Modular Chemical Process Intensification: A Review.
Kim, Yong-Ha; Park, Lydia K; Yiacoumi, Sotira; Tsouris, Costas
2017-06-07
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. These dramatic improvements lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. This article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.
Modular Chemical Process Intensification: A Review
Kim, Yong-ha; Park, Lydia K.; Yiacoumi, Sotira; ...
2016-06-24
Modular chemical process intensification can dramatically improve energy and process efficiencies of chemical processes through enhanced mass and heat transfer, application of external force fields, enhanced driving forces, and combinations of different unit operations, such as reaction and separation, in single-process equipment. Dramatic improvements such as these lead to several benefits such as compactness or small footprint, energy and cost savings, enhanced safety, less waste production, and higher product quality. Because of these benefits, process intensification can play a major role in industrial and manufacturing sectors, including chemical, pulp and paper, energy, critical materials, and water treatment, among others. Thismore » article provides an overview of process intensification, including definitions, principles, tools, and possible applications, with the objective to contribute to the future development and potential applications of modular chemical process intensification in industrial and manufacturing sectors. Drivers and barriers contributing to the advancement of process intensification technologies are discussed.« less
Governance, agricultural intensification, and land sparing in tropical South America.
Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine
2014-05-20
In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970-2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.
Governance, agricultural intensification, and land sparing in tropical South America
Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine
2014-01-01
In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696
Neoteric Media as Tools for Process Intensification
NASA Astrophysics Data System (ADS)
Beh, C. C.; Mammucari, R.; Foster, N. R.
2017-06-01
Process intensification (PI) is a commonly used term in the chemical processing industry. When the concept of PI was first introduced in the late 1970s within the Imperial Chemical Industries (ICI) company, the main impetus was to reduce the processing cost without impairing the production rate. Neoteric media present as alternatives in chemical processing include gas-expanded liquids, ionic liquids, subcritical water, and combination of gas-expanded liquids and ionic liquids. The applications of neoteric media include particle engineering for improved bioavailability, controlled release of therapeutic implants, pharmaceutical formulations, extraction of natural products, nano-carriers for drug delivery, sterilisation of implants, and chemical reactions. This paper provides an overview of the use of these neoteric media.
Davis, Jenny; O'Grady, Anthony P; Dale, Allan; Arthington, Angela H; Gell, Peter A; Driver, Patrick D; Bond, Nick; Casanova, Michelle; Finlayson, Max; Watts, Robyn J; Capon, Samantha J; Nagelkerken, Ivan; Tingley, Reid; Fry, Brian; Page, Timothy J; Specht, Alison
2015-11-15
Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle. Both processes will have major socio-economic and ecological implications for global water availability. In this paper we focus on the implications of land use intensification for the conservation and management of freshwater ecosystems using Australia as an example. We consider this in the light of intensification of the hydrologic cycle due to climate change, and associated hydrological scenarios that include the occurrence of more intense hydrological events (extreme storms, larger floods and longer droughts). We highlight the importance of managing water quality, the value of providing environmental flows within a watershed framework and the critical role that innovative science and adaptive management must play in developing proactive and robust responses to intensification. We also suggest research priorities to support improved systemic governance, including adaptation planning and management to maximise freshwater biodiversity outcomes while supporting the socio-economic objectives driving land use intensification. Further research priorities include: i) determining the relative contributions of surface water and groundwater in supporting freshwater ecosystems; ii) identifying and protecting freshwater biodiversity hotspots and refugia; iii) improving our capacity to model hydro-ecological relationships and predict ecological outcomes from land use intensification and climate change; iv) developing an understanding of long term ecosystem behaviour; and v) exploring systemic approaches to enhancing governance systems, including planning and management systems affecting freshwater outcomes. A major policy challenge will be the integration of land and water management, which increasingly are being considered within different policy frameworks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...
NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment
NASA Technical Reports Server (NTRS)
Braun, Scott A.; Kakar, Ramesh; Zipser, Edward; Heymsfield, Gerald; Albers, Cerese; Brown, Shannon; Durden, Stephen; Guimond, Stephen; Halverson, Jeffery; Heymsfield, Andrew;
2013-01-01
In August–September 2010, NASA, NOAA, and the National Science Foundation (NSF) conducted separate but closely coordinated hurricane field campaigns, bringing to bear a combined seven aircraft with both new and mature observing technologies. NASA's Genesis and Rapid Intensification Processes (GRIP) experiment, the subject of this article, along with NOAA's Intensity Forecasting Experiment (IFEX) and NSF's Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment, obtained unprecedented observations of the formation and intensification of tropical cyclones. The major goal of GRIP was to better understand the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. A key focus of GRIP was the application of new technologies to address this important scientific goal, including the first ever use of the unmanned Global Hawk aircraft for hurricane science operations. NASA and NOAA conducted coordinated flights to thoroughly sample the rapid intensification (RI) of Hurricanes Earl and Karl. The tri-agency aircraft teamed up to perform coordinated flights for the genesis of Hurricane Karl and Tropical Storm Matthew and the non-redevelopment of the remnants of Tropical Storm Gaston. The combined GRIP–IFEX–PREDICT datasets, along with remote sensing data from a variety of satellite platforms [Geostationary Operational Environmental Satellite (GOES), Tropical Rainfall Measuring Mission (TRMM), Aqua, Terra, CloudSat, and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)], will contribute to advancing understanding of hurricane formation and intensification. This article summarizes the GRIP experiment, the missions flown, and some preliminary findings.
Boosting Manufacturing through Modular Chemical Process Intensification
None
2018-06-12
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Boosting Manufacturing through Modular Chemical Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-09
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Conservation of materials and energy is a major objective to the philosophy of sustainability. Where production processes can be intensified to assist these objectives, significant advances have been developed to assist conservation as well as cost. Process intensification (PI) h...
ERIC Educational Resources Information Center
Hardin, Michael G.; Schroth, Elizabeth; Pine, Daniel S.; Ernst, Monique
2007-01-01
Background: Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better…
NASA Astrophysics Data System (ADS)
Munsell, E.; Braun, S. A.; Zhang, F.
2017-12-01
The dynamics that govern the intensification of tropical cyclones (TC) are dominated by rapidly evolving moist convective processes in the inner-core region. Remotely sensed satellite observations are typically available but in the past have lacked the necessary resolution to sufficiently examine TC intensification processes. However, as a result of the recent launch of next-generation high-resolution satellites (JMA's Himawari-8 and NOAA/NASA's GOES-16), the spatial and temporal frequency of remotely-sensed observations of TCs have increased significantly. This study utilizes brightness temperatures observed by the Advanced Himawari Imager to examine the structure of Typhoon Soudelor (2015) throughout its rapid intensification (RI) from a tropical storm to a super typhoon. Wavenumber decompositions are performed on brightness temperature fields that correspond to channels sensitive to upper-, mid-, and lower-level water vapor, and IR longwave radiation, to study wave features associated with the inner-core region. A scale-separation is also performed to assess the degree to which the intensification processes are dominated by phenomenon of various wavelengths. Higher-order wavenumbers reveal asymmetric features that propagate outwards from the storm on short time scales ( 1-2 h). The identification of these waves and their contribution to intensification is ongoing. A deterministic forecast of Typhoon Soudelor performed using a convection-permitting WRF simulation coupled to an Ensemble Kalman Filter that assimilates brightness temperatures, accurately captures the TCs RI event. The Community Radiative Transfer Model (CRTM) is used to produce simulated brightness temperature fields for the applicable channels. The model demonstrates the ability to reproduce the observed brightness temperatures in great detail, including smaller-scale features such as primary rainbands and the eye; however, a uniform warm bias is present. It is hypothesized that this likely results from inaccuracies in the heights and depths of the simulated upper-tropospheric clouds and is primarily related to deficiencies in the microphysics scheme. The sensitivity of various microphysics parameters is being explored to assess ways to improve the representation of the brightness temperatures within the CRTM.
PROCESS INTENSIFICATION: MICROWAVE INITIATED REACTIONS USING A CONTINUOUS FLOW REACTOR
The concept of process intensification has been used to develop a continuous narrow channel reactor at Clarkson capable of carrying out reactions under isothermal conditions whilst being exposed to microwave (MW) irradiation thereby providing information on the true effect of mi...
Ott, Denise; Kralisch, Dana; Denčić, Ivana; Hessel, Volker; Laribi, Yosra; Perrichon, Philippe D; Berguerand, Charline; Kiwi-Minsker, Lioubov; Loeb, Patrick
2014-12-01
As the demand for new drugs is rising, the pharmaceutical industry faces the quest of shortening development time, and thus, reducing the time to market. Environmental aspects typically still play a minor role within the early phase of process development. Nevertheless, it is highly promising to rethink, redesign, and optimize process strategies as early as possible in active pharmaceutical ingredient (API) process development, rather than later at the stage of already established processes. The study presented herein deals with a holistic life-cycle-based process optimization and intensification of a pharmaceutical production process targeting a low-volume, high-value API. Striving for process intensification by transfer from batch to continuous processing, as well as an alternative catalytic system, different process options are evaluated with regard to their environmental impact to identify bottlenecks and improvement potentials for further process development activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pyrodiversity and the anthropocene: the role of fire in the broad spectrum revolution.
Bird, Douglas W; Bliege Bird, Rebecca; Codding, Brian F
2016-05-06
The Anthropocene colloquially refers to a global regime of human-caused environmental modification of earth systems associated with profound changes in patterns of human mobility, as well as settlement and resource use compared with prior eras. Some have argued that the processes generating the Anthropocene are mainly associated with population growth and technological innovation, and thus began only in the late Holocene under conditions of dense sedentism and industrial agriculture.(1) However, it now seems clear that the roots of the Anthropocene lie in complex processes of intensification that significantly predate transitions to agriculture.(2,3) What intensification is remains less clear. For some it is increasing economic productivity that increases carrying capacity, the drivers of which may be too diverse and too local to generalize.(4,5) For others using Boserup's ideas about agrarian intensification, increasing density in hunter-gatherer populations can produce declines in subsistence efficiency that increase incentives for investing labor to boost yield per unit area, which then elevates Malthusian limits on carrying capacity.(6-8) As Morgan(9) demonstrates in a comprehensive review, the legacy of such Boserupian intensification is alive, well, and controversial in hunter-gatherer archeology. This is a result of its potential for illuminating processes involved in transformations of forager socio-political and economic systems, including those dominated by harvesting more immediate-return resources and high residential mobility as well as those characterized by more delayed-return material economies with reduced residential mobility, a broader spectrum of resources, degrees of storage, and greater social stratification. Here we detail hypotheses about the processes involved in such transitions and explore the way that anthropogenic disturbance of ecosystems, especially the use of landscape fire, could be fundamentally entangled with many broad-spectrum revolutions associated with intensified foraging systems. © 2016 Wiley Periodicals, Inc.
Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)
NASA Astrophysics Data System (ADS)
Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru
2017-12-01
Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.
Observing Tropical Cyclones from the Global Hawk: HAMSR Results from GRIP
NASA Astrophysics Data System (ADS)
Lambrigtsen, B.; Brown, S.; Behrangi, A.
2011-12-01
The Global Hawk unmanned aerial vehicle (UAV) recently acquired by NASA was flown for the first time in 2010 in a hurricane field campaign, the NASA Genesis and Rapid Intensification Processes (GRIP) experiment. One of the primary payloads was the High Altitude MMIC Sounding Radiometer (HAMSR) developed at the Jet Propulsion Laboratory. HAMSR is a cloud penetrating microwave sounder that provides a picture of the state of the atmosphere, such as the thermodynamic environment around hurricanes and the convective structure in the inner core. We show results from GRIP, including analysis of observations of Hurricane Karl during 13 hours during a period of rapid intensification.
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Sustainable intensification by managing microbial communities and processes in agroecosystems
USDA-ARS?s Scientific Manuscript database
By focusing on soil biology and biochemistry, agroecosystem management strategies are implemented which include reduced soil disturbance, diverse and adaptable crop rotations, retention of residue, and incorporation of livestock, cover crops, or both This systems approach is required to sustainably ...
ERIC Educational Resources Information Center
Bucks County Public Schools, Doylestown, PA.
The Gross Motor Performance Screening Test was designed to aid the classroom teacher in obtaining specific information about the child's physical abilities. The test includes items which have been found to measure the various factors of physical fitness. It also includes items to measure skills important to the child and adult. Included also are…
Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo
2016-03-01
With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to batch cultivations, keeping high yields for extended production times is still a challenge. Overall, we demonstrate that process intensification of cell culture-based viral vaccine production can be realized by the consequent application of fed-batch, perfusion, and continuous systems with a significant increase in productivity. The potential for even further improvements is high, considering recent developments in establishment of new (designer) cell lines, better characterization of host cell metabolism, advances in media design, and the use of mathematical models as a tool for process optimization and control.
NASA Astrophysics Data System (ADS)
Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.
Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.
Diversification and intensification of agricultural adaptation from global to local scales.
Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke; Läderach, Peter
2018-01-01
Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa.
Diversification and intensification of agricultural adaptation from global to local scales
Chen, Minjie; Wichmann, Bruno; Luckert, Marty; Winowiecki, Leigh; Förch, Wiebke
2018-01-01
Smallholder farming systems are vulnerable to a number of challenges, including continued population growth, urbanization, income disparities, land degradation, decreasing farm size and productivity, all of which are compounded by uncertainty of climatic patterns. Understanding determinants of smallholder farming practices is critical for designing and implementing successful interventions, including climate change adaptation programs. We examine two dimensions wherein smallholder farmers may adapt agricultural practices; through intensification (i.e., adopt more practices) or diversification (i.e. adopt different practices). We use data on 5314 randomly sampled households located in 38 sites in 15 countries across four regions (East and West Africa, South Asia, and Central America). We estimate empirical models designed to assess determinants of both intensification and diversification of adaptation activities at global scales. Aspects of adaptive capacity that are found to increase intensification of adaptation globally include variables associated with access to information and human capital, financial considerations, assets, household infrastructure and experience. In contrast, there are few global drivers of adaptive diversification, with a notable exception being access to weather information, which also increases adaptive intensification. Investigating reasons for adaptation indicate that conditions present in underdeveloped markets provide the primary impetus for adaptation, even in the context of climate change. We also compare determinants across spatial scales, which reveals a variety of local avenues through which policy interventions can relax economic constraints and boost agricultural adaptation for both intensification and diversification. For example, access to weather information does not affect intensification adaptation in Africa, but is significant at several sites in Bangladesh and India. Moreover, this information leads to diversification of adaptive activities on some sites in South Asia and Central America, but increases specialization in West and East Africa. PMID:29727457
Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes
Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.
2012-01-01
Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.
Implications of intensification of pastoral animal production on animal welfare.
Stafford, Kj; Gregory, Ng
2008-12-01
The intensification of pastoral animal production results from several major developments including increased forage production and utilisation, diet supplementation, breeding animals to increase milk, meat or wool production, and changes in management. The impact of increased intensification on welfare will differ across species and systems. More intensive-grazing systems and the feeding of novel forages will underpin all moves to intensification. More intensive grazing generally reduces opportunities for shade and shelter. Improved nutrition will generally benefit welfare but competition for available feed may cause increased social pressure. Increased flock and herd size will be associated with a reduction in the human:animal ratio and less time to observe individual animals. Remote monitoring of activity and health might counter this impact. Intensification of dairy production will result in larger herds, more year-round milking, robotic milking, use of housing and yards year round, and total mixed-ration feeding. Larger herds mean longer distances to walk to and from the dairy shed, and more lameness and less time to spend on self-maintenance activities such as grooming. Holding and feeding dairy cows on yards will cause an increase in lameness and mastitis and perhaps an increase in agonistic behaviour but will reduce time spent walking. Intensification of sheep production will involve increased flock size, increased fecundity, breeding from hoggets, and breeding ewes all year round. Housing during lambing might be considered appropriate, as would feeding to lift milk yields. Increased fecundity with an increase in triplets will increase lamb mortality rates, but housing ewes, when managed well, will result in reduced lamb mortality. Intensification of lamb finishing will be by improved nutrition. Intensification of beef production will include more breeding of heifers at 15 months, and more problems with dystocia. Intensification of pastoral production will have positive and negative effects on animal welfare. The balance will be determined by the quality of management and stockmanship, and the pressure on businesses to be profitable.
NASA Technical Reports Server (NTRS)
Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.
2010-01-01
During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American
How can farming intensification affect the environmental impact of milk production?
Bava, L; Sandrucci, A; Zucali, M; Guerci, M; Tamburini, A
2014-07-01
The intensification process of the livestock sector has been characterized in recent decades by increasing output of product per hectare, increasing stocking rate, including more concentrated feed in the diet, and improving the genetic merit of the breeds. In dairy farming, the effects of intensification on the environmental impact of milk production are not completely clarified. The aim of the current study was to assess the environmental impacts of dairy production by a life cycle approach and to identify relations between farming intensity and environmental performances expressed on milk and land units. A group of 28 dairy farms located in northern Italy was involved in the study; data collected during personal interviews of farmers were analyzed to estimate emissions (global warming potential, acidification, and eutrophication potentials) and nonrenewable source consumption (energy and land use). The environmental impacts of milk production obtained from the life cycle assessment were similar to those of other recent studies and showed high variability among the farms. From a cluster analysis, 3 groups of farms were identified, characterized by different levels of production intensity. Clusters of farms showed similar environmental performances on product basis, despite important differences in terms of intensification level, management, and structural characteristics. Our study pointed out that, from a product perspective, the most environmentally friendly way to produce milk is not clearly identifiable. However, the principal component analysis showed that some characteristics related to farming intensification, such as milk production per cow, dairy efficiency, and stocking density, were negatively related to the impacts per kilogram of product, suggesting a role of these factors in the mitigation strategy of environmental burden of milk production on a global scale. Considering the environmental burden on a local perspective, the impacts per hectare were positively associated with the intensification level. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...
2017-07-20
Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira
Despite the potential carbon-neutrality of switchgrass bio-oil, its high acidity and diverse chemical composition limit its utilization. The objectives of this research are to investigate pH neutralization of bio-oil by adding various alkali solutions in a batch system and then perform neutralization using process intensification devices, including a static mixer and a centrifugal contactor. The results indicate that sodium hydroxide and potassium hydroxide are more appropriate bases for pH neutralization of bio-oil than calcium hydroxide due to the limited solubility of calcium hydroxide in aqueous bio-oil. Mass and total acid number (TAN) balances were performed for both batch and continuous-flowmore » systems. Upon pH neutralization of bio-oil, the TAN values of the system increased after accounting the addition of alkali solution. A bio-oil heating experiment showed that the heat generated during pH neutralization did not cause a significant increase in the acidity of bio-oil. The formation of phenolic compounds during neutralization was initially suspected of increasing the system’s overall TAN value because some of these compounds (e.g., vanillic acid) act as polyprotic acids and have a stronger influence on the TAN value than monoprotic acids (e.g., acetic acid). The amount of phenolics in separated bio-oil phases, however, did not change significantly after pH neutralization. In conclusion, process intensification devices provided sufficient mixing and separation of the organic and aqueous phases, suggesting a scale-up route for the bio-oil pH neutralization process.« less
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Heymsfield, Gerald M.; Reasor, Paul; Didlake, Anthony C., Jr.
2016-01-01
The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar HIWRAP and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the HAMSR microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution and role of small scale, deep convective forcing in the storm intensification process. Deep convective bursts are sporadically initiated in the downshear quadrants of the storm and rotate into the upshear quadrants for a period of 12 h during the rapid intensification. The aircraft data analysis indicates that the bursts are being formed and maintained through a combination of two main processes: (1) convergence generated from counter-rotating mesovortex circulations and the larger vortex-scale flow and (2) the turbulent (scales of 25 km) transport of anomalously warm, buoyant air from the eye to the eyewall at low levels. The turbulent mixing across the eyewall interface and forced convective descent adjacent to the bursts assists in carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core. The mesovortices play a key role in the evolution of the features described above.The Global Hawk aircraft allowed an examination of the vortex response and axisymmetrization period in addition to the burst pulsing phase. A pronounced axisymmetric development of the vortex is observed following the pulsing phase that includes a sloped eyewall structure and formation of a clear, wide eye.
Novel process windows for enabling, accelerating, and uplifting flow chemistry.
Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi
2013-05-01
Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Inclusion of the Other in Ourselves: Reception and Comprehension of Refugees in Portugal
ERIC Educational Resources Information Center
Vieira, Ana; Marques, José Carlos; Gomes, Miguel Prata; Vieira, Ricardo
2017-01-01
The intensification of different types of migration movements during the last decades is an expression of growing interconnections at the global level. The so called "refugee crisis" is the most visible sign of this intensification. It currently challenges societies to rethink the processes of integrating those fleeing from humanitarian…
Early Childhood Institutions as Loci of Ethical and Political Practice
ERIC Educational Resources Information Center
Moss, Peter
2006-01-01
The historical process of the institutionalisation of childhood is in a period of intensification, as children enter institutions at ever earlier ages and remain in them for longer periods. This intensification presents great opportunities but also involves many risks since everything is dangerous. A particular set of risks are produced from the…
ERIC Educational Resources Information Center
Keogh, Jayne; Garvis, Susanne; Pendergast, Donna; Diamond, Pat
2012-01-01
The intensification process associated with the first year of teaching has a significant impact on beginning teachers' personal and professional lives. This paper uses a narrative approach to investigate the electronic conversations of 16 beginning teachers on a self-initiated group email site. The participants' electronic exchanges demonstrated…
Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments
Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634
Matrix intensification alters avian functional group composition in adjacent rainforest fragments.
Deikumah, Justus P; McAlpine, Clive A; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.
NASA Astrophysics Data System (ADS)
Alvey, G., III; Zipser, E. J.
2017-12-01
Literature over the past 10 years has provided conflicting views about the relative importance of precipitation symmetry and convective intensity for tropical cyclone intensification. While several modeling studies (Braun et al. 2006, Guimond et al. 2010, Molinari et al. 2013, Rogers et al. 2013, 2015) have favored intense deep convection, satellite-based composite studies, on the other hand, have offered a differing pathway towards tropical cyclone intensification emphasizing shallow to moderate precipitation (Zagrodnik and Jiang 2014, Tao and Jiang 2015, Alvey et al. 2015). This has left fundamental questions unanswered regarding the relationships between precipitation and TC intensity change: What are the dominant precipitation types, their spatial distributions, and the timing of these features with respect to intensification? And what causes precipitation to symmetrize and increase in the upshear quadrants? One potentially important process, the humidification of upshear quadrants, has been identified to occur nearly coincidental with increased precipitation symmetry prior to and during Edouard's (2014) intensification (Zawislak et al. 2016). While observations from the Global Hawk and P-3 provided important snapshots throughout the life cycle of Edouard (2014), numerical simulations complement and reveal, in more detail, the processes behind these relationships through filling an 48-hour airborne observational gap during a crucial period of intensification between 12-14 Sept. We use a high resolution, full physics ensemble of Edouard (2014) simulated by the Weather Research and Forecasting (WRF) model - Advanced Research WRF (ARW; Skamarock et al., 2008). We deem the quantification of azimuthal variations — with a focus on the shear-relative quadrants — as particularly important, especially early in intensification when thermodynamic and precipitation distributions tend to be more asymmetric. Using a water vapor budget and trajectories we examine whether precipitation is responsible for upshear humidification (moistening), or if an increase is due to advection from the environment, or simply a result of alignment (perhaps due to a decrease in vertical shear).
Ajmera, Mayank; Raval, Amit; Zhou, Steve; Wei, Wenhui; Bhattacharya, Rituparna; Pan, Chunshen; Sambamoorthi, Usha
2015-12-01
Among elderly patients, the management of type 2 diabetes mellitus (T2DM) is complicated by population heterogeneity and elderly-specific complexities. Few studies have been done to understand treatment intensification among elderly patients failing multiple oral antidiabetic drugs (OADs). To examine the association between time to treatment intensification of T2DM and elderly-specific patient complexities. In this observational, retrospective cohort study, elderly (aged ≥ 65 years) Medicare beneficiaries (n = 16,653) with inadequately controlled T2DM (hemoglobin A1c ≥ 8.0% despite 2 OADs) were included. Based on the consensus statement for diabetes care in elderly patients published by the American Diabetes Association and the American Geriatric Society, elderly-specific patient complexities were defined as the presence or absence of 5 geriatric syndromes: cognitive impairment; depression; falls and fall risk; polypharmacy; and urinary incontinence. Overall, 48.7% of patients received intensified treatment during follow-up, with median time to intensification 18.5 months (95% CI = 17.7-19.3). Median time to treatment intensification was shorter for elderly patients with T2DM with polypharmacy (16.5 months) and falls and fall risk (12.7 months) versus those without polypharmacy (20.4 months) and no fall risk (18.6 months). Elderly patients with urinary incontinence had a longer median time to treatment intensification (18.6 months) versus those without urinary incontinence (14.6 months). The median time to treatment intensification did not significantly differ by the elderly-specific patient complexities that included cognitive impairment and depression. However, after adjusting for demographic, insurance, clinical characteristics, and health care utilization, we found that only polypharmacy was associated with time to treatment intensification (adjusted hazard ratio, 1.10; 95% CI = 1.04-1.15; P = 0.001). Less than half of elderly patients with inadequately controlled T2DM received treatment intensification. Elderly-specific patient complexities were not associated with time to treatment intensification, emphasizing a positive effect of the integrated health care delivery model. Emerging health care delivery models that target integrated care may be crucial in providing appropriate treatment for elderly T2DM patients with complex conditions.
NASA Astrophysics Data System (ADS)
Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.
2017-12-01
In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).
ERIC Educational Resources Information Center
Baz-Rodríguez, Sergio; Herrera-Soberanis, Natali; Rodríguez-Novelo, Miguel; Guillén-Francisc, Juana; Rocha-Uribe, José
2016-01-01
An experiment for teaching mixing intensification in reaction engineering is described. For this, a simple tubular reactor was constructed; helical static mixer elements were fabricated from stainless steel strips and inserted into the reactor. With and without the internals, the equipment operates as a static mixer reactor or a laminar flow…
Yilmaz, Aylin; Verhofstede, Chris; D'Avolio, Antonio; Watson, Victoria; Hagberg, Lars; Fuchs, Dietmar; Svennerholm, Bo; Gisslén, Magnus
2010-12-15
Antiretroviral treatment (ART) significantly reduces cerebrospinal fluid (CSF) HIV-1 RNA levels and residual viremia is less frequently found in CSF than in blood. However, persistent intrathecal immunoactivation is common, even after several years of ART. To investigate whether low-level CSF viremia and residual immunoactivation within the central nervous system (CNS) derive from ongoing local viral replication, we conducted a study of treatment intensification in patients on effective ART. Ten patients on ART with plasma HIV RNA <50 copies per milliliter for >18 months were included. Intensification was given for in total 8 weeks: 4 weeks with maraviroc or lopinavir/ritonavir (good CNS penetration), and 4 weeks with enfuvirtide (poor CNS penetration). Lumbar punctures were performed 4 weeks before, at intensification commencement, at switchover after 4 weeks, at the conclusion of, and 4 weeks after the intensification period. No significant changes in HIV RNA, neopterin, β2-microglobulin, immunoglobulin G index, albumin ratio, and CD4(+) T-cell count were observed, either in CSF or blood, neither before, during, nor after the intensification periods. ART intensification did not reduce residual CSF HIV RNA levels or intrathecal immunoactivation in patients on ART. These findings do not support an ongoing viral replication in CNS.
ERIC Educational Resources Information Center
Kadyrova, Alina A.; Valeev, Agzam A.
2016-01-01
There is a determined number of trends in the process of intensification of high school training, including the integration of professional, linguistic and cultural training of professionals in the unity with the development of their personal qualities;. For this reason, modern educational technologies serve as a tool for practical implementation…
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Heitzig, Jobst; Donges, Jonathan F.; Cardoso, Manoel F.; Kurths, Jürgen; Thonicke, Kirsten
2017-04-01
Deforestation in the tropics - with vast consequences for the ecosystem and climate - is mainly driven by subsequent land use, which is not only determined by environmental and economic constraints but also influenced by the use of different production technologies. Inefficient production technologies can lead to excessive use of land, especially in areas where land is easily available and accessible. Here, the adoption of new technologies could help to use already converted land more intensively and ease pressures on ecologically valuable areas. In this study, we take the Brazilian Amazon as a prominent example region to explore the interplay of land-use decisions with environmental and economic dynamics in the process of land-use intensification and frontier expansion. Expansion of pasture land for cattle ranching to satisfy increasing domestic and international demands is one of the important drivers for deforestation in the Brazilian Amazon. Pasture run-down and following land abandonment further drive the expansion of deforestation frontiers into pristine forests. Therefore, intensification of livestock production, especially better pasture management, could potentially reduce deforestation. However, a number of reasons including the large spatial extent of the region make the process of comparing the effectiveness of different management techniques, technologies and policies in the region difficult. Therefore, the effectiveness and possible outcomes of policies to foster intensification are highly debated in the literature. Some authors deny that intensification policies are a viable option to spare forests as long as they are not a scarce resource [1] while others insist that intensification has an effect if only supported by the right policies [2]. In this presentation, we introduce a concise agent-based model to study conditions under which intensification can reduce deforestation and explore the trade-offs between intensified and extensive land uses. While most agent-based models in land science are developed for small study regions, our approach is scalable also to regional levels and for this purpose abstracts from many local specificities. In the proposed model, a collection of cattle ranchers interacts with the local environment via decisions to convert forest into pasture land and manage this pasture. Deforestation and land abandonment is traced by simple land-cover succession equations and ecological dynamics consider the evolution of pasture productivity depending on pasture management, deforestation and tree regrowth. Agent decisions are captured by heuristic strategies depending on economic and ecological constraints. Agents can follow either an extensive strategy, corresponding to traditional cattle ranching with fallow periods and slash-and-burn fertilization, or an intensive strategy, i.e. cattle ranching with high inputs such as machinery and industrial fertilizers. The choice of the production strategy is modeled as a social learning process: Agents are located on a geometric network representing neighborhood and acquaintance relations and imitate the successful strategies of their neighbors. We will present a comprehensive analysis of the model and discuss conditions that foster sustainable land use. Finally, we will give an outlook at possible extensions of the model and applications to issues such as compliance with Brazil's Forest Code and feedbacks from changes in climate. References: [1] Kaimowitz, David and Arild Angelsen (2008). "Will Livestock Intensification Help Save Latin America's Tropical Forests?" In: Journal of Sustainable Forestry 27.1-2, pp. 6-24. [2] Cohn, Avery S, Aline Mosnier, Petr Havlík, Hugo Valin, Mario Herrero, Erwin Schmid, Michael O'Hare, and Michael Obersteiner (2014). "Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation." In: Proceedings of the National Academy of Sciences of the United States of America 111.20, pp. 7236-7241.
Subhedar, Preeti B; Ray, Pearl; Gogate, Parag R
2018-01-01
The present work deals with intensification of delignification and subsequent enzymatic hydrolysis of sustainable biomass such as groundnut shells, coconut coir and pistachio shells using ultrasound assisted approach so as to develop an economical approach for obtaining bioethanol. Process intensification, in the current context, is referred to as any improvements giving enhanced rates possibly with lower energy and chemical as well as enzyme requirement for delignification and hydrolysis respectively. Conventional processing for both delignification and enzymatic hydrolysis has also been investigated for establishing the degree of intensification. The obtained results for delignification of biomass established that for conventional alkaline treatment, the extent of delignification for the case of groundnut shells, coconut coir and pistachio shells were 41.8, 45.9 and 38% which increased to 71.1, 89.5 and 78.9% respectively giving almost 80-100% increase for the ultrasound assisted approach. Under optimized conditions, the conventional approach resulted in reducing sugar yields as 10.2, 12.1 and 8.1g/L for groundnut shells, coconut coir and pistachio shells respectively whereas for the case of ultrasound-assisted enzymatic hydrolysis, the obtained yields were 21.3, 23.9 and 18.4g/L in same order of biomass. The material samples were characterized by several characterization techniques for establishing the morphological changes obtained due to the use of ultrasound which were found to be favorable for enhanced delignification and hydrolysis for the ultrasound assisted approach. Overall, the results of this work establish the process intensification benefits due to the application of ultrasound for different sustainable biomass with mechanistic understanding based on the morphological analyses. Copyright © 2017 Elsevier B.V. All rights reserved.
Duru, O Kenrik; Bilik, Dori; McEwen, Laura N; Brown, Arleen F; Karter, Andrew J; Curb, J David; Marrero, David G; Lu, Shou-En; Rodriguez, Michael; Mangione, Carol M
2011-05-01
Patients who speak Spanish and/or have low socioeconomic status are at greater risk of suboptimal glycemic control. Inadequate intensification of anti-glycemic medications may partially explain this disparity. To examine the associations between primary language, income, and medication intensification. Cohort study with 18-month follow-up. One thousand nine hundred and thirty-nine patients with Type 2 diabetes who were not using insulin enrolled in the Translating Research into Action for Diabetes Study (TRIAD), a study of diabetes care in managed care. Using administrative pharmacy data, we compared the odds of medication intensification for patients with baseline A1c ≥ 8%, by primary language and annual income. Covariates included age, sex, race/ethnicity, education, Charlson score, diabetes duration, baseline A1c, type of diabetes treatment, and health plan. Overall, 42.4% of patients were taking intensified regimens at the time of follow-up. We found no difference in the odds of intensification for English speakers versus Spanish speakers. However, compared to patients with incomes <$15,000, patients with incomes of $15,000-$39,999 (OR 1.43, 1.07-1.92), $40,000-$74,999 (OR 1.62, 1.16-2.26) or >$75,000 (OR 2.22, 1.53-3.24) had increased odds of intensification. This latter pattern did not differ statistically by race. Low-income patients were less likely to receive medication intensification compared to higher-income patients, but primary language (Spanish vs. English) was not associated with differences in intensification in a managed care setting. Future studies are needed to explain the reduced rate of intensification among low income patients in managed care.
Kuchma, V R; Tkachuk, E A; Tarmaeva, I Yu
The transition to a new stage of the development - the information society is an objective reality and has an influence on all areas of the activity of the society, including the establishment of a child as an object of the hygienic research. In conditions of the general informatization of the society, the appearance of so-called “clip thinking,” explains the maladjustment of educational technologies to mechanisms of children ’ and teenagers ’perception and is confirmed by the growth of the school pathology and the gain in the morbidity rate. In the investigation on the example of the educational institutions of Irkutsk it was executed the evaluation of the impact of the intensification of informatization of education and personal development. For the investigation there were formed 2 groups ofpreschools with different levels of informatization in the same preschool institution of the central district of the city of Irkutsk but in different periods of time. In total there were observed 211 children aged of 5.5 to 6.5 years. For the study the influence of the intensification (and informatization of training there were formed 2 groups of small schoolchildren with different levels of intensification (and informatization) of education. The total number of cases accountedfor 465 children aged of 7-9 years. There were suggested methodical approaches to the estimation of the health status of the children, with taking into account the inevitable influence offactors of informatization and the intensification of education. The performed investigations have allowed to reveal the following tendencies in the shaping of the psychophysical state of health and development of children: an increase of level of informatization of education and personal and accomplishment; intensification of learning working; reduction of the attention level; imagination and visual divergence; capability to the linear differentiation and construction of inferences; fear to fail to meet the expectations of surrounding people and low resistance to stress; the increase speed of data processing along with fall in quality; the gain in hyperactivity.
Radiation Therapy Intensification for Solid Tumors: A Systematic Review of Randomized Trials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamoah, Kosj; Showalter, Timothy N.; Ohri, Nitin, E-mail: ohri.nitin@gmail.com
Purpose: To systematically review the outcomes of randomized trials testing radiation therapy (RT) intensification, including both dose escalation and/or the use of altered fractionation, as a strategy to improve disease control for a number of malignancies. Methods and Materials: We performed a literature search to identify randomized trials testing RT intensification for cancers of the central nervous system, head and neck, breast, lung, esophagus, rectum, and prostate. Findings were described qualitatively. Where adequate data were available, pooled estimates for the effect of RT intensification on local control (LC) or overall survival (OS) were obtained using the inverse variance method. Results: Inmore » primary central nervous system tumors, esophageal cancer, and rectal cancer, randomized trials have not demonstrated that RT intensification improves clinical outcomes. In breast cancer and prostate cancer, dose escalation has been shown to improve LC or biochemical disease control but not OS. Radiation therapy intensification may improve LC and OS in head and neck and lung cancers, but these benefits have generally been limited to studies that did not incorporate concurrent chemotherapy. Conclusions: In randomized trials, the benefits of RT intensification have largely been restricted to trials in which concurrent chemotherapy was not used. Novel strategies to optimize the incorporation of RT in the multimodality treatment of solid tumors should be explored.« less
Trapp, Anja; Faude, Alexander; Hörold, Natalie; Schubert, Sven; Faust, Sabine; Grob, Thilo; Schmidt, Stefan
2018-05-02
New emerging technologies delivering benefits in terms of process robustness and economy are an inevitable prerequisite for monoclonal antibody purification processes intensification. Caprylic acid was proven as an effective precipitating agent enabling efficient precipitaton of product- and process-related impurities while leaving the antibody in solution. This purification step at mild acidic pH was therefore introduced in generic antibody platform approaches after Protein A capture and evaluated for its impact regarding process robustness and antibody stability. Comparison of 13 different monoclonal antibodies showed significant differences in antibody recovery between 65-95% during caprylic acid-induced impurity precipitation. Among six compared physicochemical properties, isoelectric point of the antibody domains was figured out to correlate with yield. Antibodies with mild acidic pI of the light chain were significantly susceptible to caprylic acid-induced precipitation resulting in lower yields. Virus clearance studies revealed that caprylic acid provided complete virus inactivation of an enveloped virus. Multiple process relevant factors such as pH range, caprylic acid concentration and antibody stability were investigated in this study to enable an intensified purification process including caprylic acid precipitation for HCP removal of up to 2 log 10 reduction values at mAb yields >90% while also contributing to the virus safety of the process. Copyright © 2018 Elsevier B.V. All rights reserved.
Voorham, Jaco; Haaijer-Ruskamp, Flora M; Wolffenbuttel, Bruce H R; de Zeeuw, Dick; Stolk, Ronald P; Denig, Petra
2012-01-01
Comorbidity is often mentioned as interfering with "optimal" treatment decisions in diabetes care. It is suggested that diabetes-related comorbidity will increase adequate treatment, whereas diabetes-unrelated comorbidity may decrease this process of care. We hypothesized that these effects differ according to expected priority of the conditions. We evaluated the relationship between comorbidity and treatment intensification in a study of 11,248 type 2 diabetes patients using the GIANTT (Groningen Initiative to Analyse type 2 diabetes Treatment) database. We formed a cohort of patients with a systolic blood pressure ≥ 140 mmHg (6,820 hypertensive diabetics), and a cohort of patients with an HbA1c ≥ 7% (3,589 hyperglycemic diabetics) in 2007. We differentiated comorbidity by diabetes-related or unrelated conditions and by priority. High priority conditions include conditions that are life-interfering, incident or requiring new medication treatment. We performed Cox regression analyses to assess association with treatment intensification, defined as dose increase, start, or addition of drugs. In both the hypertensive and hyperglycemic cohort, only patients with incident diabetes-related comorbidity had a higher chance of treatment intensification (HR 4.48, 2.33-8.62 (p<0.001) for hypertensives; HR 2.37, 1.09-5.17 (p = 0.030) for hyperglycemics). Intensification of hypertension treatment was less likely when a new glucose-regulating drug was prescribed (HR 0.24, 0.06-0.97 (p = 0.046)). None of the prevalent or unrelated comorbidity was significantly associated with treatment intensification. Diabetes-related comorbidity induced better risk factor treatment only for incident cases, implying that appropriate care is provided more often when complications occur. Diabetes-unrelated comorbidity did not affect hypertension or hyperglycemia management, even when it was incident or life-interfering. Thus, the observed "undertreatment" in diabetes care cannot be explained by constraints caused by such comorbidity.
Leveraging LSTM for rapid intensifications prediction of tropical cyclones
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.
2017-10-01
Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.
Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V
2017-05-01
Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
On the role of surface friction in tropical cyclone intensification
NASA Astrophysics Data System (ADS)
Wang, Yuqing
2017-04-01
Recent studies have debated on whether surface friction is positive or negative to tropical cyclone intensification in the view on angular momentum budget. That means whether the frictionally induced inward angular momentum transport can overcome the loss of angular momentum to the surface due to surface friction itself. Although this issue is still under debate, this study investigates another implicit dynamical effect, which modifies the radial location and strength of eyewall convection. We found that moderate surface friction is necessary for rapid intensity of tropical cyclones. This is demonstrated first by a simple coupled dynamical system that couples a multi-level boundary layer model and a shallow water equation model above with mass source parameterized by mass flux from the boundary layer model below, and then by a full physics model. The results show that surface friction leads to the inward penetration of inflow under the eyewall, shift the boundary layer mass convergence slightly inside the radius of maximum wind, and enhance the upward mass flux, and thus diabatic heating in the eyewall and intensification rate of a TC. This intensification process is different from the direct angular momentum budget previously used to explain the role of surface friction in tropical cyclone intensification.
Memon, Muhammad Zaki; Zhao, Xiao; Sikarwar, Vineet Singh; Vuppaladadiyam, Arun K; Milne, Steven J; Brown, Andy P; Li, Jinhui; Zhao, Ming
2017-01-03
Sorption-enhanced steam reforming (SESR) is an energy and cost efficient approach to produce hydrogen with high purity. SESR makes it economically feasible to use a wide range of feedstocks for hydrogen production such as methane, ethanol, and biomass. Selection of catalysts and sorbents plays a vital role in SESR. This article reviews the recent research aimed at process intensification by the integration of catalysis and chemisorption functions into a single material. Alkali metal ceramic powders, including Li 2 ZrO 3 , Li 4 SiO 4 and Na 2 ZrO 3 display characteristics suitable for capturing CO 2 at low concentrations (<15% CO 2 ) and high temperatures (>500 °C), and thus are applicable to precombustion technologies such as SESR, as well as postcombustion capture of CO 2 from flue gases. This paper reviews the progress made in improving the operational performance of alkali metal ceramics under conditions that simulate power plant and SESR operation, by adopting new methods of sorbent synthesis and doping with additional elements. The paper also discusses the role of carbonates formed after in situ CO 2 chemisorption during a steam reforming process in respect of catalysts for tar cracking.
East African wetland-catchment data base for sustainable wetland management
NASA Astrophysics Data System (ADS)
Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian
2016-10-01
Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.
NASA Astrophysics Data System (ADS)
Garrett, R.; Koh, I.; le Polain de Waroux, Y.; Lambin, E.; Kastens, J.; Brown, J. C.
2017-12-01
Agricultural expansion, extensive cattle ranching, and deforestation remain pressing challenges for sustainable development and climate mitigation throughout South America. In response to these challenges, national and local governments, as well as private and non-governmental actors have developed new forest conservation governance mechanisms. The objective of this study is to better understand how conservation policies interact with supply chain development to influence land use. In particular, we endeavor to understand the timing and spatial patterns of crop and cattle intensification, an understudied phenomenon that is critical to understanding the future of agricultural-forest frontiers and the impacts of conservation policies. We focus on Mato Grosso, the largest soy and cattle producing state in Brazil, which spans the Cerrado and Amazon biomes and has experienced higher levels of deforestation for agricultural expansion than any other state globally over the last decade. Using a newly created spatially explicit data set of land use intensity, supply chain development, and forest policy, we find that agricultural intensification is occurring rapidly in the region, but is only partially driven by changes in conservation policies. The intensification of cattle production is the result of improvements in deforestation monitoring, penalties, and enforcement, and increased land scarcity. Crop intensification, in contrast, preceded increases in conservation restrictions, and is associated with the positive spillovers resulting from agribusiness agglomeration and development. These results suggest that intensification is not a foregone conclusion of increasing forest conservation restrictions, but is highly dependent on wider development processes. A combined effort to direct agribusiness development away from forest regions via tax credits and subsidized credit, when applied in concert with stringent conservation requirements, could help promote intensification and reduce deforestation leakage.
Intensification of hot extremes in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diffenbaugh, Noah; Ashfaq, Moetasim
Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less
Design and Control of Integrated Systems for Hydrogen Production and Power Generation
NASA Astrophysics Data System (ADS)
Georgis, Dimitrios
Growing concerns on CO2 emissions have led to the development of highly efficient power plants. Options for increased energy efficiencies include alternative energy conversion pathways, energy integration and process intensification. Solid oxide fuel cells (SOFC) constitute a promising alternative for power generation since they convert the chemical energy electrochemically directly to electricity. Their high operating temperature shows potential for energy integration with energy intensive units (e.g. steam reforming reactors). Although energy integration is an essential tool for increased efficiencies, it leads to highly complex process schemes with rich dynamic behavior, which are challenging to control. Furthermore, the use of process intensification for increased energy efficiency imposes an additional control challenge. This dissertation identifies and proposes solutions on design, operational and control challenges of integrated systems for hydrogen production and power generation. Initially, a study on energy integrated SOFC systems is presented. Design alternatives are identified, control strategies are proposed for each alternative and their validity is evaluated under different operational scenarios. The operational range of the proposed control strategies is also analyzed. Next, thermal management of water gas shift membrane reactors, which are a typical application of process intensification, is considered. Design and operational objectives are identified and a control strategy is proposed employing advanced control algorithms. The performance of the proposed control strategy is evaluated and compared with classical control strategies. Finally SOFC systems for combined heat and power applications are considered. Multiple recycle loops are placed to increase design flexibility. Different operational objectives are identified and a nonlinear optimization problem is formulated. Optimal designs are obtained and their features are discussed and compared. The results of the dissertation provide a deeper understanding on the design, operational and control challenges of the above systems and can potentially guide further commercialization efforts. In addition to this, the results can be generalized and used for applications from the transportation and residential sector to large--scale power plants.
Holmes-Truscott, Elizabeth; Browne, Jessica L; Speight, Jane
2016-08-01
As type 2 diabetes (T2DM) is a progressive chronic condition, regular clinical review and treatment intensification are critical for prevention of long-term complications. Our aim was to explore the personal impact of insulin therapy, both positive and negative consequences, and attitudes towards future insulin intensification. Twenty face-to-face interviews were conducted, and transcripts were analysed using thematic inductive analysis. Eligible participants were adults with T2DM, using insulin injections for <4years. Participants were mostly men (n=13, 65%), (median (range)) aged 65 (43-76) years, living with T2DM for 11.5 (2-27) years. Five themes emerged regarding the consequences (positive and negative) of insulin therapy, including: physical impact, personal control, emotional well-being, freedom/flexibility, (concerns about) others' reactions. Increased inconvenience and the perceived seriousness of using fast-acting insulin were both reported as barriers to future insulin intensification, despite most participants being receptive to the idea of administering additional injections. Positive and negative experiences of insulin therapy were reported by adults with T2DM and most were receptive to insulin intensification despite reported barriers. These findings may inform clinical interactions with people with T2DM and interventions to promote receptiveness to insulin initiation and intensification. Copyright © 2016 Elsevier Inc. All rights reserved.
Online Chats to Assess Stakeholder Perceptions of Meat Chicken Intensification and Welfare
Howell, Tiffani J.; Rohlf, Vanessa I.; Coleman, Grahame J.; Rault, Jean-Loup
2016-01-01
Simple Summary Most people care about animal welfare. Nevertheless, divergent views remain on what constitutes animal welfare, despite a growing body of scientific evidence. We used online chats to trigger discussion among participants from various stakeholder groups: general public, animal advocacy group, meat chicken industry-affiliated, and researchers or veterinarians who were not industry-affiliated but had experience with chickens. The aim of this pilot study was to assess reasons for divergence in opinions or conversely agreement between participants, using the topic of the welfare implications of meat chicken farming intensification. Participants also completed a pre- and post-chat survey to evaluate their perceptions and knowledge of chicken farming. Reasons for supporting intensification included perceptions of better health for the chickens and the sustainability of the system. Reasons for opposition included perceptions of the large number of animals kept together, and limited ability to perform natural behaviours. Misunderstandings about current practices were clarified in chats which contained industry-affiliated participants. Participants agreed on the need for enforceable standards and industry transparency. On average, objective knowledge of intensification increased after participating in the chat, but support for intensification did not change over the course of the study, counter to assertions that lack of knowledge results in lack of support for some practices. Engaging stakeholders can provide valuable information to anyone interested in the relationship between perception and knowledge of specific farming practices. Abstract Evidence suggests that there is variation in support for specific chicken farming practices amongst stakeholder groups, and this should be explored in more detail to understand the nature of these differences and work towards convergence. Online focus groups were used to assess attitudes to animal welfare in meat chicken farming in this pilot study. Across six online chats, 25 participants (general public, n = 8; animal advocacy group, n = 11, meat chicken industry, n = 3; research or veterinary practice who had experience with poultry but no declared industry affiliation, n = 3) discussed meat chicken intensification and welfare. Of those, 21 participants completed pre- and post-chat surveys gauging perceptions and objective knowledge about meat chicken management. Main reasons for intensification support were perceptions of improved bird health, and perceptions that it is a cost-effective, sustainable farming system. Reasons for opposition included perceptions that a large number of birds kept are in close proximity and have limited ability to perform natural behaviours. Misunderstandings about current practices were clarified in chats which contained industry representation. Participants agreed on the need for enforceable standards and industry transparency. Industry-affiliated members rated welfare of meat chickens higher, and gave lower ratings for the importance of natural living, than other stakeholder groups (both p = 0.001). On average, while objective knowledge of intensification increased after chat participation (p = 0.03), general welfare ratings and support for intensification did not change over time, counter to assertions that lack of knowledge results in lack of support for some practices. PMID:27801776
Kelkar, Mandar A; Gogate, Parag R; Pandit, Aniruddha B
2008-03-01
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.
2012-01-01
Background Blood pressure, lipid, and glycemic control are essential for reducing cardiovascular disease (CVD) risk. Many health care systems have successfully shifted aspects of chronic disease management, including population-based outreach programs designed to address CVD risk factor control, to non-physicians. The purpose of this study is to evaluate provision of new information to non-physician outreach teams on need for treatment intensification in patients with increased CVD risk. Methods Cluster randomized trial (July 1-December 31, 2008) in Kaiser Permanente Northern California registry of members with diabetes mellitus, prior CVD diagnoses and/or chronic kidney disease who were high-priority for treatment intensification: blood pressure ≥ 140 mmHg systolic, LDL-cholesterol ≥ 130 mg/dl, or hemoglobin A1c ≥ 9%; adherent to current medications; no recent treatment intensification). Randomization units were medical center-based outreach teams (4 intervention; 4 control). For intervention teams, priority flags for intensification were added monthly to the registry database with recommended next pharmacotherapeutic steps for each eligible patient. Control teams used the same database without this information. Outcomes included 3-month rates of treatment intensification and risk factor levels during follow-up. Results Baseline risk factor control rates were high (82-90%). In eligible patients, the intervention was associated with significantly greater 3-month intensification rates for blood pressure (34.1 vs. 30.6%) and LDL-cholesterol (28.0 vs 22.7%), but not A1c. No effects on risk factors were observed at 3 months or 12 months follow-up. Intervention teams initiated outreach for only 45-47% of high-priority patients, but also for 27-30% of lower-priority patients. Teams reported difficulties adapting prior outreach strategies to incorporate the new information. Conclusions Information enhancement did not improve risk factor control compared to existing outreach strategies at control centers. Familiarity with prior, relatively successful strategies likely reduced uptake of the innovation and its potential for success at intervention centers. Trial registration ClinicalTrials.gov Identifier NCT00517686 PMID:22747998
Meille, Christophe; Barbolosi, Dominique; Ciccolini, Joseph; Freyer, Gilles; Iliadis, Athanassios
2016-08-01
Controlling effects of drugs administered in combination is particularly challenging with a densified regimen because of life-threatening hematological toxicities. We have developed a mathematical model to optimize drug dosing regimens and to redesign the dose intensification-dose escalation process, using densified cycles of combined anticancer drugs. A generic mathematical model was developed to describe the main components of the real process, including pharmacokinetics, safety and efficacy pharmacodynamics, and non-hematological toxicity risk. This model allowed for computing the distribution of the total drug amount of each drug in combination, for each escalation dose level, in order to minimize the average tumor mass for each cycle. This was achieved while complying with absolute neutrophil count clinical constraints and without exceeding a fixed risk of non-hematological dose-limiting toxicity. The innovative part of this work was the development of densifying and intensifying designs in a unified procedure. This model enabled us to determine the appropriate regimen in a pilot phase I/II study in metastatic breast patients for a 2-week-cycle treatment of docetaxel plus epirubicin doublet, and to propose a new dose-ranging process. In addition to the present application, this method can be further used to achieve optimization of any combination therapy, thus improving the efficacy versus toxicity balance of such a regimen.
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong
2017-10-01
Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.
On the Past, Present, and Future of Eastern Boundary Upwelling Systems
NASA Astrophysics Data System (ADS)
Bograd, S. J.; Black, B.; Garcia-Reyes, M.; Rykaczewski, R. R.; Thompson, S. A.; Turley, B. D.; van der Sleen, P.; Sydeman, W. J.
2016-12-01
Coastal upwelling in Eastern Boundary Upwelling Systems (EBUS) drives high productivity and marine biodiversity and supports lucrative commercial fishing operations. Thus there is significant interest in understanding the mechanisms underlying variations in the upwelling process, its drivers, and potential changes relative to global warming. Here we review recent results from a combination of regional and global observations, reanalysis products, and climate model projections that describe variability in coastal upwelling in EBUS. Key findings include: (1) interannual variability in California Current upwelling occurs in two orthogonal seasonal modes: a winter/early spring mode dominated by interannual variability and a summer mode dominated by long-term increasing trend; (2) there is substantial coherence in year-to-year variability between this winter/spring upwelling mode and upper trophic level demographic processes, including fish growth rates (rockfish and salmon) and seabird phenology, breeding success and survival; (3) a meta-analysis of existing literature suggests consistency with the Bakun (1990) hypothesis that rising global greenhouse-gas concentrations would result in upwelling-favorable wind intensification; however, (4) an ensemble of coupled, global ocean-atmosphere models finds limited evidence for intensification of upwelling-favorable winds over the 21st century, although summertime winds near the poleward boundaries of climatalogical upwelling zones are projected to intensify. We will also review a new comparative research program between the California and Benguela Upwelling Systems, including efforts to understand patterns of change and variation between climate, upwelling, fish, and seabirds.
Critical Transition in Critical Zone of Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, P.
2017-12-01
Intensification of industrial agriculture has resulted in severe unintended global impacts, including degradation of arable land and eutrophication of receiving water bodies. Modern agricultural practices rely on significant direct and indirect human energy inputs, which have created imbalances between increased rates of biogeochemical processes related to production and background rates of natural processes. These imbalances have cascaded through the deep inter-dependencies between carbon, soil, water, nutrient and ecological processes, resulting in a critical transition of the Critical Zone and creating emergent dynamics and evolutionary trajectories. Understanding of these novel organization and function of the Critical Zone is vital for developing sustainable agricultural practices.
The Impact of Lightning on Hurricane Rapid Intensification Forecasts Using the HWRF Model
NASA Astrophysics Data System (ADS)
Rosado, K.; Tallapragada, V.; Jenkins, G. S.
2016-12-01
In 2010, the National Oceanic and Atmospheric Administration (NOAA) created the Hurricane Forecast Improvement Project (HFIP) with the main goal of improving the tropical cyclone intensity and track forecasts by 50% in ten years. One of the focus areas is the improvement of the tropical cyclone rapid intensification (RI) forecasts. In order to contribute to this task, the role of lightning during the life cycle of a tropical cyclone using the NCEP operational HWRF hurricane model has been investigated. We ask two key research questions: (1) What is the functional relationship between atmospheric moisture content, lightning, and intensity in the HWRF model? and (2) How well does the HWRF model forecast the spatial distributions of lightning before, during, and after tropical cyclone intensification, especially for RI events? In order to address those questions, a lightning parameterization scheme called the Lightning Potential Index (LPI) was implemented into the HWRF model. The selected study cases to test the LPI implementation on the 2015 HWRF (operational version) are: Earl and Joaquin (North Atlantic), Haiyan (Western North Pacific), and Patricia (Eastern North Pacific). Five-day forecasts was executed on each case study with emphasis on rapid intensification periods. An extensive analysis between observed "best track" intensity, model intensity forecast, and potential for lightning forecast was performed. Preliminary results show that: (1) strong correlation between lightning and intensity changes does exists; and (2) the potential for lightning increases to its maximum peak a few hours prior to the peak intensity of the tropical cyclone. LPI peak values could potentially serve as indicator for future rapid intensification periods. Results from this investigation are giving us a better understanding of the mechanism behind lightning as a proxy for tropical cyclone steady state intensification and tropical cyclone rapid intensification processes. Improvement of lightning forecast has the potential to improve HWRF hurricane model intensity forecasts.
Process Intensification for Cellulosic Biorefineries.
Sadula, Sunitha; Athaley, Abhay; Zheng, Weiqing; Ierapetritou, Marianthi; Saha, Basudeb
2017-06-22
Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bamberger, Simon Grandjean; Larsen, Anelia; Vinding, Anker Lund; Nielsen, Peter; Fonager, Kirsten; Nielsen, René Nesgaard; Ryom, Pia; Omland, Øyvind
2015-01-01
Work intensification is a popular management strategy to increase productivity, but at the possible expense of employee mental stress. This study examines associations between ratings of work intensification and psychological distress, and the level of agreement between compared employee-rated and manager-rated work intensification. Multi-source survey data were collected from 3,064 employees and 573 company managers from the private sector in 2010. Multilevel regression models were used to compare different work intensification ratings across psychological distress strata. Distressed employees rated higher degree of total work intensification compared to non-distressed employees, and on three out of five sub ratings there were an increased prevalence of work intensification in the case group. In general, there was poor agreement between employee and company work intensification rating. Neither manager-rated work intensification nor employee/manager discrepancy in work intensification ratings was associated with psychological distress. Distressed employees had a higher total score of employee/manager agreed work intensification, and a higher prevalence of increased demands of labour productivity. This study demonstrates higher ratings of employee/manager agreed work intensification in distressed employees compared to non-distressed employees, challenging previous findings of reporting bias in distressed employees' assessment of work environment.
BAMBERGER, Simon Grandjean; LARSEN, Anelia; VINDING, Anker Lund; NIELSEN, Peter; FONAGER, Kirsten; NIELSEN, René Nesgaard; RYOM, Pia; OMLAND, Øyvind
2015-01-01
Work intensification is a popular management strategy to increase productivity, but at the possible expense of employee mental stress. This study examines associations between ratings of work intensification and psychological distress, and the level of agreement between compared employee-rated and manager-rated work intensification. Multi-source survey data were collected from 3,064 employees and 573 company managers from the private sector in 2010. Multilevel regression models were used to compare different work intensification ratings across psychological distress strata. Distressed employees rated higher degree of total work intensification compared to non-distressed employees, and on three out of five sub ratings there were an increased prevalence of work intensification in the case group. In general, there was poor agreement between employee and company work intensification rating. Neither manager-rated work intensification nor employee/manager discrepancy in work intensification ratings was associated with psychological distress. Distressed employees had a higher total score of employee/manager agreed work intensification, and a higher prevalence of increased demands of labour productivity. This study demonstrates higher ratings of employee/manager agreed work intensification in distressed employees compared to non-distressed employees, challenging previous findings of reporting bias in distressed employees’ assessment of work environment. PMID:25752252
Gold Leaching Characteristics and Intensification of a High S and As-Bearing Gold Concentrate
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Liu, Xiao-liang; Jiang, Tao; Li, Qian; Xu, Bin; Zhang, Yan
Some high sulfur and arsenic-bearing gold concentrate has a gold leaching rate less than 80% by oxidation roasting-pickling-cyanidation process. The characteristics and intensification of gold leaching were studied systemically. By combining chemical composition and phase analysis, the low gold leaching rate was found to lie in the capsulation of gold by iron-containing phases including iron oxides, arsenopyrite and pyrite. 96.66% of gold in the industrial leaching residue was capsulated and 95.88% of the capsulated turned out to be in the iron-containing phases. The results of laboratory pickling-cyanidation experiments on the calcine and industrial leaching residue presented further demonstration for the fact that gold capsulated in the iron-containing phases was hard to be leached. However, the gold cyanide leaching rate of calcine could be raised over 95% by a reduction roasting-pickling pretreatment which played such a significant role in exposing the capsulated gold that gold leaching was intensified remarkably.
Supported Ruthenium Catalysts for Sustainable Flow Chemistry
Continuous flow processes play a significant role in the process intensification of organic transformations, as is evident from the multitude of flow reactors that have been developed for various specific needs. These flow processes are deemed more sustainable due to the advantag...
Plant Functional Traits: Soil and Ecosystem Services.
Faucon, Michel-Pierre; Houben, David; Lambers, Hans
2017-05-01
Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Compression Fracture of CFRP Laminates Containing Stress Intensifications.
Leopold, Christian; Schütt, Martin; Liebig, Wilfried V; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl; Fiedler, Bodo
2017-09-05
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers.
Compression Fracture of CFRP Laminates Containing Stress Intensifications
Schütt, Martin; Philipkowski, Timo; Kürten, Jonas; Schulte, Karl
2017-01-01
For brittle fracture behaviour of carbon fibre reinforced plastics (CFRP) under compression, several approaches exist, which describe different mechanisms during failure, especially at stress intensifications. The failure process is not only initiated by the buckling fibres, but a shear driven fibre compressive failure beneficiaries or initiates the formation of fibres into a kink-band. Starting from this kink-band further damage can be detected, which leads to the final failure. The subject of this work is an experimental investigation on the influence of ply thickness and stacking sequence in quasi-isotropic CFRP laminates containing stress intensifications under compression loading. Different effects that influence the compression failure and the role the stacking sequence has on damage development and the resulting compressive strength are identified and discussed. The influence of stress intensifications is investigated in detail at a hole in open hole compression (OHC) tests. A proposed interrupted test approach allows identifying the mechanisms of damage initiation and propagation from the free edge of the hole by causing a distinct damage state and examine it at a precise instant of time during fracture process. Compression after impact (CAI) tests are executed in order to compare the OHC results to a different type of stress intensifications. Unnotched compression tests are carried out for comparison as a reference. With this approach, a more detailed description of the failure mechanisms during the sudden compression failure of CFRP is achieved. By microscopic examination of single plies from various specimens, the different effects that influence the compression failure are identified. First damage of fibres occurs always in 0°-ply. Fibre shear failure leads to local microbuckling and the formation and growth of a kink-band as final failure mechanisms. The formation of a kink-band and finally steady state kinking is shifted to higher compressive strains with decreasing ply thickness. Final failure mode in laminates with stress intensification depends on ply thickness. In thick or inner plies, damage initiates as shear failure and fibre buckling into the drilled hole. The kink-band orientation angle is changing with increasing strain. In outer or thin plies shear failure of single fibres is observed as first damage and the kink-band orientation angle is constant until final failure. Decreasing ply thickness increases the unnotched compressive strength. When stress intensifications are present, the position of the 0°-layer is critical for stability under compression and is thus more important than the ply thickness. Central 0°-layers show best results for OHC and CAI strength due to higher bending stiffness and better supporting effect of the adjacent layers. PMID:28872623
NASA Astrophysics Data System (ADS)
Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.
2015-12-01
The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic biofuel facility in Kansas.
2012-10-12
structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size
NASA Astrophysics Data System (ADS)
Park, Sumin; Im, Jungho; Park, Seonyeong
2016-04-01
A drought occurs when the condition of below-average precipitation in a region continues, resulting in prolonged water deficiency. A drought can last for weeks, months or even years, so can have a great influence on various ecosystems including human society. In order to effectively reduce agricultural and economic damage caused by droughts, drought monitoring and forecasts are crucial. Drought forecast research is typically conducted using in situ observations (or derived indices such as Standardized Precipitation Index (SPI)) and physical models. Recently, satellite remote sensing has been used for short term drought forecasts in combination with physical models. In this research, drought intensification was predicted using satellite-derived drought indices such as Normalized Difference Drought Index (NDDI), Normalized Multi-band Drought Index (NMDI), and Scaled Drought Condition Index (SDCI) generated from Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) products over the Korean Peninsula. Time series of each drought index at the 8 day interval was investigated to identify drought intensification patterns. Drought condition at the previous time step (i.e., 8 days before) and change in drought conditions between two previous time steps (e.g., between 16 days and 8 days before the time step to forecast) Results show that among three drought indices, SDCI provided the best performance to predict drought intensification compared to NDDI and NMDI through qualitative assessment. When quantitatively compared with SPI, SDCI showed a potential to be used for forecasting short term drought intensification. Finally this research provided a SDCI-based equation to predict short term drought intensification optimized over the Korean Peninsula.
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Zhang, Feimin; Pu, Zhaoxia
2017-04-01
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina (2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF (Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer (PBL) schemes, the Mellor-Yamada-Janjic (MYJ) and the Yonsei University (YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies (e.g., over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air-sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.
Ocean barrier layers' effect on tropical cyclone intensification.
Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan
2012-09-04
Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.
Ocean barrier layers’ effect on tropical cyclone intensification
Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan
2012-01-01
Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298
Ocean Barrier Layers’ Effect on Tropical Cyclone Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Chang, P.; Saravanan, R.
2012-09-04
Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are 'quasi-permanent' features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropicalmore » cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.« less
Ralston, J D; Cook, A J; Anderson, M L; Catz, S L; Fishman, P A; Carlson, J; Johnson, R; Green, B B
2014-01-01
We evaluated the role of home monitoring, communication with pharmacists, medication intensification, medication adherence and lifestyle factors in contributing to the effectiveness of an intervention to improve blood pressure control in patients with uncontrolled essential hypertension. We performed a mediation analysis of a published randomized trial based on the Chronic Care Model delivered over a secure patient website from June 2005 to December 2007. Study arms analyzed included usual care with a home blood pressure monitor and usual care with home blood pressure monitor and web-based pharmacist care. Mediator measures included secure messaging and telephone encounters; home blood pressure monitoring; medications intensification and adherence and lifestyle factors. Overall fidelity to the Chronic Care Model was assessed with the Patient Assessment of Chronic Care (PACIC) instrument. The primary outcome was percent of participants with blood pressure (BP) <140/90 mm Hg. At 12 months follow-up, patients in the web-based pharmacist care group were more likely to have BP <140/90 mm Hg (55%) compared to patients in the group with home blood pressure monitors only (37%) (p = 0.001). Home blood pressure monitoring accounted for 30.3% of the intervention effect, secure electronic messaging accounted for 96%, and medication intensification for 29.3%. Medication adherence and self-report of fruit and vegetable intake and weight change were not different between the two study groups. The PACIC score accounted for 22.0 % of the main intervention effect. The effect of web-based pharmacist care on improved blood pressure control was explained in part through a combination of home blood pressure monitoring, secure messaging, and antihypertensive medication intensification.
High flux solar energy transformation
Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.
High flux solar energy transformation
Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.
1991-04-09
Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.
Enterprise bargaining: a case study in the de-intensification of nursing work in Australia.
Willis, Eileen; Toffoli, Luisa; Henderson, Julie; Walter, Bonnie
2008-06-01
This paper explores labour negotiations between nurses and government in the public health sector in Australia between 1996 and 2005. During this period, industrial negotiations between nurses and government in the public health sector moved from centralized wage determinations to agreements made at the level of the enterprise through the Workplace Relations Act 1996. Simultaneously, public sector nurses reported increased work intensification, a result of new public management strategies. This led to the Australian Nursing Federation negotiating enterprise agreements that included the introduction of highly specified workload algorithms in an attempt to de-intensify nurses' labour. The irony of this strategy is that these calculations and tools operate as both a human resource mechanism for maximizing productivity as well as an industrial relations tool for reducing work intensification.
NASA Astrophysics Data System (ADS)
Myhre, S. E.; Hill, T. M.; Frieder, C.; Grupe, B.
2016-02-01
Here we present two new marine sediment archives from the continental margin of San Diego, California, USA, which record decadal to centennial oscillations in the hydrographic structure of the Eastern Pacific Oxygen Minimum Zone (OMZ). The two cores, located at 528 and 1,180 m water depth, record oceanographic history across overlapping timescales. Biotic communities, including Foraminifera, Echinodermata, Brachiopoda, Mollusca and Ostrocoda, were examined in subsurface (>10 cm sediment core depth) samples. Chronologies for both cores were developed with reservoir-corrected 14C dates of mixed planktonic Foraminifera and linearly interpolated sedimentation rates. Sediment ages for the cores range from 400-1,800 years before present. Indices of foraminiferal community density, diversity and evenness are applied as biotic proxies to track the intensification of the continental margin OMZ. Biotic communities at the shallower site reveal multi-decadal to centennial timescales of OMZ intensification, whereas the deeper site exhibits decadal to multi-decadal scales of hydrographic variability. Hypoxia-associated foraminiferal genera Uvigerina and Bolivina were compositionally dominant during intervals of peak foraminiferal density. Invertebrate assemblages often co-occurred across taxa groups, and thereby provide a broad trophic context for interpreting changes in the margin seafloor. Variability in the advection of Pacific Equatorial Water may mechanistically contribute to this described hydrographic variability. This investigation reconstructs historical timescales of OMZ intensification, seafloor ecological variability, and synchrony between open-ocean processes and regional climate.
Bioreactor concepts for cell culture-based viral vaccine production.
Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo
2015-01-01
Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.
Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies.
Patil, Rohan; Walther, Jason
2017-03-07
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013
NASA Astrophysics Data System (ADS)
Guan, Shoude; Li, Shuiqing; Hou, Yijun; Hu, Po; Liu, Ze; Feng, Junqiao
2018-06-01
Long-term changes between 1974 and 2013 were investigated in western North Pacific typhoons making landfall in East and Southeast Asia. Landfalling typhoon parameters, including the percentage of typhoons making landfall, the annual mean landfall intensity (LFI), and the annual accumulated power dissipation index at land, all increased significantly (at the 99% confidence level), by 14%, 17%, and 94%, respectively, over the study period. The increase in probability of a typhoon making landfall was attributed to an eastward shift of the typhoon genesis location. The LFI was decomposed into the product of the intensification rate and intensification duration. The product reproduced variations in the observed LFI well, and the correlation coefficient was high at 0.82. Although the intensification duration decreased slightly, an unprecedented increase in the intensification rate was observed, this increased the LFI. Warming of the upper ocean in the western North Pacific typhoon main intensification region, giving a higher tropical cyclone heat potential, yielded better oceanic conditions and overcame the worsening atmospheric conditions (increasing vertical wind shear), allowing typhoons to intensify. The increase in the annual accumulated power dissipation index was mainly caused by the increase in the LFI, and the annual number of typhoons and typhoon duration contributed much less. Increasing typhoon landfalling activities might heighten the threat posed by typhoons to populations and infrastructure in coastal regions.
NASA Astrophysics Data System (ADS)
Spiegal, S.; Bestelmeyer, B. T.; Archer, D. W.; Augustine, D. J.; Boughton, E. H.; Boughton, R. K.; Cavigelli, M. A.; Clark, P. E.; Derner, J. D.; Duncan, E. W.; Hapeman, C. J.; Harmel, R. D.; Heilman, P.; Holly, M. A.; Huggins, D. R.; King, K.; Kleinman, P. J. A.; Liebig, M. A.; Locke, M. A.; McCarty, G. W.; Millar, N.; Mirsky, S. B.; Moorman, T. B.; Pierson, F. B.; Rigby, J. R.; Robertson, G. P.; Steiner, J. L.; Strickland, T. C.; Swain, H. M.; Wienhold, B. J.; Wulfhorst, J. D.; Yost, M. A.; Walthall, C. L.
2018-03-01
Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating global demand for agricultural products with long-term environmental stewardship. Defined here as increasing agricultural production while maintaining or improving environmental quality, sustainable intensification hinges upon decision-making by agricultural producers, consumers, and policy-makers. The Long-Term Agroecosystem Research (LTAR) network was established to inform these decisions. Here we introduce the LTAR Common Experiment, through which scientists and partnering producers in US croplands, rangelands, and pasturelands are conducting 21 independent but coordinated experiments. Each local effort compares the outcomes of a predominant, conventional production system in the region (‘business as usual’) with a system hypothesized to advance sustainable intensification (‘aspirational’). Following the logic of a conceptual model of interactions between agriculture, economics, society, and the environment, we identified commonalities among the 21 experiments in terms of (a) concerns about business-as-usual production, (b) ‘aspirational outcomes’ motivating research into alternatives, (c) strategies for achieving the outcomes, (d) practices that support the strategies, and (e) relationships between practice outreach and adoption. Network-wide, concerns about business as usual include the costs of inputs, opportunities lost to uniform management approaches, and vulnerability to accelerating environmental changes. Motivated by environmental, economic, and societal outcomes, scientists and partnering producers are investigating 15 practices in aspirational treatments to sustainably intensify agriculture, from crop diversification to ecological restoration. Collectively, the aspirational treatments reveal four general strategies for sustainable intensification: (1) reducing reliance on inputs through ecological intensification, (2) diversifying management to match land and economic potential, (3) building adaptive capacity to accelerating environmental changes, and (4) managing agricultural landscapes for multiple ecosystem services. Key to understanding the potential of these practices and strategies are informational, economic, and social factors—and trade-offs among them—that limit their adoption. LTAR is evaluating several actions for overcoming these barriers, including finding financial mechanisms to make aspirational production systems more profitable, resolving uncertainties about trade-offs, and building collaborative capacity among agricultural producers, stakeholders, and scientists from a broad range of disciplines.
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
NASA Astrophysics Data System (ADS)
Handayani, Prima Astuti; Abdullah, dan Hadiyanto
2015-12-01
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.
21 CFR 886.5910 - Image intensification vision aid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Image intensification vision aid. 886.5910 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5910 Image intensification vision aid. (a) Identification. An image intensification vision aid is a battery-powered device intended for...
21 CFR 886.5910 - Image intensification vision aid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Image intensification vision aid. 886.5910 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5910 Image intensification vision aid. (a) Identification. An image intensification vision aid is a battery-powered device intended for...
21 CFR 886.5910 - Image intensification vision aid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Image intensification vision aid. 886.5910 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5910 Image intensification vision aid. (a) Identification. An image intensification vision aid is a battery-powered device intended for...
21 CFR 886.5910 - Image intensification vision aid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Image intensification vision aid. 886.5910 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5910 Image intensification vision aid. (a) Identification. An image intensification vision aid is a battery-powered device intended for...
21 CFR 886.5910 - Image intensification vision aid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Image intensification vision aid. 886.5910 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5910 Image intensification vision aid. (a) Identification. An image intensification vision aid is a battery-powered device intended for...
Fernández-Salazar, Luis; Barrio, Jesús; Muñoz, Fernando; Muñoz, Concepción; Pajares, Ramón; Rivero, Montserrat; Prieto, Vanesa; Legido, Jesús; Bouhmidi, Abdel; Herranz, Maite; González-Redondo, Guillermo; Fernández, Nereida; Santos, Fernando; Sánchez-Ocaña, Ramón; Joao, Diana
2015-09-01
Infliximab (IFX) therapy intensification in ulcerative colitis (UC) is more common than established in pivotal studies. To establish the frequency and form of intensification for UC in clinical practice, as well as predictors, and to compare outcomes between intensified and non-intensified treatment. A retrospective study of 10 hospitals and 144 patients with response to infliximab (IFX) induction. Predictive variables for intensification were analyzed using a Cox regression analysis. Outcome, loss of response to IFX, and colectomy were compared between intensified and non-intensified therapy. Follow-up time from induction to data collection: 38 months [interquartile range (IQR), 20-62]. Time on IFX therapy: 24 months (IQR, 10-44). In all, 37% of patients required intensification. Interval was shortened for 36 patients, dose was increased for 7, and 10 subjects received both. Concurrent thiopurine immunosuppressants (IMM) and IFX initiation was an independent predictor of intensification [Hazard ratio, 0.034; p, 0.006; CI, 0.003-0.371]. In patients on intensified therapy IFX discontinuation for loss of response (30.4% vs. 10.2%; p, 0.002), steroid reintroduction (35% vs. 18%; p, 0.018), and colectomy (22% vs. 6.4%; p, 0.011) were more common. Of patients on intensification, 17% returned to receiving 5 mg/kg every 8 weeks. Intensification is common and occasionally reversible. IMM initiation at the time of induction with IFX predictsnon-intensification. Intensification, while effective, is associated with poorer outcome.
Zhou, Wenyu
2015-11-19
Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Wenyu
Here, the impact of vertical wind shear on the sensitivity of tropical cyclogenesis to environmental rotation and thermodynamic state is investigated through idealized cloud-resolving simulations of the intensification of an incipient vortex. With vertical shear, tropical cyclones intensify faster with a higher Coriolis parameter, f, irrespective of the environmental thermodynamic state. The vertical shear develops a vertically tilted vortex, which undergoes a precession process with the midlevel vortices rotating cyclonically around the surface center. With a higher f, the midlevel vortices are able to rotate continuously against the vertical shear, leading to the realignment of the tilted vortex and rapidmore » intensification. With a lower f, the rotation is too slow such that the midlevel vortices are advected away from the surface center and the intensification is suppressed. The parameter, Χ b, measuring the effect from the low-entropy downdraft air on the boundary layer entropy, is found to be a good indicator of the environmental thermodynamic favorability for tropical cyclogenesis in vertical shear. Without vertical shear, tropical cyclones are found to intensify faster with a lower f by previous studies. We show this dependency on f is sensitive to the environmental thermodynamic state. The thermodynamical favorability for convection can be measured by Χ m, which estimates the time it takes for surface fluxes to moisten the midtroposphere. A smaller Χ m not only leads to a faster intensification due to a shorter period for moist preconditioning of the inner region but also neutralizes the faster intensification with a lower f due to enhanced peripheral convection.« less
Microflow High-p,T Intensification of Vitamin D3 Synthesis Using an Ultraviolet Lamp
2017-01-01
Herewith a new process concept for synthesis is presented which combines both UV-photoirradiation and high-p,T intensification (photo-high-p,T) in continuous flow. The application of this procedure to Vitamin D3 synthesis promotes thermal shifting of the equilibrium from the reaction intermediate to the product. This is enabled by microreactors which allow operation under harsh conditions such as the high temperature used here. This provides, to our best knowledge, a new kind of process combination (novel process window). As a result, in less than 1 min, 42% conversion of 7-dehydrocholesterol can be achieved giving a 17% yield and 40% selectivity of Vitamin D3. This approach enhances productivity by up to 2 orders of magnitude compared with the current capillary based vitamin D3 synthesis, because, under the microflow conditions, photochemistry can be performed at fairly high concentration and up to 20 times faster. PMID:29503521
CONVERTING FROM BATCH TO CONTINUOUS INTENSIFIED PROCESSING IN THE STT? REACTOR
The fluid dynamics, the physical dimensions and characteristics of the reaction zones of continuous process intensification reactors are often quite different from those of the batch reactors they replace. Understanding these differences is critical to the successful transit...
Intensification of oily waste waters purification by means of liquid atomization
NASA Astrophysics Data System (ADS)
Eskin, A. A.; Tkach, N. S.; Kim, M. I.; Zakharov, G. A.
2017-10-01
In this research, a possibility of using liquid atomization for improving the efficiency of purification of wastewater by different methods has been studied. By the introduced method and an experimental setup for wastewater purification, saturation rate increases with its purification by means of dissolved air flotation. Liquid atomization under excess pressure allows to gain a large interfacial area between the saturated liquid and air, which may increase the rate of purified liquid saturation almost twice, compared to the existing methods of saturation. Current disadvantages of liquid atomization used for intensification of wastewater purification include high energy cost and secondary emulsion of polluting agents. It is also known that by means of liquid atomization a process of ozonizing can be intensified. Large contact surface between the purified liquid and ozone-air mixture increases the oxidizing efficiency, which allows to diminish ozone discharge. Liquid atomization may be used for purification of wastewaters by ultraviolet radiation. Small drops of liquid will be proportionally treated by ultraviolet, which makes it possible to do purification even of turbid wastewaters. High-speed liquid motion will prevent the pollution of quartz tubes of ultraviolet lamps.
Intensive agriculture reduces soil biodiversity across Europe.
Tsiafouli, Maria A; Thébault, Elisa; Sgardelis, Stefanos P; de Ruiter, Peter C; van der Putten, Wim H; Birkhofer, Klaus; Hemerik, Lia; de Vries, Franciska T; Bardgett, Richard D; Brady, Mark Vincent; Bjornlund, Lisa; Jørgensen, Helene Bracht; Christensen, Sören; Hertefeldt, Tina D'; Hotes, Stefan; Gera Hol, W H; Frouz, Jan; Liiri, Mira; Mortimer, Simon R; Setälä, Heikki; Tzanopoulos, Joseph; Uteseny, Karoline; Pižl, Václav; Stary, Josef; Wolters, Volkmar; Hedlund, Katarina
2015-02-01
Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Wei-Wei; Wang, Chunzai; Wang, Dongxiao; Yang, Lei; Deng, Yi
2012-03-01
Tropical cyclone (TC) Nargis (2008) made landfall in Myanmar on 02 May 2008, bringing a storm surge, major flooding, and resulting in a significant death toll. TC Nargis (2008) displayed abnormal features, including rare eastward motion in its late stage, rapid intensification before landing. Using reanalysis data and a numerical model, we investigated how a low-latitude westerly wind modulated TC Nargis' (2008) track and provided favorable atmospheric conditions for its rapid intensification. More importantly, we found a possible counterbalance effect of flows from the two hemispheres on the TC track in the Bay of Bengal. Our analysis indicates that a strong westerly wind burst across the Bay of Bengal, resulting in TC Nargis' (2008) eastward movement after its recurvature. This sudden enhancement of westerly wind was mainly due to the rapidly intensified mid-level cross-equatorial flow. Our results show that a high-pressure system in the Southern Hemisphere induced this strong, mid-level, cross-equatorial flow. During the rapid intensification period of TC Nargis (2008), this strong and broad westerly wind also transported a large amount of water vapor to TC Nargis (2008). Sufficient water vapor gave rise to continuously high and increased mid-level relative humidity, which was favorable to TC Nargis' (2008) intensification. Condensation of water vapor increased the energy supply, which eventuated the intensification of TC Nargis (2008) to a category 4 on the Saffir-Simpson scale.
An economically viable and environmentally benign continuous flow intensified process has been developed to demonstrate the ability to upgrade biomass into potential biofuels, solvents, and pharmaceutical feedstocks using a bimetallic AgPd@g-C3N4 catalyst.
Achenbach, Chad J; Assoumou, Lambert; Deeks, Steven G; Wilkin, Timothy J; Berzins, Baiba; Casazza, Joseph P; Lambert-Niclot, Sidonie; Koup, Richard A; Costagliola, Dominique; Calvez, Vincent; Katlama, Christine; Autran, Brigitte; Murphy, Robert L
2015-03-01
Achievement of a cure for HIV infection might need reactivation of latent virus and improvement of HIV-specific immunity. As an initial step, in this trial we assessed the effect of antiretroviral therapy intensification and immune modulation with a DNA prime and recombinant adenovirus 5 (rAd5) boost vaccine. In this multicentre, randomised, open-label, non-comparative, phase 2 clinical trial, we enrolled eligible adults 18-70 years of age with chronic HIV-1 infection on suppressive antiretroviral therapy with current CD4 count of at least 350 cells per μL and HIV DNA between 10 and 1000 copies per 10(6) peripheral blood mononuclear cells. After an 8 week lead-in of antiretroviral intensification therapy (standard dose raltegravir and dose-adjusted maraviroc based on baseline antiretroviral therapy), patients were randomly assigned (1:1) to receive antiretroviral therapy intensification alone or intensification plus injections of HIV DNA prime vaccine (4 mg VRC-HIVDNA016-00-VP) at weeks 8, 12, and 16, followed by HIV rAd5 boost vaccine (10(10) particle units of VRC-HIVADV014-00-VP) at week 32. Randomisation was computer generated in permuted blocks of six and was stratified by study site. The primary endpoint was a 0·5 log10 or greater decrease in HIV DNA in peripheral blood mononuclear cells at week 56. This study is registered with ClinicalTrials.gov, number NCT00976404. Between Nov 29, 2010, and Oct 28, 2011, we enrolled 28 eligible patients from three academic HIV clinics in the USA. After the 8 week lead-in of antiretroviral intensification therapy, 14 patients were randomly assigned to continue antiretroviral therapy intensification alone and 14 to intensification plus vaccine. Enrolled participants had median CD4 count of 636 cells per μL, median HIV DNA 170 copies per 10(6) peripheral blood mononuclear cells, and duration of antiretroviral therapy of 13 years. The median amount of HIV DNA did not change significantly between baseline and week 56 in the antiretroviral therapy intensification plus vaccine group. One participant in the antiretroviral therapy intensification alone group reached the primary endpoint, with 0·55 log10 decrease in HIV DNA in peripheral blood mononuclear cells. Both treatments were well tolerated. No severe or systemic reactions to vaccination occurred, and five serious adverse events were recorded during the study, most of which resolved spontaneously or were judged unrelated to study treatments. Antiretroviral therapy intensification followed by DNA prime and rAd5 boost vaccine did not significantly increase HIV expression or reduce the latent HIV reservoir. A multifaceted approach that includes stronger activators of HIV expression and novel immune modulators will probably be needed to reduce the latent HIV reservoir and allow for long-term control in patients off antiretroviral therapy. Objectif Recherche Vaccin SIDA (ORVACS). Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Use of enzymatic processing in the food, textile, and bio-fuel applications is becoming increasingly popular, primarily because of rapid introduction of a new variety of highly efficient enzymes. In general, an enzymatic bio-processing generates less toxic and readily biodegradable wastewater efflue...
Ripoll-Bosch, R; Joy, M; Bernués, A
2014-08-01
Traditional mixed livestock cereal- and pasture-based sheep farming systems in Europe are threatened by intensification and specialisation processes. However, the intensification process does not always yield improved economic results or efficiency. This study involved a group of farmers that raised an autochthonous sheep breed (Ojinegra de Teruel) in an unfavourable area of North-East Spain. This study aimed to typify the farms and elucidate the existing links between economic performance and certain sustainability indicators (i.e. productivity, self-sufficiency and diversification). Information was obtained through direct interviews with 30 farms (73% of the farmers belonging to the breeders association). Interviews were conducted in 2009 and involved 32 indicators regarding farm structure, management and economic performance. With a principal component analysis, three factors were obtained explaining 77.9% of the original variance. This factors were named as inputs/self-sufficiency, which included the use of on-farm feeds, the amount of variable costs per ewe and economic performance; productivity, which included lamb productivity and economic autonomy; and productive orientation, which included the degree of specialisation in production. A cluster analysis identified the following four groups of farms: high-input intensive system; low-input self-sufficient system; specialised livestock system; and diversified crops-livestock system. In conclusion, despite the large variability between and within groups, the following factors that explain the economic profitability of farms were identified: (i) high feed self-sufficiency and low variable costs enhance the economic performance (per labour unit) of the farms; (ii) animal productivity reduces subsidy dependence, but does not necessarily imply better economic performance; and (iii) diversity of production enhances farm flexibility, but is not related to economic performance.
Salazar, Luis Miguel; Grisales, Claudia Mildred; Garcia, Dorian Prato
2018-05-31
This study evaluates the technical, economical, and environmental impact of sodium persulfate (Na 2 S 2 O 8 ) as an enhancing agent in a photo-Fenton process within a solar-pond type reactor (SPR). Photo-Fenton (PF) and photo-Fenton intensified with the addition of persulfate (PFPS) processes decolorize 97% the azo dye direct blue 71 (DB71) and allow producing a highly biodegradable effluent. Intensification with persulfate allowed reducing treatment time in 33% (from 120 to 80 min) and the consumption of chemical auxiliaries needed for pH adjustment. Energy, reagents, and chemical auxiliaries are still and environmental hotspot for PF and PFPS; however, it is worth mentioning that their environmental footprint is lower than that observed for compound parabolic concentrator (CPC)-type reactors. A life-cycle assessment (LCA) confirms that H 2 O 2 , NaOH, and energy consumption are the variables with the highest impact from an environmental standpoint. The use of persulfate reduced the relative impact in 1.2 to 12% in 12 of the 18 environmental categories studied using the ReCiPe method. The PFPS process emits 1.23 kg CO 2 (CO 2 -Eqv/m 3 treated water). On the other hand, the PF process emits 1.28 kg CO 2 (CO 2 -Eqv/m 3 treated water). Process intensification, chemometric techniques, and the use of SPRs minimize the impact of some barriers (reagent and energy consumption, technical complexity of reactors, pressure drops, dirt on the reflecting surfaces, fragility of reactor materials), limiting the application of advanced oxidation systems at an industrial level, and decrease treatment cost as well as potential environmental impacts associated with energy and reagents consumption. Treatment costs for PF processes (US$0.78/m 3 ) and PFPS processes (US$0.63/m 3 ) were 20 times lower than those reported for photo-Fenton processes in CPC-type reactors.
Field, Julie S.; Ladefoged, Thegn N.; Kirch, Patrick V.
2011-01-01
The Leeward Kohala Field System (LKFS) covering ∼60 km2 on Hawai‘i Island is one of the world's best-studied archaeological examples of preindustrial agricultural intensification. Archaeological correlates for households over a 400-y period of intensification of the LKFS (A.D. 1400–1800) indicate that household age, number, and distribution closely match the expansion of agricultural features at both macro- and microscales. We excavated and dated residential complexes within portions of five traditional Hawaiian land units (ahupua‘a), two in the central core of the field system and three in the southern margins. Forty-eight radiocarbon dates from 43 residential features indicate an overall pattern of exponential increase in the numbers of households over time. Spatial distribution of these dates suggests that the core of the LKFS may have reached a population saturation point earlier than in the southern margins. Bayesian statistical analysis of radiocarbon dates from residential features in the core region, combined with spatial analysis of agricultural and residential construction sequences, demonstrates that the progressive subdivision of territories into smaller socioeconomic units was matched by addition of new residences, probably through a process of household fissioning. These results provide insights into the economic processes underlying the sociopolitical transformation from chiefdom to archaic state in precontact Hawai‘i. PMID:21502516
Turchin, Alexander; Shubina, Maria; Breydo, Eugene; Pendergrass, Merri L; Einbinder, Jonathan S
2009-01-01
OBJECTIVE To compare information obtained from narrative and structured electronic sources using anti-hypertensive medication intensification as an example clinical issue of interest. DESIGN A retrospective cohort study of 5,634 hypertensive patients with diabetes from 2000 to 2005. MEASUREMENTS The authors determined the fraction of medication intensification events documented in both narrative and structured data in the electronic medical record. The authors analyzed the relationship between provider characteristics and concordance between intensifications in narrative and structured data. As there is no gold standard data source for medication information, the authors clinically validated medication intensification information by assessing the relationship between documented medication intensification and the patients' blood pressure in univariate and multivariate models. RESULTS Overall, 5,627 (30.9%) of 18,185 medication intensification events were documented in both sources. For a medication intensification event documented in narrative notes the probability of a concordant entry in structured records increased by 11% for each study year (p < 0.0001) and decreased by 19% for each decade of provider age (p = 0.035). In a multivariate model that adjusted for patient demographics and intraphysician correlations, an increase of one medication intensification per month documented in either narrative or structured data were associated with a 5-8 mm Hg monthly decrease in systolic and 1.5-4 mm Hg decrease in diastolic blood pressure (p < 0.0001 for all). CONCLUSION Narrative and structured electronic data sources provide complementary information on anti-hypertensive medication intensification. Clinical validity of information in both sources was demonstrated by correlation with changes in blood pressure.
Jakovac, Catarina Conte; Dutrieux, Loïc Paul; Siti, Latifah; Peña-Claros, Marielos; Bongers, Frans
2017-01-01
Shifting cultivation is the main land-use system transforming landscapes in riverine Amazonia. Increased concentration of the human population around villages and increasing market integration during the last decades may be causing agricultural intensification. Studies have shown that agricultural intensification, i.e. higher number of swidden-fallow cycles and shorter fallow periods, reduces crop productivity of swiddens and the regrowth capacity of fallows, undermining the resilience of the shifting cultivation system as a whole. We investigated the temporal and spatial dynamics of shifting cultivation in Brazilian Amazonia to test the hypotheses that (i) agriculture has become more intensive over time, and (ii) patterns of land-use intensity are related to land accessibility and human population density. We applied a breakpoint-detection algorithm to Landsat time-series spanning three decades (1984-2015) and retrieved the temporal dynamics of shifting cultivation fields, which go through alternating phases of crop production (swidden) and secondary forest regrowth (fallow). We found that fallow-period length has decreased from 6.4 to 5.1 years on average, and that expansion over old-growth forest has slowed down over time. Shorter fallow periods and higher frequency of slash and burn cycles are practiced closer to residences and around larger villages. Our results indicate that shifting cultivation in riverine Amazonia has gone through a process of agricultural intensification in the past three decades. The resulting landscape is predominantly covered by young secondary forests (≤ 12 yrs old), and 20% of it have gone through intensive use. Reversing this trend and avoiding the negative consequences of agricultural intensification requires land use planning that accounts for the constraints of land use in riverine areas.
Dutrieux, Loïc Paul; Siti, Latifah; Peña-Claros, Marielos; Bongers, Frans
2017-01-01
Shifting cultivation is the main land-use system transforming landscapes in riverine Amazonia. Increased concentration of the human population around villages and increasing market integration during the last decades may be causing agricultural intensification. Studies have shown that agricultural intensification, i.e. higher number of swidden-fallow cycles and shorter fallow periods, reduces crop productivity of swiddens and the regrowth capacity of fallows, undermining the resilience of the shifting cultivation system as a whole. We investigated the temporal and spatial dynamics of shifting cultivation in Brazilian Amazonia to test the hypotheses that (i) agriculture has become more intensive over time, and (ii) patterns of land-use intensity are related to land accessibility and human population density. We applied a breakpoint-detection algorithm to Landsat time-series spanning three decades (1984–2015) and retrieved the temporal dynamics of shifting cultivation fields, which go through alternating phases of crop production (swidden) and secondary forest regrowth (fallow). We found that fallow-period length has decreased from 6.4 to 5.1 years on average, and that expansion over old-growth forest has slowed down over time. Shorter fallow periods and higher frequency of slash and burn cycles are practiced closer to residences and around larger villages. Our results indicate that shifting cultivation in riverine Amazonia has gone through a process of agricultural intensification in the past three decades. The resulting landscape is predominantly covered by young secondary forests (≤ 12 yrs old), and 20% of it have gone through intensive use. Reversing this trend and avoiding the negative consequences of agricultural intensification requires land use planning that accounts for the constraints of land use in riverine areas. PMID:28727828
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
Papathanasiou, Maria M; Quiroga-Campano, Ana L; Steinebach, Fabian; Elviro, Montaña; Mantalaris, Athanasios; Pistikopoulos, Efstratios N
2017-07-01
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco-friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed-batch culture of GS-NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966-988, 2017. © 2017 American Institute of Chemical Engineers.
Richard C. Cobb; Joao A. N. Filipe; Ross K. Meentemeyer; Chris A. Gilligan; Shannon C. Lynch; David M. Rizzo
2010-01-01
Processes operating across different spatial scales (for example, individual, community, landscape) influence disease dynamics. Understanding these processes and their interactions can yield general insights into disease control, disease dynamics within communities, and community response to disease. For Phytophthora ramorum, pathogen establishment...
Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja
2018-05-01
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade-offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real-world governance, political and economic challenges into sustainable development and global change mitigation research. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sietz, D.; Ordoñez, J. C.; Kok, M. T. J.; Janssen, P.; Hilderink, H. B. M.; Tittonell, P.; Van Dijk, H.
2017-09-01
Food production is key to achieving food security in the drylands of sub-Saharan Africa. Since agricultural productivity is limited, however, due to inherent agro-ecological constraints and land degradation, sustainable agricultural intensification has been widely discussed as an opportunity for improving food security and reducing vulnerability. Yet vulnerability determinants are distributed heterogeneously in the drylands of sub-Saharan Africa and sustainable intensification cannot be achieved everywhere in cost-effective and efficient ways. To better understand the heterogeneity of farming systems’ vulnerability in order to support decision making at regional scales, we present archetypes, i.e. socio-ecological patterns, of farming systems’ vulnerability in the drylands of sub-Saharan Africa and reveal their nestedness. We quantitatively indicated the most relevant farming systems’ properties at a sub-national resolution. These factors included water availability, agro-ecological potential, erosion sensitivity, population pressure, urbanisation, remoteness, governance, income and undernourishment. Cluster analysis revealed eight broad archetypes of vulnerability across all drylands of sub-Saharan Africa. The broad archetype representing better governance and highest remoteness in extremely dry and resource-constrained regions encompassed the largest area share (19%), mainly indicated in western Africa. Moreover, six nested archetypes were identified within those regions with better agropotential and prevalent agricultural livelihoods. Among these patterns, the nested archetype depicting regions with highest erosion sensitivity, severe undernourishment and lower agropotential represented the largest population (30%) and area (28%) share, mainly found in the Sahel region. The nested archetype indicating medium undernourishment, better governance and lowest erosion sensitivity showed particular potential for sustainable agricultural intensification, mainly in western and some parts of southeastern and eastern Africa. Insights into the nestedness of archetypes allowed a more differentiated discussion of vulnerability and sustainable intensification opportunities, enhancing the evaluation of key interlinkages between land management and food security. The archetypes may support the transfer of successful intensification strategies based on similarities among the drylands in sub-Saharan Africa.
Hypertension treatment intensification among stroke survivors with uncontrolled blood pressure.
Roumie, Christianne L; Zillich, Alan J; Bravata, Dawn M; Jaynes, Heather A; Myers, Laura J; Yoder, Joseph; Cheng, Eric M
2015-02-01
We examined blood pressure 1 year after stroke discharge and its association with treatment intensification. We examined the systolic blood pressure (SBP) stratified by discharge SBP (≤140, 141-160, or >160 mm Hg) among a national cohort of Veterans discharged after acute ischemic stroke. Hypertension treatment opportunities were defined as outpatient SBP >160 mm Hg or repeated SBPs >140 mm Hg. Treatment intensification was defined as the proportion of treatment opportunities with antihypertensive changes (range, 0%-100%, where 100% indicates that each elevated SBP always resulted in medication change). Among 3153 patients with ischemic stroke, 38% had ≥1 elevated outpatient SBP eligible for treatment intensification in the 1 year after stroke. Thirty percent of patients had a discharge SBP ≤140 mm Hg, and an average 1.93 treatment opportunities and treatment intensification occurred in 58% of eligible visits. Forty-seven percent of patients discharged with SBP 141 to160 mm Hg had an average of 2.1 opportunities for intensification and treatment intensification occurred in 60% of visits. Sixty-three percent of the patients discharged with an SBP >160 mm Hg had an average of 2.4 intensification opportunities, and treatment intensification occurred in 65% of visits. Patients with discharge SBP >160 mm Hg had numerous opportunities to improve hypertension control. Secondary stroke prevention efforts should focus on initiation and review of antihypertensives before acute stroke discharge; management of antihypertensives and titration; and patient medication adherence counseling. © 2014 American Heart Association, Inc.
Online Chats to Assess Stakeholder Perceptions of Meat Chicken Intensification and Welfare.
Howell, Tiffani J; Rohlf, Vanessa I; Coleman, Grahame J; Rault, Jean-Loup
2016-10-27
Evidence suggests that there is variation in support for specific chicken farming practices amongst stakeholder groups, and this should be explored in more detail to understand the nature of these differences and work towards convergence. Online focus groups were used to assess attitudes to animal welfare in meat chicken farming in this pilot study. Across six online chats, 25 participants (general public, n = 8; animal advocacy group, n = 11, meat chicken industry, n = 3; research or veterinary practice who had experience with poultry but no declared industry affiliation, n = 3) discussed meat chicken intensification and welfare. Of those, 21 participants completed pre- and post-chat surveys gauging perceptions and objective knowledge about meat chicken management. Main reasons for intensification support were perceptions of improved bird health, and perceptions that it is a cost-effective, sustainable farming system. Reasons for opposition included perceptions that a large number of birds kept are in close proximity and have limited ability to perform natural behaviours. Misunderstandings about current practices were clarified in chats which contained industry representation. Participants agreed on the need for enforceable standards and industry transparency. Industry-affiliated members rated welfare of meat chickens higher, and gave lower ratings for the importance of natural living, than other stakeholder groups (both p = 0.001). On average, while objective knowledge of intensification increased after chat participation (p = 0.03), general welfare ratings and support for intensification did not change over time, counter to assertions that lack of knowledge results in lack of support for some practices.
Analysis of North Atlantic tropical cyclone intensify change using data mining
NASA Astrophysics Data System (ADS)
Tang, Jiang
Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This study aims to tackle two factors that account for the underperformance of current TC intensity forecasts: (1) inadequate observations of TC structures, and (2) deficient understanding of the underlying physical processes governing TC intensification. To tackle the problem of inadequate observations of TC structures, efforts have been made to extract vertical and horizontal structural parameters of latent heat release from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data products. A case study of Hurricane Isabel (2003) was conducted first to explore the feasibility of using the 3D TC structure information in predicting TC intensification. Afterwards, several structural parameters were extracted from 53 TRMM PR 2A25 observations on 25 North Atlantic TCs during the period of 1998 to 2003. A new generation of multi-correlation data mining algorithm (Apriori and its variations) was applied to find roles of the latent heat release structure in TC intensification. The results showed that the buildup of TC energy is indicated by the height of the convective tower, and the relative low latent heat release at the core area and around the outer band. Adverse conditions which prevent TC intensification include the following: (1) TC entering a higher latitude area where the underlying sea is relative cold, (2) TC moving too fast to absorb the thermal energy from the underlying sea, or (3) strong energy loss at the outer band. When adverse conditions and amicable conditions reached equilibrium status, tropical cyclone intensity would remain stable. The dataset from Statistical Hurricane Intensity Prediction Scheme (SHIPS) covering the period of 1982-2003 and the Apriori-based association rule mining algorithm were used to study the associations of underlying geophysical characteristics with the intensity change of tropical cyclones. The data have been stratified into 6 TC categories from tropical depression to category 4 hurricanes based on their strength. The result showed that the persistence of intensity change in the past and the strength of vertical shear in the environment are the most prevalent factors for all of the 6 TC categories. Hyper-edge searching had found 3 sets of parameters which showed strong intramural binds. Most of the parameters used in SHIPS model have a consistent "I-W" relation over different TC categories, indicating a consistent function of those parameters in TC development. However, the "I-W" relations of the relative momentum flux and the meridional motion change from tropical storm stage to hurricane stage, indicating a change in the role of those two parameters in TC development. Because rapid intensification (RI) is a major source of errors when predicting hurricane intensity, the association rule mining algorithm was performed on RI versus non-RI tropical cyclone cases using the same SHIPS dataset. The results had been compared with those from the traditional statistical analysis conducted by Kaplan and DeMaria (2003). The rapid intensification rule with 5 RI conditions proposed by the traditional statistical analysis was found by the association rule mining in this study as well. However, further analysis showed that the 5 RI conditions can be replaced by another association rule using fewer conditions but with a higher RI probability (RIP). This means that the rule with all 5 constraints found by Kaplan and DeMaria is not optimal, and the association rule mining technique can find a rule with fewer constraints yet fits more RI cases. The further analysis with the highest RIPs over different numbers of conditions has demonstrated that the interactions among multiple factors are responsible for the RI process of TCs. However, the influence of factors saturates at certain numbers. This study has shown successful data mining examples in studying tropical cyclone intensification using association rules. The higher RI probability with fewer conditions found by association rule technique is significant. This work demonstrated that data mining techniques can be used as an efficient exploration method to generate hypotheses, and that statistical analysis should be performed to confirm the hypotheses, as is generally expected for data mining applications.
Microchannel Reactor System for Catalytic Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeniyi Lawal; Woo Lee; Ron Besser
2010-12-22
We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less
NASA Astrophysics Data System (ADS)
Sharifi, P.; Jamali, J.; Sadayappan, K.; Wood, J. T.
2018-05-01
A quantitative experimental study of the effects of process parameters on the formation of defects during solidification of high-pressure die cast magnesium alloy components is presented. The parameters studied are slow-stage velocity, fast-stage velocity, intensification pressure, and die temperature. The amount of various defects are quantitatively characterized. Multiple runs of the commercial casting simulation package, ProCAST™, are used to model the mold-filling and solidification events. Several locations in the component including knit lines, last-to-fill region, and last-to-solidify region are identified as the critical regions that have a high concentration of defects. The area fractions of total porosity, shrinkage porosity, gas porosity, and externally solidified grains are separately measured. This study shows that the process parameters, fluid flow and local solidification conditions, play major roles in the formation of defects during HPDC process.
ERIC Educational Resources Information Center
Khairutdinova, Milyausha R.; Lebedeva, Olga V.
2016-01-01
The relevance of the research problem is determined by intensification of integration processes in all spheres of life, which results in broadening international cooperation and cultural interaction between different nations and countries. The modern contradictory and heterogeneous world requires serious rethinking of the existing traditions of…
Structural and functional bases of laser-microvessels interaction
NASA Astrophysics Data System (ADS)
Kozlov, Valentine I.; Terman, Oleg A.; Builin, Vitalij; Lebedeva, Natalia A.; Samoilov, Nickolai
1993-07-01
Structural and functional microcirculatory changes in tissues and organs (muscles, liver, derma, epinephros, brain cortex) under various dosages and powers of laser irradiation in the red (633 nm) and near infrared (890 nm) spectrum regions have been studied in experiments and clinic. In case of nonsensitized tissues the `photoactivation' range of power densities and doses of laser irradiation has been established. We have identified a short-term reaction of microvessels and a long-term reaction (adaptation). The former consists of intensification of microcirculation and metabolism rise in parenchymatous cells; the latter is connected with neoangiogenesis acceleration. The intensification of the blood microcirculation includes a dilation of microvessels of all orders, an amplification of arteriolar vasomotions and an opening of `reserved' capillaries. Data on the structural reconstruction of myocytes and endotheliocytes have shown that the high differential parenchymatous cells and its membrane structures are sensitive to low energy laser irradiation and, on the other hand, under low energy laser irradiation there is an activation of synthetic processes in the cells. Thus, during the laser-tissue interaction in such complex system as human organism the microcirculation plays the key role among the other systems.
A review of engineering aspects of intensification of chemical synthesis using ultrasound.
Sancheti, Sonam V; Gogate, Parag R
2017-05-01
Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level. Copyright © 2016 Elsevier B.V. All rights reserved.
Kar, Tambi; Destain, Jacqueline; Thonart, Philippe; Delvigne, Frank
2012-05-01
The potentialities for the intensification of the process of lipase production by the yeast Yarrowia lipolytica on a renewable hydrophobic substrate (methyl oleate) have to be investigated. The key factor governing the lipase yield is the intensification of the oxygen transfer rate, considering the fact that Y. lipolytica is a strict aerobe. However, considering the nature of the substrate and the capacity for protein excretion and biosurfactant production of Y. lipolytica, intensification of oxygen transfer rate is accompanied by an excessive formation of foam. Two different foam control strategies have thus been implemented: a classical chemical foam control strategy and a mechanical foam control (MFM) based on the Stirring As Foam Disruption principle. The second strategy allows foam control without any modifications of the physico-chemical properties of the broth. However, the MFM system design induced the formation of a persistent foam layer in the bioreactor. This phenomenon has led to the segregation of microbial cells between the foam phase and the liquid phase in the case of the bioreactors operated with MFM control, and induced a reduction at the level of the lipase yield. More interestingly, flow cytometry experiments have shown that the residence time of microbial cells in the foam phase tends to induce a dimorphic transition which could potentially explain the reduction of lipase excretion.
Lyles, Courtney R; Karter, Andrew J; Young, Bessie A; Spigner, Clarence; Grembowski, David; Schillinger, Dean; Adler, Nancy
2011-10-01
Racial/ethnic minority patients are more likely to report experiences with discrimination in the healthcare setting, potentially leading to reduced access to appropriate care; however, few studies evaluate reports of discrimination with objectively measured quality of care indicators. To evaluate whether patient-reported racial/ethnic discrimination by healthcare providers was associated with evidence of poorer quality care measured by medication intensification. Baseline data from the Diabetes Study of Northern California (DISTANCE), a random, race-stratified sample from the Kaiser Permanente Diabetes Registry from 2005-2006, including both survey and medical record data. Self-reported healthcare provider discrimination (from survey data) and medication intensification (from electronic prescription records) for poorly controlled diabetes patients (A1c ≥9.0%; systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg; low-density lipoprotein (LDL) ≥130 mg/dl). Of 10,409 eligible patients, 21% had hyperglycemia, 14% had hyperlipidemia, and 32% had hypertension. Of those with hyperglycemia, 59% had their medications intensified, along with 40% with hyperlipidemia, 33% with hypertension, and 47% in poor control of any risk factor. In adjusted log-binomial GEE models, discrimination was not associated with medication intensification [RR = 0.96 (95% CI: 0.74, 1.24) for hyperglycemia, RR = 1.23 (95% CI: 0.93, 1.63) for hyperlipidemia, RR = 1.06 (95% CI: 0.69, 1.61) for hypertension, and RR = 1.08 (95% CI: 0.88, 1.33) for the composite cohort]. We found no evidence that patient-reported healthcare discrimination was associated with less medication intensification. While not associated with this technical aspect of care, discrimination could still be associated with other aspects of care (e.g., patient-centeredness, communication).
Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts
NASA Astrophysics Data System (ADS)
Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.
2015-12-01
The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change
Khunti, K; Nikolajsen, A; Thorsted, B L; Andersen, M; Davies, M J; Paul, S K
2016-04-01
To investigate whether clinical inertia, the failure to intensify treatment regimens when required, exists in people with type 2 diabetes treated with basal insulin. This was a retrospective cohort study involving patients with type 2 diabetes in the UK Clinical Practice Research Datalink database between January 2004 and December 2011, with follow-up until December 2013. A total of 11 696 patients were included in the analysis. Among all patients, 36.5% had their treatment intensified during the study period; of these, the treatment of 50.0, 42.5 and 7.4% was intensified with bolus or premix insulin or glucagon-like peptide-1 receptor agonists, respectively. The median time from initiation of basal insulin to treatment intensification was 4.3 years [95% confidence interval (CI) 4.1, 4.6]. Among patients clinically eligible for treatment intensification [glycated haemoglobin (HbA1c) ≥7.5% (58 mmol/mol)], 30.9% had their treatment regimen intensified. The median time to intensification in this group was 3.7 years (95% CI 3.4, 4.0). Increasing age, duration of diabetes, oral antihyperglycaemic agent usage and Charlson comorbidity index score were associated with a significant delay in the time to intensification (p < 0.05). Among patients with HbA1c ≥7.5% (58 mmol/mol), 32.1% stopped basal insulin therapy. Strategies should be developed to increase the number of patients undergoing therapy intensification and to reduce the delay in intensifying therapy for suitable patients on basal insulin. Initiatives to support patients continuing on insulin are also required. © 2016 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
Valentine, W J; Curtis, B H; Pollock, R F; Van Brunt, K; Paczkowski, R; Brändle, M; Boye, K S; Kendall, D M
2015-07-01
The aim of the analysis was to investigate whether insulin intensification, based on the use of intensive insulin regimens as recommended by the current standard of care in routine clinical practice, would be cost-effective for patients with type 2 diabetes in the UK. Clinical data were derived from a retrospective analysis of 3185 patients with type 2 diabetes on basal insulin in The Health Improvement Network (THIN) general practice database. In total, 48% (614 patients) intensified insulin therapy, defined by adding bolus or premix insulin to a basal regimen, which was associated with a reduction in HbA1c and an increase in body mass index. Projections of clinical outcomes and costs (2011 GBP) over patients' lifetimes were made using a recently validated type 2 diabetes model. Immediate insulin intensification was associated with improvements in life expectancy, quality-adjusted life expectancy and time to onset of complications versus no intensification or delaying intensification by 2, 4, 6, or 8 years. Direct costs were higher with the insulin intensification strategy (due to the acquisition costs of insulin). Incremental cost-effectiveness ratios for insulin intensification were GBP 32,560, GBP 35,187, GBP 40,006, GBP 48,187 and GBP 55,431 per QALY gained versus delaying intensification 2, 4, 6 and 8 years, and no intensification, respectively. Although associated with improved clinical outcomes, insulin intensification as practiced in the UK has a relatively high cost per QALY and may not lead to cost-effective outcomes for patients with type 2 diabetes as currently defined by UK cost-effectiveness thresholds. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification
NASA Astrophysics Data System (ADS)
Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.
2015-12-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.
Dubey, Sumit M; Gole, Vitthal L; Gogate, Parag R
2015-03-01
The present work reports the intensification aspects for the synthesis of fatty acid methyl esters (FAME) from a non-edible high acid value Nagchampa oil (31 mg of KOH/g of oil) using two stage acid esterification (catalyzed by H₂SO₄) followed by transesterification in the presence of heterogeneous catalyst (CaO). Intensification aspects of both stages have been investigated using sonochemical reactors and the obtained degree of intensification has been established by comparison with the conventional approach based on mechanical agitation. It has been observed that reaction temperature for esterification reduced from 65 to 40 °C for the ultrasonic approach whereas there was a significant reduction in the optimum reaction time for transesterification from 4h for the conventional approach to 2.5h for the ultrasound assisted approach. Also the reaction temperature reduced marginally from 65 to 60 °C and yield increased from 76% to 79% for the ultrasound assisted approach. Energy requirement and activation energy for both esterification and transesterification was lower for the ultrasound based approach as compared to the conventional approach. The present work has clearly established the intensification obtained due to the use of ultrasound and also illustrated the two step approach for the synthesis of FAME from high acid value feedstock based on the use of heterogeneous catalyst for the transesterification step. Copyright © 2014 Elsevier B.V. All rights reserved.
A horizon scanning assessment of current and potential future threats to migratory shorebirds
Sutherland, William J.; Alves, José A.; Amano, Tatsuya; Chang, Charlotte H.; Davidson, Nicholas C.; Finlayson, C. Max; Gill, Jennifer A.; Gill, Robert E.; González, Patricia M.; Gunnarsson, Tómas Grétar; Kleijn, David; Spray, Chris J.; Székely, Tamás; Thompson, Des B.A.
2012-01-01
We review the conservation issues facing migratory shorebird populations that breed in temperate regions and use wetlands in the non-breeding season. Shorebirds are excellent model organisms for understanding ecological, behavioural and evolutionary processes and are often used as indicators of wetland health. A global team of experienced shorebird researchers identified 45 issues facing these shorebird populations, and divided them into three categories (natural, current anthropogenic and future issues). The natural issues included megatsunamis, volcanoes and regional climate changes, while current anthropogenic threats encompassed agricultural intensification, conversion of tidal flats and coastal wetlands by human infrastructure developments and eutrophication of coastal systems. Possible future threats to shorebirds include microplastics, new means of recreation and infectious diseases. We suggest that this review process be broadened to other taxa to aid the identification and ranking of current and future conservation actions.
Reach, G; Pechtner, V; Gentilella, R; Corcos, A; Ceriello, A
2017-12-01
Many people with type 2 diabetes mellitus (T2DM) fail to achieve glycaemic control promptly after diagnosis and do not receive timely treatment intensification. This may be in part due to 'clinical inertia', defined as the failure of healthcare providers to initiate or intensify therapy when indicated. Physician-, patient- and healthcare-system-related factors all contribute to clinical inertia. However, decisions that appear to be clinical inertia may, in fact, be only 'apparent' clinical inertia and may reflect good clinical practice on behalf of the physician for a specific patient. Delay in treatment intensification can happen at all stages of treatment for people with T2DM, including prescription of lifestyle changes after diagnosis, introduction of pharmacological therapy, use of combination therapy where needed and initiation of insulin. Clinical inertia may contribute to people with T2DM living with suboptimal glycaemic control for many years, with dramatic consequences for the patient in terms of quality of life, morbidity and mortality, and for public health because of the huge costs associated with uncontrolled T2DM. Because multiple factors can lead to clinical inertia, potential solutions most likely require a combination of approaches involving fundamental changes in medical care. These could include the adoption of a person-centred model of care to account for the complex considerations influencing treatment decisions by patients and physicians. Better patient education about the progressive nature of T2DM and the risks inherent in long-term poor glycaemic control may also reinforce the need for regular treatment reviews, with intensification when required. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
NASA Astrophysics Data System (ADS)
Reinsch, S.; Emmett, B.; Cosby, J.; Mercado, L. M.; Smart, S.; Glanville, H.; Alberola, M. B.; Clark, D.; Robinson, E.; Jones, D.
2015-12-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services.We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity (ANPP) and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will be used to improve ANPP projections. These will then be used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Glanville, Helen; Smart, Simon; Jones, Davey; Mercado, Lina; Blanes-Alberola, Mamen; Cosby, Jack; Emmett, Bridget
2016-04-01
The coupling of C, N and P cycles has rarely been studied through the air- land-water continuum. This is essential if we are to enhance land-atmosphere models to account for N and P limitations. It is also important for developing integrated catchment management solutions to deliver improved water quality combined with a wide range of other ecosystem functions and services. We present results from a project which is part of the interdisciplinary pan-UK NERC Macronutrient Cycles Programme (macronutrient-cycles.ouce.ox.ac.uk/). Our aim is to quantify how coupled C, N & P cycles change across a land use intensification gradient from arable to grass, woodland and bog ecosystems and identify the implications for land-atmosphere C exchange. We focus on three key processes; photosynthesis, annual net primary productivity and decomposition and explore their consequences for biodiversity. Other aspects of the project track delivery to, and transformations within, the freshwater and coastal systems. When we explore relationships between C, N and P, results indicate all habitat types fall on a single land use intensification gradient. Stoichiometry suggests plant productivity is primarily N limited. P limitation occurs rarely but at all levels of intensification. Soil priming shows our soils are primarily C limited and, surprisingly, soil acidity provides one of the most powerful single predictors of processes and ecosystem services perhaps as it is a good integrator of many soil properties. Incorporating this knowledge into the UK land-atmosphere model JULES will improve aNPP projections. These are then being used as inputs into a plant species model called MULTIMOVE to enable future scenarios of climate change, land use and air pollution on habitat suitability for > 1400 plant species to be explored. The enhanced Jules model will ensure both N and P limitations on C fluxes from above and below-ground are incorporated into future UK scenario applications.
ERIC Educational Resources Information Center
Timerbaev, Rais Mingalievich; Muhutdinov, Rafis Habreevich; Danilov, Valeriy Fedorovich
2015-01-01
The article addresses issues related to the methodology of intensifying self-development process when performing design and settlement works on the "Machine Parts" course for the students studying in such areas of training as "Technology" and "Vocational Education" with the use of computer technologies. At the same…
Analysing reduced tillage practices within a bio-economic modelling framework.
Townsend, Toby J; Ramsden, Stephen J; Wilson, Paul
2016-07-01
Sustainable intensification of agricultural production systems will require changes in farm practice. Within arable cropping systems, reducing the intensity of tillage practices (e.g. reduced tillage) potentially offers one such sustainable intensification approach. Previous researchers have tended to examine the impact of reduced tillage on specific factors such as yield or weed burden, whilst, by definition, sustainable intensification necessitates a system-based analysis approach. Drawing upon a bio-economic optimisation model, 'MEETA', we quantify trade-off implications between potential yield reductions, reduced cultivation costs and increased crop protection costs. We extend the MEETA model to quantify farm-level net margin, in addition to quantifying farm-level gross margin, net energy, and greenhouse gas emissions. For the lowest intensity tillage system, zero tillage, results demonstrate financial benefits over a conventional tillage system even when the zero tillage system includes yield penalties of 0-14.2% (across all crops). Average yield reductions from zero tillage literature range from 0 to 8.5%, demonstrating that reduced tillage offers a realistic and attainable sustainable intensification intervention, given the financial and environmental benefits, albeit that yield reductions will require more land to compensate for loss of calories produced, negating environmental benefits observed at farm-level. However, increasing uptake of reduced tillage from current levels will probably require policy intervention; an extension of the recent changes to the CAP ('Greening') provides an opportunity to do this.
Blair, Irene V; Steiner, John F; Hanratty, Rebecca; Price, David W; Fairclough, Diane L; Daugherty, Stacie L; Bronsert, Michael; Magid, David J; Havranek, Edward P
2014-07-01
Few studies have directly investigated the association of clinicians' implicit (unconscious) bias with health care disparities in clinical settings. To determine if clinicians' implicit ethnic or racial bias is associated with processes and outcomes of treatment for hypertension among black and Latino patients, relative to white patients. Primary care clinicians completed Implicit Association Tests of ethnic and racial bias. Electronic medical records were queried for a stratified, random sample of the clinicians' black, Latino and white patients to assess treatment intensification, adherence and control of hypertension. Multilevel random coefficient models assessed the associations between clinicians' implicit biases and ethnic or racial differences in hypertension care and outcomes. Standard measures of treatment intensification and medication adherence were calculated from pharmacy refills. Hypertension control was assessed by the percentage of time that patients met blood pressure goals recorded during primary care visits. One hundred and thirty-eight primary care clinicians and 4,794 patients with hypertension participated. Black patients received equivalent treatment intensification, but had lower medication adherence and worse hypertension control than white patients; Latino patients received equivalent treatment intensification and had similar hypertension control, but lower medication adherence than white patients. Differences in treatment intensification, medication adherence and hypertension control were unrelated to clinician implicit bias for black patients (P = 0.85, P = 0.06 and P = 0.31, respectively) and for Latino patients (P = 0.55, P = 0.40 and P = 0.79, respectively). An increase in clinician bias from average to strong was associated with a relative change of less than 5 % in all outcomes for black and Latino patients. Implicit bias did not affect clinicians' provision of care to their minority patients, nor did it affect the patients' outcomes. The identification of health care contexts in which bias does not impact outcomes can assist both patients and clinicians in their efforts to build trust and partnership.
Methods for Converter Sludge Dehydration Intensification
NASA Astrophysics Data System (ADS)
Vakhromeev, M. I.; Moreva, Y. A.; Starkova, L. G.
2017-11-01
The article considers the intensification methods for converter sludge dehydration exemplified by the sludges of the Oxygen Converter Workshop (OCW) of the Open Joint-Stock Company “Magnitogorsk Iron and Steel Works” (MMK, OJSC), one of the largest metallurgical companies in the Southern Urals. Converter sludges can contain up to 45-70% of ferrum [21] which is interesting in terms of their use as an addition to a sinter-feed mixture. Sludge intensifies the sintering process. It positively influences pelletizing and fusion mixture melting dynamics at sintering. Over the period of the converter sludge dehydration complex operation at the OCW, MMK, OJSC, it was revealed that processing results in obtaining of high humidity sludge. It causes sludge freezing during the winter period, thus, its transportation involves extra costs for sludge warming up. To resolve the above-mentioned problem, the following works were performed in 2016: - experimental studies of how the application of the low-molecular anionic flocculate “SEURVEY” FL-3 influences sludge humidity reduction. - experimental studies of how the filtering press process operation parameters influence sludge humidity reduction. The new flocculate application didn't lower the dehydrated sludge humidity (the objective was the humidity of not more than 15%). Basing upon the conducted research results, we can make a conclusion that putting into operation the sewage water reactant treatment technology with the use of “SEURVEY”, FL-3 (H-10) is not recommended. The research of the influence the filtering press process parameters have on the dehydration process intensification demonstrated that reaching of the obtained residue humidity value lower than 15% is possible under the reduction of the filtering press chamber depths to 30 mm and with the application of additional operation “Residue drying” with compressed air. This way of the sludge dehydration problem resolving at filtering presses of the converter sludge dehydration complex of the OCW, MMK, OJSC, can be recommended for application.
Pawar, Shweta V; Rathod, Virendra K
2018-07-01
Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.
In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...
Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor
Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...
Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.
2013-01-01
Rural populations are undergoing rapid changes in both their livelihoods and land uses, with associated impacts on ecosystems, global biogeochemistry, and climate change. A primary challenge is, thus, to explain these shifts in terms of the actors and processes operating within a variety of land systems in order to understand how land users might respond locally to future changes in broader-scale environmental and economic conditions. Using ‘induced intensification’ theory as a benchmark, we develop a generalized agent-based model to investigate mechanistic explanations of relationships between agricultural intensity and population density, environmental suitability, and market influence. Land-use and livelihood decisions modeled from basic micro-economic theories generated spatial and temporal patterns of agricultural intensification consistent with predictions of induced intensification theory. Further, agent actions in response to conditions beyond those described by induced intensification theory were explored, revealing that interactions among environmental constraints, population pressure, and market influence may produce transitions to multiple livelihood regimes of varying market integration. The result is new hypotheses that could modify and enrich understanding of the classic relationship between agricultural intensity and population density. The strength of this agent-based model and the experimental results is the generalized form of the decision-making processes underlying land-use and livelihood transitions, creating the prospect of a virtual laboratory for systematically generating hypotheses of how agent decisions and interactions relate to observed land-use and livelihood patterns across diverse land systems. PMID:24039892
Observed heavy precipitation increase confirms theory and early model
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Knutti, R.
2016-12-01
Environmental phenomena are often first observed, and then explained or simulated quantitatively. The complexity and diversity of processes, the range of scales involved, and the lack of first principles to describe many processes make it challenging to predict conditions beyond the ones observed. Here we use the intensification of heavy precipitation as a counterexample, where seemingly complex and potentially computationally intractable processes to first order manifest themselves in simple ways: the intensification of heavy precipitation is now emerging in the observed record across many regions of the world, confirming both theory and a variety of model predictions made decades ago, before robust evidence arose from observations. We here compare heavy precipitation changes over Europe and the contiguous United States across station series and gridded observations, theoretical considerations and multi-model ensembles of GCMs and RCMs. We demonstrate that the observed heavy precipitation intensification aggregated over large areas agrees remarkably well with Clausius-Clapeyron scaling. The observed changes in heavy precipitation are consistent yet somewhat larger than predicted by very coarse resolution GCMs in the 1980s and simulated by the newest generation of GCMs and RCMs. For instance the number of days with very heavy precipitation over Europe has increased by about 45% in observations (years 1981-2013 compared to 1951-1980) and by about 25% in the model average in both GCMs and RCMs, although with substantial spread across models and locations. As the anthropogenic climate signal strengthens, there will be more opportunities to test climate predictions for other variables against observations and across a hierarchy of different models and theoretical concepts. *Fischer, E.M., and R. Knutti, 2016, Observed heavy precipitation increase confirms theory and early models, Nature Climate Change, in press.
NASA Astrophysics Data System (ADS)
Trolle, Dennis; Spigel, Bob; Hamilton, David P.; Norton, Ned; Sutherland, Donna; Plew, David; Allan, Mathew G.
2014-09-01
While expansion of agricultural land area and intensification of agricultural practices through irrigation and fertilizer use can bring many benefits to communities, intensifying land use also causes more contaminants, such as nutrients and pesticides, to enter rivers, lakes, and groundwater. For lakes such as Benmore in the Waitaki catchment, South Island, New Zealand, an area which is currently undergoing agricultural intensification, this could potentially lead to marked degradation of water clarity as well as effects on ecological, recreational, commercial, and tourism values. We undertook a modeling study to demonstrate science-based options for consideration of agricultural intensification in the catchment of Lake Benmore. Based on model simulations of a range of potential future nutrient loadings, it is clear that different areas within Lake Benmore may respond differently to increased nutrient loadings. A western arm (Ahuriri) could be most severely affected by land-use changes and associated increases in nutrient loadings. Lake-wide annual averages of an eutrophication indicator, the trophic level index (TLI) were derived from simulated chlorophyll a, total nitrogen, and total phosphorus concentrations. Results suggest that the lake will shift from oligotrophic (TLI = 2-3) to eutrophic (TLI = 4-5) as external loadings are increased eightfold over current baseline loads, corresponding to the potential land-use intensification in the catchment. This study provides a basis for use of model results in a decision-making process by outlining the environmental consequences of a series of land-use management options, and quantifying nutrient load limits needed to achieve defined trophic state objectives.
The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.
2016-01-01
The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.
Activity of LPO Processes in Women with Polycystic Ovarian Syndrome and Infertility.
Kolesnikova, L I; Kolesnikov, S I; Darenskaya, M A; Grebenkina, L A; Nikitina, O A; Lazareva, L M; Suturina, L V; Danusevich, I N; Druzhinina, E B; Semendyaev, A A
2017-01-01
Specific features of LPO processes and antioxidant defense were studied in patients with polycystic ovarian syndrome (PCOS) and infertility. Changes in LPO processes in patients with PCOS were compensatory, which manifested in increased α-tocopherol and retinol concentrations and moderate decrease in superoxide dismutase activity. Intensification of prooxidant processes was found in the group of patients with infertility without PCOS. The observed changes necessitate differentiated approach to the treatment of these patients.
Analysis of sensitivity to different parameterization schemes for a subtropical cyclone
NASA Astrophysics Data System (ADS)
Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.
2018-05-01
A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.
Beyond conservation agriculture.
Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard
2015-01-01
Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Wu, Xue; Alexander, M. Joan
2018-02-01
Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.
NASA Astrophysics Data System (ADS)
Chen, Yun-Yu
2016-12-01
As a kind of mass transfer process as well as the basis of separating and purifying mixtures, interfacial adsorption has been widely applied to fields like chemical industry, medical industry and purification engineering in recent years. Influencing factors of interfacial adsorption, in addition to the traditional temperature, intensity of pressure, amount of substance and concentration, also include external fields, such as magnetic field, electric field and electromagnetic field, etc. Starting from the point of thermodynamics and taking the Gibbs adsorption as the model, the combination of energy axiom and the first law of thermodynamics was applied to boundary phase, and thus the theoretical expression for the volume of interface absorption under electric field as well as the mathematical relationship between surface tension and electric field intensity was obtained. In addition, according to the obtained theoretical expression, the volume of interface absorption of ethanol solution under different electric field intensities and concentrations was calculated. Moreover, the mechanism of interfacial adsorption was described from the perspective of thermodynamics and the influence of electric field on interfacial adsorption was explained reasonably, aiming to further discuss the influence of thermodynamic mechanism of interfacial adsorption on purifying air-conditioning engineering under intensification of electric field.
NASA Technical Reports Server (NTRS)
Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene
2012-01-01
In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.
USDA-ARS?s Scientific Manuscript database
Thlaspi arvense and Camelina sativa have gained considerable attention as biofuel crops. But in some areas, these species, including C. microcarpa, are becoming rare weeds because of agriculture intensification. Including them as crops could guarantee their conservation in agricultural systems. The ...
Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan
2013-07-15
Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.
Study of intensification zones in a rectangular acoustic cavity
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1992-01-01
The interior acoustic field of a rectangular acoustic cavity, which is excited by the structural vibration of one of its walls, or a portion of the wall, has been studied. Particularly, the spatial variations of sound pressure levels from the peak levels at the boundaries (intensification zones) to the uniform interior are considered. Analytical expressions, which describe the intensification zones, are obtained using the methodology of asymptotic modal analysis. These results agree well with results computed by a discrete summation over all of the modes. The intensification zones were also modeled as a set of oblique waves incident upon a surface. The result for a rigid surface agrees with the asymptotic modal analysis result. In the presence of an absorptive surface, the character of the intensification zone is dramatically changed. The behavior of the acoustic field near an absorptive wall is described by an expression containing the rigid wall result plus additional terms containing impedance information. The important parameter in the intensification zone analysis is the bandwidth to center frequency ratio. The effect of bandwidth is separated from that of center frequency by expanding the expression about the center frequency wave number. The contribution from the bandwidth is second order in bandwidth to center frequency ratio.
Theorising Changes in Teachers' Work
ERIC Educational Resources Information Center
Hall, Christine
2004-01-01
This article discusses recurrent themes in the literature about teaching in developed countries: the intensification of work, increased central control, diminished professional autonomy, and fears about the deskilling of teachers. Labour Process theory is used to consider how we might understand the ways in which teachers' work and professionalism…
An intramural research effort within the Sustainable Technology Division (STD) is focused on the development of novel technologies for the synthesis of chemicals in a green and sustainable manner. To extend on the scope of green chemistry, this research also incorporates enginee...
NASA GHRC One of NASA's Distributed Active Archive Centers Access Data Dataset List (HyDRO) View a Advanced Microwave Sounding Unit (AMSU) on NASA's Aqua satellite. NASA Earthdata Search Earthdata is NASA's and Rapid Intensification Processes (GRIP) experiment was a NASA Earth science field experiment in
NASA Astrophysics Data System (ADS)
Aseev, D. G.; Batoeva, A. A.
2014-01-01
It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.
Woodard, LeChauncy D.; Landrum, Cassie R.; Urech, Tracy H.; Profit, Jochen; Virani, Salim S.; Petersen, Laura A.
2012-01-01
Background/Objectives To validly assess quality-of-care differences among providers, performance measurement programs must reliably identify and exclude patients for whom the quality indicator may not be desirable, including those with limited life expectancy. We developed an algorithm to identify patients with limited life expectancy and examined the impact of limited life expectancy on glycemic control and treatment intensification among diabetic patients. Design We identified diabetic patients with coexisting congestive heart failure, chronic obstructive pulmonary disease, dementia, end-stage liver disease, and/or primary/metastatic cancers with limited life expectancy. To validate our algorithm, we assessed 5-year mortality among patients identified as having limited life expectancy. We compared rates of meeting performance measures for glycemic control between patients with and without limited life expectancy. Among uncontrolled patients, we examined the impact of limited life expectancy on treatment intensification within 90 days. Setting 110 Veterans Administration facilities; October 2006 – September 2007 Participants 888,628 diabetic patients Measurements Hemoglobin A1c (HbA1c) <9%; treatment intensification within 90 days Results 29,016 (3%) patients had limited life expectancy. Adjusting for age, 5-year mortality was 5 times higher among patients with limited life expectancy than those without. Patients with limited life expectancy had poorer glycemic control (77.1% vs. 78.1%) and less frequent treatment intensification (20.9% vs. 28.6%) than patients without, even after controlling for patient-level characteristics (odds ratio [OR]=0.84; 95% confidence interval [CI]=0.81-0.86 and OR=0.71; 95% CI=0.67-0.76, respectively). Conclusion Patients with limited life expectancy were slightly, but significantly less likely than those without to have HbA1c levels controlled and to receive treatment intensification, suggesting that providers treat these patients less aggressively. Quality measurement and performance-based reimbursement systems should acknowledge the different needs of this population. PMID:22260627
John A. Stanturf; Robert C. Kellison; F.S. Broerman; Stephen B. Jones
2003-01-01
The history of forest management in the southern United States has been a process of intensification and the pine forests of the Coastal Plain can be regarded as in the early stage of crop domestication. Silviculture research into tree improvement and other aspects of plantation establishment and management has been critical to the domestication process, which began in...
Algebra for All: California's Eighth-Grade Algebra Initiative as Constrained Curricula
ERIC Educational Resources Information Center
Domina, Thurston; Penner, Andrew M.; Penner, Emily K.; Conley, AnneMarie
2014-01-01
Background/Context: Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course…
Transformation of Students Value Orientations: Behavioral Virtual Models
ERIC Educational Resources Information Center
Akhmadieva, Roza Sh.; Shagieva, Rozalina V.; Ganieva, Yoldyz N.; Zulfugarzade, Teymur E.; Ezhov, Sergey G.; Komarova, Nataliya M.
2016-01-01
The research urgency is caused by the intensification of virtual models of youth behavior that determine the educational process of modern University as the undifferentiated flows of information which are different by their value and that reduce the channels of personal communication of students as socio-cultural communication. Replicated in the…
The "Datafication" of Teaching: Can Teachers Speak Back to the Numbers?
ERIC Educational Resources Information Center
Stevenson, Howard
2017-01-01
Teachers face considerable and increasing pressure in their working lives. Labor intensification compels teachers to work faster, harder, and longer. However, teachers also experience increasing external control over what they teach and how they teach. These processes are increasingly made possible by the "datafication" of teaching,…
Designing a Culturally Sensitive Wiki Space for Developing Chinese Students' Media Literacy
ERIC Educational Resources Information Center
Mezentceva, Daria
2014-01-01
Due to technological development and intensification of integration processes all over the world, people from different cultural backgrounds have more opportunities to maintain academic and professional cooperation. To make this cooperation more effective, it is important to take into consideration diverse ethnic values and their influence on…
Polar low formation: ambient environments and the role of moisture
NASA Astrophysics Data System (ADS)
Terpstra, Annick; Spengler, Thomas; Michel, Clio; Moore, Richard
2016-04-01
Polar lows are maritime cyclones occurring during cold air outbreaks in high latitudes. Previous studies have shown that wind shear, baroclinicity, latent heat release, and surface fluxes are important factors during formation and intensification, yet their relative contributions and importance are still not fully understood. We use the ambient atmospheric conditions during polar low genesis to provide dynamical insights to the intensification and formation mechanisms for polar lows. We identify the characteristics of the ambient pre-polar low environment utilising an existing polar low database and ERA-Interim reanalysis data. Classification of these environments is based on the the direction between the thermal wind and the mean flow in the lower troposphere, where environments are classified as 'reverse shear' if the thermal wind and mean flow are in opposing directions and 'forward shear' if they are in the same direction. The two types of pre-polar low environments exhibit distinctly different features in terms of synoptic scale patterns, baroclinicity, configuration of the sea-surface temperature, as well as depth and stratification of the troposphere. These clear-cut differences hint at different dynamical pathways for the formation and intensification of polar lows for different shear environments. We also explore the role of latent heating during polar low formation utilising an idealised baroclinic channel model. The experimental design resembles a typical forward-shear moist-baroclinic environment at high-latitudes. Cyclogenesis is triggered by a weak, low-level thermal perturbation in hydrostatic and geostrophic balance. Our experiments show that significant disturbance growth is possible in absence of upper level forcing, surface fluxes, and radiation. The relative importance of diabatic versus baroclinic processes for the generation of eddy available potential energy is used to differentiate between the dynamical processes contributing to disturbance growth. The experiments indicate that sufficient latent heat release in the north-eastern quadrant of the cyclone is crucial for rapid disturbance intensification, where environmental relative humidity, baroclinicity, and static stability modulate the relative importance of latent heat release. Furthermore, the relative shallowness of the perturbation at high-latitudes increases the effectiveness of latent heat release on cyclone amplification.
Gajendragadkar, Chinmay N; Gogate, Parag R
2016-09-01
The current review focuses on the analysis of different aspects related to intensified recovery of possible valuable products from cheese whey using ultrasound. Ultrasound can be used for process intensification in processing steps such as pre-treatment, ultrafiltration, spray drying and crystallization. The combination of low-frequency, high intensity ultrasound with the pre-heat treatment minimizes the thickening or gelling of protein containing whey solutions. These characteristics of whey after the ultrasound assisted pretreatment helps in improving the efficacy of ultrafiltration used for separation and also helps in preventing the blockage of orifice of spray dryer atomizing device. Further, the heat stability of whey proteins is increased. In the subsequent processing step, use of ultrasound assisted atomization helps to reduce the treatment times as well as yield better quality whey protein concentrate (WPC) powder. After the removal of proteins from the whey, lactose is a major constituent remaining in the solution which can be efficiently recovered by sonocrystallization based on the use of anti-solvent as ethanol. The scale-up parameters to be considered during designing the process for large scale applications are also discussed along with analysis of various reactor designs. Overall, it appears that use of ultrasound can give significant process intensification benefits that can be harnessed even at commercial scale applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of Saturn's Near-Noon Transient Aurora: In Situ Evidence From Cassini Measurements
NASA Astrophysics Data System (ADS)
Yao, Z. H.; Radioti, A.; Rae, I. J.; Liu, J.; Grodent, D.; Ray, L. C.; Badman, S. V.; Coates, A. J.; Gérard, J.-C.; Waite, J. H.; Yates, J. N.; Shi, Q. Q.; Wei, Y.; Bonfond, B.; Dougherty, M. K.; Roussos, E.; Sergis, N.; Palmaerts, B.
2017-11-01
Although auroral emissions at giant planets have been observed for decades, the physical mechanisms of aurorae at giant planets remain unclear. One key reason is the lack of simultaneous measurements in the magnetosphere while remote sensing of the aurora. We report a dynamic auroral event identified with the Cassini Ultraviolet Imaging Spectrograph (UVIS) at Saturn on 13 July 2008 with coordinated measurements of the magnetic field and plasma in the magnetosphere. The auroral intensification was transient, only lasting for ˜30 min. The magnetic field and plasma are perturbed during the auroral intensification period. We suggest that this intensification was caused by wave mode conversion generated field-aligned currents, and we propose two potential mechanisms for the generation of this plasma wave and the transient auroral intensification. A survey of the Cassini UVIS database reveals that this type of transient auroral intensification is very common (10/11 time sequences, and ˜10% of the total images).
Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth
NASA Astrophysics Data System (ADS)
Ao, Hong; Roberts, Andrew P.; Dekkers, Mark J.; Liu, Xiaodong; Rohling, Eelco J.; Shi, Zhengguo; An, Zhisheng; Zhao, Xiang
2016-06-01
Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential relationships between northern hemispheric monsoon response and major Cenozoic changes in Antarctic ice cover. Here we document long-term East Asian summer monsoon (EASM) intensification through the Late Miocene-Pliocene (∼8.2 to 2.6 Ma), and attribute this to progressive Antarctic glaciation. Our new high-resolution magnetic records of long-term EASM intensification come from the Late Miocene-Pliocene Red Clay sequence on the Chinese Loess Plateau; we identify underlying mechanisms using a numerical climate-model simulation of EASM response to an idealized stepwise increase in Antarctic ice volume. We infer that progressive Antarctic glaciation caused intensification of the cross-equatorial pressure gradient between an atmospheric high-pressure cell over Australia and a low-pressure cell over mid-latitude East Asia, as well as intensification of the cross-equatorial sea-surface temperature (SST) gradient. These combined atmospheric and oceanic adjustments led to EASM intensification. Our findings offer a new and more global perspective on the controls behind long-term Asian monsoon evolution.
Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth
NASA Astrophysics Data System (ADS)
Ao, H.; Roberts, A. P.; Dekkers, M. J.; Liu, X.; Rohling, E. J.; Shi, Z.; An, Z.; Zhao, X.
2016-12-01
Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential relationships between northern hemispheric monsoon response and major Cenozoic changes in Antarctic ice cover. Here we document long-term East Asian summer monsoon (EASM) intensification through the Late Miocene-Pliocene (˜8.2 to 2.6 Ma), and attribute this to progressive Antarctic glaciation. Our new high-resolution magnetic records of long-term EASM intensification come from the Late Miocene-Pliocene Red Clay sequence on the Chinese Loess Plateau; we identify underlying mechanisms using a numerical climate-model simulation of EASM response to an idealized stepwise increase in Antarctic ice volume. We infer that progressive Antarctic glaciation caused intensification of the cross-equatorial pressure gradient between an atmospheric high-pressure cell over Australia and a low-pressure cell over mid-latitude East Asia, as well as intensification of the cross-equatorial sea-surface temperature (SST) gradient. These combined atmospheric and oceanic adjustments led to EASM intensification. Our findings offer a new and more global perspective on the controls behind long-term Asian monsoon evolution.
Interbasin Differences in the Relationship between SST and Tropical Cyclone Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, Gregory R.; Balaguru, Karthik; Hagos, Samson
Sea surface temperature (SST) is one of the most important parameters for tropical cyclone (TC) intensification. Here it is shown that the impact of SST on TC intensification varies considerably from basin to basin, with SST explaining less than 3% of the variance in TC intensification rates in the Atlantic, 10% in the western North Pacific, and 17% in the eastern Pacific. Two main factors are shown to be responsible for these inter-basin differences. First, variability of SST along TCs’ tracks is considerably lower in the Atlantic. This is due to smaller horizontal SST gradients in the Atlantic compared tomore » the eastern Pacific and stronger damping of pre-storm SST’s contribution to TC intensification by the storm-induced cold SST wake in the Atlantic. The damping occurs because SST tends to vary in phase with TC- induced SST cooling: in the Gulf of Mexico and northwestern basin where SSTs are highest, TCs’ translation speeds are lowest and therefore their cold wakes are strongest. In addition to this SST effect, a second factor is that SST tends to vary out of phase with vertical wind shear and outflow temperature in the western Pacific, with high SST associated with weak wind shear and a cold upper troposphere. This strengthens the relationship between SST and TC intensification more in the western Pacific than in the eastern Pacific or Atlantic. Combined, these factors explain why pre-storm SST is such a poor predictor of TC intensification in the Atlantic compared to the eastern and western North Pacific.« less
An Evaluation of Protocols for UAV Science Applications
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David E.; Sullivan, Donald V.; Finch, Patrick E.
2012-01-01
This paper identifies data transport needs for current and future science payloads deployed on the NASA Global Hawk Unmanned Aeronautical Vehicle (UAV). The NASA Global Hawk communication system and operational constrains are presented. The Genesis and Rapid Intensification Processes (GRIP) mission is used to provide the baseline communication requirements as a variety of payloads were utilized in this mission. User needs and desires are addressed. Protocols are matched to the payload needs and an evaluation of various techniques and tradeoffs are presented. Such techniques include utilization rate-base selective negative acknowledgement protocols and possible use of protocol enhancing proxies. Tradeoffs of communication architectures that address ease-of-use and security considerations are also presented.
Pantalone, Kevin M; Wells, Brian J; Chagin, Kevin M; Ejzykowicz, Flavia; Yu, Changhong; Milinovich, Alex; Bauman, Janine M; Kattan, Michael W; Rajpathak, Swapnil; Zimmerman, Robert S
2016-09-01
"Clinical inertia" has been used to describe the delay in the intensification of type 2 diabetes treatment among patients with poor glycemic control. Previous studies may have exaggerated the prevalence of clinical inertia by failing to adequately monitor drug dose changes and nonmedication interventions. This project evaluated the intensification of diabetes therapy and hemoglobin A1c (A1C) goal attainment among patients with newly diagnosed type 2 diabetes when metformin monotherapy failed. The electronic health record at Cleveland Clinic was used to identify patients with newly diagnosed type 2 diabetes between 2005 and 2013 who failed to reach the A1C goal after 3 months of metformin monotherapy. A time-dependent survival analysis was used to compare the time until A1C goal attainment in patients who received early intensification of therapy (within 6 months of metformin failure) or late intensification. The analysis was performed for A1C goals of 7% (n = 1,168), 7.5% (n = 679), and 8% (n = 429). Treatment was intensified early in 62%, 69%, and 72% of patients when poor glycemic control was defined as an A1C >7%, >7.5%, and >8%, respectively. The probability of undergoing an early intensification was greater the higher the A1C category. Time until A1C goal attainment was shorter among patients who received early intensification regardless of the A1C goal (all P < 0.05). A substantial number of patients with newly diagnosed type 2 diabetes fail to undergo intensification of therapy within 6 months of metformin monotherapy failure. Early intervention in patients when metformin monotherapy failed resulted in more rapid attainment of A1C goals. © 2016 by the American Diabetes Association.
NASA Astrophysics Data System (ADS)
Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac
2017-12-01
Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.
Nascimbene, Juri; Fontana, Veronika; Spitale, Daniel
2014-07-15
In the Alps, larch grasslands form one of the most pleasing aspects of the landscape. However, their effectiveness in contributing to biodiversity conservation may depend on the intensity of their management. We used a multi-taxon approach to evaluate the effects of the intensification of management practices and those of abandonment on the biodiversity of the main autotrophic organisms hosted in this habitat, including vascular plants, bryophytes, and lichens. The study was carried out in the eastern part of South Tyrol, in the Italian Alps, where the diversity patterns of these three organismal groups were compared among intensively managed, extensively managed, and abandoned stands. The management intensity was found to strongly influence the biodiversity of the organisms, with a general pattern indicating the best conditions in extensively managed stands. Both abandonment and management intensification were detrimental to biodiversity through different mechanisms that led to species loss or to major shifts in species composition. However, the most negative effects were related to management intensification, mainly due to the high nitrogen supply, providing evidence for the increasing impact of eutrophication on Alpine environments. Copyright © 2014 Elsevier B.V. All rights reserved.
Beyond conservation agriculture
Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard
2015-01-01
Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139
Developments in hydrogenation technology for fine-chemical and pharmaceutical applications.
Machado, R M; Heier, K R; Broekhuis, R R
2001-11-01
The continuous innovation in hydrogenation technology is testimony to its growing importance in the manufacture of specialty and fine chemicals. New developments in equipment, process intensification and catalysis represent major themes that have undergone recent advances. Developments in chiral catalysis, methods to support and fix homogeneous catalysts, novel reactor and mixing technology, high-throughput screening, supercritical processing, spectroscopic and electrochemical online process monitoring, monolithic and structured catalysts, and sonochemical activation methods illustrate the scope and breadth of evolving technology applied to hydrogenation.
Micro Thermal and Chemical Systems for In Situ Resource Utilization on Mars
NASA Technical Reports Server (NTRS)
Wegeng, Robert S.; Sanders, Gerald
2000-01-01
Robotic sample return missions and postulated human missions to Mars can be greatly aided through the development and utilization of compact chemical processing systems that process atmospheric gases and other indigenous resources to produce hydrocarbon propellants/fuels, oxygen, and other needed chemicals. When used to reduce earth launch mass, substantial cost savings can result. Process Intensification and Process Miniaturization can simultaneously be achieved through the application of microfabricated chemical process systems, based on the rapid heat and mass transport in engineered microchannels. Researchers at NASA's Johnson Space Center (JSC) and the Department of Energy's Pacific Northwest National Laboratory (PNNL) are collaboratively developing micro thermal and chemical systems for NASA's Mission to Mars program. Preliminary results show that many standard chemical process components (e.g., heat exchangers, chemical reactors and chemical separations units) can be reduced in hardware volume without a corresponding reduction in chemical production rates. Low pressure drops are also achievable when appropriate scaling rules are applied. This paper will discuss current progress in the development of engineered microchemical systems for space and terrestrial applications, including fabrication methods, expected operating characteristics, and specific experimental results.
Detracking and Tracking Up: Mathematics Course Placements in California Middle Schools, 2003-2013
ERIC Educational Resources Information Center
Domina, Thurston; Hanselman, Paul; Hwang, NaYoung; McEachin, Andrew
2016-01-01
Between 2003 and 2013, the proportion of California eighth graders enrolled in algebra or a more advanced course nearly doubled to 65%. In this article, we consider the organizational processes that accompanied this curricular intensification. Facing a complex set of accountability, institutional, technical/functional, and internal political…
Detracking and Tracking Up: Mathematics Course Placements in California Middle Schools, 2003-2013
ERIC Educational Resources Information Center
Domina, Thurston; Hanselman, Paul; Hwang, NaYoung; McEachin, Andrew
2016-01-01
Between 2003 and 2013, the proportion of California 8th graders enrolled in Algebra or a more advanced course nearly doubled to 65 percent. In this paper, we consider the organizational processes that accompanied this curricular intensification. Facing a complex set of accountability, institutional, technical/functional, and internal political…
East Europe Report, Economic and Industrial Affairs
1984-05-25
participation of all workers in this process. An effective production intensification with differentiation according to agroecological conditions, with...to concrete agroecological and economic conditions. 16 In connection with crop production specialization, particular attention must be paid to...locality in the CSSR possesses specific agroecological conditions. They predetermine the natural propriety of growing individual types of field
Intensification of the Process of Flame Combustion of a Pulverized Coal Fuel
NASA Astrophysics Data System (ADS)
Popov, V. I.
2017-11-01
Consideration is given to a method of mechanoactivation intensification of the flame combustion of a pulverized coal fuel through the formation of a stressed state for the microstructure of its particles; the method is based on the use of the regularities of their external (diffusion) and internal (relaxation) kinetics. A study has been made of mechanoactivation nonequilibrium processes that occur in fuel particles during the induced relaxation of their stressed state with a resumed mobility of the microstructure of the particles and intensify diffusion-controlled chemical reactions in them under the assumption that the time of these reactions is much shorter than the times of mechanical action on a particle and of stress relaxation in it. The influence of the diffusion and relaxation factors on the burnup time of a fuel particle and on the flame distance has been analyzed. Ranges of variation in the parameters of flame combustion have been singled out in which the flame distance is determined by the mechanisms of combustion of the fuel and of mixing of combustion products.
Sustainable intensification: a multifaceted, systemic approach to international development.
Himmelstein, Jennifer; Ares, Adrian; van Houweling, Emily
2016-12-01
Sustainable intensification (SI) is a term increasingly used to describe a type of approach applied to international agricultural projects. Despite its widespread use, there is still little understanding or knowledge of the various facets of this composite paradigm. A review of the literature has led to the formalization of three principles that convey the current characterization of SI, comprising a whole system, participatory, agroecological approach. Specific examples of potential bottlenecks to the SI approach are cited, in addition to various technologies and techniques that can be applied to overcome these obstacles. Models of similar, succcessful approaches to agricultural development are examined, along with higher level processes. Additionally, this review explores the desired end points of SI and argues for the inclusion of gender and nutrition throughout the process. To properly apply the SI approach, its various aspects need to be understood and adapted to different cultural and geographic situations. New modeling systems and examples of the effective execution of SI strategies can assist with the successful application of the SI paradigm within complex developing communities. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Agricultural intensification escalates future conservation costs.
Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai
2013-05-07
The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.
Agricultural intensification escalates future conservation costs
Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai
2013-01-01
The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860
New pasture plants intensify invasive species risk.
Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon
2014-11-18
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.
New pasture plants intensify invasive species risk
Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon
2014-01-01
Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Czuba, J. A.; Belmont, P.; Wilcock, P. R.; Gran, K. B.; Kumar, P.
2015-12-01
Climatic trends and agricultural intensification in Midwestern U.S. landscapes has contributed to hydrologic regime shifts and a cascade of changes to water quality and river ecosystems. Informing management and policy to mitigate undesired consequences requires a careful scientific analysis that includes data-based inference and conceptual/physical modeling. It also calls for a systems approach that sees beyond a single stream to the whole watershed, favoring the adoption of minimal complexity rather than highly parameterized models for scenario evaluation and comparison. Minimal complexity models can focus on key dynamic processes of the system of interest, reducing problems of model structure bias and equifinality. Here we present a comprehensive analysis of climatic, hydrologic, and ecologic trends in the Minnesota River basin, a 45,000 km2 basin undergoing continuous agricultural intensification and suffering from declining water quality and aquatic biodiversity. We show that: (a) it is easy to arrive at an erroneous view of the system using traditional analyses and modeling tools; (b) even with a well-founded understanding of the key drivers and processes contributing to the problem, there are multiple pathways for minimizing/reversing environmental degradation; and (c) addressing the underlying driver of change (i.e., increased streamflows and reduced water storage due to agricultural drainage practices) by restoring a small amount of water storage in the landscape results in multiple non-linear improvements in downstream water quality. We argue that "optimization" between ecosystem services and economic considerations requires simple modeling frameworks, which include the most essential elements of the whole system and allow for evaluation of alternative management scenarios. Science-based approaches informing management and policy are urgent in this region calling for a new era of watershed management to new and accelerating stressors at the intersection of the food-water-energy-environment nexus.
NASA Astrophysics Data System (ADS)
Wu, L.; Braun, S. A.
2006-12-01
Over the past two decades, little advance has been made in prediction of tropical cyclone intensity while substantial improvements have been made in forecasting hurricane tracks. One reason is that we don't well understand the physical processes that govern tropical cyclone intensity. Recent studies have suggested that the Saharan Air Layer (SAL) may be yet another piece of the puzzle in advancing our understanding of tropical cyclone intensity change in the Atlantic basin. The SAL is an elevated mixed layer, forming as air moves across the vast Sahara Desert, in particular during boreal summer months. The SAL contains warm, dry air as well as a substantial amount of mineral dust, which can affect radiative heating and modify cloud processes. Using the retrieved temperature and humidity profiles from the AIRS suite on the NASA Aqua satellite, the SAL and its influences on the formation and intensification of Hurricane Isabel (2003) are analyzed and simulated with MM5. When the warmth and dryness of the SAL (the thermodynamic effect) is considered by relaxing the model thermodynamic state to the AIRS profiles, MM5 can well simulate the large-scale flow patterns and the activity of Hurricane Isabel in terms of the timing and location of formation and the subsequent track. Compared with the experiment without nudging the AIRS data, it is suggested that the simulated SAL effect may delay the formation and intensification of Hurricane Isabel. This case study generally confirms the argument by Dunion and Velden (2004) that the SAL can suppress Atlantic tropical cyclone activity by increasing the vertical wind shear, reducing the mean relative humidity, and stabilizing the environment at lower levels.
NASA Astrophysics Data System (ADS)
Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.
2007-12-01
It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.
Sawicki, W; Spiewankiewicz, B; Cendrowski, K; Stelmachów, J
2001-01-01
Ovarian cancer is one of the causes of death in women, and in about 70% of cases is recognized only in advanced stages. This study was undertaken to evaluate distinctive values of transvaginal and color Doppler ultrasonography in differentiating malignant and benign adnexal masses through analysis of ultrasonic morphological features of malignancy and estimation of location and intensification of angiogenesis as well as values of resistance of flow in examined masses. 329 women with malignant and benign adnexal masses underwent ultrasonographic and colour Doppler examination 1-5 days before surgery (laparotomy, laparoscopy) thus allowing histological verification of diagnosis. The ultrasonographic structure was assessed using a morphological scoring system devised by Sassone, Jain and Benacerraf. Regions showing vasculature, especially within septae and solid parts of tumours were examined by means of transvaginal colour Doppler. Location and intensification of angiogenesis as well as resistance index (RI) were investigated. Sensitivity, specificity, PPV and NPV of both techniques were assessed. Statistical analysis of obtained data were based on the Student's t test; p < 0.05 level was considered significant. Postoperatively 255 (77.5%) benign and 74 (22.5%) malignant tumours were seen. In the group of benign masses the average age of women was 42.6+/-12.3 and in the malignant it was 53.1+/-12.6 (p<0.0001). The transverse dimension of benign lesions was 77.2+/-19, whereas for malignant it was 107.0+/-31 (p<0.0001). Benign tumours in 63.0% were cystic, in 26.0% mixed cystic-solid and in 11.0% solid echostructures while in malignant they were respectively, 6.8%, 56.8% and 36.4% (p<0.0001). Doppler flow within the tumour was 74.5% in benign and 98.6% in malignant masses (p<0.0001). In benign lesions homogenous superficial or peripheral vasculature was visualized, and in the majority of cases (82.7%) it was of medium intensification. However in malignant central, peripheral or mixed vascularisation. in the majority intensified character was found. Average value of the resistance index in all benign masses amounted to 0.77+/-0.14, however in malignant it was 0.39+/-0.07 (p<0.0001). We contend that complete ultrasonographic estimation of ovarian neoplasms outside the qualification of structural details should include Doppler analysis of vasculature parameters. Most important is the qualification of resistance of flow, and location and intensification of vascularisation in examined masses which permit the differentiation of malignant and benign lesions. Preoperatively recognizing malignant processes with colour Doppler ultrasonography shows higher accuracy, specificity and PPV.
NASA Astrophysics Data System (ADS)
Lachkar, Zouhair; Lévy, Marina; Smith, Shafer
2018-01-01
The decline in oxygen supply to the ocean associated with global warming is expected to expand oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the world's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo-records and future climate projections indicates strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50 to +50 %) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Ocean Modeling System (ROMS) coupled to a nitrogen-based nutrient-phytoplankton-zooplankton-detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased ventilation. The enhanced ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200 m) of the western and central Arabian Sea, leading to intermittent expansions of marine habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds. Additional potential changes in large-scale ocean ventilation and stratification may affect the sensitivity of the Arabian Sea OMZ to monsoon intensification.
Vora, Ajay; Goulden, Nick; Wade, Rachel; Mitchell, Chris; Hancock, Jeremy; Hough, Rachael; Rowntree, Clare; Richards, Sue
2013-03-01
Minimal residual disease (MRD) is the most sensitive and specific predictor of relapse risk in children with acute lymphoblastic leukaemia (ALL) during remission. We assessed whether treatment intensity could be adjusted for children and young adults according to MRD risk stratification. Between Oct 1, 2003 and June 30, 2011, consecutive children and young adults (aged 1-25 years) with ALL from the UK and Ireland were recruited. Eligible patients were categorised into clinical standard, intermediate, and high risk groups on the basis of a combination of National Cancer Institute (NCI) criteria, cytogenetics, and early response to induction therapy, which was assessed by bone marrow blast counts taken at days 8 (NCI high-risk patients) and 15 (NCI standard-risk patients) after induction began. Clinical standard-risk and intermediate-risk patients were assessed for MRD. Those classified as MRD low risk (undetectable MRD at the end of induction [day 29] or detectable MRD at day 29 that became undetectable by week 11) were randomly assigned to receive one or two delayed intensification courses. Patients had received induction, consolidation, and interim maintenance therapy before they began delayed intensification. Delayed intensification consisted of pegylated asparaginase on day 4; vincristine, dexamethasone (alternate weeks), and doxorubicin for 3 weeks; and 4 weeks of cyclophosphamide and cytarabine. Computer randomisation was done with stratification by MRD result and balancing for sex, age, and white blood cell count at diagnosis by method of minimisation. Patients, clinicians, and data analysts were not masked to treatment allocation. The primary outcome was event-free survival (EFS), which was defined as time to relapse, secondary tumour, or death. Our aim was to rule out a 7% reduction in EFS in the group given one delayed intensification course relative to that given two delayed intensification courses. Analyses were by intention to treat. This trial is registered, number ISRCTN07355119. Of 3207 patients registered in the trial overall, 521 MRD low-risk patients were randomly assigned to receive one (n=260) or two (n=261) delayed intensification courses. Median follow-up of these patients was 57 months (IQR 42-72). We recorded no significant difference in EFS between the group given one delayed intensification (94·4% at 5 years, 95% CI 91·1-97·7) and that given two delayed intensifications (95·5%, 92·8-98·2; unadjusted odds ratio 1·00, 95% CI 0·43-2·31; two-sided p=0·99). The difference in 5-year EFS between the two groups was 1·1% (95% CI -5·6 to 2·5). 11 patients (actuarial relapse at 5 years 5·6%, 95% CI 2·3-8·9) given one delayed intensification and six (2·4%, 0·2-4·6) given two delayed intensifications relapsed (p=0·23). Three patients (1·2%, 0-2·6) given two delayed intensifications died of treatment-related causes compared with none in the group given one delayed intensification (p=0·08). We recorded no significant difference between groups for serious adverse events and grade 3 or 4 toxic effects; however, the second delayed intensification course was associated with one (<1%) treatment-related death, and 74 episodes of grade 3 or 4 toxic effects in 45 patients (17%). Treatment reduction is feasible for children and young adults with ALL who are predicted to have a low risk of relapse on the basis of rapid clearance of MRD by the end of induction therapy. Medical Research Council and Leukaemia and Lymphoma Research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Image intensification; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989
NASA Astrophysics Data System (ADS)
Csorba, Illes P.
Various papers on image intensification are presented. Individual topics discussed include: status of high-speed optical detector technologies, super second generation imge intensifier, gated image intensifiers and applications, resistive-anode position-sensing photomultiplier tube operational modeling, undersea imaging and target detection with gated image intensifier tubes, image intensifier modules for use with commercially available solid state cameras, specifying the components of an intensified solid state television camera, superconducting IR focal plane arrays, one-inch TV camera tube with very high resolution capacity, CCD-Digicon detector system performance parameters, high-resolution X-ray imaging device, high-output technology microchannel plate, preconditioning of microchannel plate stacks, recent advances in small-pore microchannel plate technology, performance of long-life curved channel microchannel plates, low-noise microchannel plates, development of a quartz envelope heater.
Sonocrystallization and Its Application in Food and Bioprocessing
NASA Astrophysics Data System (ADS)
Gogate, Parag R.; Pandit, Aniruddha B.
The chapter aims at understanding in detail, the application of ultrasound for intensification of crystallization operation and covers different aspects such as basic mechanism of expected intensification, reactor designs and overview of existing literature related to food and bioprocess industry applications with an objective of presenting optimum guidelines for maximizing the efficacy of using ultrasound. A case study of lactose recovery from whey has also been discussed in details so as to give quantitative information about the effects of ultrasound in different stages of the crystallization operation and guidelines for optimization of different geometric and operating parameters. Overall it appears that use of ultrasound can significantly improve the crystallization operation by significant reduction in the processing time with generation of better quality crystals and also the recent developments in the design of large scale sonochemical reactors have enhanced the possibility of the application in actual commercial practice.
Context-dependent catalepsy intensification is due to classical conditioning and sensitization.
Amtage, J; Schmidt, W J
2003-11-01
Haloperidol-induced catalepsy represents a model of neuroleptic-induced Parkinsonism. Daily administration of haloperidol, followed by testing for catalepsy on a bar and grid, results in a day-to-day increase in catalepsy that is completely context dependent, resulting in a strong placebo effect and in a failure of expression after a change in context. The aim of this study was to analyse the associative learning process that underlies context dependency. Catalepsy intensification was induced by a daily threshold dose of 0.25 mg/kg haloperidol. Extinction training and retesting under haloperidol revealed that sensitization was composed of two components: a context-conditioning component, which can be extinguished, and a context-dependent sensitization component, which cannot be extinguished. Context dependency of catalepsy thus follows precisely the same rules as context dependency of psychostimulant-induced sensitization. Catalepsy sensitization is therefore due to conditioning and sensitization.
NASA Astrophysics Data System (ADS)
Imran, M. S.; Manan, M. S. Abdul; Khalil, A. N. M.; MdNaim, M. K.; Ahmad, R. N.
2017-08-01
There is a demand to develop transplanter specifically for system of rice intensification (SRI) cultivation in Malaysia. This SRI transplanter is different from conventional transplanter as it is required special requirements for transplanting. The work focused on transplanting mechanism design which can be later attached to SRI transplanter. The mechanical design was established using linkage mechanism, having a wheel that act as timing wheel that will control the distance between transplanted seedlings. The linkage mechanism also control the opening of the flapper that allow the seedling together with its nursery soil to be dropped, and control the stopper to prevent next seedling from sliding down the tray. The use of simple mechanism will have low cost for fabrication. The design was analysed using motion analysis software. Results show the design is perfectly good and can be fabricated without any problem. The animation successfully shows the perfect movement of the mechanism and transplanting process.
The role of mid-level vortex in the intensification and weakening of tropical cyclones
NASA Astrophysics Data System (ADS)
Kutty, Govindan; Gohil, Kanishk
2017-10-01
The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.
Vallejo, Alejandro; Hernández-Novoa, Beatriz; Abad, María; Madrid, Nadia; Dahl, Viktor; Rubio, Rafael; Moreno, Ana M.; Dronda, Fernando; Casado, José Luis; Navas, Enrique; Pérez-Elías, María Jesús; Zamora, Javier; Palmer, Sarah; Muñoz, Eduardo; Muñoz-Fernández, María Ángeles; Moreno, Santiago
2011-01-01
Objective The primary objective was to assess the effect of MVC intensification on latently infected CD4+ T cells in chronically HIV-1-infected patients receiving antiretroviral therapy. Methods We performed an open-label pilot phase II clinical trial involving chronically HIV-1-infected patients receiving stable antiretroviral therapy whose regimen was intensified with 48 weeks of maraviroc therapy. We analyzed the latent reservoir, the residual viremia and episomal 2LTR DNA to examine the relationship between these measures and the HIV-1 latent reservoir, immune activation, lymphocyte subsets (including effector and central memory T cells), and markers associated with bacterial translocation. Results Overall a non significant reduction in the size of the latent reservoir was found (p = 0.068). A mean reduction of 1.82 IUPM was observed in 4 patients with detectable latent reservoir at baseline after 48 weeks of intensification. No effect on plasma residual viremia was observed. Unexpectedly, all the patients had detectable 2LTR DNA circles at week 24, while none of them showed those circles at the end of the study. No changes were detected in CD4+ or CD8+ counts, although a significant decrease was found in the proportion of HLA-DR+/CD38+ CD4+ and CD8+ T-cells. LPS and sCD14 levels increased. Conclusions Intensification with MVC was associated with a trend to a decrease in the size of the latent HIV-1 reservoir in memory T cells. No impact on residual viremia was detected. Additional studies with larger samples are needed to confirm the results. Trial Registration ClinicalTrials.gov NCT00795444 PMID:22174752
Heisler, Michele; Hofer, Timothy P; Klamerus, Mandi L; Schmittdiel, Julie; Selby, Joe; Hogan, Mary M; Bosworth, Hayden B; Tremblay, Adam; Kerr, Eve A
2010-10-12
Many patients with diabetes have poor blood pressure (BP) control. Pharmacological therapy is the cornerstone of effective BP treatment, yet there are high rates both of poor medication adherence and failure to intensify medications. Successful medication management requires an effective partnership between providers who initiate and increase doses of effective medications and patients who adhere to the regimen. In this cluster-randomized controlled effectiveness study, primary care teams within sites were randomized to a program led by a clinical pharmacist trained in motivational interviewing-based behavioral counseling approaches and authorized to make BP medication changes or to usual care. This study involved the collection of data during a 14-month intervention period in three Department of Veterans Affairs facilities and two Kaiser Permanente Northern California facilities. The clinical pharmacist was supported by clinical information systems that enabled proactive identification of, and outreach to, eligible patients identified on the basis of poor BP control and either medication refill gaps or lack of recent medication intensification. The primary outcome is the relative change in systolic blood pressure (SBP) measurements over time. Secondary outcomes are changes in Hemoglobin A1c, low-density lipoprotein cholesterol (LDL), medication adherence determined from pharmacy refill data, and medication intensification rates. Integration of the three intervention elements--proactive identification, adherence counseling and medication intensification--is essential to achieve optimal levels of control for high-risk patients. Testing the effectiveness of this intervention at the team level allows us to study the program as it would typically be implemented within a clinic setting, including how it integrates with other elements of care. The ClinicalTrials.gov registration number is NCT00495794.
Theriault, Veronique; Smale, Melinda; Haider, Hamza
2017-04-01
Better understanding of gender differences in the adoption of agricultural intensification strategies is crucial for designing effective policies to close the gender gap while sustainably enhancing farm productivity. We examine gender differences in adoption rates, likelihood and determinants of adopting strategy sets that enhance yields, protect crops, and restore soils in the West African Sahel, based on analysis of cereal production in Burkina Faso. Applying a multivariate probit model to a nationally representative household panel, we exploit the individual plot as unit of analysis and control for plot manager characteristics along with other covariates. Reflecting the socio-cultural context of farming combined with the economic attributes of inputs, we find that female managers of individual cereal fields are less likely than their male counterparts to adopt yield-enhancing and soil-restoring strategies, although no differential is apparent for yield-protecting strategies. More broadly, gender-disaggregated regressions demonstrate that adoption determinants differ by gender. Plot manager characteristics, including age, marital status, and access to credit or extension services do influence adoption decisions. Furthermore, household resources influence the probability of adopting intensification strategy sets differently by gender of the plot manager. Variables expressing the availability of household labor strongly influence the adoption of soil-restoring strategies by female plot managers. By contrast, household resources such as extent of livestock owned, value of non-farm income, and area planted to cotton affect the adoption choices of male plot managers. Rectifying the male bias in extension services along with improving access to credit, income, and equipment to female plot managers could contribute to sustainable agricultural intensification.
Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico
2016-01-01
Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.
Shilov, V V; Vasil'ev, S A; Batotsyrenov, B V; Loladze, A T; Kuznetsov, O A
2012-03-01
The article deals with the materials, which have been received in the process of the examination and treatment of 44 patients with acute severe methadone poisonings. It has been revealed, that gravity of these patient's condition depends on intensity of hypoxia due to breath deficiency because of the methadone. The development of hypoxia, in its turn, cause violations of antiradical protection system and intensification of processes of peroxide lipid oxidation. It has been registered that the including of reamberin into the complex program of the intensive therapy of acute severe methadone poisonings lead to a more rapid restoration of antiradical protection system and to a decrease of activity of processes of peroxide lipid oxidation. The correction of hypoxia and free-radical violations led to improvement of the acute poisonings clinic, what had been characterized by a decrease of coma-period duration, duration of treatment with artificial lung ventilation, a decrease of secondary lung complications and a decrease of lethality.
Ultrasound‐assisted emerging technologies for chemical processes
Geertman, Rob; Wierschem, Matthias; Skiborowski, Mirko; Gielen, Bjorn; Jordens, Jeroen; John, Jinu J; Van Gerven, Tom
2018-01-01
Abstract The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound‐assisted extraction/crystallization/reaction) are on their way to becoming the next‐generation technologies. This article focuses on the advances of ultrasound (US)‐assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US‐assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state‐of‐the‐art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US‐assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29780194
Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R
2016-01-01
There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning.
Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment
NASA Technical Reports Server (NTRS)
Hood, Robbie E.; Zipser, Edward; Heymsfield, Gerald M.; Kakar, Ramesh; Halverson Jeffery; Rogers, Robert; Black, Michael
2006-01-01
The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented.
Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.
2016-01-01
There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning. PMID:26904043
2010-08-16
A researcher with the Genesis and Rapid Intensification Processes (GRIP) experiment works aboard the NASA DC-8 during a flight over the Gulf of Mexico, Tuesday, Aug. 17, 2010. GRIP is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Radiotracer investigation in gold leaching tanks.
Dagadu, C P K; Akaho, E H K; Danso, K A; Stegowski, Z; Furman, L
2012-01-01
Measurement and analysis of residence time distribution (RTD) is a classical method to investigate performance of chemical reactors. In the present investigation, the radioactive tracer technique was used to measure the RTD of aqueous phase in a series of gold leaching tanks at the Damang gold processing plant in Ghana. The objective of the investigation was to measure the effective volume of each tank and validate the design data after recent process intensification or revamping of the plant. I-131 was used as a radioactive tracer and was instantaneously injected into the feed stream of the first tank and monitored at the outlet of different tanks. Both sampling and online measurement methods were used to monitor the tracer concentration. The results of measurements indicated that both the methods provided identical RTD curves. The mean residence time (MRT) and effective volume of each tank was estimated. The tanks-in-series model with exchange between active and stagnant volume was used and found suitable to describe the flow structure of aqueous phase in the tanks. The estimated effective volume of the tanks and high degree of mixing in tanks could validate the design data and confirmed the expectation of the plant engineer after intensification of the process. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts
NASA Astrophysics Data System (ADS)
Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao
2017-09-01
As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.
Effects of agricultural intensification on ability of natural enemies to control aphids
Zhao, Zi-Hua; Hui, Cang; He, Da-Han; Li, Bai-Lian
2015-01-01
Agricultural intensification through increasing fertilization input and cropland expansion has caused rapid loss of semi-natural habitats and the subsequent loss of natural enemies of agricultural pests. It is however extremely difficult to disentangle the effects of agricultural intensification on arthropod communities at multiple spatial scales. Based on a two-year study of seventeen 1500 m-radius sites, we analyzed the relative importance of nitrogen input and cropland expansion on cereal aphids and their natural enemies. Both the input of nitrogen fertilizer and cropland expansion benefited cereal aphids more than primary parasitoids and leaf-dwelling predators, while suppressing ground-dwelling predators, leading to an disturbance of the interspecific relationship. The responses of natural enemies to cropland expansion were asymmetric and species-specific, with an increase of primary parasitism but a decline of predator/pest ratio with the increasing nitrogen input. As such, agricultural intensification (increasing nitrogen fertilizer and cropland expansion) can destabilize the interspecific relationship and lead to biodiversity loss. To this end, sustainable pest management needs to balance the benefit and cost of agricultural intensification and restore biocontrol service through proliferating the role of natural enemies at multiple scales. PMID:25620737
Algebra for All: California's Eighth-Grade Algebra Initiative as Constrained Curricula.
Domina, Thurston; Penner, Andrew M; Penner, Emily K; Conley, Annemarie
2014-08-01
Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students' mathematics achievement? Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district's 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts' students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004-20-05 through 2007-20-08 school years. During the study period, Towering Pines dramatically intensified middle school students' math curricula: In the 2004-20-05 school year 32% of the district's 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007-20-08 school year that proportion had increased to 84%. We use an interrupted time-series design, comparing students' 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and prior achievement. We find that students' odds of taking higher level mathematics courses increased as this district implemented the state's Algebra mandate. However, even as the district implemented a constrained curriculum strategy, mathematics achievement growth between 6th sixth and 10th grade slowed and the achievement advantages associated with 8th eighth grade Algebra declined. Our analyses suggest that curricular intensification increased the inclusiveness and decreased the selectivity of the mathematics tracking regime in Towering Pines middle schools. However, the findings suggest that this constrained curriculum strategy may have may have unintended negative consequences for student achievement.
2008-09-01
Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North
Graduate Teaching Assistants: Responding to the Challenges of Internationalisation
ERIC Educational Resources Information Center
Winter, Jennie; Turner, Rebecca; Gedye, Sharon; Nash, Patricia; Grant, Vivien
2015-01-01
The last decade has seen intensification in moves to professionalise the practice of university teaching, including graduate teaching assistants (GTAs). It has also seen significant growth in terms of the internationalisation of the postgraduate student body and changing expectations around doctoral training. These transformations have…
Globalization and the Experiences of Aging
ERIC Educational Resources Information Center
Fry, Christine L.
2005-01-01
Globalization is a product of urbanization and economic intensification which has escalated since the 1970s. Globalized markets have created many of the features of modern life including consumerism, increased cultural homogeneity, increased social polarization, erosion of the sovereignty of nation states, and delocalization of daily life. The…
The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis
NASA Astrophysics Data System (ADS)
Cione, Joseph Jerome
In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.
NASA Astrophysics Data System (ADS)
Jackson, L.
2011-12-01
Many agricultural landscapes in the temperate zone are dominated by agroecosystems that are managed with high inputs of agrochemicals, including synthetic nitrogen (N) fertilizers. The process of agricultural intensification increases crop production per unit area, but also often results in loss of environmental quality (such as N contamination of waters, eutrophication, atmospheric N deposition, and emissions of nitrous oxide (N2O), a potent greenhouse gas). Loss of biodiversity and its 'functional homogenization' is another concern. Not only does little land in these landscapes remain in natural ecosystems, but there are negative off-site impacts of intensive agriculture on non-target organisms. Segregating agroecosystems with high-input agricultural production from natural ecosystems (land sparing) is one view to support both food security and biodiversity conservation. But proponents of land sparing rarely address the loss of other ecosystem services, such as those related to environmental quality, health, and human well-being (e.g., livelihoods and cultural values). An emerging view is that increased reliance on ecological processes in agroecosystems ('ecological intensification') is more feasible when the landscape mosaic includes planned and unplanned biodiversity. This requires research on how to support multiple ecosystem services through the integration of agricultural production and biodiversity conservation in the same landscape, and how ecological and physico-chemical processes at various spatial scales are interlinked. It is an enormous challenge to increase reliance on ecological processes for N availability for crop productivity. There are skeptics who think that this will be detrimental for food security, despite benefits for other types of ecosystem services. Using examples from agricultural landscapes in California, mechanisms for ecologically-based N cycling will be discussed, such as: 1) increasing the reservoir of soil organic N and the dynamic turnover and supply of N via soil microbial N transformations and root symbioses; 2) developing farming systems that rely on crop rotations and functional groups that increase N supply and retention; 3) minimizing N losses through better understanding of agroecosystem biogeochemistry; and 4) overcoming the problems associated with open N cycles in agroecosystems with landscape features such buffer strips, managed riparian corridors, and patchy land use types. The capacity to compensate for high non-renewable inputs in specific farming situations will be addressed, along with factors that increase the capacity for different types of farmers to adopt N management practices that enhance the provision of multiple types of ecosystem services.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; James, Mark W.; Roberts, J. Brent; Bisawas, Sayak K.; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary;
2014-01-01
The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiement in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. Hurricane flights are expected for HIRAD in 2013 during HS3. This presentation will describe the HIRAD instrument, its results from the 2010 hurricane flights, and hopefully results from hurricane flights in August and September 2013.
Rotational diversification and intensification
USDA-ARS?s Scientific Manuscript database
Diversification and intensification of inland Pacific Northwest (PNW) dryland cereal cropping systems can present win-win scenarios that deliver short and long-term benefits for producers and the environment, stabilizing profit and increasing adaptability to and mitigation of climate change. Improvi...
NASA Astrophysics Data System (ADS)
Jadin, I.; Meyfroidt, P.; Lambin, E. F.
2016-03-01
While tropical deforestation remains widespread, some countries experienced a forest transition—a shift from net deforestation to net reforestation. Costa Rica had one of the highest deforestation rates in the 1980s and is now considered as a model of environmental sustainability, despite being a major producer of bananas and pineapples. We tested three land use processes that are thought to facilitate forest transitions. First, forest transitions may be accompanied by land use displacement through international trade of land-based products, which may undermine the global-scale environmental benefits of national forest protection. Second, reforestation is often associated with land use intensification in agriculture and forestry, allowing for land sparing. Third, this intensification may partly result from a geographical redistribution of land use at the sub-national scale to better match land use with land suitability. These hypotheses were verified for Costa Rica’s forest transition. We also tested whether forest increased mainly in regions with a low ecological value and agriculture expanded in regions with a high ecological value. Intensification and land use redistribution accounted for 76% of land spared during the forest transition, with 32% of this spared area corresponding to net reforestation. Decreasing meat exports led to a contraction of pastures, freeing an area equivalent to 80% of the reforested area. The forest transition in Costa Rica was environmentally beneficial at the global scale, with the reforested area over 1989-2013 corresponding to 130% of the land use displaced abroad through imports of agricultural products. However, expansion of export-oriented cropland caused deforestation in the most ecologically valuable regions of Costa Rica. Moreover, wood extraction from forest plantations increased to produce the pallets needed to export fruits. This highlights the importance of a multi-scale analysis when evaluating causes and impacts of national-scale forest transitions.
Use of JPSS ATMS, CrIS, and VIIRS data to Improve Tropical Cyclone Track and Intensity Forecasting
NASA Astrophysics Data System (ADS)
Chirokova, G.; Demaria, M.; DeMaria, R.; Knaff, J. A.; Dostalek, J.; Musgrave, K. D.; Beven, J. L.
2015-12-01
JPSS data provide unique information that could be critical for the forecasting of tropical cyclone (TC) track and intensity and is currently underutilized. Preliminary results from several TC applications using data from the Advanced Technology Microwave Sounder (ATMS), the Cross-Track Infrared Sounder (CrIS), and the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi National Polar-Orbiting Partnership satellite (SNPP), will be discussed. The first group of applications, which includes applications for moisture flux and for eye-detection, aims to improve rapid intensification (RI) forecasts, which is one of the highest priorities within NOAA. The applications could be used by forecasters directly and will also provide additional input to the Rapid Intensification Index (RII), the statistical-dynamical tool for forecasting RI events that is operational at the National Hurricane Center. The moisture flux application uses bias-corrected ATMS-MIRS (Microwave Integrated Retrieval System) and NUCAPS (NOAA Unique CrIS ATMS Processing System), retrievals that provide very accurate temperature and humidity soundings in the TC environment to detect dry air intrusions. The objective automated eye-detection application uses geostationary and VIIRS data in combination with machine learning and computer vision techniques for determining the onset of eye formation which is very important for TC intensity forecast but is usually determined by subjective methods. First version of the algorithm showed very promising results with a 75% success rate. The second group of applications develops tools to better utilize VIIRS data, including day-night band (DNB) imagery, for tropical cyclone forecasting. Disclaimer: The views, opinions, and findings contained in this article are those of the authors and should not be construed as an official National Oceanic and Atmospheric Administration (NOAA) or U.S. Government position, policy, or decision.
Barton, Anna Beth; Okorodudu, Daniel E; Bosworth, Hayden B; Crowley, Matthew J
2018-01-17
Treatment nonadherence and clinical inertia perpetuate poor cardiovascular disease (CVD) risk factor control. Telemedicine interventions may counter both treatment nonadherence and clinical inertia. We explored why a telemedicine intervention designed to reduce treatment nonadherence and clinical inertia did not improve CVD risk factor control, despite enhancing treatment adherence versus usual care. In this analysis of a randomized trial, we studied recipients of the 12-month telemedicine intervention. This intervention comprised two nurse-administered components: (1) monthly self-management education targeting improved treatment adherence; and (2) quarterly medication management facilitation designed to support treatment intensification by primary care (thereby reducing clinical inertia). For each medication management facilitation encounter, we ascertained whether patients met treatment goals, and if not, whether primary care recommended treatment intensification following the encounter. We assessed disease control associated with encounters, where intensification was/was not recommended. We examined 455 encounters across 182 intervention recipients (100% African Americans with type 2 diabetes). Even after accounting for valid reasons for deferring intensification (e.g., treatment nonadherence), intensification was not recommended in 67.5% of encounters in which hemoglobin A1c was above goal, 72.5% in which systolic blood pressure was above goal, and 73.9% in which low-density lipoprotein cholesterol was above goal. In each disease state, treatment intensification was more likely with poorer control. Despite enhancing treatment adherence, this intervention was unsuccessful in countering clinical inertia, likely explaining its lack of effect on CVD risk factors. We identify several lessons learned that may benefit investigators and healthcare systems.
USDA-ARS?s Scientific Manuscript database
Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...
2010-08-14
Jeffrey Beyon, left, and Paul Joseph Petzar, right, from NASA's Langley Research Center, work with DAWN Air Data Acquisition and Processing software aboard NASA's DC-8 research aircraft, Sunday, Aug. 15, 2010, in support of the GRIP experiment at Fort Lauderdale International Airport in Fort Lauderdale, Fla. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
New Engineering Solutions in Creation of Mini-BOF for Metallic Waste Recycling
NASA Astrophysics Data System (ADS)
Eronko, S. P.; Gorbatyuk, S. M.; Oshovskaya, E. V.; Starodubtsev, B. I.
2017-12-01
New engineering solutions used in design of the mini melting unit capable of recycling industrial and domestic metallic waste with high content of harmful impurities are provided. High efficiency of the process technology implemented with its use is achieved due to the possibility of the heat and mass transfer intensification in the molten metal bath, controlled charge into it of large amounts of reagents in lumps and in fines, and cut-off of remaining process slag during metal tapping into the teeming ladle.
Applications of satellite image processing to the analysis of Amazonian cultural ecology
NASA Technical Reports Server (NTRS)
Behrens, Clifford A.
1991-01-01
This paper examines the application of satellite image processing towards identifying and comparing resource exploitation among indigenous Amazonian peoples. The use of statistical and heuristic procedures for developing land cover/land use classifications from Thematic Mapper satellite imagery will be discussed along with actual results from studies of relatively small (100 - 200 people) settlements. Preliminary research indicates that analysis of satellite imagery holds great potential for measuring agricultural intensification, comparing rates of tropical deforestation, and detecting changes in resource utilization patterns over time.
Assessment of Electronic Banking Service's Impact on the Economic Parameters of the Bank Activity
ERIC Educational Resources Information Center
Kiselev, Sergey V.; Chernyavskaya, Yana S.; Bardasova, Eleonora V.; Galeeva, Gulnaz M.; Fazlieva, Elena P.; Krokhina, Julia A.
2016-01-01
The relevance of the study: The relevance of the research problem is conditioned by the intensification of innovative processes in modern economy and in the banking sector, in particular, as one of the most sensitive areas for innovation and innovative types of services and information and communication innovations today is one of the major…
Levain, Alix; Vertès, Françoise; Ruiz, Laurent; Delaby, Luc; Gascuel-Odoux, Chantal; Barbier, Marc
2015-11-01
The need for better conciliation between food production and environmental protection calls for new conceptual approaches in agronomy. Ecological intensification (EI) is one of the most encouraging and successful conceptual frameworks for designing more sustainable agricultural systems, though relying upon semantic ambivalences and epistemic tensions. This article discusses abilities and limits of the EI framework in the context of strong social and environmental pressure for agricultural transition. The purpose is thus to put EI at stake in the light of the results of an interdisciplinary and participatory research project that explicitly adopted EI goals in livestock semi-industrialized farming systems. Is it possible to maintain livestock production systems that are simultaneously productive, sustainable, and viable and have low nitrate emissions in vulnerable coastal areas? If so, how do local stakeholders use these approaches? The main steps of the innovation process are described. The effects of political and social dynamics on the continuity of the transition process are analyzed, with a reflexive approach. This experiment invites one to consider that making EI operational in a context of socio-technical transition toward agroecology represents system innovation, requiring on-going dialogue, reflexivity, and long-term involvement by researchers.
NASA Astrophysics Data System (ADS)
Levain, Alix; Vertès, Françoise; Ruiz, Laurent; Delaby, Luc; Gascuel-Odoux, Chantal; Barbier, Marc
2015-11-01
The need for better conciliation between food production and environmental protection calls for new conceptual approaches in agronomy. Ecological intensification (EI) is one of the most encouraging and successful conceptual frameworks for designing more sustainable agricultural systems, though relying upon semantic ambivalences and epistemic tensions. This article discusses abilities and limits of the EI framework in the context of strong social and environmental pressure for agricultural transition. The purpose is thus to put EI at stake in the light of the results of an interdisciplinary and participatory research project that explicitly adopted EI goals in livestock semi-industrialized farming systems. Is it possible to maintain livestock production systems that are simultaneously productive, sustainable, and viable and have low nitrate emissions in vulnerable coastal areas? If so, how do local stakeholders use these approaches? The main steps of the innovation process are described. The effects of political and social dynamics on the continuity of the transition process are analyzed, with a reflexive approach. This experiment invites one to consider that making EI operational in a context of socio-technical transition toward agroecology represents system innovation, requiring on-going dialogue, reflexivity, and long-term involvement by researchers.
NASA Astrophysics Data System (ADS)
Ohtani, S.; Motoba, T.; Gjerloev, J. W.
2016-12-01
The poleward boundary intensification (PBI) of aurora emission is often addressed in terms of distant reconnection. Recently, however, Ohtani and Yoshikawa [2016] proposed that the PBIs, at least at the initial stage of their formation, are actually the effect of ionospheric polarization in the presence of the enhanced convection in the polar cap and conductance gradient at the poleward boundary of the auroral oval. Whereas the ionospheric polarization itself is a transient process, it is known that the PBIs occasionally extend longitudinally suggesting that a 3D current system forms subsequently, which electrodynamically couples the magnetosphere and ionosphere. In the present study we observationally examine the associated field-aligned current (FAC) observed by the SWARM satellites and compare its characteristics with ground all-sky images. It is found that complex signatures of FACs as suggested by magnetic disturbances reflect the spatial structure of aurora (e.g., location and orientation), whereas the overall motion of PBIs is well explained in terms of the background convection suggested by the FAC distribution. We shall discuss the implications of these results for the responsible evolution process of the PBIs.
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Ieda, A.; Machida, S.; Hiraki, Y.; Angelopoulos, V.; McFadden, J. P.; Auster, H. U.; Mende, S. B.; Donovan, E.; Larson, D. E.
2014-12-01
We have studied the relative timing of the processes in the near-Earth magnetotail and development of auroral onset arc at the beginning of the expansion phase, based on substorm events observed by the THEMIS spacecraft and ground-based all-sky imagers. The THEMIS all-sky imagers can observe auroras over a wide area with temporal and spacial resolutions higher than spacecraft-borne cameras. This enables us to investigate the timing of auroral development in more detail than before. A few min after the appearance and intensification of an auroral onset arc, it begins to form wave-like structure. Then auroral poleward expansion begins another few min later. THEMIS magnetotail observations clearly show that magnetic reconnection is initiated at X~-20 Re at least 1-2 min before the intensification of auroral onset arc. Then low-frequency waves are excited in the plasma sheet at X~-10 Re 2 min before dipolarization, which is simultaneous with the formation of auroral wave-like structure. Dipolarization begins at the same time as the auroral poleward expansion. These results suggest that near-Earth magnetic reconnection plays some role in the development of dipolarization and auroral onset arc.
NASA Dryden Flight Research Center: Unmanned Aircraft Operations
NASA Technical Reports Server (NTRS)
Pestana, Mark
2010-01-01
This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.
Carbon nanotube mass production: principles and processes.
Zhang, Qiang; Huang, Jia-Qi; Zhao, Meng-Qiang; Qian, Wei-Zhong; Wei, Fei
2011-07-18
Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tropical grasslands: A pivotal place for a more multi-functional agriculture.
Boval, Maryline; Angeon, Valérie; Rudel, Tom
2017-02-01
Tropical grasslands represent a pivotal arena for the sustainable intensification of agriculture in the coming decades. The abundant ecosystem services provided by the grasslands, coupled with the aversion to further forest destruction, makes sustainable intensification of tropical grasslands a high policy priority. In this article, we provide an inventory of agricultural initiatives that would contribute to the sustainable intensification of the tropical grassland agro-ecosystem, and we recommend a shift in the scientific priorities of animal scientists that would contribute to realization of a more agro-ecological and multi-functional agriculture in the world's tropical grasslands.
Turner, B L; Ali, A M
1996-12-10
Bangladesh is dominated by a small-holder agrarian economy under extreme stress. Production shortfalls, increasing economic polarization, and chronic malnutrition are persistent, but major famine has been diverted in part by significant growth in agriculture. This recent history is open to both Malthusian and Boserupian interpretations-a history we explore here through a test of the induced intensification thesis of agricultural change. This thesis, framed by variations in the behavior of small-holders, has grown from a simple demand-production relationship to a consideration of the mediating influences on that relationship. The induced intensification thesis is reviewed and tested for 265 households in 6 villages in Bangladesh from 1950-1986. A time-series analysis of an induced intensification model provides relatively high levels of explained variance in cropping intensity (frequency and land productivity) and also indicates the relative impacts of household class, environment, and cropping strategies. On average, the small-holders in question kept pace with the demands on production, although important class and village variations were evident and the proportion of landless households increased. These results, coupled with evidence that agricultural growth involved intensification thresholds, provide clues about Malthusian and Boserupian interpretations of Bangladesh, and suggest that small-holder agriculture there is likely to continue on a "muted" path of growth.
Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G
2016-01-01
The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods <70 d. Overall, the combined effects of livestock intensification and prolonged flooding hindered forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of ecological change, we provide much-needed data on the regrowth of a critical but poorly studied ecosystem. In addition to its emphasis on the dynamics of tropical wetland forests undergoing anthropogenic and environmental change, our case study is an important example for how to assess of ecological integrity in working forests of tropical ecosystems.
Kreidenweis, Ulrich; Humpenöder, Florian; Kehoe, Laura; Kuemmerle, Tobias; Bodirsky, Benjamin Leon; Lotze-Campen, Hermann; Popp, Alexander
2018-04-17
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land-use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land-use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land-use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land-use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region-specific trade positions. In regions with a high involvement in international trade, area-based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively. © 2018 John Wiley & Sons Ltd.
Mental illness and intensification of diabetes medications: an observational cohort study.
Frayne, Susan M; Holmes, Tyson H; Berg, Eric; Goldstein, Mary K; Berlowitz, Dan R; Miller, Donald R; Pogach, Leonard M; Laungani, Kaajal J; Lee, Tina T; Moos, Rudolf
2014-10-22
Mental health condition (MHC) comorbidity is associated with lower intensity care in multiple clinical scenarios. However, little is known about the effect of MHC upon clinicians' decisions about intensifying antiglycemic medications in diabetic patients with poor glycemic control. We examined whether delay in intensification of antiglycemic medications in response to an elevated Hemoglobin A1c (HbA1c) value is longer for patients with MHC than for those without MHC, and whether any such effect varies by specific MHC type. In this observational study of diabetic Veterans Health Administration (VA) patients on oral antiglycemics with poor glycemic control (HbA1c ≥8) (N =52,526) identified from national VA databases, we applied Cox regression analysis to examine time to intensification of antiglycemics after an elevated HbA1c value in 2003-2004, by MHC status. Those with MHC were no less likely to receive intensification: adjusted Hazard Ratio [95% CI] 0.99 [0.96-1.03], 1.13 [1.04-1.23], and 1.12 [1.07-1.18] at 0-14, 15-30 and 31-180 days, respectively. However, patients with substance use disorders were less likely than those without substance use disorders to receive intensification in the first two weeks following a high HbA1c, adjusted Hazard Ratio 0.89 [0.81-0.97], controlling for sex, age, medical comorbidity, other specific MHCs, and index HbA1c value. For most MHCs, diabetic patients with MHC in the VA health care system do not appear to receive less aggressive antiglycemic management. However, the subgroup with substance use disorders does appear to have excess likelihood of non-intensification; interventions targeting this high risk subgroup merit attention.
Polar Cap Energy Deposition Events During the 5-6 August 2011 Magnetic Storm
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2018-03-01
We study the 5-6 August 2011 storm for its energy deposition events occurring deep in the polar cap region, where the consequential localized intensifications of earthward directed Poynting flux led to the development of their related localized neutral density increases. For unraveling the underlying physical processes, we investigate the relations among Poynting flux intensifications, flow channels (FCs), and localized neutral density enhancements plus the nature of the underlying reconnection events. Observational results demonstrate Poynting flux increase deep in the polar cap in a FC-2 type FC during magnetopause reconnections and in a FC-4 type FC during lobe reconnections. During the latter stages of these different types of reconnection events, energy/momentum transfer occurred along old-open field lines and commonly led to the development of localized neutral density increases during their respective upwelling events fueled by field-aligned currents and above/within these polar FCs. The prevailing BY domination and the pulsed nature of this storm created favorable conditions for the development of these FC-2 and FC-4 types in the sunlit northern summer hemisphere and caused the observed Poynting flux intensifications deep in the polar cap. The solar wind source of these reconnections taking place along old-open field lines was situated in the high-latitude boundary layer. Thus, the high-latitude boundary layer dynamo provided a vigorous source of energy/momentum transfer during the latter-stage reconnections unfolding along old-open field lines.
NASA Astrophysics Data System (ADS)
Tikhomirov, A. A.; Ushakova, S. A.; Velichko, V. V.; Degermendzhy, Á. G.; Lasseur, Ch.; Lamaze, B.
The problems of scientific-technical substantiation of perspective joint IBP-ESA works on imitation of functioning of stationary bioregenerative life support systems BLSS on Moon and or Mars are discussed With this purpose the possibilities of matter turnover intensification and closure degree increase which can be achieved after modernization of the BIOS-3 BLSS designed and constructed at Institute of Biophysics Siberian Branch of Russian Academy of Sciences IBP SB RAS Russia are considered These works are performed in the frame of INTAS IA project under the joint SB RAS-ESA financial support Specifically at the expense of intensity increase of photosynthetic active radiation from 150 to 250 Wt m 2 the productivity of photosynthesizing unit on oxygen and biomass is supposed to increase on 50 on average The given substantiation is based upon analysis of carried out preliminary experiments in a laboratory environment and in the BIOS-3 facility and also on series of experiments carried out at present time The results of technical reconstruction of lighting and thermoregulation systems demonstrating practical possibility of these plans implementation are produced On the grounds of mass exchange processes intensification the problems of a crew supply with vegetarian food and oxygen under a smaller photosynthesizing unit size are considered Some possibilities of the humans wastes utilization under combination of physicochemical and biological methods and necessary technical decisions allowing closure increase of matter turnover are
NASA Astrophysics Data System (ADS)
Sheehan, J. J.
2016-12-01
We report here a first-of-its-kind analysis of the potential for intensification of global grazing systems. Intensification is calculated using the statistical yield gap methodology developed previously by others (Mueller et al 2012 and Licker et al 2010) for global crop systems. Yield gaps are estimated by binning global pasture land area into 100 equal area sized bins of similar climate (defined by ranges of rainfall and growing degree days). Within each bin, grid cells of pastureland are ranked from lowest to highest productivity. The global intensification potential is defined as the sum of global production across all bins at a given percentile ranking (e.g. performance at the 90th percentile) divided by the total current global production. The previous yield gap studies focused on crop systems because productivity data on these systems is readily available. Nevertheless, global crop land represents only one-third of total global agricultural land, while pasture systems account for the remaining two-thirds. Thus, it is critical to conduct the same kind of analysis on what is the largest human use of land on the planet—pasture systems. In 2013, Herrero et al announced the completion of a geospatial data set that augmented the animal census data with data and modeling about production systems and overall food productivity (Herrero et al, PNAS 2013). With this data set, it is now possible to apply yield gap analysis to global pasture systems. We used the Herrero et al data set to evaluate yield gaps for meat and milk production from pasture based systems for cattle, sheep and goats. The figure included with this abstract shows the intensification potential for kcal per hectare per year of meat and milk from global cattle, sheep and goats as a function of increasing levels of performance. Performance is measured as the productivity achieved at a given ranked percentile within each bin.We find that if all pasture land were raised to their 90th percentile of performance, global output of meat and milk could increase 2.8 fold. This is much higher than that reported previously for major grain crops like corn and wheat. Our results suggest that efforts to address poor performance of pasture systems around the world could substantially improve the outlook for meeting future food demand.
Agronomic responses to late-seeded cover crops in a semiarid region
USDA-ARS?s Scientific Manuscript database
Intensification of cropping systems in the Great Plains beyond annual cropping practices may be limited by inadequate precipitation, short growing seasons, and highly variable climatic conditions. Inclusion of cover crops in dryland cropping systems may serve as an effective intensification strateg...
USDA-ARS?s Scientific Manuscript database
Sustainable intensification is an emerging model for agriculture designed to reconcile accelerating global demand for agricultural products with long-term environmental stewardship. Defined here as increasing agricultural production while maintaining or improving environmental quality, sustainable i...
Sustainable intensification of agriculture for human prosperity and global sustainability.
Rockström, Johan; Williams, John; Daily, Gretchen; Noble, Andrew; Matthews, Nathanial; Gordon, Line; Wetterstrand, Hanna; DeClerck, Fabrice; Shah, Mihir; Steduto, Pasquale; de Fraiture, Charlotte; Hatibu, Nuhu; Unver, Olcay; Bird, Jeremy; Sibanda, Lindiwe; Smith, Jimmy
2017-02-01
There is an ongoing debate on what constitutes sustainable intensification of agriculture (SIA). In this paper, we propose that a paradigm for sustainable intensification can be defined and translated into an operational framework for agricultural development. We argue that this paradigm must now be defined-at all scales-in the context of rapidly rising global environmental changes in the Anthropocene, while focusing on eradicating poverty and hunger and contributing to human wellbeing. The criteria and approach we propose, for a paradigm shift towards sustainable intensification of agriculture, integrates the dual and interdependent goals of using sustainable practices to meet rising human needs while contributing to resilience and sustainability of landscapes, the biosphere, and the Earth system. Both of these, in turn, are required to sustain the future viability of agriculture. This paradigm shift aims at repositioning world agriculture from its current role as the world's single largest driver of global environmental change, to becoming a key contributor of a global transition to a sustainable world within a safe operating space on Earth.
The Contribution of Teachers' Roles to Beginning Teachers' Perceptions of Success
ERIC Educational Resources Information Center
Horne, Erin Thomas
2010-01-01
Beginning teachers leave the profession at an alarming rate. Role expansion and role intensification have become more predominate in the profession as a result of numerous reform and accountability movements, including "No Child Left Behind". Research suggests that social supports and engagement in multiple roles can buffer the effects…
2012-01-01
Background In response to the short-term negative inotropic and chronotropic effects of β-blockers, heart failure (HF) guidelines recommend initiating β-blockers at low dose with gradual uptitration as tolerated to doses used in clinical trials. However, patterns and safety of β-blocker intensification in routine practice are poorly described. Methods We described β-blocker intensification among Kaiser Colorado enrollees with a primary discharge diagnosis of HF between 2001–2009. We then assessed β-blocker intensification in the 30 days prior to first hospital readmission for cases compared to the same time period following index hospitalization for non-rehospitalized matched controls. In separate analysis of the subgroup initiated on β-blocker after index hospital discharge, we compared adjusted rates of 30-day hospitalization following initiation of high versus low dose β-blocker. Results Among 3,227 patients, median age was 76 years and 37% had ejection fraction ≤40% (LVSD). During a median follow up of 669 days, 14% were never on β-blocker, 21% were initiated on β-blocker, 43% were discharged on β-blocker but never uptitrated, and 22% had discharge β-blocker uptitrated; 63% were readmitted and 49% died. β-blocker intensification occurred in the 30 days preceding readmission for 39 of 1,674 (2.3%) readmitted cases compared to 27 (1.6%) of matched controls (adjusted OR 1.36, 95% CI 0.81-2.27). Among patients initiated on therapy, readmission over the subsequent 30 days occurred in 6 of 155 (3.9%) prescribed high dose and 9 of 513 (1.8%) prescribed low dose β-blocker (adjusted OR 3.10, 95% CI 1.02-9.40). For the subgroup with LVSD, findings were not significantly different. Conclusion While β-blockers were intensified in nearly half of patients following hospital discharge and high starting dose was associated with increased readmission risk, the prevailing finding was that readmission events were rarely preceded by β-blocker intensification. These data suggest that β-blocker intensification is not a major precipitant of hospitalization, provided recommended dosing is followed. PMID:22709128
Dahl, Viktor; Lee, Evelyn; Peterson, Julia; Spudich, Serena S.; Leppla, Idris; Sinclair, Elizabeth; Fuchs, Dietmar; Palmer, Sarah
2011-01-01
Background. Despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA by antiretroviral therapy to levels below clinical assay detection, infection and immune activation may persist within the central nervous system and possibly lead to continued brain injury. We hypothesized that intensifying therapy would decrease cerebrospinal fluid (CSF) infection and immune activation. Methods. This was a 12-week, randomized, open-label pilot study comparing addition of the integrase inhibitor raltegravir to no treatment augmentation, with an option for rollover to raltegravir. CSF and plasma were analyzed for HIV-1 RNA using a single-copy assay. CSF and blood immune activation was assessed by neopterin concentrations and CD4+ and CD8+ T-cell surface antigen expression. Results. Primary analysis compared 14 intensified (including rollovers) to 9 nonintensified subject experiences. Median HIV-1 RNA levels in all samples were lower in CSF (<.3 copies/mL) than in plasma (<.9 copies/mL; P < .0001), and raltegravir did not reduce HIV-1 RNA, CSF neopterin, or CD4+ and CD8+ T-cell activation. Conclusions. Raltegravir intensification did not reduce intrathecal immunoactivation or alter CSF HIV-1 RNA levels in subjects with baseline viral suppression. With and without raltegravir intensification, HIV RNA levels in CSF were very low in the enrolled subjects. Clinical Trials Registration. NCT00672932. PMID:22021620
NASA Astrophysics Data System (ADS)
Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart
2013-03-01
The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.
The Cook Agronomy Farm LTAR: Knowledge Intensive Precision Agro-ecology
NASA Astrophysics Data System (ADS)
Huggins, D. R.
2015-12-01
Drowning in data and starving for knowledge, agricultural decision makers require evidence-based information to enlighten sustainable intensification. The agro-ecological footprint of the Cook Agronomy Farm (CAF) Long-Term Agro-ecosystem Research (LTAR) site is embedded within 9.4 million ha of diverse land uses primarily cropland (2.9 million ha) and rangeland (5.3 million ha) that span a wide annual precipitation gradient (150 mm through 1400 mm) with diverse social and natural capital (see Figure). Sustainable intensification hinges on the development and adoption of precision agro-ecological practices that rely on meaningful spatio-temporal data relevant to land use decisions at within-field to regional scales. Specifically, the CAF LTAR will provide the scientific foundation (socio-economical and bio-physical) for enhancing decision support for precision and conservation agriculture and synergistic cropping system intensification and diversification. Long- and short-term perspectives that recognize and assess trade-offs in ecosystem services inherent in any land use decision will be considered so as to promote the development of more sustainable agricultural systems. Presented will be current and future CAF LTAR research efforts required for the development of sustainable agricultural systems including cropping system cycles and flows of nutrients, water, carbon, greenhouse gases and other biotic and abiotic factors. Evaluation criteria and metrics associated with long-term agro-ecosystem provisioning, supporting, and regulating services will be emphasized.
Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion
NASA Astrophysics Data System (ADS)
Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.
2014-12-01
Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.
Kusche, Daniel; Kuhnt, Katrin; Ruebesam, Karin; Rohrer, Carsten; Nierop, Andreas F M; Jahreis, Gerhard; Baars, Ton
2015-02-01
Intensification of organic dairy production leads to the question of whether the implementation of intensive feeding incorporating maize silage and concentrates is altering milk quality. Therefore the fatty acid (FA) and antioxidant (AO) profiles of milk on 24 farms divided into four system groups in three replications (n = 71) during the outdoor period were analyzed. In this system comparison, a differentiation of the system groups and the effects of the main system factors 'intensification level' (high-input versus low-input) and 'origin' (organic versus conventional) were evaluated in a multivariate statistical approach. Consistent differentiation of milk from the system groups due to feeding-related impacts was possible in general and on the basis of 15 markers. The prediction of the main system factors was based on four or five markers. The prediction of 'intensification level' was based mainly on CLA c9,t11 and C18:1 t11, whereas that of 'origin' was based on n-3 PUFA. It was possible to demonstrate consistent differences in the FA and AO profiles of organic and standard conventional milk samples. Highest concentrations of nutritionally beneficial compounds were found in the low-input organic system. Adapted grass-based feeding strategies including pasture offer the potential to produce a distinguishable organic milk product quality. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.
2015-12-01
High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.
NASA Astrophysics Data System (ADS)
Mathias, Jean-Denis; Bonté, Bruno; Cordonnier, Thomas; de Morogues, Francis
2015-11-01
Greater demand for wood material has converged with greater demand for biodiversity conservation to make balancing forest ecosystem services a key societal issue. Forest managers, owners, or policymakers need new approaches and methods to evaluate their ability to adapt to this dual objective. We analyze the ability of forest owners to define sustainable forest management options based on viability theory and a new flexibility index. This new indicator gauges the adaptive capacity of forest owners based on the number of sustainable actions available to them at a given time. Here we study a public forest owner who regulates harvest intensity and frequency in order to meet demand for timber wood at forest scale and to meet a biodiversity recommendation via a minimum permanently maintained volume of deadwood per hectare at stand scale. Dynamical systems theory was used to model uneven-aged forest dynamics—including deadwood dynamics—and the dynamics of timber wood demand and tree removals. Uneven-aged silver fir forest management in the "Quatre Montagnes region" (Vercors, France) is used as an illustrative example. The results explain situations where a joint increase in wood production and deadwood retention does not reduce the flexibility index more than increasing either one dimension alone, thus opening up ecological intensification options. To conclude, we discuss the value of the new flexibility index for addressing environmental management and ecological intensification issues.
2010-08-16
Cloud formations are seen through the window of NASA DC-8 aircraft during a flight, Tuesday, Aug. 17, 2010, over the Gulf of Mexico where researchers were studying weather patterns as part of trhe Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2010-08-15
The NASA DC-8 airplane sits on the tarmac, Monday, Aug. 16, 2010, at Fort Lauderdale Hollywood International Airport in Fort Lauderdale, Fla. , as preparations continue for its part in the GRIP experiment. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2010-08-14
The NASA DC-8 airplane sits on the tarmac, Sunday, Aug. 15, 2010, at Fort Lauderdale International Airport in Fort Lauderdale, Fla. , as preparations continue for its part in the GRIP experiment. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
A report on syphilis control in Turkey
Christiansen, Sven
1954-01-01
This report presents the results of a six-month survey of the nature and extent of venereal diseases in Turkey which was undertaken by the author, on behalf of WHO, at the request of the Turkish Government. The first part of the report outlines the present venereal-disease-control system and includes descriptions of the work undertaken by public authorities, hospitals and dispensaries, mobile venereal-disease-control teams, and laboratories; in the second part, the author enumerates certain recommendations for the intensification of the current control programme. These recommendations are particularly concerned with the control of syphilis (since the incidence of other venereal diseases in Turkey is of very secondary importance), and with the expansion, standardization, and co-ordination of serodiagnostic facilities and services. It is suggested that there might be a gradual intensification and reorientation of the present programme. A proposed plan of operations for an eight-year period is described. PMID:13182590
Big agronomic data validates an oxymoron: Sustainable intensification under climate change
USDA-ARS?s Scientific Manuscript database
Crop science is increasingly embracing big data to reconcile the apparent rift between intensification of food production and sustainability of a steadily stressed production base. A strategy based on long-term agroecosystem research and modeling simulation of crops, crop rotations and cropping sys...
Intensification and Complexity in Teachers' Narrated Worklives
ERIC Educational Resources Information Center
Wiebe, Sean; MacDonald, Craig
2014-01-01
Reflecting on a previous study of teachers' narratives, this epistolary conversation follows ideas of intensification and complexity that emerged in the authors' return to the narrative accounts. Their conversation highlights representations of teaching as a struggle for recognition, personal happiness, and security-all within a system of…
The Mission of the Polish Universities in Environmental Preservation.
ERIC Educational Resources Information Center
Mazurkiewicz, Boleslaw K.
In order to reduce pollution, secure long-term energy needs, retard the depletion of non-renewable resources, and harmonize industrialization with the vulnerable environment, Polish universities are directing their efforts toward intensification of ecological education and intensification of research activities. Its efforts are connected with…
Marín, Linda; Perfecto, Ivette
2013-04-01
Spiders are a very diverse group of invertebrate predators found in agroecosystems and natural systems. However, spider distribution, abundance, and eventually their ecological function in ecosystems can be influenced by abiotic and biotic factors such as agricultural intensification and dominant ants. Here we explore the influence of both agricultural intensification and the dominant arboreal ant Azteca instabilis on the spider community in coffee agroecosystems in southern Mexico. To measure the influence of the arboreal ant Azteca instabilis (F. Smith) on the spider community inhabiting the coffee layer of coffee agroecosystems, spiders were collected from coffee plants that were and were not patrolled by the ant in sites differing in agricultural intensification. For 2008, generalized linear mixed models showed that spider diversity was affected positively by agricultural intensification but not by the ant. However, results suggested that some spider species were associated with A. instabilis. Therefore, in 2009 we concentrated our research on the effect of A. instabilis on spider diversity and composition. For 2009, generalized linear mixed models show that spider richness and abundance per plant were significantly higher in the presence of A. instabilis. In addition, analyses of visual counts of insects and sticky traps data show that more resources were present in plants patrolled by the ant. The positive effect of A. instabilis on spiders seems to be caused by at least two mechanisms: high abundance of insects and protection against predators.
Tołwińska, Joanna; Głowińska-Olszewska, Barbara; Urban, Mirosława; Florys, Bozena; Peczyńska, Jadwiga
2006-01-01
Type 1 diabetes is a known risk factor for arterial atherosclerosis. The first symptoms can be found even in childhood. The ultrasonographic measurements of intimal plus medial thickness in carotid arteries (IMT) and flow mediated dilatation (FMD) evaluated in brachial arteries, play a known role in the detection in these cases. The diabetes treatment intensification is an important factor in delaying early atherosclerotic changes. Currently, intensive treatment of children's diabetes with use of continuous subcutaneous insulin infusion with personal insulin pumps is gaining more and more popularity. THE AIM OF THIS STUDY was the evaluation of IMT and FMD indexes in children suffering from type 1 diabetes in the context of treatment intensification (multidose insulin injections v. personal insulin pumps). We examined 64 children (29 boys and 35 girls) in the mean age 15.5 years treated with the multidose insulin injections method and 10 children using personal insulin pumps (4 girls and 6 boys) in the mean age 14.5 years. Using high resolution ultrasonography we evaluated IMT values in carotid arteries and FMD parameters in brachial arteries. In our analysis we estimated the blood concentration of lipid parameters, values of systolic and diastolic blood pressure, the age of diabetes onset, duration time of the illness and the values of HbA1c as a marker of metabolic control. We noticed significantly higher FMD values in patients treated with personal insulin pumps (13.7 vs. 5.5%, p=0.001). IMT values were similar in both groups (0.52 vs. 0.5 mm, p=0. 41). The level of HDL cholesterol was higher and triglycerides lower in the group with treatment intensification. The metabolic control was the same in both groups. In patients treated by the multidose insulin injections IMT correlated with systolic blood pressure values. We didn't notice any correlation between IMT and FMD in any group. 1. Treatment intensification (personal insulin pumps) influences better vascular endothelial function in type 1 diabetic children and seems to be a significant tool in delaying the atherosclerotic process. 2. We need more examinations to explain the role of treatment intensification in common carotid arteries wall morphology in type 1 diabetic children. 3. The ultrasonographic detection of atherosclerotic changes in arterial vessels can help in the evaluation of the changes due to different methods of diabetes treatment.
The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.
2002-06-01
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.
Modulation of wave fields by current and wind intensifications off the Catalan coast
NASA Astrophysics Data System (ADS)
Pallares Lopez, Elena; Sánchez-Arcilla, Agustin; Espino, Manuel
2017-04-01
The coupling between waves, ocean and atmospheric models has been one of the main topics in the physical oceanography community for the last decade. The resulting challenge is more difficult and relevant in coastal areas, where the interaction between wind, waves and currents fields is far from negligible, and therefore some sort of model coupling is required. However, it is important to remark that it is only during energetic "enough" events that the coupling becomes quantitatively significant. The Western Mediterranean sea is an area characterised by calm periods most of the year. However, coastal areas often present highly variable and heterogeneous wind, wave and current conditions, which make the numerical prediction of meteo-oceanographic processes difficult and with large associated local errors. Specifically, the Catalan coast is frequently affected by offshore wind intensifications channel by river valleys and by local current intensifications associated to coastal "bulges" (e.g. deltaic forms) that can reach up to 1 m/s in the surface. In this study we present different coupling strategies applied to both calm periods and energetic events, represented by the wind jets or current intensifications mentioned before, with the objective to quantify the effect of model coupling on the resulting wave fields off the Catalan coast. The SWAN wave model is used to model the wave fields, together with the ROMS oceanic model and the WRF atmospheric model. Two different types of coupling are considered: the first is a one-way coupling consisting in introducing the current field as an input for the SWAN wave model; the second one, consists in running in parallel the ROMS circulation model, the WRF atmospheric model and the SWAN wave model. The second methodology is more complex and should better reproduce the physics involved in the interactions, but requires an important computational capacity, not always available, so a critical comparison between the two methodologies, balancing costs and benefits will be presented and analysed. From the results obtained from a set of typical synoptic situations, it can be concluded that during most of the time, with the calm conditions typical of the Mediterranean coast, it is not necessary to consider the coupling in any of its forms to provide accurate wave simulations. However, when a wind or current intensification occurs, the results improve considerably with the coupled model and the robustness of predictions greatly improves. Because of that an "intelligent" modelling sequence that activates the coupling in terms of the expected meteo-oceanography is proposed for operational applications.
Algebra for All: California’s Eighth-Grade Algebra Initiative as Constrained Curricula
Domina, Thurston; Penner, Andrew M.; Penner, Emily K.; Conley, Annemarie
2015-01-01
Background/Context Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. Research Questions (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students’ mathematics achievement? Setting Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district’s 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts’ students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004–20-05 through 2007–20-08 school years. Intervention/Program/Practice During the study period, Towering Pines dramatically intensified middle school students’ math curricula: In the 2004–20-05 school year 32% of the district’s 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007–20-08 school year that proportion had increased to 84%. Research Design We use an interrupted time-series design, comparing students’ 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and prior achievement. Findings/Results We find that students’ odds of taking higher level mathematics courses increased as this district implemented the state’s Algebra mandate. However, even as the district implemented a constrained curriculum strategy, mathematics achievement growth between 6th sixth and 10th grade slowed and the achievement advantages associated with 8th eighth grade Algebra declined. Conclusions/Recommendations Our analyses suggest that curricular intensification increased the inclusiveness and decreased the selectivity of the mathematics tracking regime in Towering Pines middle schools. However, the findings suggest that this constrained curriculum strategy may have may have unintended negative consequences for student achievement. PMID:26120219
Halimi, S; Balkau, B; Attali, C; Detournay, B; Amelineau, E; Blickle, J-F
2012-03-01
To describe the behaviour of French general practitioners (GP) regarding intensification of hypoglycaemic agents in orally treated type 2 diabetic (T2D) patients, according to their HbA(1c) level. General practitioners were recruited from a panel of office-based general practitioners. T2D patients who had been orally treated for at least 6 months were included in the study; their characteristics were recorded, and their HbA(1c) values and hypoglycaemic treatments over the previous 24 months extracted from electronic records The major reasons for intensification (or no intensification) of hypoglycaemic agents were recorded at the inclusion visit. A total of 236 general practitioners recruited 2109 T2D patients: 1732 had at least one HbA(1c) value recorded in the previous 6 months, and 52%, 33% and 14% had been treated, with oral hypoglycaemic agents in monotherapy, bitherapy or tri-or quadritherapy, respectively. Of these patients, 702 (41%) remained uncontrolled (47%, 39% and 20% respectively) and according to the current French guidelines needed treatment intensification. Only 46 (7%) had their treatment intensified at inclusion. Of those without intensified treatment, 60% were treated with monotherapy; the main reason given by the general practitioners for not intensifying treatment was a satisfactory HbA(1c) level (53%), although 32% had an HbA(1c)>7%. Other reasons were: lifestyle advice had greater priority (20%); decision was postponed until the next visit (11%); HbA(1c) had decreased since last visit (7%; not confirmed by available data in 58% of cases); a medical priority other than diabetes (6%) and other reasons related to the patient (3%). For T2D patients managed by French general practitioners, guidelines are not consistently followed: HbA(1c) should be monitored more frequently and treatment adjusted according to HbA(1c) levels. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E; Kropp, Juergen P
2015-01-01
Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented.
Closing Yield Gaps: How Sustainable Can We Be?
Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.
2015-01-01
Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way management strategies for closing yield gaps are chosen and implemented. PMID:26083456
NASA Astrophysics Data System (ADS)
Malik, A. A.; Puissant, J.; Buckeridge, K. M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gleixner, G.; Griffiths, R.
2017-12-01
Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of organic matter in soil. Increasing evidence now exists to suggest that microbial biomass contributes significantly to soil organic carbon formation. However, we do not fully understand the microbial mechanisms of organic matter processing and this hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically link key microbial ecophysiological traits to soil carbon storage in temperate grassland habitats ranging in land use from pristine species-rich grasslands to intensive croplands in 56 different soils across Britain. Physiological mechanisms of soil microorganisms were assessed using stable carbon isotope tracing and soil proteomics. Through spatial patterns and path analysis of structural equation modeling we discern two distinct pH-related mechanisms of soil carbon storage and highlight that the response of these mechanistic indicators is shaped by the environmental context. Land use intensification in low pH soils that increases soil pH above a threshold value ( 6.2) leads to loss of carbon due to increased microbial degradation as a result of lower acid retardation of organic matter decomposition. On the contrary, the loss of carbon through intensification in high pH (> 6.2) soils was linked to decreased microbial biomass and reduced carbon use efficiency that was linked to tradeoffs with stress alleviation and resource acquisition. We conclude that land use intensification-induced changes in soil pH can be used as a proxy to determine the effect of land management strategies on microbial soil carbon cycling processes and emphasize that more extensive land management practices at higher soil pH have greater potential for soil carbon storage through increased microbial metabolic efficiency, whereas in acidic soils abiotic factors exert a greater influence on the fate of soil carbon.
Fertilizer intensification and its impacts in China's HHH Plains
USDA-ARS?s Scientific Manuscript database
The accomplishment of China’s food security by application of high rates of fertilizers has generated several controversies regarding the quality of soil and water resources. Thus, the objective of this article is to assess the effects and causes of the fertilizer intensification in the Huang Huai ...
USDA-ARS?s Scientific Manuscript database
Probabilistic forecasts of US Drought Monitor (USDM) intensification over two, four and eight week time periods are developed based on recent anomalies in precipitation, evapotranspiration and soil moisture. These statistical forecasts are computed using logistic regression with cross validation. Wh...
Intensification of citrus production and soil loss in Eastern Spain
NASA Astrophysics Data System (ADS)
Cerdà, A.; González Peñaloza, F. A.; Burguet, M.; Giménez Morera, A.
2012-04-01
After land abandonment for five decades (Arnáez et al., 2010; Belmonte Serrato et al., 1999) as a widespread process in Spain, agriculture intensification is taken place. This is changing the nature of the soil erosion processes as they were known (Cerdà, 1997; Cammeraat and Imeson, 1999; Ruiz Sinoga et al., 2010; Zavala et al., 2010). Citrus production are being reallocated on slopes due to the new irrigation systems (drip-irrigation), the thermic inversion on the bottom of the valley and then the frost affecting the plantations, the high prices of the bottom valley lands and the investment in agriculture from other economic sectors such as tourism and industry. Those new plantations are based on intense pesticides and herbicides use, and erosion processes are triggered due to the sloping surface developed (Cerdà et al., 2010). Five study sites were selected in the Montesa Municipality research zone, where an increase in the orange and clementines plantations were found during the last 20 years. Measurements were perfomed by a simple method, which consist in measuring the surface characteristics: stoniness, crust, herbs, bare soil, sheet flow, rills and gullies. One thousand meters were monitored at each of the study sites and measurements were done in January and August with a precision of 1 cm. The results show that the erosion rates are controlled by the sheet erosion (78,4 %), although rill and gullies exist (< 1 %) and they are active and contribute to high erosion rates. Stones and vegetation cover was found to by low. The infiltration rates of the soils were measured by means of rainfall simulation experiments and cylinder infiltrometer. The results show that the new citrus plantations results in low infiltration rates, and high erosion rates. This is contributing to a non-sustainable agriculture production due to the high erosion rates. And also a lack in soil services as the surface runoff and then the soil erosion is enhanced; and soil infiltration reduce. The economical value of the land and water lost is making this new intense chemically managed new citrus plantation non sustainable. The intensification of agriculture is triggering new soil erosion processes to be added to the traditional ones (García Ruiz and López Bermúdez, 2009). This research study is being supported by the the research project CGL2008-02879/BTE
A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.
2010-09-01
Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can bemore » produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.« less
[Microbiological Aspects of Radioactive Waste Storage].
Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N
2015-01-01
The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).
ERIC Educational Resources Information Center
Wilkinson, Gary
2007-01-01
The last three decades have seen an intensification of commercialization throughout the public sector in general and state schools in particular. Policies designed to introduce business ideologies, structures and practices have operated in tandem with a push to include the corporate world in the running, governance and provision of educational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmore, C. H.
1974-03-01
A data recovery problem often occurs in nuclear tests when photographic film used to record CRT traces is unavoidably exposed fo gamma rays before it can be retrieved for developing. Studies made to improve recovery of the CRT data from such film are described. Best results were obtained with a procedure involving reversal processing, silver intensification, dye-coupling development, and duplication. (auth)
Increased food production and reduced water use through optimized crop distribution
NASA Astrophysics Data System (ADS)
Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo
2017-12-01
Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.
Shirsath, S R; Sable, S S; Gaikwad, S G; Sonawane, S H; Saini, D R; Gogate, P R
2017-09-01
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1h under optimized conditions of 35°C temperature, solid to solvent ratio of 1:25, particle size of 0.09mm, ultrasonic power of 250W and ultrasound frequency of 22kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8h of treatment. Peleg's model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction. Copyright © 2017. Published by Elsevier B.V.
The Formal Pragmatics of Non-at-Issue Intensification in English and Japanese
ERIC Educational Resources Information Center
Taniguchi, Ai
2017-01-01
This dissertation concerns the formal pragmatics of constructions in English and Japanese that are perceptively intensificative in their discourse function in some way. In particular I examine polarity emphasis (verum focus), exclamatives, and acts of notification and surprise in language using a compositional version of Farkas and Bruce (2010)'s…
USDA-ARS?s Scientific Manuscript database
The Long-Term Agroecosystem Research network is building a road map for the sustainable intensification of U.S. agriculture by designing strategies that are locally appropriate and applicable to multiple scales of agricultural organization. The 18 sites in the LTAR network represent a diversity of l...
Toward Clarity on Understanding Tropical Cyclone Intensification
2015-08-01
forefront of tropical cyclone research for a number of years , espe- cially in the context of the rapid intensification or decay of storms. Rapid...67, 1817 – 1830, doi:10.1175/2010JAS3318.1. Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos
National FIA plot intensification procedure report
Jock A. Blackard; Paul L. Patterson
2014-01-01
The Forest Inventory and Analysis (FIA) program of the U.S. Forest Service (USFS) measures a spatially distributed base grid of forest inventory plots across the United States. The sampling intensity of plots may be increased in some regions when warranted by specific inventory objectives. Several intensification methods have been developed within FIA and USFS National...
School Principals' Job Satisfaction: The Effects of Work Intensification
ERIC Educational Resources Information Center
Wang, Fei; Pollock, Katina; Hauseman, Cameron
2018-01-01
This study examines principals' job satisfaction in relation to their work intensification. Frederick Herzberg's two-factor theory was used to shed light on how motivating and maintenance factors affect principals' job satisfaction. Logistic multiple regressions were used in the analysis of survey data that were collected from 2,701 elementary and…
Factors of Intensification in the Hops Cluster of Chuvashia
ERIC Educational Resources Information Center
Zakharov, Anatoly I.; Evgrafov, Oleg V.; Zakharov, Dmitry A.; Ivanova, Elena V.; Tolstova, Marija L.; Tsaregorodtsev, Evgeny I.
2016-01-01
The complex analysis of development of hop-growing for 1971-2015 is carried out. In the conditions of the field experiment made in the Chuvash Republic hop-growing intensification elements--technology of its cultivation, mechanization are fulfilled. Based on researches it is established that the main internal allowance of increase in efficiency of…
USDA-ARS?s Scientific Manuscript database
The sustainable intensification of agriculture in the United States will require major shifts in producer decision-making, markets, and public policies. The Long-Term Agroecosystem Research (LTAR) network is working to better understand how these shifts may be accomplished. Through a common experime...
Belton, Ben; Jahan, Khondker Murshed-e-; Rico, Andreu
2018-01-01
Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as “producing more using less”. Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2,678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified. PMID:29507224
Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra
2015-11-01
Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.
Understanding and Managing Zoonotic Risk in the New Livestock Industries
Waage, Jeff; Barnett, Tony; Pfeiffer, Dirk U.; Rushton, Jonathan; Rudge, James W.; Loevinsohn, Michael E.; Scoones, Ian; Smith, Richard D.; Cooper, Ben S.; White, Lisa J.; Goh, Shan; Horby, Peter; Wren, Brendan; Gundogdu, Ozan; Woods, Abigail; Coker, Richard J.
2013-01-01
Background: In many parts of the world, livestock production is undergoing a process of rapid intensification. The health implications of this development are uncertain. Intensification creates cheaper products, allowing more people to access animal-based foods. However, some practices associated with intensification may contribute to zoonotic disease emergence and spread: for example, the sustained use of antibiotics, concentration of animals in confined units, and long distances and frequent movement of livestock. Objectives: Here we present the diverse range of ecological, biological, and socioeconomic factors likely to enhance or reduce zoonotic risk, and identify ways in which a comprehensive risk analysis may be conducted by using an interdisciplinary approach. We also offer a conceptual framework to guide systematic research on this problem. Discussion: We recommend that interdisciplinary work on zoonotic risk should take into account the complexity of risk environments, rather than limiting studies to simple linear causal relations between risk drivers and disease emergence and/or spread. In addition, interdisciplinary integration is needed at different levels of analysis, from the study of risk environments to the identification of policy options for risk management. Conclusion: Given rapid changes in livestock production systems and their potential health implications at the local and global level, the problem we analyze here is of great importance for environmental health and development. Although we offer a systematic interdisciplinary approach to understand and address these implications, we recognize that further research is needed to clarify methodological and practical questions arising from the integration of the natural and social sciences. PMID:23665854
Berre, David; Blancard, Stéphane; Boussemart, Jean-Philippe; Leleu, Hervé; Tillard, Emmanuel
2014-12-15
This study focused on the trade-off between milk production and its environmental impact on greenhouse gas (GHG) emissions and nitrogen surplus in a high input tropical system. We first identified the objectives of the three main stakeholders in the dairy sector (farmers, a milk cooperative and environmentalists). The main aim of the farmers and cooperative's scenarios was to increase milk production without additional environmental deterioration but with the possibility of increasing the inputs for the cooperative. The environmentalist's objective was to reduce environmental deterioration. Second, we designed a sustainable intensification scenario combining maximization of milk production and minimization of environmental impacts. Third, the objectives for reducing the eco-inefficiency of dairy systems in Reunion Island were incorporated in a framework for activity analysis, which was used to model a technological approach with desirable and undesirable outputs. Of the four scenarios, the sustainable intensification scenario produced the best results, with a potential decrease of 238 g CO2-e per liter of milk (i.e. a reduction of 13.93% compared to the current level) and a potential 7.72 L increase in milk produced for each kg of nitrogen surplus (i.e. an increase of 16.45% compared to the current level). These results were based on the best practices observed in Reunion Island and optimized manure management, crop-livestock interactions, and production processes. Our results also showed that frontier efficiency analysis can shed new light on the challenge of developing sustainable intensification in high input tropical dairy systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Determination of Metals in Welding Fume by X-RaySpectrometry
NASA Astrophysics Data System (ADS)
Kuznetsova, O. V.; Begunova, L. A.; Romanenko, S. V.; Solodsky, S. A.
2018-01-01
Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Respiratory effects seen in full-time welders have included bronchitis, airway irritation, lung function changes, and a possible increase in the incidence of lung cancer. The metal concentration in the air of the working area have been determined using the photometric method of analysis, which involves the stage of decomposition of the sample material before analysis. However, losses of the analyzed elements are possible when the sample is decomposed. The X-ray fluorescence method of analysis has the advantage of being nondestructive. The investigations shown the data of photometric determination of metals in welding aerosols is 1.5÷2 times lower than the results of X-ray fluorescence analysis.
Richter, Carsten H; Custer, Benjamin; Steele, Jennifer A; Wilcox, Bruce A; Xu, Jianchu
2015-05-26
Intensified food production, i.e. agricultural intensification and industrialized livestock operations may have adverse effects on human health and promote disease emergence via numerous mechanisms resulting in either direct impacts on humans or indirect impacts related to animal and environmental health. For example, while biodiversity is intentionally decreased in intensive food production systems, the consequential decrease in resilience in these systems may in turn bear increased health risks. However, quantifying these risks remains challenging, even if individual intensification measures are examined separately. Yet, this is an urgent task, especially in rapidly developing areas of the world with few regulations on intensification measures, such as in the Greater Mekong Subregion (GMS). We systematically searched the databases PubMed and Scopus for recent studies conducted on the association between agricultural (irrigation, fertilization, pesticide application) and livestock (feed additives, animal crowding) intensification measures and human health risks in the GMS. The search terms used were iteratively modified to maximize the number of retrieved studies with relevant quantitative data. We found that alarmingly little research has been done in this regard, considering the level of environmental contamination with pesticides, livestock infection with antibiotic resistant pathogens and disease vector proliferation in irrigated agroecosystems reported in the retrieved studies. In addition, each of the studies identified focused on specific aspects of intensified food production and there have been no efforts to consolidate the health risks from the simultaneous exposures to the range of hazardous chemicals utilized. While some of the studies identified already reported environmental contamination bearing considerable health risks for local people, at the current state of research the actual consolidated risk from regional intensification measures cannot be estimated. Efforts in this area of research need to be rapidly and considerably scaled up, keeping pace with the current level of regional intensification and the speed of pesticide and drug distribution to facilitate the development of agriculture related policies for regional health promotion.
Use of artificial intelligence in the production of high quality minced meat
NASA Astrophysics Data System (ADS)
Kapovsky, B. R.; Pchelkina, V. A.; Plyasheshnik, P. I.; Dydykin, A. S.; Lazarev, A. A.
2017-09-01
A design for an automatic line for minced meat production according to new production technology based on an innovative meat milling method is proposed. This method allows the necessary degree of raw material comminution at the stage of raw material preparation to be obtained, which leads to production intensification due to the traditional meat mass comminution equipment being unnecessary. To ensure consistent quality of the product obtained, the use of on-line automatic control of the technological process for minced meat production is envisaged. This system has been developed using artificial intelligence methods and technologies. The system is trainable during the operation process, adapts to changes in processed raw material characteristics and to external impacts that affect the system operation, and manufactures meat shavings with minimal dispersion of the typical particle size. The control system includes equipment for express analysis of the chemical composition of the minced meat and its temperature after comminution. In this case, the minced meat production process can be controlled strictly as a function of time, which excludes subjective factors for assessing the degree of finished product readiness. This will allow finished meat products with consistent, targeted high quality to be produced.
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.
2010-01-01
A general overview of the development of a data acquisition and processing system is presented for a pulsed, 2-micron coherent Doppler Lidar system located in NASA Langley Research Center in Hampton, Virginia, USA. It is a comprehensive system that performs high-speed data acquisition, analysis, and data display both in real time and offline. The first flight missions are scheduled for the summer of 2010 as part of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The system as well as the control software is reviewed and its requirements and unique features are discussed.
Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S
2018-06-01
ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.
NASA Astrophysics Data System (ADS)
Grafton, Q.
2014-12-01
This presentation reviews the pressures, threats and risks to food availability and water based on projected global population growth to 2050. An original model, the Global Food and Water System (GWFS) Platform, is introduced and used to explore food deficits under various scenarios and also the implications for future water gaps. The GWFS platform can assess the effects of crop productivity on food production and incorporates data from 19 major food producing nations to generate a global projection of food and water gaps. Preliminary results indicate that while crop food supply is able to meet global crop food demand by 2050, this is possible only with 'input intensification' that includes increased average rates of water and fertiliser use per hectare and at least a 20% increase in average yield productivity (once and for all). Increased water withdrawals for agriculture with input intensification would, absent any increases in withdrawals in the manufacturing or household uses, would place the world very close to the limits of a safe operating space in terms overall water use by 2050. While global crop food supply can meet projected global demand with input intensification, this still results in large and growing crop food deficits to 2050 in some countries, especially in South Asia, where climate change is expected to increase variability of rainfall and, in some places, reduce overall freshwater availability. While beyond the confines of the GWFS Platform the implications of expected water withdrawals on the environment in particular locations are also briefly reviewed.
Suitable for Whom? The Case of System of Rice Intensification in Tanzania
ERIC Educational Resources Information Center
Tumusiime, Emmanuel
2017-01-01
Purpose: This study examines the suitability of the system of rice intensification (SRI) for diverse small-scale farmers in Tanzania by exploring if poor and non-poor farmers adopt the system to a similar extent. Originality: The suitability of low-external input technologies such as SRI for diverse African farmers is a contentious issue. Existing…
ERIC Educational Resources Information Center
Mahmood, Ali Abdullah
2015-01-01
This paper tries to answer two questions: first, how far do intensifiers in English have the capability to fulfill linguistic intensification in order to achieve the communicative action between the speaker and the listener? Second, to what extent do linguistic characteristics of intensifiers influence translation of locutions of linguistic…
NASA Astrophysics Data System (ADS)
Baxter, C.; Rowan, J. S.; McKenzie, B. M.; Neilson, R.
2013-11-01
Soil is a key asset of natural capital, providing a myriad of goods and ecosystem services that sustain life through regulating, supporting and provisioning roles, delivered by chemical, physical and biological processes. One of the greatest threats to soil is accelerated erosion, which raises a natural process to unsustainable levels, and has downstream consequences (e.g.~economic, environmental and social). Global intensification of agroecosystems is a recognised major cause of soil erosion which, in light of predicted population growth and increased demand for food security, will continue or increase. Transport and redistribution of biota by soil erosion has hitherto been ignored and thus is poorly understood. With the move to sustainable intensification this is a key knowledge gap that needs to be addressed. Here we highlight the erosion-energy and effective-erosion-depth continuum in soils, differentiating between different forms of soil erosion, and argue that nematodes are an appropriate model taxa to investigate impacts of erosion on soil biota across scales. We review the different known mechanisms of soil erosion that impact on soil biota in general, and nematodes in particular, and highlight the few detailed studies, primarily from tropical regions, that have considered soil biota. Based on the limited literature and using nematodes as a model organism we outline future research priorities to initially address the important interrelationships between soil erosion processes and soil biota.
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.; James, Mark W.; Roberts, J. Brent; Jones, W. Linwood; Johnson, James; Farrar, Spencer; Sahawneh, Saleem; Ruf, Christopher S.; Morris, Mary;
2014-01-01
The Hurricane Imaging Radiometer (HIRAD) is a synthetic thinned array passive microwave radiometer designed to allow retrieval of surface wind speed in hurricanes, up through category five intensity. The retrieval technology follows the Stepped Frequency Microwave Radiometer (SFMR), which measures surface wind speed in hurricanes along a narrow strip beneath the aircraft. HIRAD maps wind speeds in a swath below the aircraft, about 50-60 km wide when flown in the lower stratosphere. HIRAD has flown in the NASA Genesis and Rapid Intensification Processes (GRIP) experiment in 2010 on a WB-57 aircraft, and on a Global Hawk unmanned aircraft system (UAS) in 2012 and 2013 as part of NASA's Hurricane and Severe Storms Sentinel (HS3) program. The GRIP program included flights over Hurricanes Earl and Karl (2010). The 2012 HS3 deployment did not include any hurricane flights for the UAS carrying HIRAD. The 2013 HS3 flights included one flight over the predecessor to TS Gabrielle, and one flight over Hurricane Ingrid. This presentation will describe the HIRAD instrument, its results from the 2010 and 2013 flights, and potential future developments.
2010-08-15
Syed Ismail, from the Langley Research Center, principal investigator for the Lidar Atmospheric Sensing Experiment (LASE) is seen aboard the NASA DC-8 aircraft, Monday, August 16, 2010, at Fort Lauderdale Hollywood International Airport in Fort Lauderdale, Fla. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
[Several indicators of tissue oxygen during modeling of extravehicular activity of man].
Lan'shina, O E; Loginov, V A; Akinfiev, A V; Kovalenko, E A
1995-01-01
Investigations of tissue oxygen indices during simulation of extravehicular activity (EVA) of cosmonauts demonstrated that breathing pure oxygen at approximately 280 mmHg elevates oxygen tension in capillary blood, and capillary-tissue gradient during physical work. Physical work alone stimulates tissue oxygenation due to, apparently, intensification of the processes of oxidative phosphorylation. The observed shifts in oxygen status reverse significantly within the first 5 min after completion of the experiment.
NASA Technical Reports Server (NTRS)
Beyon, J. Y.; Koch, G. J.; Kavaya, M. J.
2010-01-01
A data acquisition and signal processing system is being developed for a 2-micron airborne wind profiling coherent Doppler lidar system. This lidar, called the Doppler Aerosol Wind Lidar (DAWN), is based on a Ho:Tm:LuLiF laser transmitter and 15-cm diameter telescope. It is being packaged for flights onboard the NASA DC-8, with the first flights in the summer of 2010 in support of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The data acquisition and processing system is housed in a compact PCI chassis and consists of four components such as a digitizer, a digital signal processing (DSP) module, a video controller, and a serial port controller. The data acquisition and processing software (DAPS) is also being developed to control the system including real-time data analysis and display. The system detects an external 10 Hz trigger pulse and initiates the data acquisition and processing process, and displays selected wind profile parameters such as Doppler shift, power distribution, wind directions and velocities. Doppler shift created by aircraft motion is measured by an inertial navigation/GPS sensor and fed to the signal processing system for real-time removal of aircraft effects from wind measurements. A general overview of the system and the DAPS as well as the coherent Doppler lidar system is presented in this paper.
Henriksson, Patrik John Gustav; Belton, Ben; Jahan, Khondker Murshed-E-; Rico, Andreu
2018-03-20
Food production is a major driver of global environmental change and the overshoot of planetary sustainability boundaries. Greater affluence in developing nations and human population growth are also increasing demand for all foods, and for animal proteins in particular. Consequently, a growing body of literature calls for the sustainable intensification of food production, broadly defined as "producing more using less". Most assessments of the potential for sustainable intensification rely on only one or two indicators, meaning that ecological trade-offs among impact categories that occur as production intensifies may remain unaccounted for. The present study addresses this limitation using life cycle assessment (LCA) to quantify six local and global environmental consequences of intensifying aquaculture production in Bangladesh. Production data are from a unique survey of 2,678 farms, and results show multidirectional associations between the intensification of aquaculture production and its environmental impacts. Intensification (measured in material and economic output per unit primary area farmed) is positively correlated with acidification, eutrophication, and ecotoxicological impacts in aquatic ecosystems; negatively correlated with freshwater consumption; and indifferent with regard to global warming and land occupation. As production intensifies, the geographical locations of greenhouse gas (GHG) emissions, acidifying emissions, freshwater consumption, and land occupation shift from the immediate vicinity of the farm to more geographically dispersed telecoupled locations across the globe. Simple changes in fish farming technology and management practices that could help make the global transition to more intensive forms of aquaculture be more sustainable are identified. Copyright © 2018 the Author(s). Published by PNAS.
Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy.
Sheehan, Oliver; Watts, Joseph; Gray, Russell D; Atkinson, Quentin D
2018-04-03
One of the defining trends of the Holocene has been the emergence of complex societies. Two essential features of complex societies are intensive resource use and sociopolitical hierarchy. Although it is widely agreed that these two phenomena are associated cross-culturally and have both contributed to the rise of complex societies, the causality underlying their relationship has been the subject of longstanding debate. Materialist theories of cultural evolution tend to view resource intensification as driving the development of hierarchy, but the reverse order of causation has also been advocated, along with a range of intermediate views. Phylogenetic methods have the potential to test between these different causal models. Here we report the results of a phylogenetic study that modeled the coevolution of one type of resource intensification-the development of landesque capital intensive agriculture-with political complexity and social stratification in a sample of 155 Austronesian-speaking societies. We found support for the coevolution of landesque capital with both political complexity and social stratification, but the contingent and nondeterministic nature of both of these relationships was clear. There was no indication that intensification was the "prime mover" in either relationship. Instead, the relationship between intensification and social stratification was broadly reciprocal, whereas political complexity was more of a driver than a result of intensification. These results challenge the materialist view and emphasize the importance of both material and social factors in the evolution of complex societies, as well as the complex and multifactorial nature of cultural evolution. Copyright © 2018 the Author(s). Published by PNAS.
Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M.; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S. Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G.; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S.; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja
2007-01-01
Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392
Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja
2007-03-20
Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.
NASA Astrophysics Data System (ADS)
Lachkar, Zouhair; Smith, Shafer; Levy, Marina
2017-04-01
The decline in oxygen supply to the ocean associated with global warming of sea-surface temperatures is expected to expand the oxygen minimum zones (OMZs). This global trend can be attenuated or amplified by regional processes. In the Arabian Sea, the World's thickest OMZ is highly vulnerable to changes in the Indian monsoon wind. Evidence from paleo records and future climate projections indicate strong variations of the Indian monsoon wind intensity over climatic timescales. Yet, the response of the OMZ to these wind changes remains poorly understood and its amplitude and timescale unexplored. Here, we investigate the impacts of perturbations in Indian monsoon wind intensity (from -50% to +50%) on the size and intensity of the Arabian Sea OMZ, and examine the biogeochemical and ecological implications of these changes. To this end, we conducted a series of eddy-resolving simulations of the Arabian Sea using the Regional Oceanic Modeling System (ROMS) coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) ecosystem model that includes a representation of the O2 cycle. We show that the Arabian Sea productivity increases and its OMZ expands and deepens in response to monsoon wind intensification. These responses are dominated by the perturbation of the summer monsoon wind, whereas the changes in the winter monsoon wind play a secondary role. While the productivity responds quickly and nearly linearly to wind increase (i.e., on a timescale of years), the OMZ response is much slower (i.e., a timescale of decades). Our analysis reveals that the OMZ expansion at depth is driven by increased oxygen biological consumption, whereas its surface weakening is induced by increased lateral ventilation. The enhanced lateral ventilation favors episodic intrusions of oxic waters in the lower epipelagic zone (100-200m) of the western and central Arabian Sea, leading to intermittent expansions of habitats and a more frequent alternation of hypoxic and oxic conditions there. The increased productivity and deepening of the OMZ also lead to a strong intensification of denitrification at depth, resulting in a substantial amplification of fixed nitrogen depletion in the Arabian Sea. We conclude that changes in the Indian monsoon can affect, on longer timescales, the large-scale biogeochemical cycles of nitrogen and carbon, with a positive feedback on climate change in the case of stronger winds.
Suicide and depression in childhood and adolescence
Garfinkel, B. D.; Golombek, H.
1974-01-01
Suicide and depression in children and adolescents are reviewed. The true incidence of suicide in the pediatric population is not known because of under-reporting; suicide is, however, considered as a leading cause of death in this age group. Suicide in young children often reflects an immature comprehension of the state of death, combined with a wish to alter an intolerable living situation or to punish individuals significant in his environment. At age 14 the incidence of suicide increases markedly. These acts of self-destruction reflect a developmental process that follows puberty. During this period the youth experiences an impoverishment of values and controls, as well as an intensification of emotions and needs, resulting in extreme disequilibrium. In the late adolescent, as in the adult, suicide occurs commonly in response to real or imagined loss. Specific guidelines are set out for the assessment and management of the depressed and suicidal youth. Community and medical measures of a prophylactic nature are recommended in the belief that the rising incidence of suicide can be halted through an intensification of efforts on the part of the medical profession. PMID:4599484
ERIC Educational Resources Information Center
Suchiradipta, Bhattacharjee; Raj, Saravanan
2015-01-01
Purpose: This paper identifies the stakeholders of System of Rice Intensification (SRI), their roles and actions and the supporting and enabling environment of innovation in the state as the elements of the Agricultural Innovation Systems (AIS) in SRI in Tripura state of India and studies the relationship matrix among the stakeholders.…
ERIC Educational Resources Information Center
Domina, Thurston; Saldana, Joshua
2012-01-01
Over the past three decades, American high school students' course taking has rapidly intensified. Between 1982 and 2004, for example, the proportion of high school graduates who earned credit in precalculus or calculus more than tripled. In this article, the authors investigate the consequences of mathematics curricular intensification for social…
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Arthur, Grant E.; Koch, Grady J.; Kavaya, Michael J.
2012-01-01
Two different noise whitening methods in airborne wind profiling with a pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia are presented. In order to provide accurate wind parameter estimates from the airborne lidar data acquired during the NASA Genesis and Rapid Intensification Processes (GRIP) campaign in 2010, the adverse effects of background instrument noise must be compensated properly in the early stage of data processing. The results of the two methods are presented using selected GRIP data and compared with the dropsonde data for verification purposes.
2010-08-14
Jeffrey Beyon, lower right, and Paul Joseph Petzar, right, researchers from NASA's Langley Research Center, speak with Ramesh Kakar right, of the NASA Earth Science Division as they work with DAWN Air Data Acquisition and Processing software aboard NASA's DC-8 research aircraft, Sunday, Aug. 15, 2010, in support of the GRIP experiment at Fort Lauderdale International Airport in Fort Lauderdale, Fla. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-01-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. PMID:27646707
Increasing Magnitude of Hurricane Rapid Intensification in the Central and Eastern Tropical Atlantic
NASA Astrophysics Data System (ADS)
Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby
2018-05-01
Rapid intensification (RI) of hurricanes is notoriously difficult to predict and can contribute to severe destruction and loss of life. While past studies examined the frequency of RI occurrence, changes in RI magnitude were not considered. Here we explore changes in RI magnitude over the 30-year satellite period of 1986-2015. In the central and eastern tropical Atlantic, which includes much of the main development region, the 95th percentile of 24-hr intensity changes increased at 3.8 knots per decade. In the western tropical Atlantic, encompassing the Caribbean Sea and the Gulf of Mexico, trends are insignificant. Our analysis reveals that warming of the upper ocean coinciding with the positive phase of Atlantic Multidecadal Oscillation, and associated changes in the large-scale environment, has predominantly favored RI magnitude increases in the central and eastern tropical Atlantic. These results have substantial implications for the eastern Caribbean Islands, some of which were devastated during the 2017 hurricane season.
Pervasive transition of the Brazilian land-use system
NASA Astrophysics Data System (ADS)
Lapola, David M.; Martinelli, Luiz A.; Peres, Carlos A.; Ometto, Jean P. H. B.; Ferreira, Manuel E.; Nobre, Carlos A.; Aguiar, Ana Paula D.; Bustamante, Mercedes M. C.; Cardoso, Manoel F.; Costa, Marcos H.; Joly, Carlos A.; Leite, Christiane C.; Moutinho, Paulo; Sampaio, Gilvan; Strassburg, Bernardo B. N.; Vieira, Ima C. G.
2014-01-01
Agriculture, deforestation, greenhouse gas emissions and local/regional climate change have been closely intertwined in Brazil. Recent studies show that this relationship has been changing since the mid 2000s, with the burgeoning intensification and commoditization of Brazilian agriculture. On one hand, this accrues considerable environmental dividends including a pronounced reduction in deforestation (which is becoming decoupled from agricultural production), resulting in a decrease of ~40% in nationwide greenhouse gas emissions since 2005, and a potential cooling of the climate at the local scale. On the other hand, these changes in the land-use system further reinforce the long-established inequality in land ownership, contributing to rural-urban migration that ultimately fuels haphazard expansion of urban areas. We argue that strong enforcement of sector-oriented policies and solving long-standing land tenure problems, rather than simply waiting for market self-regulation, are key steps to buffer the detrimental effects of agricultural intensification at the forefront of a sustainable pathway for land use in Brazil.
NASA Technical Reports Server (NTRS)
Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-01-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.
NASA Astrophysics Data System (ADS)
Pugh, T. A. M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.
2016-09-01
Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.
Kerzicnik, Lauren M; Peairs, Frank B; Cushing, Paula E; Draney, Michael L; Merrill, Scott C
2013-02-01
Spiders are critical predators in agroecosystems. Crop management practices can influence predator density and diversity, which, in turn, can influence pest management strategies. Crop intensification is a sustainable agricultural technique that can enhance crop production although optimizing soil moisture. To date, there is no information on how crop intensification affects natural enemy populations, particularly spiders. This study had two objectives: to characterize the abundance and diversity of spiders in eastern Colorado agroecosystems, and to test the hypothesis that spider diversity and density would be higher in wheat (Triticum aestivum L.) in crop-intensified rotations compared with wheat in conventional rotations. We collected spiders through pitfall, vacuum, and lookdown sampling from 2002 to 2007 to test these objectives. Over 11,000 spiders in 19 families from 119 species were captured from all sampling techniques. Interestingly, the hunting spider guild represented 89% of the spider fauna captured from all sites with the families Gnaphosidae and Lycosidae representing 75% of these spiders. Compared with European agroecosystems, these agroecosystems had greater diversity, which can be beneficial for the biological control of pests. Overall, spider densities were low in these semiarid cropping systems, and crop intensification effects on spider densities were not evident at this scale.
NASA Astrophysics Data System (ADS)
Jebri, B.; Khodri, M.; Gastineau, G.; Echevin, V.; Thiria, S.
2017-12-01
Upwelling is critical to the biological production, acidification, and deoxygenation of the ocean's major eastern boundary current ecosystems. A conceptual hypothesis suggests that the winds that favour coastal upwelling intensify with anthropogenic global warming due to increased land-sea temperature contrast. We examine this hypothesis for the dynamics of the Peru-Chile upwelling using a set of four large ensembles of coupled, ocean-atmosphere model simulations with the IPSL model covering the 1940-2014 period. In one large ensemble we prescribe the standard CMIP5 greenhouse gas (GHG) concentrations, anthropogenic aerosol, ozone and volcanic forcings, following the historical experiments through 2005 and RCP8.5 from 2006-2014, while the other ensembles consider separately the GHG, ozone and volcanic forcings. We find evidence for intensification of upwelling-favourable winds with however little evidence of atmospheric pressure gradients in response to increasing land-sea temperature differences. Our analyses reveal poleward migration and intensification of the South Pacific Anticyclone near poleward boundaries of climatological Peruvian and Chilean upwelling zones. This contribution further investigates the physical mechanisms for the Peru-Chile upwelling intensification and the relative role of natural and anthropogenic forcings.
Alexander, Peter; Rabin, Sam; Anthoni, Peter; Henry, Roslyn; Pugh, Thomas A M; Rounsevell, Mark D A; Arneth, Almut
2018-02-27
Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO 2 ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO 2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas
2017-01-01
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609
Modeling blur in various detector geometries for MeV radiography
NASA Astrophysics Data System (ADS)
Winch, Nicola M.; Watson, Scott A.; Hunter, James F.
2017-03-01
Monte Carlo transport codes have been used to model the detector blur and energy deposition in various detector geometries for applications in MeV radiography. Segmented scintillating detectors, where low Z scintillators combined with a high-Z metal matrix, can be designed in which the resolution increases with increasing metal fraction. The combination of various types of metal intensification screens and storage phosphor imaging plates has also been studied. A storage phosphor coated directly onto a metal intensification screen has superior performance over a commercial plate. Stacks of storage phosphor plates and tantalum intensification screens show an increase in energy deposited and detective quantum efficiency with increasing plate number, at the expense of resolution. Select detector geometries were tested by comparing simulation and experimental modulation transfer functions to validate the approach.
AgMIP: Next Generation Models and Assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2014-12-01
Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.
Goishvili, N; Kakauridze, N; Sanikidze, T
2005-05-01
The aim of the work was to establish the oxidative metabolism changes and NO data in Chronic Hearth Failure (HF). 52 patients were included in the investigation, among them 37 patients with CHD and chronic HF (II-IV functional class by NIHA) and 17 without it (control group). For revealing of organism redox-status (ceruloplasmine, Fe3+-transfferine, Mn2+, methemoglobine) the blood paramagnetic centers was studied by electron paramagnetic resonance method. For revealing of blood free NO, the diethyldithiocarbamat (SIGMA) was used. In chronic HF the oxidative process intensification and organism compensate reaction reduction with low Fe3+-transferine levels, increased Mn2++, methaemoglobin and inactivation of erythrocytes membranes adrenergic receptors were revealed. In chronic HF the accumulation of reactive oxygen levels provoke NO transformation in peroxynitrote with following decreases of blood free NO and develop the endothelial dysfunction.
Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)
NASA Technical Reports Server (NTRS)
Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.
1996-01-01
Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).
2010-08-16
Errol Korn, seated left, deploys a dropsonde experiment over the Gulf of Mexico during a flight aboard the NASA DC-8 as Janel Thomas, a University of Maryland Baltimore County (UMBC) graduate student, and Bob Pasken, look on , Tuesday, Aug. 17, 2010. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2010-08-16
A researcher points out the trajectory of a weather pattern on a computer monitor during a flight aboard the NASA DC-8 aircraft, Tuesday, Aug. 17, 2010, over the Gulf of Mexico. Sceintists and researchers flew Tuesday to study weather as part of the Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Badell, Isabel; Muñoz, Arturo; Estella, Jesús; Fernández-Delgado, Rafael; Javier, Germán; Verdeguer, Amparo; Cubells, Josep
2008-02-01
The first multi-centric protocol for childhood acute lymphoblastic leukaemia (ALL) treatment in Spain started in 1989 and was conducted by the Spanish Pediatric Hematology and Oncology Societies. A total of 673 patients were included in two consecutive trials, SHOP-89 (1989-1993) and SHOP- 94 (1994-1998). Approximately 67% of the children diagnosed with ALL in Spain during this period were enrolled in these trials. The 250 eligible patients enrolled in the SHOP- 89 study were stratified to either a standard or a high-risk group. Therapy schedule was based on the central nervous system (CNS) therapy designed by St Jude CRH and the Children's Cancer Group, and the post-induction intensification developed by the BFM group. In the SHOP-94 study, a further high-risk group was included in the stratification of the 423 enrolled patients. The therapeutic protocol was characterised by intensification of systemic chemotherapy and the administration of cranial radiotherapy only to patients at high risk of relapse or with CNS involvement at diagnosis. Event-free survival (EFS) increased from 0.57+/- 0.03 at 15 years in SHOP-89, to 0.68+/-0.03 at 11 years in SHOP-94 (p=0.01). Relapse rate decreased from SHOP-89 to SHOP-94: 0.38 vs. 0.25 (p=0.01). CNS relapse rate was 9.1% in SHOP-89 and 4.6% in SHOP-94 (p=0.001). EFS in patients with T-immunophenotype was 0.40+/-0.08 in SHOP-89 and 0.44+/-0.06 in SHOP-94 (p=ns). Our therapeutic results evidence a significant improvement in EFS and systemic and CNS relapse rates among the two consecutive trials after modification of patient stratification and intensification of systemic chemotherapy.
ERIC Educational Resources Information Center
Mars, Matthew M.
2010-01-01
This article presents research that draws attention to the intensification of co-branding within elite US graduate colleges of business and education. A robust set of descriptive data collected and analyzed according to a content analysis strategy is used to develop an initial understanding of the trend of naming of colleges and academic units in…
Christopher W. Woodall; Bruce Leutscher
2005-01-01
The sampling design for the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service allows intensification of fuel inventory sampling in areas of ?special interest? and implementation of fuel sampling protocol by non-FIA personnel. The objective of this study is to evaluate the contribution of sampling intensification/extension...
Puthanakit, Thanyawee; Thepnarong, Nattawan; Chaithongwongwatthana, Surasith; Anugulruengkitt, Suvaporn; Anunsittichai, Orawan; Theerawit, Tuangtip; Ubolyam, Sasiwimol; Pancharoen, Chitsanu; Phanuphak, Praphan
2018-04-01
Objectives: The rate of vertical HIV transmission for women at high risk of HIV transmission stands at approximately 7.6%. In the present study we describe infant infection rates in women who had received raltegravir (RAL) intensification during pregnancy to a standard three-drug antiretroviral (ART) regimen in Thailand. Methods: This prospective cohort study enrolled HIV-1-positive pregnant women at high risk of vertical transmission, as defined by (1) ART initiation at a gestational age (GA) ≥32 weeks or (2) HIV-1 RNA >1000 copies/mL at GA of 32-38 weeks while on ART. Women received a standard three-drug ART regimen with RAL intensification (400 mg twice daily) until delivery and continued on a three-drug ART regimen after delivery. Plasma HIV-1 RNA testing was performed before intensification and at delivery. Infant HIV-1 status was determined using DNA PCR at birth, and at 1, 2 and 4 months of life. Results: Between February 2016 and November 2017, 154 pregnant women on ART were enrolled into the study with a median CD4 cell count and plasma HIV-1 RNA level of 382 cells/mm 3 and 4.0 log 10 copies/mL, respectively. The three-drug combination consisted of either a lopinavir/ritonavir- (53%) or efavirenz-based (43%) regimen. Median GA at time of RAL initiation was 34 weeks (interquartile range [IQR] 33-36) and median duration was 21 days (IQR 8-34). The proportion of women who had a plasma HIV-1 RNA <50 and <1000 copies/mL at delivery was 45% and 76%, respectively. There were six infants with HIV infection, three in utero and three peripartum. Overall vertical transmission rate was 3.9% (95% confidence interval [CI] 1.4-8.2). Conclusion: The majority of high-risk pregnant women living with HIV-1 who had received RAL intensification achieved viral suppression at delivery with a relatively low rate of vertical transmission. This intensification strategy represents an option for prevention in HIV-positive women at high risk of vertical transmission.
Boiling process modelling peculiarities analysis of the vacuum boiler
NASA Astrophysics Data System (ADS)
Slobodina, E. N.; Mikhailov, A. G.
2017-06-01
The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.
Airborne Power Ultrasonic Technologies for Intensification of Food and Environmental Processes
NASA Astrophysics Data System (ADS)
Riera, Enrique; Acosta, Víctor M.; Bon, José; Aleixandre, Manuel; Blanco, Alfonso; Andrés, Roque R.; Cardoni, Andrea; Martinez, Ignacio; Herranz, Luís E.; Delgado, Rosario; Gallego-Juárez, Juan A.
Airborne power ultrasound is a green technology with a great potential for food and environmental applications, among others. This technology aims at producing permanent changes in objects and substances by means of the propagation of high-intensity waves through air and multiphase media. Specifically, the nonlinear effects produced in such media are responsible for the beneficial repercussions of ultrasound in airborne applications. Processing enhancement is achieved through minimizing the impedance mismatch between the ultrasonic radiator source and the medium by the generation of large vibration displacements and the concentration of energy radiation thus overcoming the high acoustic absorption of fluids, and in particular of gases such as air. Within this work the enhancing effects of airborne power ultrasound in various solid/liquid/gas applications including drying of solid and semi-solid substances, and the agglomeration of tiny particles in air cleaning processes are presented. Moreover, the design of new ultrasonic devices capable of generating these effects are described along with practical methods aimed at maintaining a stable performance of the tuned systems at operational powers. Hence, design strategies based on finite element modelling (FEM) and experimental methods consolidated through the years for material and tuned assembly characterizations are highlighted.
Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation
NASA Astrophysics Data System (ADS)
Vanlauwe, B.; Descheemaeker, K.; Giller, K. E.; Huising, J.; Merckx, R.; Nziguheba, G.; Wendt, J.; Zingore, S.
2015-06-01
Intensification of smallholder agriculture in sub-Saharan Africa is necessary to address rural poverty and natural resource degradation. Integrated soil fertility management (ISFM) is a means to enhance crop productivity while maximizing the agronomic efficiency (AE) of applied inputs, and can thus contribute to sustainable intensification. ISFM consists of a set of best practices, preferably used in combination, including the use of appropriate germplasm, the appropriate use of fertilizer and of organic resources, and good agronomic practices. The large variability in soil fertility conditions within smallholder farms is also recognized within ISFM, including soils with constraints beyond those addressed by fertilizer and organic inputs. The variable biophysical environments that characterize smallholder farming systems have profound effects on crop productivity and AE, and targeted application of agro-inputs and management practices is necessary to enhance AE. Further, management decisions depend on the farmer's resource endowments and production objectives. In this paper we discuss the "local adaptation" component of ISFM and how this can be conceptualized within an ISFM framework, backstopped by analysis of AE at plot and farm level. At plot level, a set of four constraints to maximum AE is discussed in relation to "local adaptation": soil acidity, secondary nutrient and micronutrient (SMN) deficiencies, physical constraints, and drought stress. In each of these cases, examples are presented whereby amendments and/or practices addressing these have a significantly positive impact on fertilizer AE, including mechanistic principles underlying these effects. While the impact of such amendments and/or practices is easily understood for some practices (e.g. the application of SMNs where these are limiting), for others, more complex processes influence AE (e.g. water harvesting under varying rainfall conditions). At farm scale, adjusting fertilizer applications to within-farm soil fertility gradients has the potential to increase AE compared with blanket recommendations, in particular where fertility gradients are strong. In the final section, "local adaption" is discussed in relation to scale issues and decision support tools are evaluated as a means to create a better understanding of complexity at farm level and to communicate appropriate scenarios for allocating agro-inputs and management practices within heterogeneous farming environments.
Major shifts in Amazon wildlife populations from recent intensification of floods and drought.
Bodmer, Richard; Mayor, Pedro; Antunez, Miguel; Chota, Kimberlyn; Fang, Tula; Puertas, Pablo; Pittet, Marlini; Kirkland, Maire; Walkey, Mike; Rios, Claudia; Perez-Peña, Pedro; Henderson, Peter; Bodmer, William; Bicerra, Andy; Zegarra, Joseph; Docherty, Emma
2018-04-01
In the western Amazon Basin, recent intensification of river-level cycles has increased flooding during the wet seasons and decreased precipitation during the dry season. Greater than normal floods occurred in 2009 and in all years from 2011 to 2015 during high-water seasons, and a drought occurred during the 2010 low-water season. During these years, we surveyed populations of terrestrial, arboreal, and aquatic wildlife in a seasonally flooded Amazonian forest in the Loreto region of Peru (99,780 km 2 ) to study the effects of intensification of natural climatic fluctuations on wildlife populations and in turn effects on resource use by local people. Shifts in fish and terrestrial mammal populations occurred during consecutive years of high floods and the drought of 2010. As floods intensified, terrestrial mammal populations decreased by 95%. Fish, waterfowl, and otter (Pteronura brasiliensis) abundances increased during years of intensive floods, whereas river dolphin and caiman populations had stable abundances. Arboreal species, including, macaws, game birds, primates, felids, and other arboreal mammals had stable populations and were not affected directly by high floods. The drought of 2010 had the opposite effect: fish, waterfowl, and dolphin populations decreased, and populations of terrestrial and arboreal species remained stable. Ungulates and large rodents are important sources of food and income for local people, and large declines in these animals has shifted resource use of people living in the flooded forests away from hunting to a greater reliance on fish. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Stock, Wendy; Johnson, Jeffrey L.; Stone, Richard M.; Kolitz, Jonathan E.; Powell, Bayard L.; Wetzler, Meir; Westervelt, Peter; Marcucci, Guido; DeAngelo, Daniel J.; Vardiman, James W.; McDonnell, Diane; Mrózek, Krzysztof; Bloomfield, Clara D.; Larson, Richard A.
2014-01-01
Purpose CALGB 19802, a phase II study, evaluated whether dose intensification of daunorubicin and cytarabine could improve disease-free survival (DFS) of adults with acute lymphoblastic leukemia (ALL), and whether high-dose systemic and intrathecal methotrexate could replace cranial radiotherapy for central nervous system (CNS) prophylaxis. Patients and Methods One hundred sixty-one eligible, previously untreated patients age 16–82 years (median, 40 years) were enrolled; 33 (20%) were ≥60years old. Results One hundred twenty-eight patients (80%) achieved a complete remission (CR). Dose intensification of daunorubicin and cytarabine was feasible. With a median follow-up of 10.4 years for surviving patients, 5-year DFS was 25% (95% CI, 18–33%) and overall survival (OS) was 30% (95% CI, 23–37%). Patients <60 years who received the 80 mg/m2 dose of daunorubicin had a DFS of 33% (22–44%) and OS of 39% (29–49%) at 5 years. Eighty-four (52%) patients relapsed, including nine (6%) with isolated CNS relapses. Omission of cranial irradiation did not result in higher than historical CNS relapse rates. Conclusion Intensive systemic, oral, and intrathecal methotrexate dosing permitted omission of CNS irradiation. This intensive approach using higher doses of daunorubicin and cytarabine failed to result in an overall improvement in DFS or OS compared with historical CALGB studies. Future therapeutic strategies for adults with ALL should be tailored to specific age and molecular genetic subsets. PMID:22744771
Halcrow, S E; Harris, N J; Tayles, N; Ikehara-Quebral, R; Pietrusewsky, M
2013-03-01
Many bioarchaeological studies have established a link between increased dental caries prevalence and the intensification of agriculture. However, research in Southeast Asia challenges the global application of this theory. Although often overlooked, dental health of infants and children can provide a sensitive source of information concerning health and subsistence change. This article investigates the prevalence and location of caries in the dentition of infants and children (less than 15 years of age) from eight prehistoric mainland Southeast Asian sites collectively spanning the Neolithic to late Iron Age, during which time rice agriculture became an increasingly important subsistence mode. Caries prevalence varied among the sites but there was no correlation with chronological change. The absence of evidence of a decline in dental health over time can be attributed to the relative noncariogenicity of rice and retention of broad-spectrum subsistence strategies. No differences in caries type indicating differences in dental health were found between the sites, apart from the Iron Age site of Muang Sema. There was a higher prevalence of caries in the deciduous dentition than the permanent dentition, likely due to a cariogenic weaning diet and the higher sensitivity of deciduous teeth to decay. The level of caries in the permanent dentition suggests an increased reliance on less cariogenic foods during childhood, including rice. The absence of a temporal decline in dental health of infants and children strengthens the argument that the relationship between caries and agricultural intensification in Southeast Asia was more complex than the general model suggests. Copyright © 2013 Wiley Periodicals, Inc.
Used planet: a global history.
Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H
2013-05-14
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.
Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H.
2013-01-01
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271
Chessells, Judith M; Harrison, Georgina; Richards, Susan M; Gibson, Brenda E; Bailey, Clifford C; Hill, Frank G H; Hann, Ian M
2002-08-01
The impact of various types of intensification therapy was examined in a cohort of 3617 children aged 1-14 years with acute lymphoblastic leukaemia (ALL) enrolled in the Medical Research Council (MRC) UKALL X (1985-90) and UKALL XI (1990-97) trials. UKALL XI was modified in 1992 to incorporate the "best arm" of UKALL X with two 5-d intensification blocks at 5 and 20 weeks, and an additional randomization in respect of a third intensification at 35 weeks but omission of two consecutive injections of daunorubicin during induction. All children were eligible for randomization irrespective of risk group. The impact of the various types of intensification therapy was examined in a stratified analysis. At a median follow up of 102 months, both trials had an identical event-free survival of 61% (95% CI 58-63%) at 8 years. Survival at 8 years in UKALL XI was significantly better in than in UKALL X, 81% (79-83%) compared with 74% (72-76%) (P = < 0.001), owing to improved management of relapse. There was a highly significant trend in reduction of the number of relapses and deaths with increased intensity of therapy both for children with initial leucocyte count < 50 x 10(9)/l (P = < 0.001) and > or = 50 x 10(9)/l (P = 0.002). Introduction of a third late intensification block compensated for omission of anthracyclines during induction but produced little additional benefit. These results show, in a large cohort of patients, that minor modifications of therapy may influence relapse rate and obviate the benefit of previous randomized trials. The failure to adapt treatment for higher risk children contributed to these disappointing results.
Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna
NASA Astrophysics Data System (ADS)
Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P. A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas
2018-03-01
To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
Chakinala, Anand G; Gogate, Parag R; Chand, Rashmi; Bremner, David H; Molina, Raúl; Burgess, Arthur E
2008-03-01
The effect of the presence and absence of the chloroalkanes, dichloromethane (CH(2)Cl(2)), chloroform (CHCl(3)) and carbon tetrachloride (CCl(4)) on the extent of oxidation of aqueous I(-) to I(3)(-) has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl(4)>CHCl(3)>CH(2)Cl(2). However, the results with the ultrasonic probe suggest that an optimum concentration of CH(2)Cl(2) or CHCl(3) exists beyond which there is little increase in the extent of observed intensification. For CCl(4), however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl(4) added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl(4) is the most effective, its toxicity and carcinogenicity may mean that CH(2)Cl(2) and CHCl(3) offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification.
Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.
García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo
2004-12-01
Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.
Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
NASA Astrophysics Data System (ADS)
Zhu, Xiande; Wu, Lixin; Wang, Qi
2018-06-01
With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.
Farming Approaches for Greater Biodiversity, Livelihoods, and Food Security.
Garibaldi, Lucas A; Gemmill-Herren, Barbara; D'Annolfo, Raffaele; Graeub, Benjamin E; Cunningham, Saul A; Breeze, Tom D
2017-01-01
Scientists and policy-makers globally are calling for alternative approaches to conventional intensification of agriculture that enhance ecosystem services provided by biodiversity. The evidence reviewed here suggests that alternative approaches can achieve high crop yields and profits, but the performance of other socioeconomic indicators (as well as long-term trends) is surprisingly poorly documented. Consequently, the implementation of conventional intensification and the discussion of alternative approaches are not based on quantitative evidence of their simultaneous ecological and socioeconomic impacts across the globe. To close this knowledge gap, we propose a participatory assessment framework. Given the impacts of conventional intensification on biodiversity loss and greenhouse gas emissions, such evidence is urgently needed to direct science-policy initiatives, such as the United Nations (UN) 2030 Agenda for Sustainable Development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zoonosis emergence linked to agricultural intensification and environmental change.
Jones, Bryony A; Grace, Delia; Kock, Richard; Alonso, Silvia; Rushton, Jonathan; Said, Mohammed Y; McKeever, Declan; Mutua, Florence; Young, Jarrah; McDermott, John; Pfeiffer, Dirk Udo
2013-05-21
A systematic review was conducted by a multidisciplinary team to analyze qualitatively best available scientific evidence on the effect of agricultural intensification and environmental changes on the risk of zoonoses for which there are epidemiological interactions between wildlife and livestock. The study found several examples in which agricultural intensification and/or environmental change were associated with an increased risk of zoonotic disease emergence, driven by the impact of an expanding human population and changing human behavior on the environment. We conclude that the rate of future zoonotic disease emergence or reemergence will be closely linked to the evolution of the agriculture-environment nexus. However, available research inadequately addresses the complexity and interrelatedness of environmental, biological, economic, and social dimensions of zoonotic pathogen emergence, which significantly limits our ability to predict, prevent, and respond to zoonotic disease emergence.
Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures.
Mei, Wei; Xie, Shang-Ping; Primeau, François; McWilliams, James C; Pasquero, Claudia
2015-05-01
Dominant climatic factors controlling the lifetime peak intensity of typhoons are determined from six decades of Pacific typhoon data. We find that upper ocean temperatures in the low-latitude northwestern Pacific (LLNWP) and sea surface temperatures in the central equatorial Pacific control the seasonal average lifetime peak intensity by setting the rate and duration of typhoon intensification, respectively. An anomalously strong LLNWP upper ocean warming has favored increased intensification rates and led to unprecedentedly high average typhoon intensity during the recent global warming hiatus period, despite a reduction in intensification duration tied to the central equatorial Pacific surface cooling. Continued LLNWP upper ocean warming as predicted under a moderate [that is, Representative Concentration Pathway (RCP) 4.5] climate change scenario is expected to further increase the average typhoon intensity by an additional 14% by 2100.
Agricultural intensification and changes in cultivated areas, 1970–2005
Rudel, Thomas K.; Schneider, Laura; Uriarte, Maria; Turner, B. L.; DeFries, Ruth; Lawrence, Deborah; Geoghegan, Jacqueline; Hecht, Susanna; Ickowitz, Amy; Lambin, Eric F.; Birkenholtz, Trevor; Baptista, Sandra; Grau, Ricardo
2009-01-01
Does the intensification of agriculture reduce cultivated areas and, in so doing, spare some lands by concentrating production on other lands? Such sparing is important for many reasons, among them the enhanced abilities of released lands to sequester carbon and provide other environmental services. Difficulties measuring the extent of spared land make it impossible to investigate fully the hypothesized causal chain from agricultural intensification to declines in cultivated areas and then to increases in spared land. We analyze the historical circumstances in which rising yields have been accompanied by declines in cultivated areas, thereby leading to land-sparing. We use national-level United Nations Food and Agricultural Organization data on trends in cropland from 1970–2005, with particular emphasis on the 1990–2005 period, for 10 major crop types. Cropland has increased more slowly than population during this period, but paired increases in yields and declines in cropland occurred infrequently, both globally and nationally. Agricultural intensification was not generally accompanied by decline or stasis in cropland area at a national scale during this time period, except in countries with grain imports and conservation set-aside programs. Future projections of cropland abandonment and ensuing environmental services cannot be assumed without explicit policy intervention. PMID:19955435
NASA Astrophysics Data System (ADS)
Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.
2011-07-01
Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.
Biodiversity at risk under future cropland expansion and intensification.
Kehoe, Laura; Romero-Muñoz, Alfredo; Polaina, Ester; Estes, Lyndon; Kreft, Holger; Kuemmerle, Tobias
2017-08-01
Agriculture is the leading driver of biodiversity loss. However, its future impact on biodiversity remains unclear, especially because agricultural intensification is often neglected, and high path-dependency is assumed when forecasting agricultural development-although the past suggests that shock events leading to considerable agricultural change occur frequently. Here, we investigate the possible impacts on biodiversity of pathways of expansion and intensification. Our pathways are not built to reach equivalent production targets, and therefore they should not be directly compared; they instead highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change. Based on an extensive database of biodiversity responses to agriculture, we find 30% of species richness and 31% of species abundances potentially lost because of agricultural expansion across the Amazon and Afrotropics. Only 21% of high-risk expansion areas in the Afrotropics overlap with protected areas (compared with 43% of the Neotropics). Areas at risk of biodiversity loss from intensification are found in India, Eastern Europe and the Afromontane region (7% species richness, 13% abundance loss). Many high-risk regions are not adequately covered by conservation prioritization schemes, and have low national conservation spending and high agricultural growth. Considering rising agricultural demand, we highlight areas where timely land-use planning may proactively mitigate biodiversity loss.
Latawiec, A E; Strassburg, B B N; Valentim, J F; Ramos, F; Alves-Pinto, H N
2014-08-01
Intensification of Brazilian cattle ranching systems has attracted both national and international attention due to its direct relation with Amazon deforestation on the one hand and increasing demand of the global population for meat on the other. Since Brazilian cattle ranching is predominantly pasture-based, we particularly focus on pasture management. We summarize the most recurrent opportunities and risks associated with pasture intensification that are brought up within scientific and political dialogues, and discuss them within the Brazilian context. We argue that sustainable intensification of pasturelands in Brazil is a viable way to increase agricultural output while simultaneously sparing land for nature. Since environmental degradation is often associated with low-yield extensive systems in Brazil, it is possible to obtain higher yields, while reversing degradation, by adopting practices like rotational grazing, incorporation of legumes and integrated crop-livestock-forestry systems. Technical assistance is however essential, particularly for small- and medium-scale farmers. Sound complementary policies and good governance must accompany these measures so that a 'rebound effect' does not lead to increased deforestation and other adverse social and environmental impacts. It is also important that animal welfare is not compromised. Although the discussion is presented with respect to Brazil, some aspects are relevant to other developing countries.
Fuel ethanol production: process design trends and integration opportunities.
Cardona, Carlos A; Sánchez, Oscar J
2007-09-01
Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.
Hösel, Markus; Angmo, Dechan; Søndergaard, Roar R.; dos Reis Benatto, Gisele A.; Carlé, Jon E.; Jørgensen, Mikkel
2014-01-01
The fabrication of substrates and superstrates prepared by scalable roll‐to‐roll methods is reviewed. The substrates and superstrates that act as the flexible carrier for the processing of functional organic electronic devices are an essential component, and proposals are made about how the general availability of various forms of these materials is needed to accelerate the development of the field of organic electronics. The initial development of the replacement of indium‐tin‐oxide (ITO) for the flexible carrier materials is described and a description of how roll‐to‐roll processing development led to simplification from an initially complex make‐up to higher performing materials through a more simple process is also presented. This process intensification through process simplification is viewed as a central strategy for upscaling, increasing throughput, performance, and cost reduction. PMID:27980893
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.
2012-08-01
SummaryWe identified natural baseline groundwater quality and impacts caused by land use intensification by relating groundwater chemistry with water age. Tritium, the most direct tracer for groundwater dating, including the time of water passage through the unsaturated zone, was overwhelmed over the recent decades by contamination from bomb-tritium from nuclear weapons testing in the early 1960s. In the Southern Hemisphere, this situation has changed now with the fading of the bomb-tritium, and tritium has become a tool for accurate groundwater dating. Tritium dating will become efficient also in the Northern Hemisphere over the next decade. Plotting hydrochemistry and field parameters versus groundwater age allowed us to identify those parameters that have increasing concentrations with age and are therefore from geological sources. These indicators for natural groundwater evolution are: Na, HCO3, SiO2, F, PO4, the redox-sensitive elements and compounds Fe, Mn, NH4, CH4, and pH and conductivity. In young groundwater that was recharged after the intensification of agriculture, nitrate, sulphate, CFC-11 and CFC-12, and pesticides are the most representative indicators for the impact of land-use intensification on groundwater quality, with 66% of the sites showing such an impact. Elevated concentrations of nitrate in oxic groundwater allowed us to reconstruct the timing and magnitude of the impact of land-use intensification on groundwater which in New Zealand occurred in two stages. Old pristine groundwater reflects the natural baseline quality. A transition to slightly elevated concentration due to low-intensity land-use was observed in groundwater recharged since around 1880. A sharp increase in nitrate and other agrochemicals due to high-intensity agriculture was observed in groundwater recharged since 1955. The threshold concentrations that distinguish natural baseline quality water from low-intensity land-use water, and low-intensity from high intensity land-use water, are 0.25 and 2.5 mg/L NO3-N, respectively. The change in groundwater quality from pristine baseline to low-intensity impact around 1880 coincides with the start of the meat export industry. The change in groundwater quality from low to high intensity landuse impact around 1955 coincides with the start of industrialised agriculture. No elevated levels of phosphate, a main compound in agricultural fertilisers and, together with nitrogen, a trigger of algae blooms in lakes, were found in young groundwater. This implies that fertiliser phosphate from non-point sources is still retained in the soil and has not yet reached the saturated groundwater systems. The source of elevated PO4, observed only in old groundwater, is therefore due purely to natural geochemical factors.
2010-08-15
Susan Kool, a researcher from the Langley Research Center, works on monitoring the Lidar Atmospheric Sensing Experiment (LASE) aboard the NASA DC-8 aircraft, Monday, Aug. 16, 2010, at Fort Lauderdale Hollywood International Airport in Fort Lauderdale, Fla. LASE probes the atmosphere using lasers and is part of the Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2010-08-16
An unidentified researcher looks over the wiring connecting the Airbrorne Precipitation Radar (APR-2) during a flight aboard the NASA DC-8 aircraft, Tuesday, Aug. 17, 2010, over the Gulf of Mexico. Scientists taking part in the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes, flew out over a weather pattern Tuesday to begin their research. Photo Credit: (NASA/Paul E. Alers)
2010-08-15
Simone Tanelli, a researcher from the Jet Propulsion Laboratory, talks about the Airbrorne Precipitation Radar (APR-2) aboard the NASA DC-8 aircraft, Monday, Aug.16, 2010, at Fort Lauderdale Hollywood International Airport in Fort Lauderdale, Fla. The APR-2, a dual frequency weather radar, is just one of the experiments supporting the Genesis and Rapid Intensification Processes (GRIP) mission, a NASA Earth science field experiment that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Summaries of press automation conference presented
NASA Astrophysics Data System (ADS)
Makhlin, A. Y.; Pokrovskaya, G. M.
1985-01-01
The automation and mechanization of cold and hot stamping were discussed. Problems in the comprehensive mechanization and automatio of stamping in machine building development were examined. Automation becomes effective when it is implemented in progressive manufacturing processes and a comprehensive approach to the solution of all problems, beginning with the delivery of initial materials and ending with the transportation of finished products to the warehouse. Production intensification and improvments of effectiveness of produced output through the comprehensive mechanization and automation of stamping operations are reported.
Delivery of Unmanned Aerial Vehicle Data
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Sullivan, Donald V.
2011-01-01
To support much of NASA's Upper Atmosphere Research Program science, NASA has acquired two Global Hawk Unmanned Aerial Vehicles (UAVs). Two major missions are currently planned using the Global Hawk: the Global Hawk Pacific (GloPac) and the Genesis and Rapid Intensification Processes (GRIP) missions. This paper briefly describes GloPac and GRIP, the concept of operations and the resulting requirements and communication architectures. Also discussed are requirements for future missions that may use satellite systems and networks owned and operated by third parties.
Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.
Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V
2014-06-14
Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.
Night Vision Goggle Training; Development and Production of Six Video Programs
1992-11-01
SUIUECT TERMS Multimedia Video production iS. NUMBER OF PAGES Aeral photography Night vision Videodisc 18 Image Intensification Night vision goggles...reference tool on the squadron or wing demonstrates NVG field of view, field of level. The programs run approximately ten regard, scan techniques, image...training device modalities. These The production of a videodisc that modalities include didactic and video will serve as an NVG audio-visual database
Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam
NASA Astrophysics Data System (ADS)
Kalitko, V. A.
2010-03-01
On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1989-01-01
Asymptotic modal analysis (AMA) is used to study a rectangular cavity with a flexible vibrating portion on one wall and five rigid walls. The agreement between mean square pressure levels of the cavity interior calculated from classical modal analysis and from the AMA method improved as the number of responding modes increased. It is shown that intensification effects were due to both the excitation location and the response location.
Patterns of land use, extensification, and intensification of Brazilian agriculture.
Dias, Lívia C P; Pimenta, Fernando M; Santos, Ana B; Costa, Marcos H; Ladle, Richard J
2016-08-01
Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940-2012) and productivity (1990-2012) in Brazil using a new high-resolution (approximately 1 km(2) ) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision-making. © 2016 John Wiley & Sons Ltd.
Guo, Yi-Peng; Tan, Zhe-Min
2018-04-17
The El Niño-Southern Oscillation (ENSO) can significantly affect the rapid intensification of tropical cyclones over the western North Pacific (WNP). However, ENSO events have various durations, which can lead to different atmospheric and oceanic conditions. Here we show that during short duration El Niño events, the WNP tropical cyclone rapid-intensification mean occurrence position migrates westward by ~8.0° longitude, which is caused by reduced vertical wind shear, increased mid-tropospheric humidity, and enhanced tropical cyclone heat potential over the westernmost WNP. The changes in these factors are caused by westward advected upper ocean heat during the decaying phase of a short duration El Niño. As super El Niño events tend to have short durations and their frequency is projected to increase under global warming, our findings have important implications for future projections of WNP tropical cyclone activity.
Evaluation of visual acuity with Gen 3 night vision goggles
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Kaiser, Mary K.
1994-01-01
Using laboratory simulations, visual performance was measured at luminance and night vision imaging system (NVIS) radiance levels typically encountered in the natural nocturnal environment. Comparisons were made between visual performance with unaided vision and that observed with subjects using image intensification. An Amplified Night Vision Imaging System (ANVIS6) binocular image intensifier was used. Light levels available in the experiments (using video display technology and filters) were matched to those of reflecting objects illuminated by representative night-sky conditions (e.g., full moon, starlight). Results show that as expected, the precipitous decline in foveal acuity experienced with decreasing mesopic luminance levels is effectively shifted to much lower light levels by use of an image intensification system. The benefits of intensification are most pronounced foveally, but still observable at 20 deg eccentricity. Binocularity provides a small improvement in visual acuity under both intensified and unintensified conditions.
Identification of barriers to insulin therapy and approaches to overcoming them
Russell‐Jones, David; Pouwer, Frans
2017-01-01
Poor glycaemic control in type 2 diabetes (T2D) is a global problem despite the availability of numerous glucose‐lowering therapies and clear guidelines for T2D management. Tackling clinical or therapeutic inertia, where the person with diabetes and/or their healthcare providers do not intensify treatment regimens despite this being appropriate, is key to improving patients’ long‐term outcomes. This gap between best practice and current level of care is most pronounced when considering insulin regimens, with studies showing that insulin initiation/intensification is frequently and inappropriately delayed for several years. Patient‐ and physician‐related factors both contribute to this resistance at the stages of insulin initiation, titration and intensification, impeding achievement of optimal glycaemic control. The present review evaluates the evidence and reasons for this delay, together with available methods for facilitation of insulin initiation or intensification. PMID:29053215
NASA Astrophysics Data System (ADS)
Meric de Bellefon, G.; van Duysen, J. C.
2018-05-01
A recent finite-element method (FEM)-based study from the present authors quantified the effect of elastic anisotropy of grains on stress intensification at potential intergranular stress corrosion cracking (IGSCC) initiation sites in austenitic stainless steels. In particular, it showed that the auxetic behavior of grains (negative Poisson's ratio) in some directions plays a very important role in IGSCC initiation, since it can induce local stress intensification factors of about 1.6. A similar effect is expected for other fcc alloys such as Ni-based alloys. The present article confirms those results and paves the way to the definition of an IGSCC susceptibility index by identifying grain configurations that are the most favorable for crack initiation. The index will rely on the probability to get those configurations on surface of specimens.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Astrophysics Data System (ADS)
Conover, H.; Kulkarni, A.; Garrett, M.; Goodman, M.; Petersen, W. A.; Drewry, M.; Hardin, D. M.; He, M.
2011-12-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
Collaboration Portals for NASA's Airborne Field Campaigns
NASA Technical Reports Server (NTRS)
Conover, Helen; Kulkami, Ajinkya; Garrett, Michele; Goodman, Michael; Peterson, Walter Arthur; Drewry, Marilyn; Hardin, Danny M.; He, Matt
2011-01-01
The University of Alabama in Huntsville (UAH), in collaboration with the Global Hydrology Resource Center, a NASA Earth Science Data Center, has provided information management for a number of NASA Airborne Field campaigns, both hurricane science investigations and satellite instrument validation. Effective field campaign management requires communication and coordination tools, including utilities for personnel to upload and share flight plans, weather forecasts, a variety of mission reports, preliminary science data, and personal photos. Beginning with the Genesis and Rapid Intensification Processes (GRIP) hurricane field campaign in 2010, we have provided these capabilities via a Drupal-based collaboration portal. This portal was reused and modified for the Midlatitude Continental Convective Clouds Experiment (MC3E), part of the Global Precipitation Measurement mission ground validation program. An end goal of these development efforts is the creation of a Drupal profile for field campaign management. This presentation will discuss experiences with Drupal in developing and using these collaboration portals. Topics will include Drupal modules used, advantages and disadvantages of working with Drupal in this context, and how the science teams used the portals in comparison with other communication and collaboration tools.
Sadykov, R A; Migunov, V V
1987-01-01
The process of potassium benzylpenicillin vacuum drying was investigated. The kinetics of the process showed that a larger period of the drying process was needed for eliminating bound moisture. The influence of the angular velocity of the drier drum rotation on drying duration was studied in a short-term contact model. It was shown that intensity of drying increased with increasing velocity of the drum rotation. Experimental trials confirmed the conclusion and revealed adequacy of the relationship between the drying time and dispersion intensity in the short-term contact model. A qualitative dependence of the coefficient of convective heat exchange between the heating surface and the product on the angular velocity of the drier drum rotation was constructed.
Alexander, Bruce; Agudelo, Luz Adriana; Navarro, Jose Fernando; Ruiz, Jhon Fredy; Molina, Jorge; Aguilera, German; Klein, Adriana; Quiñones, Martha Lucia
2009-12-01
The inhabitants of coffee-growing municipalities consistently report the highest annual rates of cutaneous leishmaniasis in Colombia. During the last two decades most Colombian coffee growers have changed from the traditional system of cultivation, where the crop is grown under different species of shade trees, to an intensified system where it is grown at high densities in full sunlight. This change may affect transmission of Leishmania spp. to humans in several ways, probably resulting from reduced human-vector contact. The responses of residents of traditional and intensified coffee plantations to the leishmanin skin test were compared to ascertain whether intensification has indeed affected Leishmania transmission. Although prevalence of infection was significantly higher (P< or =0.01) among residents of traditional plantations (26.8%) than among those of intensified ones (13.2%), no significant difference could be demonstrated with respect to incidence of infection at the time of the study. Similar rates of infection were found for men and women, although the incidence of infection was significantly higher among the latter in intensified plantations. Changes to the type of data collected and the data collection process will facilitate the evaluation of the long-term effects of intensification of coffee plantations on Leishmania transmission.
Intensification of convective extremes driven by cloud-cloud interaction
NASA Astrophysics Data System (ADS)
Moseley, Christopher; Hohenegger, Cathy; Berg, Peter; Haerter, Jan O.
2016-10-01
In a changing climate, a key role may be played by the response of convective-type cloud and precipitation to temperature changes. Yet, it is unclear if convective precipitation intensities will increase mainly due to thermodynamic or dynamical processes. Here we perform large eddy simulations of convection by imposing a realistic diurnal cycle of surface temperature. We find convective events to gradually self-organize into larger cloud clusters and those events occurring late in the day to produce the highest precipitation intensities. Tracking rain cells throughout their life cycles, we show that events which result from collisions respond strongly to changes in boundary conditions, such as temperature changes. Conversely, events not resulting from collisions remain largely unaffected by the boundary conditions. Increased surface temperature indeed leads to more interaction between events and stronger precipitation extremes. However, comparable intensification occurs when leaving temperature unchanged but simply granting more time for self-organization. These findings imply that the convective field as a whole acquires a memory of past precipitation and inter-cloud dynamics, driving extremes. For global climate model projections, our results suggest that the interaction between convective clouds must be incorporated to simulate convective extremes and the diurnal cycle more realistically.
Dependence of tropical cyclone development on coriolis parameter: A theoretical model
NASA Astrophysics Data System (ADS)
Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda
2018-03-01
A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.
NASA Astrophysics Data System (ADS)
Larsen, Søren; Bentsen, Niclas S.; Dalgaard, Tommy; Jørgensen, Uffe; Olesen, Jørgen E.; Felby, Claus
2017-11-01
To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how it is possible to increase production while at the same time decreasing environmental impact and with only minor consequences on food and feed production. An additional ~10 Tg biomass can be available in 2020 for the Danish energy sector. By converting the biomass in a biorefinery concept it is possible to supply relevant, domestically produced energy carriers that amounts to ~5%-13% of 2020 Danish energy consumption. This has the potential to reduce the GHG emissions with 13%-21% of 2020 emissions. These results are possible because Danish net primary production and the human appropriation hereof can be increased. We show that biomass for bioenergy has a large near-term potential to supply relevant energy carriers to the society while at the same time achieving significant GHG emission mitigation.
Candida Species Biofilms’ Antifungal Resistance
Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana
2017-01-01
Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527
Mangrove dieback during fluctuating sea levels.
Lovelock, Catherine E; Feller, Ilka C; Reef, Ruth; Hickey, Sharyn; Ball, Marilyn C
2017-05-10
Recent evidence indicates that climate change and intensification of the El Niño Southern Oscillation (ENSO) has increased variation in sea level. Although widespread impacts on intertidal ecosystems are anticipated to arise from the sea level seesaw associated with climate change, none have yet been demonstrated. Intertidal ecosystems, including mangrove forests are among those ecosystems that are highly vulnerable to sea level rise, but they may also be vulnerable to sea level variability and extreme low sea level events. During 16 years of monitoring of a mangrove forest in Mangrove Bay in north Western Australia, we documented two forest dieback events, the most recent one being coincident with the large-scale dieback of mangroves in the Gulf of Carpentaria in northern Australia. Diebacks in Mangrove Bay were coincident with periods of very low sea level, which were associated with increased soil salinization of 20-30% above pre-event levels, leading to canopy loss, reduced Normalized Difference Vegetation Index (NDVI) and reduced recruitment. Our study indicates that an intensification of ENSO will have negative effects on some mangrove forests in parts of the Indo-Pacific that will exacerbate other pressures.
Tracking environmental dynamics and agricultural intensification in southern Mali
Tappan, G. Gray; McGahuey, M.
2007-01-01
The Office de la Haute Vallée du Fleuve Niger (OHVN) zone in southern Mali is a small but important agricultural production region. Against a background of environmental degradation including decades of declining rainfall, soil erosion, and human pressure on forest resources, numerous farming communities stand out through the use of improved soil and water management practices that have improved agricultural and environmental conditions. Field surveys conducted in 1998–2001 indicated that environmental and agricultural conditions have improved in the past decade. In an effort to better quantify environmental trends, we conducted a study using medium- and high-resolution remotely sensed images from 1965 to 2001 in order to analyze land use and land cover trends in 21 village territories. The trends show clear indications of agricultural intensification and diversification among villages that have received assistance from the OHVN agricultural development agency. Some communities have improved environmental conditions by protecting their forest resources through community management actions. Four decades of remotely sensed images played a practical role in tracking and quantifying environmental and agricultural conditions over time.
Intensification of tropical agriculture as seen by satellite
NASA Astrophysics Data System (ADS)
Galford, G. L.; Michelson, H. C.; Spera, S. A.; Hadnott, B.
2013-12-01
We present case studies from Latin America and Africa on intensification of tropical agriculture. The Brazilian Amazon of the early 2000s experienced intensification and extensification. We use time series analysis of MODIS vegetation indices to track changes in cropping intensity and crop types over time. The state of Mato Grosso is Brazil's leading producer of soy, corn and cotton. Using 250 m MODIS EVI data and a new decision-tree algorithm tuned to phenological patterns characteristic of Mato Grosso's major natural vegetation and crop rotations, we mapped land-cover across the state over 11 growing seasons (2001-2011). Between 2000 and 2011, a majority of the cultivated land in Mato Grosso transitioned from the cultivation of one commercial crop per growing season (soy or cotton) to two commercial crops (a soy crop followed by a corn or cotton crop). Over our study period, the cultivated area of double cropped land in Mato Grosso steadily increased over 6-fold from .46 million hectares to 2.9 million hectares, 92% of which was in a soy-corn double cropping rotation. In the sub-Saharan country of Malawi, 70% of the land is dedicated to food production yet yields of the primary staple crop, maize, have stagnated around 1 ton ha-1 (developed nations' maize yields are 12-16 tons ha-1). Due to the limited land area, improving yields through intensification is a necessary objective of development. Poverty and food insecurity were widespread and persistent for smallholder farmers cultivating less than 1 hectare of land until the implementation of a government intervention, funded through foreign aid, subsidized allocations of fertilizer and improved seed to small farmers. Since implementation of the policy, the number of food insecure, or people in need of food aid, has decreased from 5 million to half a million people. We present indicators that levels of poverty have decreased since the subsidy. National yields have doubled. Applying modified methods from Brazil, we are able to detect cropland intensification through remote sensing. We present remote sensing analysis of social and economic correlates to changes in yields and build an empirical model of sustainable intensification. Together, these case studies demonstrate that remote sensing techniques can be easily adapted across very different crop types, field sizes and environments.
Dalle, Sarah Paule; Pulido, María T; de Blois, Sylvie
2011-07-01
Shifting cultivation is often perceived to be a threat to forests, but it is also central to the culture and livelihoods of millions of people worldwide. Balancing agriculture and forest conservation requires knowledge of how agricultural land uses evolve in landscapes with forest conservation initiatives. Based on a case study from Quintana Roo, Mexico, and remote sensing data, we investigated land use and land cover change (LUCC) in relation to accessibility (from main settlement and road) in search of evidence for agricultural expansion and/or intensification after the initiation of a community forestry program in 1986. Intensification was through a shortening of the fallow period. Defining the sampling space as a function of human needs and accessibility to agricultural resources was critical to ensure a user-centered perspective of the landscape. The composition of the accessible landscape changed substantially between 1976 and 1997. Over the 21-year period studied, the local population saw the accessible landscape transformed from a heterogeneous array of different successional stages including mature forests to a landscape dominated by young fallows. We detected a dynamic characterized by intensification of shifting cultivation in the most accessible areas with milpas being felled more and more from young fallows in spite of a preference for felling secondary forests. We argue that the resulting landscape provides a poorer resource base for sustaining agricultural livelihoods and discuss ways in which agricultural change could be better addressed through participatory land use planning. Balancing agricultural production and forest conservation will become even more important in a context of intense negotiations for carbon credits, an emerging market that is likely to drive future land changes worldwide.
NASA Astrophysics Data System (ADS)
Sofianos, Sarantis S.; Johns, William E.
2003-03-01
The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.
Validated Competing Event Model for the Stage I-II Endometrial Cancer Population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmona, Ruben; Gulaya, Sachin; Murphy, James D.
2014-07-15
Purpose/Objectives(s): Early-stage endometrial cancer patients are at higher risk of noncancer mortality than of cancer mortality. Competing event models incorporating comorbidity could help identify women most likely to benefit from treatment intensification. Methods and Materials: 67,397 women with stage I-II endometrioid adenocarcinoma after total hysterectomy diagnosed from 1988 to 2009 were identified in Surveillance, Epidemiology, and End Results (SEER) and linked SEER-Medicare databases. Using demographic and clinical information, including comorbidity, we sought to develop and validate a risk score to predict the incidence of competing mortality. Results: In the validation cohort, increasing competing mortality risk score was associated with increasedmore » risk of noncancer mortality (subdistribution hazard ratio [SDHR], 1.92; 95% confidence interval [CI], 1.60-2.30) and decreased risk of endometrial cancer mortality (SDHR, 0.61; 95% CI, 0.55-0.78). Controlling for other variables, Charlson Comorbidity Index (CCI) = 1 (SDHR, 1.62; 95% CI, 1.45-1.82) and CCI >1 (SDHR, 3.31; 95% CI, 2.74-4.01) were associated with increased risk of noncancer mortality. The 10-year cumulative incidences of competing mortality within low-, medium-, and high-risk strata were 27.3% (95% CI, 25.2%-29.4%), 34.6% (95% CI, 32.5%-36.7%), and 50.3% (95% CI, 48.2%-52.6%), respectively. With increasing competing mortality risk score, we observed a significant decline in omega (ω), indicating a diminishing likelihood of benefit from treatment intensification. Conclusion: Comorbidity and other factors influence the risk of competing mortality among patients with early-stage endometrial cancer. Competing event models could improve our ability to identify patients likely to benefit from treatment intensification.« less
Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit
NASA Astrophysics Data System (ADS)
Belsky, Aleksey A.; Dobush, Vasiliy S.
2017-10-01
This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.
Monieta, Adela; Anczurowski, Wojciech
2004-01-01
Presentation of Post-Traumatic Stress Disorder based on the approach of various authors concentrating, upon the concept of the American classification: DSM III (1980) and DSM IV (1994). We acknowledged the necessity of displaying empirical results of intensification of PTSD among the Siberian deportees population in the region of North-East part of Poland. In our analysis, we stressed the importance of the distant in time, psychological consequences of dwelling in extremely difficult living conditions that often threatened the life of those who had been deported to Siberia between 1939 and 1956. 40 "Siberian deportees" (20 men and 20 women) were examined. The method of PTSD-Interview (PTSD-I) was used here in order to obtain, in each individual case, the indicatory number indispensable for the statistical analysis. An average result of PTSD intensification in the case of women reaches a "very significant" level and in the case of men it is even higher. The disparity between the average results of women and of men are statistically significant (p<0.05). This research has confirmed the assumptions that suffering from trauma in the early stage of development (within the age range of 8-15) leaves a permanent mark in the human psyche. Statistical analysis revealed a high level of intensification of PTSD among the population of the "Siberian deportees" from the North-East region of Poland.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-12-01
Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.
Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques
Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh
2016-01-01
Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898
NASA Astrophysics Data System (ADS)
Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.
2015-12-01
We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The BFAST framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in regimes. To further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil. Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation. We validated the number of cultivation cycles predicted against in-situ information collected from farmers interviews, resulting in a Normalized RMSE of 0.25. Overall the method performed well, producing maps with coherent patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond. Spatial and temporal patterns were further analysed with an ecological perspective in a follow-up study. Results show that changes in land use patterns such as land use intensification and reduced agricultural expansion reflect the socio-economic transformations that occurred in the region
Harth, Yoram; Frank, Ido
2013-12-01
Microneedle radiofrequency is a novel method that allows non-thermal penetration of the epidermis followed by RF coagulation in selected depth of the dermis surrounded by zone of non-coagulative volumetric heating. The first generation of Microneedle RF applicators used insulated needles. These treatments were limited by a few factors, including low volume of dermal heating, lack of effect in the papillary dermis and pinpoint bleeding during the treatment. The system tested in this study (EndyMed PRO, Intensif applicator, EndyMed Medical, Cesarea, Israel) utilizes special extra sharp tapered non-insulated microneedles and a special pulse mode, allowing full coagulation during treatment and higher effective volume of dermal heat. After Ethics Committee approval, one female pig (Type Large white X Landrace, 34 Kg) was chosen for the study. The animal was anesthetized using Ketamine, Xylazin and Isofluran. The EndyMed PRO, Intensif applicator (was used for treatment with different needle depth penetration (1 mm-3.5 mm) and in multiple energy settings. Six mm punch biopsies were harvested for histological analysis at the following time points: immediately after the treatment, 4 days after the treatment and 14 days after the treatment. H&E and Masson-Trichrome stains were processed. Visual inspection of the treated skin, immediately after the treatment, revealed arrays of pinpoint erythematous papules surrounded by undamaged epidermal tissue. Treatment field showed no sign of bleeding. Mild to moderate Erythema and Edema developed a few minutes after the treatment, varying according to the total energy delivered. The histologies taken 4-day after therapy showed in all energy settings, dry micro crusts over the treatment zones, with full healing of epidermis. In the 14-day specimens there was a replacement of the crusts/debris by a normal looking stratum corneum with complete healing of epidermis and dermis. The current in vivo study confirms that the EndyMed PRO Intensif applicator effective and predictable tool to create cylindrical micro zones of coagulation in the papillary and reticular dermis with minimal damage to the epidermis. The histologies taken 4 days and 14 days after treatment show rapid epidermal renewal with predictable volume of coagulation in dermis related to the length of the needle and the power used. Coagulation of capillaries during treatment allows a dry treatment field. The predictability of the effect and minimal downtime may offer a significant advantage over treatments with ablative fractional lasers of insulated RF microneedles.
Bailey, Robert A; Pfeifer, Michael; Shillington, Alicia C; Harshaw, Qing; Funnell, Martha M; VanWingen, Jeffrey; Col, Nanada
2016-01-14
Patients with type 2 diabetes (T2DM) often have poor glycemic control on first-line pharmacologic therapy and require treatment intensification. Intensification decisions can be difficult because of many available options and their many benefits and risks. The American Diabetes Association recommends patient-centered, evidence-based tools supporting shared decision-making between patients and clinicians. We developed a patient decision aid (PDA) targeting decisions about treatment intensification for T2DM. Our objective was to determine the effectiveness of this PDA for patients with T2DM on metformin who require treatment intensification. This study was a pragmatic randomized controlled trial conducted in 27 US primary care and endocrinology clinics. Subjects were English-speaking adults with T2DM receiving metformin with persistent hyperglycemia who were recommended to consider medication intensification. Subjects were randomized to receive either the PDA or usual care (UC). Main outcome measures were change in knowledge, decisional self-efficacy, and decisional conflict. Of 225 subjects enrolled, 114 were randomized to the PDA and 111 to UC. Mean [SD] age was 52 [1] years, time since T2DM diagnosis was 6 [+/-6] years, 45.3% were male, and most (55.5%) were non-Caucasian. Compared to UC, PDA users had significantly larger knowledge gains (35.0% [22.3] vs 9.9% [22.2]; P < 0.0001) and larger improvements in self-efficacy (3.7 [16.7] vs-3.9 [19.2]; P < 0.0001) and decisional conflict (-22.2 [20.6] vs-7.5 [16.6]; P < 0.0001). The PDA resulted in substantial and significant improvements in knowledge, decisional conflict and decisional self-efficacy. Decisional conflict scores after PDA use were within the range that correlates with effective decision-making. This PDA has the potential to facilitate shared-decision-making for patients with T2DM. NCT02110979.
Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations
Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.
2010-01-01
Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate observation system are needed to reduce uncertainties and to detect and document ongoing changes in all system components for further evidence of Arctic FWC intensification.
Krikke, Maaike; Tesselaar, Kiki; Arends, Joop E; Drylewicz, Julia; Otto, Sigrid A; van Lelyveld, Steven F L; Visseren, Frank J L; Hoepelman, Andy I M
2016-09-01
The increased risk of abacavir in cardiovascular disease (CVD) in HIV-infected patients is still being debated. Maraviroc, a CCR5 blocker, has been shown to decrease immune activation and monocyte infiltration in atherosclerotic plaques in murine experiments. Therefore, we examined the effect of maraviroc intensification on flow-mediated dilatation (FMD) in abacavir-treated HIV-infected patients and its effect on immunological and inflammatory parameters. A open-label prospective crossover study with a duration of 16 weeks: 8 weeks of intervention (maraviroc intensification) and 8 weeks of control (unchanged cART regimen). FMD, HIV-specific variables, expression of HIV co-receptors, markers of inflammation and coagulation and cellular markers of immune activation were measured at weeks 0, 8 and 16. The changes (Δ) in these variables were compared between intervention and control periods using non-parametric tests. To evaluate the relation with the change in FMD, linear regression modeling was used. Twenty-one male patients with suppressed plasma HIV-RNA, on cART, had a known HIV infection for 9.2 years (IQR 6.9-13.5) with abacavir use for 6.5 years (2.8-9.3). A significantly increased FMD of 0.73% (IQR -0.25 to 1.70) was seen after maraviroc intensification compared to a decrease of -0.42% (IQR -1.89 to 0.25; p = 0.049) in the control period. There was a negative relation between ΔFMD with ΔD-dimer (β -22.70, 95% CI -39.27; -6.13, p = 0.011) and ΔCD95+ CD4+ T cells (β -0.16, 95% CI -0.28; -0.04, p = 0.013), adjusted for age and duration of HIV. Maraviroc intensification modestly improves endothelial function in HIV-infected patients on an abacavir-containing regimen. NCT01389063.
Giugliano, D; Sieradzki, J; Stefanski, A; Gentilella, R
2016-08-01
Many patients with type 2 diabetes mellitus (T2DM) require insulin therapy. If basal insulin fails to achieve glycemic control, insulin intensification is one possible treatment intensification strategy. We summarized clinical data from randomized clinical trials designed to compare the efficacy and safety of basal-bolus and premixed insulin intensification regimens. We defined a between-group difference of ≥0.3% in end-of-study glycated hemoglobin (HbA1c) as clinically meaningful. A PubMed database search supplemented by author-identified papers yielded 15 trials which met selection criteria: randomized design, patients with T2DM receiving basal-bolus (bolus injection ≤3 times/day) vs. premixed (≤3 injections/day) insulin regimens, primary/major endpoint(s) HbA1c- and/or hypoglycemia-related, and trial duration ≥12 weeks. Glycemic control improved with both basal-bolus and premixed insulin regimens with - in most cases - acceptable levels of weight gain and hypoglycemia. A clinically meaningful difference between regimens in glycemic control was recorded in only four comparisons, all of which favored basal-bolus therapy. The incidence of hypoglycemia was significantly different between regimens in only three comparisons, one of which favored premixed insulin and two basal-bolus therapy. Of the four trials that reported a significant difference between regimens in bodyweight change, two favored basal-bolus therapy and two favored premixed insulin. Thus, on a population level, neither basal-bolus therapy nor premixed insulin showed a consistent advantage in terms of glycemic control, hypoglycemic risk, or bodyweight gain. It is therefore recommended that clinicians should adopt an individualized approach to insulin intensification - taking into account the benefits and risks of each treatment approach and the attitude and preferences of each patient - in the knowledge that both basal-bolus and premixed regimens may be successful.
Didham, Raphael K.; Barker, Gary M.; Bartlam, Scott; Deakin, Elizabeth L.; Denmead, Lisa H.; Fisk, Louise M.; Peters, Jennifer M. R.; Tylianakis, Jason M.; Wright, Hannah R.; Schipper, Louis A.
2015-01-01
Land-use intensification is a central element in proposed strategies to address global food security. One rationale for accepting the negative consequences of land-use intensification for farmland biodiversity is that it could ‘spare’ further expansion of agriculture into remaining natural habitats. However, in many regions of the world the only natural habitats that can be spared are fragments within landscapes dominated by agriculture. Therefore, land-sparing arguments hinge on land-use intensification having low spillover effects into adjacent protected areas, otherwise net conservation gains will diminish with increasing intensification. We test, for the first time, whether the degree of spillover from farmland into adjacent natural habitats scales in magnitude with increasing land-use intensity. We identified a continuous land-use intensity gradient across pastoral farming systems in New Zealand (based on 13 components of farmer input and soil biogeochemistry variables), and measured cumulative off-site spillover effects of fertilisers and livestock on soil biogeochemistry in 21 adjacent forest remnants. Ten of 11 measured soil properties differed significantly between remnants and intact-forest reference sites, for both fenced and unfenced remnants, at both edge and interior. For seven variables, the magnitude of effects scaled significantly with magnitude of surrounding land-use intensity, through complex interactions with fencing and edge effects. In particular, total C, total N, δ15N, total P and heavy-metal contaminants of phosphate fertilizers (Cd and U) increased significantly within remnants in response to increasing land-use intensity, and these effects were exacerbated in unfenced relative to fenced remnants. This suggests movement of livestock into surrounding natural habitats is a significant component of agricultural spillover, but pervasive changes in soil biogeochemistry still occur through nutrient spillover channels alone, even in fenced remnants set aside for conservation. These results have important implications for the viability of land-sparing as a strategy for balancing landscape-level conservation and production goals in agricultural landscapes. PMID:25575017
NASA Astrophysics Data System (ADS)
Sanfiorenzo, A. R.; Waits, L.; Finegan, B.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Hormel, L.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Sibelet, N.
2016-12-01
Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non-traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we examine the coupled social and ecological implications of agricultural intensification Guided by frameworks from political economy, landscape ecology and landscape genetics we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology and genetics analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which increase the genetic structure and reduce the genetic diversity of Symphonia globulifera a forest understory tree species. To offset the effects of agricultural intensification on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of agricultural intensification in a tropical landscape, and offers recommendations for improvement relevant not only to our study region but to the many other tropical landscapes currently undergoing non-traditional agricultural export driven agricultural intensification.
Land-use intensification impact on phosphorus fractions in highly weathered tropical soils
NASA Astrophysics Data System (ADS)
Maranguit, Deejay; Guillaume, Thomas; Kuzyakov, Yakov
2016-04-01
Deforestation and land-use intensification in tropics have increased over the past decades, driven by the demand for agricultural products. Despite the fact that phosphorus (P) is one of the main limiting nutrients for agricultural productivity in the tropics, the effect of land-use intensification on P availability remains unclear. The objective was to assess the impacts of land-use intensification on soil inorganic and organic P fractions of different availability (Hedley sequential fractionation) and P stocks in highly weathered tropical soils. We compared the P availability under extensive land-use (rubber agroforest) and intensive land-use with moderate fertilization (rubber monoculture plantations) or high fertilization (oil palm monoculture plantations) in Indonesia. The phosphorus stock was dominated by inorganic forms (60 to 85%) in all land-use types. Fertilizer application increased easily-available inorganic P (i.e., H2O-Pi, NaHCO3-Pi) in intensive rubber and oil palm plantations compared to agroforest. However, the easily-available organic P (NaHCO3-extractable Po) was reduced by half under oil palm and rubber. The decrease of moderately available and non-available P by land-use intensification means that fertilization maintains only short-term soil fertility that is not sustainable in the long run due to the depletion of P reserves. The mechanisms of this P reserve depletion are: soil erosion (here assessed by C/P ratio), mineralization of soil organic matter (SOM) and export of P with yield products. Easily-available P fractions (i.e., H2O-Pi, NaHCO3-Pi and Po) and total organic P were strongly positively correlated with carbon content suggesting that SOM plays a critical role in maintaining P availability. Therefore, the ecologically based management is necessary in mitigating SOM losses to increase the sustainability of agricultural production in P limited highly weathered tropical soils.
Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient
2012-12-11
low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly
Disease and health management in Asian aquaculture.
Bondad-Reantaso, Melba G; Subasinghe, Rohana P; Arthur, J Richard; Ogawa, Kazuo; Chinabut, Supranee; Adlard, Robert; Tan, Zilong; Shariff, Mohamed
2005-09-30
Asia contributes more than 90% to the world's aquaculture production. Like other farming systems, aquaculture is plagued with disease problems resulting from its intensification and commercialization. This paper describes the various factors, providing specific examples, which have contributed to the current disease problems faced by what is now the fastest growing food-producing sector globally. These include increased globalization of trade and markets; the intensification of fish-farming practices through the movement of broodstock, postlarvae, fry and fingerlings; the introduction of new species for aquaculture development; the expansion of the ornamental fish trade; the enhancement of marine and coastal areas through the stocking of aquatic animals raised in hatcheries; the unanticipated interactions between cultured and wild populations of aquatic animals; poor or lack of effective biosecurity measures; slow awareness on emerging diseases; the misunderstanding and misuse of specific pathogen free (SPF) stocks; climate change; other human-mediated movements of aquaculture commodities. Data on the socio-economic impacts of aquatic animal diseases are also presented, including estimates of losses in production, direct and indirect income and employment, market access or share of investment, and consumer confidence; food availability; industry failures. Examples of costs of investment in aquatic animal health-related activities, including national strategies, research, surveillance, control and other health management programmes are also provided. Finally, the strategies currently being implemented in the Asian region to deal with transboundary diseases affecting the aquaculture sector are highlighted. These include compliance with international codes, and development and implementation of regional guidelines and national aquatic animal health strategies; new diagnostic and therapeutic techniques and new information technology; new biosecurity measures including risk analysis, epidemiology, surveillance, reporting and planning for emergency response to epizootics; targeted research; institutional strengthening and manpower development (education, training and extension research and diagnostic services).
NASA Technical Reports Server (NTRS)
Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.
2012-01-01
A pulsed 2-micron coherent Doppler lidar system at NASA Langley Research Center in Virginia flew on the NASA's DC-8 aircraft during the NASA Genesis and Rapid Intensification Processes (GRIP) during the summer of 2010. The participation was part of the project Doppler Aerosol Wind Lidar (DAWN) Air. Selected results of airborne wind profiling are presented and compared with the dropsonde data for verification purposes. Panoramic presentations of different wind parameters over a nominal observation time span are also presented for selected GRIP data sets. The realtime data acquisition and analysis software that was employed during the GRIP campaign is introduced with its unique features.
NASA Astrophysics Data System (ADS)
Seck, Oliver; Maxisch, Tobias; Bothe, Dieter; Warnecke, Hans-Joachim
2010-03-01
The technical synthesis and processing of polymer materials is the basis for major branches of the chemical industry. Well introduced for high-viscosity processes are screw extruders. However, in case of large residence times, a kneader with its large volume is more appropriate, but the latter still requires further understanding for intensification purposes. First, the axial mixing behavior is characterized by studying the residence time distribution under continuous operation. For this purpose silicone oil of high viscosity is used as kneading material. At the inlet dye tracer is injected and detected at the outlet via photometry. The response functions show that the classical dispersion model leads to an appropriate description of the experimental data. By means of a fast chemical reaction of second order the radial mixing behavior including transport on the molecular scale is studied. The generation of contact-area between two fluid elements, each one charged with one of the educts is the characteristic quantity since the two reactants cannot coexist and, hence, react directly at the interface. Thus the amount of detected product is a measure for the contact-area produced by kneading. Based on these data, a simplified model for the mixing process in the kneader is developed.
2010-08-17
Michael Kavaya, of the NASA Langley Research Center, a Principal Investigator for the DAWN experiment, looks over data with Jeffrey Beyon during a flight of the NASA DC-8, Tuesday, Aug. 17, 2010, in the Gulf of Mexico. The DAWN experiment, also known as the Doppler Aerosol Wind Lidar, is one of many experiments supporting the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
2010-08-14
Errol Korn, lower left, explains the dropsonde experiment to Janel Thomas, a University of Maryland Baltimore County (UMBC) graduate student, seated, as Bob Pasken, standing left, and Jeff Halverson, a GRIP project scientist from UMBC, look on inside NASA's DC-8 airplane, at Fort Lauderdale International Airport in Fort Lauderdale, Fla., Sunday, Aug. 15, 2010. The Genesis and Rapid Intensification Processes (GRIP) experiment is a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, members of the launch team monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
[Effect of high altitude hypoxia on the human EEG].
Daniiarov, S B; Vilenskaia, E M
1980-01-01
The paper presents the results of the comparative study of the EEG at alpine altitudes (Tuya -- Ashu pass, 3200 m) and at low altitudes (City of Frunze, 760 m above the sea level). The dynamics of EEG changes at different stages of adaptation to hypoxia is also traced. The obtained data show that the alpine hypoxia produces a considerable intensification of the excitation processes in the cerebral cortex. Different sensitivity to the oxigen shortage has been found in the frontal-temporal parts of the right and the left hemispheres.
Landscape simplification filters species traits and drives biotic homogenization
Gámez-Virués, Sagrario; Perović, David J.; Gossner, Martin M.; Börschig, Carmen; Blüthgen, Nico; de Jong, Heike; Simons, Nadja K.; Klein, Alexandra-Maria; Krauss, Jochen; Maier, Gwen; Scherber, Christoph; Steckel, Juliane; Rothenwöhrer, Christoph; Steffan-Dewenter, Ingolf; Weiner, Christiane N.; Weisser, Wolfgang; Werner, Michael; Tscharntke, Teja; Westphal, Catrin
2015-01-01
Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high. PMID:26485325
Ogbonnaya, Chidiebere; Daniels, Kevin; Connolly, Sara; van Veldhoven, Marc
2017-01-01
We investigate the positive relationships between high-performance work practices (HPWP) and employee health and well-being and examine the conflicting assumption that high work intensification arising from HPWP might offset these positive relationships. We present new insights on whether the combined use (or integrated effects) of HPWP has greater explanatory power on employee health, well-being, and work intensification compared to their isolated or independent effects. We use data from the 2004 British Workplace Employment Relations Survey (22,451 employees nested within 1,733 workplaces) and the 2010 British National Health Service Staff survey (164,916 employees nested within 386 workplaces). The results show that HPWP have positive combined effects in both contexts, and work intensification has a mediating role in some of the linkages investigated. The results also indicate that the combined use of HPWP may be sensitive to particular organizational settings, and may operate in some sectors but not in others. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
NASA Astrophysics Data System (ADS)
Schewe, Jacob; Levermann, Anders
2017-07-01
Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
Research About the Corosive Effects of FeCl3 in the Aeration Wastewater Basin
NASA Astrophysics Data System (ADS)
Panaitescu, C.; Petrescu, M. G.
2018-01-01
Biological aeration of industrial wastewater is a very impressive process in the treatment of wastewater. The involvement of chemical reagents in this process, however, implies the intensification of the corrosion processes due to both pollutants in the wastewater and the chemical reactions that occur when the coagulation / flocculation reagents are added. This paper explores the action of ferric chloride (FeCl3) on metallic parts in the aeration basin. The most affected structures are metal. At the classical basins the aeration systems were made of P295GH materials. The corrosion produced is uneven. The analysis of the high degree of corrosion was done according to the national and international standards. Finally, the paper supports the replacement of the existing aeration system with an anticorrosive material.
Mohod, Ashish V; Subudhi, Abhijeet S; Gogate, Parag R
2017-05-01
Using sustainable feed stock such as non-edible oil for the biodiesel production can be one of the cost effective approaches considering the ever growing interest towards renewable energy and problems in existing approaches for production. However, due to the high free fatty acid content, non-edible oils require considerable preprocessing before the actual transesterification reaction for biodiesel production. The present work focuses on intensification of the esterification reaction used as preprocessing step based on acoustic and hydrodynamic cavitation also presenting the comparison with the conventional approach. Karanja oil with initial acid value as 14.15mg of KOH/g of oil has been used as a sustainable feedstock. Effect of operating parameters such as molar ratio, catalyst loading, temperature and type of catalyst (sulfuric acid and Amberlyst-15) on the acid value reduction has been investigated. The maximum reduction in the acid value (final acid value as 2.7mg of KOH/g of oil) was obtained using acoustic cavitation at optimum molar ratio of oil to methanol as 1:5 and 2% sulfuric acid loading at ambient temperature. In the case of hydrodynamic cavitation, acid value reduced upto 4.2mg of KOH under optimized conditions of first stage processing. In the second stage esterification using hydrodynamic cavitation and conventional approach, the final acid value was 3.6 and 3.8mg of KOH/g of oil respectively. Energy requirement analysis for ultrasound and conventional approaches clearly established the superiority of the ultrasound based approach. The present study clearly demonstrated that significant intensification benefits can be obtained in terms of the reduction in the molar ratio and operating temperature for the case of acoustic cavitation as compared to the conventional approach with somewhat lower effects for the hydrodynamic cavitation. Copyright © 2016 Elsevier B.V. All rights reserved.
Land Grabbing and the Commodification of Agricultural Land in Africa
NASA Astrophysics Data System (ADS)
D'Odorico, P.; Rulli, M. C.
2014-12-01
The increasing global demand for farmland products is placing unprecedented pressure on the global agricultural system. The increasing demand can be met through either the intensification or the expansion of agricultural production at the expenses of other ecosystems. The ongoing escalation of large scale land acquisitions in the developing world may contribute to both of these two processes. Investments in agriculture have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. It is unclear however to what extent these investments are driving the intensification or the expansion of agriculture. In the last decade large scale land acquisitions by external investors have increased at unprecedented rates. This global land rush was likely enhanced by recent food crises, when prices skyrocketed in response to crop failure, new bioenergy policies, and the increasing demand for agricultural products by a growing and increasingly affluent human population. Corporations recognized the potential for high return investments in agricultural land, while governments started to enhance their food security by purchasing large tracts of land in foreign countries. It has been estimated that, to date, about 35.6 million ha of cropland - more than twice the agricultural land of Germany - have been acquired by foreign investors worldwide. As an effect of these land deals the local communities lose legal access to the land and its products. Here we investigate the effect of large scale land acquisition on agricultural intensification or expansion in African countries. We discuss the extent to which these investments in agriculture may increase crop production and stress how this phenomenon can greatly affect the local communities, their food security, economic stability and the long term resilience of their livelihoods, regardless of whether the transfer of property rights is the result of an informed decision and the land was paid at market value.
Sustainable intensification in agricultural systems.
Pretty, Jules; Bharucha, Zareen Pervez
2014-12-01
Agricultural systems are amended ecosystems with a variety of properties. Modern agroecosystems have tended towards high through-flow systems, with energy supplied by fossil fuels directed out of the system (either deliberately for harvests or accidentally through side effects). In the coming decades, resource constraints over water, soil, biodiversity and land will affect agricultural systems. Sustainable agroecosystems are those tending to have a positive impact on natural, social and human capital, while unsustainable systems feed back to deplete these assets, leaving fewer for the future. Sustainable intensification (SI) is defined as a process or system where agricultural yields are increased without adverse environmental impact and without the conversion of additional non-agricultural land. The concept does not articulate or privilege any particular vision or method of agricultural production. Rather, it emphasizes ends rather than means, and does not pre-determine technologies, species mix or particular design components. The combination of the terms 'sustainable' and 'intensification' is an attempt to indicate that desirable outcomes around both more food and improved environmental goods and services could be achieved by a variety of means. Nonetheless, it remains controversial to some. This review analyses recent evidence of the impacts of SI in both developing and industrialized countries, and demonstrates that both yield and natural capital dividends can occur. The review begins with analysis of the emergence of combined agricultural-environmental systems, the environmental and social outcomes of recent agricultural revolutions, and analyses the challenges for food production this century as populations grow and consumption patterns change. Emergent criticisms are highlighted, and the positive impacts of SI on food outputs and renewable capital assets detailed. It concludes with observations on policies and incentives necessary for the wider adoption of SI, and indicates how SI could both promote transitions towards greener economies as well as benefit from progress in other sectors. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Prajapat, Amrutlal L; Gogate, Parag R
2016-09-01
Depolymerization of polyacrylic acid (PAA) as sodium salt has been investigated using ultrasonic and solar irradiations with process intensification studies based on combination with hydrogen peroxide (H2O2) and ozone (O3). Effect of solar intensity, ozone flow and ultrasonic power dissipation on the extent of viscosity reduction has been investigated for individual treatment approaches. The combined approaches such as US+solar, solar+O3, solar+H2O2, US+H2O2 and US+O3 have been subsequently investigated under optimum conditions and established to be more efficient as compared to individual approaches. Approach based on US (60W)+solar+H2O2 (0.01%) resulted in the maximum extent of viscosity reduction as 98.97% in 35min whereas operation of solar+H2O2 (0.01%), US (60W), H2O2 (0.3%) and solar irradiation resulted in about 98.08%, 90.13%, 8.91% and 90.77% intrinsic viscosity reduction in 60min respectively. Approach of US (60W)+solar+ozone (400mg/h flow rate) resulted in extent of viscosity reduction as 99.47% in 35min whereas only ozone (400mg/h flow rate), ozone (400mg/h flow rate)+US (60W) and ozone (400mg/h flow rate)+solar resulted in 69.04%, 98.97% and 98.51% reduction in 60min, 55min and 55min respectively. The chemical identity of the treated polymer using combined approaches was also characterized using FTIR (Fourier transform infrared) spectra and it was established that no significant structural changes were obtained during the treatment. Overall, it can be said that the combination technique based on US and solar irradiations in the presence of hydrogen peroxide is the best approach for the depolymerization of PAA solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Klaus, Valentin H; Hölzel, Norbert; Prati, Daniel; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily F; Hänsel, Falk; Fischer, Markus; Kleinebecker, Till
2016-10-01
Land-use change and intensification play a key role in the current biodiversity crisis. The resulting species loss can have severe effects on ecosystem functions and services, thereby increasing ecosystem vulnerability to climate change. We explored whether land-use intensification (i.e. fertilization intensity), plant diversity and other potentially confounding environmental factors may be significantly related to water use (i.e. drought stress) of grassland plants. Drought stress was assessed using δ(13)C abundances in aboveground plant biomass of 150 grassland plots across a gradient of land-use intensity. Under water shortage, plants are forced to increasingly take up the heavier (13)C due to closing stomata leading to an enrichment of (13)C in biomass. Plants were sampled at the community level and for single species, which belong to three different functional groups (one grass, one herb, two legumes). Results show that plant diversity was significantly related to the δ(13)C signal in community, grass and legume biomass indicating that drought stress was lower under higher diversity, although this relation was not significant for the herb species under study. Fertilization, in turn, mostly increased drought stress as indicated by more positive δ(13)C values. This effect was mostly indirect by decreasing plant diversity. In line with these results, we found similar patterns in the δ(13)C signal of the organic matter in the topsoil, indicating a long history of these processes. Our study provided strong indication for a positive biodiversity-ecosystem functioning relationship with reduced drought stress at higher plant diversity. However, it also underlined a negative reinforcing situation: as land-use intensification decreases plant diversity in grasslands, this might subsequently increases drought sensitivity. Vice-versa, enhancing plant diversity in species-poor agricultural grasslands may moderate negative effects of future climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Oirschot, D; Wallace, S; Van Deun, R
2015-09-01
The Badboot (Dutch for swimming pool boat) is a floating swimming pool located in the city center of Antwerp in Belgium. The overall design consists of a recycled ferry boat that serves as a restaurant and next to that a newly built ship that harbours an Olympic size swimming pool, sun decks, locker rooms with showers, and a party space. A major design goal of the project was to make the ship as environmentally friendly as possible. To avoid discharge of contaminated waste water in the Antwerp docks, the ship includes onsite treatment of wastewater in a compact constructed wetland. The treatment wetland system was designed to treat wastewater from visitor locker rooms, showers, toilets, two bars, and the wastewater from the restaurant kitchen. Due to the limited space on board the ship, only 188 m(2) could be allocated to a wetland treatment system. As a result, part of the design included intensification of the wetland treatment process through the use of Forced Bed Aeration, which injects small quantities of air in a very uniform grid pattern throughout the wetland with a mechanical air compressor. The system was monitored between August 2012 and March 2013 (with additional sampling in the autumn of 2014). Flows and loads to the wetland were highly variable, but removal efficiency was extremely high; 99.5 % for chemical oxygen demand (COD), 88.6 % for total nitrogen and 97.2 % for ammonia. The treatment performance was assessed using a first-order, tanks-in-series model (the P-k-C* model) and found to be roughly equivalent to similar intensified wetlands operating in Germany. However, treatment performance was substantially better than data reported on passive wetlands, likely as a result of intensification. Even with mechanically assisted aeration, the total oxygen delivered to the treatment wetlands was insufficient to support conventional nitrification and denitrification, so it is likely that alternate nitrogen removal pathways, such as anammox, are operating in the wetland.
Balkau, B; Bouée, S; Avignon, A; Vergès, B; Chartier, I; Amelineau, E; Halimi, S
2012-03-01
To evaluate the current procedures in French general practice of intensifying hypoglycaemic treatment in orally treated type 2 diabetic patients, according to the French recommendations. Type 2 diabetic patient characteristics, HbA(1c) values, hypoglycaemic treatment and physician characteristics were collected from the electronic records of a panel of French general practitioners. Factors associated with the time until intensification of treatment were studied with the Cox model. Among 17 493 orally treated patients with at least two available HbA(1c) values, 3118 patients (18%) required treatment intensification; 65% were on monotherapy, 31% on bitherapy and 4% on tritherapy. These patients were followed for a maximum of 14 months or until treatment was intensified. Treatment was intensified after the second high HbA(1c) value for 1212 patients (39%); this was immediate for 13% of these patients, within 6 months for 39% and within one year for 59%. Treatment intensification was less likely the older the patient, and more likely the higher the first HbA(1c) value, up to an HbA(1c) threshold of 9%. Therapeutic inertia in caring for type 2 diabetic patients in France is frequent, at least for patients treated in general practice. This inadequate glycaemic control would be expected to have significant patient and public health consequences, with higher rates of associated diabetic complications. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Coevolution of landesque capital intensive agriculture and sociopolitical hierarchy
Sheehan, Oliver; Gray, Russell D.; Atkinson, Quentin D.
2018-01-01
One of the defining trends of the Holocene has been the emergence of complex societies. Two essential features of complex societies are intensive resource use and sociopolitical hierarchy. Although it is widely agreed that these two phenomena are associated cross-culturally and have both contributed to the rise of complex societies, the causality underlying their relationship has been the subject of longstanding debate. Materialist theories of cultural evolution tend to view resource intensification as driving the development of hierarchy, but the reverse order of causation has also been advocated, along with a range of intermediate views. Phylogenetic methods have the potential to test between these different causal models. Here we report the results of a phylogenetic study that modeled the coevolution of one type of resource intensification—the development of landesque capital intensive agriculture—with political complexity and social stratification in a sample of 155 Austronesian-speaking societies. We found support for the coevolution of landesque capital with both political complexity and social stratification, but the contingent and nondeterministic nature of both of these relationships was clear. There was no indication that intensification was the “prime mover” in either relationship. Instead, the relationship between intensification and social stratification was broadly reciprocal, whereas political complexity was more of a driver than a result of intensification. These results challenge the materialist view and emphasize the importance of both material and social factors in the evolution of complex societies, as well as the complex and multifactorial nature of cultural evolution. PMID:29555760
Soil conservation in the 21st century: why we need smart agricultural intensification
NASA Astrophysics Data System (ADS)
Govers, Gerard; Merckx, Roel; van Wesemael, Bas; Van Oost, Kristof
2017-03-01
Soil erosion severely threatens the soil resource and the sustainability of agriculture. After decades of research, this problem still persists, despite the fact that adequate technical solutions now exist for most situations. This begs the question as to why soil conservation is not more rapidly and more generally implemented. Studies show that the implementation of soil conservation measures depends on a multitude of factors but it is also clear that rapid change in agricultural systems only happens when a clear economic incentive is present for the farmer. Conservation measures are often more or less cost-neutral, which explains why they are often less generally adopted than expected. This needs to be accounted for when developing a strategy on how we may achieve effective soil conservation in the Global South, where agriculture will fundamentally change in the next century. In this paper we argue that smart intensification is a necessary component of such a strategy. Smart intensification will not only allow for soil conservation to be made more economical, but will also allow for significant gains to be made in terms of soil organic carbon storage, water efficiency and biodiversity, while at the same time lowering the overall erosion risk. While smart intensification as such will not lead to adequate soil conservation, it will facilitate it and, at the same time, allow for the farmers of the Global South to be offered a more viable future.
An explanation of auroral intensification during the substorm expansion phase
NASA Astrophysics Data System (ADS)
Yao, Zhonghua; Rae, I. J.; Lui, A. T. Y.; Murphy, K. R.; Owen, C. J.; Pu, Z. Y.; Forsyth, C.; Grodent, D.; Zong, Q.-G.; Du, A. M.; Kalmoni, N. M. E.
2017-08-01
A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.
Tracking dipeptides at work-uptake and intracellular fate in CHO culture.
Sánchez-Kopper, Andres; Becker, Max; Pfizenmaier, Jennifer; Kessler, Christian; Karau, Andreas; Takors, Ralf
2016-12-01
Market demands for monoclonal antibodies (mAbs) are steadily increasing worldwide. As a result, production processes using Chinese hamster ovary cells (CHO) are in the focus of ongoing intensification studies for maximizing cell-specific and volumetric productivities. This includes the optimization of animal-derived component free (ADCF) cultivation media as part of good cell culture practice. Dipeptides are known to improve CHO culture performance. However, little or even conflicting assumptions exist about their putative import and functionality inside the cells. A set of well-known performance boosters and new dipeptide prospects was evaluated. The present study revealed that dipeptides are indeed imported in the cells, where they are decomposed to the amino acids building blocks. Subsequently, they are metabolized or, unexpectedly, secreted to the medium. Monoclonal antibody production boosting additives like L-alanine-L-glutamine (AQ) or glycyl-L-glutamine (GQ) can be assigned to fast or slow dipeptide uptake, respectively, thus pinpointing to the need to study dipeptide kinetics and to adjust their feeding individually for optimizing mAb production.
Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition
NASA Astrophysics Data System (ADS)
Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.
2017-04-01
Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.
Anthropogenic Reorganization of Critical Zone in Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, P.; Anders, A. M.; Bettis, E. A., III; Blair, N. E.; Filley, T. R.; Grimley, D. A.; Le, P. V.; Lin, H.; Lin, Y. F. F.; Keefer, D. A.; Keefer, L. L.; Muste, M.; Packman, A. I.; Papanicolaou, T.; Rhoads, B. L.; Richardson, M.; Schnoebelen, D. J.; Stumpf, A.; Ward, A. S.; Wilson, C. G.; Woo, D.; Yan, Q.; Goodwell, A. E.
2016-12-01
Intensification of industrial agricultural practices has resulted in some of the most profound global impacts in the Anthropocene. These include eutrophication of lakes, rivers, and oceans from nutrient loading, degradation of arable land from the loss of fertile organic soils through erosion, and loss and degradation of soil organic matter from mechanical impacts on the soil, among others. As we prepare to feed additional 2 billion people by 2050 along with the emerging practices of farming for bioenergy production, these practices will intensify further whose goal is to overcome bio-geo-physical rate limitations and rate limiting states to enhance agricultural productivity. These rate-enhancing efforts generally target the fast response production processes, creating an imbalance with the slower assimilative processes in the Critical Zone that cascade through complex inter-dependencies across carbon, soil, water, nutrient and ecological systems. These imbalances modify stores and create gradients for flux, which over time reorganize the landscape, both in structure and function. In this presentation we show how these reorganizations are occurring in the Critical Zone of intensively managed landscapes, and argue that an integrated understanding of such profound changes are necessary for developing sustainable solutions for maintaining agricultural productivity and mitigating agriculture based environmental impacts.
Membranes for Food and Bioproduct Processing
NASA Astrophysics Data System (ADS)
Avram, Alexandru M.
Modified membranes for process intensification in biomass hydrolysis: Production of biofuels and chemicals from lignocellulosic biomass is one of the leading candidates for replacement of petroleum based fuels and chemicals. However, conversion of lignocellulosic biomass into fuels and chemicals is not cost effective compared to the production of fuels and chemicals from crude oil reserves. Some novel and economically feasible approaches involve the use of ionic liquids as solvents or co-solvents, since these show improved solvation capability of cellulose over simple aqueous systems. Membranes offer unique opportunities for process intensification which involves fractionation of the resulting biomass hydrolysate leading to a more efficient and cheaper operation. This research attempts to develop membranes that would usher the economics of the biochemical conversion of lignocellulosic biomass into fuels and chemicals by recycling the expensive ionic liquid. The overall aim of this work is the development of novel membranes with unique surface properties that enable the selective separation of non-reacted cellulose and hydrolysis sugars from ionic liquids. Nanofiltration separation for application in food product engineering: With the advent of the modern, well-informed consumer who has high expectations from the nutritional value of consumed food products, novel approaches are being developed to produce nutrient-enhanced foods and drinks. As a response to the consumer needs, different techniques to recover, concentrate and retain as much as possible of bioactive compounds are being investigated. Membrane technology has the advantage of selective fractionation of food products (e.g. salt removal, removal of bitter-tasting compounds or removal of sugar for sweet taste adjustment), volume reduction, and product recovery at mild conditions. In this work, we use nanofiltration in dead-end and crossflow mode to concentrate polyphenols from blueberry pomace. Blueberry pomace is an overlooked waste product form the juice pressing of blueberries that contains high amounts of health-beneficial antioxidants. We aim at developing a simple, yet efficient membrane process that reduces the amount of water and thus concentrates the amount of polyphenols in the retentate.
NASA Astrophysics Data System (ADS)
Brandt, Patric; Herold, Martin; Rufino, Mariana C.
2018-03-01
Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as ‘Nationally Appropriate Mitigation Actions’. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.
A multi-scale modelling procedure to quantify hydrological impacts of upland land management
NASA Astrophysics Data System (ADS)
Wheater, H. S.; Jackson, B.; Bulygina, N.; Ballard, C.; McIntyre, N.; Marshall, M.; Frogbrook, Z.; Solloway, I.; Reynolds, B.
2008-12-01
Recent UK floods have focused attention on the effects of agricultural intensification on flood risk. However, quantification of these effects raises important methodological issues. Catchment-scale data have proved inadequate to support analysis of impacts of land management change, due to climate variability, uncertainty in input and output data, spatial heterogeneity in land use and lack of data to quantify historical changes in management practices. Manipulation experiments to quantify the impacts of land management change have necessarily been limited and small scale, and in the UK mainly focused on the lowlands and arable agriculture. There is a need to develop methods to extrapolate from small scale observations to predict catchment-scale response, and to quantify impacts for upland areas. With assistance from a cooperative of Welsh farmers, a multi-scale experimental programme has been established at Pontbren, in mid-Wales, an area of intensive sheep production. The data have been used to support development of a multi-scale modelling methodology to assess impacts of agricultural intensification and the potential for mitigation of flood risk through land use management. Data are available from replicated experimental plots under different land management treatments, from instrumented field and hillslope sites, including tree shelter belts, and from first and second order catchments. Measurements include climate variables, soil water states and hydraulic properties at multiple depths and locations, tree interception, overland flow and drainflow, groundwater levels, and streamflow from multiple locations. Fine resolution physics-based models have been developed to represent soil and runoff processes, conditioned using experimental data. The detailed models are used to calibrate simpler 'meta- models' to represent individual hydrological elements, which are then combined in a semi-distributed catchment-scale model. The methodology is illustrated using field and catchment-scale simulations to demonstrate the the response of improved and unimproved grassland, and the potential effects of land management interventions, including farm ponds, tree shelter belts and buffer strips. It is concluded that the methodology developed has the potential to represent and quantify catchment-scale effects of upland management; continuing research is extending the work to a wider range of upland environments and land use types, with the aim of providing generic simulation tools that can be used to provide strategic policy guidance.
Valk, Gerlof D; Renders, Carry M; Kriegsman, Didi M W; Newton, Katherine M; Twisk, Jos W R; van Eijk, Jacques Th M; van der Wal, Gerrit; Wagner, Edward H
2004-08-01
To assess differences in diabetes care and patient outcomes by comparing two multifaceted quality improvement programs in two different countries, and to increase knowledge of effective elements of such programs. Primary care in the ExtraMural Clinic (EMC) of the Department of General Practice of the Vrije Universiteit in Amsterdam, the Netherlands, and the Group Health Cooperative (GHC), a group-model health maintenance organization (HMO) in western Washington State in the United States. Data were collected from 1992 to 1997. In this observational study two diabetes cohorts in which a quality improvement program was implemented were compared. Both programs included a medical record system, clinical practice guidelines, physician educational meetings, audit, and feedback. Only the Dutch program (EMC) included guidelines on the structure of diabetes care and a recall system. Only the GHC program included educational outreach visits, formation of multidisciplinary teams, and patient self-management support. Included were 379 EMC patients, and 2,119 GHC patients with type 2 diabetes mellitus. Main process outcomes were: annual number of diabetes visits, and number of HbA1c and blood lipid measurements. Main patient outcomes were HbA1c and blood lipid levels. Multilevel analysis was used to adjust for dependency between repeated observations within one patient and for clustering of patients within general practices. In the EMC process outcomes and glycemic control improved more than at GHC, however, GHC had better baseline measures. There were no differences between programs on blood lipid control. During follow-up, intensification of pharmacotherapy was noted at both sites. Differences noted between programs were in line with differences in diabetes guidelines. Following implementation of guidelines and organizational improvement efforts, change occurred primarily in the process outcomes, rather than in the patient outcomes. Although much effort was put into improving process and patient outcomes, both complex programs still showed only moderate effects.
2012-09-30
Atmospheric Administration. The published paper was entitled “Structure of the Eye and Eyewall of Hurricane Hugo (1989) and was published in Mon. Wea. Rev., 136, 1237-1259. ...developments in tropical cyclone intensification theory A new paradigm of tropical cyclone intensification and hurricane boundary layer dynamics has been... Hurricane Rita (2005) show strong support for the second spin-up mechanism in the concentric eyewall lifecycle. Didlake and Houze (2011) found a
China's Land-Use Changes during the Past 300 Years: A Historical Perspective.
Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C; Cui, Xuefeng
2016-08-25
Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s-1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability.
Yurtkuran, Alkın; Emel, Erdal
2016-01-01
The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
China’s Land-Use Changes during the Past 300 Years: A Historical Perspective
Miao, Lijuan; Zhu, Feng; Sun, Zhanli; Moore, John C.; Cui, Xuefeng
2016-01-01
Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability. PMID:27571087
NASA Astrophysics Data System (ADS)
Zhou, Botao; Wang, Zunya; Shi, Ying
2017-11-01
This article revealed that strengthening of winter Hadley circulation in the context of climate change may partially contribute to interdecadal increasing of snowfall intensity over northeastern China in recent decades. This hypothesis is well supported by the process-based linkage between Hadley circulation and atmospheric circulations over the Asian-Pacific region on the interdecadal time scale. The strengthening of winter Hadley circulation corresponds to a weakening of the Siberian high, an eastward shifting of the Aleutian low, a reduction of the East Asian trough, and anomalous southwesterly prevailing over northeastern China. These atmospheric situations weaken the East Asian winter monsoon and lead to an increase of air temperature over northeastern China. Increased local evaporation due to the increase of air temperature, concurrent with more water vapor transported from the Pacific Ocean, can significantly enhance atmospheric water vapor content in the target region. Meanwhile, the ascending of airflows is also strengthened over northeastern China. All of these provide favorable interdecadal backgrounds for the occurrence of intense snowfalls, and thus, snowfall intensity is intensified over northeastern China after the 1980s. Further analysis suggests that the circum-Pacific-like teleconnection pattern may play an important role in connecting Hadley circulation strengthening signal and atmospheric circulation anomalies favoring interdecadal intensification of snowfalls over northeastern China.
Expósito, A J; Monteagudo, J M; Durán, A; San Martín, I; González, L
2018-01-15
The intensification of the solar photo-Fenton system with ferrioxalate photoactive complexes and ultrasound applied to the mineralization of 15mg/L carbamazepine aqueous solution (CBZ) was evaluated. The experiments were carried out in a solar compound parabolic collector (CPC) pilot plant reactor coupled to an ultrasonic processor. The dynamic behavior of hydroxyl radicals generated under the different studied reaction systems was discussed. The initial concentrations of hydrogen peroxide and ferrous/oxalic acid and pH were found to be the most significant variables (32.79%, 25.98% and 26.04%, respectively). Under the selected optimal conditions ([H 2 O 2 ] 0 =150mg/L; [Fe 2+ ] 0 =2.5mg/L/[(COOH) 2 ] 0 =12.1mg/L; pH=5) CBZ was fully degraded after 5min and 80% of TOC was removed using a solar photo-Fenton system intensified with ferrioxalate (SPFF). However, no improvement in the mineralization using SPFF process combined with ultrasound was observed. More mild pH conditions could be used in the SPFF system if compared to the traditional photo-Fenton (pH 3) acidic systems. Finally, a possible reaction pathway for the mineralization of CBZ by the SPFF system was proposed and therein discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Hwang, Eui-Ryong; Kim, Tae-Young
2018-04-01
This study intended to examine the process of development and intensification of martial arts education in schools of Chosun as courses of health, hygiene, and physical education implemented by the Japanese colonial government that ruled Chosun during the period of 'Second Sino-Japanese War' from 1937 to 1945. During this period, the Japanese colonial government established the 'Imperial Subjects' Gymnastics,' elaborated on the education of health and hygiene in order to lay the foundations for the strengthening of war potential, and intensified the theoretical education and practice of martial arts as an effective means therefore. The education of health, hygiene, and martial arts, implemented by the Japanese colonial power with the catchphrase of constructing robust body, was nothing but a means to construct and control the body of colonial people at its discretion. The thoughts of health, hygiene, and martial arts, which were presented to students, were rather intended for the cultivation of the subjects devoted to Japanese Empire than for the promotion of health and psychosomatic development of individuals. In particular, along with contemporary society fell into the turmoil of war, the amusable aspects of martial arts were lost in the education of martial arts and were replaced with the spirit of Japanese Samurai.
Hwang, Eui-Ryong; Kim, Tae-Young
2018-01-01
This study intended to examine the process of development and intensification of martial arts education in schools of Chosun as courses of health, hygiene, and physical education implemented by the Japanese colonial government that ruled Chosun during the period of ‘Second Sino-Japanese War’ from 1937 to 1945. During this period, the Japanese colonial government established the ‘Imperial Subjects’ Gymnastics,’ elaborated on the education of health and hygiene in order to lay the foundations for the strengthening of war potential, and intensified the theoretical education and practice of martial arts as an effective means therefore. The education of health, hygiene, and martial arts, implemented by the Japanese colonial power with the catchphrase of constructing robust body, was nothing but a means to construct and control the body of colonial people at its discretion. The thoughts of health, hygiene, and martial arts, which were presented to students, were rather intended for the cultivation of the subjects devoted to Japanese Empire than for the promotion of health and psychosomatic development of individuals. In particular, along with contemporary society fell into the turmoil of war, the amusable aspects of martial arts were lost in the education of martial arts and were replaced with the spirit of Japanese Samurai. PMID:29740547
Karaushu, E. V.; Kravzova, T. R.; Vorobey, N. A.; Kiriziy, D. A.; Olkhovich, O. P.; Taran, N. Yu.; Kots, S. Ya.; Omarova, E.
2015-01-01
Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum. PMID:26114100
Karaushu, E V; Lazebnaya, I V; Kravzova, T R; Vorobey, N A; Lazebny, O E; Kiriziy, D A; Olkhovich, O P; Taran, N Yu; Kots, S Ya; Popova, A A; Omarova, E; Koksharova, O A
2015-01-01
Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.
NASA Astrophysics Data System (ADS)
Chavaillaz, Yann; Joussaume, Sylvie; Bony, Sandrine; Braconnot, Pascale
2016-08-01
Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30-40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.
Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias
2015-07-01
In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high--especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9%. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.
NASA Astrophysics Data System (ADS)
Schaich, Harald; Kizos, Thanasis; Schneider, Stefan; Plieninger, Tobias
2015-07-01
In Mediterranean Europe, wood-pasture landscapes with oak woodlands as emblematic ecosystems are undergoing rapid land-use change, which may threaten their legacy as hotspots of biodiversity, ecosystem services, and cultural heritage. The objective of this study was to quantify land cover changes and transitions as well as the dynamics of oak woodland patterns and densities over 50 years in two municipalities at the center and edges of Quercus macrolepis distribution in Northern Lesvos (Greece). We used aerial photographs from 1960 and WorldView-2 satellite images from 2010 to process land cover maps and metrics, and to calculate oak canopy cover with a point-grid sampling approach. Spatiotemporal dynamics of land cover change were generally high—especially between oak woodlands and grass- and shrub-lands, resulting in a more heterogeneous and fragmented landscape in 2010. Surprisingly, oak woodland area remained stable with marginal losses in one study site and gains in the other one. Oak canopy cover increased by 8 and 9 %. Spatial hotspots of change were mountainous and peripheral phrygana areas with expanding oak stands, as well as river valleys and near urban areas with expanding olive groves and grass- and shrublands in former complex cultivation and oak stands. We conclude that the parallel processes of abandonment of crop cultivation and intensification of livestock grazing have been less detrimental to oak woodlands than supposed. To ensure long-term persistence of oak woodlands in the face of ongoing rural depopulation and land-use intensification, environmental and agricultural policies should better address their specificities as anthropogenic habitats.
Ecosystem services-based SWOT analysis of protected areas for conservation strategies.
Scolozzi, Rocco; Schirpke, Uta; Morri, Elisa; D'Amato, Dalia; Santolini, Riccardo
2014-12-15
An ecosystem services-based SWOT analysis is proposed in order to identify and quantify internal and external factors supporting or threatening the conservation effectiveness of protected areas. The proposed approach concerns both the ecological and the social perspective. Strengths and weaknesses, opportunities and threats were evaluated based on 12 selected environmental and socio-economic indicators for all terrestrial Italian protected areas, belonging to the Natura 2000 network, and for their 5-km buffer area. The indicators, used as criteria within a multi-criteria assessment, include: core area, cost-distance between protected areas, changes in ecosystem services values, intensification of land use, and urbanization. The results were aggregated for three biogeographical regions, Alpine, Continental, and Mediterranean, indicating that Alpine sites have more opportunities and strengths than Continental and Mediterranean sites. The results call attention to where connectivity and land-use changes may have stronger influence on protected areas, in particular, whereas urbanization or intensification of agriculture may hamper conservation goals of protected areas. The proposed SWOT analysis provides helpful information for a multiple scale perspective and for identifying conservation priorities and for defining management strategies to assure biodiversity conservation and ecosystem services provision. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sudden bending of a cracked laminate
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1981-01-01
The intensification of stresses near a through crack in the laminate that suddenly undergoes bending is investigated. A dynamic plate theory is developed which includes the effects of material inhomogeneity in the thickness direction and realistic crack edge stress singularity and distribution. Numerical examples indicate that (1) the crack moment intensity tends to decrease as the crack length to laminate thickness is increased, and (2) the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers.
2012-02-07
nucleotide substitution [41]. The tree was rooted to A/goose/Guangdong/1/96 and included sequences from January 1959 (A/ chicken /Scotland/1959) to June...a ‘hotspot’ for outbreaks because of the prevalence of backyard farms that keep mixed flocks of indigenous chickens and ducks, coupled with lack of...practices or environmental conditions promoting transmission between migratory birds and poultry. In this region, the intensification of chicken and
NASA Technical Reports Server (NTRS)
Merzhanov, A. G.
1995-01-01
This paper outlines ISMAN suggestions for the joint NASA-RSA project 'Combustion and Structure formation in SHS Processes under Microgravity Conditions'. The basic ideas of this work naturally follow from our almost 30-year experience in the field of SHS. As a matter of fact, we have already obtained some results in the following two directions closely related to the microgravity problem. One is the studies on SHS processes in the field of centrifugal forces. These studies aimed at the intensification of gravity-sensitive SHS processes in multicomponent highly caloric systems forming melts at high overloads (up to 2000 g). In other words, these studies had the objectives that are inverse to those in the microgravity studies. The second group of results directly relates to the microgravity problem and the project under consideration. These experiments played the important role in establishing links between SHS and microgravity.
Blaivas, Jerry G; Panagopoulos, Georgia; Weiss, Jeffrey P; Somaroo, Chandra
2009-01-01
To determine whether urinary urgency, as defined by the International Continence Society, is an intensification of the normal sensation that occurs when micturition must be delayed once the urge to void is felt (Type 1 urgency) or a discrete, pathologic symptom different from the normal urge (Type 2 urgency). Forty-eight consecutive patients who complained of urinary urgency completed two different questionnaires designed to answer the question posed above. The patients were divided into two groups of 24. For the test-retest, group 1 completed questionnaire 1 twice within 3-10 days and group 2 did the same with questionnaire 2. On the second administration of the questionnaire, each subject crossed over and answered the other questionnaire. For the test-retest, since the data set is dichotomous (yes/no), the degree of agreement between the two sets of data was assessed by calculating the kappa coefficient. There were 37 women and 11 men ranging in age from 54 to 87 years. There was no difference in age and sex between the two groups (P = 0.19). There was excellent agreement in the test-retest responses for both questionnaires (kappa = 1.0, P < 0.001). For questionnaire 1, the urge sensation was an intensification of the normal sensation in 33 (68.8%) and it was a different sensation in 15 (31.3%). Similarly, for questionnaire 2, it was an intensification of the normal urge in 34 (70.8%) and different in 14 (29.2%). The differences in patient responses between the two groups were not significant. In the crossover section, only 1 of 48 subjects changed their response, resulting in a very high degree of agreement (kappa = .95, p < .001). Combining the two groups, urgency was perceived as an intensification of the normal urge to void in 33/48 patients (69%), a different sensation in 14/48 (29%) and 1/48 (2%) was not sure. Urgency is comprised of at least two different sensations. One is an intensification of the normal urge to void and the other is a different sensation. The implications of this distinction are important insofar as they may have different etiologies and respond differently to treatment.
Smallholder Farms and the Potential for Sustainable Intensification
Mungai, Leah M.; Snapp, Sieglinde; Messina, Joseph P.; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B.; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues. PMID:27909444
Smallholder Farms and the Potential for Sustainable Intensification.
Mungai, Leah M; Snapp, Sieglinde; Messina, Joseph P; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B; Li, Guiying
2016-01-01
The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education on sustainable reinvestment in natural resources through complementary practices, such as maximization of biological nitrogen fixation through improved legume agronomy and better organic resource and crop residue management. Recent efforts by Malawi agricultural services to promote doubled-up legumes as a sustainable intensification technology are encouraging, but benefits will not accrue unless equal attention is given to an extension campaign on management of organic resources such as crop residues.
Ester Boserup's theory of agrarian change: a critical review.
Grigg, D
1979-01-01
As discussions of the positive effect of population growth upon agricutural change have been less common than focus on the negative effects, Ester Boserup's book, "The Conditions of Agricultural Growth," and her subsequent work in which it is argued that population growth is the prime cause of agricultural change is of great importance. The objective of this essay is to review earlier attempts to relate the intensification of agriculture to population growth, to outline Boserup's theory, and to examine the criticisms which have been made of the theory. Boserup maintains that population growth is the cause rather than the result of agricultural change and that the principal change is the intensification of land use. The theory of agricultural development posed by Boserup is more subtle and complex than that of any of her predecessors. She sees population pressure as a major cause of change in land use, agricultural technology, land tenure systems, and settlement form. Boserup argues that population growth is independent of food supply and that population increase is a cause of changes in agriculture. The principal means of increasing agricultural output is intensification. Boserup's work has had a varied response from readers; other economists have been less than enthusiastic. It might seem as if the critics of Boserup's theory have left it in tatters. Her central argument, that intensification reduces labor productivity, remains unproven. There are few who would agree that an increase in the frequency of cropping is the only possible response to population pressure; the extensive margin can be extended, higher yielding crops adopted, and methods that increase yields introduced independently of increases in the frequency of cropping. Emigration or the control of numbers may relieve population pressure. Intensification can also take place without population pressure, under the stimulus of urban growth or the development of trade. It is difficult to accept that population pressure is the only cause or agrarian change or that the increased frequency of cropping is the only response to population pressure, yet the thesis is a fruitful interpretation of agrarian change. Assuming population growth as a change mechanism can lead to important new conclusions regarding the nature of agrarian change in western European history.
Cooling the vertical surface by conditionally single pulses
NASA Astrophysics Data System (ADS)
Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor
2017-10-01
You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.
NASA Astrophysics Data System (ADS)
Uzokwe, V. N. E. N.; Muchelo, R. O.; Odeh, I. A.
2015-12-01
In Sub-Saharan Africa (SSA), urban intensification and expansion are increasing at alarming rates due to rapid population growth and rural-to-urban migration. This has led to the premise that the proportion of SSA urban residents most vulnerable to food insecurity is the highest in the world. Using a focused survey and multi-temporal (decadal) land use/cover classification of Landsat images, we explored the effect of urban intensification and expansion on urban agriculture and food security, focusing on a megacity and a regional center in Uganda: Kampala and Mbarara, respectively. We found that food insecurity arose due to a number of reasons, among which are: i) expansion and intensification of of urban settlements into previously productive agricultural lands in urban and peri-urban areas; ii) loss of predominantly young (rural agricultural) adult labor force to urban centers, leading to decline in rural food production; iii) lack of proper urban planning incorporating green and agricultural development leading to low productive market garden systems. We discussed these outcomes in light of existing studies which estimated that urban agriculture alone supports over 800 million people globally and accounts for 15-20% of world food supply. In spite of this relatively low contribution by urban/peri-urban agriculture, it probably accounts for higher proportion of food supply to urban poor in SSA and thus are most vulnerable to the loss of urban and peri-urban agricultural land. Further recommendations require policy makers and urban planners to team up to design a suitable framework for sustainable urban planning and development.
Cassman, K G
1999-05-25
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
JPL Genesis and Rapid Intensification Processes (GRIP) Portal
NASA Technical Reports Server (NTRS)
Knosp, Brian W.; Li, P. Peggy; Vu, Quoc A.; Turk, Francis J.; Shen, Tsae-Pyng J.; Hristova-Veleva, Svetla M.; Licata, Stephen J.; Poulsen, William L.
2012-01-01
Satellite observations can play a very important role in airborne field campaigns, since they provide a comprehensive description of the environment that is essential for the experiment design, flight planning, and post-experiment scientific data analysis. In the past, it has been difficult to fully utilize data from multiple NASA satellites due to the large data volume, the complexity of accessing NASA s data in near-real-time (NRT), as well as the lack of software tools to interact with multi-sensor information. The JPL GRIP Portal is a Web portal that serves a comprehensive set of NRT observation data sets from NASA and NOAA satellites describing the atmospheric and oceanic environments related to the genesis and intensification of the tropical storms in the North Atlantic Ocean. Together with the model forecast data from four major global atmospheric models, this portal provides a useful tool for the scientists and forecasters in planning and monitoring the NASA GRIP field campaign during the 2010 Atlantic Ocean hurricane season. This portal uses the Google Earth plug-in to visualize various types of data sets, such as 2D maps, wind vectors, streamlines, 3D data sets presented at series of vertical cross-sections or pointwise vertical profiles, and hurricane best tracks and forecast tracks. Additionally, it allows users to overlap multiple data sets, change the opacity of each image layer, generate animations on the fly with selected data sets, and compare the observation data with the model forecast using two independent calendars. The portal also provides the capability to identify the geographic location of any point of interest. In addition to supporting the airborne mission planning, the NRT data and portal will serve as a very rich source of information during the post-field campaign analysis stage of the airborne experiment. By including a diverse set of satellite observations and model forecasts, it provides a good spatial and temporal context for the high-resolution, but limited in space and time, airborne observations.
Ammonia emissions from the agriculture sector in Argentina; 2000-2012
NASA Astrophysics Data System (ADS)
Castesana, Paula S.; Dawidowski, Laura E.; Finster, Laura; Gómez, Darío R.; Taboada, Miguel A.
2018-04-01
Agriculture is one of the key economic sectors in Argentina and, in the last decades, the increase in prices and competitiveness of some grains has imposed important changes. In this process, crop cultivation occupied significant extensions of land areas previously dedicated to livestock farming, which in turn have experienced intensification in terms of production through an increasing share of feedlot systems. The agriculture sector is the main NH3 emitter in Argentina, however no inventory developed locally has been thus far available. We estimated the time series 2000-2012 of NH3 emissions, both at national and spatially disaggregated levels. National NH3 emissions in 2012 amounted to 0.31 ± 0.08 Tg, with the use of mineral fertilizers accounting for 43.0%, manure in pasture 32.5%, manure management 23.0% and agricultural waste burning 1.5%. Urea use was the major source of NH3 emissions and its application on wheat and corn crops dominated the trend. Emissions from open biomass burning were estimated but not included in the national totals because of the difficulties in differentiating between agricultural (i.e., prescribed burning of savannas) and non-agricultural emission sources. Compared to this work, NH3 emissions reported by EDGAR were 83% higher than our estimates. The time series of spatially distributed NH3 emission estimates clearly showed the effect of the expansion of cropland, the displacement of planted areas of N-fertilizes crops by competing soybean cultivation and the relocation and intensification of beef cattle production. This new inventory constitutes a tool for policies concerning the impact of agricultural activities on air quality and contributes with more accurate and updated information useful for atmospheric chemical transport modeling. The accuracy and applicability of the inventory may be improved by local studies aimed at refining the spatial disaggregation by focusing in specific areas of fertilizer application, reflecting seasonal and monthly patterns in agricultural practices and climate conditions and addressing likely changes in diets, productivity and excretion rates over time.
Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems
NASA Technical Reports Server (NTRS)
Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.
2015-01-01
Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.
The role of β-effect and a uniform current on tropical cyclone intensity
NASA Astrophysics Data System (ADS)
Duan, Yihong; Wu, Rongsheng; Yu, Hui; Liang, Xudong; Chan, Johnny C. L.
2004-02-01
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
Rise in central west Greenland surface melt unprecedented over the last three centuries
NASA Astrophysics Data System (ADS)
Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel
2017-04-01
Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.
Beyond Solar Fuels: Renewable Energy-Driven Chemistry.
Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda
2017-11-23
The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Naqvi, Wajih A.; Fairbanks, Richard G.
We reconstruct here the history of the Red Sea Outflow (RSO) over the past 27,000 years from an AMS 14C-dated high-resolution δ13C record of benthic foraminifera from the inner Gulf of Aden assuming the dominance of circulation over productivity in regulating benthic δ13C. The results reveal that, following a period of suppressed RSO due to shallow sill 24,000-18,000 yr BP, the Red Sea was vigorously flushed for ˜2,000 years before a major monsoon intensification caused the cessation of deep water formation from 15,500 to 7,300 yr BP. It appears that the monsoon intensification did lag behind insolation until 15,500 yr BP. Between 15,500 and the present, however, there was no lag in conflict with the previous reports, implying a negligible dampening effect of continental albedo during this period. However, since our analysis is confined to a single depth horizon and our record is sensitive to sea level, it has some limitations as an indicator of monsoon intensity.
NASA Technical Reports Server (NTRS)
Gonzalez, W. D.; Dutra, S. L. G.; Pinto, O., Jr.
1987-01-01
Evidence for a localized middle atmospheric electrodynamic modification at low latitudes (southern Brazilian coast) of the South Atlantic Magnetic Anomaly (SAMA), in association with enhanced geomagnetic activity, are presented in a unified way combining recent observational efforts and related numerical studies. They involve a distortion effect in the fair weather electric field at balloon altitudes. This effect is attributed to a local intensification of energetic electron precipitation through a related middle atmospheric ionization enhancement and is elucidated by numeric simulation. From the electric field measurements and the numeric simulation, the intensification of precipitation is considered to occur in fairly narrow regions at the observed low L values (around L = 1.13) of the SAMA, with horizontal extensions of the order of a few hundred kilometers. A physical mechanism that could be responsible for this sort of intensification is suggested. Furthermore, a comparison of the phenomenon of middle atmospheric electrodynamic modification at the SAMA with a similar one at auroral latitudes, in response to enhanced solar and geomagnetic activity, is also given.
Dependence of Tropical Cyclone Intensification on the Latitude under Vertical Shear
NASA Astrophysics Data System (ADS)
Bi, Mingyu; Ge, Xuyang; Li, Tim
2018-02-01
The sensitivity of tropical cyclone (TC) intensification to the ambient rotation effect under vertical shear is investigated. The results show that the vortices develop more rapidly with intermediate planetary vorticity, which suggests an optimal latitude for the TC development in the presence of vertical shear. This is different from the previous studies in which no mean flow is considered. It is found that the ambient rotation has two main effects. On the one hand, the boundary layer imbalance is largely controlled by the Coriolis parameter. For TCs at lower latitudes, due to the weaker inertial instability, the boundary inflow is promptly established, which results in a stronger moisture convergence and thus greater diabatic heating in the inner core region. On the other hand, the Coriolis parameter modulates the vertical realignment of the vortex with a higher Coriolis parameter, favoring a quicker vertical realignment and thus a greater potential for TC development. The combination of these two effects results in an optimal latitude for TC intensification in the presence of a vertical shear investigated.
Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee
Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather
2016-01-01
Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources. PMID:26943127
Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee.
Renauld, Miles; Hutchinson, Alena; Loeb, Gregory; Poveda, Katja; Connelly, Heather
2016-01-01
Bees provide critical pollination services to 87% of angiosperm plants; however, the reliability of these services may become threatened as bee populations decline. Agricultural intensification, resulting in the simplification of environments at the landscape scale, greatly changes the quality and quantity of resources available for female bees to provision their offspring. These changes may alter or constrain the tradeoffs in maternal investment allocation between offspring size, number and sex required to maximize fitness. Here we investigate the relationship between landscape scale agricultural intensification and the size and number of individuals within a wild ground nesting bee species, Andrena nasonii. We show that agricultural intensification at the landscape scale was associated with a reduction in the average size of field collected A. nasonii adults in highly agricultural landscapes but not with the number of individuals collected. Small females carried significantly smaller (40%) pollen loads than large females, which is likely to have consequences for subsequent offspring production and fitness. Thus, landscape simplification is likely to constrain allocation of resources to offspring through a reduction in the overall quantity, quality and distribution of resources.
Hardin, Michael G; Schroth, Elizabeth; Pine, Daniel S; Ernst, Monique
2007-05-01
Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better cognitive control in adults than adolescents, and in healthy adolescents than anxious and depressed adolescents, and 2) a stronger influence of incentives in adolescents than adults, and in healthy adolescents than their depressed and anxious counterparts. Antisaccadic eye movement parameters, which provide a measure of cognitive control, were collected during a reward antisaccade task that included parameterized incentive levels. Participants were 20 healthy adults, 30 healthy adolescents, 16 adolescents with an anxiety disorder, and 11 adolescents with major depression. Performance accuracy and saccade latency were analyzed to test both developmental and psychopathology hypotheses. Development and psychopathology group differences in cognitive control were found. Specifically, adults performed better than healthy adolescents, and healthy adolescents than anxious and depressed adolescents. Incentive improved accuracy for all groups; however, incremental increases were not sufficiently large to further modulate performance. Incentives also affected saccade latencies, pushing healthy adolescent latencies to adult levels, while being less effective in adolescents with depression or anxiety. This latter effect was partially mediated by anxiety symptom severity. Current findings evidence the modulation of cognitive control processes by incentives. While seen in both healthy adults and healthy adolescents, this modulatory effect was stronger in youth. While anxious and depressed adolescents exhibited improved cognitive control under incentives, this effect was smaller than that in healthy adolescents. These findings suggest differential incentive and/or cognitive control processing in anxiety and depression, and across development. Differences could result from disorder specific, or combined developmental and pathological mechanisms.
Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents
Hardin, Michael G.; Schroth, Elizabeth; Pine, Daniel S.; Ernst, Monique
2009-01-01
Background Developmental changes in cognitive and affective processes contribute to adolescent risk-taking behavior, emotional intensification, and psychopathology. The current study examined adolescent development of cognitive control processes and their modulation by incentive, in health and psychopathology. Predictions include 1) better cognitive control in adults than adolescents, and in healthy adolescents than anxious and depressed adolescents, and 2) a stronger influence of incentives in adolescents than adults, and in healthy adolescents than their depressed and anxious counterparts. Methods Antisaccadic eye movement parameters, which provide a measure of cognitive control, were collected during a reward antisaccade task that included parameterized incentive levels. Participants were 20 healthy adults, 30 healthy adolescents, 16 adolescents with an anxiety disorder, and 11 adolescents with major depression. Performance accuracy and saccade latency were analyzed to test both developmental and psychopathology hypotheses. Results Development and psychopathology group differences in cognitive control were found. Specifically, adults performed better than healthy adolescents, and healthy adolescents than anxious and depressed adolescents. Incentive improved accuracy for all groups; however, incremental increases were not sufficiently large to further modulate performance. Incentives also affected saccade latencies, pushing healthy adolescent latencies to adult levels, while being less effective in adolescents with depression or anxiety. This latter effect was partially mediated by anxiety symptom severity. Conclusions Current findings evidence the modulation of cognitive control processes by incentives. While seen in both healthy adults and healthy adolescents, this modulatory effect was stronger in youth. While anxious and depressed adolescents exhibited improved cognitive control under incentives, this effect was smaller than that in healthy adolescents. These findings suggest differential incentive and/or cognitive control processing in anxiety and depression, and across development. Differences could result from disorder specific, or combined developmental and pathological mechanisms. PMID:17501725
Free Radical Oxidation in Rat Myocardium after Maximum Permissible Hepatic Resection.
Ermolaev, P A; Khramykh, T P; Barskaya, L O
2016-03-01
Free radical oxidation in rat myocardial homogenate was studied by chemiluminescent assay during the early terms after maximum permissible liver resection. During this period, activation of free radical oxidation was biphasic. The critical terms characterized by dramatic intensification of free radical oxidation in the myocardium are the first hour and the first day after surgery. The period from 3 to 12 h after surgery, in which the indices of chemiluminescence decrease, can be tentatively termed as the period of "putative wellbeing". Normalization of the free radical oxidation processes in the myocardium occurred by day 7 after surgery.
Butler, P V
2000-08-01
The aim of this paper is to document regular nocturnal intensification of delusional nihilistic and persecutory ideas (Cotard delusion) linked with extreme depersonalisation and hypervivid dreaming. A 17-year-old man presented with Cotard and Capgras delusions after sustaining multiple cognitive impairments secondary to traumatic brain injury. Delusional ideation fully resolved within 14 days of commencement of olanzapine 5 mg daily. This patient's experience of perceptual abnormalities and impairments in meta-abilities related to self-monitoring and critical inferencing lends support to multicomponent sensory processing accounts of brain injury related, content-specific delusional syndromes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Andy Bundy, Avionics lead, left, and Pat Simpkins, director of Kennedy Space Center Engineering, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Green extraction of natural products: concept and principles.
Chemat, Farid; Vian, Maryline Abert; Cravotto, Giancarlo
2012-01-01
The design of green and sustainable extraction methods of natural products is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Herein we aimed to introduce the six principles of green-extraction, describing a multifaceted strategy to apply this concept at research and industrial level. The mainstay of this working protocol are new and innovative technologies, process intensification, agro-solvents and energy saving. The concept, principles and examples of green extraction here discussed, offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Greg Robinson, deputy associate administrator for Programs in the NASA Science Mission Directorate, right, congratulates, Tim Dunn, who was launch director for launch of eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Dana Allender, NASA Launch Operations manager, left, and Aly Mendoza-Hill, NASA Mission manager, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Kennedy Space Center Director Bob Cabana, right, congratulates, Omar Baez, a senior launch director in NASA's Launch Services Program, after the successful launch of eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Kralisch, Dana; Streckmann, Ina; Ott, Denise; Krtschil, Ulich; Santacesaria, Elio; Di Serio, Martino; Russo, Vincenzo; De Carlo, Lucrezia; Linhart, Walter; Christian, Engelbert; Cortese, Bruno; de Croon, Mart H J M; Hessel, Volker
2012-02-13
The simple transfer of established chemical production processes from batch to flow chemistry does not automatically result in more sustainable ones. Detailed process understanding and the motivation to scrutinize known process conditions are necessary factors for success. Although the focus is usually "only" on intensifying transport phenomena to operate under intrinsic kinetics, there is also a large intensification potential in chemistry under harsh conditions and in the specific design of flow processes. Such an understanding and proposed processes are required at an early stage of process design because decisions on the best-suited tools and parameters required to convert green engineering concepts into practice-typically with little chance of substantial changes later-are made during this period. Herein, we present a holistic and interdisciplinary process design approach that combines the concept of novel process windows with process modeling, simulation, and simplified cost and lifecycle assessment for the deliberate development of a cost-competitive and environmentally sustainable alternative to an existing production process for epoxidized soybean oil. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Intensification and refraction of acoustical signals in partially choked converging ducts
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.
1980-01-01
A computer code based on the wave-envelope technique is used to perform detailed numerical calculations for the intensification and refraction of sound in converging hard walled and lined circular ducts carrying high mean Mach number flows. The results show that converging ducts produce substantial refractions toward the duct center for waves propagating against near choked flows. As expected, the magnitude of the refraction decreases as the real part of the admittance increases. The pressure wave pattern is that of interference among the different modes, and hence the variation of the magnitude of pressure refraction with frequency is not monotonic.
On the Total Energy Deposition Between Periodically Occurring Activations of the Aurora
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Germany, G. A.; Parks, G. K.; Brittnacher, M. J.; Winglee, R. W.
1998-01-01
Total energy deposition in the northern latitudes is used in models to determine the state of the magnetosphere. It is known that on occasion, a series of intensifications of the aurora occur that are regularly spaced. The energy profile of the total energy deposited reflects this occurance. What can be said of the state of the magnetosphere based on these profiles. We present the result of a study which looks at several of these periods when a series of intensifications occur. Conclusions as to what the magnetosphere may be doing are presented.
NASA Astrophysics Data System (ADS)
Souty, F.; Brunelle, T.; Dumas, P.; Dorin, B.; Ciais, P.; Crassous, R.; Müller, C.; Bondeau, A.
2012-02-01
Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. The land-use modelling approach described in this paper entails several advantages. Firstly, it makes it possible to explore interactions among different types of biomass demand for food and animal feed, in a consistent approach, including indirect effects on land-use change resulting from international trade. Secondly, yield variations induced by the possible expansion of croplands on less suitable marginal lands are modelled by using regional land area distributions of potential yields, and a calculated boundary between intensive and extensive production. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
Case Study of Hurricane Felix (2007) Rapid Intensification
NASA Astrophysics Data System (ADS)
Colon-Pagan, I. C.; Davis, C. A.; Holland, G. J.
2010-12-01
The forecasting of tropical cyclones (TC) rapid intensification (RI) is one of the most challenging problems that the operational community experiences. Research advances leading to improvements in predicting this phenomenon would help government agencies make decisions that could reduce the impact on communities that are so often affected by these weather-related events. It has been proposed that TC RI is associated to various factors, including high sea-surface temperatures, weak vertical wind shear, and the ratio of inertial to static stability, which improves the conversion of diabatic heating into circulation. While a cyclone develops, the size of the region of high inertial stability (IS) decreases whereas the magnitude of IS increases. However, it’s unknown whether this is a favorable condition or a result of RI occurrences. The purpose of this research, therefore, is to determine if the IS follows, leads or changes in sync with the intensity change by studying Hurricane Felix (2007) RI phase. Results show a trend of increasing IS before the RI stage, followed by an expansion of the region of high IS. This episode is eventually followed by a decrease in both the intensity and region of positive IS, while the maximum wind speed intensity of the TC diminished. Therefore, we propose that monitoring the IS may provide a forecast tool to determine RI periods. Other parameters, such as static stability, tangential wind, and water vapor mixing ratio may help identify other features of the storm, such as circulation and eyewall formation. The inertial stability (IS) trend during the period of rapid intensification, which occurred between 00Z and 06Z of September 3rd. Maximum values of IS were calculated before and during this period of RI within a region located 30-45 km from the center. In fact, this region could represent the eye-wall of Hurricane Felix.
Jackson, Sandra L; Staimez, Lisa R; Safo, Sandra; Long, Qi; Rhee, Mary K; Cunningham, Solveig A; Olson, Darin E; Tomolo, Anne M; Ramakrishnan, Usha; Narayan, Venkat K M; Phillips, Lawrence S
2017-09-01
Clinical trials show lifestyle change programs are beneficial, yet large-scale, successful translation of these programs is scarce. We investigated the association between participation in the largest U.S. lifestyle change program, MOVE!, and diabetes control outcomes. This longitudinal, retrospective cohort study used Veterans Health Administration databases of patients with diabetes who participated in MOVE! between 2005 and 2012, or met eligibility criteria (BMI ≥25kg/m 2 ) but did not participate. Main outcomes were diabetic eye disease, renal disease, and medication intensification. There were 400,170 eligible patients with diabetes, including 87,366 (22%) MOVE! Included patients were 96% male, 77% white, with mean age 58years and BMI 34kg/m 2 . Controlling for baseline measurements and age, race, sex, BMI, and antidiabetes medications, MOVE! participants had lower body weight (-0.6kg), random plasma glucose (-2.8mg/dL), and HbA1c (-0.1%) at 12months compared to nonparticipants (each p<0.001). In multivariable Cox models, MOVE! participants had lower incidence of eye disease (hazard ratio 0.80, 95% CI 0.75-0.84) and renal disease (HR 0.89, 95% CI 0.86-0.92) and reduced medication intensification (HR 0.82, 95% CI 0.80-0.84). If able to overcome participation challenges, lifestyle change programs in U.S. health systems may improve health among the growing patient population with diabetes. Published by Elsevier Inc.
Biodiversity can support a greener revolution in Africa
Snapp, Sieglinde S.; Blackie, Malcolm J.; Gilbert, Robert A.; Bezner-Kerr, Rachel; Kanyama-Phiri, George Y.
2010-01-01
The Asian green revolution trebled grain yields through agrochemical intensification of monocultures. Associated environmental costs have subsequently emerged. A rapidly changing world necessitates sustainability principles be developed to reinvent these technologies and test them at scale. The need is particularly urgent in Africa, where ecosystems are degrading and crop yields have stagnated. An unprecedented opportunity to reverse this trend is unfolding in Malawi, where a 90% subsidy has ensured access to fertilization and improved maize seed, with substantive gains in productivity for millions of farmers. To test if economic and ecological sustainability could be improved, we preformed manipulative experimentation with crop diversity in a countrywide trial (n = 991) and at adaptive, local scales through a decade of participatory research (n = 146). Spatial and temporal treatments compared monoculture maize with legume-diversified maize that included annual and semiperennial (SP) growth habits in temporal and spatial combinations, including rotation, SP rotation, intercrop, and SP intercrop systems. Modest fertilizer intensification doubled grain yield compared with monoculture maize. Biodiversity improved ecosystem function further: SP rotation systems at half-fertilizer rates produced equivalent quantities of grain, on a more stable basis (yield variability reduced from 22% to 13%) compared with monoculture. Across sites, profitability and farmer preference matched: SP rotations provided twofold superior returns, whereas diversification of maize with annual legumes provided more modest returns. In this study, we provide evidence that in Africa, crop diversification can be effective at a countrywide scale, and that shrubby, grain legumes can enhance environmental and food security. PMID:21098285
Intensification of constructed wetlands for land area reduction: a review.
Ilyas, Huma; Masih, Ilyas
2017-05-01
The large land area requirement of constructed wetlands (CWs) is a major limitation of its application especially in densely populated and mountainous areas. This review paper provides insights on different strategies applied for the reduction of land area including stack design and intensification of CWs with different aeration methods. The impacts of different aeration methods on the performance and land area reduction were extensively and critically evaluated for nine wetland systems under three aeration strategies such as tidal flow (TF), effluent recirculation (ER), and artificial aeration (AA) applied on three types of CWs including vertical flow constructed wetland (VFCW), horizontal flow constructed wetland (HFCW), and hybrid constructed wetland (HCW). The area reduction and pollutant removal efficiency showed substantial variation among different types of CWs and aeration strategies. The ER-VFCW designated the smallest footprint of 1.1 ± 0.5 m 2 PE -1 (population equivalent) followed by TF-VFCW with the footprint of 2.1 ± 1.8 m 2 PE -1 , and the large footprint was of AA-HFCW (7.8 ± 4.7 m 2 PE -1 ). When footprint and removal efficiency both are the major indicators for the selection of wetland type, the best options for practical application could be TF-VFCW, ER-HCW, and AA-HCW. The data and results outlined in this review could be instructive for futures studies and practical applications of CWs for wastewater treatment, especially in land-limited regions.
NASA Astrophysics Data System (ADS)
Tarasov, Boris G.
2014-05-01
Today, frictional shear resistance along pre-existing faults is considered to be the lower limit on rock shear strength for confined conditions corresponding to the seismogenic layer. This paper introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. In the new mechanism, the rock failure associated with consecutive creation of small slabs (known as ‘domino-blocks') from the intact rock in the rupture tip is driven by a fan-shaped domino structure representing the rupture head. The fan-head combines such unique features as: extremely low shear resistance, self-sustaining stress intensification, and self-unbalancing conditions. Due to this the failure process caused by the mechanism is very dynamic and violent. This makes it impossible to directly observe and study the mechanism and can explain why the mechanism has not been detected before. This paper provides physical motivation for the mechanism, based upon side effects accompanying the failure process. Physical and mathematical models of the mechanism presented in the paper explain unique and paradoxical features of the mechanism. The new shear rupture mechanism allows a novel point of view for understanding the nature of spontaneous failure processes in hard rocks including earthquakes.
Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kerry H.; Vizy, Edward
The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less
Catalysis and Sonocatalysis for the Synthesis of Biofuels
NASA Astrophysics Data System (ADS)
Deshmane, Vishwanath Ganpat
The goal of this study was to investigate the synthesis of biofuels from edible and non-edible sources using commercially available and laboratory synthesized heterogeneous catalysts with and without the aid of ultrasound. The transesterification of soybean oil using calcium methoxide as solid base catalyst and the process parameters affecting the yield of biodiesel such as the catalyst concentration, methanol/oil molar ratio and the reaction temperature were investigated in detail. The kinetics of this process with and without ultrasound was also evaluated using a previously reported kinetic and mass transfer model for heterogeneous systems. Nanocrystalline mesoporous ZrO 2 with high surface area and thermal stability was synthesized using ethylene diamine as precipitating agent. Sulfonation of obtained Zr(OH) 2 at different digestion times was carried out using sulfuric acid and chlorosulfonic acid as the sulfonating agents and the effects of process parameters including digestion time, pH, precursor concentration and calcination temperature on structural, textural and catalytic properties were studied. Parametric and optimization (Taguchi statistical methodology) studies were carried out to evaluate the effects of cellulase, cellobiase, cellulose concentration and ultrasonic power on the intensification of cellulose hydrolysis to glucose. The catalysts and cellulose were characterized by using BET, NH3-TPD, XRD, SEM, TGA-DSC, EDX and FTIR. The results of these studies suggest that synthesis of biofuels can be improved by heterogeneous catalysts and ultrasound with potential reduction in production costs compared with conventional methods.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
NASA Astrophysics Data System (ADS)
Lebedev, V. A.; Serga, G. V.; Khandozhko, A. V.
2018-03-01
The article proposes technical solutions for increasing the efficiency of finishing-cleaning and hardening processing of parts on the basis of rotor-screw technological systems. The essence, design features and technological capabilities of the rotor-screw technological system with a rotating container are disclosed, which allows one to expand the range of the resulting displacement vectors, granules of the abrasive medium and processed parts. Ways of intensification of the processing on their basis by means of vibration activation of the process providing a combined effect on the mass of loading of large and small amplitude low-frequency oscillations are proposed. The results of the experimental studies of the movement of bulk materials in a screw container are presented, which showed that Kv = 0.5-0.6 can be considered the optimal value of the container filling factor. The estimation of screw containers application efficiency proceeding from their design features is given.
Tao, Rui; Shokry, Ibrahim M.; Callanan, John J.; Adams, H. Daniel; Ma, Zhiyuan
2014-01-01
Rationale Illicit use of MDMA (3,4-methylenedioxymethamphetamine; Ecstasy) may cause a mild or severe form of the serotonin syndrome. The syndrome intensity is not just influenced by drug doses but also by environmental factors. Objectives Warm environmental temperatures and physical activity are features of raves. The purpose of this study was to assess how these two factors can potentially intensify the syndrome. Methods Rats were administered MDMA at doses of 0.3, 1 or 3 mg/kg, and examined in the absence or presence of warm temperature and physical activity. The syndrome intensity was estimated by visual scoring for behavioral syndrome and also instrumentally measuring changes in symptoms of the syndrome. Results Our results showed that MDMA at 3 mg/kg, but not 0.3 or 1 mg/kg, caused a mild serotonin syndrome in rats. Each environmental factor alone moderately intensified the syndrome. When the two factors were combined, the intensification became more severe than each factor alone highlighting a synergistic effect. This intensification was blocked by the 5-HT2A receptor antagonist M100907, competitive NMDA receptor antagonist CGS19755, autonomic ganglionic blocker hexamethonium, and the benzodiazepine-GABAA receptor agonist midazolam, but not by the 5-HT1A receptor antagonist WAY100635 or nicotinic receptor antagonist methyllycaconitine. Conclusions Our data suggest that, in the absence of environmental factors, the MDMA-induced syndrome is mainly mediated through the serotonergic transmission (5HT-dependent mechanism), and therefore, is relatively mild. Warm temperature and physical activity facilitate serotonergic and other neural systems such as glutamatergic and autonomic transmissions, resulting in intensification of the syndrome (non-5HT mechanisms). PMID:25300903
Effect of widespread agricultural chemical use on butterfly diversity across Turkish provinces.
Pekin, Burak K
2013-12-01
Although agricultural intensification is thought to pose a significant threat to species, little is known about its role in driving biodiversity loss at regional scales. I assessed the effects of a major component of agricultural intensification, agricultural chemical use, and land-cover and climatic variables on butterfly diversity across 81 provinces in Turkey, where agriculture is practiced extensively but with varying degrees of intensity. I determined butterfly species presence in each province from data on known butterfly distributions and calculated agricultural chemical use as the proportion of agricultural households that use chemical fertilizers and pesticides. I used constrained correspondence analyses and regression-based multimodel inference to determine the effect of environmental variables on species composition and richness, respectively. The variation in butterfly species composition across the provinces was largely explained (78%) by the combination of agricultural chemical use, particularly pesticides, and climatic and land-cover variables. Although overall butterfly richness was primarily explained by climatic and land-cover variables, such as the area of natural vegetation cover, threatened butterfly richness and the relative number of threatened butterfly species decreased substantially as the proportion of agricultural households using pesticides increased. These findings suggest that widespread use of agricultural chemicals, or other components of agricultural intensification that may be collinear with pesticide use, pose an imminent threat to the biodiversity of Turkey. Accordingly, policies that mitigate agricultural intensification and promote low-input farming practices are crucial for protecting threatened species from extinction in rapidly industrializing nations such as Turkey. Efectos del Uso Extensivo de Agroquímicos sobre la Diversidad de Mariposas en Provincias Turcas. © 2013 Society for Conservation Biology.
Hill, Jason M.; Egan, J. Franklin; Stauffer, Glenn E.; Diefenbach, Duane R.
2014-01-01
Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) “grassland breeding” bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980–2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3–21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes.
Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y; Liu, Junguo; Schulin, Rainer
2018-08-15
Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km 3 y -1 , accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world. Copyright © 2018 Elsevier B.V. All rights reserved.
Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean
NASA Astrophysics Data System (ADS)
Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke
2015-08-01
Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.
Hill, Jason M; Egan, J Franklin; Stauffer, Glenn E; Diefenbach, Duane R
2014-01-01
Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) "grassland breeding" bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980-2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3-21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes.
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Sitar, R. J.; Papitashvili, V. O.; Cumnock, J.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.
1997-01-01
Coordinated analysis of data from the POLAR UVI instrument, ground magnetometers, incoherent scatter radar, solar wind monitors IMP-8 and WIND, and DMSP satellite is focused on a traveling convection vortex (TCV) event on 24 July 1966. Starting at 10:48 UT, ground magnetometers in Greenland and eastern Canada measure pulsations consistent with the passing overhead of a series of alternating TCV field-aligned current pairs. Sondrestrom incoherent scatter radar measures strong modulation of the strength and direction of ionospheric plasma flow, The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time the UVI instrument measures a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the emissions fade. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field-aligned current. Measurements of the solar wind suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in orientation of the IMF may have produced the intensification of the third TCV pair and the associated aurora] brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet or outer edge of the low latitude boundary layer.
Land-use intensification causes multitrophic homogenization of grassland communities
NASA Astrophysics Data System (ADS)
Gossner, Martin M.; Lewinsohn, Thomas M.; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C.; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C.; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J.; Purschke, Oliver; Schall, Peter; Socher, Stephanie A.; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N.; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W.; Allan, Eric
2016-12-01
Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
Land-use intensification causes multitrophic homogenization of grassland communities.
Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric
2016-12-08
Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip
2016-02-01
Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C <7.0%; modified Ismail-Beigi et al; and Healthcare Effectiveness Data and Information Set) were used when identifying adult patients with T2DM who experienced above-target A1C values during the index period (July 1, 2008 to June 30, 2012) in a U.S. managed-care claims database (IMPACT™). Clinical inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.
DreamTel; Diabetes risk evaluation and management tele-monitoring study protocol
Tobe, Sheldon W; Wentworth, Joan; Ironstand, Laurie; Hartman, Susan; Hoppe, Jackie; Whiting, Judi; Kennedy, Janice; McAllister, Colin; Kiss, Alex; Perkins, Nancy; Vincent, Lloyd; Pylypchuk, George; Lewanczuk, Richard Z
2009-01-01
Background The rising prevalence of type 2 diabetes underlines the importance of secondary strategies for the prevention of target organ damage. While access to diabetes education centers and diabetes intensification management has been shown to improve blood glucose control, these services are not available to all that require them, particularly in rural and northern areas. The provision of these services through the Home Care team is an advance that can overcome these barriers. Transfer of blood glucose data electronically from the home to the health care provider may improve diabetes management. Methods and design The study population will consist of patients with type 2 diabetes with uncontrolled A1c levels living on reserve in the Battlefords region of Saskatchewan, Canada. This pilot study will take place over three phases. In the first phase over three months the impact of the introduction of the Bluetooth enabled glucose monitor will be assessed. In the second phase over three months, the development of guidelines based treatment algorithms for diabetes intensification will be completed. In the third phase lasting 18 months, study subjects will have diabetes intensification according to the algorithms developed. Discussion The first phase will determine if the use of the Bluetooth enabled blood glucose devices which can transmit results electronically will lead to changes in A1c levels. It will also determine the feasibility of recruiting subjects to use this technology. The rest of the Diabetes Risk Evaluation and Management Tele-monitoring (DreamTel) study will determine if the delivery of a diabetes intensification management program by the Home Care team supported by the Bluetooth enabled glucose meters leads to improvements in diabetes management. Trial Registration Protocol NCT00325624 PMID:19426530