Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
... Submitted to OMB for Review and Approval: Comment Request; Great Lakes Accountability System (Reinstatement... Agency has submitted an information collection request (ICR), Great Lakes Accountability System... legislation called for increased accountability for the GLRI and directed EPA to implement a process to track...
Simplified power processing for ion-thruster subsystems
NASA Technical Reports Server (NTRS)
Wessel, F. J.; Hancock, D. J.
1983-01-01
A design for a greatly simplified power-processing unit (SPPU) for the 8-cm diameter mercury-ion-thruster subsystem is discussed. This SPPU design will provide a tenfold reduction in parts count, a decrease in system mass and cost, and an increase in system reliability compared to the existing power-processing unit (PPU) used in the Hughes/NASA Lewis Research Center Ion Auxiliary Propulsion Subsystem. The simplifications achieved in this design will greatly increase the attractiveness of ion propulsion in near-term and future spacecraft propulsion applications. A description of a typical ion-thruster subsystem is given. An overview of the thruster/power-processor interface requirements is given. Simplified thruster power processing is discussed.
ERIC Educational Resources Information Center
Carlson, Corey W.
2013-01-01
The community college, like all of higher education, has been significantly impacted by the Great Recession and coincidental increased enrollment. The purpose of this qualitative study was to examine the decision making processes of community college presidents as related to resource allocation and the impact of these decisions on the…
Grading Higher Education: Giving Consumers the Information They Need
ERIC Educational Resources Information Center
Long, Bridget Terry
2010-01-01
Investing in a college education is a decision of great importance, but also great risk. The complexity of the college choice process and current trends of college graduation and loan default rates indicate that families are struggling with the decision and students are increasingly finding themselves living with the negative consequences of bad…
ERIC Educational Resources Information Center
Couturier, Lara K.; Cullinane, Jenna
2015-01-01
This call to action is based on a simple but important premise: The nation cannot allow college placement policies, processes, and instruments to undermine promising efforts to increase student success in mathematics and increase attainment of STEM credentials. Efforts to redesign math pathways hold great promise for improving the teaching and…
Immunodeficiency and laser magnetic therapy in urology
NASA Astrophysics Data System (ADS)
Maati, Moufagued; Rozanov, Vladimir V.; Avdoshin, V. P.
1996-11-01
The importance of immunodeficiency problem has increased last time not only due to AIDS appearance, but also to a great extent as a result of the development and active practical use of the methods of immunology parameters investigations. Al great pharmaceutical firms are organizing the process of creating the drugs, influencing on the different phases of immunity, but unfortunately, the problem of their adverse effect and connected complications is till today a milestone. A great number of investigations, proving a good effect of laser-magnetic therapy concerning immune system have been done today. There is, in particular, changing of blood counts and immunologic tests after intravenous laser irradiation of blood. Intravenous laser irradiation of blood results in increasing of lymphocytes, T-immuno stimulation, stabilization of t-lymphocyte subpopulation, increasing of t-lymphocyte helper activity and decreasing of suppressor one.Under this laser action number of circulating immune complexes is decreased, and blood serum bactericide activity and lisozyme number are increased.
Izón, Germán M; Pardini, Chelsea A
2017-06-01
The importance of increasing cost efficiency for community hospitals in the United States has been underscored by the Great Recession and the ever-changing health care reimbursement environment. Previous studies have shown mixed evidence with regards to the relationship between linking hospitals' reimbursement to quality of care and cost efficiency. Moreover, current evidence suggests that not only inherently financially disadvantaged hospitals (e.g., safety-net providers), but also more financially stable providers, experienced declines to their financial viability throughout the recession. However, little is known about how hospital cost efficiency fared throughout the Great Recession. This study contributes to the literature by using stochastic frontier analysis to analyze cost inefficiency of Washington State hospitals between 2005 and 2012, with controls for patient burden of illness, hospital process of care quality, and hospital outcome quality. The quality measures included in this study function as central measures for the determination of recently implemented pay-for-performance programs. The average estimated level of hospital cost inefficiency before the Great Recession (10.4 %) was lower than it was during the Great Recession (13.5 %) and in its aftermath (14.1 %). Further, the estimated coefficients for summary process of care quality indexes for three health conditions (acute myocardial infarction, pneumonia, and heart failure) suggest that higher quality scores are associated with increased cost inefficiency.
Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation
Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu
2017-01-01
The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817
Sexually transmitted infections in Estonia.
Põder, A; Bingham, J S
1999-10-01
Estonia, one of the Baltic countries, regained its independence in 1991, after the collapse of the USSR. This process led to great changes in every sphere of life--in politics, in the economy and in medicine. The service providing care for sexually transmitted infections (STIs) was involved in the process of these changes, too. However, freedom was followed not only by great happiness, but also by social destabilization and transformation of the old moral norms, the most evident features of which were the dramatic rise in crime, a sexual revolution and public prostitution. These 2 great simultaneous transformations in the STI care system and public mores led to the rapid increase of STIs in Estonia in the first half of the 1990s. Now some stabilization, and even a fall in incidence has occurred.
1-Butyl-3-Methyl Imidazolium-based Ionic Liquids Explored as Potential Solvents for Lipid Processing
USDA-ARS?s Scientific Manuscript database
Due to global environmental concerns, there is increasing interest in replacing the volatile solvents currently used to process commodity plant lipids. Room-temperature molten salts are one type of media receiving great attention as a possible replacement of the typical organic solvent. Molten sal...
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2012-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often great, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques. Technical Methodology/Approach: Apply massively parallel algorithms and data structures to the specific analysis requirements presented when working with thermographic data sets.
Catchment management and the Great Barrier Reef.
Brodie, J; Christie, C; Devlin, M; Haynes, D; Morris, S; Ramsay, M; Waterhouse, J; Yorkston, H
2001-01-01
Pollution of coastal regions of the Great Barrier Reef is dominated by runoff from the adjacent catchment. Catchment land-use is dominated by beef grazing and cropping, largely sugarcane cultivation, with relatively minor urban development. Runoff of sediment, nutrients and pesticides is increasing and for nitrogen is now four times the natural amount discharged 150 years ago. Significant effects and potential threats are now evident on inshore reefs, seagrasses and marine animals. There is no effective legislation or processes in place to manage agricultural pollution. The Great Barrier Reef Marine Park Act does not provide effective jurisdiction on the catchment. Queensland legislation relies on voluntary codes and there is no assessment of the effectiveness of the codes. Integrated catchment management strategies, also voluntary, provide some positive outcomes but are of limited success. Pollutant loads are predicted to continue to increase and it is unlikely that current management regimes will prevent this. New mechanisms to prevent continued degradation of inshore ecosystems of the Great Barrier Reef World Heritage Area are urgently needed.
Wallace, Alan R.
2003-01-01
Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional and local processes that led to the formation and preservation of the deposits. Major questions that need to be answered include (1) why were some basins favorable for diatomite formation, whereas others were not; (2) what post-depositional conditions are needed for diatomite preservation; and (3) what were the optimum process combinations that led to the formation and preservation of economic diatomite deposits?
ERIC Educational Resources Information Center
Lopez-Duran, Nestor L.; Kuhlman, Kate R.; George, Charles; Kovacs, Maria
2013-01-01
Background: Offspring of depressed parents are at greatly increased risk for mood disorders. Among potential mechanisms of risk, recent studies have focused on information processing anomalies, such as attention and memory biases, in the offspring of depressed parents. In this study we examined another information processing domain, perceptual…
The E-Portfolio: A Tool and a Process for Educational Leadership
ERIC Educational Resources Information Center
Hyland, N.; Kranzow, J.
2012-01-01
This mixed-method study focuses on the impact of using electronic portfolios (e-portfolios) in a graduate capstone course as a tool for increasing students' critical thinking and self-directed learning. The primary results indicate that the e-portfolio, as both a tool and a process, shows great potential. This study also reveals the capacity of…
Design of penicillin fermentation process simulation system
NASA Astrophysics Data System (ADS)
Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi
2011-10-01
Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.
Yang, Qi; Luo, Kun; Li, Xiao-ming; Wang, Dong-bo; Zheng, Wei; Zeng, Guang-ming; Liu, Jing-jin
2010-05-01
In this investigation, the effects of commercial enzyme preparation containing alpha amylase and neutral protease on hydrolysis of excess sludge and the kinetic analysis of hydrolysis process were evaluated. The results indicated that amylase treatment displayed higher hydrolysis efficiency than that of protease. VSS reduction greatly increased to 39.70% for protease and 54.24% for amylase at the enzyme dosage of 6% (w/w), respectively. The hydrolysis rate of sludge improved with temperature increasing from 40 to 50 degrees Celsius, which could be well described by the amended Arrhenius equation. Mixed-enzyme had great impact on sludge solubilisation than single enzyme. The mixture of two enzymes (protease:amylase=1:3) resulted in optimum hydrolysis efficiency, the efficiency of solids hydrolysis increased from 10% (control test) to 68.43% at the temperature of 50 degrees Celsius. Correspondingly, the concentration of reducing sugar and NH(4)(+)-N improved about 377% and 201%, respectively. According to the kinetic analysis of enzymatic hydrolysis process, VSS solubilisation process within prior 4 h followed first-order kinetics. Compared with control test, the hydrolysis rate improved significantly at 50 degrees Celsius when either single enzyme or mixed-enzyme was added. Copyright 2009. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Vanderheiden, Gregg C.; Lee, Charles C.
Many low-cost and no-cost modifications to computers would greatly increase the number of disabled individuals who could use standard computers without requiring custom modifications, and would increase the ability to attach special input and output systems. The purpose of the Guidelines is to provide an awareness of these access problems and a…
USDA-ARS?s Scientific Manuscript database
The growing ethanol industry in the Southern Great Plains has increased the use of wet distiller's grains with solubles (WDGS) in beef cattle finishing diets. Effects of corn processing method and WDGS on carbon (C) and nitrogen (N) balance were evaluated in four Jersey steers using respiration calo...
The Evaluation of Synchronous Distance Ear Training Compared to the Traditional Ear Training
ERIC Educational Resources Information Center
Karahan, Ahmet Suat
2014-01-01
It is clearly seen that distance education, spreading all over the world recently, is increasingly used in music education process. That the method brings great flexibility to the teaching-learning process destroys the limits depending on time and space and it can easily reach wide audiences and so on outstanding features are the main factors…
Using Self-Reflection to Increase Science Process Skills in the General Chemistry Laboratory
ERIC Educational Resources Information Center
Veal, William R.; Taylor, Dawne; Rogers, Amy L.
2009-01-01
Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video…
Production of High Quality Die Steels from Large ESR Slab Ingots
NASA Astrophysics Data System (ADS)
Geng, Xin; Jiang, Zhou-hua; Li, Hua-bing; Liu, Fu-bin; Li, Xing
With the rapid development of manufacture industry in China, die steels are in great need of large slab ingot of high quality and large tonnage, such as P20, WSM718R and so on. Solidification structure and size of large slab ingots produced with conventional methods are not satisfied. However, large slab ingots manufactured by ESR process have a good solidification structure and enough section size. In the present research, the new slab ESR process was used to produce the die steels large slab ingots with the maximum size of 980×2000×3200mm. The compact and sound ingot can be manufactured by the slab ESR process. The ultra-heavy plates with the maximum thickness of 410 mm can be obtained after rolling the 49 tons ingots. Due to reducing the cogging and forging process, the ESR for large slab ingots process can increase greatly the yield and production efficiency, and evidently cut off product costs.
Process yield improvements with process control terminal for varian serial ion implanters
NASA Astrophysics Data System (ADS)
Higashi, Harry; Soni, Ameeta; Martinez, Larry; Week, Ken
Implant processes in a modern wafer production fab are extremely complex. There can be several types of misprocessing, i.e. wrong dose or species, double implants and missed implants. Process Control Terminals (PCT) for Varian 350Ds installed at Intel fabs were found to substantially reduce the number of misprocessing steps. This paper describes those misprocessing steps and their subsequent reduction with use of PCTs. Reliable and simple process control with serial process ion implanters has been in increasing demand. A well designed process control terminal greatly increases device yield by monitoring all pertinent implanter functions and enabling process engineering personnel to set up process recipes for simple and accurate system operation. By programming user-selectable interlocks, implant errors are reduced and those that occur are logged for further analysis and prevention. A process control terminal should also be compatible with office personal computers for greater flexibility in system use and data analysis. The impact from the capability of a process control terminal is increased productivity, ergo higher device yield.
Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia
Olsson, Per; Folke, Carl; Hughes, Terry P.
2008-01-01
We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems. PMID:18621698
Oyster Reef Restoration and Aquaculture Impacts on Denitrification and the Benthic Community
Human impacts have greatly altered coastal ecosystems through a variety of processes including nutrient enrichment and overfishing. The negative consequences of these actions are well known and include increased macroalgae blooms, low oxygen conditions, and losses of biodiversity...
NASA Astrophysics Data System (ADS)
Jia, L.; Xu, Y.
2012-12-01
The formation of ozone and secondary organic aerosol from benzene-NOx and ethylbenzene-NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. The results show that the increase in RH can greatly reduce the maximum O3 by the transformation of -NO2 and -ONO2-containing products into the particle phase. In benzene irradiations, the SOA number concentration increases over 26 times as RH rises from <5% to 80%, and the intensity of the bands of -OH, -C=O and C-OH from SOA samples also greatly increases with RH. In ethylbenzene irradiations, ethylglyoxal favors the formation of monohydrate, which limits the RH effects. During evaporating processes, the lost substances have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene some of glyoxal hydrates are left to form C-O-C and C=O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favors cross reactions with ethylglyoxal during the evaporating process. It is concluded that the increase in RH can irreversibly enhance the yields of SOA from both benzene and ethylbenzene.
1995-01-01
disputes increased by the fact that the industrial restructuring process coincided with the return of a great number of Spanish workers who were emigrants in...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM January, 1995 NSRP 0439...1995 Ship Production Symposium Paper No . 14: Spanish Shipbuilding: Restructuring Process & Technologi- cal Updating From 1984-1994 U.S. DEPARTMENT OF
Building a culture for innovation: a leadership challenge.
Maher, Lynne
2014-01-01
It is recognized that health services are facing increasing cost pressures amid a climate of increasing demand and increasing expectations from patients and families. The ability to innovate is important for the future success of all health care organizations. By malting some simple but profound changes in behaviours and processes as illustrated across seven dimensions, leaders can have great impact on the culture for innovation. This in turn can support the transformation of health services through increased innovation.
Development of a Self Aligned CMOS Process for Flash Lamp Annealed Polycrystalline Silicon TFTs
NASA Astrophysics Data System (ADS)
Bischoff, Paul
The emerging active matrix liquid crystal (AMLCD) display market requires a high performing semiconductor material to meet rising standards of operation. Currently amorphous silicon (a-Si) dominates the market but it does not have the required mobility for it to be used in AMLCD manufacturing. Other materials have been developed including crystallizing a-Si into poly-silicon. A new approach to crystallization through the use of flash lamp annealing (FLA) decreases manufacturing time and greatly improves carrier mobility. Previous work on FLA silicon for the use in CMOS transistors revealed significant lateral dopant diffusion into the channel greatly increasing the minimum channel length required for a working device. This was further confounded by the gate overlap due to misalignment during lithography patterning steps. Through the use of furnace dopant activation instead of FLA dopant activation and a self aligned gate the minimum size transistor can be greatly reduced. A new lithography mask and process flow were developed for the furnace annealing and self aligned gate. Fabrication of the self aligned devices resulted in oxidation of the Molybdenum self aligned gate. Further development is needed to successfully manufacture these devices. Non-self aligned transistors were made simultaneously with self aligned devices and used the furnace activation. These devices showed an increase in sheet resistance from 250 O to 800 O and lower mobility from 380 to 40.2 V/cm2s. The lower mobility can be contributed to an increase in implanted trap density indicating furnace annealing is an inferior activation method over FLA. The minimum transistor size however was reduced from 20 to 5 mum. With improvements in the self aligned process high performing small devices can be manufactured.
Research advances in major cereal crops for adaptation to abiotic stresses
Maiti, RK; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172
Research advances in major cereal crops for adaptation to abiotic stresses.
Maiti, R K; Satya, Pratik
2014-01-01
With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.
Liu, Yindong; Su, Xiaomei; Lu, Lian; Ding, Linxian; Shen, Chaofeng
2016-03-01
A culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (SRpf) was used to enhance the biological nutrient removal of potentially functional bacteria. The obtained results suggest that SRpf accelerated the start-up process and significantly enhanced the biological nutrient removal in sequencing batch reactor (SBR). PO4 (3-)-P removal efficiency increased by over 12 % and total nitrogen removal efficiency increased by over 8 % in treatment reactor acclimated by SRpf compared with those without SRpf addition. The Illumina high-throughput sequencing analysis showed that SRpf played an essential role in shifts in the composition and diversity of bacterial community. The phyla of Proteobacteria and Actinobacteria, which were closely related to biological nutrient removal, were greatly abundant after SRpf addition. This study demonstrates that SRpf acclimation or addition might hold great potential as an efficient and cost-effective alternative for wastewater treatment plants (WWTPs) to meet more stringent operation conditions and legislations.
NASA Astrophysics Data System (ADS)
Ding, Li
High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.
M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud
2015-01-01
Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...
A study of mechanical properties for aluminum GMA weldments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluken, A.O.; Bjoerneklett, B.
1997-02-01
Medium- to high-strength aluminum alloys represent an attractive alternative to steel as a material for critical structural members. One area of great interest for their use is the transportation industry due to the increasing demands for less environmental impact through improved fuel efficiency, weight reductions, and increased load capacity. Fabrication of structural bodies involves, in most instances, the application of a joining process. Load-carrying members must be joined together or nonload-carrying parts attached to the primary structure. Although adhesive bonding, laser beam welding and friction stir welding are attractive processes for joining of aluminum, gas metal arc welding (GMAW) ismore » by far the most widely used process at present. Fusion welding of a heat-treatable aluminum alloy represents an additional local heat treatment of material that previously has been processed through tight temperature control to obtain the desired mechanical properties. Hence, great attention must be given to selection of alloy and temper condition, welding parameters, and postweld aging procedures for a given application. The objective of this investigation was to establish mechanical property data, i.e., tensile strength and impact toughness, for Al-Mg-Si and Al-Zn-Mg gas metal arc weldments applicable to the automotive and shipbuilding industries.« less
Digital Image Processing Overview For Helmet Mounted Displays
NASA Astrophysics Data System (ADS)
Parise, Michael J.
1989-09-01
Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.
Optimization of enhanced coal-bed methane recovery using numerical simulation
NASA Astrophysics Data System (ADS)
Perera, M. S. A.; Ranjith, P. G.; Ranathunga, A. S.; Koay, A. Y. J.; Zhao, J.; Choi, S. K.
2015-02-01
Although the enhanced coal-bed methane (ECBM) recovery process is one of the potential coal bed methane production enhancement techniques, the effectiveness of the process is greatly dependent on the seam and the injecting gas properties. This study has therefore aimed to obtain a comprehensive knowledge of all possible major ECBM process-enhancing techniques by developing a novel 3D numerical model by considering a typical coal seam using the COMET 3 reservoir simulator. Interestingly, according to the results of the model, the generally accepted concept that there is greater CBM (coal-bed methane) production enhancement from CO2 injection, compared to the traditional water removal technique, is true only for high CO2 injection pressures. Generally, the ECBM process can be accelerated by using increased CO2 injection pressures and reduced temperatures, which are mainly related to the coal seam pore space expansion and reduced CO2 adsorption capacity, respectively. The model shows the negative influences of increased coal seam depth and moisture content on ECBM process optimization due to the reduced pore space under these conditions. However, the injection pressure plays a dominant role in the process optimization. Although the addition of a small amount of N2 into the injecting CO2 can greatly enhance the methane production process, the safe N2 percentage in the injection gas should be carefully predetermined as it causes early breakthroughs in CO2 and N2 in the methane production well. An increased number of production wells may not have a significant influence on long-term CH4 production (50 years for the selected coal seam), although it significantly enhances short-term CH4 production (10 years for the selected coal seam). Interestingly, increasing the number of injection and production wells may have a negative influence on CBM production due to the coincidence of pressure contours created by each well and the mixing of injected CO2 with CH4.
Implications of hydrologic variability on the succession of plants in Great Lakes wetlands
Wilcox, Douglas A.
2004-01-01
Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.
The complete project will greatly increase the sustainability of small gasoline and/or diesel powered generators that are currently used to supplement or replace an unreliable power grid. This phase will develop the feedstock processing equipment needed to produce syngas bio-...
Self-Regulation across Different Contexts: Findings in Young Albanian Children
ERIC Educational Resources Information Center
von Suchodoletz, Antje; Uka, Fitim; Larsen, Ross A. A. A.
2015-01-01
Research Findings: The importance of self-regulation for children's successful academic performance has led to greatly increased interest in this topic in recent years. However, less is known about the interrelations among self-regulatory processes across different contexts. The present study investigated the structure of self-regulation in young…
Rapid development of a castor cultivar with increased oil content
USDA-ARS?s Scientific Manuscript database
Castor seed oil contains 90% ricinoleic acid which has a wide range of industrial applications. Improvement in oil content would be of great benefit to castor growers and oil processers. Two cycles of phenotypic recurrent selection were conducted through screening for high oil content castor seeds u...
Liang, Chenghao; Guo, Liang; Chen, Wan; Wang, Hua
2005-08-01
The electrochemical mechanism of austenitic stainless steel (SUS316L and SUS317L) coronary stents in flowing artificial body fluid has been investigated with electrochemical technologies. The results indicated that the flowing medium coursed the samples' pitting potential Eb shift negatively, increased the pitting corrosion sensitivity, accelerated its anodic dissolution, but had little effects on repassivated potential. The flowing environment had great effects on cathodic process. The oxygen reaction on the samples' surface became faster as the cathodic process was not controlled by oxygen diffusion but by mixed diffusion and electrochemical process. With the increase of velocity of solution, the pitting corrosion becomes liable to occur under this circumstance.
Integrated Multi-process Microfluidic Systems for Automating Analysis
Yang, Weichun; Woolley, Adam T.
2010-01-01
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343
Eggeman, A S; London, A; Midgley, P A
2013-11-01
Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.
Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate
Finarelli, John A.; Badgley, Catherine
2010-01-01
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; Russell, Samuel S.
2012-01-01
Objective Develop a software application utilizing high performance computing techniques, including general purpose graphics processing units (GPGPUs), for the analysis and visualization of large thermographic data sets. Over the past several years, an increasing effort among scientists and engineers to utilize graphics processing units (GPUs) in a more general purpose fashion is allowing for previously unobtainable levels of computation by individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU which yield significant increases in performance. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Image processing is one area were GPUs are being used to greatly increase the performance of certain analysis and visualization techniques.
The presence and near-shore transport of human fecal pollution in Lake Michigan beaches
Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.
2005-01-01
The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.
Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States
Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang
2012-01-01
The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.
Zhou, Xiaobing; Smith, Hilda; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran
2016-01-01
N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30-35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2-3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30-35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5-4.8) and Chihuahuan (Q10 of 2.4-2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.
EMU processing - A myth dispelled
NASA Technical Reports Server (NTRS)
Peacock, Paul R.; Wilde, Richard C.; Lutz, Glenn C.; Melgares, Michael A.
1991-01-01
The refurbishment-and-checkout 'processing' activities entailed by the Space Shuttle Extravehicular Mobility Units (EMUs) are currently significantly more modest, at 1050 man-hours, than when Space Shuttle services began (involving about 4000 man-hours). This great improvement in hardware efficiency is due to the design or modification of test rigs for simplification of procedures, as well as those procedures' standardization, in conjunction with an increase in hardware confidence which has allowed the extension of inspection, service, and testing intervals. Recent simplification of the hardware-processing sequence could reduce EMU processing requirements to 600 man-hours in the near future.
Laser processing of polymer constructs from poly(3-hydroxybutyrate).
Volova, T G; Tarasevich, A A; Golubev, A I; Boyandin, A N; Shumilova, A A; Nikolaeva, E D; Shishatskaya, E I
2015-01-01
CO2 laser radiation was used to process poly(3-hydroxybutyrate) constructs - films and 3D pressed plates. Laser processing increased the biocompatibility of unperforated films treated with moderate uniform radiation, as estimated by the number and degree of adhesion of NIH 3T3 mouse fibroblast cells. The biocompatibility of perforated films modified in the pulsed mode did not change significantly. At the same time, pulsed laser processing of the 3D plates produced perforated scaffolds with improved mechanical properties and high biocompatibility with bone marrow-derived multipotent, mesenchymal stem cells, which show great promise for bone regeneration.
Feedstock powder processing research needs for additive manufacturing development
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
2018-02-01
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Feedstock powder processing research needs for additive manufacturing development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; White, Emma M. H.; Dehoff, Ryan
Additive manufacturing (AM) promises to redesign traditional manufacturing by enabling the ultimate in agility for rapid component design changes in commercial products and for fabricating complex integrated parts. Here, by significantly increasing quality and yield of metallic alloy powders, the pace for design, development, and deployment of the most promising AM approaches can be greatly accelerated, resulting in rapid commercialization of these advanced manufacturing methods. By successful completion of a critical suite of processing research tasks that are intended to greatly enhance gas atomized powder quality and the precision and efficiency of powder production, researchers can help promote continued rapidmore » growth of AM. Finally, other powder-based or spray-based advanced manufacturing methods could also benefit from these research outcomes, promoting the next wave of sustainable manufacturing technologies for conventional and advanced materials.« less
Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T
2011-01-01
The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.
Digital images in the map revision process
NASA Astrophysics Data System (ADS)
Newby, P. R. T.
Progress towards the adoption of digital (or softcopy) photogrammetric techniques for database and map revision is reviewed. Particular attention is given to the Ordnance Survey of Great Britain, the author's former employer, where digital processes are under investigation but have not yet been introduced for routine production. Developments which may lead to increasing automation of database update processes appear promising, but because of the cost and practical problems associated with managing as well as updating large digital databases, caution is advised when considering the transition to softcopy photogrammetry for revision tasks.
Construction of shipping channels in the Detroit River—History and environmental consequences
Bennion, David H.; Manny, Bruce A.
2011-01-01
The Detroit River is one of the most biologically diverse areas in the Great Lakes basin. It has been an important international shipping route since the 1820s and is one of the busiest navigation centers in the United States. Historically, it supported one of the most profitable Lake Whitefish (Coregonus clupeaformis) commercial fisheries in the Great Lakes. Since 1874, the lower Detroit River has been systematically and extensively modified, by construction of deepwater channels, to facilitate commercial shipping. Large-scale dredging, disposal of dredge spoils, and construction of water-level compensating works has greatly altered channel morphology and flow dynamics of the river, disrupting ecological function and fishery productivity of the river and influencing Great Lakes water levels. From 1874 to 1968, major construction projects created 96.5 kilometers (60 miles) of shipping channels, removed over 46,200,000 m3 of material, covered 4,050 hectares (40.5 square kilometers) of river bottom with dredge spoils, and built 85 hectares of above-waterline compensating works at a total cost of US$283 million. Interest by industries and government agencies to develop the river further for shipping is high and increasing. Historically, as environmental protection agencies were created, construction impacts on natural resources were increasingly addressed during the planning process and, in some cases, assessments of these impacts greatly altered or halted proposed construction projects. Careful planning of future shipping-channel construction and maintenance projects, including a thorough analysis of the expected environmental impacts, could greatly reduce financial costs and ecological damages as compared to past shipping-channel construction projects.
USDA-ARS?s Scientific Manuscript database
With the rapid development of small imaging sensors and unmanned aerial vehicles (UAVs), remote sensing is undergoing a revolution with greatly increased spatial and temporal resolutions. While more relevant detail becomes available, it is a challenge to analyze the large number of images to extract...
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
The Study on Virtual Medical Instrument based on LabVIEW.
Chengwei, Li; Limei, Zhang; Xiaoming, Hu
2005-01-01
With the increasing performance of computer, the virtual instrument technology has greatly advanced over the years, and then virtual medical instrument technology becomes available. This paper presents the virtual medical instrument, and then as an example, an application of a signal acquisition, processing and analysis system using LabVIEW is also given.
ASPEN--A Web-Based Application for Managing Student Server Accounts
ERIC Educational Resources Information Center
Sandvig, J. Christopher
2004-01-01
The growth of the Internet has greatly increased the demand for server-side programming courses at colleges and universities. Students enrolled in such courses must be provided with server-based accounts that support the technologies that they are learning. The process of creating, managing and removing large numbers of student server accounts is…
Methodological Potential of Computer Experiment in Teaching Mathematics at University
ERIC Educational Resources Information Center
Lin, Kequan; Sokolova, Anna Nikolaevna; Vlasova, Vera K.
2017-01-01
The study is relevant due to the opportunity of increasing efficiency of teaching mathematics at university through integration of students of computer experiment conducted with the use of IT in this process. The problem of there search is defined by a contradiction between great potential opportunities of mathematics experiment for motivating and…
Bahia, Daljit; Cheung, Robert; Buchs, Mirjam; Geisse, Sabine; Hunt, Ian
2005-01-01
This report describes a method to culture insects cells in 24 deep-well blocks for the routine small-scale optimisation of baculovirus-mediated protein expression experiments. Miniaturisation of this process provides the necessary reduction in terms of resource allocation, reagents, and labour to allow extensive and rapid optimisation of expression conditions, with the concomitant reduction in lead-time before commencement of large-scale bioreactor experiments. This therefore greatly simplifies the optimisation process and allows the use of liquid handling robotics in much of the initial optimisation stages of the process, thereby greatly increasing the throughput of the laboratory. We present several examples of the use of deep-well block expression studies in the optimisation of therapeutically relevant protein targets. We also discuss how the enhanced throughput offered by this approach can be adapted to robotic handling systems and the implications this has on the capacity to conduct multi-parallel protein expression studies.
Framework for Sustainability Performance Assessment for Manufacturing Processes- A Review
NASA Astrophysics Data System (ADS)
Singh, K.; Sultan, I.
2017-07-01
Manufacturing industries are facing tough competition due to increasing raw material cost and depleting natural resources. There is great pressure on the industry to produce environmental friendly products using environmental friendly processes. To address these issues modern manufacturing industries are focusing on sustainable manufacturing. To develop more sustainable societies, industries need to better understand how to respond to environmental, economic and social challenges. This paper proposed some framework and tools that accelerate the transition towards a sustainable system. The developed framework will be beneficial for sustainability assessment comparing different plans alongside material properties, ultimately helping the manufacturing industries to reduce the carbon emissions and material waste, besides improving energy efficiency. It is expected that this would be highly beneficial for determination of environmental impact of a process at early design stages. Therefore, it would greatly help the manufacturing industries for selection of process plan based on sustainable indices. Overall objective of this paper would have good impact on reducing air emissions and protecting environment. We expect this work to contribute to the development of a standard reference methodology to help further sustainability in the manufacturing sector.
SWI/SNF Chromatin-remodeling Factors: Multiscale Analyses and Diverse Functions*
Euskirchen, Ghia; Auerbach, Raymond K.; Snyder, Michael
2012-01-01
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes. PMID:22952240
ERIC Educational Resources Information Center
Esbensen, Finn-Aage; Matsuda, Kristy N.; Taylor, Terrance J.; Peterson, Dana
2011-01-01
This study reports the results of the process evaluation component of the Process and Outcome Evaluation of the Gang Resistance Education and Training (G.R.E.A.T.) program. The process evaluation consisted of multiple methods to assess program fidelity: (a) observations of G.R.E.A.T. Officer Trainings (G.O.T); (b) surveys and interviews of…
NASA Astrophysics Data System (ADS)
Razinkina, Elena; Pankova, Ludmila; Trostinskaya, Irina; Pozdeeva, Elena; Evseeva, Lidiya; Tanova, Anna
2018-03-01
Topicality of the research is confirmed by increasing student involvement into the educational process, when not only the academic staff and administration participate in the improvement of higher education institution's activity, but also education customers - students. This adds a new dimension to the issue of monitoring education quality and student satisfaction with higher education. This issue echoes the ideas of M. Weber about the relationship between such components as cognitive motivation, personal development and student satisfaction with higher education. Besides, it is essential to focus on the approach of R. Barnet to defining the quality of education with the emphasis on a priority of development of an educational institution as the system that meets customers' needs. Monitoring student satisfaction with education quality has become an integral part of the educational process not only in a number of European universities, which have used this monitoring for decades, but also in Russian universities, which are interested in education quality improvement. Leading universities in Russia, including Peter the Great St. Petersburg Polytechnic University, are implementing policies targeted at increasing student satisfaction with higher education quality. Education quality monitoring as a key element in the system of providing feedback to students contributes greatly to this process.
Harding, Keith
2015-04-01
Innovation in medicine requires unique partnerships between academic research, biotech or pharmaceutical companies, and health-care providers. While innovation in medicine has greatly increased over the past 100 years, innovation in wound care has been slow, despite the fact that chronic wounds are a global health challenge where there is a need for technical, process and social innovation. While novel partnerships between research and the health-care system have been created, we still have much to learn about wound care and the wound-healing processes.
NASA Astrophysics Data System (ADS)
Antonov I., P.; Goroshkov A., V.; Kalyunov V., N.; Markhvida I., V.; Rubanov A., S.; Tanin L., V.
1983-12-01
The role of investigation of peripheral vervous fibers in bitality state is of great importance when elucidating the mechanism of a stimulant low-energy laser radiation influence which is widely applicable, for example, in practice for curing lumbar osteochondros-is (1), trigeminal verve radiculitis, and in developing the processes of transmission and processing of the information required for sustaining organism homeostasis. Using both electrophysiologic and holographic methods simultaneously can increase total information and authenticity of these investigations.
Challenges and New Trends for Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sehirlioglu, Alp
2008-01-01
BiScO3-PbTiO3 ceramics with TC greater than 400 C has been successfully processed. Despite the increase in TC, excess Pb addition increases both the bulk conductivity and the grain boundary contribution to conductivity at elevated temperatures. Conductivity at elevated temperatures, that limits the operating temperature for actuators, has been greatly reduced by excess Bi additions. Excess Bi doping improves poling conditions resulting in enhanced piezoelectric coefficient (d(sub 33) = 408 pC/N).
PROCESS FOR CONTROLLING ANIMAL GROWTH RATE
Visek, W.J.
1962-04-10
A method of injecting growing animals with the enzyme urease subcutaneously in increasing dosages is described; this generates within the blood anti-urease which enters the intestinal tract and inhibits the enzymatic decomposition of urea by urease in that location. Ammonia, one of the decomposition products, is thereby kept from diffusing through the intestinal walls into the blood, and this greatly reduces the energy requirements of the liver for removing the ammonia, thereby increasing the feeding efficiency of the animals. (AEC)
Activity-dependent regulation of synaptic strength by PSD-95 in CA1 neurons.
Zhang, Peng; Lisman, John E
2012-02-01
CaMKII and PSD-95 are the two most abundant postsynaptic proteins in the postsynaptic density (PSD). Overexpression of either can dramatically increase synaptic strength and saturate long-term potentiation (LTP). To do so, CaMKII must be activated, but the same is not true for PSD-95; expressing wild-type PSD-95 is sufficient. This raises the question of whether PSD-95's effects are simply an equilibrium process [increasing the number of AMPA receptor (AMPAR) slots] or whether activity is somehow involved. To examine this question, we blocked activity in cultured hippocampal slices with TTX and found that the effects of PSD-95 overexpression were greatly reduced. We next studied the type of receptors involved. The effects of PSD-95 were prevented by antagonists of group I metabotropic glutamate receptors (mGluRs) but not by antagonists of ionotropic glutamate receptors. The inhibition of PSD-95-induced strengthening was not simply a result of inhibition of PSD-95 synthesis. To understand the mechanisms involved, we tested the role of CaMKII. Overexpression of a CaMKII inhibitor, CN19, greatly reduced the effect of PSD-95. We conclude that PSD-95 cannot itself increase synaptic strength simply by increasing the number of AMPAR slots; rather, PSD-95's effects on synaptic strength require an activity-dependent process involving mGluR and CaMKII.
Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers.
Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai
2017-03-28
Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH 3 NH 3 PbBr 3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH 3 NH 3 PbBr 3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.
Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers
NASA Astrophysics Data System (ADS)
Gao, Yisheng; Wang, Shuai; Huang, Can; Yi, Ningbo; Wang, Kaiyang; Xiao, Shumin; Song, Qinghai
2017-03-01
Hybrid lead halide perovskites have made great strides in next-generation light-harvesting and light emitting devices. Recently, they have also shown great potentials in nonlinear optical materials. Two-photon absorption and two-photon light emission have been thoroughly studied in past two years. However, the three-photon processes are rarely explored, especially for the laser emissions. Here we synthesized high quality CH3NH3PbBr3 perovskite microstructures with solution processed precipitation method and studied their optical properties. When the microstructures are pumped with intense 1240 nm lasers, we have observed clear optical limit effect and the band-to-band photoluminescence at 540 nm. By increasing the pumping density, whispering-gallery-mode based microlasers have been achieved from CH3NH3PbBr3 perovskite microplate and microrod for the first time. This work demonstrates the potentials of hybrid lead halide perovskites in nonlinear photonic devices.
Facts on the Effects of Alcohol. Clearinghouse Fact Sheet.
ERIC Educational Resources Information Center
Milgram, Gail Gleason
Ethyl alcohol (ethanol) is one of the few alcohols that humans can drink. This alcohol is a byproduct of yeast's reaction with the sugars in fruit or vegetable juice and the process stops naturally with about an 11 to 14 percent alcoholic concentration, although distillation can greatly increase the alcoholic content. Once ingested, most alcohol…
USDA-ARS?s Scientific Manuscript database
Introduction: Diseases caused by food borne pathogens are of great concern to the food industry. The consumption of foods with chemical preservatives has led to increased consumer concern and demand for natural and minimally processed foods. In addition, environmental concerns are generated from cur...
ERIC Educational Resources Information Center
Hadwin, Allyson; Oshige, Mika
2011-01-01
Background/Context: Models of self-regulated learning (SRL) have increasingly acknowledged aspects of social context influence in its process; however, great diversity exists in the theoretical positioning of "social" in these models. Purpose/Objective/Research Question/Focus of Study: The purpose of this review article is to introduce and…
Models and Muddles in Human Ecology: An Examination of High School Crime Rates. Report No. 255.
ERIC Educational Resources Information Center
Gottfredson, Gary D.
Recent research in the human ecological tradition has made increasing use of causal modeling in the search for understanding of aggregate-level social processes. This approach has great appeal because it helps make hypotheses explicit, provides a convenient way to structure the application of statistical controls, allows the representation of…
NASA Technical Reports Server (NTRS)
Cho, Toohyon; Shuler, Michael L.
1989-01-01
Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.
NASA Technical Reports Server (NTRS)
Currey, Donald R.
1989-01-01
Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.
Parallel workflow tools to facilitate human brain MRI post-processing
Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang
2015-01-01
Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043
Harrington, Stephanie
1999-01-01
Historically, 133 fish species representing 25 families have been documented in the Great and Little Miami River Basins. Of these, 132 species have been reported in the basins since 1901, 123 since 1955, 117 since 1980, and 113 post-1990. Natural processes and human activities have both been shown to be major factors in the alteration of fish-community structure and the decrease in species diversity. In the late 1800's, dam construction and the removal of riparian zones restricted fish migration and altered habitat. Industrialization and urbanization increased considerably in the 1900's, further degrading stream habitat and water quality. Species requiring riffles and clean, hard stream bottoms were the most adversely affected. The use of agricultural and industrial chemicals prompted fish-consumption advisories and an increase in studies reporting the occurrence of external fish anomalies. Over the last 20 years, water quality has improved in part because of the upgrading of wastewater-treatment facilities; and, as a result, many streams of the Great and Little Miami River Basins generally meet or exceed existing water-quality standards. Although significant improvements have occurred in the basins, continued efforts to improve water quality and restore the physical habitat of streams will be necessary to increase fish abundance and biodiversity
The value and validation of broad spectrum biosensors for diagnosis and biodefense
Metzgar, David; Sampath, Rangarajan; Rounds, Megan A; Ecker, David J
2013-01-01
Broad spectrum biosensors capable of identifying diverse organisms are transitioning from the realm of research into the clinic. These technologies simultaneously capture signals from a wide variety of biological entities using universal processes. Specific organisms are then identified through bioinformatic signature-matching processes. This is in contrast to currently accepted molecular diagnostic technologies, which utilize unique reagents and processes to detect each organism of interest. This paradigm shift greatly increases the breadth of molecular diagnostic tools with little increase in biochemical complexity, enabling simultaneous diagnostic, epidemiologic, and biothreat surveillance capabilities at the point of care. This, in turn, offers the promise of increased biosecurity and better antimicrobial stewardship. Efficient realization of these potential gains will require novel regulatory paradigms reflective of the generalized, information-based nature of these assays, allowing extension of empirical data obtained from readily available organisms to support broader reporting of rare, difficult to culture, or extremely hazardous organisms. PMID:24128433
Reducing the Requirements and Cost of Astronomical Telescopes
NASA Technical Reports Server (NTRS)
Smith, W. Scott; Whitakter, Ann F. (Technical Monitor)
2002-01-01
Limits on astronomical telescope apertures are being rapidly approached. These limits result from logistics, increasing complexity, and finally budgetary constraints. In an historical perspective, great strides have been made in the area of aperture, adaptive optics, wavefront sensors, detectors, stellar interferometers and image reconstruction. What will be the next advances? Emerging data analysis techniques based on communication theory holds the promise of yielding more information from observational data based on significant computer post-processing. This paper explores some of the current telescope limitations and ponders the possibilities increasing the yield of scientific data based on the migration computer post-processing techniques to higher dimensions. Some of these processes hold the promise of reducing the requirements on the basic telescope hardware making the next generation of instruments more affordable.
Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models
Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan
2012-01-01
Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species biomass at low values. In general, for understanding the effect of invasive species on future fisheries management actions, we recommend initiating invasive species biomass at low levels based on the greater simplicity and realism of the method compared to others.
Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales
Blake Meneken Engelhardt
2009-01-01
Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...
NASA Technical Reports Server (NTRS)
Cohen, W.
1973-01-01
After a review of the work of the late-Fifties on free radicals for propulsion, it is concluded that atomic hydrogen would provide a potentially large increase in specific impulse. Work conducted to find an approach for isolating atomic hydrogen is considered. Other possibilities for obtaining propellants of greatly increased capability might be connected with the technology for the generation of activated states of gases, metallic hydrogen, fuels obtained from other planets, and laser transfer of energy.
cudaMap: a GPU accelerated program for gene expression connectivity mapping.
McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong
2013-10-11
Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.
Vilchez, S; Manzanera, Maximino
2011-09-01
Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305-339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Yang, Yong; Wang, Peng-Peng; Zhang, Zhi-Cheng; Liu, Hui-Ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-04-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Media Literacy Education in the Balkan Countries: The Greece and Turkey Case
ERIC Educational Resources Information Center
Tanriverdi, Belgin
2008-01-01
The mass communication process via (mass) media has a great potential of reaching people all around the world. This may foster cosmopolitanism and democracy, but it also holds the danger of an increasing manipulation because of the fact that media can never be neutral and value-free. While some studies do not see a harmful impact of media, most…
Modeling for Endangered-Species Recovery: Gray Wolves in the Western Great Lakes Region
Jean Fitts Cochrane; Robert G. Haight; Anthony M. Starfield
2003-01-01
The Federal Endangered Species Act is intended to conserve endangered and threatened species and their habitats and to improve the species' status so that they no longer need protection under the Act. In the process of planning the recovery of threatened or endangered species, the U.S. Fish and Wildlife Service increasingly uses demographic models to predict...
Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing
NASA Astrophysics Data System (ADS)
Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.
2015-03-01
Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.
Zhou, Xiaobing; Smith, Hilda J.; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran
2017-01-01
N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.
Zhou, Xiaobing; Smith, Hilda; Giraldo Silva, Ana; Belnap, Jayne; Garcia-Pichel, Ferran
2016-01-01
N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally. PMID:27776160
Causes and Predictability of the 2012 Great Plains Drought
NASA Technical Reports Server (NTRS)
Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R.
2013-01-01
Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability for severe summer Great Plains drought may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail-risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. Implications of this study's findings for U.S. seasonal drought forecasting are discussed.
Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory
NASA Astrophysics Data System (ADS)
Veal, William R.; Taylor, Dawne; Rogers, Amy L.
2009-03-01
Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.
Improved associative recall of binary data in volume holographic memories
NASA Astrophysics Data System (ADS)
Betzos, George A.; Laisné, Alexandre; Mitkas, Pericles A.
1999-11-01
A new technique is presented that improves the results of associative recall in a volume holographic memory system. A background is added to the normal search argument to increase the amount of optical power that is used to reconstruct the reference beams in the crystal. This is combined with post-processing of the captured image of the reference beams. The use of both the background and post-processing greatly improves the results by allowing associative recall using small arguments. In addition, the number of false hits is reduced and misses are virtually eliminated.
SWOT analysis and revelation in traditional Chinese medicine internationalization.
Tang, Haitao; Huang, Wenlong; Ma, Jimei; Liu, Li
2018-01-01
Traditional Chinese medicine (TCM) is currently the best-preserved and most influential traditional medical system with the largest number of users worldwide. In recent years, the trend of TCM adoption has increased greatly, but the process of TCM internationalization has suffered from a series of setbacks for both internal and external reasons. Thus, the process of TCM internationalization faces formidable challenges, although it also has favourable opportunities. Using SWOT analysis, this paper investigates the strengths, weaknesses, opportunities and threats for TCM. These findings can serve as references for TCM enterprises with global ambitions.
NASA Technical Reports Server (NTRS)
Distefano, S.; Gupta, A.; Ingham, J. D.
1983-01-01
A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.
Validation of a sterilization dose for products manufactured using a 3D printer
NASA Astrophysics Data System (ADS)
Wangsgard, Wendy; Winters, Martell
2018-02-01
As more healthcare products are personalized, the use of unique, patient-specific products will increase. Some of these are manufactured using a 3D printing process (also known as additive manufacturing) for either polymers or metals. For these products, processes such as sterilization validations must be handled in a different manner. The concepts typically used are still relevant but are approached from an alternative perspective to account for a potential production batch size of one, and for the great variability that can occur in size and shape of a product.
Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky
2017-04-16
In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.
NASA Astrophysics Data System (ADS)
Markanday, H.; Nagarajan, D.
2018-02-01
Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.
Thermostable Carbonic Anhydrases in Biotechnological Applications
Di Fiore, Anna; Alterio, Vincenzo; Monti, Simona M.; De Simone, Giuseppina; D’Ambrosio, Katia
2015-01-01
Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application. PMID:26184158
NASA Astrophysics Data System (ADS)
Huang, Guoming; Zhu, Xianglong; Li, Hui; Wang, Lirong; Chi, Xiaoqin; Chen, Jiahe; Wang, Xiaomin; Chen, Zhong; Gao, Jinhao
2015-01-01
Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications.Multifunctional nanostructures with both diagnostic and therapeutic capabilities have attracted considerable attention in biomedical research because they can offer great advantages in disease management and prognosis. In this work, a facile way to transfer the hydrophobic iron oxide (IO) nanoparticles into aqueous media by employing carboxylic graphene oxide (GO-COOH) as the transferring agent has been reported. In this one-step process, IO nanoparticles adhere to GO-COOH and form water-dispersible clusters via hydrophobic interactions between the hydrophobic ligands of IO nanoparticles and the basal plane of GO-COOH. The multiple IO nanoparticles on GO-COOH sheets (IO/GO-COOH) present a significant increase in T2 contrast enhancement. Moreover, the IO/GO-COOH nanoclusters also display a high photothermal conversion efficiency and can effectively inhibit tumor growth through the photothermal effects. It is envisioned that such IO/GO-COOH nanocomposites combining efficient MRI and photothermal therapy hold great promise in theranostic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06616b
Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase.
Romero, Lucía Virginia; Targovnik, Alexandra Marisa; Wolman, Federico Javier; Cascone, Osvaldo; Miranda, María Victoria
2011-05-01
A process based on orally-infected Rachiplusia nu larvae as biological factories for expression and one-step purification of horseradish peroxidase isozyme C (HRP-C) is described. The process allows obtaining high levels of pure HRP-C by membrane chromatography purification. The introduction of the partial polyhedrin homology sequence element in the target gene increased HRP-C expression level by 2.8-fold whereas it increased 1.8-fold when the larvae were reared at 27 °C instead of at 24 °C, summing up a 4.6-fold overall increase in the expression level. Additionally, HRP-C purification by membrane chromatography at a high flow rate greatly increase D the productivity without affecting the resolution. The V(max) and K(m) values of the recombinant HRP-C were similar to those of the HRP from Armoracia rusticana roots. © Springer Science+Business Media B.V. 2011
Exploring the influence of encoding format on subsequent memory.
Turney, Indira C; Dennis, Nancy A; Maillet, David; Rajah, M Natasha
2017-05-01
Distinctive encoding is greatly influenced by gist-based processes and has been shown to suffer when highly similar items are presented in close succession. Thus, elucidating the mechanisms underlying how presentation format affects gist processing is essential in determining the factors that influence these encoding processes. The current study utilised multivariate partial least squares (PLS) analysis to identify encoding networks directly associated with retrieval performance in a blocked and intermixed presentation condition. Subsequent memory analysis for successfully encoded items indicated no significant differences between reaction time and retrieval performance and presentation format. Despite no significant behavioural differences, behaviour PLS revealed differences in brain-behaviour correlations and mean condition activity in brain regions associated with gist-based vs. distinctive encoding. Specifically, the intermixed format encouraged more distinctive encoding, showing increased activation of regions associated with strategy use and visual processing (e.g., frontal and visual cortices, respectively). Alternatively, the blocked format exhibited increased gist-based processes, accompanied by increased activity in the right inferior frontal gyrus. Together, results suggest that the sequence that information is presented during encoding affects the degree to which distinctive encoding is engaged. These findings extend our understanding of the Fuzzy Trace Theory and the role of presentation format on encoding processes.
Kumari, Sinu; Das, Debabrata
2015-10-01
The aim of the present study was to enhance the gaseous energy recovery from sugarcane bagasse. The two stage (biohydrogen and biomethanation) batch process was considered under mesophilic condition. Alkali pretreatment (ALP) was used to remove lignin from sugarcane bagasse. This enhanced the enzymatic digestibility of bagasse to a great extent. The maximum lignin removal of 60% w/w was achieved at 0.25 N NaOH concentration (50°C, 30 min). The enzymatic hydrolysis efficiency was increased to about 2.6-folds with alkali pretreated sugarcane bagasse as compared to untreated one. The maximum hydrogen and methane yields from the treated sugarcane bagasse by biohydrogen and biomethanation processes were 93.4 mL/g-VS and 221.8 mL/g-VS respectively. This process resulted in significant increase in energy conversion efficiency (44.8%) as compared to single stage hydrogen production process (5.4%). Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The growing ethanol industry in the Southern Great Plains has increased the use of wet distiller's grains with solubles (WDGS) in beef cattle finishing diets. Few studies have used steam-flaked corn (SFC)-based diets to evaluate the effects of WDGS in finishing cattle diets, and a reliable estimate ...
Jessica R. Miesel; William C. Hockaday; Randy Kolka; Philip A. Townsend
2015-01-01
Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition...
M. E. Miller; William Elliot; M. Billmire; Pete Robichaud; K. A. Endsley
2016-01-01
Post-wildfire flooding and erosion can threaten lives, property and natural resources. Increased peak flows and sediment delivery due to the loss of surface vegetation cover and fire-induced changes in soil properties are of great concern to public safety. Burn severity maps derived from remote sensing data reflect fire-induced changes in vegetative cover and soil...
Connectivity and systemic resilience of the Great Barrier Reef
Wolff, Nicholas H.; Ortiz, Juan C.; Condie, Scott A.; Anthony, Kenneth R. N.; Blackwell, Paul G.; Mumby, Peter J.
2017-01-01
Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change. PMID:29182630
Connectivity and systemic resilience of the Great Barrier Reef.
Hock, Karlo; Wolff, Nicholas H; Ortiz, Juan C; Condie, Scott A; Anthony, Kenneth R N; Blackwell, Paul G; Mumby, Peter J
2017-11-01
Australia's iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.
A Fast Radio Burst Search Method for VLBI Observation
NASA Astrophysics Data System (ADS)
Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li
2018-02-01
We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.
Relationship between the kinetic energy budget and intensity of convection. [in atmosphere
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1977-01-01
Synoptic data collected over the eastern United States during the fourth Atmospheric Variability Experiment, April 24 and 25, 1975, is used to study the relationship between the kinetic energy budget and the intensity of convective activity. It is found that areas of intense convective activity are also major centers of kinetic energy activity. Energy processes increase in magnitude with an increase in convection intensity. Large generation of kinetic energy is associated with intense convection, but large quantities of energy are transported out of the area of convection. The kinetic energy budget associated with grid points having no convection differs greatly from the budgets of the three categories of convection. Weak energy processes are not associated with convection.
Continuous high PRF waveforms for challenging environments
NASA Astrophysics Data System (ADS)
Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David
2017-05-01
Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.
A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries
Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; ...
2015-07-01
Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less
Wang, Daming; Liu, Wei; Feng, Qian; Dong, Chaoqun; Liu, Qisong; Duan, Li; Huang, Jianghong; Zhu, Weimin; Li, Zemeng; Xiong, Jianyi; Liang, Yujie; Chen, Jielin; Sun, Rong; Bian, Liming; Wang, Daping
2017-01-01
Inorganic/organic hybrid scaffolds have great potential for tissue engineering applications due to controllable mechanical properties and tailorable biodegradation. Here, silica/chitosan hybrid scaffolds were fabricated through the sol-gel method with a freeze drying process. 3-Glycidoxypropyl trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) were used as the covalent inorganic/organic coupling agent and the separate inorganic source, respectively. Hybrid scaffolds with various inorganic/organic weight ratios (I/Os) and molar ratios of chitosan and GPTMS (GCs) were examined and compared in this study. FTIR showed that higher GPTMS content resulted in the increased covalent cross-linking of the chitosan and the silica network in hybrids. Compression testing indicated that increasing the GPTMS content greatly improved the compressive strength of scaffold. LIVE/DEAD assay showed that enhanced cytocompatibility was obtained as the silica content increased. Therefore, the results confirmed that the two parameters I/O and GC can largely influence the scaffold performance, which can be used to tailor the hybrid properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Ramp Technology and Intelligent Processing in Small Manufacturing
NASA Technical Reports Server (NTRS)
Rentz, Richard E.
1992-01-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
Ramp technology and intelligent processing in small manufacturing
NASA Astrophysics Data System (ADS)
Rentz, Richard E.
1992-04-01
To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.
The Great Lakes. An Environmental Atlas and Resource Book.
ERIC Educational Resources Information Center
Botts, Lee; Krushelnicki, Bruce
This atlas was developed jointly by the Canadian and American governments, and is intended to provide an ecosystem approach to the understanding of the Great Lakes Basin. Chapter one provides an introduction to both the natural and cultural aspects of the Great Lakes. Chapter two, "Natural Processes in the Great Lakes," describes such…
[Treatment of acrylate wastewater by electrocatalytic reduction process].
Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min
2011-10-01
High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.
EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION
In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...
Gray Wave of the Great Transformation: A Satellite View of Urbanization, Climate, and Food Security
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.
2007-01-01
Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological productivity to changes in atmospheric chemistry and regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as 'the great transformation'. Urbanization or the 'gray wave' of this transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter their environments so profoundly that the local climate, atmospheric composition, and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools to observe and understand these processes in ways that can be used to plan and develop enjoyable and sustainable urban places. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and the atmosphere including weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, surface water recharge at the local level, and climate and food security globally.
Wang, Zhenjun; Xu, Yuanming
2017-07-01
With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. With the reduction of crude oil throughout the world, enhance oil recovery technology has become a major oil research topics, which can greatly increase the recovery ratio of the crude oil before the dawning of renewable energy era. Near-well ultrasonic processing technology, as one new method, has attracted more attention for Enhanced Oil Recovery due to its low cost, good applicability and no environmental pollution in recent rears. There are two important relevant aspects about Near-well ultrasonic processing technology: (a) how to enhance the oil flow through the rocks into the pumping pool and (b) how to reduce the oil viscosity so that it can be easier to pump. Therefore, how to design a high-power ultrasonic equipment with excellent performance is crucial for Near-well ultrasonic processing technology. In this paper, recent new high-power ultrasonic transducers for Near-well ultrasonic processing technology are summarized. Each field application of them are also given. The purpose of this paper is to provide reference for the further development of Near-well ultrasonic processing technology. Copyright © 2017 Elsevier B.V. All rights reserved.
Graphics Processing Unit Assisted Thermographic Compositing
NASA Technical Reports Server (NTRS)
Ragasa, Scott; McDougal, Matthew; Russell, Sam
2013-01-01
Objective: To develop a software application utilizing general purpose graphics processing units (GPUs) for the analysis of large sets of thermographic data. Background: Over the past few years, an increasing effort among scientists and engineers to utilize the GPU in a more general purpose fashion is allowing for supercomputer level results at individual workstations. As data sets grow, the methods to work them grow at an equal, and often greater, pace. Certain common computations can take advantage of the massively parallel and optimized hardware constructs of the GPU to allow for throughput that was previously reserved for compute clusters. These common computations have high degrees of data parallelism, that is, they are the same computation applied to a large set of data where the result does not depend on other data elements. Signal (image) processing is one area were GPUs are being used to greatly increase the performance of certain algorithms and analysis techniques.
Aging, training, and the brain: A review and future directions
Lustig, Cindy; Shah, Priti; Seidler, Rachael; Reuter-Lorenz, Patricia A.
2010-01-01
As the population ages, the need for effective methods to maintain or even improve older adults’ cognitive performance becomes increasingly pressing. Here we provide a brief review of the major intervention approaches that have been the focus of past research with healthy older adults (strategy training, multi-modal interventions, cardiovascular exercise, and process-based training), and new approaches that incorporate neuroimaging. As outcome measures, neuroimaging data on intervention-related changes in volume, structural integrity, and functional activation can provide important insights into the nature and duration of an intervention's effects. Perhaps even more intriguingly, several recent studies have used neuroimaging data as a guide to identify core cognitive processes that can be trained in one task with effective transfer to other tasks that share the same underlying processes. Although many open questions remain, this research has greatly increased our understanding of how to promote successful aging of cognition and the brain. PMID:19876740
Design and Demonstration of a Miniature Lidar System for Rover Applications
NASA Technical Reports Server (NTRS)
Robinson, Benjamin
2011-01-01
Public awareness of harmful human environmental effects such as global warming has increased greatly in recent years and researchers have increased their efforts in gaining more knowledge about the Earth's atmosphere. Natural and man-made processes pose threats to the environment and human life, so knowledge of all atmospheric processes is necessary. Ozone and aerosols are important factors in many atmospheric processes and active remote sensing techniques provide a way to analyze their quantity and distribution. A compact ground-based lidar system for a robotic platform meant for atmospheric aerosol measurements was designed, tested, and evaluated. The system will eventually be deployed for ozone and aerosol measurements in Mars and lunar missions to improve our knowledge and understanding of atmospheres on Mars and the Moon. Atmospheric testing was performed to test the operability of the receiver system to acquire the lidar return signal from clouds and aerosols.
‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue
Pérez, Laura M.; Pareja‐Galeano, Helios; Sanchis‐Gomar, Fabián; Emanuele, Enzo; Lucia, Alejandro
2016-01-01
Abstract The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi‐organ damage and a systemic pro‐inflammatory state (‘inflammageing’). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi‐system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of ‘adipaging’ to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals. PMID:26926488
Effect of rainfall infiltration into unsaturated soil using soil column
NASA Astrophysics Data System (ADS)
Ibrahim, A.; Mukhlisin, M.; Jaafar, O.
2018-02-01
Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.
ERIC Educational Resources Information Center
Psycharis, Sarantos; Botsari, Evanthia; Chatzarakis, George
2014-01-01
Learning styles are increasingly being integrated into computational-enhanced earning environments and a great deal of recent research work is taking place in this area. The purpose of this study was to examine the impact of the computational experiment approach, learning styles, epistemic beliefs, and engagement with the inquiry process on the…
ERIC Educational Resources Information Center
Plonsky, Luke; Brown, Dan
2015-01-01
Applied linguists have turned increasingly in recent years to meta-analysis as the preferred means of synthesizing quantitative research. The first step in the meta-analytic process involves defining a domain of interest. Despite its apparent simplicity, this step involves a great deal of subjectivity on the part of the meta-analyst. This article…
Causes of Long-Term Drought in the United States Great Plains
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.
2003-01-01
This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
Precipitation scavenging of polychlorinated biphenyl congeners in the great lakes region
NASA Astrophysics Data System (ADS)
Murray, Michael W.; Andren, Anders W.
Ten precipitation events were sampled in the fall of 1986 in Madison, WI and analyzed for individual congener and total polychlorinated biphenyl (PCB) levels in both the dissolved and particulate phases. Total PCB concentrations were generally at the lower end of ranges recently reported for precipitation. Operationally defined dissolved and particulate phase congener distribution patterns for the two events of highest concentration were qualitatively similar to gas-phase and particle-bound patterns for northern Wisconsin air samples. Higher than predicted dissolved-phase concentrations may indicate non-equilibrium processes during scavenging and/or sample processing, the presence of colloids and micro-particulates, and/or more efficient gas-phase transfer to hydrometeors with organic coatings. Observed organic carbon-normalized distribution coefficients increased slightly with increasing octanol-water partition coefficient, giving the relationship log Koc = 0.22 log Kow + 4.64. The data indicate that a third organic-rich colloidal phase could be influencing partitioning, and could explain the higher than expected apparent gas scavenging efficiency for PCBs from the atmosphere. Precipitation-weighted mean fluxes of PCBs in the dissolved and particulate phases were 1.2 and 1.4 μg m -2 year -1, respectively, indicating that precipitation remains a significant source of PCBs to the upper Great Lakes.
Leahy, Susannah M.; Kingsford, Michael J.; Steinberg, Craig R.
2013-01-01
Evidence of global climate change and rising sea surface temperatures (SSTs) is now well documented in the scientific literature. With corals already living close to their thermal maxima, increases in SSTs are of great concern for the survival of coral reefs. Cloud feedback processes may have the potential to constrain SSTs, serving to enforce an “ocean thermostat” and promoting the survival of coral reefs. In this study, it was hypothesized that cloud cover can affect summer SSTs in the tropics. Detailed direct and lagged relationships between cloud cover and SST across the central Great Barrier Reef (GBR) shelf were investigated using data from satellite imagery and in situ temperature and light loggers during two relatively hot summers (2005 and 2006) and two relatively cool summers (2007 and 2008). Across all study summers and shelf positions, SSTs exhibited distinct drops during periods of high cloud cover, and conversely, SST increases during periods of low cloud cover, with a three-day temporal lag between a change in cloud cover and a subsequent change in SST. Cloud cover alone was responsible for up to 32.1% of the variation in SSTs three days later. The relationship was strongest in both El Niño (2005) and La Niña (2008) study summers and at the inner-shelf position in those summers. SST effects on subsequent cloud cover were weaker and more variable among study summers, with rising SSTs explaining up to 21.6% of the increase in cloud cover three days later. This work quantifies the often observed cloud cooling effect on coral reefs. It highlights the importance of incorporating local-scale processes into bleaching forecasting models, and encourages the use of remote sensing imagery to value-add to coral bleaching field studies and to more accurately predict risks to coral reefs. PMID:23894649
NASA Technical Reports Server (NTRS)
Imhoff, Marc Lee; Kamiell, Arnon Menahem
2010-01-01
Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological diversity to changes in regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as "the great transformation". Urbanization or the 'gray wave' of land transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter the land surface so profoundly that both local climate and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools for planning and developing urban places that are both enjoyable and sustainable. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, and surface water recharge at the local level and climate and food security globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less
Radar image enhancement and simulation as an aid to interpretation and training
NASA Technical Reports Server (NTRS)
Frost, V. S.; Stiles, J. A.; Holtzman, J. C.; Dellwig, L. F.; Held, D. N.
1980-01-01
Greatly increased activity in the field of radar image applications in the coming years demands that techniques of radar image analysis, enhancement, and simulation be developed now. Since the statistical nature of radar imagery differs from that of photographic imagery, one finds that the required digital image processing algorithms (e.g., for improved viewing and feature extraction) differ from those currently existing. This paper addresses these problems and discusses work at the Remote Sensing Laboratory in image simulation and processing, especially for systems comparable to the formerly operational SEASAT synthetic aperture radar.
Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR
2002-05-28
The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.
Extending the boundaries of reverse engineering
NASA Astrophysics Data System (ADS)
Lawrie, Chris
2002-04-01
In today's market place the potential of Reverse Engineering as a time compression tool is commonly lost under its traditional definition. The term Reverse Engineering was coined way back at the advent of CMM machines and 3D CAD systems to describe the process of fitting surfaces to captured point data. Since these early beginnings, downstream hardware scanning and digitising systems have evolved in parallel with an upstream demand, greatly increasing the potential of a point cloud data set within engineering design and manufacturing processes. The paper will discuss the issues surrounding Reverse Engineering at the turn of the millennium.
NASA Astrophysics Data System (ADS)
Eibl, R.; Eibl, D.
In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.
Finding gene-environment interactions for phobias.
Gregory, Alice M; Lau, Jennifer Y F; Eley, Thalia C
2008-03-01
Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G x E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G x Es for phobias. In addition to the careful conceptualisation of new studies, it is suggested that data already collected should be re-analysed in light of increased understanding of processes influencing phobias.
The evolution of cerebellum structure correlates with nest complexity.
Hall, Zachary J; Street, Sally E; Healy, Susan D
2013-01-01
Across the brains of different bird species, the cerebellum varies greatly in the amount of surface folding (foliation). The degree of cerebellar foliation is thought to correlate positively with the processing capacity of the cerebellum, supporting complex motor abilities, particularly manipulative skills. Here, we tested this hypothesis by investigating the relationship between cerebellar foliation and species-typical nest structure in birds. Increasing complexity of nest structure is a measure of a bird's ability to manipulate nesting material into the required shape. Consistent with our hypothesis, avian cerebellar foliation increases as the complexity of the nest built increases, setting the scene for the exploration of nest building at the neural level.
The aluminum smelting process.
Kvande, Halvor
2014-05-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.
Yang, Maohua; Li, Wangliang; Liu, Binbin; Li, Qiang; Xing, Jianmin
2010-07-01
In this paper, high-concentration sugars were produced from pretreated corn stover. The raw corn stover was pretreated in a process combining steam explosion and alkaline hydrogen-peroxide. The hemicellulose and lignin were removed greatly. The cellulose content increased to 73.2%. Fed-batch enzymatic hydrolysis was initiated with 12% (w/v) solids loading and 20 FPU/g solids. Then, 6% solids were fed consecutively at 12, 36 and 60 h. After 144 h, the final concentrations of reducing sugar, glucose, cellobiose and xylose reached 220, 175, 22 and 20 g/L, respectively. The final total biomass conversion was 60% in fed-batch process. Copyright 2009 Elsevier Ltd. All rights reserved.
2014-01-01
This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development. PMID:24806722
NASA Astrophysics Data System (ADS)
Swastawati, F.; Roessali, W.; Wijayanti, I.; Anggo, A. D.
2018-01-01
This study aims to evaluate the empowerment program to increase the production capacity of fishery product processing. Empowerment program was the implementation and utilization of science and technology in the area (IPTEKDA) LIPI Indonesia for Higher Education. Activity carried out in 2016 on fish processing industry “Lumintu Group”. Implementation of activities includes the transfer of technology to increase production capacity, business capital assistance in the form of production equipment, production assistance, and business management. This study uses qualitative, descriptive analysis, data collection with observation, interviews, and questionnaires. The results showed that the total number of active members was 24 people, 50% of the members specially cultivated the smoked fish that is the type of Catfish (Arius thalassinus) and Stingray (Dasyatis sp), while 45.83% of members processed boneless milkfish, and 4,17% produce salted fish. Increased average production scale of 31.82% in smoked fish business, 12.4% in boneless milkfish and 38.89% in salted fish business. Willingness to return capital in the good category, meaning that all members were able to carry out the schedule of relative payback on time. Approximately 83.3% of the group members felt that the program that followed had greatly assisted in increasing the scale of business but hoped to improve skills in terms of processing and marketing.
Urea removal coupled with enhanced electricity generation in single-chambered microbial fuel cells.
Wang, Luguang; Xie, Beizhen; Gao, Ningshengjie; Min, Booki; Liu, Hong
2017-09-01
High concentration of total ammonia nitrogen (TAN) in the form of urea is known to inhibit the performance of many biological wastewater treatment processes. Microbial fuel cells (MFCs) have great potential for TAN removal due to its unique oxic/anoxic environment. In this study, we demonstrated that increased urea (TAN) concentration up to 3940 mg/L did not inhibit power output of single-chambered MFCs, but enhanced power generation by 67% and improved coulombic efficiency by 78% compared to those obtained at 80 mg/L of TAN. Over 80% of nitrogen removal was achieved at TAN concentration of 2630 mg/L. The increased nitrogen removal coupled with significantly enhanced coulombic efficiency, which was observed for the first time, indicates the possibility of a new electricity generation mechanism in MFCs: direct oxidation of ammonia for power generation. This study also demonstrates the great potential of using one MFC reactor to achieve simultaneous electricity generation and urea removal from wastewater.
Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee
2015-01-01
Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512
Measuring response to a cancer information telephone facility: Can-Dial.
Wilkinson, G S; Mirand, E A; Graham, S
1976-01-01
In an attempt to meet the need for increasing public knowledge about cancer, a system providing free information by telephone has been developed. The system is comprised of 36 pre-recorded taped lectures containing information about various aspects of cancer. Interested individuals call a toll-free number, indicate a topic of interest, and listen to the pre-recorded lecture over the phone. An operator handles incoming calls and obtains information from callers used in evaluating the program. During the first year of operation, over 30,000 calls were processed. Topics most frequently requested included those concerning smoking, breast and cervical cancer, and general information. Female response exceeded male response in all age categories. Older people responded less frequently than younger. Urban utilization greatly exceeded suburban and rural utilization. Considerable fluctuation in response related to promotional activities was found. Printed advertisements elicited far greater response than radio and television. Promotional efforts in an experimental group of low-utilizing townships greatly increased utilization while no change was observed in a control group. PMID:1267080
Yang, Yong; Wang, Peng-peng; Zhang, Zhi-cheng; Liu, Hui-ling; Zhang, Jingchao; Zhuang, Jing; Wang, Xun
2013-01-01
Interfacial diffusion is of great importance in determining the performance of solid-state reactions. For nanometer sized particles, some solid-state reactions can be triggered accidently by mechanical stress owing to their large surface-to-volume ratio compared with the bulk ones. Therefore, a great challenge is the control of interfacial diffusion for solid state reactions, especially for energetic materials. Here we demonstrate, through the example of nanowire-based thermite membrane, that the thermite solid-state reaction can be easily tuned via the introduction of low-surface-energy coating layer. Moreover, this silicon-coated thermite membrane exhibit controlled wetting behavior ranging from superhydrophilic to superhydrophobic and, simultaneously, to significantly reduce the friction sensitivity of thermite membrane. This effect enables to increase interfacial resistance by increasing the amount of coating material. Indeed, our results described here make it possible to tune the solid-state reactions through the manipulation of interfacial diffusion between the reactants. PMID:23603809
Process-based quality for thermal spray via feedback control
NASA Astrophysics Data System (ADS)
Dykhuizen, R. C.; Neiser, R. A.
2006-09-01
Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sievers, David A.; Lischeske, James J.; Biddy, Mary J.
Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less
NASA Technical Reports Server (NTRS)
Dhooge, P. M.; Nimitz, J. S.
2001-01-01
Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.
Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1
Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu
1999-01-01
We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannen, Vinicius, E-mail: kannen71@yahoo.com.br; Marini, Tassiana; Zanette, Dalila L.
Research highlights: {yields} We investigated melatonin against the malignant effects of constant light. {yields} Melatonin supplementation increased its serum levels and its receptor expression. {yields} Melatonin decreased cancer stem cells and dysplastic injuries in colon tissue. {yields} Melatonin controlled proliferative process and apoptosis induction. -- Abstract: Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed andmore » MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL.« less
Adjustable typography: an approach to enhancing low vision text accessibility.
Arditi, Aries
2004-04-15
Millions of people have low vision, a disability condition caused by uncorrectable or partially correctable disorders of the eye. The primary goal of low vision rehabilitation is increasing access to printed material. This paper describes how adjustable typography, a computer graphic approach to enhancing text accessibility, can play a role in this process, by allowing visually-impaired users to customize fonts to maximize legibility according to their own visual needs. Prototype software and initial testing of the concept is described. The results show that visually-impaired users tend to produce a variety of very distinct fonts, and that the adjustment process results in greatly enhanced legibility. But this initial testing has not yet demonstrated increases in legibility over and above the legibility of highly legible standard fonts such as Times New Roman.
cudaMap: a GPU accelerated program for gene expression connectivity mapping
2013-01-01
Background Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. Results cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Conclusion Emerging ‘omics’ technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap. PMID:24112435
Optical and electrical nano eco-sensors using alternative deposition of charged layer
NASA Astrophysics Data System (ADS)
Ahmed, Syed Rahin; Hong, Seong Cheol; Lee, Jaebeom
2011-03-01
This review focuses on layer by layer (LBL) assembly-based nano ecological sensor (hereafter, eco-sensor) for pesticide detection, which is one of the most versatile methods. The effects of pesticides on human health and on the environment (air, water, soil, plants, and animals) are of great concern due to their increasing use. We highlight two of the most popular detecting methods, i.e., fluorescence and electrochemical detection of pesticides on an LBL assembly. Fluorescence materials are of great interest among researchers for their sensitivity and reliable detection, and electrochemical processes allow us to investigate synergistic interactions among film components through charge transfer mechanisms in LBL film at the molecular level. Then, we noted some prospective directions for development of different types of sensing systems.
Study on boring hardened materials dryly by ultrasonic vibration cutter
NASA Astrophysics Data System (ADS)
Zhang, Jiangzhong; Zhang, Heng; Zhang, Yue
2011-05-01
It has been one of the difficulties that high-precision hole on hardened materials is machined. The supersonic vibration boring acoustic system in the lathe in which supersonic wave energy is applied on tool is introduced to create pulse power on the cutting process. The separation vibration cutting is achieved by the pulse force. The comparative tests on boring accuracy and surface quality are carried. The quality of surface machined by this method is compared to that by grinding. This cutting is the green cutting. The boring process system is stability. Under the condition that the cutting speed is less than or equal to 1/3 the tool vibration speed, the cutting force is pulse force and the Cutting energy is of high concentration in time, space and direction. The pulse energy effects on the cutting unit in less than one ten-thousandth second. Traditional cutting of irregular movement elastic compression are eliminated. The cutting force is greatly reduced. The cutting temperature is at room temperature. The tool life is greatly increased. Shape precision and surface quality is greatly improved. The regulations of the ultrasonic vibration boring dry cutting of hardened material are also summarized. The test results show that the ultrasonic vibration cutting tool boring is of very superior cutting mechanism and is a high-precision deep-hole machining of hardened materials, efficient cutting methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hongmei, E-mail: hmchen@just.edu.cn; Zang, Qianhao; Yu, Hui
2015-08-15
Twin roll cast (designated as TRC in short) ZK60 magnesium alloy strip with 3.5 mm thickness was used in this paper. The TRC ZK60 strip was multi-pass rolled at different temperatures, intermediate annealing heat treatment was performed when the thickness of the strip changed from 3.5 mm to 1 mm, and then continued to be rolled until the thickness reached to 0.5 mm. The effect of intermediate annealing during rolling process on microstructure, texture and room temperature mechanical properties of TRC ZK60 strip was studied by using OM, TEM, XRD and electronic universal testing machine. The introduction of intermediate annealingmore » can contribute to recrystallization in the ZK60 sheet which was greatly deformed, and help to reduce the stress concentration generated in the rolling process. Microstructure uniformity and mechanical properties of the ZK60 alloy sheet were also improved; in particular, the room temperature elongation was greatly improved. When the TRC ZK60 strip was rolled at 300 °C and 350 °C, the room temperature elongation of the rolled sheet with 0.5 mm thickness which was intermediate annealed during the rolling process was increased by 95% and 72% than that of no intermediate annealing, respectively. - Highlights: • Intermediate annealing was introduced during hot rolling process of twin roll cast ZK60 alloy. • Intermediate annealing can contribute to recrystallization and reduce the stress concentration in the deformed ZK60 sheet. • Microstructure uniformity and mechanical properties of the ZK60 sheet were improved, in particular, the room temperature elongation. • The elongation of the rolled ZK60 sheet after intermediate annealed was increased by 95% and 72% than that of no intermediate annealing.« less
Noise reduction in plasmonic amplifiers
NASA Astrophysics Data System (ADS)
Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-06-01
Surface plasmon polaritons amplification give the possibility to overcome strong absorption in metals and design truly nanoscale devices for on-chip photonic circuits. However, the process of stimulated emission in the gain medium is inevitably accompanied by spontaneous emission, which greatly increases the noise power. Herein we present an efficient strategy for noise reduction in plasmonic amplifiers,which is based on gain redistribution along the amplifier. We show that even a very small gain redistribution (∼3%) makes it possible to increase the signal-to-noise ratio by ∼100% and improve the bit error ratio by orders of magnitude.
Using scoping as a design process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulvihill, P.R.; Jacobs, P.
1998-07-01
Skillful use of the scoping phase of environment assessment (EA) is critical in cases involving a wide diversity of stakeholders and perspectives. Scoping can exert a strong influence in shaping a relevant impact assessment and increasing the probability of a process that satisfies stakeholders. This article explores key challenges facing scoping processes conducted in highly pluralistic settings. Elements of a notable case study--the scoping process conducted in 1992 for the proposed Great Whale Hydroelectric project in Northern Quebec--are discussed to illustrate innovative approaches. When used as a design process, scoping can ensure that EA reflects the different value sets andmore » cultures that are at play, particularly where diverse knowledge systems and ways of describing environmental components and impacts exist. As it sets the stage for subsequent steps in the EA process, scoping needs to be a sufficiently broad umbrella that accommodates diverse approaches to identifying, classifying, and assessing impacts.« less
Seeing the forest for the trees: Networked workstations as a parallel processing computer
NASA Technical Reports Server (NTRS)
Breen, J. O.; Meleedy, D. M.
1992-01-01
Unlike traditional 'serial' processing computers in which one central processing unit performs one instruction at a time, parallel processing computers contain several processing units, thereby, performing several instructions at once. Many of today's fastest supercomputers achieve their speed by employing thousands of processing elements working in parallel. Few institutions can afford these state-of-the-art parallel processors, but many already have the makings of a modest parallel processing system. Workstations on existing high-speed networks can be harnessed as nodes in a parallel processing environment, bringing the benefits of parallel processing to many. While such a system can not rival the industry's latest machines, many common tasks can be accelerated greatly by spreading the processing burden and exploiting idle network resources. We study several aspects of this approach, from algorithms to select nodes to speed gains in specific tasks. With ever-increasing volumes of astronomical data, it becomes all the more necessary to utilize our computing resources fully.
Breaking the Curse of Cardinality on Bitmap Indexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Wu, Kesheng; Stockinger, Kurt
2008-04-04
Bitmap indexes are known to be efficient for ad-hoc range queries that are common in data warehousing and scientific applications. However, they suffer from the curse of cardinality, that is, their efficiency deteriorates as attribute cardinalities increase. A number of strategies have been proposed, but none of them addresses the problem adequately. In this paper, we propose a novel binned bitmap index that greatly reduces the cost to answer queries, and therefore breaks the curse of cardinality. The key idea is to augment the binned index with an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure significantly reduces the I/Omore » operations needed to resolve records that cannot be resolved with the bitmaps. To further improve the proposed index structure, we also present a strategy to create single-valued bins for frequent values. This strategy reduces index sizes and improves query processing speed. Overall, the binned indexes with OrBiC great improves the query processing speed, and are 3 - 25 times faster than the best available indexes for high-cardinality data.« less
Tan, Jingsheng; Zhan, Lihua; Zhang, Jiao; Yang, Zhan; Ma, Ziyao
2016-01-01
To realize the high-efficiency and high-performance manufacture of complex high-web panels, this paper introduced electric pulse current (EPC) into the stress relaxation aging forming process of 2219 aluminum alloy and systematically studied the effects of EPC, stress, and aging time upon the microstructure and properties of 2219 aluminum alloy. It is discovered that: (a) EPC greatly enhanced the mechanical properties after stress relaxation aging and reduced the sensitivity of the yield strength for the initial stress under the aging system of 165 °C/11 h; (b) compared with general aging, stress relaxation aging instead delayed the aging process of 2219 aluminum alloy and greatly increased the peak strength value; (c) EPC accelerated the aging precipitation behavior of 2219 aluminum alloy and reduced transgranular and grain-boundary energy difference, thus leading to a more diffused distribution of the transgranular precipitated phase and the absence of a significant precipitation-free zone (PFZ) and grain-boundary stable phase in the grain boundary, further improving the mechanical properties of the alloy. PMID:28773660
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Liu, Shih-Chii; Delbruck, Tobi
2010-06-01
Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
Nanomaterials for renewable energy
Chen, Shimou; Li, Liang; Sun, Hanwen; ...
2015-05-19
With demand for sustainable energy, resource, and environment protection, new material technologies are constantly expanding during the last few couple of decades. An intensive attention has been given by the scientific communities. In particular, nanomaterials are increasingly playing an active role either by increasing the efficiency of the energy storage and conversion processes or by improving the device design and performance. This special issue presents recent research advances in various aspects of energy storage technologies, advanced batteries, fuel cells, solar cell, biofuels, and so on. Design and synthesis of novel materials have demonstrated great impact on the utilization of themore » sustainable energy, which need to solve the increasing shortage of resource and the issues of environmental pollution.« less
Role of clusters in nonclassical nucleation and growth of protein crystals
Sleutel, Mike; Van Driessche, Alexander E. S.
2014-01-01
The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called “precritical clusters” that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process. PMID:24449867
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms. PMID:22016625
Liu, Yi-Hung; Chen, Yan-Jen
2011-01-01
Defect detection has been considered an efficient way to increase the yield rate of panels in thin film transistor liquid crystal display (TFT-LCD) manufacturing. In this study we focus on the array process since it is the first and key process in TFT-LCD manufacturing. Various defects occur in the array process, and some of them could cause great damage to the LCD panels. Thus, how to design a method that can robustly detect defects from the images captured from the surface of LCD panels has become crucial. Previously, support vector data description (SVDD) has been successfully applied to LCD defect detection. However, its generalization performance is limited. In this paper, we propose a novel one-class machine learning method, called quasiconformal kernel SVDD (QK-SVDD) to address this issue. The QK-SVDD can significantly improve generalization performance of the traditional SVDD by introducing the quasiconformal transformation into a predefined kernel. Experimental results, carried out on real LCD images provided by an LCD manufacturer in Taiwan, indicate that the proposed QK-SVDD not only obtains a high defect detection rate of 96%, but also greatly improves generalization performance of SVDD. The improvement has shown to be over 30%. In addition, results also show that the QK-SVDD defect detector is able to accomplish the task of defect detection on an LCD image within 60 ms.
Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P
2016-03-01
We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.
Rectal nitric oxide and fecal calprotectin in inflammatory bowel disease.
Reinders, Claudia A; Jonkers, Daisy; Janson, Emmellie A; Stockbrügger, Reinhold W; Stobberingh, Ellen E; Hellström, Per M; Lundberg, Jon O
2007-10-01
The assessment of intestinal inflammation in patients with inflammatory bowel disease (IBD) remains a difficult challenge. Both rectal nitric oxide (NO) and fecal calprotectin can be measured using non-invasive methods and are emerging as promising inflammatory markers in IBD. In this study the aim was to compare calprotectin and NO levels in IBD patients. Rectal NO was measured tonometrically in 23 healthy volunteers and 32 patients with IBD. In addition, we collected stool samples from all subjects for measurement of fecal calprotectin and nitrate/nitrite (NO metabolites). Patients with IBD had greatly increased NO and calprotectin levels compared to healthy volunteers (p <0.001). In addition, the nitrate levels were slightly increased in IBD patients. A weak correlation was found between rectal NO levels, disease activity and number of loose stools in IBD patients (Spearman's rho 0.37 and 0.51, respectively; p <0.05). Fecal calprotectin correlated only with age (Spearman's rho 0.51; p <0.01). However, no correlation was found between NO and calprotectin. Both rectal NO and fecal calprotectin are greatly increased during bowel inflammation, but they may reflect different parts of the inflammatory process. Future studies will elucidate the clinical usefulness of these two markers.
NASA Astrophysics Data System (ADS)
Zhang, Huaiwei; Fu, Li; Xuan, Weidong; Li, Xingguo
2018-05-01
Nano-Ni drived modification in LaMg3/Ni composite is investigated. The new phases of LaMg2 and MgNi2 can be formed on the sample surface during the milling process. There is almost no electric charge transfer process between Ni and La element through XPS analyses. The amorphization structure can be found on the alloy surface with the increasing of reaction duration, and the capacity and cycle stability are also greatly promoted. On the other hand, the milled alloys show the lower charge transfer resistance, better anti-corrosion ability and higher oxidation current density.
Epigenetics and Therapeutic Targets Mediating Neuroprotection
Qureshi, Irfan A.; Mehler, Mark F.
2015-01-01
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020
Xue, Chuang; Zhao, Jingbo; Chen, Lijie; Yang, Shang-Tian; Bai, Fengwu
Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol. Copyright © 2017 Elsevier Inc. All rights reserved.
Making vaccines "on demand": a potential solution for emerging pathogens and biodefense?
De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William
2013-09-01
The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of "novel pathogens" such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process-from genome to gene sequence, ready to insert in a DNA plasmid-can now be accomplished in less than 24 h. While these vaccines are by no means "standard," the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard.
Grassland Npp Monitoring Based on Multi-Source Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Cai, Y. R.; Zheng, J. H.; Du, M. J.; Mu, C.; Peng, J.
2018-04-01
Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in 2006-2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed NDVI has been greatly improved. The results show that: (1) The NPP calculated from the new normalized vegetation index (NDVI) obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP have a certain relationship with precipitation.
[The toxicity variation of organic extracts in drinking water treatment processes].
Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z
2001-01-01
Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.
Great Basin Native Plant Selection and Increase Project: 2012 progress report
Nancy Shaw; Mike Pellant
2013-01-01
The Interagency Native Plant Materials Development Program outlined in the 2002 USDA and USDI Report to Congress, USDI Bureau of Land Management programs and policies, and the Great Basin Restoration Initiative encourage the use of native species for rangeland rehabilitation and restoration where feasible. The Great Basin Native Plant Selection and Increase Project was...
Semantic encoding of relational databases in wireless networks
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Walker, Adrian
2005-03-01
Semantic Encoding is a new, patented technology that greatly increases the speed of transmission of distributed databases over networks, especially over ad hoc wireless networks, while providing a novel method of data security. It reduces bandwidth consumption and storage requirements, while speeding up query processing, encryption and computation of digital signatures. We describe the application of Semantic Encoding in a wireless setting and provide an example of its operation in which a compression of 290:1 would be achieved.
Replacement of Coconut Oils with Unsaturated Oils in Recombined Filled Milk
1992-10-01
preliminary study only) or high-temperature-short-time ( HTST ) pasteurization. The milk was cooled, packaged and stored at 35 0F. In formulations where Actoloids...Each of 30 gallon formulation was then processed through a De Laval 460 GPH HTST pasteurizer (De Laval Brand, Alfa-Laval Agri Inc., Everett, MA) and...However, it was noted that HTST pasteurization greatly reduced the extent to which these defects were noticed. Furthermore, an increase in the percent
Optimal Topology Control and Power Allocation for Minimum Energy Consumption in Consensus Networks
2011-12-16
network topologies, such as small world graphs, can greatly increase the convergence rate. In [9], the authors show that nonbipartite Ramanujan graphs...unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 23384 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60...of iterations necessary to achieve consensus. From this perspec- tive, enforcing a small world, scale-free, or Ramanujan graph topology may not be the
[Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].
Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang
2013-01-01
Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.
Cardinali-Rezende, Juliana; Rojas-Ojeda, Patricia; Nascimento, Andréa M A; Sanz, José L
2016-03-01
Biomethanization entails a good means to reduce the organic fraction (OF) derived from municipal solid wastes (MSW). The bacterial diversity of a full scale MSW anaerobic reactor located in Madrid (Spain) was investigated using high-throughput 454 pyrosequencing. Even though the proteolytic bacteria prevailed throughout all of the process, community shifts were observed from the start-up to the steady-state conditions, with an increasing biodiversity displayed over time. The Bacteroidetes and the Firmicutes were the majority phyla: 55.1 and 40.2% (start-up) and 18.7 and 78.7 (steady-state) of the total reads. The system's lack of evenness remains noteworthy as the sequences affiliated to the proteolytic non-saccharolytic Proteiniphylum, Gallicola and Fastidiosipila genera, together with the saccharolytic Saccharofermentans, were predominant on the system and this predominance appears to correlate with the presence of a high ammonium concentration. The 454 pyrosequencing revealed a great diversity of rare organisms which seemingly do not sustain any metabolic roles in the course of the OF-MSW degradation. However, this scarce and unique microbiota can confer great resilience to the system as a buffer against nutritional and environmental changing conditions, thus opening the door to increase the current knowledge about the bacterial community dynamics taking place during MSW treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nato Lopez, Frank D.
Worldwide, there is an ever increasing need for sustainable, renewable fuels that will accommodate the rapidly increasing energy demand and provide independence from fossil fuels. The search for a sustainable alternative to petroleum based fuels has been a great challenge to the scientific community; therefore, great efforts are being made to overcome the fossil fuels dependence by exploring the prominent field of biofuels (bioethanol and biodiesel). Traditional biodiesel is produced from feedstocks such as vegetable oils and animal fats by converting the triglycerides with methanol in the presence of a homogeneous catalyst to produce fatty acid methyl esters (FAMEs). However, drawbacks of this process are the undesired glycerol byproduct and post reaction processing, including separation from reaction mixture, that results in high costs factors. In the present work, the reaction kinetics of a glycerol-free biodiesel method is studied. This method consists of the transesterification of a vegetable oil (i.e. canola oil) using dimethyl carbonate (DMC) as an alternative methylating agent in presence of layered double hydroxides doped with triazabicyclodecene catalyst (a basic organocatalyst). Furthermore, is theorized that this heterogeneous catalyst (TBD/LDH) simultaneously converts both FFAs and triglycerides due to acid sites formed by Al3+ active sites of the LDH structure. Additionally, the versatility of the Raman in situ technique was used as quantitative analysis tool to monitor the reaction kinetics and collect real time data.
Advances in Age-related Macular Degeneration Understanding and Therapy
Miller, Joan W; Bagheri, Saghar; Vavvas, Demetrios G
2017-01-01
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD. PMID:29142592
Modeling information diffusion in time-varying community networks
NASA Astrophysics Data System (ADS)
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
The future of the OSHA PSM standard.
Kaelin, David E
2014-07-01
The significance of the proposed PSM changes could be to greatly expand coverage of processes in order to include many not currently covered by the PSM regulation. New chemicals will likely be added to Appendix A, and reactive chemicals (a definition will be needed) also may be covered. What exactly will be the definition of a reactive chemical is unclear at this time, although definitions used in New Jersey in the TCPA Act may guide OSHA. It is likely that atmospheric storage of flammable liquids will be included more specifically and the exemption of these tanks eliminated. In applying RAGAGEP, sites may be required to apply the most recent codes and standards to covered processes, perhaps at the time of PHA auditing: A narrowing of the PSM exemption for retail facilities could bring many of them under the PSM regulation at some level. Process safety management practices should be applied to all facilities that store and process hazardous materials that have fire, explosion, reactivity, and toxic properties. If changes are made to the PSM regulation, many new sites will be covered and will need to formally adopt PSM as defined in the OSHA regulation. The addition of reactive chemicals to the PSM regulation will greatly expand the number of processes covered by the regulation. Keeping up with the most current codes, standards, and legislative changes is a daunting task that may require the support of specialists. The results of the proposed legislation will be an increase in the level of process safety excellence throughout the chemical industries.
Fabrication, characterization, and modeling of piezoelectric fiber composites
NASA Astrophysics Data System (ADS)
Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou
2013-07-01
Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.
Svensson, Tommy; Björklund, Anita
2010-01-01
During the last decades sickness absence from work has become a great societal problem. Questions of how rehabilitation processes should become successful and how peoples' ability to work can be improved have become of great public interest. In this paper we discuss three well-known theoretical perspectives regarding their usefulness when it comes to research on rehabilitation for return to work. The three perspectives are: Antonovsky's salutogenic model of health, Kielhofner's model of human occupation and Scheff's sociological theory of "shame and pride". Each of these can be applied to increase understanding and knowledge concerning sickness absence and return to work. We discuss points of affinity among the three perspectives, as well as significant differences, and we propose that a very essential common denominator is the importance of self-experience.
Integrating Climate Change into Great Lakes Protection
NASA Astrophysics Data System (ADS)
Hedman, S.
2012-12-01
Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency Agreements. EPA has provided GLRI funding for a diverse suite of climate change-related projects including Great Lakes climate change research and modeling; adaptation plan development and implementation; ecosystem vulnerability assessments; outreach and education programs; habitat restoration and protection projects that will increase ecosystem resilience; and other projects that address climate change impacts. This presentation will discuss how the GLRI is helping to improve the climate change science needed to support the Action Plan. It will further describe how the GLRI is helping coordinate climate change efforts among Great Lakes states, tribes, Federal agencies, and other stakeholders. Finally, it will discuss how the GLRI is facilitating adaptation planning by our Great Lakes partners. The draft Lake Superior Ecosystem Climate Change Adaptation Plan serves as a case study for an integrated, collaborative, and coordinated climate change effort.
NASA Astrophysics Data System (ADS)
Sullivan, R.; van Hengstum, P. J.; Winkler, T. S.; Donnelly, J. P.; Albury, N. A.; Steadman, D. W.
2016-12-01
Sinkholes and blueholes provide sheltered basins on carbonate landscapes for sediments and fossils to accumulate and remain protected from reworking by coastal processes. These sedimentary archives can span hundreds to thousands of years and may contain detailed records of environmental change and landscape evolution. Great Cistern Blue Hole on Great Abaco Island in the northern Bahamas provides such an archive. Today situated a few meters above sea level in the coastal zone, Great Cistern was likely located further inland prior to a geometric change to the local coastline and during lower sea-level. To explore the long-term record of environmental change in this region, sediment cores were collected between 2014 and 2015 that yielded an 8,000-year record of continuous sedimentation. Visual inspection of the core revealed multiple intervals dominated by coarse-grained sediment that subsequent microscopic examination identified as fragments of calcite rafts. Calcite rafts (common in caves) precipitate at an air-groundwater interface in quiescent environments from the offgassing of calcium carbonate saturated groundwater. The recurrent precipitation of calcite rafts in a sinkhole potentially reflects intervals of increased discharge of the local coastal aquifer in response to increased precipitation. The onset, peak, and decline of the calcite raft deposits are consistent with other precipitation proxy records from the Caribbean region, suggesting that the deposition is providing direct evidence for middle Holocene precipitation patterns in the northern Bahamas. In addition, numerous vertebrate bones have accumulated in Great Cistern including those of a Bahamian Boa (age: 7ka yBP), a species of crocodile no longer present on Abaco Island (age: 2ka yBP), and pre-European contact human remains (age: 600 yBP). As the project continues, other bones will be identified that may serve to enhance our knowledge of human and animal activity on the island.
Isoflavone profile in soymilk as affected by soybean variety, grinding, and heat-processing methods.
Zhang, Yan; Chang, Sam K C; Liu, Zhisheng
2015-05-01
Isoflavones impart health benefits and their overall content and profile in foods are greatly influenced at each step during processing. In this study, 2 soybean varieties (Prosoy and black soybean) were processed with 3 different grinding (ambient, cold, and hot grinding) and heating methods (traditional stove cooking, 1-phase UHT, and 2-phase UHT) for soymilk making. The results showed after cold, ambient, and hot grinding, the total isoflavones were 3917, 5013, and 5949 nmol/g for Prosoy; the total isoflavones were 4073, 3966, and 4284 nmol/g for black soybean. Grinding could significantly increase isoflavone extraction. The grinding process had a destructive effect on isoflavones and this effect varied with grinding temperature. Different heating methods had different effects on different isoflavone forms. Two soybean varieties showed distinct patterns with respect to the change of isoflavone profile during processing. © 2015 Institute of Food Technologists®
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1978-01-01
Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible cost through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. A format for techno-economic analysis of solar cell production processes was developed, called the University of Pennsylvania Process Characterization (UPPC) format. The accumulated Cz process data are presented.
Muneer, Faraz; Johansson, Eva; Hedenqvist, Mikael S; Plivelic, Tomás S; Markedal, Keld Ejdrup; Petersen, Iben Lykke; Sørensen, Jens Christian; Kuktaite, Ramune
2018-04-01
Two fractions from pea (Pisum sativum L.), protein isolate (PPI) and dietary fiber (PF), were newly produced by extraction-fractionation method and characterized in terms of particle size distribution and structural morphology using SEM. The newly produced PPI and PF fractions were processed into pasta-like sheets with varying protein to fiber ratios (100/0, 90/10, 80/20, 70/30 and 50/50, respectively) using high temperature compression molding. We studied protein polymerization, molecular structure and protein-fiber interactions, as well as mechanical performance and cooking characteristics of processed PPI-PF blends. Bi-modal particle size distribution and chemical composition of the PPI and PF fractions influenced significantly the physicochemical properties of the pasta-like sheets. Polymerization was most pronounced for the 100 PPI, 90/10 and 80/20 PPI-PF samples as studied by SE-HPLC, and polymerization decreased with addition of the PF fraction. The mechanical properties, as strength and extensibility, were likewise the highest for the 100 PPI and 90/10 PPI-PF blends, while the E-modulus was similar for all the studied blends (around 38 MPa). The extensibility decreased with the increasing amount of PF in the blend. The highest amounts of β-sheets were found in the pasta-like sheets with high amounts of PPI (100, 90 and 80%), by FT-IR. An increase in PF fraction in the blend, resulted into the high amounts of unordered structures as observed by FT-IR, as well as in an increase in the molecular scattering distances observed by SAXS. The water uptake increased and cooking loss decreased with increased proportions of the PF fraction, and the consistency of 10 min cooked pasta-like sheets were alike al dente texture. The new knowledge obtained in this study on the use of extraction-fractionation method to produce novel PPI and PF fractions for developing innovative high nutritious food can be of a great importance. The obtained knowledge on the pea protein and fiber processing behaviour could greatly contribute to a better control of functional properties of various temperature-processed products from yellow pea. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
Large parts can be treated without disassembling machines using “Extra”, having technological and design challenges, which differ from the challenges in the processing of these components on the stationary machine. Extension machines are used to restore large parts up to the condition allowing one to use them in a production environment. To achieve the desired accuracy and surface roughness parameters, the surface after rotary grinding becomes recoverable, which greatly increases complexity. In order to improve production efficiency and productivity of the process, the qualitative rotary processing of the machined surface is applied. The rotary cutting process includes a continuous change of the cutting edge surfaces. The kinematic parameters of a rotary cutting define its main features and patterns, the cutting operation of the rotary cutting instrument.
Why a simulation system doesn`t match the plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, R.
1998-03-01
Process simulations, or mathematical models, are widely used by plant engineers and planners to obtain a better understanding of a particular process. These simulations are used to answer questions such as how can feed rate be increased, how can yields be improved, how can energy consumption be decreased, or how should the available independent variables be set to maximize profit? Although current process simulations are greatly improved over those of the `70s and `80s, there are many reasons why a process simulation doesn`t match the plant. Understanding these reasons can assist in using simulations to maximum advantage. The reasons simulationsmore » do not match the plant may be placed in three main categories: simulation effects or inherent error, sampling and analysis effects of measurement error, and misapplication effects or set-up error.« less
NASA Astrophysics Data System (ADS)
Ibarra-Castanedo, Clemente; Sfarra, Stefano; Klein, Matthieu; Maldague, Xavier
2017-05-01
The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.
NASA Astrophysics Data System (ADS)
Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong
2016-06-01
The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.
[Innovative technology and blood safety].
Begue, S; Morel, P; Djoudi, R
2016-11-01
If technological innovations are not enough alone to improve blood safety, their contributions for several decades in blood transfusion are major. The improvement of blood donation (new apheresis devices, RFID) or blood components (additive solutions, pathogen reduction technology, automated processing of platelets concentrates) or manufacturing process of these products (by automated processing of whole blood), all these steps where technological innovations were implemented, lead us to better traceability, more efficient processes, quality improvement of blood products and therefore increased blood safety for blood donors and patients. If we are on the threshold of a great change with the progress of pathogen reduction technology (for whole blood and red blood cells), we hope to see production of ex vivo red blood cells or platelets who are real and who open new conceptual paths on blood safety. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Design and Demonstration of a Miniature Lidar System for Rover Applications
NASA Technical Reports Server (NTRS)
Robinson, Benjamin
2011-01-01
Public awareness of harmful human environmental effects such as global warming has increased greatly in recent years and researchers have increased their efforts in gaining more knowledge about the Earth s atmosphere. Natural and man-made processes pose threats to the environment and human life, so knowledge of all atmospheric processes is necessary. Ozone and aerosols are important factors in many atmospheric processes and active remote sensing techniques provide a way to analyze their quantity and distribution. A compact ground-based lidar system for a robotic platform meant for atmospheric aerosol measurements was designed, tested, and evaluated. The system will eventually be deployed for ozone and aerosol measurements in Mars and lunar missions to improve our knowledge and understanding of atmospheres on Mars and the Moon. All of the major subsystems were described in detail and atmospheric testing was performed to test the operability of the receiver system to acquire the lidar return signal from clouds and aerosols. The measured backscattered results are discussed and compared with theoretical results.
Xiao, Yan; Zhang, Xu; Zhu, Minglong; Tan, Wensong
2013-06-01
The low yield of the biohydrogen production is the main constraint for its industrialization process. In order to improve its production, medium compositions of the hydrogen fermentation by Klebsiella pneumoniae ECU-15 were optimized through the response surface methodology (RSM). Experimental results showed that the optimum hydrogen production of 5363.8 ml/L was obtained when the concentration of glucose, the ammonium sulfate and the trace elements were 35.62 g/L, 2.78 g/L and 23.15 ml/L at temperature 37.0°C, pH 6.0. H2 evolving hydrogenase was greatly enhanced by the optimization of the medium compositions. The activity of H2 evolving hydrogenase increased with the temperature, and decreased with the pH, while the activity of the uptake hydrogenase increased with the temperature and the pH. So the biohydrogen production process of the K. pneumoniae ECU-15 was the comprehensive results of the evolution hydrogen process and the uptake hydrogen process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les
2016-02-01
The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.
Strategies for automatic processing of large aftershock sequences
NASA Astrophysics Data System (ADS)
Kvaerna, T.; Gibbons, S. J.
2017-12-01
Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.
Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee
2016-06-01
Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.
Factors affecting the evolution of coastal wetlands of the Laurentian Great Lakes: An overview
Mayer, T.; Edsall, T.; Munawar, M.
2004-01-01
Coastal wetlands play a pivotal role in the Great Lakes ecosystem. As buffer zones between the land and open waters of the Great Lakes, they perform a variety of essential functions providing both direct and indirect anthropogenic benefits. Geology, morphology and climate are the dominant variables that influence Laurentian Great Lakes wetland development. However, anthropogenic factors are the major contributors to alteration of natural wetland processes. This paper provides an overview of natural and anthropogenic factors important in Great Lakes coastal wetland development and provides statistical information describing the Great Lakes Basin. A brief description of wetlands classification and research issues is also presented.
Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale
NASA Astrophysics Data System (ADS)
Sobolev, S. V.; Muldashev, I. A.
2015-12-01
Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the upper plate during multiple earthquake cycles at times of hundred thousand and million years and discuss effect of great earthquakes in changing long-term stress field in the upper plate.
Rates of soil development from four soil chronosequences in the southern Great Basin
Harden, J.W.; Taylor, E.M.; Hill, C.; Mark, R.K.; McFadden, L.D.; Reheis, M.C.; Sowers, J.M.; Wells, S.G.
1991-01-01
Four soil chronosequences in the southern Great Basin were examined in order to study and quantify soil development during the Quaternary. Soils of all four areas are developed in gravelly alluvial fans in semiarid climates with 8 to 40 cm mean annual precipitation. Lithologies of alluvium are granite-gneiss at Silver Lake, granite and basalt at Cima Volcanic Field, limestone at Kyle Canyon, and siliceous volcanic rocks at Fortymile Wash. Ages of the soils are approximated from several radiometric and experimental techniques, and rates are assessed using a conservative mathematical approach. Average rates for Holocene soils at Silver Lake are about 10 times higher than for Pleistocene soils at Kyle Canyon and Fortymile Wash, based on limited age control. Holocene soils in all four areas appear to develop at similar rates, and Pleistocene soils at Kyle Canyon and Fortymile Wash may differ by only a factor of 2 to 4. Over time spans of several millennia, a preferred model for the age curves is not linear but may be exponential or parabolic, in which rates decrease with increasing age. These preliminary results imply that the geographical variation in rates within the southern Great Basin-Mojave region may be much less significant than temporal variation in rates of soil development. The reasons for temporal variation in rates and processes of soil development are complexly linked to climatic change and related changes in water and dust, erosional history, and internally driven chemical and physical processes. ?? 1991.
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
Which strategy for a protein crystallization project?
NASA Technical Reports Server (NTRS)
Kundrot, C. E.
2004-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Which Strategy for a Protein Crystallization Project?
NASA Technical Reports Server (NTRS)
Kundrot, Craig E.
2003-01-01
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryo-crystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.
Degradation of dyes from aqueous solution by Fenton processes: a review.
Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga
2013-04-01
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.
A Study about the 3S-based Great Ruins Monitoring and Early-warning System
NASA Astrophysics Data System (ADS)
Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.
2015-08-01
Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.
Citizens' Guide to Biomonitoring in the Great Lakes and St. Lawrence River.
ERIC Educational Resources Information Center
Great Lakes United, Buffalo, NY.
The purpose of this report is to present the issues surrounding biomonitoring of wastewaters discharged into the Great Lakes Basin. Biomonitoring is the process of using organisms to monitor the toxicity of a substance. The report reflects an interest in seeing zero discharge of toxic pollutants in the Great Lakes region. The report is organized…
78 FR 12011 - Endangered and Threatened Wildlife and Plants; Listing Three Foreign Macaw Species
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
... (Anodorhynchus hyacinthinus), and one to list the military macaw (Ara militaris) and great green macaw (Ara... hyacinth macaw, and to Docket No. FWS-R9-ES-2011- 0101 for the military macaw and great green macaw. U.S... 222; Arlington, VA 22203. For the military macaw and great green macaw: Public Comments Processing...
[A SAS marco program for batch processing of univariate Cox regression analysis for great database].
Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin
2015-02-01
To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.
Multi-scale remote sensing of coral reefs
Andréfouët, Serge; Hochberg, E.J.; Chevillon, Christophe; Muller-Karger, Frank E.; Brock, John C.; Hu, Chuanmin
2005-01-01
In this chapter we present how both direct and indirect remote sensing can be integrated to address two major coral reef applications - coral bleaching and assessment of biodiversity. This approach reflects the current non-linear integration of remote sensing for environmental assessment of coral reefs, resulting from a rapid increase in available sensors, processing methods and interdisciplinary collaborations (Andréfouët and Riegl, 2004). Moreover, this approach has greatly benefited from recent collaborations of once independent investigations (e.g., benthic ecology, remote sensing, and numerical modeling).
NASA Technical Reports Server (NTRS)
Stroke, G. W.
1972-01-01
Applications of the optical computer include an approach for increasing the sharpness of images obtained from the most powerful electron microscopes and fingerprint/credit card identification. The information-handling capability of the various optical computing processes is very great. Modern synthetic-aperture radars scan upward of 100,000 resolvable elements per second. Fields which have assumed major importance on the basis of optical computing principles are optical image deblurring, coherent side-looking synthetic-aperture radar, and correlative pattern recognition. Some examples of the most dramatic image deblurring results are shown.
Tailoring properties of commercially pure titanium by gradation extrusion
NASA Astrophysics Data System (ADS)
Bergmann, Markus; Rautenstrauch, Anja; Selbmann, René; de Oliveira, Raoni Barreto; Coelho, Rodrigo Santiago; Landgrebe, Dirk
2016-10-01
Commercially pure titanium (CP Ti) is of great importance in medical applications due to its attractive properties, such as high biocompatibility, excellent corrosion resistance and relatively low density and suitable stiffness. Compared to the commonly used Ti-6Al-4V alloy, its lower strength has to be increased. The most attractive approach is to subject CP Ti to severe plastic deformation (SPD) processes such as Equal Channel Angular Pressing (ECAP). The resulting decreased grain size in CP Ti yields a significant increase in hardness and strength. Common SPD-processes typically provide a uniform modification of the material. Their material efficiency and productivity are critical and limiting factors. A new approach is to tailor the material properties by using Gradation Extrusion, which produces a distinct gradient in microstructure and strength. The forming process combines a regular impact extrusion process and severe plastic deformation in the lateral area of the material. This efficient process can be integrated easily into forming process chains, for instance for dental implants. This paper presents the forming process and the applied die geometry. The results of numerical simulations are used to illustrate the potential of the process to modify and strengthen the titanium material. Experiments show that the material is successfully processed by gradation extrusion. By characterizing the hardness and its distribution within the formed parts the effects of the process are investigated.
A Review of Microwave-Assisted Reactions for Biodiesel Production
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-01-01
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society’s increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective. PMID:28952536
A Review of Microwave-Assisted Reactions for Biodiesel Production.
Nomanbhay, Saifuddin; Ong, Mei Yin
2017-06-15
The conversion of biomass into chemicals and biofuels is an active research area as trends move to replace fossil fuels with renewable resources due to society's increased concern towards sustainability. In this context, microwave processing has emerged as a tool in organic synthesis and plays an important role in developing a more sustainable world. Integration of processing methods with microwave irradiation has resulted in a great reduction in the time required for many processes, while the reaction efficiencies have been increased markedly. Microwave processing produces a higher yield with a cleaner profile in comparison to other methods. The microwave processing is reported to be a better heating method than the conventional methods due to its unique thermal and non-thermal effects. This paper provides an insight into the theoretical aspects of microwave irradiation practices and highlights the importance of microwave processing. The potential of the microwave technology to accomplish superior outcomes over the conventional methods in biodiesel production is presented. A green process for biodiesel production using a non-catalytic method is still new and very costly because of the supercritical condition requirement. Hence, non-catalytic biodiesel conversion under ambient pressure using microwave technology must be developed, as the energy utilization for microwave-based biodiesel synthesis is reported to be lower and cost-effective.
Advertising of ultra-processed foods and beverages: children as a vulnerable population.
Mallarino, Christina; Gómez, Luis F; González-Zapata, Laura; Cadena, Yazmín; Parra, Diana C
2013-10-01
The rapid nutrition transition occurring in Latin America has resulted in a sharp increase of childhood overweight and obesity. Recent evidence has shown that food and beverage advertising has a great influence on children's eating behavior. This population has become a key target market for the ultra-processed foods and beverages industry, which is marketing products in an aggressive way. Evidence shows that Latin American countries have poor regulation of ultra-processed foods and beverages advertising, where the discourse of self-regulation still prevails over statutory regulations. The following commentary explores how advertising might play an important role in developing unhealthy dietary patterns and obesity in Latin American children, as well as the urgent need for government action and the involvement of civil society to tackle this public health issue.
GREAT LAKES BEACH CLOSURES: USING SATELLITE IMAGES TO IDENTIFY AREAS AT RISK
Are people getting sick from swimming at Great Lakes beaches? Some are. According to the Centers for Disease Control and Prevention, swimmers are experiencing an increase in bacterial borne illnesses from swimming at many popular Great Lakes beaches. The beaches in the Great Lak...
Optimized Design of Spacer in Electrodialyzer Using CFD Simulation Method
NASA Astrophysics Data System (ADS)
Jia, Yuxiang; Yan, Chunsheng; Chen, Lijun; Hu, Yangdong
2018-06-01
In this study, the effects of length-width ratio and diversion trench of the spacer on the fluid flow behavior in an electrodialyzer have been investigated through CFD simulation method. The relevant information, including the pressure drop, velocity vector distribution and shear stress distribution, demonstrates the importance of optimized design of the spacer in an electrodialysis process. The results show width of the diversion trench has a great effect on the fluid flow compared with length. Increase of the diversion trench width could strength the fluid flow, but also increase the pressure drop. Secondly, the dead zone of the fluid flow decreases with increase of length-width ratio of the spacer, but the pressure drop increases with the increase of length-width ratio of the spacer. So the appropriate length-width ratio of the space should be moderate.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Chakraborty, Sanjiban; Colón, Yamil J; Snurr, Randall Q; Nguyen, SonBinh T
2015-01-01
Porous organic polymers (POPs) possessing meso- and micropores can be obtained by carrying out the polymerization inside a mesoporous silica aerogel template and then removing the template after polymerization. The total pore volume (tpv) and specific surface area (ssa) can be greatly enhanced by modifying the template (up to 210% increase for tpv and 73% for ssa) as well as by supercritical processing of the POPs (up to an additional 142% increase for tpv and an additional 32% for ssa) to include larger mesopores. The broad range of pores allows for faster transport of molecules through the hierarchically porous POPs, resulting in increased diffusion rates and faster gas uptake compared to POPs with only micropores.
Arsenite suppression of BMP signaling in human keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Marjorie A.; Qin, Qin; Hu, Qin
2013-06-15
Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction,more » BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte differentiation.« less
NASA Astrophysics Data System (ADS)
Rusica, I.; Toca, A.; Stingaci, I.; Scaticailov, S.; Scaticailov, I.; Marinescu, O.; Kosenko, P.
2016-11-01
In the paper we analyze the application lubricate cooling technological environment in the processing of various materials in the past century greatly have increased cutting speed and respectively, has increased productivity [1]. Today, none of production in which anyway is used metal cutting machines of all types (milling, turning, grinding, drilling, etc.) is not without lubricant cooling technological liquid which in turn are designed to reduce cutting force and the load on metal cutting machine tools and machined parts in order to increase durability machine tools and reduce errors of processing details and also in resource energy saving. When using lubricate cooling technological environment reduces the temperature in the cutting zone resulting in higher tool life and the preservation of the surface structure being treated reducing wear of metal parts of the machine. Typically, lubricant cooling process fluids is used without replacing as long as possible not yet beginning to negatively affect the quality of process. However life expectancy lubricate cooling technological environment is limited. According to existing normative acts every kind of lubricate cooling technological environment through certain time must be deleted by from the system and subjected to a recycling. Lubricate cooling technological environment must be disposed of for the following reasons: occurs the microbial and the mechanical pollution cutting fluid, free oil impairs operational characteristics cutting fluid and increases consumption.
Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden.
McNamara, Niall P; Gregg, Ruth; Oakley, Simon; Stott, Andy; Rahman, Md Tanvir; Murrell, J Colin; Wardle, David A; Bardgett, Richard D; Ostle, Nick J
2015-01-01
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished.
Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden
McNamara, Niall P.; Gregg, Ruth; Oakley, Simon; Stott, Andy; Rahman, Md. Tanvir; Murrell, J. Colin; Wardle, David A.; Bardgett, Richard D.; Ostle, Nick J.
2015-01-01
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished. PMID:26372346
NASA Astrophysics Data System (ADS)
Huang, D.; Liu, Y.
2014-12-01
The effects of subgrid cloud variability on grid-average microphysical rates and radiative fluxes are examined by use of long-term retrieval products at the Tropical West Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Four commonly used distribution functions, the truncated Gaussian, Gamma, lognormal, and Weibull distributions, are constrained to have the same mean and standard deviation as observed cloud liquid water content. The PDFs are then used to upscale relevant physical processes to obtain grid-average process rates. It is found that the truncated Gaussian representation results in up to 30% mean bias in autoconversion rate whereas the mean bias for the lognormal representation is about 10%. The Gamma and Weibull distribution function performs the best for the grid-average autoconversion rate with the mean relative bias less than 5%. For radiative fluxes, the lognormal and truncated Gaussian representations perform better than the Gamma and Weibull representations. The results show that the optimal choice of subgrid cloud distribution function depends on the nonlinearity of the process of interest and thus there is no single distribution function that works best for all parameterizations. Examination of the scale (window size) dependence of the mean bias indicates that the bias in grid-average process rates monotonically increases with increasing window sizes, suggesting the increasing importance of subgrid variability with increasing grid sizes.
Indoor Subspacing to Implement Indoorgml for Indoor Navigation
NASA Astrophysics Data System (ADS)
Jung, H.; Lee, J.
2015-10-01
According to an increasing demand for indoor navigation, there are great attempts to develop applicable indoor network. Representation for a room as a node is not sufficient to apply complex and large buildings. As OGC established IndoorGML, subspacing to partition the space for constructing logical network is introduced. Concerning subspacing for indoor network, transition space like halls or corridors also have to be considered. This study presents the subspacing process for creating an indoor network in shopping mall. Furthermore, categorization of transition space is performed and subspacing of this space is considered. Hall and squares in mall is especially defined for subspacing. Finally, implementation of subspacing process for indoor network is presented.
Galileo Galilei's vision of the senses.
Piccolino, Marco; Wade, Nicholas J
2008-11-01
Neuroscientists have become increasingly aware of the complexities and subtleties of sensory processing. This applies particularly to the complex elaborations of nerve signals that occur in the sensory circuits, sometimes at the very initial stages of sensory pathways. Sensory processing is now known to be very different from a simple neural copy of the physical signal present in the external world, and this accounts for the intricacy of neural organization that puzzled great investigators of neuroanatomy such as Santiago Ramón Y Cajal a century ago. It will surprise present-day sensory neuroscientists, applying their many modern methods, that the conceptual basis of the contemporary approach to sensory function had been recognized four centuries ago by Galileo Galilei.
Research Advances on Fabricated Shear Wall System
NASA Astrophysics Data System (ADS)
Liu, Xudong; Wang, Donghui; Wang, Sheng; Zhai, Yu
2018-03-01
With the rapid development of the construction industry, building energy consumption has been increasing, has become a problem that can not be ignored. It is imperative to develop energy-saving buildings. A new type of prefabricated shear wall is assembled and partially assembled by prefabricated parts, and some concrete is spliced together. The new structure has good integrity, seismic resistance and excellent energy saving and environmental protection performance. It reduces building energy consumption to a great extent. Therefore, the design method, manufacturing process, site assembly process and key technical problems of the system are discussed. For the construction industry gradually entered the energy conservation, environmental protection, safety and durability of sustainable development laid the foundation.
Containerless glass fiber processing
NASA Technical Reports Server (NTRS)
Ethridge, E. C.; Naumann, R. J.
1986-01-01
An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.
Effect of aging at 1040 C (1900 F) on the ductility and structure of a tantalum alloy, T-111
NASA Technical Reports Server (NTRS)
Watson, G. K.; Stephens, J. R.
1972-01-01
The post-aging embrittlement of T-111 (tantalum - 8-percent tungsten - 2-percent hafnium) following exposure for up to about 10,000 hours at 1040 C in either vacuum or liquid lithium was investigated for sheet and tubing samples. This thermal aging was shown to greatly increase the sensitivity of T-111 to hydrogen embrittlement during subsequent room temperature specimen processing or testing. The hydrogen embrittlement problem can be avoided by preventing exposure to the T-111 to moisture during post-aging processing or testing. Aging at 1040 C also resulted in formation of HfO2 particles at grain boundaries, which may contribute to the observed embrittlement.
Gore offers to help drug companies pursue research.
1996-03-08
A meeting convened between Vice President Al Gore and executives of leading pharmaceutical companies to determine means of accelerating efforts to develop vaccines, therapeutics, and microbicides for people with HIV. Gore explained that the administration will work with pharmaceutical companies to determine the long-term effectiveness of drugs approved by the Food and Drug Administration (FDA), work with international groups to increase investment in vaccine development, help develop new microbicides for women with HIV, and identify promising areas of AIDS research. According to advocates, the Clinton Administration has made great strides in improving and accelerating the FDA's drug approval process. The next goal of the pharmaceutical research agenda should be to include consumer advocates in the decision-making process.
Efthymiou, George S.; Shuler, Michael L.
1989-08-29
An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.
Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.
Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat
2018-01-01
Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.
STR-validator: an open source platform for validation and process control.
Hansson, Oskar; Gill, Peter; Egeland, Thore
2014-11-01
This paper addresses two problems faced when short tandem repeat (STR) systems are validated for forensic purposes: (1) validation is extremely time consuming and expensive, and (2) there is strong consensus about what to validate but not how. The first problem is solved by powerful data processing functions to automate calculations. Utilising an easy-to-use graphical user interface, strvalidator (hereafter referred to as STR-validator) can greatly increase the speed of validation. The second problem is exemplified by a series of analyses, and subsequent comparison with published material, highlighting the need for a common validation platform. If adopted by the forensic community STR-validator has the potential to standardise the analysis of validation data. This would not only facilitate information exchange but also increase the pace at which laboratories are able to switch to new technology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang
2017-12-01
By synchronous measurement of corona current and the water droplet deformation process on a conductor surface, different types of corona discharge are visualized when AC voltage is applied on a line-ground electrode system. The corona characteristics are closely related to the applied voltage and water supply rate. With the increase of AC voltage, the positive Taylor cone discharge firstly appears and then disappears, replaced by the dripping and crashing discharge. Furthermore, the number of pulses in each pulse train increases with the increase of applied voltage. The mechanism of the transfer from the positive Taylor cone discharge to the dripping and crashing discharge is found to be related to the oscillation process of the water droplet. The water supply rate also has a great influence on the characteristics of corona currents. The number of positive pulse trains increases linearly when the water supply rate gets larger, leading to a higher audible noise and radio interference level from the AC corona, which is quite different from that of the DC corona. The difference between the AC and DC coronas under rainfall conditions is analyzed finally.
Numerical simulation of residual stress in laser based additive manufacturing process
NASA Astrophysics Data System (ADS)
Kalyan Panda, Bibhu; Sahoo, Seshadev
2018-03-01
Minimizing the residual stress build-up in metal-based additive manufacturing plays a pivotal role in selecting a particular material and technique for making an industrial part. In beam-based additive manufacturing, although a great deal of effort has been made to minimize the residual stresses, it is still elusive how to do so by simply optimizing the processing parameters, such as beam size, beam power, and scan speed. Amid different types of additive manufacturing processes, Direct Metal Laser Sintering (DMLS) process uses a high-power laser to melt and sinter layers of metal powder. The rapid solidification and heat transfer on powder bed endows a high cooling rate which leads to the build-up of residual stresses, that will affect the mechanical properties of the build parts. In the present work, the authors develop a numerical thermo-mechanical model for the measurement of residual stress in the AlSi10Mg build samples by using finite element method. Transient temperature distribution in the powder bed was assessed using the coupled thermal to structural model. Subsequently, the residual stresses were estimated with varying laser power. From the simulation result, it found that the melt pool dimensions increase with increasing the laser power and the magnitude of residual stresses in the built part increases.
Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.
Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui
2014-04-01
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning
Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.
2012-01-01
Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440
Research to support sterile-male-release and genetic alteration techniques for sea lamprey control
Bergstedt, Roger A.; Twohey, Michael B.
2007-01-01
Integrated pest management of sea lampreys in the Laurentian Great Lakes has recently been enhanced by addition of a sterile-male-release program, and future developments in genetic approaches may lead to additional methods for reducing sea lamprey reproduction. We review the development, implementation, and evaluation of the sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, review the current understanding of SMRT efficacy, and identify additional research areas and topics that would increase either the efficacy of the SMRT or expand its geographic potential for application. Key areas for additional research are in the sterilization process, effects of skewed sex ratios on mating behavior, enhancing attractiveness of sterilized males, techniques for genetic alteration of sea lampreys, and sources of animals to enhance or expand the use of sterile lampreys.
Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors.
Sun, Jingyao; Zhao, Yanan; Yang, Zhaogang; Shen, Jingjing; Cabrera, Eusebio; Lertola, Matthew J; Yang, Willie; Zhang, Dan; Benatar, Avi; Castro, Jose M; Wu, Daming; Lee, L James
2018-08-31
Multifunctional electronics are attracting great interest with the increasing demand and fast development of wearable electronic devices. Here, we describe an epidermal strain sensor based on an all-carbon conductive network made from multi-walled carbon nanotubes (MWCNTs) impregnated with poly(dimethyl siloxane) (PDMS) matrix through a vacuum filtration process. An ultrasonication treatment was performed to complete the penetration of PDMS resin in seconds. The entangled and overlapped MWCNT network largely enhances the electrical conductivity (1430 S m -1 ), uniformity (remaining stable on different layers), reliable sensing range (up to 80% strain), and cyclic stability of the strain sensor. The homogeneous dispersion of MWCNTs within the PDMS matrix leads to a strong interaction between the two phases and greatly improves the mechanical stability (ca. 160% strain at fracture). The flexible, reversible and ultrathin (<100 μm) film can be directly attached on human skin as epidermal strain sensors for high accuracy and real-time human motion detection.
Du, Yan; Han, Xu; Wang, Chenxu; Li, Yunhui; Li, Bingling; Duan, Hongwei
2018-01-26
Recently, molecular keypad locks have received increasing attention. As a new subgroup of smart biosensors, they show great potential for protecting information as a molecular security data processor, rather than merely molecular recognition and quantitation. Herein, label-free electrochemically transduced Ag + and cysteine (Cys) sensors were developed. A molecular keypad lock model with reset function was successfully realized based on the balanced interaction of metal ion with its nucleic acid and chemical ligands. The correct input of "1-2-3" (i.e., "Ag + -Cys-cDNA") is the only password of such molecular keypad lock. Moreover, the resetting process of either correct or wrong input order could be easily made by Cys, buffer, and DI water treatment. Therefore, our system provides an even smarter system of molecular keypad lock, which could inhibit illegal access of unauthorized users, holding great promise in information protection at the molecular level.
Processing and filtrating of driver fatigue characteristic parameters based on rough set
NASA Astrophysics Data System (ADS)
Ye, Wenwu; Zhao, Xuyang
2018-05-01
With the rapid development of economy, people become increasingly rich, and cars have become a common means of transportation in daily life. However, the problem of traffic safety is becoming more and more serious. And fatigue driving is one of the main causes of traffic accidents. Therefore, it is of great importance for us to study the detection of fatigue driving to improve traffic safety. In the cause of determining whether the driver is tired, the characteristic quantity related to the steering angle of the steering wheel and the characteristic quantity of the driver's pulse are all important indicators. The fuzzy c-means clustering is used to discretize the above indexes. Because the characteristic parameters are too miscellaneous, rough set is used to filtrate these characteristics. Finally, this paper finds out the highest correlation with fatigue driving. It is proved that these selected characteristics are of great significance to the evaluation of fatigue driving.
Rapid ascent: Rocky Mountain National Park in the Great Acceleration, 1945-present
NASA Astrophysics Data System (ADS)
Boxell, Mark
After the Second World War's conclusion, Rocky Mountain National Park (RMNP) experienced a massive rise in visitation. Mobilized by an affluent economy and a growing, auto-centric infrastructure, Americans rushed to RMNP in droves, setting off new concerns over the need for infrastructure improvements in the park. National parks across the country experienced similar explosions in visitation, inspiring utilities- and road-building campaigns throughout the park units administered by the National Park Service. The quasi-urbanization of parks like RMNP implicated the United States' public lands in a process of global change, whereby wartime technologies, cheap fossil fuels, and a culture of techno-optimism--epitomized by the Mission 66 development program--helped foster a "Great Acceleration" of human alterations of Earth's natural systems. This transformation culminated in worldwide turns toward mass-urbanization, industrial agriculture, and globalized markets. The Great Acceleration, part of the Anthropocene--a new geologic epoch we have likely entered, which proposes that humans have become a force of geologic change--is used as a conceptual tool for understanding the connections between local and global changes which shaped the park after World War II. The Great Acceleration and its array of novel technologies and hydrocarbon-powered infrastructures produced specific cultures of tourism and management techniques within RMNP. After World War II, the park increasingly became the product and distillation of a fossil fuel-dependent society.
Dry etch challenges for CD shrinkage in memory process
NASA Astrophysics Data System (ADS)
Matsushita, Takaya; Matsumoto, Takanori; Mukai, Hidefumi; Kyoh, Suigen; Hashimoto, Kohji
2015-03-01
Line pattern collapse attracts attention as a new problem of the L&S formation in sub-20nm H.P feature. Line pattern collapse that occurs in a slight non-uniformity of adjacent CD (Critical dimension) space using double patterning process has been studied with focus on micro-loading effect in Si etching. Bias RF pulsing plasma etching process using low duty cycle helped increase of selectivity Si to SiO2. In addition to the effect of Bias RF pulsing process, the thin mask obtained from improvement of selectivity has greatly suppressed micro-loading in Si etching. However it was found that micro-loading effect worsen again in sub-20nm space width. It has been confirmed that by using cycle etch process to remove deposition with CFx based etching micro-loading effect could be suppressed. Finally, Si etching process condition using combination of results above could provide finer line and space without "line pattern collapse" in sub-20nm.
Design of an MR image processing module on an FPGA chip
NASA Astrophysics Data System (ADS)
Li, Limin; Wyrwicz, Alice M.
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments.
Design of an MR image processing module on an FPGA chip
Li, Limin; Wyrwicz, Alice M.
2015-01-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128 × 128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. PMID:25909646
NASA Astrophysics Data System (ADS)
Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.
Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.
NASA Astrophysics Data System (ADS)
Huhn, Stefan; Peeling, Derek; Burkart, Maximilian
2017-10-01
With the availability of die face design tools and incremental solver technologies to provide detailed forming feasibility results in a timely fashion, the use of inverse solver technologies and resulting process improvements during the product development process of stamped parts often is underestimated. This paper presents some applications of inverse technologies that are currently used in the automotive industry to streamline the product development process and greatly increase the quality of a developed process and the resulting product. The first focus is on the so-called target strain technology. Application examples will show how inverse forming analysis can be applied to support the process engineer during the development of a die face geometry for Class `A' panels. The drawing process is greatly affected by the die face design and the process designer has to ensure that the resulting drawn panel will meet specific requirements regarding surface quality and a minimum strain distribution to ensure dent resistance. The target strain technology provides almost immediate feedback to the process engineer during the die face design process if a specific change of the die face design will help to achieve these specific requirements or will be counterproductive. The paper will further show how an optimization of the material flow can be achieved through the use of a newly developed technology called Sculptured Die Face (SDF). The die face generation in SDF is more suited to be used in optimization loops than any other conventional die face design technology based on cross section design. A second focus in this paper is on the use of inverse solver technologies for secondary forming operations. The paper will show how the application of inverse technology can be used to accurately and quickly develop trim lines on simple as well as on complex support geometries.
Information Extraction Using Controlled English to Support Knowledge-Sharing and Decision-Making
2012-06-01
or language variants. CE-based information extraction will greatly facilitate the processes in the cognitive and social domains that enable forces...terminology or language variants. CE-based information extraction will greatly facilitate the processes in the cognitive and social domains that...processor is run to turn the atomic CE into a more “ stylistically felicitous” CE, using techniques such as: aggregating all information about an entity
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.
Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn
2017-12-01
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
Potential climate change impacts on temperate forest ecosystem processes
Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.
2013-01-01
Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.
Surface subsidence and collapse in relation to extraction of salt and other soluble evaporites
Ege, John R.
1979-01-01
Extraction of soluble minerals, whether by natural or man-induced processes, can result in localized land-surface subsidence and more rarely sinkhole formation. One process cited by many investigators is that uncontrolled dissolving of salt or other soluble evaporites can create or enlarge underground cavities, thereby increasing the span of the unsupported roof to the strength limit of the overlying rocks. Downwarping results when spans are exceeded, or collapse of the undermined roof leads to upward sloping or chimneying of the overburden rocks. If underground space is available for rock debris to collect, the void can migrate to the surface with the end result being surface subsidence or collapse. In North America natural solution subsidence and collapse features in rocks ranging in age from Silurian to the present are found in evaporite terranes in the Great Plains from Saskatchewan in the north to Texas and New Mexico in the south, in the Great Lakes area, and in the southeastern States. Man-induced subsidence and collapse in evaporites are generally associated with conventional or solution mining, oilfield operations, and reservoir and dam construction, and can be especially hazardous in populated or built-up areas.
García-Arias, M T; Navarro, M P; García-Linares, M C
2004-03-01
The purpose of this project was to study the modifications in nutrient composition, amino acid content, and protein quality of white tuna preserves after each of the thermal treatments involved in the canning process. Also the influence that a three years storage period at room temperature has on the nutritional quality of canned tuna was studied. The biological assays used for the study of the protein utilization were carried out on Wistar rats, fed on semi-synthetic diets for 12 days varying only the protein source, casein or tuna provided as follows: raw, cooked in brine, steamed, sterilized tuna, and canned tuna stored for three years. The sterilization process and storage time led to a great increase in the lipid content of the canned tuna and to a porcentual decrease in protein, and moisture content. Amino acid composition of canned and cooked tuna did not show great modifications compared to raw tuna. Neither protein digestibility nor biological value of the cooked, canned, and stored tuna showed any deterioration. The protein quality of white tuna meat preserves has been compared with preserves made up of red and white tuna meat.
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.).
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-03-12
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality.
Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.)
Petigny, Loïc; Périno-Issartier, Sandrine; Wajsman, Joël; Chemat, Farid
2013-01-01
Vegetal extracts are widely used as primary ingredients for various products from creams to perfumes in the pharmaceutical, nutraceutic and cosmetic industries. Having concentrated and active extract is essential, as the process must extract as much soluble material as possible in a minimum time, using the least possible volume of solvent. The boldo leaves extract is of great interest for the industry as it holds a great anti-oxidant activity due to high levels of flavonoids and alkaloids such as boldine. Ultrasound Assisted Extraction (UAE) has been used to improve the efficiency of the plant extraction, reducing extraction time, increasing the concentration of the extract with the same amount of solvent and plant material. After a preliminary study, a response surface method has been used to optimize the extraction of soluble material from the plant. The results provided by the statistical analysis revealed that the optimized conditions were: sonication power 23 W/cm2 for 40 min and a temperature of 36 °C. The optimized parameters of the UAE provide a better extraction compared to a conventional maceration in terms of process time (30 min instead of 120 min), higher yield, more energy saving, cleanliness, safety and product quality. PMID:23481637
3-D Imaging Systems for Agricultural Applications—A Review
Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.
2016-01-01
Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560
A fast non-local means algorithm based on integral image and reconstructed similar kernel
NASA Astrophysics Data System (ADS)
Lin, Zheng; Song, Enmin
2018-03-01
Image denoising is one of the essential methods in digital image processing. The non-local means (NLM) denoising approach is a remarkable denoising technique. However, its time complexity of the computation is high. In this paper, we design a fast NLM algorithm based on integral image and reconstructed similar kernel. First, the integral image is introduced in the traditional NLM algorithm. In doing so, it reduces a great deal of repetitive operations in the parallel processing, which will greatly improves the running speed of the algorithm. Secondly, in order to amend the error of the integral image, we construct a similar window resembling the Gaussian kernel in the pyramidal stacking pattern. Finally, in order to eliminate the influence produced by replacing the Gaussian weighted Euclidean distance with Euclidean distance, we propose a scheme to construct a similar kernel with a size of 3 x 3 in a neighborhood window which will reduce the effect of noise on a single pixel. Experimental results demonstrate that the proposed algorithm is about seventeen times faster than the traditional NLM algorithm, yet produce comparable results in terms of Peak Signal-to- Noise Ratio (the PSNR increased 2.9% in average) and perceptual image quality.
Deductive Glue Code Synthesis for Embedded Software Systems Based on Code Patterns
NASA Technical Reports Server (NTRS)
Liu, Jian; Fu, Jicheng; Zhang, Yansheng; Bastani, Farokh; Yen, I-Ling; Tai, Ann; Chau, Savio N.
2006-01-01
Automated code synthesis is a constructive process that can be used to generate programs from specifications. It can, thus, greatly reduce the software development cost and time. The use of formal code synthesis approach for software generation further increases the dependability of the system. Though code synthesis has many potential benefits, the synthesis techniques are still limited. Meanwhile, components are widely used in embedded system development. Applying code synthesis to component based software development (CBSD) process can greatly enhance the capability of code synthesis while reducing the component composition efforts. In this paper, we discuss the issues and techniques for applying deductive code synthesis techniques to CBSD. For deductive synthesis in CBSD, a rule base is the key for inferring appropriate component composition. We use the code patterns to guide the development of rules. Code patterns have been proposed to capture the typical usages of the components. Several general composition operations have been identified to facilitate systematic composition. We present the technique for rule development and automated generation of new patterns from existing code patterns. A case study of using this method in building a real-time control system is also presented.
Warabi, Tateo; Kato, Masamichi; Kiriyama, Kiichi; Yoshida, Toshikazu; Kobayashi, Nobuyoshi
2004-12-01
Sole-floor reaction forces were recorded from five anatomically discrete points to analyze characteristics of human locomotion. Strain gauge of 14 mm diameter were firmly attached to the sole of bare-foot for recording force changes from the following five points: (1) medial process of calcaneus, (2) head of 1st metatarsal, (3) head of 3rd metatarsal, (4) head of 5th metatarsal and (5) great toe. Fifteen healthy adults were asked to walk at 2, 4, 6 and 8 km/h and to run at 8 km/h on the treadmill. Sole-floor reaction forces from 1st to 5th metatarsals show reciprocal changes during stance phase, while force from 1st metatarsal is strong 5th metatarsal shows weak reaction and vice versa. This phenomenon may be an expression of locomotor program to maintain vertical stability of the body during stance phase. There was a linear relation between walking speeds and sum of force from the five points, although sum of forces from three metatarsals did not change significantly during the walking speeds, indicating mainly calcaneus and great toe contribute to increasing walking speed. During running the sum of force from the three metatarsals increased sharply, joining the other two points to increase thrust.
Cooke, J V; Whipple, G H
1918-08-01
Sterile abscess formation in the dog is accompanied by a large increase in output of urinary nitrogen and also by a small but definite increase in the blood non-protein nitrogen. All this nitrogenous material of course is derived from body protein injury and autolysis. Septic inflammation in the dog (pleurisy, pneumonia, peritonitis, etc.) likewise shows a distinct rise in the blood non-protein nitrogen. This rise is not often so great as that frequently observed in the intoxication of intestinal obstruction. Many acute infections in man (septicemia, peritonitis, pneumonia, etc.) show a definite rise in the non-protein nitrogen and urea nitrogen of the blood; some cases show a very great rise above normal (over 100 mg. of non-protein nitrogen per 100 cc. of blood). There may be no anatomical change in the kidney beyond the familiar picture of cloudy swelling. This does not exclude the possibility of some transient functional derangement of the kidney epithelium. Certain obscure intoxications in man may show a considerable rise in the non-protein nitrogen of the blood, indicating a large amount of protein disintegration. These findings must be taken into account in any clinical analysis and interpretation of high non-protein nitrogen of the blood in pathological conditions.
Research of grinding process of gears with involute profile to increase its efficiency
NASA Astrophysics Data System (ADS)
Ivanova, T. N.; Korshunov, A. I.; Sannikov, I. N.; Tyukpiekov, V. N.
2018-03-01
Grinding as final processing exerts great influence on quality and accuracy of a surface layer of gears. Gear grinding is the most productive method of abrasive processing providing gears of 3 - 8 degrees of accuracy. However violation of the temperature condition of grinding leads to emergence of burns on the surfaces of gears. Therefore the research of the reasons generating defects and finding the ways of their elimination are relevant. The work presents the research of involute tooth profile grinding by wheels of different types with different ways to form a surface. For every way the movements of a tool and a workpiece in order to receive a contour of the tooth socket are simulated. The advantages and the shortcomings of the tooth grinding using form wheels in a grinding method and using dish, worm wheels in generating the grinding method are revealed. The experience of gear production shows that availability of burns in the certain part of a tooth profile is caused by features of the gear grinding process. Theoretical and experimental researches of the thermal phenomena of gear grinding with different configurations of spots in a contact zone and a trajectory of their movement are conducted. There are recommendations how to choose grinding modes, characteristics of abrasive tools taking into account a non-burnt condition of a working surface of a gear. The right choice of lubricating fluid and the way of its supply greatly affect the efficiency of the gear grinding process. It is established that lubricating fluid with special additives gives the best results to obtain desired roughness of a processed surface. The recommendations of effective fluids and their foreign analogs are made.
Nitride Fuel Development Using Cryo-process Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Brandi M; Windes, William E
A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles heldmore » together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.« less
B. M. Rau; R. R. Blank; J. C. Chambers; D. W. Johnson
2007-01-01
Pinyon and juniper have been expanding into sagebrush (Artemisia tridentata) ecosystems since settlement of the Great Basin around 1860. Herbaceous understory vegetation is eliminated as stand densities increase and the potential for catastrophic fires increases. Prescribed fire is increasingly used to remove trees and promote recovery of sagebrush...
Assessment of MSFCs Process for the Development and Activation of Space Act Agreements
NASA Technical Reports Server (NTRS)
Daugherty, Rachel A.
2014-01-01
A Space Act Agreement (SAA) is a contractual vehicle that NASA utilizes to form partnerships with non-NASA entities to stimulate cutting-edge innovation within the science and technology communities while concurrently supporting the NASA missions. SAAs are similar to traditional contracts in that they involve the commitment of Agency resources but allow more flexibility and are more cost effective to implement than traditional contracts. Consequently, the use of SAAs to develop partnerships has greatly increased over the past several years. To facilitate this influx of SAAs, Marshall Space Flight Center (MSFC) developed a process during a kaizen event to streamline and improve the quality of SAAs developed at the Center level. This study assessed the current SAA process to determine if improvements could be implemented to increase productivity, decrease time to activation, and improve the quality of deliverables. Using a combination of direct procedural observation, personnel interviews, and statistical analysis, elements of the process in need of remediation were identified and potential solutions developed. The findings focus primarily on the difficulties surrounding tracking and enforcing process adherence and communication issues among stakeholders. Potential solutions include utilizing customer relationship management (CRM) software to facilitate process coordination and co-locating or potentially merging the two separate organizations involved in SAA development and activation at MSFC.
Within-subject template estimation for unbiased longitudinal image analysis.
Reuter, Martin; Schmansky, Nicholas J; Rosas, H Diana; Fischl, Bruce
2012-07-16
Longitudinal image analysis has become increasingly important in clinical studies of normal aging and neurodegenerative disorders. Furthermore, there is a growing appreciation of the potential utility of longitudinally acquired structural images and reliable image processing to evaluate disease modifying therapies. Challenges have been related to the variability that is inherent in the available cross-sectional processing tools, to the introduction of bias in longitudinal processing and to potential over-regularization. In this paper we introduce a novel longitudinal image processing framework, based on unbiased, robust, within-subject template creation, for automatic surface reconstruction and segmentation of brain MRI of arbitrarily many time points. We demonstrate that it is essential to treat all input images exactly the same as removing only interpolation asymmetries is not sufficient to remove processing bias. We successfully reduce variability and avoid over-regularization by initializing the processing in each time point with common information from the subject template. The presented results show a significant increase in precision and discrimination power while preserving the ability to detect large anatomical deviations; as such they hold great potential in clinical applications, e.g. allowing for smaller sample sizes or shorter trials to establish disease specific biomarkers or to quantify drug effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Shope, Christopher L.; Angeroth, Cory E.
2015-01-01
Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.
Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III).
Yin, Hui; Liu, Fan; Feng, Xionghan; Liu, Mingming; Tan, Wenfeng; Qiu, Guohong
2011-11-30
Co-containing birnessites were obtained by ion exchange at different initial concentrations of Co(2+). Ion exchange of Co(2+) had little effect on birnessite crystal structure and micromorphology, but resulted in an increase in specific surface areas from 19.26 to 33.35 m(2)g(-1), and a decrease in both crystallinity and manganese average oxidation state. It was due to that Mn(IV) in the layer structure was reduced to Mn(III) during the oxidation process of Co(2+) to Co(III). The hydroxyl groups on the surface of Co-containing birnessites gradually decreased with an increase of Co/Mn molar ratio owing to the occupance of Co(III) into vacancies and the location of large amounts of Co(2+/3+) and Mn(2+/3+) above/below the vacant sites. This greatly accounted for the monotonous reduction in Pb(2+) adsorption capacity, from 2538 mmol kg(-1) for the unmodified birnessite to 1500 mmol kg(-1) for the Co(2+) ion-exchanged birnessite with a Co/Mn molar ratio of 0.16. The amount of As(III) oxidized by birnessite was enhanced after ion exchange, but the apparent initial reaction rate was greatly decreased. The present work demonstrates that Co(2+) ion exchange has great influence on the adsorption and oxidation behavior of inorganic toxic metal ions by birnessite in water environments. Copyright © 2011 Elsevier B.V. All rights reserved.
Treatment of silica effluents: ultrafiltration or coagulation-decantation.
Ndiaye, P I; Moulin, P; Dominguez, L; Millet, J C; Charbit, F
2004-12-10
In the electronics industry, the preparation of silicon plates generates effluents that contain a great amount of colloidal silica. Two processes--decantation and ultrafiltration--are studied with in view the treatment of the effluents released by the firm Rockwood Electronic Materials. The feasibility of each of the two processes is studied separately and their operating parameters optimized. Both processes allow the recovery of a great proportion of the initial effluent (over 89%) as transparent and colorless water that can be reused at the start of a line. In view of the results and of the compared advantages and disadvantages of the two processes, ultrafiltration will be selected for the industrial unit.
Factors and processes governing the C-14 content of carbonate in desert soils
NASA Technical Reports Server (NTRS)
Amundson, Ronald; Wang, Yang; Chadwick, Oliver; Trumbore, Susan; Mcfadden, Leslie; Mcdonald, Eric; Wells, Steven; Deniro, Michael
1994-01-01
A model is presented describing the factors and processes which determine the measured C-14 ages of soil calcium carbonate. Pedogenic carbonate forms in isotopic equilium with soil CO2. Carbon dioxide in soils is a mixture of CO2 derived from two biological sources: respiration by living plant roots and respiration of microorganisms decomposing soil humus. The relative proportion of these two CO2 sources can greatly affect the initial C-14 content of pedogenic carbonate: the greater the contribution of humus-derived CO2, the greater the initial C-14 age of the carbonate mineral. For any given mixture of CO2 sources, the steady-state (14)CO2 distribution vs. soil depth can be described by a production/diffusion model. As a soil ages, the C-14 age of soil humus increases, as does the steady-state C-14 age of soil CO2 and the initial C-14 age of any pedogenic carbonate which forms. The mean C-14 age of a complete pedogenic carbonate coating or nodule will underestimate the true age of the soil carbonate. This discrepancy increases the older a soil becomes. Partial removal of outer (and younger) carbonate coatings greatly improves the relationship between measured C-14 age and true age. Although the production/diffusion model qualitatively explains the C-14 age of pedogenic carbonate vs. soil depth in many soils, other factors, such as climate change, may contribute to the observed trends, particularily in soils older than the Holocene.
Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T; Gawlik, Dale E; Beerens, James M
2013-08-01
The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual "exploiter" species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile "searcher" species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes. Published by Elsevier B.V.
Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Gawlik, Dale E.; Beerens, James M.
2013-01-01
The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual “exploiter” species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile “searcher” species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes.
Roudnicky, Filip; Dieterich, Lothar C; Poyet, Cedric; Buser, Lorenz; Wild, Peter; Tang, Dave; Camenzind, Peter; Ho, Chien Hsien; Otto, Vivianne I; Detmar, Michael
2017-06-01
Bladder cancer is a frequently recurring disease with a very poor prognosis once progressed to invasive stages, and tumour-associated blood vessels play a crucial role in this process. In order to identify novel biomarkers associated with progression, we isolated blood vascular endothelial cells (BECs) from human invasive bladder cancers and matched normal bladder tissue, and found that tumour-associated BECs greatly up-regulated the expression of insulin receptor (INSR). High expression of INSR on BECs of invasive bladder cancers was significantly associated with shorter progression-free and overall survival. Furthermore, increased expression of the INSR ligand IGF-2 in invasive bladder cancers was associated with reduced overall survival. INSR may therefore represent a novel biomarker to predict cancer progression. Mechanistically, we observed pronounced hypoxia in human bladder cancer tissue, and found a positive correlation between the expression of the hypoxia marker gene GLUT1 and vascular INSR expression, indicating that hypoxia drives INSR expression in tumour-associated blood vessels. In line with this, exposure of cultured BECs and human bladder cancer cell lines to hypoxia led to increased expression of INSR and IGF-2, respectively, and IGF-2 increased BEC migration through the activation of INSR in vitro. Taken together, we identified vascular INSR expression as a potential biomarker for progression in bladder cancer. Furthermore, our data suggest that IGF-2/INSR mediated paracrine crosstalk between bladder cancer cells and endothelial cells is functionally involved in tumour angiogenesis and may thus represent a new therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Lithography - Green and Getting Greener
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2011-06-01
Today, many energy-saving technologies and practices are enabled or made more effective through the use of nano-electronics. Such technologies include hybrid and all-electric cars, as well as controllers to increase the efficiency of photovoltaic panels. Telecommuting, which enables people to work without traveling from their homes, has been made possible by personal computers and the internet. Reducing the costs of nano-electronics will make possible increased opportunities for the use of products that reduce energy consumption. The most effective way to reduce costs is to improve efficiency. Increased efficiency also provides the benefit of reducing energy and material consumption in the manufacturing of nano-electronics. For example, reducing photochemical usage decreases costs but also reduces material consumption and the need for disposal. Reduction of scrap and rework are direct improvements in efficiency. Cycle time reduction enables greater responsiveness to demand, reducing the amount of material started in processing but never completed. Good process control reduces scrap and rework during manufacturing and results in circuits that have high performance, yet lower power consumption, when used. There are ready opportunities for making the most of the natural tendencies of businesses to innovate and improve efficiency. The semiconductor industry has historically adopted process improvements that have increased worker safety and reduced the consumption of hazardous materials. An early example was the transition from solvent to aqueous photoresist developers. Today, all types of development can be conducted in safer equipment that minimizes the release of hazardous chemicals to the air and water. Non-toxic solvents, such as ethyl lactate, have been widely adopted. There are many opportunities for further improvement. For example, over 90% of resist goes down the drain using conventional spin-coating process, so there is an opportunity for greatly improved efficiency in that operation. A lot of water is used to reduce defects when using chemically amplified resists, and the amount of water needed could be reduced by improved design of resists and substrate coatings. Thinking further into the future, directed self-assembly has the promise of a patterning technology that can be applied simply and with energy-efficiency. Once the fundamental challenges of creating high output extreme ultraviolet (EUV) light sources are overcome, there will be great opportunities for reducing electricity consumption.
Soil development on stable landforms and implications for landscape studies
Harden, J.W.
1990-01-01
Soil development parameters include a wide variety of morphological, chemical, and mineralogical parameters, but some of the best indicators of time and surface stability are derived from field morphology. Over long time-spans, the most common time function for soil development is exponential or logarithmic, in which rates decrease with increasing age. Over shorter time-spans in semi-arid and moister climates, Holocene and Pleistocene soil development functions appear as linear segments, with Holocene rates about 10 to 50 times those of Pleistocene rates. In contrast to significant temporal variation in rates, geographical variation in rates within (a) the southern Great Basin and (b) the east Central Valley of California is on the order of 2 or 3 times. When comparing soil development indices of the semi-arid Great Basin to those of moister central California, Holocene rates are similar, but Pleistocene rates are more than 10 times slower in the Great Basin. In a range of climatic settings, the reasons for declining rates over time are several and are complexly related to erosional history, fluxes in water and dust related to climatic changes, rates of primary mineral dissolution, and intrinsic soil processes. ?? 1990.
Wilkinson, P; Thakrar, B; Walls, P; Landon, M; Falconer, S; Grundy, C; Elliott, P
1999-09-01
To examine the incidence of lymphohaematopoietic malignancy around industrial complexes that include major oil refineries in Great Britain after recent public and scientific concern of possible carcinogenic hazards of emissions from the petrochemical industry. Small area study of the incidence of lymphohaematopoietic malignancies, 1974-91, within 7.5 km of all 11 oil refineries (grouped into seven sites) in Great Britain that were operational by the early 1970s and processed more than two million tonnes of crude oil in 1993. Combined analysis of data from all seven sites showed no significant (p < 0.05) increase in risk of these malignancies within 2 km or 7.5 km. Hodgkin's lymphoma, but no other malignancy, showed evidence (p = 0.02) of a decline in risk with distance from refineries, but there was an apparent deficit of cases of multiple myeloma near the refineries (p = 0.04). There was no evidence of association between residence near oil refineries and leukaemias, or non-Hodgkin's lymphoma. A weak positive association was found between risk of Hodgkin's disease and proximity to major petrochemical industry, and a negative association with multiple myeloma, which may be chance findings within the context of multiple statistical testing.
Saad, P M
1981-01-01
This paper describes the evolution of the urban and rural population in the 11 administrative regions of the state of Sao Paulo, Brazil, and to establish the role of the new municipalities. The number of municipalities grew from 270 during 1940-50 to 505 during 1960-70; in the same period the annual population growth in urban areas increased from 3.72% to 5.56%. The great urbanization process in Sao Paulo began after 1940; before the date 56% of the population lived in rural areas. The growth of urbanization during the period 1940-70 was prompted mainly by the decline in the production of coffee together with a great expansion of industry, leading to a massive movement of workers from the coffee fields to the newly industrialized areas. Improvements in the road and railway system greatly contributed to these changes. This situation has brought under attack, on the part of legislators, the old criteria used to define urban and rural population in Brazil, criteria still based on an ancient law which does not take into consideration the activities carried out by the population in a specific area.
NASA Astrophysics Data System (ADS)
Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.
2017-04-01
Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.
Sui, Xiaoyu; Wei, Wei; Yang, Lei; Zu, Yuangang; Zhao, Chunjian; Zhang, Lin; Yang, Fengjian; Zhang, Zhonghua
2012-02-28
In this study, glycyrrhizic acid (GA) microparticles were successfully prepared using a supercritical anti-solvent (SAS) process. Carbon dioxide and ethanol were used as the anti-solvent and solvent, respectively. The influences of several process parameters on the mean particle size (MPS), particle size distribution (PSD) and total yield were investigated. Processed particle sizes gradually decreased as temperature and solution flow rate increased. In addition, processed particle sizes increased from 119 to 205 nm as GA concentration increased. However, CO(2) flow rate did not significantly affect particle size. The optimized process conditions were applied, those included temperature (65 °C), pressure (250 bar), CO(2) and drug solution flow rate (15 and 8 mL min(-1)), drug concentration in ethanol (20 mg mL(-1)). Microparticles with a span of PSD ranging from 95 and 174 nm, MPS of 128 nm were obtained, and total yield was 63.5%. The X-ray diffraction patterns of glycyrrhizic acid microparticles show apparent amorphous nature. Fourier transform infrared (FT-IR) spectroscopy results show that no chemical structural changes occurred. The in vitro dissolution tests showed that the GA microparticles exhibited great enhancement of dissolution performance when compared to GA original drug. Furthermore, the in vivo studies revealed that the microparticles provided improved pharmacokinetic parameter after oral administration to rats as compared with original drug. Copyright © 2011 Elsevier B.V. All rights reserved.
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
Genetic erosion impedes adaptive responses to stressful environments
Bijlsma, R; Loeschcke, Volker
2012-01-01
Biodiversity is increasingly subjected to human-induced changes of the environment. To persist, populations continually have to adapt to these often stressful changes including pollution and climate change. Genetic erosion in small populations, owing to fragmentation of natural habitats, is expected to obstruct such adaptive responses: (i) genetic drift will cause a decrease in the level of adaptive genetic variation, thereby limiting evolutionary responses; (ii) inbreeding and the concomitant inbreeding depression will reduce individual fitness and, consequently, the tolerance of populations to environmental stress. Importantly, inbreeding generally increases the sensitivity of a population to stress, thereby increasing the amount of inbreeding depression. As adaptation to stress is most often accompanied by increased mortality (cost of selection), the increase in the ‘cost of inbreeding’ under stress is expected to severely hamper evolutionary adaptive processes. Inbreeding thus plays a pivotal role in this process and is expected to limit the probability of genetically eroded populations to successfully adapt to stressful environmental conditions. Consequently, the dynamics of small fragmented populations may differ considerably from large nonfragmented populations. The resilience of fragmented populations to changing and deteriorating environments is expected to be greatly decreased. Alleviating inbreeding depression, therefore, is crucial to ensure population persistence. PMID:25568035
Coastal groundwater/surface-water interactions: a Great Lakes case study
Neff, Brian P.; Haack, Sheridan K.; Rosenberry, Donald O.; Savino, Jacqueline F.; Lundstrom, Scott C.
2006-01-01
Key similarities exist between marine and Great Lakes coastal environments. Water and nutrient fluxes across lakebeds in the Great Lakes are influenced by seiche and wind set-up and set-down, analogous to tidal influence in marine settings. Groundwater/surface-water interactions also commonly involve a saline-fresh water interface, although in the Great-Lakes cases, it is groundwater that is commonly saline and surface water that is fresh. Evapotranspiration also affects nearshore hydrology in both settings. Interactions between groundwater and surface water have recently been identified as an important component of ecological processes in the Great Lakes. Water withdrawals and the reversal of the groundwater/surface water seepage gradient are also common to many coastal areas around the Great Lakes. As compared to surface water, regional groundwater that discharges to western Lake Erie from Michigan is highly mineralized. Studies conducted by the U.S. Geological Survey at Erie State Game Area in southeastern Michigan, describe groundwater flow dynamics and chemistry, shallow lake-water chemistry, and fish and invertebrate communities. Results presented here provide an overview of recent progress of ongoing interdisciplinary studies of Great Lakes nearshore systems and describe a conceptual model that identifies relations among geologic, hydrologic, chemical, and biological processes in the coastal habitats of Lake Erie. This conceptual model is based on analysis of hydraulic head in piezometers at the study site and chemical analysis of deep and shallow coastal groundwater.
Leeds, Austin; Lukas, Kristen E; Kendall, Corinne J; Slavin, Michelle A; Ross, Elizabeth A; Robbins, Martha M; van Weeghel, Dagmar; Bergl, Richard A
2017-08-01
Films, as part of a larger environmental education program, have the potential to influence the knowledge and attitudes of viewers. However, to date, no evaluations have been published reporting the effectiveness of films, when used within primate range countries as part of a conservation themed program. The Great Ape Education Project was a year-long environmental education program implemented in Uganda for primary school students living adjacent to Kibale National Park (KNP) and Bwindi Impenetrable National Park (BINP). Students viewed a trilogy of conservation films about great apes, produced specifically for this audience, and participated in complementary extra-curricular activities. The knowledge and attitudes of students participating in the program from KNP, but not BINP were assessed using questionnaires prior to (N = 1271) and following (N = 872) the completion of the program. Following the program, students demonstrated a significant increase in their knowledge of threats to great apes and an increase in their knowledge of ways that villagers and students can help conserve great apes. Additionally, student attitudes toward great apes improved following the program. For example, students showed an increase in agreement with liking great apes and viewing them as important to the environment. These data provide evidence that conservation films made specifically to address regional threats and using local actors and settings can positively influence knowledge of and attitudes toward great apes among students living in a primate range country. © 2017 Wiley Periodicals, Inc.
Montana Advanced Biofuels Great Falls Approval
This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable
Design of a Uranium Dioxide Spheroidization System
NASA Technical Reports Server (NTRS)
Cavender, Daniel P.; Mireles, Omar R.; Frendi, Abdelkader
2013-01-01
The plasma spheroidization system (PSS) is the first process in the development of tungsten-uranium dioxide (W-UO2) fuel cermets. The PSS process improves particle spherocity and surface morphology for coating by chemical vapor deposition (CVD) process. Angular fully dense particles melt in an argon-hydrogen plasma jet at between 32-36 kW, and become spherical due to surface tension. Surrogate CeO2 powder was used in place of UO2 for system and process parameter development. Particles range in size from 100 - 50 microns in diameter. Student s t-test and hypothesis testing of two proportions statistical methods were applied to characterize and compare the spherocity of pre and post process powders. Particle spherocity was determined by irregularity parameter. Processed powders show great than 800% increase in the number of spherical particles over the stock powder with the mean spherocity only mildly improved. It is recommended that powders be processed two-three times in order to reach the desired spherocity, and that process parameters be optimized for a more narrow particles size range. Keywords: spherocity, spheroidization, plasma, uranium-dioxide, cermet, nuclear, propulsion
Surface modification by electrolytic plasma processing for high Nb-TiAl alloys
NASA Astrophysics Data System (ADS)
Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin
2016-12-01
Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.
Multibeam sonar backscatter data processing
NASA Astrophysics Data System (ADS)
Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel
2018-06-01
Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.
An eco-friendly method for heavy metal removal from mine tailings.
Arab, Fereshteh; Mulligan, Catherine N
2018-06-01
One of the serious environmental problems that society is facing today is mine tailings. These byproducts of the process of extraction of valuable elements from ores are a source of pollution and a threat to the environment. For example, mine tailings from past mining activities at Giant Mines, Yellowknife, are deposited in chambers, stopes, and tailing ponds close to the shores of The Great Slave Lake. One of the environmentally friendly approaches for removing heavy metals from these contaminated tailing is by using biosurfactants during the process of soil washing. The objective of this present study is to investigate the effect of sophorolipid (SL) concentration, the volume of washing solution per gram of medium, pH, and temperature on the efficiency of sophorolipids in removing heavy metals from mine tailings. It was found that the efficiency of the sophorolipids depends on its concentration, and is greatly affected by changes in pH, and temperature. The results of this experiment show that increasing the temperature from 15 to 23 °C, while using sophorolipids, resulted in an increase in the removal of iron, copper, and arsenic from the mine tailing specimen, from 0.25, 2.1, and 8.6 to 0.4, 3.3, and 11.7%. At the same time, increasing the temperature of deionized water (DIW) from 15 to 23 °C led to an increase in the removal of iron, copper, and arsenic from 0.03, 0.9, and 1.8 to 0.04, 1.1, and 2.1%, respectively. By increasing temperature from 23 to 35 °C, when using sophorolipids, 22% reduction in the removal of arsenic was observed. At the same time while using DI water as the washing solution, increasing temperature from 23 to 35 °C resulted in 6.2% increase in arsenic removal. The results from this present study indicate that sophorolipids are promising agents for replacing synthetic surfactants in the removal of arsenic and other heavy metals from soil and mine tailings.
Experimental studies on mechanical properties of T6 treated Al25Mg2Si2Cu4Fe alloy
NASA Astrophysics Data System (ADS)
Sondur, D. G.; Mallapur, D. G.; Udupa, K. Rajendra
2018-04-01
Effect of T6 treatment on the mechanical properties of Al25Mg2Si2Cu4Fe alloy was evaluated by conducting mechanical tests on test pieces using universal testing machine. Increase in the mechanical properties such as ultimate tensile strength, hardness and % elongation was observed. Microstructure characterization revealed the modification in the size and shapes of the precipitates formed during the homogenization process. This modification increases the anisotropy of the microstructure and the stresses in the as cast structure. The increase in the hardness of T6 treated alloy is due to the partial recrystallization, fragmentation and redistribution of primary Mg2Si phase, precipitation of fine θ, Q phases. The high volume fractions of uniformly dispersed hard β-particles greatly increase the flow stress and provide an appreciable impediment to plastic deformation. Thus increasing the hardness of the alloy.
Dichromated polyvinyl alcohol (DC-PVA) wet processed for high index modulation
NASA Astrophysics Data System (ADS)
Rallison, Richard D.
1997-04-01
PVA films have been used as mold releases, strippable coatings, binders for photopolymers and when sensitized with metals and/or dyes they have been used as photoresists, volume HOEs, multiplexed holographic optical memory and real time non destructive holographic testing. The list goes on and includes Slime and birth control. In holography, DC-PVA is a real time photoanisotropic recording material useful for phase conjugation experiments and also a stable long term storage medium needing no processing other than heat. Now we add the capability of greatly increasing the versatility of PVA by boosting the index modulation by almost two orders of magnitude. We can add broadband display and HOE applications that were not possible before. Simple two or three step liquid processing is all that is required to make the index modulation grow.
Feeding and energetics of the great scallop, Pecten maximus, through a DEB model
NASA Astrophysics Data System (ADS)
Lavaud, Romain; Flye-Sainte-Marie, Jonathan; Jean, Fred; Emmery, Antoine; Strand, Øivind; Kooijman, Sebastiaan A. L. M.
2014-11-01
We developed a full life-cycle bioenergetic model for the great scallop Pecten maximus relying on the concepts of the Dynamic Energy Budget (DEB) theory. The covariation method was implemented to estimate the parameters of a standard DEB model. Such models are able to predict various metabolic processes from a food availability marker and temperature in the environment. However, suspension-feeders are likely to feed on various trophic sources, from microalgae cells to detritus. They are also able to sort and select food particles very efficiently, depending on their size, energetic value or quality. The present model includes a mechanistic description of the feeding processes, based on Kooijman's Synthesizing Unit principle which allows to deal with several food sources. Moreover we tested the hypothesis of a differential selectivity between two potential substrates (phytoplankton cell and the remaining particulate organic matter). Simulations of shell length, daily shell growth rate, dry weight and gonado-somatic index (GSI) variations were realized and compared to field data from a monitoring conducted in the Bay of Brest (Brittany, France) for six years. The model shows its capacity to efficiently reproduce all life history traits of the wild great scallops. Predicted length data were estimated to the nearest millimeter. The fit of simulated weights to observed data was very satisfactory. GSI predictions were also in accordance with observations but improvements are required to better capture the sharp increase of gametogenesis at the beginning of the year. Finally, results bring evidences that P. maximus is actually preferentially feed on living algae cells rather than on the rest of organic particles.
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL)
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Owen, Jeffrey E.
1988-01-01
A direct-execution parallel architecture for the Advanced Continuous Simulation Language (ACSL) is presented which overcomes the traditional disadvantages of simulations executed on a digital computer. The incorporation of parallel processing allows the mapping of simulations into a digital computer to be done in the same inherently parallel manner as they are currently mapped onto an analog computer. The direct-execution format maximizes the efficiency of the executed code since the need for a high level language compiler is eliminated. Resolution is greatly increased over that which is available with an analog computer without the sacrifice in execution speed normally expected with digitial computer simulations. Although this report covers all aspects of the new architecture, key emphasis is placed on the processing element configuration and the microprogramming of the ACLS constructs. The execution times for all ACLS constructs are computed using a model of a processing element based on the AMD 29000 CPU and the AMD 29027 FPU. The increase in execution speed provided by parallel processing is exemplified by comparing the derived execution times of two ACSL programs with the execution times for the same programs executed on a similar sequential architecture.
NASA Astrophysics Data System (ADS)
Langan, John
1996-10-01
The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-10-05
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-01-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141
Li, Li; Xiao, Yong-Qing; Yu, Ding-Rong; Ma, Yin-Lian; Zhu, Ming-Gui; Chen, Liang
2012-12-01
To investigate the regularity of changes in the main active components of Schisandra chinensis preparations before and after being processed with vinegar. High performance liquid chromatography was used to analyze the changes in the content of lignans and organic acids in S. chinensis preparations before and after being processed with vinegar. After being processed with vinegar, the content of lignans in S. chinensis preparations significantly reduced, while that of organic acids significantly increased. The ratio between them reduced from 1:16 (raw product) to 1:21 (vinegar products). The changes in the main pharmacological effects of S. chinensis are related to not only the changes in the contents of lignan and organic acids, but also the significant changes in the ratio relations between the two components. This is of great significance to the correlation among the principle of S. chinensis processed with vinegar and material basis and the changes in pharmacological effects.
Triboelectric effect: A new perspective on electron transfer process
NASA Astrophysics Data System (ADS)
Pan, Shuaihang; Zhang, Zhinan
2017-10-01
As interest in the triboelectric effect increases in line with the development of tribo-electrification related devices, the mechanisms involved in this phenomenon require more systematic review from the dual perspectives of developed classical insights and emerging quantum understanding. In this paper, the clear energy changing and transferring process of electrons have been proposed from the quantum point of view as the trigger for the charging initiation process in the triboelectric effect, and the phonon modes on the friction surfaces are believed to hold great importance as one of the main driving forces. Compatible with Maxwell Displacement Current theory, the complete consideration for charging steady state, i.e., the competition mechanisms between the breakdown process and the continuously charging process, and the balance mechanisms of phonon-electron interaction, built voltage, and induced polarization, are illustrated. In brief, the proposed theory emphasizes the fundamental role of electron transferring in tribo-electrical fields. By comparing certain experimental results from the previous studies, the theory is justified.
Designer cell signal processing circuits for biotechnology
Bradley, Robert W.; Wang, Baojun
2015-01-01
Microorganisms are able to respond effectively to diverse signals from their environment and internal metabolism owing to their inherent sophisticated information processing capacity. A central aim of synthetic biology is to control and reprogramme the signal processing pathways within living cells so as to realise repurposed, beneficial applications ranging from disease diagnosis and environmental sensing to chemical bioproduction. To date most examples of synthetic biological signal processing have been built based on digital information flow, though analogue computing is being developed to cope with more complex operations and larger sets of variables. Great progress has been made in expanding the categories of characterised biological components that can be used for cellular signal manipulation, thereby allowing synthetic biologists to more rationally programme increasingly complex behaviours into living cells. Here we present a current overview of the components and strategies that exist for designer cell signal processing and decision making, discuss how these have been implemented in prototype systems for therapeutic, environmental, and industrial biotechnological applications, and examine emerging challenges in this promising field. PMID:25579192
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
Frazier, Zachary
2012-01-01
Abstract Particle-based Brownian dynamics simulations offer the opportunity to not only simulate diffusion of particles but also the reactions between them. They therefore provide an opportunity to integrate varied biological data into spatially explicit models of biological processes, such as signal transduction or mitosis. However, particle based reaction-diffusion methods often are hampered by the relatively small time step needed for accurate description of the reaction-diffusion framework. Such small time steps often prevent simulation times that are relevant for biological processes. It is therefore of great importance to develop reaction-diffusion methods that tolerate larger time steps while maintaining relatively high accuracy. Here, we provide an algorithm, which detects potential particle collisions prior to a BD-based particle displacement and at the same time rigorously obeys the detailed balance rule of equilibrium reactions. We can show that for reaction-diffusion processes of particles mimicking proteins, the method can increase the typical BD time step by an order of magnitude while maintaining similar accuracy in the reaction diffusion modelling. PMID:22697237
NASA Astrophysics Data System (ADS)
Chuan, Ngam Min; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Mat Husin, Norhayati; Yong, Lee Choon; Ghazali, Azrul; Ezanee Rusli, Mohd; Itam, Zarina Binti; Beddu, Salmia; Liyana Mohd Kamal, Nur
2016-03-01
This paper intends to fathom the current state of procurement system in Malaysia specifically in the construction industry in the aspect of supplier selection. This paper propose a comprehensive study on the supplier selection metrics for infrastructure building, weight the importance of each metrics assigned and to find the relationship between the metrics among initiators, decision makers, buyers and users. With the metrics hierarchy of criteria importance, a supplier selection process can be defined, repeated and audited with lesser complications or difficulties. This will help the field of procurement to improve as this research is able to develop and redefine policies and procedures that have been set in supplier selection. Developing this systematic process will enable optimization of supplier selection and thus increasing the value for every stakeholders as the process of selection is greatly simplified. With a new redefined policy and procedure, it does not only increase the company’s effectiveness and profit, but also make it available for the company to reach greater heights in the advancement of procurement in Malaysia.
NASA Astrophysics Data System (ADS)
The past 2 decades have seen substantial progress in our understanding of the nature of the earthquake faulting process, but increasingly, the subject has become an interdisciplinary one. Thus, although the observation of radiated seismic waves remains the primary tool for studying earthquakes (and has been increasingly focused on extracting the physical processes occurring in the “source”), geological studies have also begun to play a more important role in understanding the faulting process. Additionally, defining the physical underpinning for these phenomena has come to be an important subject in experimental and theoretical rock mechanics.In recognition of this, a Maurice Ewing Symposium was held at Arden House, Harriman, N.Y. (the former home of the great American statesman Averill Harriman), May 20-23, 1985. The purpose of the meeting was to bring together the international community of experimentalists, theoreticians, and observationalists who are engaged in the study of various aspects of earthquake source mechanics. The conference was attended by more than 60 scientists from nine countries (France, Italy, Japan, Poland, China, the United Kingdom, United States, Soviet Union, and the Federal Republic of Germany).
Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds.
Carciochi, Ramiro Ariel; Galván-D'Alessandro, Leandro; Vandendriessche, Pierre; Chollet, Sylvie
2016-12-01
Quinoa (Chenopodium quinoa) seed has gained a great interest in the last years, mainly due to its nutritional properties and its content of antioxidant substances with health-promoting properties in humans. In this work, the effect of germination time and fermentation on the levels of antioxidant compounds (ascorbic acid, tocopherol isomers and phenolic compounds) and antioxidant activity of quinoa seeds was evaluated. Fermentation was carried out naturally by the microorganisms present in the seeds or by inoculation with two Saccharomyces cerevisiae strains (used for baking and brewing). Ascorbic acid and total tocopherols were significantly increased (p ≤ 0.05) after 72 h of germination process in comparison with raw quinoa seeds, whilst fermentation caused a decrease in both types of compounds. Phenolic compounds and antioxidant capacity were improved using both bioprocesses, being this effect more noticeable for germination process (101 % of increase after three days of germination). Germination and fermentation proved to be desirable procedures for producing enriched ingredients with health-promoting antioxidant compounds in a natural way.
Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates
NASA Astrophysics Data System (ADS)
Onol, Kubra; Saridede, Muhlis Nezihi
2013-03-01
The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.
NASA Astrophysics Data System (ADS)
Hines, M. E.; Duddleston, K. N.; Chanton, J. P.
2006-12-01
Typical methanogenic decomposition pathways include near terminal carbon intermediates that turn over rapidly with small pool sizes. However, incubation and field experiments demonstrated that these organic intermediates accumulate in northern wetlands due to the lack of consumption by methanogenic bacteria. Acetate is the major organic end product of decomposition rather than CH4, and methanogenesis can be insignificant. The ratio of CO2:acetate:CH4 varied with vegetation type, and habitats dominated by non-vascular plants (Sphagnum) produced more acetate-C than CO2 or CH4. This ratio correlated well with stable C isotope alpha values used to delineate the path of CH4 formation. We suggest that methanogenesis in general is inhibited in oligotrophic wetlands, but that the conversion of acetate to CH4 is more sensitive, which increases the importance of the conversion of H2/CO2 to CH4. The relative importance of CH4 as an end product increased greatly in sites containing even small populations of Carex compared to sites inhabited only by Sphagnum, suggesting that subtle vegetation changes expected to occur during warming could lead to changes in the path of methanogenesis, increasing production. In addition, depth profiles revealed an active surficial (0-7 cm) C cycle that is sensitive to hydrology that may also greatly affect variability of CH4 formation. Acetate production represented a terminal process and was a sink for a large portion of metabolized C whose ultimate fate was aerobic oxidation to CO2. C destined for CH4 is thus bypassed to CO2 and does not contribute to atmospheric CH4. However, the connection and sensitivity of the pathway of methanogenesis to even small vegetation changes suggests that pathways can be mapped, they vary greatly over small distances, and they can change drastically with relatively small temperature increases.
Chelate-modified polymers for atmospheric gas chromatography
NASA Technical Reports Server (NTRS)
Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)
1980-01-01
Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.
Automatic Radiated Susceptibility Test System for Payload Equipment
NASA Technical Reports Server (NTRS)
Ngo, Hoai T.; Sturman, John C.; Sargent, Noel B.
1995-01-01
An automatic radiated susceptibility test system (ARSTS) was developed for NASA Lewis Research Center's Electro-magnetic Interference laboratory. According to MSFC-SPEC 521B, any electrical or electronic equipment that will be transported by the spacelab and space shuttle must be tested for susceptibility to electromagnetic interference. This state-of-the-art automatic test system performs necessary calculations; analyzes, processes, and records a great quantity of measured data; and monitors the equipment being tested in real-time and with minimal user intervention. ARSTS reduces costly test time, increases test accuracy, and provides reliable test results.
Extended depth of field in an intrinsically wavefront-encoded biometric iris camera
NASA Astrophysics Data System (ADS)
Bergkoetter, Matthew D.; Bentley, Julie L.
2014-12-01
This work describes a design process which greatly increases the depth of field of a simple three-element lens system intended for biometric iris recognition. The system is optimized to produce a point spread function which is insensitive to defocus, so that recorded images may be deconvolved without knowledge of the exact object distance. This is essentially a variation on the technique of wavefront encoding, however the desired encoding effect is achieved by aberrations intrinsic to the lens system itself, without the need for a pupil phase mask.
NASA Astrophysics Data System (ADS)
Sobolev, Stephan V.; Muldashev, Iskander A.
2017-12-01
Subduction is substantially multiscale process where the stresses are built by long-term tectonic motions, modified by sudden jerky deformations during earthquakes, and then restored by following multiple relaxation processes. Here we develop a cross-scale thermomechanical model aimed to simulate the subduction process from 1 min to million years' time scale. The model employs elasticity, nonlinear transient viscous rheology, and rate-and-state friction. It generates spontaneous earthquake sequences and by using an adaptive time step algorithm, recreates the deformation process as observed naturally during the seismic cycle and multiple seismic cycles. The model predicts that viscosity in the mantle wedge drops by more than three orders of magnitude during the great earthquake with a magnitude above 9. As a result, the surface velocities just an hour or day after the earthquake are controlled by viscoelastic relaxation in the several hundred km of mantle landward of the trench and not by the afterslip localized at the fault as is currently believed. Our model replicates centuries-long seismic cycles exhibited by the greatest earthquakes and is consistent with the postseismic surface displacements recorded after the Great Tohoku Earthquake. We demonstrate that there is no contradiction between extremely low mechanical coupling at the subduction megathrust in South Chile inferred from long-term geodynamic models and appearance of the largest earthquakes, like the Great Chile 1960 Earthquake.
From documentation to prediction: Raising the bar for thermokarst research
Rowland, Joel C.; Coon, Ethan T.
2015-11-12
Here we report that to date the majority of published research on thermokarst has been directed at documenting its form, occurrence, and rates of occurrence. The fundamental processes driving thermokarst have long been largely understood. However, the detailed physical couplings between, water, air, soil, and the thermal dynamics governing freeze-thaw and soil mechanics is less understood and not captured in models aimed at predicting the response of frozen soils to warming and thaw. As computational resources increase more sophisticated mechanistic models can be applied; these show great promise as predictive tools. These models will be capable of simulating the responsemore » of soil deformation to thawing/freezing cycles and the long-term, non-recoverable response of the land surface to the loss of ice. At the same time, advances in remote sensing of permafrost environments also show promise in providing detailed and spatially extensive estimates in the rates and patterns of subsidence. These datasets provide key constraints to calibrate and evaluate the predictive power of mechanistic models. In conclusion, in the coming decade, these emerging technologies will greatly increase our ability to predict when, where, and how thermokarst will occur in a changing climate.« less
Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA
Naftz, D.L.; Cederberg, J.R.; Krabbenhoft, D.P.; Beisner, K.R.; Whitehead, J.; Gardberg, J.
2011-01-01
A 24-h field experiment was conducted during July 2008 at a wetland on the eastern shore of Great Salt Lake (GSL) to assess the diurnal cycling of methylmercury (MeHg). Dissolved (<0.45??m) MeHg showed a strong diurnal variation with consistently decreasing concentrations during daylight periods and increasing concentrations during non-daylight periods. The proportion of MeHg relative to total Hg in the water column consistently decreased with increasing sunlight duration, indicative of photodegradation. During the field experiment, measured MeHg photodegradation rates ranged from 0.02 to 0.06ngL-1h-1. Convective overturn of the water column driven by nighttime cooling of the water surface was hypothesized as the likely mechanism to replace the MeHg in the water column lost via photodegradation processes. A hydrodynamic model of the wetland successfully simulated convective overturn of the water column during the field experiment. Study results indicate that daytime monitoring of selected wetlands surrounding GSL may significantly underestimate the MeHg content in the water column. Wetland managers should consider practices that maximize the photodegradation of MeHg during daylight periods. ?? 2011.
Reservoir properties of submarine- fan facies: Great Valley sequence, California.
McLean, H.
1981-01-01
Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author
Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.
Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong
2017-02-28
Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.
NASA Astrophysics Data System (ADS)
Quackenbush, A.
2015-12-01
Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model predicts that the warmer wetter conditions will lead to increases in vegetation productivity across much of the Appalachian LCC, while under RCP 8.5, the effects of increased precipitation are not enough to keep up with increases in evapotranspiration, leading to projected reductions in vegetation productivity for this LCC by the end of this century.
Process evaluation of the Regional Biomass Energy Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C.R.; Brown, M.A.; Perlack, R.D.
1994-03-01
The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describemore » experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.« less
Process analysis of an in store production of knitted clothing
NASA Astrophysics Data System (ADS)
Buecher, D.; Kemper, M.; Schmenk, B.; Gloy, Y.-S.; Gries, T.
2017-10-01
In the textile and clothing industry, global value-added networks are widespread for textile and clothing production. As a result of global networking, the value chain is fragmented and a great deal of effort is required to coordinate the production processes [1]. In addition, the planning effort on the quantity and design of the goods is high and risky. Today the fashion industry is facing an increasing customer demand for individual and customizable products in addition to short delivery times [2]. These challenges are passed down to the textile and clothing industry decreasing batch sizes and production times. Conventional clothing production cannot fulfill those demands especially when combined with more and more individual or customizable designs. Hence new production concepts have to be developed.
NASA Astrophysics Data System (ADS)
Serb, Alexander; Bill, Johannes; Khiat, Ali; Berdan, Radu; Legenstein, Robert; Prodromakis, Themis
2016-09-01
In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.
The Real-Time IRB: A Collaborative Innovation to Decrease IRB Review Time.
Spellecy, Ryan; Eve, Ann Marie; Connors, Emily R; Shaker, Reza; Clark, David C
2018-06-01
Lengthy review times for institutional review boards (IRBs) are a well-known barrier to research. In response to numerous calls to reduce review times, we devised "Real-Time IRB," a process that drastically reduces IRB review time. In this, investigators and study staff attend the IRB meeting and make changes to the protocol while the IRB continues its meeting, so that final approval can be issued at the meeting. This achieved an overall reduction in time from submission to the IRB to final approval of 40%. While this process is time and resource intensive, and cannot address all delays in research, it shows great promise for increasing the pace by which research is translated to patient care.
Epigenetics and therapeutic targets mediating neuroprotection.
Qureshi, Irfan A; Mehler, Mark F
2015-12-02
The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.
An expanding universe of small proteins.
Hobbs, Errett C; Fontaine, Fanette; Yin, Xuefeng; Storz, Gisela
2011-04-01
Historically, small proteins (sproteins) of less than 50 amino acids, in their final processed forms or genetically encoded as such, have been understudied. However, both serendipity and more recent focused efforts have led to the identification of a number of new sproteins in both Gram-negative and Gram-positive bacteria. Increasing evidence demonstrates that sproteins participate in a wide array of cellular processes and exhibit great diversity in their mechanisms of action, yet general principles of sprotein function are emerging. This review highlights examples of sproteins that participate in cell signaling, act as antibiotics and toxins, and serve as structural proteins. We also describe roles for sproteins in detecting and altering membrane features, acting as chaperones, and regulating the functions of larger proteins. Published by Elsevier Ltd.
Goswami, Usha
2004-03-01
Neuroscience is a relatively new discipline encompassing neurology, psychology and biology. It has made great strides in the last 100 years, during which many aspects of the physiology, biochemistry, pharmacology and structure of the vertebrate brain have been understood. Understanding of some of the basic perceptual, cognitive, attentional, emotional and mnemonic functions is also making progress, particularly since the advent of the cognitive neurosciences, which focus specifically on understanding higher level processes of cognition via imaging technology. Neuroimaging has enabled scientists to study the human brain at work in vivo, deepening our understanding of the very complex processes underpinning speech and language, thinking and reasoning, reading and mathematics. It seems timely, therefore, to consider how we might implement our increased understanding of brain development and brain function to explore educational questions.
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
Study on process and characterization of high-temperature resistance polyimide composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ling-Ying; Zhao, Wei-Dong; Liu, Han-Yang
2016-05-18
A novel polyimide composite with upper-use temperature of 420°C was prepared by autoclave process. The thermogravimetic analysis and rheological properties of uncured polyimide resin powders were analyzed. The influences of process parameters and post-treatment process on the properties of composites were also investigated. The morphologies of polyimide composites after shear fracture were observed by scanning electron microscope (SEM). The high-temperature resistance of composite was characterized by dynamic mechanical thermal analyzer (DMTA). Results showed that the imidization reaction mainly occurred in the temperature range of 100°C~220°C, and the largest weight loss rate appearing at 145°C indicated a drastic imidization reaction occurred.more » The melt viscosity of polyimide resin decreased with increasing the temperature between 220°C ∼305°C, and then increased with the increase of temperature due to the molecular crosslinking reactions. The fiber volume contents and void contents could be effectively controlled by applying the pressure step by step. The fiber volume content was sensitive to the initial pressure (P{sub i}) during the imidization. The second-stage pressure (P{sub 2}) and the temperature for applying the P{sub 2} (T{sub 2}) during the imidization had a great effect on the void content of composite. Good mechanical properties and interfacial adhesion of polyimide composite could obtain by optimized process. The post-treatment process can obviously increase the high-temperature resistance of polyimide composite. The polyimide composite treated at 420°C exhibited good retention of mechanical properties at 420°C and had a glass transition temperature (Tg) of 456°C. The retentions of flexible strength, flexible modulus and short beam shear strength of polyimide composite at 420°C were 65%, 84% and 62% respectively.« less
Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites
Gottfried, D.; Greenland, L.P.; Campbell, E.Y.
1968-01-01
Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A comparison of the abundance of some of these elements is made with those reported on oceanic tholeiites from the Atlantic and Pacific oceans. Trace elements with large ionic radii (Th, U, Cs) are present in significantly greater concentrations in the two continental tholeiitic series than in the oceanic tholeiites. However, this does not seem to be true for lithophilic elements of smaller ionic radii (Zr and Nb). These trace element distribution patterns, when considered with other minor element and isotopic studies, indicate that 1. (1) crustal contamination does not entirely account for differences between continental and oceanic tholeiites, and 2. (2) the oceanic tholeiites do not necessarily delimit the geochemical characteristics of the mantle. ?? 1968.
Li, Jingyi; Liu, Huihui; Paul Chen, J
2018-06-15
The continuous increase in synthetic plastic production and poor management in plastic waste have led to a tremendous increase in the dumping into our aqueous environment. Consequently, microplastics commonly defined as sizes less than 5 mm are produced and stay in both seawater and freshwater environment. The presence of microplastics as a new type of emerging contaminant has become a great issue of concerns from public and government authorities. The sources of microplastics to freshwater systems are many with the largest portion from wastewater treatment plants. The abundance of microplastics varies with the location, from above 1 million pieces per cubic meter to less than 1 piece in 100 cubic meters. Microplastics can cause several harmful physical effects on humans and living organisms through such mechanisms as entanglement and ingestion. The microplastics can act as carriers of various toxins such as additives from industrial production processes and persistent contaminants by the sorption in waters. Those toxins may cause great health problems to humans. A few studies on the fishes demonstrated that the microplastics and the associated toxins are bio-accumulated and cause such problems as intestinal damage and change in metabolic profiles. In studies of microplastics, fresh water is first sampled by the nets with typical mesh size of 330 μm for collection of microplastics. After the volume reducing process, the samples will then go through the purification process including density separation by such inorganic salts as sodium chloride and digestion process by oxidizing agents or enzymes. The sequence of these two processes (namely purification and digestion) is dependent on the sample type. The purified samples can be studied by several analytical methods. The commonly used methods for the qualification studies are FTIR spectroscopy, Raman spectroscopy, pyrolysis-GC/MS, and liquid chromatography. A tagging method can be used in the quantification study. Our literature study finds that there is still no universal accepted quantification and qualification tools of microplastics in fresh waters. More work is anticipated so as to obtain accurate information on microplastics in freshwater, which can then be used for the better assessment of the environmental risk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seelbach, Paul W.; Fogarty, Lisa R.; Bunnell, David Bo; Haack, Sheridan K.; Rogers, Mark W.
2013-01-01
The Lakewide Management Plans (LaMPs) within the Great Lakes region are examples of broad-scale, collaborative resource-management efforts that require a sound ecosystems approach. Yet, the LaMP process is lacking a holistic framework that allows these individual actions to be planned and understood within the broader context of the Great Lakes ecosystem. In this paper we (1) introduce a conceptual framework that unifies ideas and language among Great Lakes managers and scientists, whose focus areas range from tributary watersheds to open-lake waters, and (2) illustrate how the framework can be used to outline the geomorphic, hydrologic biological, and societal processes that underlie several goals of the Lake Michigan LaMP, thus providing a holistic and fairly comprehensive roadmap for tackling these challenges. For each selected goal, we developed a matrix that identifies the key ecosystem processes within the cell for each lake zone and each discipline; we then provide one example where a process is poorly understood and a second where a process is understood, but its impact or importance is unclear. Implicit in these objectives was our intention to highlight the importance of the Great Lakes coastal/nearshore zone. Although the coastal/nearshore zone is the important linkage zone between the watershed and open-lake zones—and is the zone where most LaMP issues are focused--scientists and managers have a relatively poor understanding of how the coastal/nearshore zone functions. We envision follow-up steps including (1) collaborative development of a more detailed and more complete conceptual model of how (and where) identified processes are thought to function, and (2) a subsequent gap analysis of science and monitoring priorities.
Increasing risk of great floods in a changing climate
Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L.
2002-01-01
Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods - that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km2 - using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.
2011-01-01
As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was developed by the National Soil Erosion Research Laboratory of the U.S. Department of Agriculture. During 2010, the USGS used the Precipitation-Runoff Modeling System (PRMS) to create a hydrologic model for the Lake Michigan Basin to assess the probable effects of climate change on future groundwater and surface-water resources. The Water Availability Tool for Environmental Resources (WATER) model and the Analysis of Flows In Networks of CHannels (AFINCH) program also were used to support USGS GLRI projects that required estimates of streamflows throughout the Great Lakes Basin. This information on existing watershed models, along with an assessment of geologic, soils, and land-use data across the Great Lakes Basin and the identification of problems that exist in selected tributary watersheds that could be addressed by a watershed model, was used to identify three watersheds in the Great Lakes Basin for future modeling by the USGS. These watersheds are the Kalamazoo River Basin in Michigan, the Tonawanda Creek Basin in New York, and the Bad River Basin in Wisconsin. These candidate watersheds have hydrogeologic, land-type, and soil characteristics that make them distinct from each other, but that are representative of other tributary watersheds within the Great Lakes Basin. These similarities in the characteristics among nearby watersheds will enhance the usefulness of a model by improving the likelihood that parameter values from a previously modeled watershed could reliably be used in the creation of a model of another watershed in the same region. The software program Hydrological Simulation Program–Fortran (HSPF) was selected to simulate the hydrologic, sedimentary, and water-quality processes in these selected watersheds. HSPF is a versatile, process-based, continuous-simulation model that has been used extensively by the scientific community, has the ongoing technical support of the U.S. Environmental Protection Agency and USGS, and provides a means to evaluate the effects that land-use changes or management practices might have on the simulated processes.
NASA Astrophysics Data System (ADS)
Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.
2018-03-01
In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.
Photobioreactor cultivation strategies for microalgae and cyanobacteria.
Johnson, Tylor J; Katuwal, Sarmila; Anderson, Gary A; Gu, Liping; Zhou, Ruanbao; Gibbons, William R
2018-03-08
The current burden on fossil-derived chemicals and fuels combined with the rapidly increasing global population has led to a crucial need to develop renewable and sustainable sources of chemicals and biofuels. Photoautotrophic microorganisms, including cyanobacteria and microalgae, have garnered a great deal of attention for their capability to produce these chemicals from carbon dioxide, mineralized water, and solar energy. While there have been substantial amounts of research directed at scaling-up production from these microorganisms, several factors have proven difficult to overcome, including high costs associated with cultivation, photobioreactor construction, and artificial lighting. Decreasing these costs will substantially increase the economic feasibility of these production processes. Thus, the purpose of this review is to describe various photobioreactor designs, and then provide an overview on lighting systems, mixing, gas transfer, and the hydrodynamics of bubbles. These factors must be considered when the goal of a production process is economic feasibility. Targets for improving microalgae and cyanobacteria cultivation media, including water reduction strategies will also be described. As fossil fuel reserves continue to be depleted and the world population continues to increase, it is imperative that renewable chemical and biofuel production processes be developed toward becoming economically feasible. Thus, it is essential that future research is directed toward improving these processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
The process of Hydraulic Fracturing as a method of determining in-situ stresses in brittle elastic formations at great depth is analyzed both...theoretically and experimentally. Theoretically, it is found that in attempting to relate the recorded hydraulic fracturing pressures to tectonic stresses...at great depth. The experimental results show that hydraulic fracturing occurred when the internal pressure achieved a critical value that could
Great Lakes Research Review, 1982. Appendices.
1982-11-01
Annul Report - societal impact of the Cladophora problem (p. 6) - long-term, large-scale drift and dispersal pattern; ii the Greit akes (p. 7) C...Nutrient Exchange Processes in Macrophyte Lakes 155 C 479 NWRI Cladophora in the Great Lakes 156 C 494 NWRI Lake Ontario Nutrient Assessment Study (LONAS...Ingested with Drinking Water 136 A 387 UM Cladophora Measurements using Remote Sensing 137 A 387 U.WI. Nutrition of Great Lakes Cladophora 138 A 393
Tang, Yuqing; Shi, Xueting; Liu, Yongze; Zhang, Liqiu
2018-01-01
As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant (kobs) in UV photolysis was 0.0078 min−1, and increased to 0.0107 min−1 combining with 0.1 mM chlorine. The kobs increased to 0.0447 min−1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher kobs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to kobs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of HCO3− (1 ∼ 50 mM), barely affected by the presence of Cl− (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l−1). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process. PMID:29515853
Tang, Yuqing; Shi, Xueting; Liu, Yongze; Feng, Li; Zhang, Liqiu
2018-02-01
As a potential endocrine disruptor, clofibric acid (CA) was investigated in this study for its degradation kinetics and pathways in UV/chlorine process. The results showed that CA in both UV photolysis and UV/chlorine processes could be degraded via pseudo-first-order kinetics, while it almost could not be degraded in the dark chlorination process. The observed rate constant ( k obs ) in UV photolysis was 0.0078 min -1, and increased to 0.0107 min -1 combining with 0.1 mM chlorine. The k obs increased to 0.0447 min -1 with further increasing the chlorine dosage from 0.1 to 1.0 mM, and reached a plateau at higher dosage (greater than 1.0 mM). The higher k obs was obtained at acid solution rather than basic solution. Moreover, the calculated contributions of radical species to k obs indicated that the HO• contributed significantly to CA degradation in acidic conditions, while the reactive chlorine species and UV direct photolysis dominated in neutral and basic solution. The degradation of CA was slightly inhibited in the presence of [Formula: see text] (1 ∼ 50 mM), barely affected by the presence of Cl - (1 ∼ 200 mM) and greatly suppressed by humic acid (0 ∼ 5 mg l -1 ). Thirteen main degradation intermediates and three degradation pathways of CA were identified during UV/chlorine process.
Effect of different light spectra on the pigmentation of stored elephant garlic.
Comparini, Diego; Nguyen, Hieu Th; Ueda, Kota; Moritaka, Kyoshi; Kihara, Toshihiko; Kawano, Tomonori
2018-05-01
In the present study high-brightness light-emitting diodes were used to investigate the influence of different light spectra on garlic discoloration at different humidity levels and temperature. Many processes involved in the discoloration process of garlic/leek during storage under different conditions remain unanswered. For this reason in this study the ability of specific light spectra to enhance the production of desirable pigments has been evaluated in elephant garlic. It is well known that the pigments involved in the discoloration reaction are of great interest because of their potential ability to increase the nutritional value and health benefits of the food. In the present study, we show how the chlorophyll content of the sprout increases directly proportionally to the wavelength of the light tested; green/blue light delays the greening process of garlic young shoots whilst red/infra-red light irradiance conditions increase the greening process at different storage temperatures and humidity. Moreover different lights in the visible spectrum have been observed to stimulate and enhance the outer layer purple coloration. The use of different lights to modulate garlic pigmentation has been demonstrated and, in particular, the utilisation of red/green/blue lights and lower temperature resulted in higher red/pink pigments production supporting the hypothesis that this process involves more than one light to be fully performed and the low temperature is a condition that influences the formation of these products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
Landscape plant community transitions across the Great Basin and Intermountain West have altered fire regimes and present large-scale consequences relative to rangeland hydrology. Extensive conversion of Great Basin shrub steppe to annual grasslands has increased fuel continuity and the frequency, ...
Evaluation of a rural demonstration program to increase seat belt use in the Great Lakes Region.
DOT National Transportation Integrated Search
2009-03-01
Six States in the Great Lakes Region (Region 5) participated in a Rural Demonstration Program to increase seat belt : use in rural areas and among high-risk occupants, such as young males and occupants of pickup trucks. These : efforts, which include...
The future of irrigation on the U.S. Great Plains
USDA-ARS?s Scientific Manuscript database
In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...
Increasing Native Forb Seed Supplies for the Great Basin
Nancy L. Shaw; Scott M. Lambert; Ann M. DeBolt; Mike Pellant
2005-01-01
Over the last 150 years, excessive grazing, annual weed invasions, increased wildfire frequency, and other human disturbances have negatively impacted native plant communities of the Great Basin. Native plant materials and appropriate planting strategies are needed to recreate diverse communities in areas requiring active restoration. Although native forbs are critical...
75 FR 7958 - 2010 Rates for Pilotage on the Great Lakes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
...-AB39 2010 Rates for Pilotage on the Great Lakes AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY... investment. This increase reflects an August 1, 2010, increase in benchmark contractual wages and benefits... designated waters, we approximate the master's compensation (first mates' wages multiplied by 150% plus...
NASA Astrophysics Data System (ADS)
Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.
2010-12-01
Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.
Gutierrez-Quintana, Rodrigo; Penderis, Jacques
2012-01-01
Cervical spondylomyelopathy or Wobbler syndrome commonly affects the cervical vertebral column of Great Dane dogs. Degenerative changes affecting the articular process joints are a frequent finding in these patients; however, the correlation between these changes and other features of cervical spondylomyelopathy are uncertain. We described and graded the degenerative changes evident in the cervical articular process joints from 13 Great Danes dogs with cervical spondylomyelopathy using MR imaging, and evaluated the relationship between individual features of cervical articular process joint degeneration and the presence of spinal cord compression, vertebral foraminal stenosis, intramedullary spinal cord changes, and intervertebral disc degenerative changes. Degenerative changes affecting the articular process joints were common, with only 13 of 94 (14%) having no degenerative changes. The most severe changes were evident between C4-C5 and C7-T1 intervertebral spaces. Reduction or loss of the hyperintense synovial fluid signal on T2-weighted MR images was the most frequent feature associated with articular process joint degenerative changes. Degenerative changes of the articular process joints affecting the synovial fluid or articular surface, or causing lateral hypertrophic tissue, were positively correlated with lateral spinal cord compression and vertebral foraminal stenosis. Dorsal hypertrophic tissue was positively correlated with dorsal spinal cord compression. Disc-associated spinal cord compression was recognized less frequently. © 2011 Veterinary Radiology & Ultrasound.
Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary
In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...
Testing for Depéret's Rule (Body Size Increase) in Mammals using Combined Extinct and Extant Data
Bokma, Folmer; Godinot, Marc; Maridet, Olivier; Ladevèze, Sandrine; Costeur, Loïc; Solé, Floréal; Gheerbrant, Emmanuel; Peigné, Stéphane; Jacques, Florian; Laurin, Michel
2016-01-01
Whether or not evolutionary lineages in general show a tendency to increase in body size has often been discussed. This tendency has been dubbed “Cope's rule” but because Cope never hypothesized it, we suggest renaming it after Depéret, who formulated it clearly in 1907. Depéret's rule has traditionally been studied using fossil data, but more recently a number of studies have used present-day species. While several paleontological studies of Cenozoic placental mammals have found support for increasing body size, most studies of extant placentals have failed to detect such a trend. Here, we present a method to combine information from present-day species with fossil data in a Bayesian phylogenetic framework. We apply the method to body mass estimates of a large number of extant and extinct mammal species, and find strong support for Depéret's rule. The tendency for size increase appears to be driven not by evolution toward larger size in established species, but by processes related to the emergence of new species. Our analysis shows that complementary data from extant and extinct species can greatly improve inference of macroevolutionary processes. PMID:26508768
Rising sea level may cause decline of fringing coral reefs
Field, Michael E.; Ogston, Andrea S.; Storlazzi, Curt D.
2011-01-01
Coral reefs are major marine ecosystems and critical resources for marine diversity and fisheries. These ecosystems are widely recognized to be at risk from a number of stressors, and added to those in the past several decades is climate change due to anthropogenically driven increases in atmospheric concentrations of greenhouse gases. Most threatening to most coral reefs are elevated sea surface temperatures and increased ocean acidity [e.g., Kleypas et al., 1999; Hoegh-Guldberg et al., 2007], but sea level rise, another consequence of climate change, is also likely to increase sedimentary processes that potentially interfere with photosynthesis, feeding, recruitment, and other key physiological processes (Figure 1). Anderson et al. [2010] argue compellingly that potential hazardous impacts to coastlines from 21st-century sea level rise are greatly underestimated, particularly because of the rapid rate of rise. The Intergovernmental Panel on Climate Change estimates that sea level will rise in the coming century (1990–2090) by 2.2–4.4 millimeters per year, when projected with little contribution from melting ice [Meehl et al., 2007]. New studies indicate that rapid melting of land ice could substantially increase the rate of sea level rise [Grinsted et al., 2009; Milne et al., 2009].
Social organization and the evolution of cumulative technology in apes and hominins.
Pradhan, Gauri R; Tennie, Claudio; van Schaik, Carel P
2012-07-01
Culturally supported accumulation (or ratcheting) of technological complexity is widely seen as characterizing hominin technology relative to that of the extant great apes, and thus as representing a threshold in cultural evolution. To explain this divide, we modeled the process of cultural accumulation of technology, which we defined as adding new actions to existing ones to create new functional combinations, based on a model for great ape tool use. The model shows that intraspecific and interspecific variation in the presence of simple and cumulative technology among extant orangutans and chimpanzees is largely due to variation in sociability, and hence opportunities for social learning. The model also suggests that the adoption of extensive allomaternal care (cooperative breeding) in early Pleistocene Homo, which led to an increase in sociability and to teaching, and hence increased efficiency of social learning, was enough to facilitate technological ratcheting. Hence, socioecological changes, rather than advances in cognitive abilities, can account for the cumulative cultural changes seen until the origin of the Acheulean. The consequent increase in the reliance on technology could have served as the pacemaker for increased cognitive abilities. Our results also suggest that a more important watershed in cultural evolution was the rise of donated culture (technology or concepts), in which technology or concepts was transferred to naïve individuals, allowing them to skip many learning steps, and specialization arose, which allowed individuals to learn only a subset of the population's skills. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A
2016-08-01
Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Hallberg, Robert; Inamdar, Anand K.
1993-01-01
Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.
The keyhole region in VPPA welds
NASA Technical Reports Server (NTRS)
Walsh, Daniel W.
1988-01-01
The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large.
NASA Astrophysics Data System (ADS)
Gao, Mengxu; Li, Qun; Cao, Chunxiang; Wang, Juanle
2014-03-01
Yersinia pestis (Plague bacterium) from great gerbil was isolated in 2005 in Xinjiang Dzungarian Basin, which confirmed the presence of the plague epidemic foci. This study analysed the spatial distribution and suitable habitat of great gerbil based on the monitoring data of great gerbil from Chinese Center for Disease Control and Prevention, as well as the ecological environment elements obtained from remote sensing products. The results showed that: (1) 88.5% (277/313) of great gerbil distributed in the area of elevation between 200 and 600 meters. (2) All the positive points located in the area with a slope of 0-3 degree, and the sunny tendency on aspect was not obvious. (3) All 313 positive points of great gerbil distributed in the area with an average annual temperature from 5 to 11 °C, and 165 points with an average annual temperature from 7 to 9 °C. (4) 72.8% (228/313) of great gerbil survived in the area with an annual precipitation of 120-200mm. (5) The positive points of great gerbil increased correspondingly with the increasing of NDVI value, but there is no positive point when NDVI is higher than 0.521, indicating the suitability of vegetation for great gerbil. This study explored a broad and important application for the monitoring and prevention of plague using remote sensing and geographic information system.
Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold.
Fu, Jingjing; Wang, Siqun; He, Chunxia; Lu, Zexiang; Huang, Jingda; Chen, Zhilin
2016-08-20
Monolithic cellulose nanofibrils (CNF)-silica composite aerogels were successfully prepared by immersing CNF aerogels into a silica solution in a two-step sol-gel process (initial hydrolysis of tetraethyl orthosilicate (TEOS) followed by condensation of silica particles). Aerogels were characterized by SEM, BET surface area test, bulk density and silica content analysis, FTIR spectroscopy, and compression test. The form of SiO2 existing in the composite aerogel was the spherical individual particles coated on CNF fibrils. The pH value of condensation solution was found to have great influence on the properties of the composite aerogels. By varying the pH value of condensation atmosphere from 8 to 12, the bulk densities of composite aerogels were able to be linearly increased from 0.059gcm(-3) to 0.29gcm(-3),and the silica content in the matrix sharply jumped from 3wt% to 79wt%. The porosities of the aerogels remained very high, between 85 and 96%, and the surface area of the composite aerogel reached up to 700.1m(2)g(-1). The compression properties of the composite aerogel improved greatly compared with those of the silica aerogel, about 8-30 times higher. Moreover, the compressive strength of the composite aerogel prepared in this work greatly exceeded the conventional insulation materials found in the recent commercial market, and without substantial increases in thermal conductivity. Hence, the findings of this research offer a promising application for composite aerogels and give a theoretical basis for developing new advanced materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasha, S. Vazeed; Satish, K. V.; Reddy, C. Sudhakar; Prasada Rao, P. V. V.; Jha, C. S.
2014-10-01
The invasion of alien species is a significant threat to global biodiversity and the top driver of climate change. The present study was conducted in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve, Gujarat, India, which has been severely affected by invasion of Prosopis juliflora. The invasive weed infestation has been identified using multi-temporal remote sensing datasets of 1977, 1990, 1999, 2005 and 2011. Spatial analyses of the transition matrix, extent of invasive colonies, patchiness, coalescence and rate of spread were carried out. During the study period of three and half decades, almost 295 km2 of the natural land cover was converted into Prosopis cover. This study has shown an increment of 42.9% of area under Prosopis cover in the Great Rann of Kachchh, part of the Kachchh Biosphere Reserve during 1977 to 2011. Spatial analysis indicates high occupancy of Prosopis cover with most of the invasion (95.9%) occurring in the grasslands and only 4.1% in other land cover types. The process of Prosopis invasion shows high patch initiation, followed by coalescence, indicating aggressive colonization of species. The number of patches within an area of < 1 km2 increased from 1977 to 2011, indicating the formation of new Prosopis habitats by replacing the grasslands. The largest patch of Prosopis cover increased from 144 km2 in 1977 to 430 km2 in 2011. The estimated mean patch size was 7.8 km2 in 1977. The mean patch size was largest during 2011, i.e., 9 km2. The annual spread rate for Prosopis has been estimated as 2.1% during 2005-2011. The present work has investigated the long term changes in Prosopis cover in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve. The spatial database generated will be useful in preparing strategies for the management of Prosopis juliflora.
Perino, Michael T; Miernicki, Michelle E; Telzer, Eva H
2016-11-01
Given the spike in risky behaviors that accompanies adolescence, the need to examine the processes and contextual factors that influence disinhibition for adolescents is of great import. Using an emotionally salient cognitive control task, we examined how socially appetitive and aversive cues differentially affect behavioral inhibition across development. In Study 1 (N = 94, ages 8-30 years), we found that socially appetitive cues were particularly detrimental to inhibition, a finding driven by our adolescent sample. In Study 2 (N = 35, ages 12-17 years), we sought to explore the neural processes implicated in suboptimal inhibition during adolescence. Replicating our behavioral findings from Study 1, socially appetitive cues again caused detriments to inhibition compared with socially aversive cues. At the neural level, increased activation in affective regions (amygdala and ventral striatum) while viewing socially appetitive relative to socially aversive cues was correlated with increases in disinhibition. Furthermore, both whole-brain and functional connectivity analyses suggest recruitment of affective and social-detection networks (fusiform, bilateral temporoparietal junction) may account for the increased focus on appetitive relative to aversive cues. Together, our findings suggest that adolescents show detriments in inhibition to socially appetitive contexts, which is related to increased recruitment of affective and social processing neural regions. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang
2016-08-01
The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Competition from the exotic annual grass, cheatgrass (Bromus tectorum), threatens millions of hectares of native plant communities throughout the Great Basin. The Nature Conservancy has identified the Great Basin as the third most endangered ecosystem in the United States. Not only has increased fue...
From Good to Great: Discussion Starter Tool
ERIC Educational Resources Information Center
Center on Great Teachers and Leaders, 2014
2014-01-01
In the report "From Good to Great: Exemplary Teachers Share Perspectives on Increasing Teacher Effectiveness across the Career Continuum," (See full report in ERIC at ED555657) National and State Teachers of the Year shared their views on what helped them become great teachers. This accompanying "Discussion Starter Tool" builds…
Hybrid performance measurement of a business process outsourcing - A Malaysian company perspective
NASA Astrophysics Data System (ADS)
Oluyinka, Oludapo Samson; Tamyez, Puteri Fadzline; Kie, Cheng Jack; Freida, Ayodele Ozavize
2017-05-01
It's no longer new that customer perceived value for product and services are now greatly influenced by its psychological and social advantages. In order to meet up with the increasing operational cost, response time, quality and innovative capabilities many companies turned their fixed operational cost to a variable cost through outsourcing. Hence, the researcher explored different underlying outsourcing theories and infer that these theories are essential to performance improvement. In this study, the researcher evaluates the performance of a business process outsource company by a combination of lean and agile method. To test the hypotheses, we analyze different variability that a business process company faces, how lean and agile have been used in other industry to address such variability and discuss the result using a predictive multiple regression analysis on data collected from companies in Malaysia. The findings from this study revealed that while each method has its own advantage, a business process outsource company could achieve more (up to 87%) increase in performance level by developing a strategy which focuses on a perfect mixture of lean and agile improvement methods. Secondly, this study shows that performance indicator could be better evaluated with non-metrics variables of the agile method. Thirdly, this study also shows that business process outsourcing company could perform better when they concentrate more on strengthening internal process integration of employees.
Flare physics at high energies
NASA Technical Reports Server (NTRS)
Ramaty, R.
1990-01-01
High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.
Solvents and sustainable chemistry
Welton, Tom
2015-01-01
Solvents are widely recognized to be of great environmental concern. The reduction of their use is one of the most important aims of green chemistry. In addition to this, the appropriate selection of solvent for a process can greatly improve the sustainability of a chemical production process. There has also been extensive research into the application of so-called green solvents, such as ionic liquids and supercritical fluids. However, most examples of solvent technologies that give improved sustainability come from the application of well-established solvents. It is also apparent that the successful implementation of environmentally sustainable processes must be accompanied by improvements in commercial performance. PMID:26730217
Synthesis of many different types of organic small molecules using one automated process.
Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D
2015-03-13
Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. Copyright © 2015, American Association for the Advancement of Science.
Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M
2017-05-11
As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.
Huang, Chen; Wu, Xinxing; Huang, Yang; Lai, Chenhuan; Li, Xin; Yong, Qiang
2016-11-01
The effect of prewashing process prior to the liquid hot water (LHW) pretreatment of high free ash content waste wheat straw (WWS) was investigated. It was found that prewashing process decreased the ash content of WWS greatly, from 29.48% to 9.82%. This contributed to the lower pH value of prehydrolyzate and higher xylan removal in the following LHW pretreatment. More importantly, the prewashing process effectively increased the cellulose enzymatic hydrolysis efficiency of pretreated WWS, from 53.04% to 84.15%. The acid buffering capacity (ABC) and cation exchange capacity (CEC) of raw and prewashed WWS were examined. The majority of free ash removal from WWS by prewashing resulted in the decrease of the ABC of the WWS from 211.74 to 61.81mmol/pH-kg, and potentially enhancing the efficiency of the follow-up LHW pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying regions of interest in medical images using self-organizing maps.
Teng, Wei-Guang; Chang, Ping-Lin
2012-10-01
Advances in data acquisition, processing and visualization techniques have had a tremendous impact on medical imaging in recent years. However, the interpretation of medical images is still almost always performed by radiologists. Developments in artificial intelligence and image processing have shown the increasingly great potential of computer-aided diagnosis (CAD). Nevertheless, it has remained challenging to develop a general approach to process various commonly used types of medical images (e.g., X-ray, MRI, and ultrasound images). To facilitate diagnosis, we recommend the use of image segmentation to discover regions of interest (ROI) using self-organizing maps (SOM). We devise a two-stage SOM approach that can be used to precisely identify the dominant colors of a medical image and then segment it into several small regions. In addition, by appropriately conducting the recursive merging steps to merge smaller regions into larger ones, radiologists can usually identify one or more ROIs within a medical image.
Mapping CMMI Level 2 to Scrum Practices: An Experience Report
NASA Astrophysics Data System (ADS)
Diaz, Jessica; Garbajosa, Juan; Calvo-Manzano, Jose A.
CMMI has been adopted advantageously in large companies for improvements in software quality, budget fulfilling, and customer satisfaction. However SPI strategies based on CMMI-DEV require heavy software development processes and large investments in terms of cost and time that medium/small companies do not deal with. The so-called light software development processes, such as Agile Software Development (ASD), deal with these challenges. ASD welcomes changing requirements and stresses the importance of adaptive planning, simplicity and continuous delivery of valuable software by short time-framed iterations. ASD is becoming convenient in a more and more global, and changing software market. It would be greatly useful to be able to introduce agile methods such as Scrum in compliance with CMMI process model. This paper intends to increase the understanding of the relationship between ASD and CMMI-DEV reporting empirical results that confirm theoretical comparisons between ASD practices and CMMI level2.
[Study of cuttings identification using laser-induced breakdown spectroscopy].
Tian, Ye; Wang, Zhen-nan; Hou, Hua-ming; Zhai, Xiao-wei; Ci, Xing-hua; Zheng, Rong-er
2012-08-01
Cutting identification is one of the most important links in the course of cutting logging which is very significant in the process of oil drilling. In the present paper, LIBS was used for identification of four kinds of cutting samples coming from logging field, and then multivariate analysis was used in data processing. The whole spectra model and the feature model were built for cuttings identification using PLS-DA method. The accuracy of the whole spectra model was 88.3%, a little more than the feature model with an accuracy of 86.7%. While in the aspect of data size, the variables were decreased from 24,041 to 27 by feature extraction, which increased the efficiency of data processing observably. The obtained results demonstrate that LIBS combined with chemometrics method could be developed as a rapid and valid approach to cutting identification and has great potential to be used in logging field.
Anderson, I. E.; Kassen, A. G.; White, E. M. H.; ...
2015-04-13
Progress is reviewed on development of an improved near-final bulk magnet fabrication process for alnico 8, as a non-rare earth permanent magnet with promise for sufficient energy density and coercivity for electric drive motors. This study showed that alnico bulk magnets in near-final shape can be made by simple compression molding from spherical high purity gas atomized pre-alloyed powder. Dwell time at peak sintering temperature (1250°C) greatly affected grain size of the resulting magnet alloys. This microstructure transformation was demonstrated to be useful for gaining partially aligned magnetic properties and boosting energy product. Furthermore, while a route to increased coercivitymore » was not identified by these experiments, manufacturability of bulk alnico magnet alloys in near-final shapes was demonstrated, permitting further processing and alloy modification experiments that can target higher coercivity and better control of grain anisotropy during grain growth.« less
Enhanced enzymatic saccharification of pretreated biomass using glycerol thermal processing (GTP).
Zhang, Wei; Sathitsuksanoh, Noppadon; Barone, Justin R; Renneckar, Scott
2016-01-01
Biomass was heated (200-240°C) in the presence of glycerol, for 4-12 min, under shear to disrupt the native cell wall architecture. The impact of this method, named glycerol thermal processing (GTP), on saccharification efficiency of the hardwood Liquidambar styraciflua, and a control cellulose sample was studied as a function of treatment severity. Furthermore, the enzymatic conversion of samples with varying compositions was studied after extraction of the structural polymers. Interestingly, the sweet gum processed materials crystallinity index increased by 10% of the initial value. The experiments revealed that the residual lignin was not a barrier to limiting the digestibility of cellulose after pretreatment yielding up to 70% glucose based on the starting wood material. Further xylan removal greatly improved the cellulose hydrolysis rate, converting nearly 70% of the cellulose into glucose within 24h, and reaching 78% of ultimate glucan digestibility after 72 h. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance assessment of a submerged membrane bioreactor using a novel microbial consortium.
Chon, Kangmin; Lee, Kyungpyo; Kim, In-Soo; Jang, Am
2016-06-01
The performance of a submerged membrane bioreactor (MBR) with and without a novel microbial consortium (NMBR vs. CMBR) was compared to provide deeper insights into the effects of changes in water quality and dissolved organic matter (DOM) characteristics by a novel microbial consortium on the fouling characteristics of MBR processes. Despite similar operating conditions and identical DOM properties in the feed waters, NMBR exhibited a lower propensity to release polysaccharide-like compounds with low molecular weight by bacterial activities compared to CMBR. These compounds have a great fouling potential for MBR processes. Therefore, an increase in the transmembrane pressure (TMP) of NMBR (normalized TMP (TMP/TMP0): 1.14) was much slower and less significant than that observed in CMBR (TMP/TMP0: 2.61). These observations imply that the novel microbial consortium can efficiently mitigate membrane fouling by hydrophilic DOM in MBR processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peker, Musa; Şen, Baha; Gürüler, Hüseyin
2015-02-01
The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time.
The Non-Adiabatic dynamics of Singlet Fission in Polyacenes
NASA Astrophysics Data System (ADS)
Bradforth, Stephen
2015-03-01
Singlet fission involves the splitting of a single excitation into two coupled triplet excitations and is manifested in an increasing range of aromatic crystals and amorphous thin films. If the energy of the lowest triplet state is one half (or less) of the first singlet excited state, as it is for tetracene or pentacene and their derivatives, singlet fission may occur between two adjacent chromophores. Since there is no change in the overall spin state of the system, singlet fission can be exceptionally fast, occuring on the fs - ps range. If the triplets can diffuse away from the fission site they are available for harvesting as a dissociated carriers with up to two charge carrier pairs per absorbed photon. The possibility of recovering excess energy above the material band gap (in this case determined by the triplet energy) when a higher energy photon is absorbed has led to great recent interest in exploiting this process for increased efficiency solar energy harvesting. The nature of the electronic couplings between the chromophores, intermediate electronic configurations, and the role of entropy in the spin-allowed primary fission event have all come under great scrutiny. Results from a series of femtosecond spectroscopy experiments on a variety of amorphous thin films, nanoparticles and isolated acene dimer compounds will be presented that shed light on the electronic intermediate states key to the efficiency and speed of this process. Work supported as part of the Center for Energy Nanoscience, an Energy Frontier Research Center funded by the U.S. Department of Energy (DE-SC0001013).
NASA Astrophysics Data System (ADS)
Stewart, M.; Holdsworth, R. E.; Strachan, R. A.
2000-05-01
The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.
De Groot, Anne S; Einck, Leo; Moise, Leonard; Chambers, Michael; Ballantyne, John; Malone, Robert W; Ardito, Matthew; Martin, William
2013-01-01
The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of “novel pathogens” such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process—from genome to gene sequence, ready to insert in a DNA plasmid—can now be accomplished in less than 24 h. While these vaccines are by no means “standard,” the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard. PMID:23877094
The direction of evolution: the rise of cooperative organization.
Stewart, John E
2014-09-01
Two great trends are evident in the evolution of life on Earth: towards increasing diversification and towards increasing integration. Diversification has spread living processes across the planet, progressively increasing the range of environments and free energy sources exploited by life. Integration has proceeded through a stepwise process in which living entities at one level are integrated into cooperative groups that become larger-scale entities at the next level, and so on, producing cooperative organizations of increasing scale (for example, cooperative groups of simple cells gave rise to the more complex eukaryote cells, groups of these gave rise to multi-cellular organisms, and cooperative groups of these organisms produced animal societies). The trend towards increasing integration has continued during human evolution with the progressive increase in the scale of human groups and societies. The trends towards increasing diversification and integration are both driven by selection. An understanding of the trajectory and causal drivers of the trends suggests that they are likely to culminate in the emergence of a global entity. This entity would emerge from the integration of the living processes, matter, energy and technology of the planet into a global cooperative organization. Such an integration of the results of previous diversifications would enable the global entity to exploit the widest possible range of resources across the varied circumstances of the planet. This paper demonstrates that it's case for directionality meets the tests and criticisms that have proven fatal to previous claims for directionality in evolution. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Nan; Fu, Gui-qin; Chu, Man-sheng; Zhu, Miao-yong
2018-04-01
As part of a research project to develop a novel clean smelting process for the comprehensive utilization of Hongge vanadium titanomagnetite (HVTM), in this study, the effect of Cr2O3 addition on the oxidation induration mechanism of HVTM pellets (HVTMPs) was investigated in detail. The results showed that the compressive strength of the HVTMPs was greatly weakened by the Cr2O3 addition, mainly because of a substantial increase in the porosity of the HVTMPs. The Cr2O3 addition marginally affected the phase composition but greatly affected the microstructural changes of the HVTMPs. Increased amounts of Cr2O3 resulted in a decrease in the uniform distribution of the hematite grains and in an increase in the Fe-Cr solid solutions (Fe1.2Cr0.8O3 and Fe0.7Cr1.3O3) embedded in the hematite grains. Moreover, the compact hematite was destroyed by forming a dispersed structure and the hematite recrystallization was hindered during the oxidation induration, which adversely affected the compressive strength. On the basis of these results, a schematic was formulated to describe the oxidation induration mechanism with different amounts of added Cr2O3. This study provides theoretical and technical foundations for the effective production of HVTMPs and a reference for chromium-bearing minerals.
Large-scale seismic signal analysis with Hadoop
Addair, T. G.; Dodge, D. A.; Walter, W. R.; ...
2014-02-11
In seismology, waveform cross correlation has been used for years to produce high-precision hypocenter locations and for sensitive detectors. Because correlated seismograms generally are found only at small hypocenter separation distances, correlation detectors have historically been reserved for spotlight purposes. However, many regions have been found to produce large numbers of correlated seismograms, and there is growing interest in building next-generation pipelines that employ correlation as a core part of their operation. In an effort to better understand the distribution and behavior of correlated seismic events, we have cross correlated a global dataset consisting of over 300 million seismograms. Thismore » was done using a conventional distributed cluster, and required 42 days. In anticipation of processing much larger datasets, we have re-architected the system to run as a series of MapReduce jobs on a Hadoop cluster. In doing so we achieved a factor of 19 performance increase on a test dataset. We found that fundamental algorithmic transformations were required to achieve the maximum performance increase. Whereas in the original IO-bound implementation, we went to great lengths to minimize IO, in the Hadoop implementation where IO is cheap, we were able to greatly increase the parallelism of our algorithms by performing a tiered series of very fine-grained (highly parallelizable) transformations on the data. Each of these MapReduce jobs required reading and writing large amounts of data.« less
The United States after the great recession: the challenge of sustainable growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meltzer, Joshua; Steven, David; Langley, Claire
2013-02-15
The paper outlines the strengths and weaknesses of the U.S. economic growth model, assesses its’ ability to respond to the key economic, environmental and social challenges currently facing the U.S. and proposes policies that if adopted would move the U.S. onto a more sustainable growth path. The paper provides scenarios of projected future growth trajectories, as well as recommendations for specific policies in key areas: employment, infrastructure, energy and fiscal rebalancing. To reach this goal this paper focuses on four areas for action: Increasing employment, which is the most urgent priority to accelerate recovery from the Great Recession, while addressingmore » underlying structural issues that have led to a decade of poor economic outcomes for most citizens; Investing in the future, as the key marker of whether the United States is prepared to make farsighted decisions to improve education, build new infrastructure and increase innovation; Maximizing an increased energy endowment in a way that grows the economy, while reinforcing the trend towards reducing resource demand and reducing greenhouse gas emissions; and, Fiscal rebalancing, where the United States must insulate economic recovery from the process of fiscal reform while reducing and stabilizing debt over the long term. Finally, we argue that President Obama can re-energize America’s global leadership if he builds on a platform of domestic actions that enhance the sustainability of America’s society and economy.« less
Deng, Wen; Hou, Guoliang; Li, Shuangjian; Han, Jiesheng; Zhao, Xiaoqin; Liu, Xia; An, Yulong; Zhou, Huidi; Chen, Jianmin
2018-06-01
A simple, scalable and economical method was proposed to obtain ceramic-organic composite coating with excellent comprehensive properties include hardness, toughness, elastic recovery, lamellar interfacial bonding and anti-cavitation erosion: introducing epoxy resin into the pores and micro-cracks of plasma sprayed ceramic coating. The results indicate that the epoxy resin was successfully penetrated into the whole ceramic coating and filled almost all defects by vacuum impregnation, which greatly enhanced its compactness and mechanical properties. The bonding strength between top coating and metal interlayer significantly increased from 17.3 MPa to 53.0 MPa, and the hardness (H) of top coating greatly increased from 11.07 GPa to 23.57 GPa. Besides, the value of H 3 /E 2 also increased from 0.06 GPa to 0.15 GPa, meaning the toughness of ceramic coating had been obviously improved. The pure ceramic coating had been punctured only after 4 h of cavitation test. However, the resin with high elasticity and toughness can effectively absorb impact energy, prevent cracks propagation and delay splats spallation during the cavitation erosion process. The novel composite coating displayed far better cavitation erosion resistance than pure ceramic coating, and it was still intact after 10 h of test. Copyright © 2018 Elsevier B.V. All rights reserved.
Large-scale seismic signal analysis with Hadoop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addair, T. G.; Dodge, D. A.; Walter, W. R.
In seismology, waveform cross correlation has been used for years to produce high-precision hypocenter locations and for sensitive detectors. Because correlated seismograms generally are found only at small hypocenter separation distances, correlation detectors have historically been reserved for spotlight purposes. However, many regions have been found to produce large numbers of correlated seismograms, and there is growing interest in building next-generation pipelines that employ correlation as a core part of their operation. In an effort to better understand the distribution and behavior of correlated seismic events, we have cross correlated a global dataset consisting of over 300 million seismograms. Thismore » was done using a conventional distributed cluster, and required 42 days. In anticipation of processing much larger datasets, we have re-architected the system to run as a series of MapReduce jobs on a Hadoop cluster. In doing so we achieved a factor of 19 performance increase on a test dataset. We found that fundamental algorithmic transformations were required to achieve the maximum performance increase. Whereas in the original IO-bound implementation, we went to great lengths to minimize IO, in the Hadoop implementation where IO is cheap, we were able to greatly increase the parallelism of our algorithms by performing a tiered series of very fine-grained (highly parallelizable) transformations on the data. Each of these MapReduce jobs required reading and writing large amounts of data.« less
Ahern, Robert J; Crean, Abina M; Ryan, Katie B
2012-12-15
Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of an MR image processing module on an FPGA chip.
Li, Limin; Wyrwicz, Alice M
2015-06-01
We describe the design and implementation of an image processing module on a single-chip Field-Programmable Gate Array (FPGA) for real-time image processing. We also demonstrate that through graphical coding the design work can be greatly simplified. The processing module is based on a 2D FFT core. Our design is distinguished from previously reported designs in two respects. No off-chip hardware resources are required, which increases portability of the core. Direct matrix transposition usually required for execution of 2D FFT is completely avoided using our newly-designed address generation unit, which saves considerable on-chip block RAMs and clock cycles. The image processing module was tested by reconstructing multi-slice MR images from both phantom and animal data. The tests on static data show that the processing module is capable of reconstructing 128×128 images at speed of 400 frames/second. The tests on simulated real-time streaming data demonstrate that the module works properly under the timing conditions necessary for MRI experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Ballast Blockade: Stopping Aquatic Immigrants.
ERIC Educational Resources Information Center
White, Sara
2003-01-01
Presents students with six ballast water treatment methods to evaluate. Allows students to acquaint themselves with current Great Lakes topics while simultaneously partaking in decision-making processes that could affect them. Emphasizes not only an important environmental issue for the Great Lakes, but also the importance of decision-making…
Thai nursing students' adaption to problem-based learning: a qualitative study.
Klunklin, Areewan; Subpaiboongid, Pornpun; Keitlertnapha, Pongsri; Viseskul, Nongkran; Turale, Sue
2011-11-01
Student-centred forms of learning have gained favour internationally over the last few decades including problem based learning, an approach now incorporated in medicine, nursing and other disciplines' education in many countries. However, it is still new in Thailand and being piloted to try to offset traditional forms of didactic, teacher-centred forms of teaching. In this qualitative study, 25 undergraduate nursing students in northern Thailand were interviewed about their experiences with problem-based learning in a health promotion subject. Content analysis was used to interrogate interview data, which revealed four categories: adapting, seeking assistance, self-development, and thinking process development. Initially participants had mixed emotions of confusion, negativity or boredom in the adaption process, but expressed satisfaction with creativity in learning, group work, and leadership development. They described increased abilities to problem solve and think critically, but struggled to develop questioning behaviours in learning. Socio-culturally in Thai education, students have great respect for teachers, but rarely question or challenge them or their learning. We conclude that problem-based learning has great potential in Thai nursing education, but educators and systems need to systematically prepare appropriate learning environments, their staff and students, to incorporate this within curricula. Copyright © 2011 Elsevier Ltd. All rights reserved.
[Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].
Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng
2013-04-01
The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.
Huang, Ke; Chen, Chuan; Zhang, Jun; Tang, Zhu; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie
2016-06-21
Microbial arsenic (As) methylation and volatilization are important processes controlling the As biogeochemical cycle in paddy soils. To further understand these processes, we isolated a novel bacterial strain, SM-1, from an As-contaminated paddy soil. SM-1 showed strong As methylation and volatilization abilities, converting almost all arsenite (10 μM) to dimethylarsenate and trimethylarsenic oxide in the medium and trimethylarsine gas into the headspace within 24 h, with trimethylarsine accounting for nearly half of the total As. On the basis of the 16S rRNA sequence, strain SM-1 represents a new species in a new genus within the family Cytophagaceae. Strain SM-1 is abundant in the paddy soil and inoculation of SM-1 greatly enhanced As methylation and volatilization in the soil. An arsenite methyltransferase gene (ArarsM) was cloned from SM-1. When expressed in Escherichia coli, ArArsM conferred the As methylation and volatilization abilities to E. coli and increased its resistance to arsenite. The high As methylation and volatilization abilities of SM-1 are likely attributed to an efficient ArArsM enzyme coupled with low arsenite efflux. These results suggest that strain SM-1 plays an important role in As methylation and volatilization in the paddy soil and has a great potential for As bioremediation.
Tracking and Data System Support for the Mariner Venus/Mercury 1973 Project
NASA Technical Reports Server (NTRS)
Davis, E. K.; Traxler, M. R.
1977-01-01
The Tracking and Data System, which provided outstanding support to the Mariner Venus/Mercury 1973 project during the period from January 1970 through March 1975 are chronologically described. In the Tracking and Data System organizations, plans, processes, and technical configurations, which were developed and employed to facilitate achievement of mission objectives, are described. In the Deep Space Network position of the tracking and data system, a number of special actions were taken to greatly increase the scientific data return and to assist the project in coping with in-flight problems. The benefits of such actions were high; however, there was also a significant increase in risk as a function of the experimental equipment and procedures required.
Computational protein design with backbone plasticity
MacDonald, James T.; Freemont, Paul S.
2016-01-01
The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735
Nie, Jinfeng; Wang, Fang; Li, Yusheng; Cao, Yang; Liu, Xiangfa; Zhao, Yonghao; Zhu, Yuntian
2017-01-01
In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB) technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM) and a transmission electron microscope (TEM). The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS) and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies. PMID:28772467
Commodity durability, trader specialization, and market performance
Dickhaut, John; Lin, Shengle; Porter, David; Smith, Vernon
2012-01-01
The original double auction studies of supply and demand markets established their strong efficiency and equilibrium convergence behavior using economically unsophisticated and untrained subjects. The results were unexpected because all individual costs and values were private and dependent entirely on the market trading process to aggregate the dispersed information into socially desirable outcomes. The exchange environment, however, corresponded to that of perishable, and not re-traded goods in which participants were specialized as buyers or sellers. We report experiments in repeated single-period markets where tradability, and buyer-seller role specialization, is varied by imposing or relaxing a restriction on re-trade within each period. In re-trade markets scope is given to speculative motives unavailable where goods perish on purchase. We observe greatly increased trade volume and decreased efficiency but subject experience increases efficiency. Observed speculation slows convergence by impeding the process whereby individuals learn from the market whether their private circumstances lead them to specialize as buyers or sellers. PMID:22307595
Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon
2013-10-01
An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Run-dong; Nie, Yong-feng; Li, Ai-min; Wang, Lei; Chi, Yong; Cen, Ke-fa
2004-09-01
Vitrification process can effectively control the leachability of heavy metals in fly ash generated from municipal solid waste incinerator (MWSI). The use of liquid ceramic (LC) additive as a heavy metal chemical stabilization agent was evaluated for MSWI fly ash. The residuals of chromium, lead and zinc in slag increase by different degree with liquid ceramic additive at 1400 degrees C, while those of cadmium and copper decreases. The migrating characteristic of nickel is hardly affected by the additive less than 10%. The volatilization of Cr and Zn occurs after 61 minute with 10% addition of LC, and the binding efficiency of Cr decreases with increasing of melting temperature. The results indicate that the binding efficiency of heavy metals was affected greatly by LC additive and showed significant differences according to type of heavy metal during melting process. The short melting time (no longer than 33 min) is useful to obtain high binding efficiency of heavy metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Joyce E.; Zhou, Cheng
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAMmore » is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
NASA Astrophysics Data System (ADS)
Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo
2016-10-01
Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.
From fundamental studies of sporulation to applied spore research.
Barák, Imrich; Ricca, Ezio; Cutting, Simon M
2005-01-01
Sporulation in the Gram-positive bacterium, Bacillus subtilis, has been used as an excellent model system to study cell differentiation for almost half a century. This research has given us a detailed picture of the genetic, physiological and biochemical mechanisms that allow bacteria to survive harsh environmental conditions by forming highly robust spores. Although many basic aspects of this process are now understood in great detail, including the crystal and NMR structures of some of the key proteins and their complexes, bacterial sporulation still continues to be a highly attractive model for studying various cell processes at a molecular level. There are several reasons for such scientific interest. First, some of the complex steps in sporulation are not fully understood and/or are only described by 'controversial' models. Second, intensive research on unicellular development of a single microorganism, B. subtilis, left us largely unaware of the multitude of diverse sporulation mechanisms in many other Gram-positive endospore and exospore formers. This diversity would likely be increased if we were to include sporulation processes in the Gram-negative spore formers. Spore formers have great potential in applied research. They have been used for many years as biodosimeters and as natural insecticides, exploited in the industrial production of enzymes, antibiotics, used as probiotics and, more, exploited as possible vectors for drug delivery, vaccine antigens and other immunomodulating molecules. This report describes these and other aspects of current fundamental and applied spore research that were presented at European Spores Conference held in Smolenice Castle, Slovakia, June 2004.
NASA Astrophysics Data System (ADS)
Banfi, F.
2017-08-01
Architecture, Engineering and Construction (AEC) industry is facing a great process re-engineering of the management procedures for new constructions, and recent studies show a significant increase of the benefits obtained through the use of Building Information Modelling (BIM) methodologies. This innovative approach needs new developments for information and communication technologies (ICT) in order to improve cooperation and interoperability among different actors and scientific disciplines. Accordingly, BIM could be described as a new tool capable of collect/analyse a great quantity of information (Big data) and improve the management of building during its life of cycle (LC). The main aim of this research is, in addition to a reduction in production times, reduce physical and financial resources (economic impact), to demonstrate how technology development can support a complex generative process with new digital tools (modelling impact). This paper reviews recent BIMs of different historical Italian buildings such as Basilica of Collemaggio in L'Aquila, Masegra Castle in Sondrio, Basilica of Saint Ambrose in Milan and Visconti Bridge in Lecco and carries out a methodological analysis to optimize output information and results combining different data and modelling techniques into a single hub (cloud service) through the use of new Grade of Generation (GoG) and Information (GoI) (management impact). Finally, this study shows the need to orient GoG and GoI for a different type of analysis, which requires a high Grade of Accuracy (GoA) and an Automatic Verification System (AVS ) at the same time.
Ecem Öner, Büşra; Akyol, Çağrı; Bozan, Mahir; Ince, Orhan; Aydin, Sevcan; Ince, Bahar
2018-02-01
This study aimed to improve biomethane production from lignocellulosic biomass by assessing the impact of bioaugmentation with Clostridium thermocellum on the performance of anaerobic digesters at different inoculation ratios. The outputs of the digestion experiments revealed that bioaugmentation strategies with C. thermocellum increased the methane yield up to 39%. The sequencing analysis indicated that the indigenous microbial community was modified by the bioaugmentation. During the process of bioaugmentation, in the digester that was inoculated at the ratio of 20% (v:v), an increase in the abundance of Ruminococcaceae family led to a decrease in the Bacteroidaceae and Synergistaceae families. Furthermore, the metabolic products of the bioaugmented strains greatly influenced the diversity of the archaeal community and an increase in the abundance of Methanomicrobiales was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi
2018-07-01
This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface
Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min
2016-01-01
CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417
Reintroducing native plants to the American West
Derek J. Tilley
2007-01-01
The Aberdeen PMC is working together with other team members of the Great Basin Restoration Initiative (USDI-BLM) and the Great Basin Native Plant Selection and Increase Project (USDAFS) to develop techniques to increase native plant diversity in crested wheatgrass monocultures. Since the early 1930s crested wheatgrass has been used in range seedings in the...
Process scales in catchment science: a new synthesis
Concerns surrounding data resolution, choice of spatial and temporal scales in research design, and problems with extrapolation of processes across spatial and temporal scales differ greatly between scientific process-elucidation research and scenario exploration for watershed ma...
The Great Recession, Public Transfers, and Material Hardship
Pilkauskas, Natasha V.; Currie, Janet; Garfinkel, Irwin
2013-01-01
Economic downturns lead to lost income and increased poverty. Although high unemployment almost certainly also increases material hardship, and government transfers likely decrease hardship, the first relationship has not yet been documented and the second is poorly understood. We use data from five waves of the Fragile Families and Child Well-being Study to study the relationships between unemployment, government transfers, and material hardship. The latest wave of data was collected during the Great Recession, the worst recession since the Great Depression, providing a unique opportunity to look at how high unemployment rates affect the well-being of low income families. We find that the unemployment rate is associated with increased overall material hardship, difficulty paying bills, having utilities disconnected, and with increased usage of TANF, SNAP, UI and Medicaid. If not for SNAP, food hardship might have increased by twice the amount actually observed. PMID:24379487
Progress in a novel architecture for high performance processing
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Liu, Meng; Liu, Zijun; Du, Xueliang; Xie, Shaolin; Ma, Hong; Ding, Guangxin; Ren, Weili; Zhou, Fabiao; Sun, Wenqin; Wang, Huijuan; Wang, Donglin
2018-04-01
The high performance processing (HPP) is an innovative architecture which targets on high performance computing with excellent power efficiency and computing performance. It is suitable for data intensive applications like supercomputing, machine learning and wireless communication. An example chip with four application-specific integrated circuit (ASIC) cores which is the first generation of HPP cores has been taped out successfully under Taiwan Semiconductor Manufacturing Company (TSMC) 40 nm low power process. The innovative architecture shows great energy efficiency over the traditional central processing unit (CPU) and general-purpose computing on graphics processing units (GPGPU). Compared with MaPU, HPP has made great improvement in architecture. The chip with 32 HPP cores is being developed under TSMC 16 nm field effect transistor (FFC) technology process and is planed to use commercially. The peak performance of this chip can reach 4.3 teraFLOPS (TFLOPS) and its power efficiency is up to 89.5 gigaFLOPS per watt (GFLOPS/W).
Photochemical coatings for the prevention of bacterial colonization.
Dunkirk, S G; Gregg, S L; Duran, L W; Monfils, J D; Haapala, J E; Marcy, J A; Clapper, D L; Amos, R A; Guire, P E
1991-10-01
Biomaterials are being used with increasing frequency for tissue substitution. Implantable, prosthetic devices are instrumental in the saving of patients' lives and enhancing the quality of life for many others. However, the greatest barrier to expanding the use of biomedical devices is the high probability of bacterial adherence and proliferation, causing very difficult and often untreatable medical-device centered infections. The difficulty in treating such infections results in great danger to the patient, and usually retrieval of the device with considerable pain and suffering. Clearly, development of processes that make biomedical devices resistant to bacterial adherence and colonization would have widespread application in the field of biomedical technology. A photochemical surface modification process is being investigated as a generic means of applying antimicrobial coatings to biomedical devices. The photochemical process results in covalent immobilization of coatings to all classes of medical device polymers. A discussion of the photochemical surface modification process and preliminary results demonstrating the success of photochemical coatings in formulating microbial-resistant surfaces are presented in this paper.
NASA Astrophysics Data System (ADS)
Smyth, Trevor; Menary, Gary; Geron, Marco
2018-05-01
Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.
Photo-Attachment of Biomolecules for Miniaturization on Wicking Si-Nanowire Platform
Cheng, He; Zheng, Han; Wu, Jia Xin; Xu, Wei; Zhou, Lihan; Leong, Kam Chew; Fitzgerald, Eugene; Rajagopalan, Raj; Too, Heng Phon; Choi, Wee Kiong
2015-01-01
We demonstrated the surface functionalization of a highly three-dimensional, superhydrophilic wicking substrate using light to immobilize functional biomolecules for sensor or microarray applications. We showed here that the three-dimensional substrate was compatible with photo-attachment and the performance of functionalization was greatly improved due to both increased surface capacity and reduced substrate reflectivity. In addition, photo-attachment circumvents the problems induced by wicking effect that was typically encountered on superhydrophilic three-dimensional substrates, thus reducing the difficulty of producing miniaturized sites on such substrate. We have investigated various aspects of photo-attachment process on the nanowire substrate, including the role of different buffers, the effect of wavelength as well as how changing probe structure may affect the functionalization process. We demonstrated that substrate fabrication and functionalization can be achieved with processes compatible with microelectronics processes, hence reducing the cost of array fabrication. Such functionalization method coupled with the high capacity surface makes the substrate an ideal candidate for sensor or microarray for sensitive detection of target analytes. PMID:25689680
Clothing creator trademark : Business plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, B.
SYMAGERY has developed a patented process to manufacture clothing without direct human labor. This CLOTHING CREATOR{trademark}, will have the ability to produce two (2) perfect garments every 45 seconds or one (1) every 30 seconds. The process will combine Computer Integrated Manufacturing (CIM) technology with heat molding and ultrasonic bonding/cutting techniques. This system for garment production, will have the capacity to produce garments of higher quality and at lower productions costs than convention cut and sew methods. ADVANTAGES of the process include: greatly reduced production costs; increased quality of garments; reduction in lead time; and capacity to make new classmore » of garments. This technology will accommodate a variety of knit, woven and nonwoven materials containing a majority of synthetic fibers. Among the many style of garments that could be manufactured by this process are: work clothing, career apparel, athletic garments, medical disposables, health care products, activewear, haz/mat garments, military clothing, cleanroom clothing, outdoor wear, upholstery, and highly contoured stuffed toy shells. 3 refs.« less
NASA Astrophysics Data System (ADS)
Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.
2018-03-01
Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.
NASA Astrophysics Data System (ADS)
Handayeni, K. D. M. E.; Santoso, E. B.; Siswanto, V. K.
2017-07-01
The concept of One Village One Product (OVOP) is an approach to the development potential of the area in the region to produce products that can compete in the global market, while still having unique characteristics of the area. Bulak District is one of the Kenjeran coastal area in Surabaya, Indonesia. Bulak District has had a great potential of marine products, but still contribute greatly in improving the people's welfare. Total activities of SMEs in the District of Bulak quite a lot, but the resulting product unknown to the wider community and the global marketplace. Activity of facilitation for SMEs society do to build community capacity in the implementation of the concept of OVOP. Based on the results of the evaluation assistance through Wilcoxon Signed Ranks Test result an increased understanding of the community regarding to the five subjects related OVOP concept. There are six factors to note in mentoring activities that need to be considered for the sustainability of community capacity building programs on OVOP.
An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router
NASA Astrophysics Data System (ADS)
Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua
2016-10-01
Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-03-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.
Push-out tests and evaluation of FRP perfobond rib shear connectors performance
NASA Astrophysics Data System (ADS)
Kolpasky, Ludvik; Ryjacek, Pavel
2017-09-01
The behavioural characteristics of FRP (fibre-reinforced polymer) perfobond rib shear connector was examined through push-out tests in order to verify the applicability for pedestrian bridge structure. The aim of this study is to determine interaction between high performance concrete slab and handmade FRP plate which represent web of the composite beam. Combination of these modern materials leads to structural system with both great load bearing capacity and also sufficient flexural stiffness of the composite element. Openings cut into the GFRP plate at a variable spacing allow GFRP reinforcement bars to be inserted to act as shear studs. Hand lay-up process can increase suitable properties of FRP for connection by perfobond rib shear connectors. In this study, three push-out tests on fiber-reinforced polymer were performed to investigate their shear behaviour. The results of the push-out tests on FRP perfobond rib shear connector indicates great promise for application in full scale structures.
Wei, Mi; Tong, Yao; Wang, Hongbo; Wang, Lihua; Yu, Longjiang
2016-04-01
Development of efficient pretreatment methods which can disrupt the peripheral lignocellulose and even the parenchyma cells is of great importance for production of diosgenin from turmeric rhizomes. It was found that low pressure steam expansion pretreatment (LSEP) could improve the diosgenin yield by more than 40% compared with the case without pretreatment, while simultaneously increasing the production of fermentable sugar by 27.37%. Furthermore, little inhibitory compounds were produced in LSEP process which was extremely favorable for the subsequent biotransformation of fermentable sugar to other valuable products such as ethanol. Preliminary study showed that the ethanol yield when using the fermentable sugar as carbon source was comparable to that using glucose. The liquid residue of LSEP treated turmeric tuber after diosgenin production can be utilized as a quality fermentable carbon source. Therefore, LSEP has great potential in industrial application in diosgenin clean production and comprehensive utilization of turmeric tuber. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant
Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei
2017-01-01
Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735
Tribotronic Tuning Diode for Active Analog Signal Modulation.
Zhou, Tao; Yang, Zhi Wei; Pang, Yaokun; Xu, Liang; Zhang, Chi; Wang, Zhong Lin
2017-01-24
Realizing active interaction with external environment/stimuli is a great challenge for current electronics. In this paper, a tribotronic tuning diode (TTD) is proposed by coupling a variable capacitance diode and a triboelectric nanogenerator in free-standing sliding mode. When the friction layer is sliding on the device surface for electrification, a reverse bias voltage is created and applied to the diode for tuning the junction capacitance. When the sliding distance increases from 0 to 25 mm, the capacitance of the TTD decreases from about 39 to 8 pF. The proposed TTD has been integrated into analog circuits and exhibited excellent performances in frequency modulation, phase shift, and filtering by sliding a finger. This work has demonstrated tunable diode and active analog signal modulation by tribotronics, which has great potential to replace ordinary variable capacitance diodes in various practical applications such as signal processing, electronic tuning circuits, precise tuning circuits, active sensor networks, electronic communications, remote controls, flexible electronics, etc.
Rapid micromotor-based naked-eye immunoassay.
de Ávila, Berta Esteban-Fernández; Zhao, Mingjiao; Campuzano, Susana; Ricci, Francesco; Pingarrón, José M; Mascini, Marcello; Wang, Joseph
2017-05-15
A dynamic micromotor-based immunoassay, exemplified by cortisol detection, based on the use of tubular micromotors functionalized with a specific antibody is described. The use of antibody-functionalized micromotors offers huge acceleration of both direct and competitive cortisol immunoassays, along with greatly enhanced sensitivity of direct and competitive immunoassays. The dramatically improved speed and sensitivity reflect the greatly increased likelihood of antibody-cortisol contacts and fluid mixing associated with the dynamic movement of these microtube motors and corresponding bubble generation that lead to a highly efficient and rapid recognition process. Rapid naked-eye detection of cortisol in the sample is achieved in connection to use of horseradish peroxidase (HRP) tag and TMB/H 2 O 2 system. Key parameters of the competitive immunoassay (e.g., incubation time and reaction volume) were optimized. This fast visual micromotor-based sensing approach enables "on the move" specific detection of the target cortisol down to 0.1μgmL -1 in just 2min, using ultrasmall (50µL) sample volumes. Copyright © 2017 Elsevier B.V. All rights reserved.
Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland
NASA Astrophysics Data System (ADS)
Kos, Andrew; Amann, Florian; Strozzi, Tazio; Delaloye, Reynald; Ruette, Jonas; Springman, Sarah
2016-12-01
The destabilization and catastrophic failure of landslides triggered by retreating glaciers is an expected outcome of global climate change and poses a significant threat to inhabitants of glaciated mountain valleys around the globe. Of particular importance are the formation of landslide-dammed lakes, outburst floods, and related sediment entrainment. Based on field observations and remote sensing of a deep-seated landslide, located at the present-day terminus of the Great Aletsch Glacier, we show that the spatiotemporal response of the landslide to glacier retreat is rapid, occurring within a decade. Our observations uniquely capture the critical period of increase in slope deformations, onset of failure, and show that measured displacements at the crown and toe regions of the landslide demonstrate a feedback mechanism between glacier ice reduction and response of the entire landslide body. These observations shed new light on the geomorphological processes of landslide response in paraglacial environments, which were previously understood to occur over significantly longer time periods.
Scintillating Quantum Dots for Imaging X-Rays (SQDIX) for Aircraft Inspection
NASA Technical Reports Server (NTRS)
Burke, E. R.; DeHaven, S. L.; Williams, P. A.
2015-01-01
Scintillation is the process currently employed by conventional X-ray detectors to create X-ray images. Scintillating quantum dots (StQDs) or nano-crystals are novel, nanometer-scale materials that upon excitation by X-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmentally friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread X-ray imaging. Initial work on the scintillating quantum dots for imaging X-rays (SQDIX) system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency of a StQDs based imaging sensor.
Scintillating Quantum Dots for Imaging X-rays (SQDIX) for Aircraft Inspection
NASA Technical Reports Server (NTRS)
Burke, Eric (Principal Investigator); Williams, Phillip (Principal Investigator); Dehaven, Stan
2015-01-01
Scintillation is the process currently employed by conventional x-ray detectors to create x-ray images. Scintillating quantum dots or nano-crystals (StQDs) are a novel, nanometer-scale material that upon excitation by x-rays, re-emit the absorbed energy as visible light. StQDs theoretically have higher output efficiency than conventional scintillating materials and are more environmental friendly. This paper will present the characterization of several critical elements in the use of StQDs that have been performed along a path to the use of this technology in wide spread x-ray imaging. Initial work on the SQDIX system has shown great promise to create state-of-the-art sensors using StQDs as a sensor material. In addition, this work also demonstrates a high degree of promise using StQDs in microstructured fiber optics. Using the microstructured fiber as a light guide could greatly increase the capture efficiency a StQDs based imaging sensor.
Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues.
Colucci, Vivian; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori
2009-09-01
Since lasers were introduced in dentistry, there has been considerable advancement in technology. Several wavelengths have been investigated as substitutes for high-speed air turbine. Owing to its high absorbability in water and hydroxyapatite, the erbium:yttrium-aluminum-garnet (Er:YAG) laser has been of great interest among dental practitioners and scientists. In spite of its great potential for hard tissue ablation, Er:YAG laser effectiveness and safety is directly related to an adequate setting of the working patterns. It is assumed that the ablation rate is influenced by certain conditions, such as water content of the target tissue, and laser parameters. It has been shown that Er:YAG irradiation with water coolant attenuates temperature rise and, hence, minimizes the risk of thermally induced pulp injury. It also increases ablation efficiency and enhances adhesion to the lased dental tissue. The aim of this review was to obtain insights into the ablation process and to discuss the effects of water flow on dental tissue ablation using Er:YAG laser.
Zhang, Ding Sheng-Zi; Jiang, Yang; Wei, Dan; Wei, Xunbin; Xu, Hong; Gu, Hongchen
2018-06-21
With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.
2014-11-01
In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.
A new paradigma on the plant evolution: from a natural evolution to an artificial evolution?
Bennici, Andrea
2005-01-01
After evidencing the great importance of plants for animals and humans in consequence of the photosynthesis, several considerations on plant evolution are made. One of the peculiar characteristics of the plant is the sessile property, due especially to the cell wall. This factor, principally, strengthened by the photosynthetic process, determined the particular developmental pattern of the plant, which is characterized by the continuous formation of new organs. The plant immobility, although negative for its survival, has been, in great part, overcome by the acquisition of the capacity of adaptation (plasticity) to the environmental stresses and changes, and the establishment of more adapted genotypes. This capacity to react to the external signals induced Trewavas to speak of "plant intelligence". The plant movement incapacity and the evolution of the sexual reproduction system were strongly correlated. In this context, the evolution of the flower in the Angiosperms has been particularly important to allow the male gamete to fertilize the immobile female gamete. Moreover, the formation of fruit and seed greatly improved the dispersal and conservation of the progeny in the environment. With the flower, mechanisms to favour the outcrossing among different individuals appeared, which are essential to increase the genetic variability and, then, the plant evolution itself. Although the Angiosperms seem highly evolved, the plant evolution is not surely finished, because many reported morpho-physiological processes may be still considered susceptible of further improvement. In the last years the relationships among humans, plants and environment are becoming closer and closer. This is due to the use of the DNA recombinant techniques with the aim to modify artificially plant characters. Therefore, the risk of a plant evolution strongly directed towards practical or commercial objectives, or "an artificial evolution", may be hypothesized.
Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows all serve as important habitats in the Great Basin of central Nevada. Geomorphic and biotic characterization of the wet meadow complexes demonstrates that most terminate downvalle...
The New Great Game in Muslim Central Asia
1996-01-01
and maci]ine tools, petrol - chemicals, agro-processing and textiles. ’’~ 14 THE NEW GREAT GAME IN MUSLIM CENTRAL ASIA Kazakhstan is well endowed...Algeria, Tunisia , and Morocco---are keeping a wary eye. But at the popular level, this pan-Islmnism has the potential to attract a considerable amount of
Baron, Jill S.; Hartman, M.D.; Kittel, Timothy G.F.; Band, L.E.; Ojima, D. S.; Lammers, R.B.
1998-01-01
Over one-third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation-related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin-wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin-wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of <500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects.
There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particul...
Why Health Promotion Needs to Change.
Terry, Paul E
2018-01-01
If you ask most health professionals why they do what they do, they invariably speak of being of service. And being of service, for population health workers, becomes ever more meaningful as our work touches ever more lives. To wit, "Kaizen," a Japanese term meaning "change for better," sits shoulder to shoulder with our life's purpose. Health promotion professionals are high performers getting great results but we need to start working on our work. What would it take to increase our impact by 50%? And when we change our processes to accomplish that, what would we change next to get another 50% improvement? Only by stepping back and examining our processes can we see the time and motion required to make what's working now work better and be more accessible to more people next time.
Modern banking, collection, compatibility testing and storage of blood and blood components.
Green, L; Allard, S; Cardigan, R
2015-01-01
The clinical practice of blood transfusion has changed considerably over the last few decades. The potential risk of transfusion transmissible diseases has directed efforts towards the production of safe and high quality blood. All transfusion services now operate in an environment of ever-increasing regulatory controls encompassing all aspects of blood collection, processing and storage. Stringent donor selection, identification of pathogens that can be transmitted through blood, and development of technologies that can enhance the quality of blood, have all led to a substantial reduction in potential risks and complications associated with blood transfusion. In this article, we will discuss the current standards required for the manufacture of blood, starting from blood collection, through processing and on to storage. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater
NASA Astrophysics Data System (ADS)
Li, Zhenchen; Yang, Ping
2018-02-01
Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.
Nitrogen expander cycles for large capacity liquefaction of natural gas
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung
2014-01-01
Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.
Lv, Yu-Zhen; Li, Chao; Sun, Qian; Huang, Meng; Li, Cheng-Rong; Qi, Bo
2016-12-01
Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO 2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versatility for preparing stable nanofluid. The test results reveal that the combination of ultrasonic bath process and stirring method has the best dispersion efficiency and the obtained nanofluid possesses the highest AC breakdown strength. Specifically, after aging for 168 h, the size of nanoparticles in the nanofluid prepared by the combination method has no obvious change, while those obtained by the other three paths are increased obviously.
Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces
NASA Astrophysics Data System (ADS)
Kartavtcev, S.; Matveev, S.; Neshporenko, E.
2018-03-01
Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.
Ozcan, Sercan; Islam, Nazrul
2017-01-01
Many challenges still remain in the processing of explicit technological knowledge documents such as patents. Given the limitations and drawbacks of the existing approaches, this research sets out to develop an improved method for searching patent databases and extracting patent information to increase the efficiency and reliability of nanotechnology patent information retrieval process and to empirically analyse patent collaboration. A tech-mining method was applied and the subsequent analysis was performed using Thomson data analyser software. The findings show that nations such as Korea and Japan are highly collaborative in sharing technological knowledge across academic and corporate organisations within their national boundaries, and China presents, in some cases, a great illustration of effective patent collaboration and co-inventorship. This study also analyses key patent strengths by country, organisation and technology.
Middle atmospheric electrodynamics
NASA Technical Reports Server (NTRS)
Kelley, M. C.
1983-01-01
A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.
Do invasive quagga mussels alter CO2 dynamics in the Laurentian Great Lakes?
NASA Astrophysics Data System (ADS)
Lin, Peng; Guo, Laodong
2016-12-01
The Laurentian Great Lakes have experienced unprecedented ecological and environmental changes, especially after the introduction of invasive quagga mussel (Dreissena rostriformis bugensis). While impacts on ecological functions have been widely recognized, the response of carbon dynamics to invasive species remains largely unknown. We report new CO2 data showing significant increases in pCO2 (up to 800 μatm in Lake Michigan) and CO2 emission fluxes in most of the Great Lakes compared to those prior to or during the early stage of the colonization of invasive quagga mussels. The increased CO2 supersaturation is most prominent in Lakes Huron and Michigan, followed by Lakes Ontario and Erie, but no evident change was observed in Lake Superior. This trend mirrors the infestation extent of invasive quagga mussels in the Great Lakes and is consistent with the decline in primary production and increase in water clarity observed pre- and post-Dreissena introduction, revealing a close linkage between invasive species and carbon dynamics. The Great Lakes have become a significant CO2 source to the atmosphere, emitting >7.7 ± 1.0 Tg-C annually, which is higher than the organic carbon burial rate in global inland-seas and attesting to the significant role of the Laurentian Great Lakes in regional/global CO2 budget and cycling.
NASA Astrophysics Data System (ADS)
Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.
1999-09-01
The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.
Steinger, Thomas; Müller-Schärer, Heinz
1992-08-01
Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.
Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications
NASA Astrophysics Data System (ADS)
Woo, Patrick Kai Fai
Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of copper is greatly related to changes in driving and dragging forces, which in turn, are strongly depended on parameters such as annealing temperature and time, total sulfur impurity content and the distribution of the impurities within the material. It was shown that a simple increase in the sulfur impurity level does not necessarily improve the thermal stability of nanocrystalline copper.
Neuropsychological analysis of a typewriting disturbance following cerebral damage.
Boyle, M; Canter, G J
1987-01-01
Following a left CVA, a skilled professional typist sustained a disturbance of typing disproportionate to her handwriting disturbance. Typing errors were predominantly of the sequencing type, with spatial errors much less frequent, suggesting that the impairment was based on a relatively early (premotor) stage of processing. Depriving the subject of visual feedback during handwriting greatly increased her error rate. Similarly, interfering with auditory feedback during speech substantially reduced her self-correction of speech errors. These findings suggested that impaired ability to utilize somesthetic information--probably caused by the subject's parietal lobe lesion--may have been the basis of the typing disorder.
Microfluidics-to-Mass Spectrometry: A review of coupling methods and applications
Wang, Xue; Yi, Lian; Mukhitov, Nikita; Schrell, Adrian M.; Dhumpa, Raghuram; Roper, Michael G.
2014-01-01
Microfluidic devices offer great advantages in integrating sample processes, minimizing sample and reagent volumes, and increasing analysis speed, while mass spectrometry detection provides high information content, is sensitive, and can be used in quantitative analyses. The coupling of microfluidic devices to mass spectrometers is becoming more common with the strengths of both systems being combined to analyze precious and complex samples. This review summarizes select achievements published between 2010 – July 2014 in novel coupling between microfluidic devices and mass spectrometers. The review is subdivided by the types of ionization sources employed, and the different microfluidic systems used. PMID:25458901
Ten Commandments of Formal Methods...Ten Years Later
NASA Technical Reports Server (NTRS)
Bowen, Jonathan P.; Hinchey, Michael G.
2006-01-01
More than a decade ago, in "Ten Commandments of Formal Methods," we offered practical guidelines for projects that sought to use formal methods. Over the years, the article, which was based on our knowledge of successful industrial projects, has been widely cited and has generated much positive feedback. However, despite this apparent enthusiasm, formal methods use has not greatly increased, and some of the same attitudes about the infeasibility of adopting them persist. Formal methodists believe that introducing greater rigor will improve the software development process and yield software with better structure, greater maintainability, and fewer errors.
Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.
Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing
2009-06-01
Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.
Editorial: Ingenious designs and causal inference in child psychology and psychiatry.
Green, Jonathan
2016-05-01
The embryology of behavior--This title of a book by the great developmental psychologist Arnold Gesell (Gesell, 1945) continues nicely to encapsulate for me a core endeavour in child psychology and psychiatry; in the use of scientific method to tease out causes and processes within developmental science and psychopathology. This edition of JCPP includes some tremendous examples of the increasing rigour and sophistication with which such questions are being addressed. Particularly encouraging for me, as primarily an interventionist, is the use of well-designed randomized controlled trials (RCTs) for that end. © 2016 Association for Child and Adolescent Mental Health.
Criminal injury compensation: from B to A.
Burdett-Smith, P
1999-01-01
Since its inception some 34 years ago the CICB has dealt with over 1000000 applications and paid out over 1.6 bn pounds sterling to victims of violence. The recent changes to the scheme and the formation of the CICA have streamlined the process and resulted in a slight reduction in average payments, but with more consistency in the amounts paid. There is no indication that the steady increase of around 5% per annum in the numbers of applications will fall and the service will continue to be in great demand. Images Figure 1 Figure 2 PMID:9918287
NASA Astrophysics Data System (ADS)
Yu, Shang-Yu; Wang, Kuan-Hsun; Zan, Hsiao-Wen; Soppera, Olivier
2017-06-01
In this article, we propose a solution-processed high-performance amorphous indium-zinc oxide (a-IZO) thin-film transistor (TFT) gated with a fluoropolymer dielectric. Compared with a conventional IZO TFT with a silicon nitride dielectric, a fluoropolymer dielectric effectively reduces the operation voltage to less than 3 V and greatly increases the effective mobility 40-fold. We suggest that the dipole layer formed at the dielectric surface facilitates electron accumulation and induces the electric double-layer effect. The dipole-induced hysteresis effect is also investigated.
Structures, properties, modifications, and uses of oat starch.
Zhu, Fan
2017-08-15
There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.
Necrotizing fasciitis in nephritic syndrome: a case report
NASA Astrophysics Data System (ADS)
Junaedi, I.; Pasaribu, A. P.
2018-03-01
Necrotizing fasciitis is an infection of any layer of tissue compartment; it can be in the dermis, subcutaneous tissue, superficial fascia, deep fascia, or even muscle. Usually, necrotizing fasciitis is associated with necrotizing process caused by the single bacterial organism. The most common pathogen is group A Streptococcus. Delayed in the diagnosis and surgical treatment of necrotizing fasciitis will lead to increased tissue loss and high mortality risk. Here we report a case of necrotizing fasciitis which has a great outcome since the surgical exploration of tissue and debridement was done as soon as the patient is suspected of necrotizing fasciitis.
Xu, Biao; Agne, Matthias T; Feng, Tianli; Chasapis, Thomas C; Ruan, Xiulin; Zhou, Yilong; Zheng, Haimei; Bahk, Je-Hyeong; Kanatzidis, Mercouri G; Snyder, Gerald Jeffrey; Wu, Yue
2017-03-01
A scalable, low-temperature solution process is used to synthesize precursor material for Pb-doped Bi 0.7 Sb 1.3 Te 3 thermoelectric nanocomposites. The controllable Pb-doping leads to the increase in the optical bandgap, thus delaying the onset of bipolar conduction. Furthermore, the solution synthesis enables nanostructuring, which greatly reduces thermal conductivity. As a result, this material exhibits a zT = 1 over the 513-613 K range. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Thixomolded{reg_sign} magnesium products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, D.; Fan, R.; Kang, K.
1995-10-01
Thixomolding{reg_sign} is a racial new process which merges the technologies of die-casting and plastic injection molding for the net shape molding of magnesium based alloys. Properties of Thixomolded{reg_sign} magnesium alloys are discussed and compared with those of traditional die casting. Magnesium alloys are of great interest to automobile manufacturers because of the potential weight savings and corresponding energy savings due to increased fuel economy. For this reason, one of the first target markets for Thixomolded{reg_sign} products is the automotive industry. The use of Thixomolding{reg_sign} in the production of an automobile part is examined.
Heidegger, T; Saal, D; Nübling, M
2013-11-01
Patients' involvement in all decision processes is becoming increasingly important in modern healthcare. Patient satisfaction is a sensitive measure of a well-functioning health service system. The objective of this review is to discuss patient satisfaction as part of outcome quality, to define the somewhat abstract term 'satisfaction', and to discuss the role of surrogate markers within the field of satisfaction with anaesthesia care. We critically discuss what is relevant to satisfy patients with anaesthesia care, and we provide guidance on improving satisfaction. © 2013 The Association of Anaesthetists of Great Britain and Ireland.
The Constitutional Amendment Process
ERIC Educational Resources Information Center
Chism, Kahlil
2005-01-01
This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
Guo, Qia; Dai, Xiaohu
2017-11-01
With the popularization of municipal sewage treatment facilities, the improvement of sewage treatment efficiency and the deepening degree of sewage treatment, the sludge production of sewage plant has been sharply increased. Carbon emission during the process of municipal sewage treatment and disposal has become one of the important sources of greenhouse gases that cause greenhouse effect. How to reduce carbon dioxide emissions during sewage treatment and disposal process is of great significance for reducing air pollution. Kitchen waste and excess sludge, as two important organic wastes, once uses anaerobic synergetic digestion technology in the treatment process can on the one hand, avoid instability of sludge individual anaerobic digestion, improve sludge degradation rate and marsh gas production rate, and on the other hand, help increase the reduction of carbon dioxide emissions to a great extent. The paper uses material balance method, analyzes and calculates the carbon dioxide emissions from kitchen waste and sludge disposed by the anaerobic synergetic digestion technology, compares the anaerobic synergetic digestion technology with traditional sludge sanitary landfill technology and works out the carbon dioxide emission reductions after synergetic digestion. It takes the kitchen waste and sludge synergetic digestion engineering project of Zhenjiang city in Jiangsu province as an example, makes material balance analysis using concrete data and works out the carbon dioxide daily emission reductions. The paper analyzes the actual situation of emission reduction by comparing the data, and found that the synergetic digestion of kitchen waste and sludge can effectively reduce the carbon dioxide emission, and the reduction is obvious especially compared with that of sludge sanitary landfill, which has a certain effect on whether to promote the use of the technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Yui; Bell, Sara C.; Nichols, Cassandra; Fry, Kent; Menéndez, Patricia; Bourne, David G.
2018-06-01
Coral recovery (the restoration of abundance and composition of coral communities) after disturbance is a key process that determines the resilience of reef ecosystems. To understand the mechanisms underlying the recovery process of coral communities, colony abundance and size distribution were followed on reefs around Pelorus Island, located in the inshore central region of the Great Barrier Reef, following a severe tropical cyclone in 2011 that caused dramatic loss of coral communities. Permanent quadrats (600 m2) were monitored biannually between 2012 and 2016, and individual coral colonies were counted, sized and categorized into morphological types. The abundance of coral recruits and coral cover were also examined using permanent quadrats and random line intercept transects, respectively. The number of colonies in the smallest size class (4-10 cm) increased substantially during the study period, driving the recovery of coral populations. The total number of coral colonies 5 yr post-cyclone reached between 73 and 122% of pre-cyclone levels though coral cover remained between 16 and 31% of pre-cyclone levels, due to the dominance of small coral colonies in the recovering communities. Temporal transitions of coral demography (i.e., colony-size distributions) illustrated that the number of recently established coral populations overtook communities of surviving colonies. Coral recruits (< 4 cm in size) also showed increasing patterns in abundance over the study period, underscoring the importance of larval supply in coral recovery. A shift in morphological composition of coral communities was also observed, with the relative abundance of encrusting corals reduced post-cyclone in contrast to their dominance prior to the disturbance. This study identifies the fine-scale processes involved in the initial recovery of coral reefs, providing insights into the dynamics of coral demography that are essential for determining coral reef resilience following major disturbance.
In vitro bioassays to evaluate complex chemical mixtures in recycled water
Jia, Ai; Escher, Beate I.; Leusch, Frederic D.L.; Tang, Janet Y.M.; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M.; Snyder, Shane A.
2016-01-01
With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, aryl hydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection of optimized methods in future studies. Overall, this research indicates that a battery of bioassays can be used to support decision-making on the application of advanced water treatment processes for removal of bioactivity. PMID:25989591
In vitro bioassays to evaluate complex chemical mixtures in recycled water.
Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A
2015-09-01
With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection of optimized methods in future studies. Overall, this research indicates that a battery of bioassays can be used to support decision-making on the application of advanced water treatment processes for removal of bioactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Historical generations and psychology. The case of the Great Depression and World War II.
Rogler, Lloyd H
2002-12-01
The author assembles a theory of historical generations from dispersed sources in the social and behavioral sciences and in the humanities, differentiates the theory from formulations of other generation concepts, and applies it to central features in the lives of persons in the generation of the Great Depression and World War II. The application of the theory to historical materials explains how a commitment to social interdependence emerged as the signature orientation of the generation of the Great Depression and World War II. Challenges to the perspective of contextualism stem from the theory's hypotheses about linkages that mediate between cataclysmic events and psychological processes, the influence of historical generations on many of psychology's everyday concerns, and instructive comparisons with a body of growing research on processes involving adaptations to different cultures.
40 CFR Appendix E to Part 132 - Great Lakes Water Quality Initiative Antidegradation Policy
Code of Federal Regulations, 2014 CFR
2014-07-01
... operational variability; (2) Changes in intake water pollutants; (3) Increasing the production hours of the... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Great Lakes Water Quality Initiative... (CONTINUED) WATER PROGRAMS WATER QUALITY GUIDANCE FOR THE GREAT LAKES SYSTEM Pt. 132, App. E Appendix E to...
Geomorphological palaeoenvironments of the Sneeuberg Range, Great Karoo, South Africa
NASA Astrophysics Data System (ADS)
Holmes, P. J.; Boardman, J.; Parsons, A. J.; Marker, M. E.
2003-12-01
Sedimentary sequences within headwater valleys on the landward side of the Great Escarpment of South Africa are elucidated and their significance as indicators of environmental change is assessed. This study focuses on the Sneeuberg Range, the most prominent mountain range in the semi-arid central Great Karoo. Valley fills of a hitherto unrecognised complexity and of a greater age than any previously recorded in the central Great Karoo are reported. Three phases of deposition spanning the Late Pleistocene up to the present are documented from sites where gully erosion has incised the valley fills. The earliest depositional phase is represented by deeply weathered, calcretised gravel deposits, which probably were emplaced by debris flow and fluvial processes in the form of a fan. These deposits subsequently were buried by finer grained, largely unconsolidated sediment, with much of this emplacement occurring during the Holocene. There is evidence for phases of landscape stability and instability within this facies. Finally, sheetwash has removed fine-grained sediments from valley flanks and has deposited it either on valley bottoms, or in presently active gullies. This process appears to be ongoing, and is the subject of current investigation. The sedimentary deposits are interpreted as representing a wide range of palaeoenvironmental conditions that have prevailed within the central Great Karoo since the penultimate glaciation. Copyright
NASA Astrophysics Data System (ADS)
Moritzer, Elmar; Müller, Ellen; Martin, Yannick; Kleeschulte, Rainer
2015-05-01
Today the global market poses great challenges for industrial product development. Complexity, diversity of variants, flexibility and individuality are just some of the features that products have to offer today. In addition, the product series have shorter lifetimes. Because of their high capacity for adaption, polymers are increasingly able to displace traditional materials such as wood, glass and metals from various fields of application. Polymers can only be used to substitute other materials, however, if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important. Integrating the compounding step in the injection moulding process permits a more efficient and faster development process for a new polymer formulation, making it possible to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. The entire process sequence is supported by software from Bayer Technology called Product Design Workbench (PDWB), which provides assistance in all the individual steps from data management, via analysis and model compilation, right through to the optimization of the formulation and the design of experiments. The software is based on artificial neural networks and can model the formulation-property correlations and thus enable different formulations to be optimized. In the study presented, the workflow and the modelling with the software are presented.
A psychological model of mental disorder.
Kinderman, Peter
2005-01-01
A coherent conceptualization of the role of psychological factors is of great importance in understanding mental disorder. Academic articles and professional reports alluding to psychological models of the etiology of mental disorder are becoming increasingly common, and there is evidence of a marked policy shift toward the provision of psychological therapies and interventions. This article discusses the relationship between biological, social, and psychological factors in the causation and treatment of mental disorder. It argues that simple biological reductionism is not scientifically justified, and also that the specific role of psychological processes within the biopsychosocial model requires further elaboration. The biopsychosocial model is usually interpreted as implying that biological, psychological, and social factors are co-equal partners in the etiology of mental disorder. The psychological model of mental disorder presented here suggests that disruption or dysfunction in psychological processes is a final common pathway in the development of mental disorder. These processes include, but are not limited to, cognitive processes. The model proposes that biological and social factors, together with a person's individual experiences, lead to mental disorder through their conjoint effects on those psychological processes. Implications for research, interventions, and policy are discussed.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-07-01
Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.
Real-time implementing wavefront reconstruction for adaptive optics
NASA Astrophysics Data System (ADS)
Wang, Caixia; Li, Mei; Wang, Chunhong; Zhou, Luchun; Jiang, Wenhan
2004-12-01
The capability of real time wave-front reconstruction is important for an adaptive optics (AO) system. The bandwidth of system and the real-time processing ability of the wave-front processor is mainly affected by the speed of calculation. The system requires enough number of subapertures and high sampling frequency to compensate atmospheric turbulence. The number of reconstruction operation is increased accordingly. Since the performance of AO system improves with the decrease of calculation latency, it is necessary to study how to increase the speed of wavefront reconstruction. There are two methods to improve the real time of the reconstruction. One is to convert the wavefront reconstruction matrix, such as by wavelet or FFT. The other is enhancing the performance of the processing element. Analysis shows that the latency cutting is performed with the cost of reconstruction precision by the former method. In this article, the latter method is adopted. From the characteristic of the wavefront reconstruction algorithm, a systolic array by FPGA is properly designed to implement real-time wavefront reconstruction. The system delay is reduced greatly by the utilization of pipeline and parallel processing. The minimum latency of reconstruction is the reconstruction calculation of one subaperture.
The design and implementation of multi-source application middleware based on service bus
NASA Astrophysics Data System (ADS)
Li, Yichun; Jiang, Ningkang
2017-06-01
With the rapid development of the Internet of Things(IoT), the real-time monitoring data are increasing with different types and large amounts. Aiming at taking full advantages of the data, we designed and implemented an application middleware, which not only supports the three-layer architecture of IoT information system but also enables the flexible configuration of multiple resources access and other accessional modules. The middleware platform shows the characteristics of lightness, security, AoP (aspect-oriented programming), distribution and real-time, which can let application developers construct the information processing systems on related areas in a short period. It focuses not limited to these functions: pre-processing of data format, the definition of data entity, the callings and handlings of distributed service and massive data process. The result of experiment shows that the performance of middleware is more excellent than some message queue construction to some degree and its throughput grows better as the number of distributed nodes increases while the code is not complex. Currently, the middleware is applied to the system of Shanghai Pudong environmental protection agency and achieved a great success.
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Sauber, Jeanne; Riva, Riccardo
2011-01-01
The 2011 great Tohoku-Oki earthquake, apart from shaking the ground, perturbed the motions of satellites orbiting some hundreds km away above the ground, such as GRACE, due to coseismic change in the gravity field. Significant changes in inter-satellite distance were observed after the earthquake. These unconventional satellite measurements were inverted to examine the earthquake source processes from a radically different perspective that complements the analyses of seismic and geodetic ground recordings. We found the average slip located up-dip of the hypocenter but within the lower crust, as characterized by a limited range of bulk and shear moduli. The GRACE data constrained a group of earthquake source parameters that yield increasing dip (7-16 degrees plus or minus 2 degrees) and, simultaneously, decreasing moment magnitude (9.17-9.02 plus or minus 0.04) with increasing source depth (15-24 kilometers). The GRACE solution includes the cumulative moment released over a month and demonstrates a unique view of the long-wavelength gravimetric response to all mass redistribution processes associated with the dynamic rupture and short-term postseismic mechanisms to improve our understanding of the physics of megathrusts.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography.
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.
Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography
Wang, Hua-zhen; Chu, Zhi-zhan; Chen, Chang-chao; Cao, Ao-cheng; Tong, Xin; Ouyang, Can-bin; Yuan, Qi-hang; Wang, Mi-nan; Wu, Zhong-kun; Wang, Hai-hong; Wang, Sheng-bin
2015-01-01
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases. PMID:26641240
SMEs and their E-Commerce: Implications for Training in Wellington, New Zealand
ERIC Educational Resources Information Center
Beal, Tim; Abdullah, Moha Asri
2005-01-01
One of the greatest challenges facing traditional small and medium-sized enterprises (SMEs) throughout the world is that posed by the Internet. While the Internet offers great potential to SMEs, from improving and cheapening production processes through to reaching global customers, it also poses great problems. SMEs' resources, human and…
Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin
This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...
A Critical Appraisal of State Level Science Exhibition
ERIC Educational Resources Information Center
Nath, Baiju K.
2007-01-01
Science exhibitions are really great opportunities to students as well as teachers to disseminate knowledge that they have, and to experience a variety of new inventions and innovations that also need wide dissemination. The great significance of exhibition is that it fosters acquisition of different process skills leading to the development of…
Stability analysis of the onset of vortex shedding for wakes behind flat plates
NASA Astrophysics Data System (ADS)
Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun
2018-04-01
Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.
Ethanol production in Brazil: a bridge between science and industry.
Lopes, Mario Lucio; Paulillo, Silene Cristina de Lima; Godoy, Alexandre; Cherubin, Rudimar Antonio; Lorenzi, Marcel Salmeron; Giometti, Fernando Henrique Carvalho; Bernardino, Claudemir Domingues; Amorim Neto, Henrique Berbert de; Amorim, Henrique Vianna de
2016-12-01
In the last 40 years, several scientific and technological advances in microbiology of the fermentation have greatly contributed to evolution of the ethanol industry in Brazil. These contributions have increased our view and comprehension about fermentations in the first and, more recently, second-generation ethanol. Nowadays, new technologies are available to produce ethanol from sugarcane, corn and other feedstocks, reducing the off-season period. Better control of fermentation conditions can reduce the stress conditions for yeast cells and contamination by bacteria and wild yeasts. There are great research opportunities in production processes of the first-generation ethanol regarding high-value added products, cost reduction and selection of new industrial yeast strains that are more robust and customized for each distillery. New technologies have also focused on the reduction of vinasse volumes by increasing the ethanol concentrations in wine during fermentation. Moreover, conversion of sugarcane biomass into fermentable sugars for second-generation ethanol production is a promising alternative to meet future demands of biofuel production in the country. However, building a bridge between science and industry requires investments in research, development and transfer of new technologies to the industry as well as specialized personnel to deal with new technological challenges. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
,
1990-01-01
More than 50 percent of the U.S. population currently live within 50 miles of an ocean, Great Lake, or major estuary. According to forecasts, the concentration of people along our coastlines will continue to increase into the 21st century. In addition to residential and commercial buildings and facilities worth tens of billions of dollars, the coasts and associated wetlands are natural resources of tremendous value, with estimates in excess of $13 billion per year for commercial and recreational fisheries alone. Human activities and natural processes are stressing the coastal environment. * Each of the coastal states and island territories is suffering problems related to coastal erosion. * Deterioration of wetlands is widespread and of great public concern. * Pollutants carried by rivers or runoff are discharged directly into coastal waters and accumulate in the sediments on the sea floor, in some areas causing damage to living resources and presenting a threat to public health. * Onshore sources for hard-mineral resources, such as sand and gravel used for construction purposes, are becoming increasingly difficult to find. New sources are being sought in coastal waters. Coastal issues will become even more important into the next century if sea level is significantly influenced by climate change and other factors.
Aerosol properties and their influences on surface cloud condensation nuclei during CAP-MBL and MC3E
NASA Astrophysics Data System (ADS)
Logan, T.; Dong, X.; Xi, B.
2016-12-01
Aerosol particles are of particular importance because of their influences on cloud development and precipitation processes over land and ocean. Aerosol physical and chemical properties and their ability to activate as cloud condensation nuclei (CCN) as well as influence CCN number concentration (NCCN) during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) over the Southern Great Plains (SGP) region and the 2009-2010 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) over the Azores are presented in this study. Both regions periodically observe increases in NCCN when sulfate pollution and biomass burning smoke are present but over ocean, mineral dust diminishes NCCN. During clean conditions over the ocean, sea salt is the main contributor to CCN production, and strong (weak) surface winds and turbulent conditions can enhance (diminish) NCCN. Over the SGP, there were moderate to high correlations (R > 0.5) between increased magnitudes of aerosol loading (ssp), NCCN, chemical species, and PWV suggesting a shared common transport mechanism via the Gulf of Mexico further indicating the strong dependence on air mass type (e.g., marine vs. continental). Further investigations will greatly help to understand the seasonal influences of air masses on aerosol, NCCN, and cloud properties.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers
Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record
NASA Astrophysics Data System (ADS)
Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.
2017-01-01
Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various diversity partitions. Maintaining natural migration routes and population sizes among isolated regions are vital to preserving both extant biodiversity and biogeographic pathways requisite for future diversity generation.
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-03-01
We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to +0.2 V and -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.
Multilevel learning in the adaptive management of waterfowl harvests: 20 years and counting
Johnson, Fred A.; Boomer, G. Scott; Williams, Byron K.; Nichols, James D.; Case, David J.
2015-01-01
In 1995, the U.S. Fish and Wildlife Service implemented an adaptive harvest management program (AHM) for the sport harvest of midcontinent mallards (Anas platyrhynchos). The program has been successful in reducing long-standing contentiousness in the regulatory process, while integrating science and policy in a coherent, rigorous, and transparent fashion. After 20 years, much has been learned about the relationship among waterfowl populations, their environment, and hunting regulations, with each increment of learning contributing to better management decisions. At the same time, however, much has been changing in the social, institutional, and environmental arenas that provide context for the AHM process. Declines in hunter numbers, competition from more pressing conservation issues, and global-change processes are increasingly challenging waterfowl managers to faithfully reflect the needs and desires of stakeholders, to account for an increasing number of institutional constraints, and to (probabilistically) predict the consequences of regulatory policy in a changing environment. We review the lessons learned from the AHM process so far, and describe emerging challenges and ways in which they may be addressed. We conclude that the practice of AHM has greatly increased an awareness of the roles of social values, trade-offs, and attitudes toward risk in regulatory decision-making. Nevertheless, going forward the waterfowl management community will need to focus not only on the relationships among habitat, harvest, and waterfowl populations, but on the ways in which society values waterfowl and how those values can change over time.
Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa
2016-01-01
Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901
Development of CVD Diamond for Industrial Applications Final Report CRADA No. TC-2047-02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Olstad, R.; Jory, H.
2017-09-08
This project was a collaborative effort to develop and demonstrate a new millimeter microwave assisted chemical vapor deposition(CVD) process for manufacturing large diamond disks with greatly reduced processing times and costs from those now available. In the CVD process, carbon based gases (methane) and hydrogen are dissociated into plasma using microwave discharge and then deposited layer by layer as polycrystalline diamond onto a substrate. The available low frequency (2.45GHz) microwave sources used elsewhere (De Beers) result in low density plasmas and low deposition rates: 4 inch diamond disks take 6-8 weeks to process. The new system developed in this projectmore » uses a high frequency 30GHz Gyrotron as the microwave source and a quasi-optical CVD chamber resulting in a much higher density plasma which greatly reduced the diamond processing times (1-2 weeks)« less
Automated Euler and Navier-Stokes Database Generation for a Glide-Back Booster
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Mike J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejnil, Edward
2004-01-01
The past two decades have seen a sustained increase in the use of high fidelity Computational Fluid Dynamics (CFD) in basic research, aircraft design, and the analysis of post-design issues. As the fidelity of a CFD method increases, the number of cases that can be readily and affordably computed greatly diminishes. However, computer speeds now exceed 2 GHz, hundreds of processors are currently available and more affordable, and advances in parallel CFD algorithms scale more readily with large numbers of processors. All of these factors make it feasible to compute thousands of high fidelity cases. However, there still remains the overwhelming task of monitoring the solution process. This paper presents an approach to automate the CFD solution process. A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment, the NASA Information Power Grid (IPG), using 13 computers located at 4 different geographical sites. Process automation and web-based access to a MySql database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The AeroDB framework is shown. The user submits/deletes jobs, monitors AeroDB's progress, and retrieves data and plots via a web portal. Once a job is in the database, a job launcher uses an IPG resource broker to decide which computers are best suited to run the job. Job/code requirements, the number of CPUs free on a remote system, and queue lengths are some of the parameters the broker takes into account. The Globus software provides secure services for user authentication, remote shell execution, and secure file transfers over an open network. AeroDB automatically decides when a job is completed. Currently, the Cart3D unstructured flow solver is used for the Euler equations, and the Overflow structured overset flow solver is used for the Navier-Stokes equations. Other codes can be readily included into the AeroDB framework.
NASA Astrophysics Data System (ADS)
Pu, Bing; Ginoux, Paul
2018-03-01
High concentrations of dust particles can cause respiratory problems and increase non-accidental mortality. Studies found fine dust (with an aerodynamic diameter of less than 2.5 µm) is an important component of the total PM2.5 mass in the western and central US in spring and summer and has positive trends. This work examines climatic factors influencing long-term variations in surface fine dust concentration in the US using station data from the Interagency Monitoring Protected Visual Environments (IMPROVE) network during 1990-2015. The variations in the fine dust concentration can be largely explained by the variations in precipitation, surface bareness, and 10 m wind speed. Moreover, including convective parameters such as convective inhibition (CIN) and convective available potential energy (CAPE) that reveal the stability of the atmosphere better explains the variations and trends over the Great Plains from spring to fall.While the positive trend of fine dust concentration in the southwestern US in spring is associated with precipitation deficit, the increase in fine dust over the central Great Plains in summer is largely associated with enhanced CIN and weakened CAPE, which are caused by increased atmospheric stability due to surface drying and lower-troposphere warming. The strengthening of the Great Plains low-level jet also contributes to the increase in fine dust concentration in the central Great Plains in summer via its positive correlation with surface winds and negative correlation with CIN.Summer dusty days in the central Great Plains are usually associated with a westward extension of the North Atlantic subtropical high that intensifies the Great Plains low-level jet and also results in a stable atmosphere with subsidence and reduced precipitation.
Process Security in Chemical Engineering Education
ERIC Educational Resources Information Center
Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.
2005-01-01
The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…
NASA Astrophysics Data System (ADS)
Holmes, Adrian A. J.; Rodgers, David W.; Hughes, Scott S.
2008-04-01
Extension across the southern Great Rift of the Eastern Snake River Plain (ESRP), Idaho, was measured to calculate the dimensions of underlying dikes and interpret magmatic and extensional processes. Cumulative rift-perpendicular extension ranges from 0.64 to 4.50 m along the 14 km long Kings Bowl segment, from 1.33 to 4.41 m along the 14 km long New Butte segment, and from 0.74 to 1.57 m along the 4 km long Minidoka segment. Along strike of each segment, extension increases toward coeval vents. Each rift segment is interpreted to be underlain by a subsurface dike, whose dimensions are calculated using buoyancy equilibrium and boundary element models. Dikes are calculated to have tops that are 950-530 m deep, bottoms that are 23-31 km deep, and widths that taper to zero from a maximum of 2-21 m. Modeling suggests that the Kings Bowl dike has a maximum probable width of ˜8 m and a volume of ˜2 km3, about 400 times the volume of its coeval lava flow. Dike widths and ages at the southern Great Rift provide evidence for a Holocene ESRP strain rate of about 1 to 3 × 10-16 s-1, which is as much as an order of magnitude slower than strain rates in the adjacent, seismically active Basin and Range province. Eruptive fissures are present where rift width is <1650 m. This corresponds to a depth to dike top of <700 m, which we propose was the depth where vesiculation initiated, thus increasing magma pressure and inducing eruption.
A 100-Year Review: Cheese production and quality.
Johnson, M E
2017-12-01
In the beginning, cheese making in the United States was all art, but embracing science and technology was necessary to make progress in producing a higher quality cheese. Traditional cheese making could not keep up with the demand for cheese, and the development of the factory system was necessary. Cheese quality suffered because of poor-quality milk, but 3 major innovations changed that: refrigeration, commercial starters, and the use of pasteurized milk for cheese making. Although by all accounts cold storage improved cheese quality, it was the improvement of milk quality, pasteurization of milk, and the use of reliable cultures for fermentation that had the biggest effect. Together with use of purified commercial cultures, pasteurization enabled cheese production to be conducted on a fixed time schedule. Fundamental research on the genetics of starter bacteria greatly increased the reliability of fermentation, which in turn made automation feasible. Demand for functionality, machinability, application in baking, and more emphasis on nutritional aspects (low fat and low sodium) of cheese took us back to the fundamental principles of cheese making and resulted in renewed vigor for scientific investigations into the chemical, microbiological, and enzymatic changes that occur during cheese making and ripening. As milk production increased, cheese factories needed to become more efficient. Membrane concentration and separation of milk offered a solution and greatly enhanced plant capacity. Full implementation of membrane processing and use of its full potential have yet to be achieved. Implementation of new technologies, the science of cheese making, and the development of further advances will require highly trained personnel at both the academic and industrial levels. This will be a great challenge to address and overcome. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Williams, C.F.
2002-01-01
Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.
Bacteriocins: Recent Trends and Potential Applications.
Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Kennedy, John F
2016-01-01
In the modern era, there is great need for food preservation in both developing and developed countries due to increasing demand for extending shelf life and prevention of spoilage of food material. With the emergence of new pathogens and ability of micro-organisms to undergo changes, exploration of new avenues for the food preservation has gained importance. Moreover, awareness among consumers regarding harmful effects of chemical preservatives has been increased. Globally, altogether there is increasing demand by consumers for chemical-free and minimal processed food products. Potential of bacteriocin and its application in reducing the microbiological spoilages and in the preservation of food is long been recognized. Bacteriocins are normally specific to closely related species without disrupting the growth of other microbial populations. A number of applications of bacteriocin have been reported for humans, live stock, aquaculture etc. This review is focused on recent trends and applications of bacteriocins in different areas in addition to their biopreservative potential.
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
Native plant development and restoration program for the Great Basin, USA
N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur
2008-01-01
The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...
The great lakes silviculture summit: an introduction and organizing framework
Brian Palik; Louise Levy; Thomas Crow
2004-01-01
In recent years, institutional commitment to silviculture as a research discipline has decreased in the Great Lakes region and elsewhere. Ironically, at the same time, the various demands placed on silviculture by users of research have increased greatly and continue to do so today. There remains the need to produce more and better quality wood and fiber, a need...
Numerical analysis of whole-body cryotherapy chamber design improvement
NASA Astrophysics Data System (ADS)
Yerezhep, D.; Tukmakova, A. S.; Fomin, V. E.; Masalimov, A.; Asach, A. V.; Novotelnova, A. V.; Baranov, A. Yu
2018-05-01
Whole body cryotherapy is a state-of-the-art method that uses cold for treatment and prevention of diseases. The process implies the impact of cryogenic gas on a human body that implements in a special cryochamber. The temperature field in the chamber is of great importance since local integument over-cooling may occur. Numerical simulation of WBC has been carried out. Chamber design modification has been proposed in order to increase the uniformity of the internal temperature field. The results have been compared with the ones obtained for a standard chamber design. The value of temperature gradient formed in the chamber containing curved wall with certain height has been decreased almost twice in comparison with the results obtained for the standard design. The modification proposed may increase both safety and comfort of cryotherapy.