vessel...
NASA Astrophysics Data System (ADS)
Zhou, X.; Albertson, J. D.
2016-12-01
Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (< 30 m) controlled methane release experiments using a specialized vehicle mounted with fast response methane analyzers and a GPS unit. Methane concentrations were measured at two different heights along mobile traversals downwind of the sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.
NASA Technical Reports Server (NTRS)
1993-01-01
A new Ferrofluidics exclusion seal promises improvement in controlling "fugitive emissions" -vapors that escape into the atmosphere from petroleum refining and chemical processing facilities. These are primarily volatile organic compounds, and their emissions are highly regulated by the EPA. The ferrofluid system consists of a primary mechanical seal working in tandem with a secondary seal. Ferrofluids are magnetic liquids - fluids in which microscopic metal particles have been suspended, allowing the liquid to be controlled by a magnetic force. The concept was developed in the early years of the Space program, but never used. Two Avco scientists, however, saw commercial potential in ferrofluids and formed a company. Among exclusion seal commercial applications are rotary feedthrough seals, hydrodynamic bearings and fluids for home and automotive loudspeakers. Ferrofluidics has subsidiaries throughout the world.
KCBX Notice of Violation - April 28, 2015
US EPA issued a Notice of Violation (NOV) to KCBX Terminals Company on April 28, 2015 asserting that KCBX's petroleum coke piles in Chicago are sources of fugitive emissions which violate the Clean Air Act and Illinois State Implementation Plan.
Koch Mineral Services Response to Section 114 Information Request
Koch Minerals asserts EPA's request exceeds the scope of the Clean Air Act; but does provide site information for its KCBX, Duluth, and Green Bay petroleum coke staging and handling facilities, throughput logs, and fugitive emissions prevention measures.
Benzene observations and source appointment in a region of oil and natural gas development
NASA Astrophysics Data System (ADS)
Halliday, Hannah Selene
Benzene is a primarily anthropogenic volatile organic compound (VOC) with a small number of well characterized sources. Atmospheric benzene affects human health and welfare, and low level exposure (< 0.5 ppbv) has been connected to measureable increases in cancer rates. Benzene measurements have been increasing in the region of oil and natural gas (O&NG) development located to the north of Denver. High time resolution measurements of VOCs were collected using a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) instrument at the Platteville Atmospheric Observatory (PAO) in Colorado to investigate how O&NG development impacts air quality within the Wattenburg Gas Field (WGF) in the Denver-Julesburg Basin. The measurements were carried out in July and August 2014 as part of NASA's DISCOVER-AQ field campaign. The PTR-QMS data were supported by pressurized whole air canister samples and airborne vertical and horizontal surveys of VOCs. Unexpectedly high benzene mixing ratios were observed at PAO at ground level (mean benzene = 0.53 ppbv, maximum benzene = 29.3 ppbv), primarily at night (mean nighttime benzene = 0.73 ppbv). These high benzene levels were associated with southwesterly winds. The airborne measurements indicate that benzene originated from within the WGF, and typical source signatures detected in the canister samples implicate emissions from O&NG activities rather than urban vehicular emissions as primary benzene source. This conclusion is backed by a regional toluene-to-benzene ratio analysis which associated southerly flow with vehicular emissions from the Denver area. Weak benzene-to-CO correlations confirmed that traffic emissions were not responsible for the observed high benzene levels. Previous measurements at the Boulder Atmospheric Observatory (BAO) and our data obtained at PAO allow us to locate the source of benzene enhancements between the two atmospheric observatories. Fugitive emissions of benzene from O&NG operations in the Platteville area are discussed as the most likely causes of enhanced benzene levels at PAO. A limited information source attribution with the PAO dataset was completed using the EPA's positive matrix factorization (PMF) source receptor model. Six VOCs from the PTR-QMS measurement were used along with CO and NO for a total of eight chemical species. Six sources were identified in the PMF analysis: a primarily CO source, an aged vehicle emissions source, a diesel/compressed natural gas emissions source, a fugitive emissions source, and two sources that have the characteristics of a mix of fresh vehicle emissions and condensate fugitive emissions. 70% of the benzene measured at PAO on the PTR-QMS is attributed to fugitive emissions, primarily located to the SW of PAO. Comparing the PMF source attribution to source calculations done with a source array configured from the literature returns a contradictory result, with the expected sources indicting that aged vehicle emissions are the primary benzene source. However, analysis of the contradictory result indicates that the toluene to benzene ratio measured for PAO is much lower than the literature values, suggesting that the O&NG source emissions have a lower ratio of toluene to benzene than anticipated based on studies of other regions. Finally, we propose and investigate an alternative form of the source receptor model using a constrained optimization. Poor results of the proposed method are described with tests on a synthetic testing dataset, and further testing with the observation data from PAO indicate that the proposed method is not able to converge the best global solution to the system.
Application of an Imaging Fourier-Transform Spectrometer for the Means of Combustion Diagnostics
2012-06-14
and P. McCready. Dial measurements of fugitive emissions from natural gas plants and the comparison with emission factor estimates. Proc. 15th...12-J02 Abstract A passive remote sensing technique for accurately monitoring the combustion effi- ciency of petrochemical flares is greatly desired. A...and the spatial distribu- tion of combustion by-products. The flame spectra were characterized by structured emissions from CO2, H2O and CO
KCBX Notice of Violation - June 3, 2014
This notice, or NOV, issued by US EPA to KCBX Terminals Company on June 3, 2014, asserts that KCBX's pet coke (petroleum coke) piles in Chicago are sources of fugitive emissions which violate the Clean Air Act and Illinois State Implementation Plan.
Stella, Anna; Piccardo, Maria Teresa; Pala, Mauro; Balducci, Daniele; Cipolla, Massimo; Ceppi, Marcello; Valerio, Federico
2012-09-01
From 1995 to 2004, in Genoa, Italy, daily concentrations of twelve polycyclic aromatic hydrocarbons (PAHs) were measured in particulate phase (PM10), around a coke oven plant in operation from the 1950s and closed in 2002. The study permitted to identify the coke oven as the main PAH source in Genoa, causing constant exceeding of benzo(a)pyrene (BaP) air quality target (1.0 ng/m3) in the urban area till 1,900 meters distance downwind the plant. For this reason the plant was closed. Distance and daily hours downwind the coke plant were the main sources of variability of toxic BaP equivalent (BaPeq) concentrations and equations that best fitted these variables were experimentally obtained. During full plant activity, annual average BaPeq concentrations, measured in the three sampling sites aligned downwind to the summer prevalent winds, were: 85 ng/m3 at 40 m (site 2, industrial area), 13.2 ng/m3 at 300 m (site 3, residential area) and 5.6 ng/m3 at 575 m (site 4, residential area). Soon after the coke oven's closure (February 2002) BaPeq concentrations (annual average) measured in residential area, decreased drastically: 0.2 ng/m3 at site 3, 0.4 ng/m3 at site 4. Comparing 1998 and 2003 data, BaPeq concentrations decreased 97.6% in site 3 and 92.8% in site 4. Samples collected at site 3, during the longest downwind conditions, provided a reliable PAH profile of fugitive coke oven emissions. This profile was significantly different from the PAH profile, contemporary found at site 5, near the traffic flow. This study demonstrates that risk assessment based only on distance of residences from a coke plant can be heavily inaccurate and confirmed that seasonal variability of BaPeq concentrations and high variability of fugitive emissions of PAHs during coke oven activities require at least one year of frequent and constant monitoring (10-15 samples each month). Around a coking plant, polycyclic aromatic hydrocarbons (PAHs), concentrations depend mainly on downwind hours and distance. Equations that best fit these variables were experimentally calculated. Fugitive emissions of an old coke oven did not comply with the threshold BAP air concentration proposed by the World Health Organization (WHO), up to 1,900 m distance. The study identified the PAH profile of fugitive emissions of a coke oven, statistically different from the profile of traffic emissions. During its activity, in the Genoa residential area, 575 m away from the plant, 92.8% of found PAHs was due to coke oven emission only.
NASA Astrophysics Data System (ADS)
Englander, J. G.; Wang, J.; Lebel, E.; Brandt, A. R.; Jackson, R. B.
2016-12-01
There has been a growing body of research focused on fugitive emissions from oil and gas production. Some studies are bottom-up, component-level studies of individual leaks, while others use atmospheric flux quantification to estimate overall leakage [1]. These studies represent static views of the emissions from a particular region or piece of equipment. There have not (as of yet) been studies examining how the leaks in a facility change over time. Also, challenges have arisen due to study designs that primarily rely on operator cooperation, raising the potential of participation bias in samples taken. This study investigates the persistence of leaking wellpads in the Bakken formation over time, utilizing ground-based observations with an optical gas imaging camera (FLIR GF320). This study examines - without operator foreknowledge - operations which are visible from public roads. This study is broken up into two phases: Phase A included seventy well pads observed over seven separate visits (15, 30, 45, 60, 75, 180, 365 days) where well sites were selected using prior observations to include a higher proportion of leaking wells than across the population overall. Phase B includes sixty-two randomly selected well pads observed over six visits (15, 30, 45, 60, 75, 180 days). This study examines the dynamics between leaking and non-leaking sites over time by comparing the observed presence (or absence) of leaks in a Monte Carlo simulation to a random leak distribution [2]. Even after 180 days, the number of well pads that persisted as either leaking or non-leaking were more than 2σ away from that expected using a random distribution of leaks. This indicates that the mitigation of previously leaking wells could have a significant impact in the reduction of fugitive emissions through enabling persistent improvements in leakage behavior. [1] D. R. Lyon et al. "Aerial surveys of elevated hydrocarbon emissions from oil and gas production sites," Environ. Sci. Technol., p. acs.est.6b00705, Apr. 2016. [2] J. Peischl et al. "Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota," J. Geophys. Res. Atmos., May 2016.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
... ) emissions from sources of fugitive dust such as unpaved roads and disturbed soils in open and agricultural... trespass and stabilize disturbed soil on open areas larger than 0.5 acres in urban areas, and larger than...
40 CFR 49.123 - General provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., road construction and road maintenance, fertilization, logging operations, and forest management... oil. Fugitive dust means a particulate matter emission made airborne by forces of wind, mechanical... § 49.123(a). (vii) ASTM D2880-03, Standard Specification for Gas Turbine Fuel Oils, IBR approved for...
40 CFR 49.123 - General provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., road construction and road maintenance, fertilization, logging operations, and forest management... oil. Fugitive dust means a particulate matter emission made airborne by forces of wind, mechanical... § 49.123(a). (vii) ASTM D2880-03, Standard Specification for Gas Turbine Fuel Oils, IBR approved for...
40 CFR 49.123 - General provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., road construction and road maintenance, fertilization, logging operations, and forest management... oil. Fugitive dust means a particulate matter emission made airborne by forces of wind, mechanical... § 49.123(a). (vii) ASTM D2880-03, Standard Specification for Gas Turbine Fuel Oils, IBR approved for...
40 CFR 49.123 - General provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., road construction and road maintenance, fertilization, logging operations, and forest management... oil. Fugitive dust means a particulate matter emission made airborne by forces of wind, mechanical... § 49.123(a). (vii) ASTM D2880-03, Standard Specification for Gas Turbine Fuel Oils, IBR approved for...
40 CFR 63.1544 - Standards for fugitive dust sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation.... 63.1544 Section 63.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.1544 - Standards for fugitive dust sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation.... 63.1544 Section 63.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...
40 CFR 63.1544 - Standards for fugitive dust sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation....1544 Section 63.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...
40 CFR 60.1700 - What pollutants are regulated by this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart? 60.1700 Section 60.1700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-Emission Limits § 60.1700 What pollutants are regulated by this subpart? Eleven pollutants, in four... dioxide. (d) Other. (1) Carbon monoxide. (2) Fugitive ash. ...
40 CFR 60.1700 - What pollutants are regulated by this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart? 60.1700 Section 60.1700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-Emission Limits § 60.1700 What pollutants are regulated by this subpart? Eleven pollutants, in four... dioxide. (d) Other. (1) Carbon monoxide. (2) Fugitive ash. ...
Xu, Hongmei; Cao, Junji; Chow, Judith C; Huang, R-J; Shen, Zhenxing; Chen, L W Antony; Ho, Kin Fai; Watson, John G
2016-03-01
Chemical characteristics of PM2.5 in Xi'an in wintertime of 2006, 2008, and 2010 were investigated. Markers of OC2, EC1, and NO3(-)/SO4(2-) ratio were calculated to investigate the changes in PM2.5 emission sources over the 5-year period. Positive matrix factorization (PMF) model was used to identify and quantify the main sources of PM2.5 and their contributions. The results showed that coal combustion, motor vehicular emissions, fugitive dust, and secondary inorganic aerosol accounted for more than 80% of PM2.5 mass. The importance of these major sources to the PM2.5 mass varied yearly: coal combustion was the largest contributor (31.2% ± 5.2%), followed by secondary inorganic aerosol (20.9% ± 5.2%) and motor vehicular emissions (19.3% ± 4.8%) in 2006; the order was still coal combustion emissions (27.6% ± 3.4%), secondary inorganic aerosol (23.2% ± 6.9%), and motor vehicular emissions (20.9% ± 4.6%) in 2008; while coal combustion emission further decreased (24.1% ± 3.1%) with fugitive dust (19.4% ± 5.5%) increasing in 2010. The changes in PM2.5 chemical compositions and source contributions can be attributed to the social and economic developments in Xi'an, China, including energy structure adjustment, energy consumption, the expansion of civil vehicles, and the increase of urban construction activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites
NASA Astrophysics Data System (ADS)
Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.
2016-09-01
A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.
DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING
Gaseous releases from petrochemical, refinery, and electrical production facilities can contribute to regional air quality problems. Fugitive emissions or leaks can be costly to industry in terms of lost materials and products. Ground-based sampling and monitoring for leaks are t...
40 CFR 63.1654 - Operational and work practice standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... according to a written fugitive dust control plan must be incorporated in the operating permit for the... standards. 63.1654 Section 63.1654 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
40 CFR 63.1654 - Operational and work practice standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to a written fugitive dust control plan must be incorporated in the operating permit for the... standards. 63.1654 Section 63.1654 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
Csavina, Janae; Taylor, Mark P.; Félix, Omar; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.
2014-01-01
Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (< 1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (< 1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emissions management and practices that minimize health risks associated with metal extraction and processing can be developed. PMID:24995641
Development of differential absorption lidar (DIAL) for detection of CO2, CH4 and PM in Alberta
NASA Astrophysics Data System (ADS)
Wojcik, Michael; Crowther, Blake; Lemon, Robert; Valupadas, Prasad; Fu, Long; Leung, Bonnie; Yang, Zheng; Huda, Quamrul; Chambers, Allan
2005-05-01
Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as satellite imagery and laser based sensors. The Space Dynamics Laboratory (SDL) of Utah State University, in cooperation with Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA), has developed North America's first mobile differential absorption lidar (DIAL) system designed specifically for emissions measurement. This instrument is housed inside a 36' trailer which allows for mobility to travel across Alberta to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 10 meters. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation DIAL can create images of emissions in two dimensions. DIAL imagery may be used to understand and control production practices, characterize source emissions, determine emission factors, locate fugitive leaks, assess plume dispersion, and confirm air dispersion modeling. A system overview of the DIAL instrument and some representative results will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frerichs, Kimberly Irene
A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough tomore » encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were stationary combustion (facility fuels), employee commuting, mobile combustion (fleet fuels), business air travel, and waste disposal (including fugitive emissions from the onsite landfill and contracted disposal) • Sources with low emissions were wastewater treatment (onsite and contracted), business ground travel (in personal and rental vehicles), and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only the large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.« less
Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites
NASA Astrophysics Data System (ADS)
Lupardus, R.; Franklin, S. B.
2017-12-01
Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.
78 FR 52485 - Revisions to the Arizona State Implementation Plan, Maricopa County Area
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-23
...] Revisions to the Arizona State Implementation Plan, Maricopa County Area AGENCY: Environmental Protection... County Area portion of the Arizona State Implementation Plan (SIP). These revisions concern particulate matter (PM) emissions from fugitive dust sources. We are approving local statutes that regulate these...
Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report
Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...
RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING
The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...
40 CFR 63.1654 - Operational and work practice standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to a written fugitive dust control plan must be incorporated in the operating permit for the... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Operational and work practice standards... PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...
Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J
2014-01-01
Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.
Enabling chip-scale trace gas sensing systems with silicon photonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Tunable laser trace-gas spectroscopy has been effectively used in both environmental and medical applications, for its sensitivity and specificity. We’ll describe how contemporary silicon photonics manufacturing and assembly are leveraged for a cost-effective miniaturized spectroscopic sensor platform, and outline uses in fugitive methane emissions monitoring.
40 CFR 61.242-5 - Standards: Sampling connecting systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Sampling connecting systems... for Equipment Leaks (Fugitive Emission Sources) § 61.242-5 Standards: Sampling connecting systems. (a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed vent...
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and other surfaces that can create airborne dust. (iii) Full or partial enclosure of materials... particulate matter from becoming airborne. (iv) Implementation of good housekeeping practices to avoid or minimize the accumulation of dusty materials that have the potential to become airborne, and the prompt...
The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
USING TUNABLE DIODE LASERS TO MEASURE EMISSIONS FROM ANIMAL HOUSING AND WASTE LAGOONS
Open-path optical spectroscopy has been applied to several fugitive sources by scientists at the EPA National Risk Management Research Laboratory for more than a decade. Open-path Fourier transform infrared (OP-FTIR) was used during the initial research phase because of the abil...
PORTABLE IMAGING DEVICES FOR INDUSTRIAL LEAK DETECTION AT PETROLEUM REFINERIES AND CHEMICAL PLANTS
Undiscovered gas leaks, or fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. Industrial Leak Detection and Repair (LDAR) pro...
A HYBRID THERMAL VIDEO AND FTTR SPECTROMETER FOR RAPIDLY LOCATING AND CHARACTERIZING GAS LEAKS
Undiscovered gas leaks, known as fugitive emissions, in chemical plants and refinery operations can impact regional air quality as well as being a public health problem. Surveying a facility for potential gas leaks can be a daunting task. An efficient, accurate and cost-effecti...
40 CFR 57.503 - Control measures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Control measures. 57.503 Section 57.503... NONFERROUS SMELTER ORDERS Fugitive Emission Evaluation and Control § 57.503 Control measures. The NSO of any... requirement of § 57.501. Measures required to be implemented may include: (a) Additional supplementary control...
40 CFR 57.503 - Control measures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Control measures. 57.503 Section 57.503... NONFERROUS SMELTER ORDERS Fugitive Emission Evaluation and Control § 57.503 Control measures. The NSO of any... requirement of § 57.501. Measures required to be implemented may include: (a) Additional supplementary control...
40 CFR 57.503 - Control measures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Control measures. 57.503 Section 57.503... NONFERROUS SMELTER ORDERS Fugitive Emission Evaluation and Control § 57.503 Control measures. The NSO of any... requirement of § 57.501. Measures required to be implemented may include: (a) Additional supplementary control...
40 CFR 57.503 - Control measures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Control measures. 57.503 Section 57.503... NONFERROUS SMELTER ORDERS Fugitive Emission Evaluation and Control § 57.503 Control measures. The NSO of any... requirement of § 57.501. Measures required to be implemented may include: (a) Additional supplementary control...
40 CFR 60.11 - Compliance with standards and maintenance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (meaning those fugitive-type emission sources subject only to an opacity standard). (c) The opacity standards set forth in this part shall apply at all times except during periods of startup, shutdown... startup, shutdown, and malfunction, owners and operators shall, to the extent practicable, maintain and...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
Applying Sensor Networks to Evaluate Air Pollutant Emissions from Fugitive and Area Sources
This is a presentation to be given at Duke University's Wireless Intelligent Sensor Network workshop on June 5, 2013. The presentation discusses the evaluation of a low cost carbon monoxide sensor network applied at a recent forest fire study and also evaluated against a referen...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and workplan of the study shall be approved, if adequate, by the issuing agency and included in the NSO. The study shall commence no later than the date when the NSO becomes effective and an analysis of... workplan for a study adequate to assess the sources of significant fugitive emissions from the smelter and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and workplan of the study shall be approved, if adequate, by the issuing agency and included in the NSO. The study shall commence no later than the date when the NSO becomes effective and an analysis of... workplan for a study adequate to assess the sources of significant fugitive emissions from the smelter and...
Fugitive dust emissions from off-road vehicle maneuvers on military training lands
USDA-ARS?s Scientific Manuscript database
Off-road vehicle training can contribute to air quality degradation because of increased wind erosion as a result of soil disruption during high wind events. However, limited information exists regarding the impacts of off-road vehicle maneuvering on wind erosion potential of soils. This study was c...
Chen, Pulong; Wang, Tijian; Lu, Xiaobo; Yu, Yiyong; Kasoar, Matthew; Xie, Min; Zhuang, Bingliang
2017-02-01
In this study, samples of size-fractionated particulate matter were collected continuously using a 9-size interval cascade impactor at an urban site in Nanjing, before, during and after the Asian Youth Games (AYG), from July to September of 2013, and the Youth Olympic Games (YOG), from July to September of 2014. First, elemental concentrations, water-soluble ions including Cl - , NO 3 - , SO 4 2- , NH 4 + , K + , Na + and Ca 2+ , organic carbon (OC) and elemental carbon (EC) were analysed. Then, the source apportionment of the fine and coarse particulate matter was carried out using the chemical mass balance (CMB) model. The average PM 10 concentrations were 90.4±20.0μg/m 3 during the 2013 AYG and 70.6±25.3μg/m 3 during the 2014 YOG. For PM 2.1, the average concentrations were 50.0±12.8μg/m 3 in 2013 and 34.6±17.0μg/m 3 in 2014. Investigations showed that the average concentrations of particles declined significantly from 2013 to 2014, and concentrations were at the lowest levels during the events. Results indicated that OC, EC, sulfate and crustal elements have significant monthly and size-based variations. The major components, including crustal elements, water-soluble ions and carbonaceous aerosol accounted for 75.3-91.9% of the total particulate mass concentrations during the sampling periods. Fugitive dust, coal combustion dust, iron dust, construction dust, soil dust, vehicle exhaust, secondary aerosols and sea salt have been classified as the main emissions in Nanjing. The source apportionment results indicate that the emissions from fugitive dust, which was the most abundance emission source during the 2013 AYG, contributed to 23.0% of the total particle mass. However, fugitive dust decreased to 6.2% of the total particle mass during the 2014 YOG. Construction dust (14.7% versus 7.8% for the AYG and the YOG, respectively) and secondary sulfate aerosol (9.3% versus 8.0% for the AYG and the YOG, respectively) showed the same trend as fugitive dust, suggesting that the mitigation measures of controlling particles from the paved roads, construction and industry worked more efficiently during the YOG. Copyright © 2016 Elsevier B.V. All rights reserved.
Emissions from vehicles, tailpipe and vehicle re-entrained road dust
NASA Astrophysics Data System (ADS)
Zhu, Dongzi
Emissions from transportation are some of the largest sources of urban air pollution. Transportation emissions originate from both the engine-through combustion processes and non-tailpipe re-suspended road dust emissions induced by vehicle travel on unpaved and paved roads. Gaseous and particulate emissions from transportation sources have negative impacts on human health, visibility and may influence the global radiation balance. Fugitive dust emissions originating from vehicle travel on paved and unpaved roads constitute a significant fraction of the PM10 in many areas of the western US impacting their attainment status of National Ambient Air Quality Standards. The research used three novel instrument platforms developed at the Desert Research Institute. The In-Plume Emissions Test Stand (IPETS) was designed to provide characterization of exhaust emissions from in-use individual vehicles or engines by analyzing air as close as 1 m from the exhaust port. Real-world emission factors can be quantified by in-plume measurements and provide more realistic measures for emission inventories, source modeling, and receptor modeling than certification measurements. The Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) provides an effective alternate approach to the EPA AP-42 road dust emissions estimation techniques by sampling 1000s of km of roads versus isolated 3 m sections. The Portable Deposition Monitoring Platform (PDMP incorporates PM and meteorological instruments to characterize the downwind change in particle concentrations to define depositional losses in different environments. The research outcome provides important knowledge for understanding diesel engine emissions, road dust emissions and aerosol deposition process near road sources.
NASA Astrophysics Data System (ADS)
Silvester, S. A.; Lowndes, I. S.; Hargreaves, D. M.
2009-12-01
The extraction of minerals from surface mines and quarries can produce significant fugitive dust emissions as a result of site activities such as blasting, road haulage, loading, crushing and stockpiling. If uncontrolled, these emissions can present serious environmental, health, safety and operational issues impacting both site personnel and the wider community. The dispersion of pollutant emissions within the atmosphere is principally determined by the background wind systems characterized by the atmospheric boundary layer (ABL). This paper presents an overview of the construction and solution of a computational fluid dynamics (CFD) model to replicate the development of the internal ventilation regime within a surface quarry excavation due to the presence of a neutral ABL above this excavation. This model was then used to study the dispersion and deposition of fugitive mineral dust particles generated during rock blasting operations. The paths of the mineral particles were modelled using Lagrangian particle tracking. Particles of four size fractions were released from five blast locations for eight different wind directions. The study concluded that dependent on the location of the bench blast within the quarry and the direction of the wind, a mass fraction of between 0.3 and 0.6 of the emitted mineral particles was retained within the quarry. The retention was largest when the distance from the blast location to the downwind pit boundary was greatest.
Advancing Understanding of Emissions from Oil and Natural ...
Executive Summary Environmentally responsible development of oil and gas assets requires well-developed emissions inventories and measurement techniques to verify emissions and the effectiveness of control strategies. To accurately model the oil and gas sector impacts on air quality, it is critical to have accurate activity data, emission factors and chemical speciation profiles for volatile organic compounds (VOCs) and nitrogen oxides (NOx). This report describes a U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) Region 8 Regional Applied Research Effort (RARE) effort executed in Fiscal Year (FY) 2014 to FY 2016 that aimed to improve information on upstream oil and production emissions and identify areas where future work is needed. The project involved both field activities and data analysis and synthesis work with emphasis on product-related VOC emissions from well pads. In oil and gas basins with significant condensate and oil production, VOC emissions from well pads primarily arise from the separation of gas and liquid products and the storage process, with the control of emissions usually accomplished by enclosed combustion devices (ECDs), such as flares. Fugitive emissions of VOCs can originate from leaks and from potentially ineffective control systems. In the case of ECDs, byproducts of incomplete combustion may produce more highly reactive ozone precursor species. For both compliance and scientific purposes, the abili
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
40 CFR 61.242-2 - Standards: Pumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Pumps. 61.242-2 Section 61... (Fugitive Emission Sources) § 61.242-2 Standards: Pumps. (a)(1) Each pump shall be monitored monthly to... (d), (e), (f) and (g) of this section. (2) Each pump shall be checked by visual inspection each...
Manual leak detection and repair (LDAR) programs are currently implemented on a regular basis at refinery sites to limit fugitive emissions of volatile organic compounds (VOC). However, LDAR surveys can be time-consuming and are not always cost-effective. Fence line monitoring of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-17
... the Arizona State Implementation Plan, Pinal County Air Quality Control District AGENCY: Environmental... disapproval of a revision to the Pinal County Air Quality Control District portion of the Arizona State... the Control Officer to determine whether the manner of control of fugitive emissions is satisfactory...
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Optical and thermal imaging devices are remote sensing systems that can be used to detect leaking gas compounds such as methane and benzene. Use of these systems can reduce fugitive emission losses through early detection and repair at industrial facilities by providing an effici...
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... limited to the following: (i) Use, where possible, of water or chemicals for control of dust in the...) Application of asphalt, oil (but not used oil), water, or other suitable chemicals on unpaved roads, materials... stockpiles in cases where application of oil, water, or chemicals is not sufficient or appropriate to prevent...
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... limited to the following: (i) Use, where possible, of water or chemicals for control of dust in the...) Application of asphalt, oil (but not used oil), water, or other suitable chemicals on unpaved roads, materials... stockpiles in cases where application of oil, water, or chemicals is not sufficient or appropriate to prevent...
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limited to the following: (i) Use, where possible, of water or chemicals for control of dust in the...) Application of asphalt, oil (but not used oil), water, or other suitable chemicals on unpaved roads, materials... stockpiles in cases where application of oil, water, or chemicals is not sufficient or appropriate to prevent...
Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands
USDA-ARS?s Scientific Manuscript database
Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...
Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.
Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun
2013-12-01
The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
On the sources of methane to the Los Angeles atmosphere.
Wennberg, Paul O; Mui, Wilton; Wunch, Debra; Kort, Eric A; Blake, Donald R; Atlas, Elliot L; Santoni, Gregory W; Wofsy, Steven C; Diskin, Glenn S; Jeong, Seongeun; Fischer, Marc L
2012-09-04
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
On the Sources of Methane to the Los Angeles Atmosphere
NASA Technical Reports Server (NTRS)
Wennberg, Paul O.; Mui, Wilton; Fischer, Marc L.; Wunch, Debra; Kort, Eric A.; Blake, Donald R.; Atlas, Elliot L.; Santoni, Gregory W.; Wofsy, Steven C.; Diskin, Glenn S.;
2012-01-01
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH4) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH4 emissions are 0.44 +/- 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH4), ethane (C2H6), and carbon monoxide (CO), together with measured C2H6 to CH4 enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C2H6 to CH4 ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C2H6 is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 +/- 0.15 Tg yr-1) of the excess CH4 in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C2H6 in the region. In particular, emissions of C2H6 (and CH4) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH4 emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
NASA Astrophysics Data System (ADS)
Ravikumar, A. P.; Wang, J.; Brandt, A. R.
2016-12-01
Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak detection program, and show that OGI technology can be used as an approximate leak-quantification method to selectively target the biggest leaks. Finally, we also provide recommendations and best-practices guidelines for achieving expected methane mitigation.
Monitoring fugitive CH4 and CO2 emissions from a closed landfill at Tenerife, Canary Islands
NASA Astrophysics Data System (ADS)
Asensio-Ramos, María; Tompkins, Mitchell R. K.; Turtle, Lara A. K.; García-Merino, Marta; Amonte, Cecilia; Rodrígez, Fátima; Padrón, Eleazar; Melián, Gladys V.; Padilla, Germán; Barrancos, José; Pérez, Nemesio M.
2017-04-01
Solid waste must be managed systematically to ensure environmental best practices. One of the ways to manage this huge problem is to systematic dispose waste materials in locations such as landfills. However, landfills could face possible threats to the environment such as groundwater pollution and the release of landfill gases (CH4, volatile organic compounds, etc.) to the atmosphere. These structures should be carefully filled, monitored and maintained while they are active and for up to 30 years after they are closed. Even after years of being closed, a systematically amount of landfill gas could be released to the atmosphere through its surface in a diffuse and fugitive form. During the period 1999-2016, we have studied the spatial-temporal distribution of the surface fugitive emission of CO2 and CH4 into the atmosphere in a cell in the Arico's municipal landfill (0.3 km2) at Tenerife, Canary Islands, Spain. This cell was operative until 2004, when it was filled and closed. Monitoring these diffuse landfill emissions provides information of how the closed landfill is degassing. To do so, we have performed 9 gas emission surveys during the period 1999-2016. Surface landfill CO2 efflux measurements were carried out at around 450 sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Landfill gases taken in the chamber were analyzed using a double channel VARIAN 4900 micro-GC. CH4 efflux measurements were computed combining CO2 efflux measurements and CH4/CO2 ratio in the landfill's surface gas. To quantify the total CH4 emission, CH4 efflux contour map was constructed using sequential Gaussian simulation (sGs) as interpolation method. In general, a decrease in the CO2 emission is observed since the cell was closed (2004) to the present. The total CO2 and CH4 diffuse emissions estimated in the 2016 survey were 4.54 ± 0.14 t d-1 and 268.65 ± 17.99 t d-1, respectively. These types of studies provide knowledge of how a landfill degasses and serves to public and private entities to establish effective systems for extraction of biogas. This aims not only to achieve higher levels of controlled gas release from landfills resulting in a higher level of energy production but also will contribute to minimize air pollution caused by them.
Csavina, Janae; Taylor, Mark P; Félix, Omar; Rine, Kyle P; Eduardo Sáez, A; Betterton, Eric A
2014-09-15
Mining operations, including crushing, grinding, smelting, refining, and tailings management, are a significant source of airborne metal and metalloid contaminants such as As, Pb and other potentially toxic elements. In this work, we show that size-resolved concentrations of As and Pb generally follow a bimodal distribution with the majority of contaminants in the fine size fraction (<1 μm) around mining activities that include smelting operations at various sites in Australia and Arizona. This evidence suggests that contaminated fine particles (<1 μm) are the result of vapor condensation and coagulation from smelting operations while coarse particles are most likely the result of windblown dust from contaminated mine tailings and fugitive emissions from crushing and grinding activities. These results on the size distribution of contaminants around mining operations are reported to demonstrate the ubiquitous nature of this phenomenon so that more effective emission management and practices that minimize health risks associated with metal extraction and processing can be developed. Copyright © 2014 Elsevier B.V. All rights reserved.
2005-05-01
mobilization . • Place1nent of tower guy wires will be adjusted to avoid construction and disturbance to any wetlands or small tributaries through on...include combustion emissions (VOC, NOx, CO, SO2) and fugitive dust (PM10) from mobile heavy-duty diesel- and gasoline-powered equipment and soil...Pollutant Factors, Mobile Sources (AP 42). 4th Edition, U.S. Environmental Protection Agency, Ann Arbor, Michigan. Total estimated emissions for VOC and
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... lungs and cause serious adverse health effects. People with heart or lung diseases, children and older...) submitted with the Mendenhall Valley NAA PM 10 LMP, for base year 2004 and projected year 2018, identifies... projected to remain close to that level through 2018. Fugitive dust emissions from travel on unpaved roads...
Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...
40 CFR 61.242-6 - Standards: Open-ended valves or lines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Equipment Leaks (Fugitive Emission Sources) § 61.242-6 Standards: Open-ended valves or lines. (a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Open-ended valves or lines...
A U.S. EPA team, consisting of the Office of Research and Development and Region 6 (Dallas) and Region 8 (Denver), deployed passive-diffusive sorbent tubes as part of a method evaluation study around one oil and natural gas production pad in both the Barnett Shale Basin in Texas ...
Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yuan; Graziano, Diane J.; Riddle, Matthew
2015-11-18
Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas,and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due tomore » fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.« less
NASA Astrophysics Data System (ADS)
Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.
2014-12-01
Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.
Porter, Travis R; Kent, Shia T; Su, Wei; Beck, Heidi M; Gohlke, Julia M
2014-10-23
Previous research has shown exposure to air pollution increases the risk of adverse birth outcomes, although the effects of residential proximity to significant industrial point sources are less defined. The objective of the current study was to determine whether yearly reported releases from major industrial point sources are associated with adverse birth outcomes. Maternal residence from geocoded Alabama birth records between 1991 and 2010 were used to calculate distances from coke and steel production industries reporting emissions to the U.S. Environmental Protection Agency. Logistic regression models were built to determine associations between distance or yearly fugitive emissions (volatile organic compounds, polycyclic aromatic compounds, and metals) from reporting facilities and preterm birth or low birth weight, adjusting for covariates including maternal age, race, payment method, education level, year and parity. A small but significant association between preterm birth and residential proximity (≤5.0 km) to coke and steel production facilities remained after adjustment for covariates (OR 1.05 95% CI: 1.01,1.09). Above average emissions from these facilities of volatile organic compounds during the year of birth were associated with low birth weight (OR 1.17 95% CI: 1.06, 1.29), whereas metals emissions were associated with preterm birth (OR 1.07 95% CI: 1.01, 1.14). The present investigation suggests fugitive emissions from industrial point sources may increase the risk of adverse birth outcomes in surrounding neighborhoods. Further research teasing apart the relationship between exposure to emissions and area-level deprivation in neighborhoods surrounding industrial facilities and their combined effects on birth outcomes is needed.
Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K
2015-11-01
Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions.
NASA Astrophysics Data System (ADS)
Sadavarte, Pankaj; Venkataraman, Chandra
2014-12-01
Emissions estimation, for research and regulatory applications including reporting to international conventions, needs treatment of detailed technology divisions and high-emitting technologies. Here we estimate Indian emissions, for 1996-2015, of aerosol constituents (PM2.5, BC and OC) and precursor gas SO2, ozone precursors (CO, NOx, NMVOC and CH4) and greenhouse gases (CO2 and N2O), using a common fuel consumption database and consistent assumptions. Six source categories and 45 technologies/activities in the industry and transport sectors were used for estimating emissions for 2010. Mean emission factors, developed at the source-category level, were used with corresponding fuel consumption data, available for 1996-2011, projected to 2015. New activities were included to account for fugitive emissions of NMVOC from chemical and petrochemical industries. Dynamic emission factors, reflecting changes in technology-mix and emission regulations, were developed for thermal power plants and on-road transport vehicles. Modeled emission factors were used for gaseous pollutants for on-road vehicles. Emissions of 2.4 (0.6-7.5) Tg y-1 PM2.5, 0.23 (0.1-0.7) Tg y-1 BC, 0.15 (0.04-0.5) Tg y-1 OC, 7.3 (6-10) Tg y-1 SO2, 19 (7.5-33) Tg y-1 CO, 1.5 (0.1-9) Tg y-1 CH4, 4.3 (2-9) Tg y-1 NMVOC, 5.6 (1.7-15.9) Tg y-1 NOx, 1750 (1397-2231) Tg y-1 CO2 and 0.13 (0.05-0.3) Tg y-1 N2O were estimated for 2015. Significant emissions of aerosols and their precursors were from coal use in thermal power and industry (PM2.5 and SO2), and on-road diesel vehicles (BC), especially superemitters. Emissions of ozone precursors were largely from thermal power plants (NOx), on-road gasoline vehicles (CO and NMVOC) and fugitive emissions from mining (CH4). Highly uncertain default emission factors were the principal contributors to uncertainties in emission estimates, indicating the need for region specific measurements.
Volatile organic compound constituents from an integrated iron and steel facility.
Tsai, Jiun-Horng; Lin, Kuo-Hsiung; Chen, Chih-Yu; Lai, Nina; Ma, Sen-Yi; Chiang, Hung-Lung
2008-09-15
This study measured the volatile organic compound (VOC) constituents of four processes in an integrated iron and steel industry; cokemaking, sintering, hot forming, and cold forming. Toluene, 1,2,4-trimethylbenzene, isopentane, m,p-xylene, 1-butene, ethylbenzene, and benzene were the predominant VOC species in these processes. However, some of the chlorinated compounds were high (hundreds ppbv), i.e., trichloroethylene in all four processes, carbon tetrachloride in the hot forming process, chlorobenzene in the cold forming process, and bromomethane in the sintering process. In the sintering process, the emission factors of toluene, benzene, xylene, isopentane, 1,2,4-trimethylbenzene, and ethylbenzene were over 9 g/tonne-product. In the vicinity of the manufacturing plant, toluene, isopentane, 1,2,4-trimethylbenzene, xylene and ethylbenzene were high. Toluene, 1,2,4-trimethylbenzene, xylene, 1-butene and isopentane were the major ozone formation species. Aromatic compounds were the predominant VOC groups, constituting 45-70% of the VOC concentration and contributing >70% to the high ozone formation potential in the stack exhaust and workplace air. The sequence of VOC concentration and ozone formation potential was as follows: cold forming>sintering>hot forming>cokemaking. For the workplace air, cokemaking was the highest producer, which was attributed to the fugitive emissions of the coke oven and working process release.
40 CFR 63.7351 - Who implements and enforces this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...-product coke oven battery with vertical flues, fugitive pushing emissions in § 63.7292(a) for a by-product... coke oven battery, soaking for a by-product coke oven battery in § 63.7294(a), and quenching for a coke... for a by-product coke oven battery under § 63.6(h)(9). (3) Approval of major alternatives to test...
Emerging Methane Sources: A Bang or Whimper? (Invited)
NASA Astrophysics Data System (ADS)
Harriss, R. C.
2013-12-01
In this presentation we examine two emerging methane emission sources that may further accelerate climate change in the 21st century: 1) Will fugitive methane emissions associated with the development of unconventional natural gas resources pose a significant threat of accelerating climate change? 2) Will continued warming of Arctic regions destabilize permafrost and methane hydrates rapidly increasing global atmospheric methane that results in a catastrophic climate change emergency? These risks are currently described in two different guises, with unconventional gas as persistent and gradually unfolding threat and Arctic rapid warming and release of methane as a low-probability event that could in an instant change everything. Current research is far from answering the question of whether these emerging methane sources will lead to a climate change bang or whimper. Both issues reflect the need to understand complex environmental and engineered systems as they interact with social and economic forces. While the evolution of energy systems favors methane as a contemporary transition fuel, researchers and practitioners need to address the fugitive methane leakage, reliability, and safety of natural gas systems. The concept of a methane bridge as a viable direction to decarbonization is appealing; it's just not as big or fast a step as many scientists want.
2008-10-01
Chow, J.C. (2006). Feasibility of soil dust source apportionment by the pyrolysis-gas chromatography/mass spectrometry method. J. Air Waste Manage...receptor-oriented source apportionment models. • Develop monitoring methods to determine source and fence line amounts of fugitive dust emissions for...offsite impact, including evaluation with receptor- oriented source apportionment models 76 8.8.1 Background 76 8.8.2 Significance 77 8.8.3
NASA Astrophysics Data System (ADS)
Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.
2016-12-01
Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future, examining the tradeoffs and dynamics between methane and carbon dioxide emissions will allow us to further understand the propagation and evolution of these large greenhouse gas emitters.
Investigation of fugitive dust emissions from nepheline syenite mine tailings near Nephton, Ontario
NASA Astrophysics Data System (ADS)
Ogungbemide, Damilare Immanuel
A set of experiments was designed to investigate the factors--atmospheric and surficial--controlling fugitive dust emissions from the tailings ponds of UNIMIN Canada, a mining company that extracts and produces nepheline syenite (feldspar) at two adjacent sites (Nephton and Blue Mountain) located north of Havelock, Ontario. Using wind tunnel measurements, the combined influence of relative humidity and temperature (represented by the absolute matric potential, |psi|) on dust emission was quantified and modeled. About 300 experimental runs were conducted under various conditions of wind speed (4.5-6.25 ms -1), temperature (0-30°C) and relative humidity (10-70%). Generally, dust flux decreased as a logarithmic function of matric potential, with dust emission strongly suppressed for RH > 60% or |psi|<70 MPa. Field measurements also confirmed the role of relative humidity in suppressing dust emission. Irrigation, which is widely used by mines to control dust emissions, reduced ambient dust concentration at the study site only about 60% of the time, with the highest mitigation efficiencies (average of 90%) occurring when the total depth of water applied intermittently over a few hours was greater than 10 mm. In the absence of emergent vegetation, the terrestrial laser scanning (TLS) technique proved to be a promising method for detecting and estimating both spatial and temporal moisture content changes in the field environment, particularly for the very thin surface layer, which is the most important layer for dust emission. It is hoped that the results from this study will help mines to optimize their dust management programs for the range of climate and topographic conditions found at their sites, and also serve as a source of useful information and input data for atmospheric dispersion models, such as AERMOD and CALPUFF, whose accuracy depends on the quality of the input data such as the emission rate.
Methane emission to the atmosphere from landfills in the Canary Islands
NASA Astrophysics Data System (ADS)
Hernández, Pedro A.; Asensio-Ramos, María; Rodríguez, Fátima; Alonso, Mar; García-Merino, Marta; Amonte, Cecilia; Melián, Gladys V.; Barrancos, José; Rodríguez-Delgado, Miguel A.; Hernández-Abad, Marta; Pérez, Erica; Alonso, Monica; Tassi, Franco; Raco, Brunella; Pérez, Nemesio M.
2017-04-01
Methane (CH4) is one of the most powerful greenhouse gases, and is increasing in the atmosphere by 0.6% each year (Intergovernmental Panel on Climate Change, IPCC, 2013). This gas is produced in landfills in large quantities following the anaerobic degradation of organic matter. The IPCC has estimated that more than 10% of the total anthropogenic emissions of CH4 are originated in landfills. Even after years of being no operative (closed), a significant amount of landfill gas could be released to the atmosphere through its surface as diffuse or fugitive degassing. Many landfills currently report their CH4 emissions to the atmosphere using model-based methods, which are based on the rate of production of CH4, the oxidation rate of CH4 and the amount of CH4 recovered (Bingemer and Crutzen, 1987). This approach often involves large uncertainties due to inaccuracies of input data and many assumptions in the estimation. In fact, the estimated CH4 emissions from landfills in the Canary Islands published by the Spanish National Emission and Pollutant Sources Registration (PRTR-Spain) seem to be overestimated due to the use of protocols and analytical methodologies based on mathematical models. For this reason, direct measurements to estimate CH4 emissions in landfills are essential to reduce this uncertainty. In order to estimate the CH4 emissions to the atmosphere from landfills in the Canary Islands 23 surveys have been performed since 1999. Each survey implies hundreds of CO2and CH4 efflux measurements covering the landfill surface area. Surface landfill CO2 efflux measurements were carried out at each sampling site by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. Samples of landfill gases were taken in the gas accumulated in the chamber and CO2 and CH4 were analyzed using a double channel VARIAN 4900 micro-GC. The CH4 efflux measurent was computed combining CO2 efflux and CH4/CO2 ratio. To quantify the the diffuse or fugitive CO2 and CH4 emission, gas efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. Considering that (a) there are 5 controlled landfills in the Canary Islands, (b) the average area of the 23 studied cells is 0.17 km2 and (c) the mean value of the CH4 emission estimated for the studied cells range between 6.9 and 8.1 kt km-2 y-1, the estimated CH4 emission to the atmosphere from landfills in the Canary Islands showed a range of 7.0 - 7.8 kt y-1. On the contrary and for the same period of time, the PRTR-Spain estimates CH4 emission in the order of 10.3 - 14.9 kt y-1, nearly two times our estimated value. This result demonstrates the need to perform direct measurements to estimate the surface fugitive emission of CH4 from landfills. Bingemer, H. G., and P. J. Crutzen (1987). The production of methane from solid wastes, J. Geophys. Res. 92, 2182-2187
NASA Astrophysics Data System (ADS)
Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.
2015-04-01
Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of <0.5 ppb for CH4. These surveys were undertaken during dry daytime hours and all measurements were moisture corrected. We compare the concentration of methane in the near surface atmosphere adjacent to open-cut coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval that extended for 6 km where the concentration was greater than 1.80 ppm. The median concentration in this interval was 1.90 ppm, with a peak reading of 1.97 ppm. This high reading in an urban setting is most likely due to leaks from the domestic gas distribution system. Methane leaks were detected in all country towns. Our measurements show that at the point of resource extraction the methane emission footprint of CSG is smaller than that of open-cut coal mining. However, leaking gas from urban centers must be added to the fugitive emissions of CSG to calculate the total fugitive emission footprint of CSG, which may therefore not be as low as claimed in the national greenhouse gas accounts. Our results highlight the need for additional continuous monitoring of methane emissions from all sectors, and for the full life-cycle of energy resources to be considered.
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; ...
2016-09-10
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less
NASA Astrophysics Data System (ADS)
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; Duren, Riley M.; Miller, Charles E.; Lai, Chun-Ta; Hsu, Ying-Kuang; Carranza, Valerie; Randerson, James T.
2016-09-01
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban CH4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. We suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.
Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less
Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott
2015-03-03
This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.
Environmental Assessment of Installation Development at McConnell Air Force Base, Kansas
2007-05-01
characteristics of the noise source, distance between source and receptor, receptor sensitivity, weather , and time of day. Sound is measured with...bulk fuel storage and transfer, fuel dispensing, service stations , solvent degreasing, surface coating, and chemical usage/fugitive emissions. The...and weathered Permian bedrock. The deeper aquifer is within calcareous shales of the Wellington Formation. Groundwater flow follows the local
Source Apportionment of VOCs in Edmonton, Alberta
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.
2012-12-01
Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to VOC mass at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the mass at the East site and less than 2% of the mass at the Central site. Natural-gas-related emissions accounted for 10% to 20% of the mass at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the VOC mass at the Central site and less than 3% of the mass at the East site. Controllable emissions sources account for the bulk of the identified VOC mass. Efforts to reduce ozone or particulate matter precursors or exposure to toxic pollutants can now be directed to those sources most important to the Edmonton area.
Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan
2013-09-01
Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. Published by Elsevier Ltd.
Determining a Criminal Defendant's Competency to Proceed With an Extradition Hearing.
Piel, Jennifer; Finkle, Michael J; Giske, Megan; Leong, Gregory B
2015-06-01
When a criminal defendant flees from one state (often referred to as the requesting state) to another (often referred to as the asylum state), the requesting state can demand that the asylum state return the defendant through a process called extradition. Only a handful of states have considered a fugitive's right to be competent to proceed with an extradition hearing. Those states fall into three categories. Some states apply the same standard as in criminal trial competency cases. Others apply a more limited competency standard. Two have found that a fugitive has no right to be competent to proceed in an extradition hearing. The particular legal test adopted affects the nature and scope of the competency evaluation conducted by the psychiatrist or psychologist in the extradition hearing. In addition, we are not aware of any state that has considered what happens to the fugitive if he is ultimately found not competent to proceed. Legislation, either state by state or through amendments to the Uniform Criminal Extradition Act, can provide the legal and psychiatric communities with guidance in assessing competency initially and in taking appropriate steps if the fugitive is ultimately found not competent. © 2015 American Academy of Psychiatry and the Law.
Investigation of Natural Gas Fugitive Leak Detection Using an Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Yang, S.; Talbot, R. W.; Frish, M. B.; Golston, L.; Aubut, N. F.; Zondlo, M. A.
2017-12-01
The U.S is now the world's largest natural gas producer, of which methane (CH4) is the main component. About 2% of the CH4 is lost through fugitive leaks. This research is under the DOE Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR) program of ARPA-E. Our sentry measurement system is composed of four state-of-the-art technologies centered around the RMLDTM (Remote Methane Leak Detector). An open path RMLDTM measures column-integrated CH4 concentration that incorporates fluctuations in the vertical CH4 distribution. Based on Backscatter Tunable Diode Laser Absorption Spectroscopy and Small Unmanned Aerial Vehicles, the sentry system can autonomously, consistently and cost-effectively monitor and quantify CH4 leakage from sites associated with natural gas production. This system provides an advanced capability in detecting leaks at hard-to-access sites (e.g., wellheads) compared to traditional manual methods. Automated leak detecting and reporting algorithms combined with wireless data link implement real-time leak information reporting. Early data were gathered to set up and test the prototype system, and to optimize the leak localization and calculation strategies. The flight pattern is based on a raster scan which can generate interpolated CH4 concentration maps. The localization and quantification algorithms can be derived from the plume images combined with wind vectors. Currently, the accuracy of localization algorithm can reach 2 m and the calculation algorithm has a factor of 2 accuracy. This study places particular emphasis on flux quantification. The data collected at Colorado and Houston test fields were processed, and the correlation between flux and other parameters analyzed. Higher wind speeds and lower wind variation are preferred to optimize flux estimation. Eventually, this system will supply an enhanced detection capability to significantly reduce fugitive CH4 emissions in the natural gas industry.
NASA Astrophysics Data System (ADS)
Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba
2017-07-01
Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.
Electrolysis of a molten semiconductor
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-01-01
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525
Electrolysis of a molten semiconductor.
Yin, Huayi; Chung, Brice; Sadoway, Donald R
2016-08-24
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.
Electrolysis of a molten semiconductor
NASA Astrophysics Data System (ADS)
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-08-01
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.
Instruments speak global language
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nudo, L.
1993-07-01
If all goes as planned, companies that use instruments for measurement and control will get more complete, reliable and repeatable information about their processes with advanced digital devices that speak a global language. That language, in technical terms, is known as international fieldbus. But it's not much different from English's role as the international language of business. Companies that use a remote measurement device for environmental applications, such as pH control and fugitive emissions control, are candidates for fieldbus devices, which are much faster and measure more process variables than their counterpart analog devices. With the advent of a globalmore » fieldbus, users will see digital valves, solenoids and multivariable transmitters. Fieldbus technology redefines the roles of the control system and field devices. The control system still serves as a central clearinghouse, but field devices will handle more control and reporting functions and generate data that can be used for trending and preventive maintenance.« less
Development of a Flight Instrument for in situ Measurements of Ethane and Methane
NASA Astrophysics Data System (ADS)
Wilkerson, J. P.; Sayres, D. S.; Anderson, J. G.
2015-12-01
Methane emissions data for natural gas and oil fields have high uncertainty. Better quantifying these emissions is crucial to establish an accurate methane budget for the United States. One obstacle is that these emissions often occur in areas near livestock facilities where biogenic methane abounds. Measuring ethane, which has no biogenic source, along with methane can tease these sources apart. However, ethane is typically measured by taking whole-air samples. This tactic has lower spatial resolution than making in situ measurements and requires the measurer to anticipate the location of emission plumes. This leaves unexpected plumes uncharacterized. Using Re-injection Mirror Integrated Cavity Output Spectroscopy (RIM-ICOS), we can measure both methane and ethane in flight, allowing us to establish more accurate fugitive emissions data that can more readily distinguish between different sources of this greenhouse gas.
On-Site Incineration of Contaminated Soil: A Study into U.S. Navy Applications
1991-08-01
venturi scrubber Minimum water flow rate and p1l to absorber Minimum water/alkaline reagent flow to dry scrubber Minimum particulate scrubber blowdown...remove hydrochloric acid and sulfur dioxide from flue gases using, for example, wet scrubbers and limestone adsorption towers, respectively. Modified...Reagent preparation 8) Bllending 26) Fugitive emission control 9) Pretreatment 27) Scrubber liquid cooling 10) Blended and pretreated solid waste
Air quality as a constraint to the use of coal in California
NASA Technical Reports Server (NTRS)
Austin, T. C.
1978-01-01
Low-NOx burners, wet scrubbing systems, baghouses and ammonia injection systems are feasible for use on large combustion sources such as utility boilers. These devices, used in combination with coal handling techniques which minimize fugitive dust and coal transportation related emissions, should enable new power plants and large industrial boilers to burn coal without the adverse air quality impacts for which coal became notorious.
NASA Astrophysics Data System (ADS)
Mønster, J.; Rella, C.; Jacobson, G. A.; He, Y.; Hoffnagle, J.; Scheutz, C.
2012-12-01
Nitrous oxide is a powerful greenhouse gas considered 298 times stronger than carbon dioxide on a hundred years term (Solomon et al. 2007). The increasing global concentration is of great concern and is receiving increasing attention in various scientific and industrial fields. Nitrous oxide is emitted from both natural and anthropogenic sources. Inventories of source specific fugitive nitrous oxide emissions are often estimated on the basis of modeling and mass balance. While these methods are well-developed, actual measurements for quantification of the emissions can be a useful tool for verifying the existing estimation methods as well as providing validation for initiatives targeted at lowering unwanted nitrous oxide emissions. One approach to performing such measurements is the tracer dilution method (Galle et al. 2001), in which a tracer gas is released at the source location at a known flow. The ratio of downwind concentrations of both the tracer gas and nitrous oxide gives the ratios of the emissions rates. This tracer dilution method can be done with both stationary and mobile measurements; in either case, real-time measurements of both tracer and analyte gas is required, which places high demands on the analytical detection method. To perform the nitrous oxide measurements, a novel, robust instrument capable of real-time nitrous oxide measurements has been developed, based on cavity ring-down spectroscopy and operating in the near-infrared spectral region. We present the results of the laboratory and field tests of this instrument in both California and Denmark. Furthermore, results are presented from measurements using the mobile plume method with a tracer gas (acetylene) to quantify the nitrous oxide and methane emissions from known sources such as waste water treatment plants and composting facilities. Nitrous oxide (blue) and methane (yellow) plumes downwind from a waste water treatment facility.
Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Warner, Ethan; Zhang, Yi Min
Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less
NASA Astrophysics Data System (ADS)
Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod
2015-04-01
Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.
Copeland, N S; Sharratt, B S; Wu, J Q; Foltz, R B; Dooley, J H
2009-01-01
Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter < or = 10 microm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced erosion control; however, its performance for wind erosion mitigation has been less studied, in part because straw is mobile at moderate wind velocities. A wood-based long-strand material has been developed for rainfall-induced erosion control and has shown operational promise for control of wind-induced erosion and dust emissions from disturbed sites. The purpose of this study was to evaluate the efficacy of both agricultural straw and wood-strand materials in controlling wind erosion and fugitive dust emissions under laboratory conditions. Wind tunnel tests were conducted to compare wood strands of several geometries to agricultural wheat straw and bare soil in terms of total sediment loss, PM10 vertical flux, and PM10 loss. Results indicate that the types of wood strands tested are stable at wind speeds of up to 18 m s(-1), while wheat straw is only stable at speeds of up to 6.5 m s(-1). Wood strands reduced total sediment loss and PM10 emissions by 90% as compared to bare soil across the range of wind speeds tested. Wheat straw did not reduce total sediment loss for the range of speeds tested, but did reduce PM10 emissions by 75% compared to a bare soil at wind speeds of up to 11 m s(-1).
Methane sources in Hong Kong - identification by mobile measurement and isotopic analysis
NASA Astrophysics Data System (ADS)
Fisher, Rebecca; Brownlow, Rebecca; Lowry, David; Lanoisellé, Mathias; Nisbet, Euan
2017-04-01
Hong Kong (22.4°N, 114.1°E) has a wide variety of natural and anthropogenic sources of methane within a small densely populated area (1106 km2, population ˜7.3 million). These include emissions from important source categories that have previously been poorly studied in tropical regions such as agriculture and wetlands. According to inventories (EDGAR v.4.2) anthropogenic methane emissions are mainly from solid waste disposal, wastewater disposal and fugitive leaks from oil and gas. Methane mole fraction was mapped out across Hong Kong during a mobile measurement campaign in July 2016. This technique allows rapid detection of the locations of large methane emissions which may focus targets for efforts to reduce emissions. Methane is mostly emitted from large point sources, with highest concentrations measured close to active landfill sites, sewage works and a gas processing plant. Air samples were collected close to sources (landfills, sewage works, gas processing plant, wetland, rice, traffic, cows and water buffalo) and analysed by mass spectrometry to determine the δ13C isotopic signatures to extend the database of δ13C isotopic signatures of methane from tropical regions. Isotopic signatures of methane sources in Hong Kong range from -70 ‰ (cows) to -37 ‰ (gas processing). Regular sampling of air for methane mole fraction and δ13C has recently begun at the Swire Institute of Marine Science, situated at Cape d'Aguilar in the southeast of Hong Kong Island. This station receives air from important source regions: southerly marine air from the South China Sea in summer and northerly continental air in winter and measurements will allow an integrated assessment of emissions from the wider region.
The Release of Trace Elements in the Process of Coal Coking
Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena
2012-01-01
In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury. PMID:22666104
NASA Astrophysics Data System (ADS)
Næss, Mari k.; Kero, Ida; Tranell, Gabriella
2013-08-01
In the production of metallurgical grade silicon (MG-Si), fugitive emissions are a serious concern due to the health risks associated with the fumes formed in different parts of the production. The fumes are also a potential environmental hazard. Yet, the chemical composition of the fumes from most process steps in the silicon plant, such as oxidative refining ladle, remains unknown. This in turn constitutes a problem with respect to the correct assessment of the environmental impact and working conditions. A comprehensive industrial measurement campaign was performed at the Elkem Salten MG-Si production plant in Norway. Samples of the ingoing and outgoing mass flows were analyzed by high-resolution inductively coupled plasma mass spectrometry, with respect to 62 elements. In every step of the sampling and sample treatment processes, possible sources of error have been identified and quantified, including process variation, mass measurement accuracy, and contamination risk. Total measurement errors for all elements in all phases are established. The method is applied to estimate the order of magnitude of the elemental emissions via the fumes from the tapping and refining processes, with respect to production mass and year. The elements with higher concentrations in the fume than slag and refined silicon include Ag, Bi, Cd, Cu, In, K, Mg, Na, Pb, Rb, Se, Sn, Tl, and Zn: all being present in the ppm range. This work constitutes new and vital information to enable the correct assessment of the environmental impact and working conditions at an MG-Si plant.
Fugitive Dust Emissions from Construction Haul Roads
1977-02-01
38 APPENDIX A: Probe Analysis APPENDIX B: Soil Water Potential and Soil Psychrometers APPENDIX C: Complete Listing of Reduced Data...traveling through the 10-in. (25-cm) duct. Four soil psychrometers (see Appendix B) used to measure soil water poten- tial were buried in the wheel paths of...average slow speed test lasted approximately 8 hours. For com- par1qnn, an attempt was made to run all tests over the same range of soil psychrometer
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.
2015-01-01
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
NASA Astrophysics Data System (ADS)
Ghodrat, Maryam; Rhamdhani, M. Akbar; Sharafi, Pezhman; Samali, Bijan
2017-12-01
This study provides a comparison between environmental impacts of the recovery of platinum group metals (PGMs) from the end-of-life catalytic converters by hydrometallurgical and pyrometallurgical methods. A gate to grave life cycle assessment of a typical three-way catalytic converter manufactured for an Australian passenger car was carried out using GaBi professional environmental package. Recovery rates, as well as qualities, quantities, losses, and fugitive emissions for all materials and elements used in both methods were calculated based on the developed flowsheets. A life cycle impact assessment was then made by carrying out a mass balance calculation. Inventory data show that the hydrometallurgical route for recycling of the platinum group metals out of catalytic converter scrap has lower impacts on the environment compared with the pyrometallurgical method. In terms of emission effects, the hydrometallurgical process was found to be highly advantageous since it causes insignificant emissions to air, sea water, and fresh water. It is also found that the hydrometallurgical route performs comparatively superior in terms of acidification, eutrophication, fossil depletion, and human toxicity. The obtained results are applicable only to the Australian setting.
Chang, Chang-Tang; Chiou, Chyow-Shan
2006-05-01
This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment.
Fan, Shoubin; Tian, Gang; Cheng, Shuiyuan; Qin, Jianping
2013-07-01
The USEPA emission factor (AP-42) of fugitive road dust (FRD) is widely used in establishing emission inventories. However, road silt loading sampling for AP-42 is expensive, time consuming, and dangerous. Therefore, a new method for establishing emission inventories based on road dust-fall (DF) monitors is described. Between January 2006 and December 2010, DF was monitored at 40 sites (80 samples), and background dust fall (DF) was monitored at 14 sites in the Beijing metropolitan area. Also during this period, 58 samples of road silt loadings were taken and used in the AP-42 emission factor equation to calculate FRD with particulate matter ≤10 μm in diameter [FRD(PM)] emission from the roads. Simultaneous measurement of FRD(PM) emissions calculated by AP-42 and ΔDF (i.e., the difference between the DF and DF) measured using gauges showed that the FRD(PM) emission for road dust was proportional to the ΔDF ( = 0.92). The FRD(PM) emission (kg km × 30 d) was calculated using the monitored ΔDF (t km × 30 d) by the formulation FRD(PM) = 278.3 × ΔDF - 1151.2. The ΔDF showed a general decline from 2006 to 2010. In particular, there was a sharp decline in August, September, and October 2008 due to strict dust controls enforced during the 2008 Olympic Games. Although there was a small increase in ΔDF after the Games, by the end of 2010 values were still lower than those before the Games. Using the 2006 ΔDF value as a benchmark, ΔDF values declined by 24.7, 33.0, 38.3, and 31.4% in 2007, 2008, 2009, and 2010, respectively. Based on using AP-42 calculations from silt loading and traffic information in 2007, the FRD(PM) emission distribution in the Beijing metropolitan area was mapped, and there were 2.05 × 10 tons of FRD(PM) emitted in 2007. The FRD(PM) from 2006 to 2010 was calculated by the ΔDF values. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Casey, J. G.; Ilie, A. M. C.; Coffey, E.; Collier-Oxandale, A. M.; Hannigan, M.; Vaccaro, C.
2017-12-01
In Colorado and elsewhere in North America, the oil and gas production industry has been growing alongside and in the midst of increasing urban and rural populations. These coinciding trends have resulted in a growing number of people living in close proximity to petroleum production and processing activities, leading to potential public health impacts. Combustion-related emissions from heavy-duty diesel vehicle traffic, generators, compressors, and production stream flaring can potentially lead to locally enhanced levels of nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2). Venting and fugitive emissions of production stream constituents can potentially lead to locally enhanced levels of methane (CH4) and volatile organic compounds (VOCs), some of which (like benzene) are known carcinogens. NOx and VOC emissions can also potentially increase local ozone (O3) production. After learning of a large new multiwell pad on the outskirts of Greeley, Colorado, we were able to quickly mobilize portable air quality monitors outfitted with low-cost gas sensors that respond to CH4, CO2, CO, and O3. The air quality monitors were installed outside homes adjacent to the new multiwell pad several weeks prior to the first spud date. An anemometer was also installed outside one of the homes in order to monitor wind speed and direction. Measurements continued during drilling, hydraulic fracturing, and production phases. The sensors were periodically collocated with reference instruments at a nearby regulatory air quality monitoring site towards calibration via field normalization and validation. Artificial Neural Networks were employed to map sensor signals to trace gas mole fractions during collocation periods. We present measurements of CH4, CO2, CO, and O3 in context with wellpad activities and local meteorology. CO and O3 observations are presented in context with regional measurements and National Ambient Air Quality Standards for each. Wind speed and direction measurements were used to indicate when air masses originated from the direction of the multiwell pad. CO2 mole fractions were used to estimate planetary boundary layer height and CH4 mole fractions were used to identify periods conducive to the pooling and accumulation of production stream venting and fugitive emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Uisung; Han, Jeongwoo; Wang, Michael
The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH 4 emissions, which are the third largest anthropogenic CH 4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuelmore » production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET ®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.« less
Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.
Trzepla-Nabaglo, Krystyna; Shiraki, Ryoji; Holmén, Britt A
2006-04-30
Light detection and ranging (Lidar) remote sensing two-dimensional vertical and horizontal scans collected downwind of a sand and gravel plant were used to evaluate the generation and transport of geologic fugitive dust emitted by quarry operations. The lidar data give unsurpassed spatial resolution of the emitted dust, but lack quantitative particulate matter (PM) mass concentration data. Estimates of the airborne PM10 and crystalline silica concentrations were determined using linear relationships between point monitor PM10 and quartz content data with the lidar backscatter signal collected from the point monitor location. Lidar vertical profiles at different distances downwind from the plant were used to quantify the PM10 and quartz horizontal fluxes at 2-m vertical resolution as well as off-site emission factors. Emission factors on the order of 65-110 kg of PM10 (10-30 kg quartz) per daily truck activity or 2-4 kg/t product shipped (0.5-1 kg quartz/t) were quantified for this facility. The lidar results identify numerous elevated plumes at heights >30 m and maximum plume heights of 100 m that cannot be practically sampled by conventional point sampler arrays. The PM10 and quartz mass flux was greatest at 10-25 m height and decreased with distance from the main operation. Measures of facility activity were useful for explaining differences in mass flux and emission rates between days. The study results highlight the capabilities of lidar remote sensing for determining the spatial distribution of fugitive dust emitted by area sources with intermittent and spatially diverse dust generation rates.
Møller, Jacob; Boldrin, Alessio; Christensen, Thomas H
2009-11-01
Anaerobic digestion (AD) of source-separated municipal solid waste (MSW) and use of the digestate is presented from a global warming (GW) point of view by providing ranges of greenhouse gas (GHG) emissions that are useful for calculation of global warming factors (GWFs), i.e. the contribution to GW measured in CO(2)-equivalents per tonne of wet waste. The GHG accounting was done by distinguishing between direct contributions at the AD facility and indirect upstream or downstream contributions. GHG accounting for a generic AD facility with either biogas utilization at the facility or upgrading of the gas for vehicle fuel resulted in a GWF from -375 (a saving) to 111 (a load) kg CO(2)-eq. tonne(-1) wet waste. In both cases the digestate was used for fertilizer substitution. This large range was a result of the variation found for a number of key parameters: energy substitution by biogas, N(2)O-emission from digestate in soil, fugitive emission of CH( 4), unburned CH(4), carbon bound in soil and fertilizer substitution. GWF for a specific type of AD facility was in the range -95 to -4 kg CO(2)-eq. tonne(-1) wet waste. The ranges of uncertainty, especially of fugitive losses of CH(4) and carbon sequestration highly influenced the result. In comparison with the few published GWFs for AD, the range of our data was much larger demonstrating the need to use a consistent and robust approach to GHG accounting and simultaneously accept that some key parameters are highly uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, M.R.; Hartley, J.N.
A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weathermore » conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.« less
NASA Astrophysics Data System (ADS)
Marshall, A. D.; Williams, J. P.; Baillie, J.; MacKay, K.; Risk, D. A.; Fleck, D.
2016-12-01
Detecting and attributing sub-regulatory fugitive emissions in the energy sector remains a priority for industry and environmental groups alike. Vehicle-based geochemical emission detection and attribution is seeing increasingly widespread use. In order to distinguish between biogenic and thermogenic emission sources, these techniques rely on tracer species like δ13C of methane (δ13CH4). In this study, we assessed the performance of the new Picarro G2210-i, a cavity ring-down spectroscopy (CRDS) analyzer that measures δ13CH4 and ethane (C2H6) simultaneously to provide increased thermogenic tracer power. In the lab, we assessed drift and other performance characteristics relative to a G2201-i (existing isotopic CH4 and carbon dioxide analyzer). We performed model experiments to synthetically assess the new analyzer's utility for oil and gas developments with differing levels of ethane. Lastly, we also conducted survey drives in a high-ethane oilfield using both the G2210-i and G2201-i. Results were very positive. The G2210-i showed minimal drift, as expected. Allan deviation experiments showed that the G2210-i has a precision of 0.482 ppb for CH4 and 3.15 ppb for C2H6 for 1Hz measurements. Computational experiments confirmed that the resolution of C2H6 is sufficient for detecting and attributing thermogenic CH4 at distance in oil and gas settings, which was further validated in the field where we measured simultaneous departures in δ13CH4 and C2H6 within plumes from venting infrastructure. C2:C1 ratios also proved very useful for attribution. As we move to reduce emissions from the energy industry, this analyzer presents new analytical possibilities that will be of high value to industry stakeholders.
Khaparde, V V; Bhanarkar, A D; Majumdar, Deepanjan; Rao, C V Chalapati
2016-08-15
Fugitive emissions of PM10 (particles <10μm in diameter) and associated polycyclic aromatic hydrocarbons (PAHs) were monitored in the vicinity of coking unit, sintering unit, blast furnace and steel manufacturing unit in an integrated iron and steel plant situated in India. Concentrations of PM10, PM10-bound total PAHs, benzo (a) pyrene, carcinogenic PAHs and combustion PAHs were found to be highest around the sintering unit. Concentrations of 3-ring and 4-ring PAHs were recorded to be highest in the coking unit whereas 5-and 6-ring PAHs were found to be highest in other units. The following indicatory PAHs were identified: indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, benzo (k) fluoranthene in blast furnace unit; indeno (1,2,3-cd) pyrene, dibenzo (a,h) anthracene, chrysene in sintering unit; Anthracene, fluoranthene, chrysene in coking unit and acenaphthene, fluoranthene, fluorene in steel making unit. Total-BaP-TEQ (Total BaP toxic equivalent quotient) and BaP-MEQ (Total BaP mutagenic equivalent quotient) concentration levels ranged from 2.4 to 231.7ng/m(3) and 1.9 to 175.8ng/m(3), respectively. BaP and DbA (dibenzo (a,h) anthracene) contribution to total-BaP-TEQ was found to be the highest. Copyright © 2016 Elsevier B.V. All rights reserved.
75 FR 48579 - Approval and Promulgation of Implementation Plans; State of Missouri
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
.... Louis area. The state has a statewide fugitive dust rule, 10 CSR 10-6.170, which contains similar... fugitive dust rule is as stringent as the requirements in the rescinded area rule and this action would not... longer in operation, and because the state's statewide fugitive dust rule contains similar restrictions...
76 FR 17028 - Approval and Promulgation of Gila River Indian Community's Tribal Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
... and judicial review in Tribal court, requirements for area sources of fugitive dust and fugitive... administrative appeals and judicial review in Tribal court, requirements for area sources of fugitive dust and... Risks and Safety Risks'' (62 FR 19885, April 23, 1997), because it is not economically significant. In...
75 FR 38745 - Approval and Promulgation of Implementation Plans; State of Iowa
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... methods for the containment and control of fugitive dust, and subsections 5-23(7) and 5-23(8) were added to include methods for the containment and control of fugitive dust. Changes to Section 5-25 clarify that no person shall cause, allow, or permit fugitive dust material to become airborne in such...
NASA Astrophysics Data System (ADS)
Helmore, Jonathan
2017-04-01
The National Physical Laboratory, the UK's National Measurement Institute, has developed a novel facility capable of replicating the gaseous emission flux characteristics of a variety of real-word scenarios as may be found in small to medium scale industry and agriculture. The Controlled Release Facility (CRF) can be used to challenge conventional remote sensing techniques, as well as validate new Unmanned Aerial Vehicle (UAV) and distributed sensor network based methods, for source identification and flux calculation. The CRF method will be described and the results from three case studies will be discussed: The replication of an operational on-shore shale gas well using emissions of natural gas to atmosphere and measurements using Differential Absorption LIDAR (DIAL); the replication of fugitive volatile organic compounds emissions from a petrochemical unit and measurements using DIAL; and the replication of methane and carbon dioxide emissions from landfill and measurements using both fixed wing and multi-rotor UAVs.
NASA Astrophysics Data System (ADS)
Cao, Y.; Cervone, G.; Barkley, Z.; Lauvaux, T.; Deng, A.; Miles, N.; Richardson, S.
2016-12-01
Fugitive methane emission rates for the Marcellus shale area are estimated using a genetic algorithm that finds optimal weights to minimize the error between simulated and observed concentrations. The overall goal is to understand the relative contribution of methane due to Shale gas extraction. Methane sensors were installed on four towers located in northeastern Pennsylvania to measure atmospheric concentrations since May 2015. Inverse Lagrangian dispersion model runs are performed from each of these tower locations for each hour of 2015. Simulated methane concentrations at each of the four towers are computed by multiplying the resulting footprints from the atmospheric simulations by thousands of emission sources grouped into 11 classes. The emission sources were identified using GIS techniques, and include conventional and unconventional wells, different types of compressor stations, pipelines, landfills, farming and wetlands. Initial estimates for each source are calculated based on emission factors from EPA and few regional studies. A genetic algorithm is then used to identify optimal emission rates for the 11 classes of methane emissions and to explore extreme events and spatial and temporal structures in the emissions associated with natural gas activities.
NASA Astrophysics Data System (ADS)
Sarmiento, D. P.; Belmecheri, S.; Lauvaux, T.; Sowers, T. A.; Bryant, S.; Miles, N. L.; Richardson, S.; Aikins, J.; Sweeney, C.; Petron, G.; Davis, K. J.
2012-12-01
Natural gas extraction from shale formations via hydraulic-fracturing (fracking) is expanding rapidly in several regions of North America. In Pennsylvania, the number of wells drilled to extract natural gas from the Marcellus shale has grown from 195 in 2008 to 1,386 in 2010. The gas extraction process using the fracking technology results in the escape of methane (CH4), a potent greenhouse gas and the principal component of natural gas, into the atmosphere. Emissions of methane from fracking operations remain poorly quantified, leading to a large range of scenarios for the contribution of fracking to climate change. A mobile measurement campaign provided insights on methane leakage rates and an improved understanding of the spatio-temporal variability in active drilling areas in the South West of Pennsylvania. Two towers were then instrumented to monitor fugitive emissions of methane from well pads, pipelines, and other infrastructures in the area. The towers, one within a drilling region and one upwind of active drilling, measured atmospheric CH4 mixing ratios continuously. Isotopic measurements from air flasks were also collected. Data from the initial mobile campaign were used to estimate emission rates from single sites such as wells and compressor stations. Tower data will be used to construct a simple atmospheric inversion for regional methane emissions. Our results show the daily variability in emissions and allow us to estimate leakage rates over a one month period in South West Pennsylvania. We discuss potential deployment strategies in drilling zones to monitor emissions of methane over longer periods of time.
Clarification on Fugitive Emissions Policy
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Fugitive Emissions from Coal Preparation Plants
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
BACT Fugitive Emissions of Hydrocarbons
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Counting GHG Fugitive Emissions in Permitting Applicability
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Consideration of Fugitive Emissions in Major Source Determinations
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Consideration of Fugitive Emissions from Grain Elevators
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
NSR and PSD Rules Regarding Fugitive Emissions Applicable to Major Sources
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Electrolysis of a molten semiconductor
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-08-24
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less
Towards a comprehensive greenhouse gas emissions inventory for biosolids.
Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard
2016-06-01
Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are higher than emissions associated with transportation. Sensitivity analyses for key parameters including digester PS:WAS and sludge retention time, and assumed biosolids nitrogen content and agricultural availability also provide additional robustness and comprehensiveness to our inventory data and will facilitate more customised user analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fugitive dust from vehicles traveling on unpaved roads
Thomas A. Cuscino; Robert Jennings Heinsohn; Clotworthy, Jr. Birnie
1977-01-01
A model has been developed for estimating concentrations of fugitive dust downwind of an unpaved road within a factor of 2 for most cases. The model allows for winds oblique to the road and also for extraction of fugitive dust from the plume as it diffuses to the ground. Experiments were performed to determine the accuracy of the model in estimating downwind...
NASA Astrophysics Data System (ADS)
Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.
2015-10-01
Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from mid-May to the end of June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily minima that were simultaneously observed at a mid-oceanic background station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 and > 7 ppb, respectively) were routinely observed, suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g., straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a positive matrix factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a seven-factor solution. We identified these emission source factors as follows: evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for the majority of the CH4 (70-90 %) enhancements during the duration of experiments. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70 %). Agriculture and soil management accounted for ~ 20-25 % of N2O enhancements over a 24 h cycle, which is not surprising given that organic and synthetic fertilizers are known to be a major source of N2O. The N2O attribution to the agriculture and soil management factor had a high uncertainty in the conducted bootstrapping analysis. This is most likely due to an asynchronous pattern of soil-mediated N2O emissions from fertilizer usage and collocated biogenic emissions from crops from the surrounding agricultural operations that is difficult to apportion statistically when using PMF. The evaporative/fugitive source profile, which resembled a mix of petroleum operation and non-tailpipe evaporative gasoline sources, did not include a PMF resolved-CH4 contribution that was significant (< 2 %) compared to the uncertainty in the livestock-associated CH4 emissions. The uncertainty of the CH4 estimates in this source factor, derived from the bootstrapping analysis, is consistent with the ~ 3 % contribution of fugitive oil and gas emissions to the statewide CH4 inventory. The vehicle emission source factor broadly matched VOC profiles of on-road exhaust sources. This source factor had no statistically significant detected contribution to the N2O signals (confidence interval of 3 % of livestock N2O enhancements) and negligible CH4 (confidence interval of 4 % of livestock CH4 enhancements) in the presence of a dominant dairy and livestock factor. The CalNex PMF study provides a measurement-based assessment of the state CH4 and N2O inventories for the southern San Joaquin Valley (SJV). The state inventory attributes ~ 18 % of total N2O emissions to the transportation sector. Our PMF analysis directly contradicts the state inventory and demonstrates there were no discernible N2O emissions from the transportation sector in the southern SJV region.
Temporal and Spatial Variations in Fine and Coarse Particles in Seoul, Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghim, Young Sung
2015-01-01
Concentrations of fine (PM2.5) and coarse particles (PM10 -2.5), whose diameters are less 2.5 µm, and between 2.5 and 10 µm, respectively, at ambient air monitoring stations in Seoul between 2002 and 2008 were analyzed. Effects of Asian dust are mainly manifested as concentration spikes of PM10 - 2.5 but were considerable on PM2.5 levels in 2002 when Asian dust storms were the strongest. Excluding the effects of Asian dust, annual average PM2.5 showed a downward trend. Despite a similarity in year - to - year variations, PM10- 2.5, mostly affected by fugitive dust emissions, and CO and NO2, primarilymore » affected by motor vehicle emissions, did not show a decrease. PM2.5 along with CO and NO2 had the highest values during the morning rush hour. PM10 - 2.5 peak lagged about one hour behind that of PM2.5 because of fugitive dust emissions despite an increasing mixing height. On high PM2.5 days, PM2. 5 peaks occurred two hours later than usual as the effects of secondary formation became more important. A test for the spatial variabilities shows that PM10 - 2.5, which is known to be greatly influenced by local effects, is lower in its correlation coeffic ient and higher in its coefficient of divergence (COD, which serves as an indicator for spatial variability) than PM2.5, albeit that the difference between the two is small. The average COD of PM2.5 among monitoring stations was about 0.2 but was lowered t o 0.13 when considering high PM2.5 days only, which signifies that spatial uniformity increases significantly.« less
NASA Astrophysics Data System (ADS)
Karp, Jason; Challener, William; Kasten, Matthias; Choudhury, Niloy; Palit, Sabarni; Pickrell, Gary; Homa, Daniel; Floyd, Adam; Cheng, Yujie; Yu, Fei; Knight, Jonathan
2016-05-01
The increase in domestic natural gas production has brought attention to the environmental impacts of persistent gas leakages. The desire to identify fugitive gas emission, specifically for methane, presents new sensing challenges within the production and distribution supply chain. A spectroscopic gas sensing solution would ideally combine a long optical path length for high sensitivity and distributed detection over large areas. Specialty micro-structured fiber with a hollow core can exhibit a relatively low attenuation at mid-infrared wavelengths where methane has strong absorption lines. Methane diffusion into the hollow core is enabled by machining side-holes along the fiber length through ultrafast laser drilling methods. The complete system provides hundreds of meters of optical path for routing along well pads and pipelines while being interrogated by a single laser and detector. This work will present transmission and methane detection capabilities of mid-infrared photonic crystal fibers. Side-hole drilling techniques for methane diffusion will be highlighted as a means to convert hollow-core fibers into applicable gas sensors.
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; ...
2015-08-26
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO 2, CO, CH 4, H 2O, NO x, O 3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH 4 and also identify fugitive urban CH 4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less
NASA Astrophysics Data System (ADS)
Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.
2015-08-01
Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.
40 CFR 63.1543 - Standards for process and process fugitive sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4) Dross furnace charging location; (5) Blast furnace and dross furnace tapping location; (6) Sinter machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) The...
Estimation of methane emission from California natural gas industry.
Kuo, Jeff; Hicks, Travis C; Drake, Brian; Chan, Tat Fu
2015-07-01
Energy generation and consumption are the main contributors to greenhouse gases emissions in California. Natural gas is one of the primary sources of energy in California. A study was recently conducted to develop current, reliable, and California-specific source emission factors (EFs) that could be used to establish a more accurate methane emission inventory for the California natural gas industry. Twenty-five natural gas facilities were surveyed; the surveyed equipment included wellheads (172), separators (131), dehydrators (17), piping segments (145), compressors (66), pneumatic devices (374), metering and regulating (M&R) stations (19), hatches (34), pumps (2), and customer meters (12). In total, 92,157 components were screened, including flanges (10,101), manual valves (10,765), open-ended lines (384), pressure relief valves (358), regulators (930), seals (146), threaded connections (57,061), and welded connections (12,274). Screening values (SVs) were measured using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. For a given SV range, the measured leak rates might span several orders of magnitude. The correlation equations between the leak rates and SVs were derived. All the component leakage rate histograms appeared to have the same trend, with the majority of leakage rates<0.02 cubic feet per minute (cfm). Using the cumulative distribution function, the geometric mean was found to be a better indicator than the arithmetic mean, as the mean for each group of leakage rates found. For most component types, the pegged EFs for SVs of ≥10,000 ppmV and of ≥50,000 ppmV are relatively similar. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 U.S. Environmental Protection Agency/Gas Research Institute (EPA/GRI) study. Twenty-five natural gas facilities in California were surveyed to develop current, reliable, and California-specific source emission factors (EFs) for the natural gas industry. Screening values were measured by using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 EPA/GRI study. The smaller EF values from this study might be partially attributable to the employment of the leak detection and repair program by most, if not all, of the facilities surveyed.
Brandt, Adam R
2012-01-17
Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.
NASA Astrophysics Data System (ADS)
Zhou, X.; Gu, J.; Trask, B.; Lyon, D. R.; Albertson, J. D.
2017-12-01
With the recent expansion of U.S. oil and gas (O&G) production, many studies have focused on the quantification of fugitive methane emissions. However, only a few studies have explored the emissions of volatile organic compounds (VOCs) from O&G production sites that affect human health in adjacent communities, both directly through exposure to toxic chemical compounds and indirectly via formation of ground-level ozone. In this study, we seek to quantify emissions of VOCs from O&G production sites and petrochemical facilities using a mobile sensing approach, with both high-end analyzers and relatively low-cost sensors. A probabilistic source characterization approach is used to estimate emission rates of VOCs, directly taking into account quantitative measure of sensor accuracy. This work will provide data with proper spatiotemporal resolution and coverage, so as to improve the understanding of VOCs emission from O&G production sites, VOCs-exposure of local communities, and explore the feasibility of low-cost sensors for VOCs monitoring. The project will provide an important foundational step to enable large scale studies.
Clarification on Fugitive Emissions Policy
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Determination of Whether Emissions From Seagram and Sons Whiskey Storage Facility are Fugitive
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Consideration of Fugitive Emissions in Major Source Determinations
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Consideration of Fugitive Emissions from Grain Elevators
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Tank 241-C-112 vapor sampling and analysis tank characterization report. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huckaby, J.L.
1995-05-31
Tank 241-C-112 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-C-112 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}
Interpretation of the Definition of Fugitive Emissions in Parts 70 and 71
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift
NASA Technical Reports Server (NTRS)
Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.
2016-01-01
Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.
Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J
2010-07-01
Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.
... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...
... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...
... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grantz, D.A.; Vaughn, D.L.; Roberts, E.
1997-12-31
Methods to suppress fugitive dust and associated violations of federal PM{sub 10} standards in the western Mojave Desert, following removal of native vegetation by tillage or overgrazing, have been under investigation by a multi-agency task force for several years. Interim recommendations are now possible for this area of high winds, low rainfall, and mostly arable soil with patchy blowing sand. There can be no guarantee of success in any revegetation program in the desert, but the greatest probability of success in this area can be attained by using the native shrub Atriplex canescens, whether direct seeded or transplanted. No additionalmore » nitrogen should be added, and excess nitrogen should be removed if possible, perhaps by a preliminary cropping of barley. This will itself stabilize the soil surface in the short term. Young plants should be protected from herbivory and the harsh elements by using plastic cones. Irrigation is helpful if available. In areas located near native populations of rabbitbrush annual plant cover should be burned but no tillage or other soil disturbance should be imposed, as this facilitates invasion of annual species, including russian thistle, and prevents establishment of rabbitbrush. In sandy areas, seeding with Indian ricegrass may be more effective than with A. canescens. For immediate, short-term, mitigation of blowing dust, furrowing alone and installation of windfences may be effective. Rainfall exhibits high annual variability in arid regions. Absence of fugitive dust emissions in rainy periods, associated with ground cover by annual vegetation, is unlikely to survive several years of low, but normal, rainfall. It is precisely during those periods when rainfall is adequate that long-term revegetation with shrubs has the best chance of success.« less
40 CFR 52.1770 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 61213 Sect .0515 Particulates from Miscellaneous Industrial Processes 04/01/03 09/17/03, 68 FR 54362... Utility Boilers 08/01/91 02/14/96, 61 FR 5689 Sect .0540 Particulates from Fugitive Non-process Dust... Sect .0955 Thread Bonding Manufacturing 04/01/95 02/01/96, 62 FR 3589 Sect .0956 Glass Christmas...
40 CFR 63.1543 - Standards for process and process fugitive sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...
40 CFR 63.1543 - Standards for process and process fugitive sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...
40 CFR 63.1543 - Standards for process and process fugitive sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraphs (a)(1) through (9) of this section. (1) Sinter machine; (2) Blast furnace; (3) Dross furnace; (4... machine charging location; (7) Sinter machine discharge end; (8) Sinter crushing and sizing equipment; and (9) Sinter machine area. (b) No owner or operator of any existing, new, or reconstructed primary lead...
... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...
Noyola, A; Paredes, M G; Güereca, L P; Molina, L T; Zavala, M
2018-10-15
Wastewater treatment (WWT) may be an important source of methane (CH 4 ), a greenhouse gas with significant global warming potential. Sources of CH 4 emissions from WWT facilities can be found in the water and in the sludge process lines. Among the methodologies for estimating CH 4 emissions inventories from WWT, the more adopted are the guidelines of the Intergovernmental Panel on Climate Change (IPCC), which recommends default emission factors (Tier 1) depending on WWT systems. Recent published results show that well managed treatment facilities may emit CH 4 , due to dissolved CH 4 in the influent wastewater; in addition, biological nutrient removal also will produce this gas in the anaerobic (or anoxic) steps. However, none of these elements is considered in the current IPCC guidelines. The aim of this work is to propose modified (and new) methane correction factors (MCF) regarding the current Tier 1 IPCC guidelines for CH 4 emissions from aerobic treatment systems, with and without anaerobic sludge digesters, focusing on intertropical countries. The modifications are supported on in situ assessment of fugitive CH 4 emissions in two facilities in Mexico and on relevant literature data. In the case of well-managed centralized aerobic treatment plant, a MCF of 0.06 (instead of the current 0.0) is proposed, considering that the assumption of a CH 4 -neutral treatment facility, as established in the IPCC methodology, is not supported. Similarly, a MCF of 0.08 is proposed for biological nutrient removal processes, being a new entry in the guidelines. Finally, a one-step straightforward calculation is proposed for centralized aerobic treatment plants with anaerobic digesters that avoids confusion when selecting the appropriate default MCF based on the Tier 1 IPCC guidelines. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Categories Priority Number 1 Source Category 1. Synthetic Organic Chemical Manufacturing Industry (SOCMI) and Volatile Organic Liquid Storage Vessels and Handling Equipment (a) SOCMI unit processes (b) Volatile organic liquid (VOL) storage vessels and handling equipment (c) SOCMI fugitive sources (d) SOCMI secondary...
Monolayer boron-aluminum compacted sheet material
NASA Technical Reports Server (NTRS)
Sumner, E. V.
1973-01-01
The manufacturing techniques, basic materials used, and equipment required to produce monolayer boron-aluminum composites are described. Tentative materials and process specifications are included. Improvements in bonding and filament spacing obtained through use of brazing powder in the fugitive binder are discussed.
Atmospheric Fate and Transport of Agricultural Dust and Ammonia
NASA Astrophysics Data System (ADS)
Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.
2008-12-01
Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.
Methamphetamine Lab Incidents, 2004-2014
... OPERATIONS Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip DRUG INFO Drug Fact Sheets ... Operations Diversion Control Programs Most Wanted Fugitives Training Intelligence Submit a Tip Drug Info Drug Fact Sheets ...
Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua
2013-07-01
Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Determination of VOC emission rates and compositions for offset printing.
Wadden, R A; Scheff, P A; Franke, J E; Conroy, L M; Keil, C B
1995-07-01
The release rates of volatile organic compounds (VOC) as fugitive emissions from offset printing are difficult to quantify, and the compositions are usually not known. Tests were conducted at three offset printing shops that varied in size and by process. In each case, the building shell served as the test "enclosure," and air flow and concentration measurements were made at each air entry and exit point. Emission rates and VOC composition were determined during production for (1) a small shop containing three sheetfed presses and two spirit duplicators (36,700 sheets, 47,240 envelopes and letterheads), (2) a medium-size industrial in-house shop with two webfed and three sheetfed presses, and one spirit duplicator (315,130 total sheets), and (3) one print room of a large commercial concern containing three webfed, heatset operations (1.16 x 10(6) ft) served by catalytic air pollution control devices. Each test consisted of 12 one-hour periods over two days. Air samples were collected simultaneously during each period at 7-14 specified locations within each space. The samples were analyzed by gas chromatography (GC) for total VOC and for 13-19 individual organics. Samples of solvents used at each shop were also analyzed by GC. Average VOC emission rates were 4.7-6.1 kg/day for the small sheetfed printing shop, 0.4-0.9 kg/day for the industrial shop, and 79-82 kg/day for the commercial print room. Emission compositions were similar and included benzene, toluene, xylenes, ethylbenzene, and hexane. Comparison of the emission rates with mass balance estimates based on solvent usage and composition were quite consistent.(ABSTRACT TRUNCATED AT 250 WORDS)
Methane source identification in Boston, Massachusetts using isotopic and ethane measurements
NASA Astrophysics Data System (ADS)
Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.
2012-12-01
Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
NASA Astrophysics Data System (ADS)
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-08-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications.
Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing
Do, Truong; Shin, Changseop; Kwon, Patrick; Yeom, Junghoon
2016-01-01
Ceramic-based microchemical systems (μCSs) are more suitable for operation under harsh environments such as high temperature and corrosive reactants compared to the more conventional μCS materials such as silicon and polymers. With the recent renewed interests in chemical manufacturing and process intensification, simple, inexpensive, and reliable ceramic manufacturing technologies are needed. The main objective of this paper is to introduce a new powder-based fabrication framework, which is a one-pot, cost-effective, and versatile process for ceramic μCS components. The proposed approach employs the compaction of metal-oxide sub-micron powders with a graphite fugitive phase that is burned out to create internal cavities and microchannels before full sintering. Pure alumina powder has been used without any binder phase, enabling more precise dimensional control and less structure shrinkage upon sintering. The key process steps such as powder compaction, graphite burnout during partial sintering, machining in a conventional machine tool, and final densification have been studied to characterize the process. This near-full density ceramic structure with the combustion chamber and various internal channels was fabricated to be used as a micro-burner for gas sensing applications. PMID:27546059
Document Preparation (for Filming). ERIC Processing Manual, Appendix B.
ERIC Educational Resources Information Center
Brandhorst, Ted, Ed.; And Others
The technical report or "fugitive" literature collected by ERIC is produced using a wide variety of printing techniques, many formats, and variable degrees of quality control. Since the documents processed by ERIC go on to be microfilmed and reproduced in microfiche and paper copy for sale to users, it is essential that the ERIC document…
Removing gaseous NH3 using biochar as an adsorbent
USDA-ARS?s Scientific Manuscript database
Ammonia is a major fugitive gas emitted from livestock operations and fertilization production. This study tested the potential of various biochars in removing gaseous ammonia via adsorption processes. Gaseous ammonia adsorption capacities of various biochars made from two different feedstocks (wood...
Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yogeshwar Sahai
2007-07-31
Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.« less
NASA Astrophysics Data System (ADS)
Zazzeri, Giulia; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Butler, Dominique; Lanoisellé, Mathias; Nisbet, Euan G.
2017-04-01
Leakages from the natural gas distribution network, power plants and refineries account for the 10% of national methane emissions in the UK (http://naei.defra.gov.uk/), and are identified as a major source of methane in big conurbations (e.g. Townsend-Small et al., 2012; Phillips et al., 2013). The National Atmospheric Emission Inventories (NAEI) website provides a list of gas installations, but emissions from gas leakage, which in the inventories are estimated on the basis of the population distribution, are difficult to predict, which makes their estimation highly uncertain. Surveys with a mobile measurement system (Zazzeri et al., 2015) were carried out in the London region for detection of fugitive natural gas and in other sites in the UK (i.e. Bacton, Southampton, North Yorkshire) to identify emissions from various gas installations. The methane isotopic analysis of air samples collected during the surveys, using the methodology in Zazzeri et al. (2015), allows the calculation of the δ13C signature characterising natural gas in the UK. The isotopic value of the natural gas supply to SE London has changed a little in recent years, being close to -34 ‰ over 1998-99 period (Lowry et al., 2001) and close to -36 ‰ since at least 2002. Emissions from gas installations, such as pumping stations in NE England (-41 ± 2 ‰ ) were detected, but some of them were not listed in the inventories. Furthermore, the spatial distribution of the gas leaks identified during the surveys in the London region does not coincide with the distribution suggested by the inventories. By locating both small gas leaks and emissions from large gas installations, we can verify how these methane sources are targeted by national emission inventories. Lowry, D., Holmes, C.W., Rata, N.D., O'Brien, P., and Nisbet, E.G., 2001, London methane emissions: Use of diurnal changes in concentration and δ13C to identify urban sources and verify inventories: Journal of Geophysical Research: Atmospheres, v. 106, p. 7427-7448 Phillips, N. G., Ackley, R., Crosson, E. R., Down, A., Hutyra, L. R., Brondfield, M., Karr, J. D., Zhao, K., and Jackson, R. B., 2013, Mapping urban pipeline leaks: Methane leaks across Boston: Environmental Pollution, v. 173, p. 1-4 Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E., 2012, Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of "fugitive" fossil fuel emissions: Journal of Geophysical Research: Atmospheres, v. 117, no. D7 Zazzeri, G., Lowry, D., Fisher, R., France, J., Lanoisellé, M., and Nisbet, E., 2015, Plume mapping and isotopic characterisation of anthropogenic methane sources: Atmospheric Environment, v. 110, p. 151-162
Fugitive Emissions From Coal Unloading At Coal Preparation Plant
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Determination of Whether Emissions From Seagram and Sons Whiskey Storage Facility are Fugitive
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Interpretation of the Definition of Fugitive Emissions in Parts 70 and 71
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Policy and Guidance Database available at www2.epa.gov/title-v-operating-permits/title-v-operating-permit-policy-and-guidance-document-index. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
... recovery projects and issues associated with fugitive methane. Bruce Hedman, ICF International, on behalf... associated with fugitive methane. Richard D. Murphy, S.V.P. Energy Solutions Services, National Grid, on...
Lamb, Brian K; Edburg, Steven L; Ferrara, Thomas W; Howard, Touché; Harrison, Matthew R; Kolb, Charles E; Townsend-Small, Amy; Dyck, Wesley; Possolo, Antonio; Whetstone, James R
2015-04-21
Fugitive losses from natural gas distribution systems are a significant source of anthropogenic methane. Here, we report on a national sampling program to measure methane emissions from 13 urban distribution systems across the U.S. Emission factors were derived from direct measurements at 230 underground pipeline leaks and 229 metering and regulating facilities using stratified random sampling. When these new emission factors are combined with estimates for customer meters, maintenance, and upsets, and current pipeline miles and numbers of facilities, the total estimate is 393 Gg/yr with a 95% upper confidence limit of 854 Gg/yr (0.10% to 0.22% of the methane delivered nationwide). This fraction includes emissions from city gates to the customer meter, but does not include other urban sources or those downstream of customer meters. The upper confidence limit accounts for the skewed distribution of measurements, where a few large emitters accounted for most of the emissions. This emission estimate is 36% to 70% less than the 2011 EPA inventory, (based largely on 1990s emission data), and reflects significant upgrades at metering and regulating stations, improvements in leak detection and maintenance activities, as well as potential effects from differences in methodologies between the two studies.
Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi
2012-01-17
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.
Global Pursuits: The Underground Railroad
ERIC Educational Resources Information Center
School Arts: The Art Education Magazine for Teachers, 2004
2004-01-01
This brief article describes Charles T. Webber's oil on canvas painting, "The Underground Railroad, 1893." The subject of this painting is the Underground Railroad, which today has become an American legend. The Underground Railroad was not a systematic means of transportation, but rather a secretive process that allowed fugitive slaves…
40 CFR 63.1445 - What work practice standards must I meet for my fugitive dust sources?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Each transfer point in conveying systems used to transport fugitive dust materials. These points include, but are not limited to, transfer of material from one conveyor belt to another and transfer of...
SPECTRAL MONITORING OF FUGITIVE CONTAMINANTS IN THE ENVIRONMENT
The accidental or intentional release of hazardous chemical substances into the environment is an inevitable consequence of anthropogenic activity. The detection, monitoring and remediation of fugitive contaminants is a major risk factor for human and ecological health and i...
Advanced receptor modelling for the apportionment of road dust resuspension to atmospheric PM
NASA Astrophysics Data System (ADS)
Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.
2009-04-01
Fugitive emissions from traffic resuspension can often represent an important source of atmospheric particulate matter in urban environments, especially when the scarce precipitations favour the accumulation of road dust. Resuspension of road dust can lead to high exposures to heavy metals, metalloids and mineral matter. Knowing the amount of its contribution to atmospheric PM is a key task for establishing eventual mitigation or preventive measures. Factor analysis techniques are widely used tools for atmospheric aerosol source apportionment, based on the mass conservation principle. Paatero and Tapper (1993) suggested the use of a Weighted Least Squares scheme with the aim of obtaining a minimum variance solution. Additionally they proposed to incorporate the basic physical constraint of non negativity, calling their approach Positive Matrix Factorization (PMF), which can be performed by the program PMF2 released by Paatero (1997). Nevertheless, Positive Matrix Factorization can be either solved with the Multilinear Engine (ME-2), a more flexible program, also developed by Paatero (1999), which can solve any model consisting in sum of products of unknowns. The main difference with PMF2 is that ME-2 does not solve only well-defined tasks, but its actions are defined in a "script file" written in a special-purpose programming language, allowing incorporating additional tasks such as data processing etc. Thus in ME-2 a priori information, e.g. chemical fingerprints can be included as auxiliary terms of the object function to be minimized. This feature of ME-2 make it especially suitable for source apportionment studies where some knowledge (chemical ratios, profiles, mass conservation etc) of involved sources is available. The aim of this study was to quantify the contribution of road dust resuspension in PM10, PM2.5 and PM1 data set from Barcelona (Spain). Given that recently the emission profile of local road dust was characterized (Amato et al., in press), authors show how to apply in ME-2 this knowledge to obtain a quantitative assessment of this source. The achievement of this objective permitted to show how is possible to improve a basic solution of PMF2 basing on an extended model. Results show that road dust resuspension accounted for 6.7 µg/m3 (16%) in PM10, 2.2 µg/m3 (8%) of PM2.5 and 0.3 µg/m3 (1%) of PM1, revealing that fugitive emissions were responsible of the 36%, 18% and 2% of total traffic emissions respectively in PM10, PM2.5 and PM1. Acknowledments: This work was funded by the Spanish Ministry of Science and Innovation (GRACCIE-SCD2007-00067)
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.
1996-05-01
The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.
Stochastic Industrial Source Detection Using Lower Cost Methods
NASA Astrophysics Data System (ADS)
Thoma, E.; George, I. J.; Brantley, H.; Deshmukh, P.; Cansler, J.; Tang, W.
2017-12-01
Hazardous air pollutants (HAPs) can be emitted from a variety of sources in industrial facilities, energy production, and commercial operations. Stochastic industrial sources (SISs) represent a subcategory of emissions from fugitive leaks, variable area sources, malfunctioning processes, and improperly controlled operations. From the shared perspective of industries and communities, cost-effective detection of mitigable SIS emissions can yield benefits such as safer working environments, cost saving through reduced product loss, lower air shed pollutant impacts, and improved transparency and community relations. Methods for SIS detection can be categorized by their spatial regime of operation, ranging from component-level inspection to high-sensitivity kilometer scale surveys. Methods can be temporally intensive (providing snap-shot measures) or sustained in both time-integrated and continuous forms. Each method category has demonstrated utility, however, broad adoption (or routine use) has thus far been limited by cost and implementation viability. Described here are a subset of SIS methods explored by the U.S EPA's next generation emission measurement (NGEM) program that focus on lower cost methods and models. An emerging systems approach that combines multiple forms to help compensate for reduced performance factors of lower cost systems is discussed. A case study of a multi-day HAP emission event observed by a combination of low cost sensors, open-path spectroscopy, and passive samplers is detailed. Early field results of a novel field gas chromatograph coupled with a fast HAP concentration sensor is described. Progress toward near real-time inverse source triangulation assisted by pre-modeled facility profiles using the Los Alamos Quick Urban & Industrial Complex (QUIC) model is discussed.
Source apportionment of volatile organic compounds measured near a cold heavy oil production area
NASA Astrophysics Data System (ADS)
Aklilu, Yayne-abeba; Cho, Sunny; Zhang, Qianyu; Taylor, Emily
2018-07-01
This study investigated sources of volatile organic compounds (VOCs) observed during periods of elevated hydrocarbon concentrations adjacent to a cold heavy oil extraction area in Alberta, Canada. Elevated total hydrocarbon (THC) concentrations were observed during the early morning hours and were associated with meteorological conditions indicative of gravitational drainage flows. THC concentrations were higher during the colder months, an occurrence likely promoted by a lower mixing height. On the other hand, other VOCs had higher concentrations in the summer; this is likely due to increased evaporation and atmospheric chemistry during the summer months. Of all investigated VOC compounds, alkanes contributed the greatest in all seasons. A source apportionment method, positive matrix factorization (PMF), was used to identify the potential contribution of various sources to the observed VOC concentrations. A total of five factors were apportioned including Benzene/Hexane, Oil Evaporative, Toluene/Xylene, Acetone and Assorted Local/Regional Air Masses. Three of the five factors (i.e., Benzene/Hexane, Oil Evaporative, and Toluene/Xylene), formed 27% of the reconstructed and unassigned concentration and are likely associated with emissions from heavy oil extraction. The three factors associated with emissions were comparable to the available emission inventory for the area. Potential sources include solution gas venting, combustion exhaust and fugitive emissions from extraction process additives. The remaining two factors (i.e., Acetone and Assorted Local/Regional Air Mass), comprised 49% of the reconstructed and unassigned concentration and contain key VOCs associated with atmospheric chemistry or the local/regional air mass such as acetone, carbonyl sulphide, Freon-11 and butane.
Fabrication of porous titanium scaffold materials by a fugitive filler method.
Hong, T F; Guo, Z X; Yang, R
2008-12-01
A clean powder metallurgy route was developed here to produce Ti foams, using a fugitive polymeric filler, polypropylene carbonate (PPC), to create porosities in a metal-polymer compact at the pre-processing stage. The as-produced foams were studied by scanning electron microscopy (SEM), LECO combustion analyses and X-ray diffraction (XRD). Compression tests were performed to assess their mechanical properties. The results show that titanium foams with open pores can be successfully produced by the method. The compressive strength and modulus of the foams decrease with an increasing level of porosity and can be tailored to those of the human bones. After alkali treatment and soaking in a simulated body fluid (SBF) for 3 days, a thin apatite layer was formed along the Ti foam surfaces, which provides favourable bioactive conditions for bone bonding and growth.
NASA Astrophysics Data System (ADS)
Scafutto, Rebecca DeĺPapa Moreira; de Souza Filho, Carlos Roberto; Riley, Dean N.; de Oliveira, Wilson Jose
2018-02-01
Methane (CH4) is the main constituent of natural gas. Fugitive CH4 emissions partially stem from geological reservoirs (seepages) and leaks in pipelines and petroleum production plants. Airborne hyperspectral sensors with enough spectral and spatial resolution and high signal-to-noise ratio can potentially detect these emissions. Here, a field experiment performed with controlled release CH4 sources was conducted in the Rocky Mountain Oilfield Testing Center (RMOTC), Casper, WY (USA). These sources were configured to deliver diverse emission types (surface and subsurface) and rates (20-1450 scf/hr), simulating natural (seepages) and anthropogenic (pipeline) CH4 leaks. The Aerospace Corporation's SEBASS (Spatially-Enhanced Broadband Array Spectrograph System) sensor acquired hyperspectral thermal infrared data over the experimental site with 128 bands spanning the 7.6 μm-13.5 μm range. The data was acquired with a spatial resolution of 0.5 m at 1500 ft and 0.84 m at 2500 ft above ground level. Radiance images were pre-processed with an adaptation of the In-Scene Atmospheric Compensation algorithm and converted to emissivity through the Emissivity Normalization algorithm. The data was processed with a Matched Filter. Results allowed the separation between endmembers related to the spectral signature of CH4 from the background. Pixels containing CH4 signatures (absorption bands at 7.69 μm and 7.88 μm) were highlighted and the gas plumes mapped with high definition in the imagery. The dispersion of the mapped plumes is consistent with the wind direction measured independently during the experiment. Variations in the dimension of mapped gas plumes were proportional to the emission rate of each CH4 source. Spectral analysis of the signatures within the plumes shows that CH4 spectral absorption features are sharper and deeper in pixels located near the emitting source, revealing regions with higher gas density and assisting in locating CH4 sources in the field accurately. These results indicate that thermal infrared hyperspectral imaging can support the oil industry profusely, by revealing new petroleum plays through direct detection of gaseous hydrocarbon seepages, serving as tools to monitor leaks along pipelines and oil processing plants, while simultaneously refining estimates of CH4 emissions.
Samara, Constantini; Argyropoulos, George; Grigoratos, Theodoros; Kouras, Αthanasios; Manoli, Εvangelia; Andreadou, Symela; Pavloudakis, Fragkiskos; Sahanidis, Chariton
2018-05-01
The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM 10 (i.e., particulate matters with diameters ≤10 μm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM 10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM 10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM 10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM 10 concentrations at the different sites ranged from 38 to 72 μg m -3 . The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.
Rubbertown NGEM Demonstration Project Planning meetings ...
From the shared perspective of industrial facilities, workers, regulators, and communities, cost-effective detection and assessment of significant onset fugitive leaks or process issues, is a mutually beneficial concept. If emissions that require mitigation can be detected and fixed quickly, benefits such as safer working environments, cost saving through reduced product loss, lower air shed pollutant impacts, and improved transparency and community relations can be realized. Under its next generation emission measurement program (NGEM), EPA’s Office of Research and Development (ORD), National Risk Management Research Laboratory (NRMRL) is working collaboratively with industry, instrument /information companies, state and local agencies, communities, and academic groups to explore new technical approaches for non-point source detection and migration. Techniques such as mobile and fixed point sensors and passive samplers employed on various spatial scales are being explored. With collaboration of the project team including EPA R4, the Louisville Metro Air Pollution Control District (LMAPCD), industrial facilities, and contractors to the EPA, a select subset of these NGEM approaches will be demonstrated in this project as per the quality assurance project plan. From April 17-20, 2017, E. Thoma will travel to Louisville KY to work with the Louisville Metro Air Pollution Control District (LMAPCD) and other parties for planning activities related to the
Dispersion model on PM₂.₅ fugitive dust and trace metals levels in Kuwait Governorates.
Bu-Olayan, A H; Thomas, B V
2012-03-01
Frequent dust storms and recent environmental changes were found to affect the human health especially in residents of arid countries. Investigations on the PM(2.5) fugitive dust in six Kuwait Governorate areas using dispersion Gaussian plume modeling revealed significant relationship between low rate of pollutant emission, low wind velocity, and stable weather conditions' matrix causing high rate of dust deposition in summer than in winter. The rate of dust deposition and trace metals levels in PM(2.5) were in the sequence of G-VI > G-I > G-II > G-V > G-III > G-IV. Trace metals were observed in the sequence of Al > Fe > Zn > Ni > Pb > Cd irrespective of the Governorate areas and the two seasons. The high rate of dust deposition and trace metals in PM(2.5) was reflected by the vast open area, wind velocity, and rapid industrialization besides natural and anthropogenic sources. A combination of air dispersion modeling and nephalometric and gravimetric studies of this kind not only determines the seasonal qualitative and quantitative analyses on the PM(2.5) dust deposition besides trace metals apportionment in six Kuwait Governorate areas, but also characterizes air pollution factors that could be used by environmentalist to deduce preventive measures.
75 FR 48880 - Approval and Promulgation of Gila River Indian Community's Tribal Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-12
...The Environmental Protection Agency (EPA) proposes to approve the Gila River Indian Community's (GRIC or the Tribe) Tribal Implementation Plan (TIP) under the Clean Air Act (CAA) to regulate air pollution within the exterior boundaries of the Tribe's reservation. The proposed TIP is one of four CAA regulatory programs that comprise the Tribe's Air Quality Management Plan (AQMP). EPA approved the Tribe for treatment in the same manner as a State (Treatment as State or TAS) for purposes of administering the AQMP and other CAA authorities on October 21, 2009. In this action we propose to act only on those portions of the AQMP that constitute a TIP containing severable elements of an implementation plan under CAA section 110(a). The proposed TIP includes general and emergency authorities, ambient air quality standards, permitting requirements for minor sources of air pollution, enforcement authorities, procedures for administrative appeals and judicial review in Tribal court, requirements for area sources of fugitive dust and fugitive particulate matter, general prohibitory rules, and source category-specific emission limitations. The purpose of the proposed TIP is to implement, maintain, and enforce the National Ambient Air Quality Standards (NAAQS) in the GRIC reservation. The intended effect of today's proposed action is to make the GRIC TIP federally enforceable.
Kosse, Pascal; Kleeberg, Tasja; Lübken, Manfred; Matschullat, Jörg; Wichern, Marc
2018-08-15
Treatment of nutrient-rich wastewater potentially results in direct release of greenhouse gases (GHGs) such as CO 2 , N 2 O or CH 4 - and thus affects Waste Water Treatment Plant's carbon footprint. Accurate CO 2 quantification is challenging due to various chemical, physical and operational conditions. A floating chamber equipped with a nondispersive infrared, single beam, dual wavelength sensor has been evaluated for a pilot approach to quantify fugitive CO 2 emissions above different wastewater treatment units. Total average CO 2 flux was 1182gCO 2 ·m -2 ·d -1 with minimum and maximum fluxes of 829gCO 2 ·m -2 ·d -1 and 1493gCO 2 ·m -2 ·d -1 , respectively. Total observed CO 2 emissions were in 7 to 17kgCO 2 ·PE -1 ·a -1 (average 12kgCO 2 ·PE -1 ·a -1 ). The nitrification tank accounted for about 94.3% of the emissions, followed by secondary clarification (ca. 4.3%) and denitrification (ca. 1.4%), based on those average annual CO 2 emissions per population equivalent (PE). Copyright © 2018 Elsevier B.V. All rights reserved.
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...
40 CFR 60.441 - Definitions and symbols.
Code of Federal Regulations, 2014 CFR
2014-07-01
... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...
Performance of particulate containment at nanotechnology workplaces
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael
2015-11-01
The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37 % reduction on the particle concentration in the worker's breathing zone, and produce a 42 % lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15-20 % higher ultrafine (<500 nm) particle concentrations at the source and at the worker's breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.
Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013
NASA Astrophysics Data System (ADS)
Li, L.; An, J. Y.; Shi, Y. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Wang, H. L.; Lou, S. R.; Wang, Q.; Lu, Q.; Wu, J.
2016-11-01
We applied ozone source apportionment technology (OSAT) with tagged tracers coupled within the Comprehensive Air Quality Model with Extensions (CAMx) to study the region and source category contribution to surface ozone in the Yangtze River Delta area in summer of 2013. Results indicate that the daytime ozone concentrations in the YRD region are influenced by emissions both locally, regionally and super-regionally. At urban Shanghai, Hangzhou and Suzhou receptors, the ozone formation is mainly VOC-limited, precursor emissions form Zhejiang province dominate their O3 concentrations. At the junction area among two provinces and Shanghai city, the ozone is usually influenced by all the three areas. The daily max O3 at the Dianshan Lake in July are contributed by Zhejiang (48.5%), Jiangsu (11.7%), Anhui (11.6%) and Shanghai (7.4%), long-range transport constitutes around 20.9%. At Chongming site, the BVOC emissions rate is higher than urban region. Regional contribution results show that Shanghai constitutes 15.6%, Jiangsu contributes 16.2% and Zhejiang accounts for 25.5% of the daily max O3. The analysis of the source category contribution to high ozone in the Yangtze River Delta region indicates that the most significant anthropogenic emission source sectors contributing to O3 pollution include industry, vehicle exhaust, although the effects vary with source sector and selected pollution episodes. Emissions of NOx and VOCs emitted from the fuel combustion of industrial boilers and kilns, together with VOCs emissions from industrial process contribute a lot to the high concentrations in urban Hangzhou, Suzhou and Shanghai. The contribution from regional elevated power plants cannot be neglected, especially to Dianshan Lake. Fugitive emissions of volatile pollution sources also have certain contribution to regional O3. These results indicate that the regional collaboration is of most importance to reduce ambient ozone pollution, particularly during high ozone episodes.
Queer Histories: Exploring Fugitive Forms of Social Knowledge.
ERIC Educational Resources Information Center
Hill, Bob, Ed.
This document contains eight papers from a conference on fugitive forms of social knowledge that was sponsored by the Adult Education Research Conference (AERC) Lesbian, Gay, Bisexual, Transgender, Queer, and Allies Caucus. The welcome address, "Working Memory at AERC: A Queer Welcome...and a Retrospective" (Bob Hill), explores the…
A Walk on the Underground Railroad.
ERIC Educational Resources Information Center
Cohen, Anthony
2001-01-01
Describes one historian's search for information on the Underground Railroad, retracing on foot one of the routes formerly traveled by fugitives, seeking historical societies and libraries in each town, and interviewing descendants of slaves. He also had himself boxed up and smuggled onto a train to simulate the situation of one fugitive. A…
40 CFR 63.1544 - Standards for fugitive dust sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to, a standard operating procedures manual that describes in detail the measures that will be put... (c) of this section, the standard operating procedures manual shall be submitted to the Administrator... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Standards for fugitive dust sources. 63...
40 CFR 63.1544 - Standards for fugitive dust sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... according to, a standard operating procedures manual that describes in detail the measures that will be put... (c) of this section, the standard operating procedures manual shall be submitted to the Administrator... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Standards for fugitive dust sources. 63...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
... NMAC) addition of in subsections methodology for (A) and (B). fugitive dust control permits, revised... fee Fee Calculations and requirements for Procedures. fugitive dust control permits. 9/7/2004 Section... schedule based on acreage, add and update calculation methodology used to calculate non- programmatic dust...
Spatial and temporal characterization of methane plumes from mobile platforms
NASA Astrophysics Data System (ADS)
O'Brien, A.; Wendt, L.; Miller, D. J.; Lary, D. J.; Zondlo, M. A.
2013-12-01
The spatial and temporal characterization of methane plumes from hydraulic fracturing well sites are presented. Methane measurements from the Marcellus shale region obtained using a commercial instrument on a motor vehicle are discussed. Over 100 well sites in the region were sampled and the methane signature in the vicinity of these wells is presented. Additionally, measurements of methane from our open-path instrument flown aboard the UT Dallas AMR Payload Master 100 remote-controlled, electric aircraft in the Barnett shale region are presented. Using our observations of aircraft surveys near well sites and a gaussian plume dispersion model emission estimates of fugitive methane are presented.
Simon, Heather; Allen, David T; Wittig, Ann E
2008-02-01
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.
NASA Astrophysics Data System (ADS)
Kuo, Su-Ching; Hsieh, Li-Ying; Tsai, Cheng-Hsien; Tsai, Ying I.
Fugitive metal in PM 2.5 at the blast furnace ( S1), reverberatory furnace ( S2), and surrounding environment ( S0) of a secondary aluminum smelter (a secondary ALS) was studied. PM 2.5 mass concentration at the blast furnace exceeded that at the reverberatory furnace and this was especially apparent during operation, giving an early indication that the blast furnace is more important as a pollutant source. Further, PM 2.5 mass concentration levels and patterns at S0 indicated that emissions from the blast furnace and reverberatory furnace were the major source of the observed fine particle pollution in the surrounding environment. Si and K were the main components and hence pollutants by mass in the PM 2.5 at S1, S2 and S0 during both operation and non-operation. Hg was not detected in the PM 2.5 aerosol during smelter operation but was present at all three sampling locations during non-operation. This is due to the falling blast furnace and reverberatory furnace temperatures during non-operation which cause Hg vapor formed during operation to condense to form detectable Hg particles, and hence Hg contributes to the pollutant load during non-operation. Average S1/ S0 and S2/ S0 mass concentration ratios of 40.32 and 18.53, respectively, for all measured metals during operation and 7.83 and 5.73 for all measured metals during non-operation indicate that metal particulate pollution at the workplaces of secondary ALSs, particularly at the blast furnace during operation, is a serious issue. S1/ S0 mass concentration ratios were higher still for Pb (62.22), Ti (113.40) and Ba (248.64), while the S2/ S0 mass concentration ratio for Mo was 138.20. Principal component analyses produced a PC1 that explained 32.36-48.16% of the total variance during operation of the smelter and 47.86-69.Ten percent during non-operation. Their strong component loadings were mainly related to the fugitive PM 2.5 mass. Compared to atmospheric metal concentrations reported for other regions of the world, the toxic metals that have relatively higher concentrations in the secondary ALS emissions are Cr, Cd, Cu, As, Pb, Se, Al and Zn, especially during smelter operation. Concentrations of these toxic heavy metals are approximately 2-4 orders of magnitude higher than those reported for various industrial regions and metropolises with heavy traffic across the world.
ERIC Educational Resources Information Center
Lovenburg, Susan L.; Stoss, Frederick W.
1988-01-01
Discusses the advantages of vertical file collections for nonconventional literature, and describes the classification scheme used for fugitive literature by the Acid Rain Information Clearinghouse at the Center for Environmental Information. An annotated list of organizations and examples of titles they offer is provided. (8 notes with…
77 FR 19153 - Nonpayment of Benefits to Fugitive Felons and Probation or Parole Violators
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... SOCIAL SECURITY ADMINISTRATION 20 CFR Parts 404 and 416 [Docket No. SSA 2006-0173] RIN 0960-AG12 Nonpayment of Benefits to Fugitive Felons and Probation or Parole Violators AGENCY: Social Security Administration. ACTION: Proposed rules; withdrawal. SUMMARY: We are withdrawing the proposed rules we published...
Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M
2014-08-01
The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.
Comparison of Field Measurements to Methane Emissions ...
Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la
Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter
2015-06-01
Methane (CH₄) generated from low-organic waste degradation at four Danish landfills was estimated by three first-order decay (FOD) landfill gas (LFG) generation models (LandGEM, IPCC, and Afvalzorg). Actual waste data from Danish landfills were applied to fit model (IPCC and Afvalzorg) required categories. In general, the single-phase model, LandGEM, significantly overestimated CH₄generation, because it applied too high default values for key parameters to handle low-organic waste scenarios. The key parameters were biochemical CH₄potential (BMP) and CH₄generation rate constant (k-value). In comparison to the IPCC model, the Afvalzorg model was more suitable for estimating CH₄generation at Danish landfills, because it defined more proper waste categories rather than traditional municipal solid waste (MSW) fractions. Moreover, the Afvalzorg model could better show the influence of not only the total disposed waste amount, but also various waste categories. By using laboratory-determined BMPs and k-values for shredder, sludge, mixed bulky waste, and street-cleaning waste, the Afvalzorg model was revised. The revised model estimated smaller cumulative CH₄generation results at the four Danish landfills (from the start of disposal until 2020 and until 2100). Through a CH₄mass balance approach, fugitive CH₄emissions from whole sites and a specific cell for shredder waste were aggregated based on the revised Afvalzorg model outcomes. Aggregated results were in good agreement with field measurements, indicating that the revised Afvalzorg model could provide practical and accurate estimation for Danish LFG emissions. This study is valuable for both researchers and engineers aiming to predict, control, and mitigate fugitive CH₄emissions from landfills receiving low-organic waste. Landfill operators use the first-order decay (FOD) models to estimate methane (CH₄) generation. A single-phase model (LandGEM) and a traditional model (IPCC) could result in overestimation when handling a low-organic waste scenario. Site-specific data were important and capable of calibrating key parameter values in FOD models. The comparison study of the revised Afvalzorg model outcomes and field measurements at four Danish landfills provided a guideline for revising the Pollutants Release and Transfer Registers (PRTR) model, as well as indicating noteworthy waste fractions that could emit CH₄at modern landfills.
2014-11-01
powder metallurgy processes (e.g., using a polymer foam as a fugitive template7) can exceed 85% porosity, it is more common for powder metallurgy ...for the 0.5 GPa compact is a remarkable result from a powder metallurgy process, especially because the pore structure is not dominated by necks...strengths in bulk engineering structures produced via powder metallurgy . Completely unique to this process is the ability to create foamed powder . This
Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications
NASA Technical Reports Server (NTRS)
Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.
2015-01-01
Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.
NASA Astrophysics Data System (ADS)
Bird, A. W.; Wojcik, M.; Moore, K. D.; Lemon, R.
2014-12-01
CELiS (Compact Eyesafe Lidar System) is an elastic lidar system conceived for the purpose of monitoring air quality environmental compliance regarding particulate matter (PM) generated from off-road use of wheeled and tracked vehicles. CELiS is a prototype instrument development by the Space Dynamics Laboratory to demonstrate a small, low power, eye-safe lidar system capable of monitoring PM fence-line concentration of fugitive dust from off-road vehicle activity as part of the SERDP (Strategic Environmental Research and Development Program) Measurement and Modeling of Fugitive Dust Emission from Off-Road Department of Defense Activities program. CELiS is small, lightweight and easily transportable for quick setup and measurement of PM concentration and emissions. The instrument is mounted on Moog Quickset pan and tilt positioner. Ground support equipment includes portable racks with laser power and cooler, power supplies, readout electronics and computer. The complete CELiS instrument weighs less than 300 lbs., is less than 1 cubic meters in volume and uses 700 W of 120V AC power. CELiS has a working range of better than 6km and a range resolution of 1.5m-6m. CELiS operates in a biaxial configuration at the 1.5μm eyesafe wavelength. The receiver is an off-axis parabolic (OAP) telescope, aft-optics and alignment assembly and InGaAs APD detector readout. The transmitter is a 20Hz PRF - 25mJ Quantel 1.574 μm laser with a 20x beam expander. Both the receiver and transmitter are mounted on a carbon fiber optical breadboard with a custom mounting solution to minimize misalignment due to thermal operating range (0-40 C) and pointing vectors. Any lidar system used to monitor fence-line PM emissions related to off-road training activities will be subject to a strict eye-safety requirement to protect both troops and wildlife. CELiS is eyesafe at the output aperture. CELiS has participated in two Dugway Proving Ground Lidar exercises performing within expectations. Retrieval of particulate matter concentration is presented in companion poster by K. Moore.
NASA Astrophysics Data System (ADS)
Smith, N.; Blewitt, D.; Hebert, L. B.
2015-12-01
In coordination with oil and gas operators, we developed a high resolution (< 1 min) simulation of temporal variability in well-pad oil and gas emissions over a year. We include routine emissions from condensate tanks, dehydrators, pneumatic devices, fugitive leaks and liquids unloading. We explore the variability in natural gas emissions from these individual well-pad sources, and find that routine short-term episodic emissions such as tank flashing and liquids unloading result in the appearance of a skewed, or 'fat-tail' distribution of emissions, from an individual well-pad over time. Additionally, we explore the expected variability in emissions from multiple wells with different raw gas composition, gas/liquids production volumes and control equipment. Differences in well-level composition, production volume and control equipment translate into differences in well-level emissions leading to a fat-tail distribution of emissions in the absence of operational upsets. Our results have several implications for recent studies focusing on emissions from oil and gas sources. Time scale of emission estimates are important and have important policy implications. Fat tail distributions may not be entirely driven by avoidable mechanical failures, and are expected to occur under routine operational conditions from short-duration emissions (e.g., tank flashing, liquid unloading). An understanding of the expected distribution of emissions for a particular population of wells is necessary to evaluate whether the observed distribution is more skewed than expected. Temporal variability in well-pad emissions make comparisons to annual average emissions inventories difficult and may complicate the interpretation of long-term ambient fenceline monitoring data. Sophisticated change detection algorithms will be necessary to identify when true operational upsets occur versus routine short-term emissions.
DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.
2013-01-01
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471
High-Resolution Atmospheric Emission Inventory of the Argentine Enery Sector
NASA Astrophysics Data System (ADS)
Puliafito, Salvador Enrique; Castesana, Paula; Allende, David; Ruggeri, Florencia; Pinto, Sebastián; Pascual, Romina; Bolaño Ortiz, Tomás; Fernandez, Rafael Pedro
2017-04-01
This study presents a high-resolution spatially disaggregated inventory (2.5 km x 2.5 km), updated to 2014, of the main emissions from energy activities in Argentina. This inventory was created with the purpose of improving air quality regional models. The sub-sectors considered are public electricity and heat production, cement production, domestic aviation, road and rail transportation, inland navigation, residential and commercial, and fugitive emissions from refineries and fuel expenditure. The pollutants considered include greenhouse gases and ozone precursors: CO2, CH4, NOx, N2O VOC; and other gases specifically related to air quality including PM10, PM2.5, SOx, Pb and POPs. The uncertainty analysis of the inventories resulted in a variability of 3% for public electricity generation, 3-6% in the residential, commercial sector, 6-12% terrestrial transportation sector, 10-20% in oil refining and cement production according to the considered pollutant. Aviation and maritime navigation resulted in a higher variability reaching more than 60%. A comparison with the international emission inventory EDGAR shows disagreements in the spatial distribution of emissions, probably due to the finer resolution of the map presented here, particularly as a result of the use of new spatially disaggregated data of higher resolution that is currently available.
Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V
2011-03-15
Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed.
Global emissions of PM10 and PM2.5 from agricultural tillage and harvesting operations
NASA Astrophysics Data System (ADS)
Chen, W.; Tong, D.; Lee, P.
2014-12-01
Soil particles emitted during agricultural activities is a major recurring source contributing to atmospheric aerosol loading. Emission inventories of agricultural dust emissions have been compiled in several regions. These inventories, compiled based on historic survey and activity data, may reflect the current emission strengths that introduce large uncertainties when they are used to drive chemical transport models. In addition, there is no global emission inventory of agricultural dust emissions required to support global air quality and climate modeling. In this study, we present our recent efforts to develop a global emission inventory of PM10 and PM2.5 released from field tillage and harvesting operations using an emission factors-based approach. Both major crops (e.g., wheat and corn) and forage production were considered. For each crop or forage, information of crop area, crop calendar, farming activities and emission factors of specified operations were assembled. The key issue of inventory compilation is the choice of suitable emission factors for specified operations over different parts of the world. Through careful review of published emission factors, we modified the traditional emission factor-based model by multiplying correction coefficient factors to reflect the relationship between emission factors, soil texture, and climate conditions. Then, the temporal (i.e., monthly) and spatial (i.e., 0.5º resolution) distribution of agricultural PM10 and PM2.5 emissions from each and all operations were estimated for each crop or forage. Finally, the emissions from individual crops were aggregated to assemble a global inventory from agricultural operations. The inventory was verified by comparing the new data with the existing agricultural fugitive dust inventory in North America and Europe, as well as satellite observations of anthropogenic agricultural dust emissions.
Race towards Freedom: W.E.B. Du Bois and the Tradition of Fugitive Black Study
ERIC Educational Resources Information Center
Tinson, Christopher M.
2017-01-01
This essay centers the defense of black educational possibility in the work of historian, pioneering sociologist, and scholar, W.E.B. Du Bois (1868-1963) as a conduit igniting what critical social theorists Stefano Harney and Fred Moten (2013) call Fugitive Black Study. The critical appreciation of Du Bois forces us to consider the weight of…
Methane Emissions from the Natural Gas Transmission and Storage System in the United States.
Zimmerle, Daniel J; Williams, Laurie L; Vaughn, Timothy L; Quinn, Casey; Subramanian, R; Duggan, Gerald P; Willson, Bryan; Opsomer, Jean D; Marchese, Anthony J; Martinez, David M; Robinson, Allen L
2015-08-04
The recent growth in production and utilization of natural gas offers potential climate benefits, but those benefits depend on lifecycle emissions of methane, the primary component of natural gas and a potent greenhouse gas. This study estimates methane emissions from the transmission and storage (T&S) sector of the United States natural gas industry using new data collected during 2012, including 2,292 onsite measurements, additional emissions data from 677 facilities and activity data from 922 facilities. The largest emission sources were fugitive emissions from certain compressor-related equipment and "super-emitter" facilities. We estimate total methane emissions from the T&S sector at 1,503 [1,220 to 1,950] Gg/yr (95% confidence interval) compared to the 2012 Environmental Protection Agency's Greenhouse Gas Inventory (GHGI) estimate of 2,071 [1,680 to 2,690] Gg/yr. While the overlap in confidence intervals indicates that the difference is not statistically significant, this is the result of several significant, but offsetting, factors. Factors which reduce the study estimate include a lower estimated facility count, a shift away from engines toward lower-emitting turbine and electric compressor drivers, and reductions in the usage of gas-driven pneumatic devices. Factors that increase the study estimate relative to the GHGI include updated emission rates in certain emission categories and explicit treatment of skewed emissions at both component and facility levels. For T&S stations that are required to report to the EPA's Greenhouse Gas Reporting Program (GHGRP), this study estimates total emissions to be 260% [215% to 330%] of the reportable emissions for these stations, primarily due to the inclusion of emission sources that are not reported under the GHGRP rules, updated emission factors, and super-emitter emissions.
Performance of Particulate Containment at Nanotechnology Workplaces
Lo, Li-Ming; Tsai, Candace S.-J.; Dunn, Kevin H.; Hammond, Duane; Marlow, David; Topmiller, Jennifer; Ellenbecker, Michael
2015-01-01
The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These controls assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37% reduction on the particle concentration in the worker’s breathing zone, and produce a 42% lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15%–20% higher ultrafine (<500 nm) particle concentrations at the source and at the worker’s breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored. PMID:26705393
NASA Astrophysics Data System (ADS)
Amodio, M.; Andriani, E.; Daresta, B. E.; de Gennaro, G.; di Gilio, A.; Ielpo, P.,; Placentino, C. M.; Trizio, L.; Tutino, M.
2010-05-01
Several epidemiological studies have shown the negative effects of air pollution on human health, which range from respiratory and cardiovascular disease to neurotoxic effects, and cancer. Most recent investigations have been focused on health toxicological features of Particulate Matter (PM) and its interactions with other pollutants: it was found that fine particles (PM2.5) could be an effective media to transport these pollutants deeply into the lung and to cause many kind of reactions which include oxidative stress, local pulmonary and systemic inflammatory responses (Künzli and Perez, 2009). Based on these implications on public health, many countries have developed plans to suggest effective control strategies which involve the identification of Particulate Matter sources, the quantitative estimation of the emission rates of the pollutants, the understanding of PM transport, mixing and transformation processes and the identification of main factors influencing PM concentrations. In this field, receptor models can be useful tools to estimate sources contributions to PM collected in an area under investigations. Different approaches to receptor model analysis can be distinguished on basis of whether chemical characteristics of emission sources are required to be known before the source apportionment. The multivariate approach could be preferred when a lack of information concerning sources profiles occurred (Hopke, 2003). In this work, the results obtained by applying an integrated approach in the monitoring of PM using several typologies of instrumentations will be shown. A prototype for the determination of the contributions of a single source (‘fugitive emission') on the fine PM concentrations has been developed: it consists of a Swam dual-channel sampler, an OPC Monitor, a sonic anemometer and a PBL Mixing monitor. The investigated site chosen for the application of prototype will be the iron and steel pole of Taranto (Apulia Region, South of Italy). Fugitive emission campaign will be performed by using three different positions around the Taranto industrial area; the main interest on Taranto is due to the presence of several activities of high impact as very wide industrial area close to the town and the numerous maritime and military activities in the harbour area (Amodio et al., 2008). The aim is to triangulate the area of the examined source on the basis of the prevalent directions of the wind. The investigation will be completed by chemical-physical characterization of PM2.5 and PM10 samples collected by the prototype in order to have additional information about the possible emissive sources. The statistical analysis, performed by Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), will be used for a detailed study of the impact of the local emissive source on the neighboring areas. Finally, the prototype will allow to identify and distinguish long range transport, regional and other local contributions on the fine PM concentrations. This work was supported by the Strategic Project PS_122 founded by Apulia Region. References Künzli, N., Perez, L., 2009. Swiss Medical Weekly 139(17-18), 242-250. Hopke, P.K., 2003. Journal of Chemometrics 17(5), 255-265. Amodio, M., Caselli, M., Daresta, B.E., de Gennaro, G., Ielpo, P., Placentino, C.M., Tutino, 2008. Chemical Engineering Transactions 16, 193-199.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Fleck, D.
2017-12-01
Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.
NASA Astrophysics Data System (ADS)
Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.
2013-12-01
Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance fluxes were obtained using the virtual disjunct eddy covariance method and from Wavelet Analysis along flight tracks flown in the mixed layer. Preliminary analysis of mixing ratio measurements indicate that high concentrations of CH4 occur consistently while flying above the Central Valley that are correlated to large enhancements of methanol which is an important dairy and livestock emissions tracer. The elevated CH4 mixing ratios along the eastern edge of the San Joaquin Valley highlight the contribution of topography and emissions transport to local ambient levels of CH4. Large enhancements of CH4, benzene and toluene are also observed while flying over the oil production facilities in western part of Kern county (state's top oil producing county, 10% of US production) suggesting the likelihood of fugitive emissions in the region. VOC tracer analysis is used to evaluate the source of high CH4 emissions encountered along the eastern edge of the central Sacramento valley where fugitive emissions from natural gas fields and cultivation of rice are likely sources. Plumes from biomass burning, landfills and refineries encountered during different flights are also investigated. Eddy covariance based CH4 flux estimates are derived for various sources and compared with ';bottom-up' inventory estimates to verify/validate the CA methane inventory for major sources.
Baselining Fugitive and Vented Emissions Across Canadian Energy Developments
NASA Astrophysics Data System (ADS)
O'Connell, L.; Risk, D. A.; Fougère, C. R.; Lavoie, M.; Atherton, E. E.; Baillie, J.; MacKay, K.; Marshall, A. D.
2016-12-01
A recent trilateral accord between North American governments pledges to cut energy sector methane emissions 40-45 per cent below 2012 levels by 2025. Effective methane-reduction policy relies on accurate and spatially extensive emissions data. In this study, we assessed the feasibility of bottom-up data collection for Canadian energy developments, using vehicle-based emission screening and volumetric measurement, combined with forward looking infrared (FLIR) detection for pinpointing source. We analyzed trends across many Canadian developments using an 80,000 km survey campaign conducted in 2015-16 in which CO2, CH4, H2S, and δ13CH4 were measured in proximity to over ten thousand well pads. We found that emissions varied according to infrastructure age, operator size, product, and extraction style. Using these data, we conducted an analysis across several variables to evaluate the potential success of non-exhaustive campaigns for capturing trends, and super-emitters, across the Canadian industry. We found that campaigns would be fiscally feasible, and could be statistically significant depending on scale. However, success was very sensitive to the degree of variation amongst operators and developments, for which we suggest a Monte-Carlo type optimization approach that balances survey coverage with attention to specific localized threats. Similar analyses should be conducted in other accord countries because effective and harmonized oversight could help accelerate emissions reductions.
Townsend, Aaron K; Webber, Michael E
2012-07-01
This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lawlor, John M., Jr.
The cases of Henry Garnett and Moses Honner bookend the 1850s, a decade of intensifying political crisis that was deeply connected to the institution of slavery. In both court actions, which were tried in the Third Circuit Court, Eastern District, Philadelphia, Pennsylvania, the defendants were charged with being "fugitives from labor."…
NASA Astrophysics Data System (ADS)
Crosson, E.; Rella, C.; Cunningham, K.
2012-04-01
Despite methane's importance as a potent greenhouse gas second only to carbon dioxide in the magnitude of its contribution to global warming, natural contributions to the overall methane budget are only poorly understood. A big contributor to this gap in knowledge is the highly spatially and temporally heterogeneous nature of most natural (and for that matter anthropogenic) methane sources. This high degree of heterogeneity, where the methane emission rates can vary over many orders of magnitude on a spatial scale of meters or even centimeters, and over a temporal scale of minutes or even seconds, means that traditional methods of emissions flux estimation, such as flux chambers or eddy-covariance, are difficult or impossible to apply. In this paper we present new measurement methods that are capable of detecting, attributing, and quantifying emissions from highly heterogeneous sources. These methods take full advantage of the new class of methane concentration and stable isotope analyzers that are capable of laboratory-quality analysis from a mobile field platform in real time. In this paper we present field measurements demonstrating the real-time detection of methane 'hot spots,' attribution of the methane to a source process via real-time stable isotope analysis, and quantification of the emissions flux using mobile concentration measurements of the horizontal and vertical atmospheric dispersion, combined with atmospheric transport calculations. Although these techniques are applicable to both anthropogenic and natural methane sources, in this initial work we focus primarily on landfills and fugitive emissions from natural gas distribution, as these sources are better characterized, and because they provide a more reliable and stable source of methane for quantifying the measurement uncertainty inherent in the different methods. Implications of these new technologies and techniques are explored for the quantification of natural methane sources in a variety of environments, including wetlands, peatlands, and the arctic.
Witt, Emitt C; Wronkiewicz, David J; Shi, Honglan
2013-01-01
Fugitive road dust collection for chemical analysis and interpretation has been limited by the quantity and representativeness of samples. Traditional methods of fugitive dust collection generally focus on point-collections that limit data interpretation to a small area or require the investigator to make gross assumptions about the origin of the sample collected. These collection methods often produce a limited quantity of sample that may hinder efforts to characterize the samples by multiple geochemical techniques, preserve a reference archive, and provide a spatially integrated characterization of the road dust health hazard. To achieve a "better sampling" for fugitive road dust studies, a cyclonic fugitive dust (CFD) sampler was constructed and tested. Through repeated and identical sample collection routes at two collection heights (50.8 and 88.9 cm above the road surface), the products of the CFD sampler were characterized using particle size and chemical analysis. The average particle size collected by the cyclone was 17.9 μm, whereas particles collected by a secondary filter were 0.625 μm. No significant difference was observed between the two sample heights tested and duplicates collected at the same height; however, greater sample quantity was achieved at 50.8 cm above the road surface than at 88.9 cm. The cyclone effectively removed 94% of the particles >1 μm, which substantially reduced the loading on the secondary filter used to collect the finer particles; therefore, suction is maintained for longer periods of time, allowing for an average sample collection rate of about 2 g mi. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Edie, R.; Robertson, A.; Snare, D.; Soltis, J.; Field, R. A.; Murphy, S. M.
2015-12-01
Since 2005, the Uintah Basin of Utah and the Upper Green River Basin of Wyoming frequently exceeded the EPA 8-hour allowable ozone level of 75 ppb, spurring interest in volatile organic compounds (VOCs) emitted during oil and gas production. Debate continues over which stage of production (drilling, flowback, normal production, transmission, etc.) is the most prevalent VOC source. In this study, we quantify emissions from normal production on well pads by using the EPA-developed Other Test Method 33a. This methodology combines ground-based measurements of fugitive emissions with 3-D wind data to calculate the methane and VOC emission fluxes from a point source. VOC fluxes are traditionally estimated by gathering a canister of air during a methane flux measurement. The methane:VOC ratio of this canister is determined at a later time in the laboratory, and applied to the known methane flux. The University of Wyoming Mobile Laboratory platform is equipped with a Picarro methane analyzer and an Ionicon Proton Transfer Reaction-Time of Flight-Mass Spectrometer, which provide real-time methane and VOC data for each well pad. This independent measurement of methane and VOCs in situ reveals multiple emission sources on one well pad, with varying methane:VOC ratios. Well pad emission estimates of methane, benzene, toluene and xylene for the two basins will be presented. The different emission source VOC profiles and the limitations of real-time and traditional VOC measurement methods will also be discussed.
Observation and simulation of ethane at 23 FTIR sites
NASA Astrophysics Data System (ADS)
Bader, W. M. J.; Mahieu, E.; Franco, B.; Pozzer, A.; Taraborrelli, D.; Prignon, M.; Servais, C. P.; De Maziere, M.; Vigouroux, C.; Mengistu Tsidu, G.; Sufa, G.; Mellqvist, J.; Blumenstock, T.; Hase, F.; Schneider, M.; Sussmann, R.; Nagahama, T.; Sudo, K.; Hannigan, J. W.; Ortega, I.; Morino, I.; Nakajima, H.; Smale, D.; Makarova, M.; Poberovsky, A.; Murata, I.; Grutter de la Mora, M.; Guarin, C. A.; Stremme, W.; Té, Y.; Jeseck, P.; Notholt, J.; Palm, M.; Conway, S. A.; Lutsch, E.; Strong, K.; Griffith, D. W. T.; Jones, N. B.; Paton-Walsh, C.; Friedrich, M.; Smeekes, S.
2017-12-01
Ethane is the most abundant non-methane hydrocarbon (NMHC) in the Earth atmosphere. Its main sources are of anthropogenic origin, with globally 62% from leakage during production and transport of natural gas, 20% from biofuel combustion and 18% from biomass burning. In the Southern hemisphere, anthropogenic emissions are lower which makes biomass burning emissions a more significant source. The main removal process is oxidation by the hydroxyl radical (OH), leading to a mean atmospheric lifetime of 2 months. Until recently, a prolonged decrease of its abundance has been documented, at rates of -1 to -2.7%/yr, with global emissions dropping from 14 to 11 Tg/yr over 1984-2010 owing to successful measures reducing fugitive emissions from its fossil fuel sources. However, subsequent investigations have reported on an upturn in the ethane trend, characterized by a sharp rise from about 2009 onwards. The ethane increase is attributed to the oil and natural gas production boom in North America, although significant changes in OH could also be at play. In the present contribution, we report the trend of ethane at 23 ground-based Fourier Transform Infrared (FTIR) sites spanning the 80ºN to 79ºS latitude range. Over 2010-2015, a significant ethane rise of 3-5%/yr is determined for most sites in the Northern Hemisphere, while for the Southern hemisphere the rates of changes are not significant at the 2-sigma uncertainty level . Dedicated model simulations by EMAC (ECHAM5/MESSy Atmospheric Chemistry; 1.8×1.8 degrees) implementing various emission scenarios are included in order to support data interpretation. The usual underestimation of the NMHCs emissions in the main inventories is confirmed here for RCP85 (Representative Concentration Pathway Database v8.5). Scaling them by 1.5 is needed to capture the background levels of atmospheric ethane. Moreover, additional and significant emissions ( 7 Tg over 2009-2015) are needed to capture the ethane rise in the Northern hemisphere. Attributing them to the oil and gas sector and locating them in North America allows EMAC to produce adequate trends in the Northern hemisphere, but not in the Southern hemisphere, where they are overestimated. Possible causes for this difference are discussed.
Becker, Adilson M; Yu, Kevin; Stadler, Lauren B; Smith, Adam L
2017-01-01
Food waste is increasingly viewed as a resource that should be diverted from landfills. This study used life cycle assessment to compare co-management of food waste and domestic wastewater using anaerobic membrane bioreactor (AnMBR) against conventional activated sludge (CAS) and high rate activated sludge (HRAS) with three disposal options for food waste: landfilling (LF), anaerobic digestion (AD), and composting (CP). Based on the net energy balance (NEB), AnMBR and HRAS/AD were the most attractive scenarios due to cogeneration of produced biogas. However, cogeneration negatively impacted carcinogenics, non-carcinogenics, and ozone depletion, illustrating unavoidable tradeoffs between energy recovery from biogas and environmental impacts. Fugitive emissions of methane severely increased global warming impacts of all scenarios except HRAS/AD with AnMBR particularly affected by effluent dissolved methane emissions. AnMBR was also most sensitive to food waste diversion participation, with 40% diversion necessary to achieve a positive NEB at the current state of development. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, Andrew; Johnson, Derek; Heltzel, Robert
Researchers at the Center for Alternative Fuels, Engines, and Emissions (CAFEE) completed a multi-year program under DE-FE0013689 entitled, “Assessing Fugitive Methane Emissions Impact Using Natural Gas Engines in Unconventional Resource Development.” When drilling activity was high and industry sought to lower operating costs and reduce emissions they began investing in dual fuel and dedicated natural gas engines to power unconventional well equipment. From a review of literature we determined that the prime-movers (or major fuel consumers) of unconventional well development were the service trucks (trucking), horizontal drilling rig (drilling) engines, and hydraulic stimulation pump (fracturing) engines. Based on early findingsmore » from on-road studies we assessed that conversion of prime movers to operate on natural gas could contribute to methane emissions associated with unconventional wells. As such, we collected significant in-use activity data from service trucks and in-use activity, fuel consumption, and gaseous emissions data from drilling and fracturing engines. Our findings confirmed that conversion of the prime movers to operate as dual fuel or dedicated natural gas – created an additional source of methane emissions. While some gaseous emissions were decreased from implementation of these technologies – methane and CO 2 equivalent emissions tended to increase, especially for non-road engines. The increases were highest for dual fuel engines due to methane slip from the exhaust and engine crankcase. Dedicated natural gas engines tended to have lower exhaust methane emissions but higher CO 2 emissions due to lower efficiency. Therefore, investing in currently available natural gas technologies for prime movers will increase the greenhouse gas footprint of the unconventional well development industry.« less
NASA Astrophysics Data System (ADS)
Beddows, D. C. S.; Harrison, Roy M.
2018-06-01
A case study is provided of the development and application of methods to identify and quantify specific sources of emissions from within a large complex industrial site. Methods include directional analysis of concentrations, chemical source tracers and correlations with gaseous emissions. Extensive measurements of PM10, PM2.5, trace gases, particulate elements and single particle mass spectra were made at sites around the Port Talbot steelworks in 2012. By using wind direction data in conjunction with real-time or hourly-average pollutant concentration measurements, it has been possible to locate areas within the steelworks associated with enhanced pollutant emissions. Directional analysis highlights the Slag Handling area of the works as the most substantial source of elevated PM10 concentrations during the measurement period. Chemical analyses of air sampled from relevant wind directions is consistent with the anticipated composition of slags, as are single particle mass spectra. Elevated concentrations of PM10 are related to inverse distance from the Slag Handling area, and concentrations increase with increased wind speed, consistent with a wind-driven resuspension source. There also appears to be a lesser source associated with Sinter Plant emissions affecting PM10 concentrations at the Fire Station monitoring site. The results are compared with a ME2 study using some of the same data, and shown to give a clearer view of the location and characteristics of emission sources, including fugitive dusts.
Delre, Antonio; Mønster, Jacob; Samuelsson, Jerker; Fredenslund, Anders M; Scheutz, Charlotte
2018-09-01
The tracer gas dispersion method (TDM) is a remote sensing method used for quantifying fugitive emissions by relying on the controlled release of a tracer gas at the source, combined with concentration measurements of the tracer and target gas plumes. The TDM was tested at a wastewater treatment plant for plant-integrated methane emission quantification, using four analytical instruments simultaneously and four different tracer gases. Measurements performed using a combination of an analytical instrument and a tracer gas, with a high ratio between the tracer gas release rate and instrument precision (a high release-precision ratio), resulted in well-defined plumes with a high signal-to-noise ratio and a high methane-to-tracer gas correlation factor. Measured methane emission rates differed by up to 18% from the mean value when measurements were performed using seven different instrument and tracer gas combinations. Analytical instruments with a high detection frequency and good precision were established as the most suitable for successful TDM application. The application of an instrument with a poor precision could only to some extent be overcome by applying a higher tracer gas release rate. A sideward misplacement of the tracer gas release point of about 250m resulted in an emission rate comparable to those obtained using a tracer gas correctly simulating the methane emission. Conversely, an upwind misplacement of about 150m resulted in an emission rate overestimation of almost 50%, showing the importance of proper emission source simulation when applying the TDM. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.
2016-12-01
Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.
Fugitive dust emissions from paved road travel in the Lake Tahoe basin.
Zhu, Dongzi; Kuhns, Hampden D; Brown, Scott; Gillies, John A; Etyemezian, Vicken; Gertler, Alan W
2009-10-01
The clarity of water in Lake Tahoe has declined substantially over the past 40 yr. Causes of the degradation include nitrogen and phosphorous fertilization of the lake waters and increasing amounts of inorganic fine sediment that can scatter light. Atmospheric deposition is a major source of fine sediment. A year-round monitoring study of road dust emissions around the lake was completed in 2007 using the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) system developed at the Desert Research Institute (DRI). Results of this study found that, compared with the summer season, road dust emissions increased by a factor of 5 in winter, on average, and about a factor of 10 when traction control material was applied to the roads after snow events. For winter and summer, road dust emission factors (grams coarse particulate matter [PM10] per vehicle kilometer traveled [g/vkt]) showed a decreasing trend with the travel speed of the road. The highest emission factors were observed on very low traffic volume roads on the west side of the lake. These roads were composed of either a 3/8-in. gravel material or had degraded asphalt. The principle factors influencing road dust emissions in the basin are season, vehicle speed (or road type), road condition, road grade, and proximity to other high-emitting roads. Combined with a traffic volume model, an analysis of the total emissions from the road sections surveyed indicated that urban areas (in particular South Lake Tahoe) had the highest emitting roads in the basin.
Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Adam R.; Yeskoo, Tim; McNally, Michael S.
The Bakken formation has contributed to the recent rapid increase in U.S. oil production, reaching a peak production of >1.2 × 106 barrels per day in early 2015. In this study, we estimate the energy intensity and greenhouse gas (GHG) emissions from 7271 Bakken wells drilled from 2006 to 2013. We model energy use and emissions using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) model, supplemented with an open-source drilling and fracturing model, GHGfrack. Overall well-to-refinery-gate (WTR) consumption of natural gas, diesel, and electricity represent 1.3%, 0.2%, and 0.005% of produced crude energy content, respectively. Fugitive emissions are modeledmore » for a “typical” Bakken well using previously published results of atmospheric measurements. Flaring is a key driver of emissions: wells that flared in 2013 had a mean flaring rate that was ≈500 standard cubic feet per barrel or ≈14% of the energy content of the produced crude oil. Resulting production-weighted mean GHG emissions in 2013 were 10.2 g of CO2 equivalent GHGs per megajoule (henceforth, gCO2eq/MJ) of crude. Between-well variability gives a 5–95% range of 2–28 gCO2eq/MJ. If flaring is completely controlled, Bakken crude compares favorably to conventional U.S. crude oil, with 2013 emissions of 3.5 gCO2eq/MJ for nonflaring wells, compared to the U.S. mean of ≈8 gCO2eq/MJ.« less
NASA Astrophysics Data System (ADS)
Mohan, Riya Rachel
2018-04-01
Green House Gas (GHG) emissions are the major cause of global warming and climate change. Carbon dioxide (CO2) is the main GHG emitted through human activities, at the household level, by burning fuels for cooking and lighting. As per the 2006 methodology of the Inter-governmental Panel on Climate Change (IPCC), the energy sector is divided into various sectors like electricity generation, transport, fugitive, 'other' sectors, etc. The 'other' sectors under energy include residential, commercial, agriculture and fisheries. Time series GHG emission estimates were prepared for the residential, commercial, agriculture and fisheries sectors in India, for the time period 2005 to 2014, to understand the historical emission changes in 'other' sector. Sectoral activity data, with respect to fuel consumption, were collected from various ministry reports like Indian Petroleum and Natural Gas Statistics, Energy Statistics, etc. The default emission factor(s) from IPCC 2006 were used to calculate the emissions for each activity and sector-wise CO2, CH4, N2O and CO2e emissions were compiled. It was observed that the residential sector generates the highest GHG emissions, followed by the agriculture/fisheries and commercial sector. In the residential sector, LPG, kerosene, and fuelwood are the major contributors of emissions, whereas diesel is the main contributor to the commercial, agriculture and fisheries sectors. CO2e emissions have been observed to rise at a cumulative annual growth rate of 0.6%, 9.11%, 7.94% and 5.26% for the residential, commercial, agriculture and fisheries sectors, respectively. In addition to the above, a comparative study of the sectoral inventories from the national inventories, published by Ministry of Environment, Forest and Climate Change, for 2007 and 2010 was also performed.
NASA Astrophysics Data System (ADS)
Grannas, A. M.; Fuentes, J. D.; Ramos-Garcés, F.; Wang, D. K.; Martins, D. K.
2012-12-01
Volatile organic compounds (VOCs) of both biogenic and anthropogenic origin are important to troposphere chemistry, particularly the formation of photochemical smog and secondary organic aerosol. There is concern that increased natural gas exploration may lead to increased emissions of certain VOCs during well development and due to fugitive emissions from operational well sites and pipelines. For a six-day period in June 2012, a variety of VOCs were measured using canister sampling from a mobile measurement platform. Transects from southwestern to northeastern Pennsylvania were studied, with samples obtained in rural, forested, urban, farm-impacted and gas well-impacted sites. As expected, biogenic VOCs and isoprene oxidation products were enhanced in forested regions, while anthropogenic non-methane hydrocarbons were enhanced in urban areas. BTEX (benzene, toluene, ethylbenzene and xylenes) was enhanced in urban areas, but the concentrations of BTEX measured near developing and existing natural gas sites were similar to rural and forested sites. Halogenated hydrocarbons and Freon compounds were consistent at all site locations. We will discuss the specific concentrations and signatures of these compounds and assess the potential impact of agricultural activities and gas well development on the observed VOC concentrations and variability.
Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille
NASA Astrophysics Data System (ADS)
El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.
2011-03-01
Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the aggregate emissions from three industrial processes (heavy fuel oil combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% of total OC and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (vehicular PM contributes for 17% of PM2.5). Even though industrial emissions contribute only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dp<80 nm) and high concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute ill-health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and, thus, remains un-apportioned. We have consequently critically investigated the uncertainties underlying our CMB apportionments. While we have provided some evidence for photochemical decay of hopanes, this decay does not appear to significantly alter the CMB estimates of the total primary OC. Sampling artifacts and unaccounted primary sources also appear to marginally influence the amount of un-apportioned OC. Therefore, this significant amount of un-apportioned OC is mostly attributed to secondary organic carbon that appears to be the major component of OC during the whole period of study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, A.P.; Van Hook, R.I.; Jackson, D.R.
1976-07-01
Studies of biological activity within the litter horizons of a watershed contaminated by emissions from a lead-ore processing complex focused on the litter-arthropod food chain as a means of detecting perturbations in a heavy-metal contaminated ecosystem. Both point sources (smelter stack emissions) and fugitive sources (ore-handling processes, yard dusts, and exposed concentrate piles) contributed to the Pb, Zn, Cu, and Cd levels in the study area. Arthropod trophic level density, biomass, and heavy metal content were determined by analysis of specimens removed from litter by von Tullgren funnel extraction, taxonomically classified, and segregated into the trophic categories. Changes in littermore » decomposition were reflected in the dynamics of the litter arthropod community. Food-chain dilution of Pb, Zn, Cu, and Cd from litter to litter consumer was occurring, as indicated by the mean concentration factors. Accumulation of Pb by litter consumers was much less than that found for the other three heavy metals. In contrast, predatory arthropods on Crooked Creek Watershed either concentrated or equilibrated with respect to Pb, Zn, and Cd from their prey, as indicated by mean total predator concentration factors. A significant depression of the Ca, Mg, and K content litter occurred relative to the control within 0.8 km of the stack. Two mechanisms were postulated to explain this result: increased leaching of cations through the litter induced by a loss of cation exchange capacity, a decrease in pH, and a decrease in microbial immobilization of macronutrients; and a decreased uptake of macronutrients due to root damage produced by heavy-metal concentrations.« less
Reconstructing the Aliso Canyon natural gas leak incident
NASA Astrophysics Data System (ADS)
Duren, R. M.; Yadav, V.; Verhulst, K. R.; Thorpe, A. K.; Hopkins, F. M.; Prasad, K.; Kuai, L.; Thompson, D. R.; Wong, C.; Sander, S. P.; Mueller, K. L.; Nehrkorn, T.; Lee, M.; Hulley, G. C.; Johnson, W. R.; Aubrey, A. D.; Whetstone, J. R.; Miller, C. E.
2016-12-01
Natural gas is a key energy source and presents significant policy challenges including energy reliability and the potential for fugitive methane emissions. The well blowout reported in October 2015 at the Aliso Canyon underground gas storage facility near Porter Ranch, California and subsequent uncontrolled venting was the largest single anthropogenic methane source known to date. Multiple independent estimates indicate that this super-emitter source rivaled the normal methane flux of the entire South Coast Air Basin (SoCAB) for several months until the well was plugged. The complexity of the event and logistical challenges - particularly in the initial weeks - presented significant barriers to estimating methane losses. Additionally, accounting for total gas lost is necessary but not sufficient for understanding the sequence of events and the controlling physical processes. We used a tiered system of observations to assess methane emissions from the Aliso Canyon incident. To generate a complete flux time-series, we applied tracer-transport models and tracer-tracer techniques to persistent, multi-year atmospheric methane observations from a network of surface in-situ and remote-sensing instruments. To study the fine spatio-temporal structure of methane plumes and understand the changing source morphology, we conducted intensive mobile surface campaigns, deployed airborne imaging spectrometers, requested special observations from two satellites, and employed large eddy simulations. Through a synthesis analysis we assessed methane fluxes from Aliso Canyon before, during and after the reported incident. We compared our fine scale spatial data with bottom-up data and reports of activity at the facility to better understand the controlling processes. We coordinated with California stakeholder agencies to validate and interpret these results and to consider the potential broader implications on underground gas storage and future priorities for methane monitoring.
Navarro, Alejandra; Puig, Rita; Fullana-I-Palmer, Pere
2017-03-01
Carbon footprint (CF) is nowadays one of the most widely used environmental indicators. The scope of the CF assessment could be corporate (when all production processes of a company are evaluated, together with upstream and downstream processes following a life cycle approach) or product (when one of the products is evaluated throughout its life cycle). Our hypothesis was that usually product CF studies (PCF) collect corporate data, because it is easier for companies to obtain them than product data. Six main methodological issues to take into account when collecting corporate data to be used for PCF studies were postulated and discussed in the present paper: fugitive emissions, credits from waste recycling, use of "equivalent factors", reference flow definition, accumulation and allocation of corporate values to minor products. A big project with 18 wineries, being wine one of the most important agri-food products assessed through CF methodologies, was used to study and to exemplify these 6 methodological issues. One of the main conclusions was that indeed, it is possible to collect corporate inventory data in a per year basis to perform a PCF, but having in mind the 6 methodological issues described here. In the literature, most of the papers are presenting their results as a PCF, while they collected company data and obtained, in fact, a "key performance indicator" (ie., CO 2 eq emissions per unit of product produced), which is then used as a product environmental impact figure. The methodology discussed in this paper for the wine case study is widely applicable to any other product or industrial activity. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.
2017-12-01
The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.
RHIC AND THE PURSUIT OF THE QUARK-GLUON PLASMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MITCHELL,J.T.
2001-07-25
There is a fugitive on the loose. Its name is Quark-Gluon Plasma, alias the QGP. The QGP is a known informant with knowledge about the fundamental building blocks of nature that we wish to extract. This briefing will outline the status of the pursuit of the elusive QGP. We will cover what makes the QGP tick, its modus operandi, details on how we plan to hunt the fugitive down, and our level of success thus far.
Timeseries Signal Processing for Enhancing Mobile Surveys: Learning from Field Studies
NASA Astrophysics Data System (ADS)
Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Atherton, E. E.; Laybolt, W. D.
2015-12-01
Vehicle-based surveys using laser and other analyzers are now commonplace in research and industry. In many cases when these studies target biologically-relevant gases like methane and carbon dioxide, the minimum detection limits are often coarse (ppm) relative to the analyzer's capabilities (ppb), because of the inherent variability in the ambient background concentrations across the landscape that creates noise and uncertainty. This variation arises from localized biological sinks and sources, but also atmospheric turbulence, air pooling, and other factors. Computational processing routines are widely used in many fields to increase resolution of a target signal in temporally dense data, and offer promise for enhancing mobile surveying techniques. Signal processing routines can both help identify anomalies at very low levels, or can be used inversely to remove localized industrially-emitted anomalies from ecological data. This presentation integrates learnings from various studies in which simple signal processing routines were used successfully to isolate different temporally-varying components of 1 Hz timeseries measured with laser- and UV fluorescence-based analyzers. As illustrative datasets, we present results from industrial fugitive emission studies from across Canada's western provinces and other locations, and also an ecological study that aimed to model near-surface concentration variability across different biomes within eastern Canada. In these cases, signal processing algorithms contributed significantly to the clarity of both industrial, and ecological processes. In some instances, signal processing was too computationally intensive for real-time in-vehicle processing, but we identified workarounds for analyzer-embedded software that contributed to an improvement in real-time resolution of small anomalies. Signal processing is a natural accompaniment to these datasets, and many avenues are open to researchers who wish to enhance existing, and future datasets.
Petroleum coke in the urban environment: a review of potential health effects.
Caruso, Joseph A; Zhang, Kezhong; Schroeck, Nicholas J; McCoy, Benjamin; McElmurry, Shawn P
2015-05-29
Petroleum coke, or petcoke, is a granular coal-like industrial by-product that is separated during the refinement of heavy crude oil. Recently, the processing of material from Canadian oil sands in U.S. refineries has led to the appearance of large petcoke piles adjacent to urban communities in Detroit and Chicago. The purpose of this literature review is to assess what is known about the effects of petcoke exposure on human health. Toxicological studies in animals indicate that dermal or inhalation petcoke exposure does not lead to a significant risk for cancer development or reproductive and developmental effects. However, pulmonary inflammation was observed in long-term inhalation exposure studies. Epidemiological studies in coke oven workers have shown increased risk for cancer and chronic obstructive pulmonary diseases, but these studies are confounded by multiple industrial exposures, most notably to polycyclic aromatic hydrocarbons that are generated during petcoke production. The main threat to urban populations in the vicinity of petcoke piles is most likely fugitive dust emissions in the form of fine particulate matter. More research is required to determine whether petcoke fine particulate matter causes or exacerbates disease, either alone or in conjunction with other environmental contaminants.
Petroleum Coke in the Urban Environment: A Review of Potential Health Effects
Caruso, Joseph A.; Zhang, Kezhong; Schroeck, Nicholas J.; McCoy, Benjamin; McElmurry, Shawn P.
2015-01-01
Petroleum coke, or petcoke, is a granular coal-like industrial by-product that is separated during the refinement of heavy crude oil. Recently, the processing of material from Canadian oil sands in U.S. refineries has led to the appearance of large petcoke piles adjacent to urban communities in Detroit and Chicago. The purpose of this literature review is to assess what is known about the effects of petcoke exposure on human health. Toxicological studies in animals indicate that dermal or inhalation petcoke exposure does not lead to a significant risk for cancer development or reproductive and developmental effects. However, pulmonary inflammation was observed in long-term inhalation exposure studies. Epidemiological studies in coke oven workers have shown increased risk for cancer and chronic obstructive pulmonary diseases, but these studies are confounded by multiple industrial exposures, most notably to polycyclic aromatic hydrocarbons that are generated during petcoke production. The main threat to urban populations in the vicinity of petcoke piles is most likely fugitive dust emissions in the form of fine particulate matter. More research is required to determine whether petcoke fine particulate matter causes or exacerbates disease, either alone or in conjunction with other environmental contaminants. PMID:26035666
Xu, Lingling; Jiao, Ling; Hong, Zhenyu; Zhang, Yanru; Du, Wenjiao; Wu, Xin; Chen, Yanting; Deng, Junjun; Hong, Youwei; Chen, Jinsheng
2018-09-01
Daily PM 2.5 samples were collected simultaneously at an urban site (UB) and a nearby port-industrial site (PI) on the coast of southeastern China from April 2015 to January 2016. The PM 2.5 mass concentration at the PI (51.9μgm -3 ) was significantly higher than that at the UB. The V concentration at the PI was also significantly higher and well-correlated to the urban value, which suggests that shipping emissions had a significant impact on the PI and, to a lesser extent, on the urban area. A positive matrix factorization (PMF) analysis showed that secondary aerosols were the dominant contribution of PM 2.5 at both sites (36.4% at the PI and 27.2% at the UB), while the contribution of industry and ship emissions identified by V, Mn, and Ba at the PI (26.1%) were double those at the UB. The difference in each source contribution among the trajectory clusters that included significant differences and insignificant differences from the UB to the PI provided insight into the role of local impacts. With regards to the UB, local potential sources play important roles in industry and ship emissions, traffic emissions, fugitive dust, and in their contributions to secondary aerosols. A conditional probability function further revealed that the ship emissions and port activities distributed in the NE, E, and SSE wind sectors were responsible for the source contributions of industry and ship emissions and secondary aerosols at the UB. This study provides an example of investigating the impact of ship emissions and port activities on the surrounding air environment using land-based measurements. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mønster, Jacob; Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se; Kjeldsen, Peter
2015-01-15
Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed coveredmore » landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for 2011.« less
Emissions of carbon tetrachloride from Europe
NASA Astrophysics Data System (ADS)
Graziosi, Francesco; Arduini, Jgor; Bonasoni, Paolo; Furlani, Francesco; Giostra, Umberto; Manning, Alistair J.; McCulloch, Archie; O'Doherty, Simon; Simmonds, Peter G.; Reimann, Stefan; Vollmer, Martin K.; Maione, Michela
2016-10-01
Carbon tetrachloride (CCl4) is a long-lived radiatively active compound with the ability to destroy stratospheric ozone. Due to its inclusion in the Montreal Protocol on Substances that Deplete the Ozone Layer (MP), the last two decades have seen a sharp decrease in its large-scale emissive use with a consequent decline in its atmospheric mole fractions. However, the MP restrictions do not apply to the use of carbon tetrachloride as feedstock for the production of other chemicals, implying the risk of fugitive emissions from the industry sector. The occurrence of such unintended emissions is suggested by a significant discrepancy between global emissions as derived from reported production and feedstock usage (bottom-up emissions), and those based on atmospheric observations (top-down emissions). In order to better constrain the atmospheric budget of carbon tetrachloride, several studies based on a combination of atmospheric observations and inverse modelling have been conducted in recent years in various regions of the world. This study is focused on the European scale and based on long-term high-frequency observations at three European sites, combined with a Bayesian inversion methodology. We estimated that average European emissions for 2006-2014 were 2.2 (± 0.8) Gg yr-1, with an average decreasing trend of 6.9 % per year. Our analysis identified France as the main source of emissions over the whole study period, with an average contribution to total European emissions of approximately 26 %. The inversion was also able to allow the localisation of emission "hot spots" in the domain, with major source areas in southern France, central England (UK) and Benelux (Belgium, the Netherlands, Luxembourg), where most industrial-scale production of basic organic chemicals is located. According to our results, European emissions correspond, on average, to 4.0 % of global emissions for 2006-2012. Together with other regional studies, our results allow a better constraint of the global budget of carbon tetrachloride and a better quantification of the gap between top-down and bottom-up estimates.
Puliafito, S Enrique; Allende, David G; Castesana, Paula S; Ruggeri, Maria F
2017-12-01
This study presents a 2014 high-resolution spatially disaggregated emission inventory (0.025° × 0.025° horizontal resolution), of the main activities in the energy sector in Argentina. The sub-sectors considered are public generation of electricity, oil refineries, cement production, transport (maritime, air, rail and road), residential and commercial. The following pollutants were included: greenhouse gases (CO 2 , CH 4 , N 2 O), ozone precursors (CO, NOx, VOC) and other specific air quality indicators such as SO 2 , PM10, and PM2.5. This work could contribute to a better geographical allocation of the pollutant sources through census based population maps. Considering the sources of greenhouse gas emissions, the total amount is 144 Tg CO2eq, from which the transportation sector emits 57.8 Tg (40%); followed by electricity generation, with 40.9 Tg (28%); residential + commercial, with 31.24 Tg (22%); and cement and refinery production, with 14.3 Tg (10%). This inventory shows that 49% of the total emissions occur in rural areas: 31% in rural areas of medium population density, 13% in intermediate urban areas and 7% in densely populated urban areas. However, if emissions are analyzed by extension (per square km), the largest impact is observed in medium and densely populated urban areas, reaching more than 20.3 Gg per square km of greenhouse gases, 297 Mg/km 2 of ozone precursors gases and 11.5 Mg/km 2 of other air quality emissions. A comparison with the EDGAR global emission database shows that, although the total country emissions are similar for several sub sectors and pollutants, its spatial distribution is not applicable to Argentina. The road and residential transport emissions represented by EDGAR result in an overestimation of emissions in rural areas and an underestimation in urban areas, especially in more densely populated areas. EDGAR underestimates 60 Gg of methane emissions from road transport sector and fugitive emissions from refining activities.
Rice, Andrew L; Butenhoff, Christopher L; Teama, Doaa G; Röger, Florian H; Khalil, M Aslam K; Rasmussen, Reinhold A
2016-09-27
Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 ((13)C/(12)C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y(-1) CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.
NASA Astrophysics Data System (ADS)
Rice, Andrew L.; Butenhoff, Christopher L.; Teama, Doaa G.; Röger, Florian H.; Khalil, M. Aslam K.; Rasmussen, Reinhold A.
2016-09-01
Observations of atmospheric methane (CH4) since the late 1970s and measurements of CH4 trapped in ice and snow reveal a meteoric rise in concentration during much of the twentieth century. Since 1750, levels of atmospheric CH4 have more than doubled to current globally averaged concentration near 1,800 ppb. During the late 1980s and 1990s, the CH4 growth rate slowed substantially and was near or at zero between 1999 and 2006. There is no scientific consensus on the drivers of this slowdown. Here, we report measurements of the stable isotopic composition of atmospheric CH4 (13C/12C and D/H) from a rare air archive dating from 1977 to 1998. Together with more modern records of isotopic atmospheric CH4, we performed a time-dependent retrieval of methane fluxes spanning 25 y (1984-2009) using a 3D chemical transport model. This inversion results in a 24 [18, 27] Tg y-1 CH4 increase in fugitive fossil fuel emissions since 1984 with most of this growth occurring after year 2000. This result is consistent with some bottom-up emissions inventories but not with recent estimates based on atmospheric ethane. In fact, when forced with decreasing emissions from fossil fuel sources our inversion estimates unreasonably high emissions in other sources. Further, the inversion estimates a decrease in biomass-burning emissions that could explain falling ethane abundance. A range of sensitivity tests suggests that these results are robust.
Estimating Biases for Regional Methane Fluxes using Co-emitted Tracers
NASA Astrophysics Data System (ADS)
Bambha, R.; Safta, C.; Michelsen, H. A.; Cui, X.; Jeong, S.; Fischer, M. L.
2017-12-01
Methane is a powerful greenhouse gas, and the development and improvement of emissions models rely on understanding the flux of methane released from anthropogenic sources relative to releases from other sources. Increasing production of shale oil and gas in the mid-latitudes and associated fugitive emissions are suspected to be a dominant contributor to the global methane increase. Landfills, sewage treatment, and other sources may be dominant sources in some parts of the U.S. Large discrepancies between emissions models present a great challenge to reconciling atmospheric measurements with inventory-based estimates for various emissions sectors. Current approaches for measuring regional emissions yield highly uncertain estimates because of the sparsity of measurement sites and the presence of multiple simultaneous sources. Satellites can provide wide spatial coverage at the expense of much lower measurement precision compared to ground-based instruments. Methods for effective assimilation of data from a variety of sources are critically needed to perform regional GHG attribution with existing measurements and to determine how to structure future measurement systems including satellites. We present a hierarchical Bayesian framework to estimate surface methane fluxes based on atmospheric concentration measurements and a Lagrangian transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport). Structural errors in the transport model are estimated with the help of co-emitted traces species with well defined decay rates. We conduct the analyses at regional scales that are based on similar geographical and meteorological conditions. For regions where data are informative, we further refine flux estimates by emissions sector and infer spatially and temporally varying biases parameterized as spectral random field representations.
Monitoring fossil fuel sources of methane in Australia
NASA Astrophysics Data System (ADS)
Loh, Zoe; Etheridge, David; Luhar, Ashok; Hibberd, Mark; Thatcher, Marcus; Noonan, Julie; Thornton, David; Spencer, Darren; Gregory, Rebecca; Jenkins, Charles; Zegelin, Steve; Leuning, Ray; Day, Stuart; Barrett, Damian
2017-04-01
CSIRO has been active in identifying and quantifying methane emissions from a range of fossil fuel sources in Australia over the past decade. We present here a history of the development of our work in this domain. While we have principally focused on optimising the use of long term, fixed location, high precision monitoring, paired with both forward and inverse modelling techniques suitable either local or regional scales, we have also incorporated mobile ground surveys and flux calculations from plumes in some contexts. We initially developed leak detection methodologies for geological carbon storage at a local scale using a Bayesian probabilistic approach coupled to a backward Lagrangian particle dispersion model (Luhar et al. JGR, 2014), and single point monitoring with sector analysis (Etheridge et al. In prep.) We have since expanded our modelling techniques to regional scales using both forward and inverse approaches to constrain methane emissions from coal mining and coal seam gas (CSG) production. The Surat Basin (Queensland, Australia) is a region of rapidly expanding CSG production, in which we have established a pair of carefully located, well-intercalibrated monitoring stations. These data sets provide an almost continuous record of (i) background air arriving at the Surat Basin, and (ii) the signal resulting from methane emissions within the Basin, i.e. total downwind methane concentration (comprising emissions including natural geological seeps, agricultural and biogenic sources and fugitive emissions from CSG production) minus background or upwind concentration. We will present our latest results on monitoring from the Surat Basin and their application to estimating methane emissions.
NASA Astrophysics Data System (ADS)
Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.
An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper air soundings from a 4-day field campaign conducted in February of 1999. The CALMET meteorological output and the generated EI drove the transport and dispersion model, CALPUFF. Model results were compared with SO 2 measurements taken from the monitoring network at Dos Bocas.
1981-08-01
City were contacted concern- ing Building and Construction permits. No regulations apply since they do not have jurisdiction over RMA property. It may...Division. Mr. Dale advised that their agency’s regulations applied only to permanent pollution emitting sources. Mr. Plog thought that their "fugitive dust...processing, treat- ment, recovery, and disposal of hazardous waste. "Person" means an individual trust, firm, joint stock company , Federal Agency
NASA Astrophysics Data System (ADS)
Olaguer, Eduardo P.; Stutz, Jochen; Erickson, Matthew H.; Hurlock, Stephen C.; Cheung, Ross; Tsai, Catalina; Colosimo, Santo F.; Festa, James; Wijesinghe, Asanga; Neish, Bradley S.
2017-02-01
During the Benzene and other Toxics Exposure (BEE-TEX) study, a remote sensing network based on long path Differential Optical Absorption Spectroscopy (DOAS) was set up in the Manchester neighborhood beside the Ship Channel of Houston, Texas in order to perform Computer Aided Tomography (CAT) scans of hazardous air pollutants. On 18-19 February 2015, the CAT scan network detected large nocturnal plumes of toluene and xylenes most likely associated with railcar loading and unloading operations at Ship Channel petrochemical facilities. The presence of such plumes during railcar operations was confirmed by a mobile laboratory equipped with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), which measured transient peaks of toluene and C2-benzenes of 50 ppb and 57 ppb respectively around 4 a.m. LST on 19 February 2015. Plume reconstruction and source attribution were performed using the 4D variational data assimilation technique and a 3D micro-scale forward and adjoint air quality model based on both tomographic and PTR-MS data. Inverse model estimates of fugitive emissions associated with railcar transfer emissions ranged from 2.0 to 8.2 kg/hr for toluene and from 2.2 to 3.5 kg/hr for xylenes in the early morning of 19 February 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hanandeh, Ali; El-Zein, Abbas
2009-07-15
Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow themore » municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.« less
Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing
2013-11-15
Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dust emissions created by low-level rotary-winged aircraft flight over desert surfaces
NASA Astrophysics Data System (ADS)
Gillies, J. A.; Etyemezian, V.; Kuhns, H.; McAlpine, J. D.; King, J.; Uppapalli, S.; Nikolich, G.; Engelbrecht, J.
2010-03-01
There is a dearth of information on dust emissions from sources that are unique to U.S. Department of Defense testing and training activities. Dust emissions of PM 10 and PM 2.5 from low-level rotary-winged aircraft travelling (rotor-blade ≈7 m above ground level) over two types of desert surfaces (i.e., relatively undisturbed desert pavement and disturbed desert soil surface) were characterized at the Yuma Proving Ground (Yuma, AZ) in May 2007. Fugitive emissions are created by the shear stress of the outflow of high speed air created by the rotor-blade. The strength of the emissions was observed to scale primarily as a function of forward travel speed of the aircraft. Speed affects dust emissions in two ways: 1) as speed increases, peak shear stress at the soil surface was observed to decline proportionally, and 2) as the helicopter's forward speed increases its residence time over any location on the surface diminishes, so the time the downward rotor-generated flow is acting upon that surface must also decrease. The state of the surface over which the travel occurs also affects the scale of the emissions. The disturbed desert test surface produced approximately an order of magnitude greater emission than the undisturbed surface. Based on the measured emission rates for the test aircraft and the established scaling relationships, a rotary-winged aircraft similar to the test aircraft traveling 30 km h -1 over the disturbed surface would need to travel 4 km to produce emissions equivalent to one kilometer of travel by a light wheeled military vehicle also traveling at 30 km h -1 on an unpaved road. As rotary-winged aircraft activity is substantially less than that of off-road vehicle military testing and training activities it is likely that this source is small compared to emissions created by ground-based vehicle movements.
Cahill, Aaron G; Parker, Beth L; Mayer, Bernhard; Mayer, K Ulrich; Cherry, John A
2018-05-01
Fugitive gas comprised primarily of methane (CH 4 ) with traces of ethane and propane (collectively termed C 1-3 ) may negatively impact shallow groundwater when unintentionally released from oil and natural gas wells. Currently, knowledge of fugitive gas migration, subsurface source identification and oxidation potential in groundwater is limited. To advance understanding, a controlled release experiment was performed at the Borden Research Aquifer, Canada, whereby 51m 3 of natural gas was injected into an unconfined sand aquifer over 72days with dissolved gases monitored over 323days. During active gas injection, a dispersed plume of dissolved C 1-3 evolved in a depth discrete and spatially complex manner. Evolution of the dissolved gas plume was driven by free-phase gas migration controlled by small-scale sediment layering and anisotropy. Upon cessation of gas injection, C 1-3 concentrations increased to the greatest levels observed, particularly at 2 and 6m depths, reaching up to 31.5, 1.5 and 0.1mg/L respectively before stabilizing and persisting. At no time did groundwater become fully saturated with natural gas at the scale of sampling undertaken. Throughout the experiment the isotopic composition of injected methane (δ 13 C of -42.2‰) and the wetness parameter (i.e. the ratio of C 1 to C 2+ ) constituted excellent tracers for the presence of fugitive gas at concentrations >2mg/L. At discrete times C 1-3 concentrations varied by up to 4 orders of magnitude over 8m of aquifer thickness (e.g. from <0.01 to 30mg/L for CH 4 ), while some groundwater samples lacked evidence of fugitive gas, despite being within 10m of the injection zone. Meanwhile, carbon isotope ratios of dissolved CH 4 showed no evidence of oxidation. Our results show that while impacts to aquifers from a fugitive gas event are readily detectable at discrete depths, they are spatially and temporally variable and dissolved methane has propensity to persist. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jervis, D.
2016-12-01
Field-deployable trace gas monitors are important for understanding a multitude of atmospheric processes: from forest photosynthesis and respiration [1], to fugitive methane emissions [2] and satellite measurement validation [3]. Consequently, a detailed knowledge of the performance limitations of these instruments is essential in order to establish reliable datasets. We present the short-term ( >1 Hz) performance of a long-pass direct absorption spectrometer as a function of the optical density of the absorption transition being probed. In particular, we identify fluctuations in the laser intensity as limiting the optical density uncertainty to 4x10-6/√Hz for weak transitions, and noise in the laser drive current as limiting the fractional noise in the optical density to 4x10-5/√Hz for deep transitions. We provide numerical and analytical predictions for both effects, as well as using the understanding of this phenomena to estimate how noise on neighboring strong and weak transitions couple to each other. All measurements were performed using the Aerodyne Research TILDAS Monitor, but are general to any instrument that uses direct absorption spectroscopy as a detection method. Wehr, R., et al. "Seasonality of temperate forest photosynthesis and daytime respiration." Nature 534.7609 (2016): 680-683. Conley, S., et al. "Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA." Science 351.6279 (2016): 1317-1320. Emmons, L. K., et al. "Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles." Journal of Geophysical Research: Atmospheres 109.D3 (2004).
NASA Astrophysics Data System (ADS)
Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.
2014-05-01
Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8-13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley.